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Abstract—Photonic time stretch enables real time high 
throughput optical coherence tomography (OCT), but with 
massive data volume being a real challenge. In this paper, data 
compression in high throughput optical time stretch OCT has 
been explored and experimentally demonstrated. This is made 
possible by exploiting spectral sparsity of encoded optical pulse 
spectrum using compressive sensing (CS) approach. Both 
randomization and integration have been implemented in the 
optical domain avoiding an electronic bottleneck. A data 
compression ratio of 66% has been achieved in high throughput 
OCT measurements with 1.51 MHz axial scan rate using greatly 
reduced data sampling rate of 50 MS/s. Potential to improve 
compression ratio has been exploited. In addition, using a dual 
pulse integration method, capability of improving frequency 
measurement resolution in the proposed system has been 
demonstrated. A number of optimization algorithms for the 
reconstruction of the frequency-domain OCT signals have been 
compared in terms of reconstruction accuracy and efficiency. Our 
results show that the L1 Magic implementation of the primal-dual 
interior point method offers the best compromise between 
accuracy and reconstruction time of the time-stretch OCT signal 
tested.  
 

Index Terms—Optical coherence tomography, dispersion, 
photonic time stretch, compressive sensing. 
 

I. INTRODUCTION 
PTICAL coherence tomography (OCT) is an indispensable 
tool for high-resolution cross-sectional optical imaging of 

the internal structure of an object. Since its invention [1], OCT 
has been used and further improved as an in-vivo diagnostic 
tool for biological materials such as ocular structures [2]. On 
the other hand, since OCT provides high-resolution 
depth-resolved images of strongly scattering media in a 
contact-free way, this technique has also been proposed for 
non-biological applications, such as non-destructive testing 
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(NDT) and contactless material characterization [3]. 
High-speed OCT is highly desirable for NDT applications 
where fast image acquisition is essential. Examples include 
observation of rapid dynamic processes and inspection of fast 
moving objects without motion artifacts.  

The discovery of frequency-domain OCT has provided 
higher scan rate, offering greater stability and better 
signal-to-noise ratio compared to traditional time domain OCT 
methods [4]. In the last decade, extensive efforts have been 
made to increase the utility of frequency-domain OCT towards 
further higher measurement speed. Impressive MHz axial scan 
rates have been achieved by using a new type of high-speed 
frequency-sweeping optical source based on Fourier-domain 
mode locking (MDFL) [5], and by using channelized optical 
spectrum measurement with photodiode arrays [6]. Apart from 
targeting high-speed axial scanning, master–slave 
interferometry [7] was recent reported as an alternative 
high-speed solution for real-time en-face display of 
frequency-domain OCT images. 

Most recently, the photonic time-stretch (PTS) technique [8], 
[9], also known as dispersive Fourier transform [10]-[12], 
real-time Fourier transform [13], [14], or wavelength-to-time 
mapping [15]-[17], has also been explored in high-speed OCT 
to provide even higher axial scan rates [18]-[21]. This method 
uses large chromatic dispersion in optical fibres to map the 
broadband spectrum of an ultrashort optical pulse into a 
temporal waveform. Therefore, frequency-domain OCT 
measurement can be achieved alternatively in time-domain 
using a high-speed single-pixel photodetector (PD), which 
enables PTS-OCT to operate at the axial scan rate equivalent to 
the pulse repetition rate of the laser, typically ranging from tens 
of MHz to even GHz. PTS-OCT was first implemented in the 
fiber-optic communication band (i.e., ~1550 nm) [18], in which 
ultrafast PDs and good dispersive elements with large 
dispersion-to-loss ratio are commercially available. PTS-OCT 
operating at a shorter wavelength range has also been 
implemented offering better axial resolution and less water 
absorption in biological samples [19]. Amplified time stretch 
OCT with greatly improved sensitivity based on broadband 
Raman amplification has been recently demonstrated to allow 
high-speed OCT imaging of biological tissues [20], [21]. 

While the PTS technique has enabled high-throughput OCT 
measurement thanks to the use of high-speed hardware 
borrowed from optical communication systems, the 
instruments inherently produce an extremely high-rate data 
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stream. For example, for a PTS-OCT system running at an axial 
scan rate of nearly 100 MHz [19], with each OCT waveform 
having one thousand sampled pixels, and a high-speed 
analog-to-digital convertor (ADC) with a typical 10 bits of 
digitization accuracy [13], the produced data rate can be as high 
as one trillion bits per second. This deluge of OCT image data 
will overwhelm even the most advanced data acquisition 
circuits and the backend digital signal processors. Most 
electronic solutions fall short in this case due to the electronic 
bottleneck in speed and bandwidth. Therefore, new and 
efficient photonic approaches, which feature ultrafast speed 
and extremely broadband bandwidth, are highly demanded to 
address the emerging massive data problems in ultrafast OCT 
systems. 

Compressive sensing (CS) has been recently proved as a 
promising data compression method [22], [23]. The CS 
approach is based on the fact that most natural images/signals 
are sparse in the wavelet domain and can be reconstructed from 
down-sampled data or a reduced number of measurements in a 
single-pixel receiver scheme such as the PTS-OCT system 
presented in this paper, leading to overall compressed data 
volume. Since the introduction of CS theory, a number of 
photonic CS systems have been implemented in the optical 
domain thanks to the huge instantaneous bandwidth of optical 
systems for random mixing [24] and integration [25]. 
Photonics-assisted CS has been successfully implemented to 
achieve data compression in broadband radio frequency (RF) 
signal detection [26]-[30], photonic time stretch ADC [24], 
[31]-[36], and ultrafast photonic time stretch imaging 
[37]-[40]. 

Research efforts have also been made to explore the use of 
CS method in OCT systems for data compression. For example, 
in [41], a CS method has been employed in post processing to 
reconstruct 3D OCT images from a subset of the original 
images by exploiting the image sparsity in certain transform 
domain. In [42], CS has been implemented in spectral domain 
OCT to reduce the total amount of original data from a CCD 
camera. The random under-sampling of OCT spectral data was 
achieved by randomly addressing the pixels in the CCD camera 
or applying a pre-set k-space mask [43]. Various reconstruction 
algorithms based on non-local approach [44] and 
energy-guided learning approach [45] have been studied to 
produce better reconstruction results from under-sampled data 
sets. Graphics processing units (GPU)-based parallel 
processing has improved reconstruction speed and achieved 
real-time CS spectral domain OCT [46]. 

Despite extensive studies on applying CS approach in 
spectral domain OCT [42]-[46], surprisingly, very little 
research work on data-compressed PTS-OCT has been reported 
so far [47], especially considering the fact that PTS-OCT 
suffers much more from massive data issues due to its 
high-throughput nature. In this work, photonic CS enabled data 
compression in high throughput PTS-OCT has been explored 
and experimentally demonstrated. Both random mixing and 
signal integration are implemented in the optical domain based 
on temporal modulation of time stretched optical pulse using 

pseudorandom binary sequences (PRBSs) and pulse 
compression using opposite dispersion value. The proposed 
method not only overcomes the bottleneck of big data problems 
[48] but also provides an economic alternative to high-speed 
PTS-OCT data acquisition as a very low speed (50MHz) 
detector is capable enough to capture compressed OCT data, 
which otherwise demands tens of GS/s sampling rate [18]-[21]. 

Some preliminary experimental observations have been 
recently reported by us [49]. To provide a better understanding 
of the proposed approach, a comprehensive analysis and further 
simulation and experimental verifications are presented in this 
paper. A data compression ratio of 66% has been achieved in 
high throughput OCT measurements with 1.51 MHz axial scan 
rate using greatly reduced data sampling rate of 50 MS/s. 
Furthermore, a dual pulse integration method has been 
demonstrated to show the capability of improving frequency 
measurement resolution in the proposed system. A number of 
optimization algorithms for the reconstruction of the 
frequency-domain OCT signals have also been compared in 
terms of frequency reconstruction accuracy and efficiency. 
Suggestions have been given on selection of reconstruction 
algorithm in CS PTS-OCT systems. 

The remainder of this paper is organized as follows. In 
Section 2, we first describe the principle of the proposed CS 
PTS-OCT system in details. Section 3 presents the simulation 
results to verify the optical system for randomization and 
integration with reconstruction algorithm. Experimental 
demonstration of data compressed PTS-OCT for a single-layer 
sample with various depth profiles is carried out and presented 
in Section 4. A new optical compressive sensing scheme based 
on dual pulse compression to improve the reconstruction 
frequency resolution is demonstrated and reported in Section 5. 
In Section 6, our evaluation of a number of reconstruction 
algorithms for CS PTS-OCT is presented. Discussions on 
potential improvement in compression ratio are provided in 
Section 7. Finally, we summarize and conclude our work in 
Sections 8. 

II. PRINCIPLE 
Schematic diagram of our proposed CS PTS-OCT system is 

shown in Figure 1. The optical source is a passively 
mode-locked laser (MLL) that produces a series of broadband 
ultra-short optical pulse train. The optical pulse is first stretched 
by a dispersion compensating fiber (DCF) generating a 
broadband passive wavelength swept optical carrier. The 
stretched pulse is then sent to a Michelson interferometer for 
real-time spectral-domain OCT measurement. Each frequency 
component of the pulse spectrum hence illuminates the sample 
successively in time. The back-reflected pulses from different 
layers of the sample are interferometrically combined with an 
unmodulated pulse reflected from a reference mirror at the 
optical coupler, resulting in an interference fringe in the time 
domain. The concept of PTS-OCT can also be understood 
based on frequency-to-time mapping: depth information of the 
sample is first encoded to optical pulse spectrum, which is 
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further mapped to a temporal waveform by large group velocity 
dispersion (GVD) of the DCF. The frequency-to-time mapping 
relation is characterized as 1tλ −= Ψ , where Ψ  is the total 
chromatic dispersion (in ps/nm) of the DCF. Finally a spectral 
interferogram can be captured in real time using a high-speed 
single-pixel photodetector. 

 

 
In the Michelson-type interferometer set up, one optical fibre 

arm ends with a fixed fibre Faraday mirror and other arm is 
focused onto a moveable mirror, which emulates a single 
reflection-layer sample. This interferometer set up produces an 
interference fringe pattern in both the time and frequency 
domains. The optical path length difference between two arms 
is considered to be 

 ( )1gl n L L∆ = −                              (1) 

where gn  is the refractive index of the fibre core in the fixed 
arm, L is the optical fibre length in fixed arm, and L1 is the free 
space distance between the fibre end and the movable reference 
mirror. The free spectral range (FSR) in interference spectrum 
in terms of optical wavelength can be calculated as 

 
2

2 l
λλ∆ =
∆

                                  (2) 

Thanks to the dispersion-induced wavelength-to-time 
mapping, this interference spectrum is converted to a temporal 
interference pattern with its period given by t λ∆ = ∆ × Ψ . It 
can be easily deduced from Eq. (2) that the relation between RF 
frequency of the interference pattern and optical path length 
difference can be established as 

 2

1 2
RF

lf
t λ

∆
= =

∆ Ψ
                             (3) 

Therefore, the optical path length difference and hence the 
depth information of the sample can be uniquely determined 
from the RF frequency at a refresh rate identical to the pulse 
repetition rate. 

Compressive sensing theory shows that a frequency-sparse 
signal, such as the time-encoded OCT signal, can be recovered 

from a reduced number of measurements in a single-pixel 
receiver scheme such as the PTS-OCT system, which leads to 
significant data compression. Compressive sensing normally 
involves three successive steps [22]: random mixing, 
integration (or equivalently low-pass filtering), and 
down-sampling. The original signal can be then reconstructed 
following a minimization algorithm. To implement photonic 
compressive sensing in the optical domain, each of the 
spectrally encoded pulses are modulated with a pseudo-random 
bit sequence (PRBS) at an electro-optical modulator. The bit 
rate of the PRBS defines Nyquist rate of the detection system. 

Assuming that the spectrally encoded and time stretched 
optical pulse, y is sampled at Nyquist rate with length N and 
sparse in Discrete Fourier Transform (DFT) domain ΨN×N, the 
DFT domain signal can be represented as, 

1 1N N N Ns y× × ×= Ψ                                (4) 

The signal vector y is mixed with m PRBS patterns m Nϕ × , each 
having length N. Each randomly mixed optical pulse is 
integrated via optical pulse compression using a length of 
single mode fibre (SMF) that has opposite dispersion profile 
compared to DCF. This generates a down-sampled (m×1) 
measurement vector z, which can be represented as, 

1 1m m N Nz A s× × ×=                                (5) 

where 1A ϕ −= Ψ . Measurements z can be obtained by taking 
the optical power of each compressed pulse using a low-speed 
photodetector. Finally, the reconstruction of DFT domain 
signal from down-sampled measurements is achieved using the 
measurements and corresponding PRBS patterns as the inputs 
to an L-1 minimization program. Solving the minimization 
problem, 

( )1
min s subject to z As=                   (6) 

results in sparse solution s, which can be used to calculate depth 
profile of the sample based on Eq. (3). The compression ratio is 
defined as m/N. 

III. SIMULATION RESULTS 
A simulation is first performed using a commercial 

simulation tool VPItransmissionMaker to verify the method. 
The schematic shown in Fig. 1 is considered and we assume 
that the input optical pulse has a Gaussian shape with a 
full-width at half maximum (FWHM) of 800 fs and repetition 
rate of 50MHz, and the DCF has total dispersion of 1.28 ns/nm. 
The original ultrashort optical pulse is significantly stretched in 
time after dispersion as shown with dashed line envelop in Fig. 
2a. The sample used in the simulation has a two-layer structure 
with a layer-to-layer separation of 0.768 mm. After reflection 
from the Michelson interferometer, the spectral interferogram 
is mapped to a time-domain waveform due to the 
frequency-to-time mapping. The obtained waveform is shown 
in Fig. 2a with solid line. Since reflection from each layer 
within the sample turns into unique frequency with respect to 

 

Fig. 1. Block diagram of the proposed compressive sensing PTS-OCT system.  
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the reference arm, each path length difference converts to a 
single-tone RF frequency in time domain. Figure 2b shows the 
corresponding Fourier transform spectrum, which has two 
strong frequency peaks at 4 GHz and 3.5 GHz respectively. The 
power of the peaks indicates the strength of reflection from 
individual layers. An excellent match with the given model in 
Eq. (3) is observed. Note that there is an additional frequency 
component close to the baseband, which is corresponding to 
inter-layer interference and can be removed during 
post-processing. 

 

 
The encoded and stretched optical pulse carrying depth 

information is then mixed with a PRBS pattern of 10 Gbps, 
which leads to an original signal length of N=200. Signal 
integration is realized based on pulse compression using a 
Single mode Fibre (SMF) with opposite dispersion profile, 
which generates a single measurement result. Multiple 
measurements are implemented with different PRBS patterns 
and used to run L1 minimization reconstruction. By taking 70 
measurements, the reconstructed DFT domain signal is shown 
in Fig. 2d and corresponding time domain representation is 
calculated using inverse Fourier transform and shown in Fig. 2c. 
It is evident that a good reconstruction is obtained with a 
compression ratio of 35%. 

IV. EXPERIMENTAL RESULTS 
To verify the utility of the proposed compressive sensing 

PTS-OCT system, a proof of concept experiment has been 
designed and implemented based on the setup shown in Fig. 1. 
In the experiment, the optical source is a passively mode locked 
laser (Calmar Mendocino FP laser), which produces a series of 
ultrashort optical pulses with FWHM of 800 fs and repetition 
rate of 50MHz. After being time stretched using a DCF with 
total dispersion of 1.04ns/nm, the optical pulses are directed to 
a Michelson-type OCT setup where one arm is an optical fibre 
ended with a fibre Faraday mirror and the other is in free-space 

towards a moveable mirror emulating as a single-layer sample. 
Tuning to a particular path difference, the depth profile is 
encoded into the RF frequency of the mapped temporal 
waveform. 
 

 
The first five consecutive pulses are captured using a 

high-speed PD and a real-time oscilloscope and shown in Fig. 
3a. We can see the stretched Gaussian pulse is encoded with a 
single tone RF frequency indicating the strong single-layer 
reflection from the sample. The Fourier transform of the 
interference waveform is indicated by the red dotted line in Fig. 
3e. A clear peak at 650 MHz is obtained, which corresponds to 
an optical path length difference of 0.81 mm. PRBS patterns at 
2.5 Gbps are generated by an arbitrary waveform generator 
(AWG, Tektronix AWG7122C) as shown in Fig. 3b. 
Considering Nyquist rate of 2.5 Gbps and pulse period of 20 ns, 

 

Fig. 3. Experiment results for a single-layer PTS-OCT measurement. (a) The 
temporal interference pattern for five successive pulses. (b) The first 5 PRBS 
patterns. (c) The modulated waveforms with red marking showing no pattern 
for exact amount of duration of a bit 0. (d) The compressed optical pulses using 
a SMF with opposite dispersion profile. The peak power of compressed pulses 
produce the measurements. (e) Overlapped temporal waveforms for the 
reconstructed signal (in solid line) and the original signal (in red dash line). (f) 
Fourier domain representation of the reconstructed signal (in solid line) and the 
original signal (in red dash line).  

 

Fig. 2. Simulation results for a two-layer PTS-OCT measurement. (a) Temporal 
interference pattern as a result of path length difference. The time-stretched 
original pulse is shown in red dotted line. (b) The spectrum profile of the optical 
interference pattern, clearly showing two carrier frequencies of 3.5 GHz and 4 
GHz. (c) The reconstructed signal in time domain using 70 measurements. (d) 
The reconstructed Fourier spectrum showing two strong tones which match 
with the original signal.  
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the original signal length is N=50. Mixing of PRBS patterns 
with the encoded optical pulses is implemented using a 10 GHz 
Mach-Zehnder modulator (MZM) with the results captured by 
the oscilloscope and shown in Fig. 3c. Passing the randomly 
mixed pulses through a SMF with opposite dispersion profile, 
signal integration has been realized via pulse compression. The 
compressed pulses are detected with a 2.5GHz PD and shown 
in Fig. 3d. The pulses have a pulse-width of 0.4 ns which is 
inversely proportional to the PD bandwidth. The peak power of 
each pulse indicates the integration of mixed optical pulse and 
leads to a single measurement result. Overall 33 measurements 
have been taken to reconstruct the original signal following an 
L1 Magic minimization algorithm as described in [50]. The 
reconstructed DFT domain signal is shown with solid line in 
Fig. 3e. We can see that the target frequency (650 MHz) has 
been successfully recovered with a compression ratio of 66%. 
Figure 3f shows the reconstructed time domain signal and the 
original signal with blue solid and red dotted line respectively. 
A good match in time-domain reconstruction has been achieved. 
Data compression is achieved in PTS-OCT at the cost of 
reduced axial scan rate. The effective axial scan rate in this 
experiment is 1.51 MHz. A better compression ratio (due to 
fewer number of measurements) will increase the scan rate as 
well. 
 

 
A second experiment was carried out to verify the utility of 

the system at different imaging depths. We tune the moveable 
mirror further to get an increased optical path length difference 
of 0.99 mm. The mapped spectrally-encoded optical pulse has a 
higher carrier frequency of 800 MHz, with its time-domain and 
frequency-domain representations shown in Figs. 4a and 4b 
respectively. The same random mixing and optical pulse 
compression processes are carried out. With 33 measurements, 
the reconstructed time-domain and DFT domain signals are 
shown in Fig. 4c and 4d respectively. The reconstructed signal 
matches well with the original signal with a compression ratio 

of 66%. 

V. IMPROVING THE FREQUENCY DETECTION RESOLUTION 
The compressive sensing method can efficiently reduce the 

total data volume as demonstrated in this paper. However, it 
suffers from one difficulty that it can only reconstruct discrete 
frequency tones (a frequency grid) in the OCT spectrum, which 
are harmonic tones of the laser repetition rate, due to the 
periodic nature of the optical pulse train. The minimum 
frequency resolution that can be resolved is as same as the 
repetition rate [51]. If the RF frequency is near a midpoint of 
the frequency grid, frequency detection will total fail [52]. In 
the application of compressive sensing PTS-OCT, this 
difficulty leads to only discrete depth profiles and limits its 
applications in practical scenarios. 

More sophisticated reconstruction algorithms based on 
joint-sparsity-based matching pursuit has been proposed to 
address this issue [34]. Here we demonstrate a new optical 
scheme based on dual pulse integration that enables the 
reconstruction of non-harmonic tones using only the basic 
minimization algorithm. This will allow frequency 
reconstruction resolution less than the pulse repetition rate and 
unblock the detection of midpoint frequencies. 
 

 
In the experiment, the optical path length difference is set to 

be 0.905 mm such that the carrier RF frequency of temporal 
interference pattern is 725 MHz, which is obviously not a 

 

Fig. 4. Experimental results for a second single-layer sample with different path 
length difference. (a) The original interference pattern in time domain. (b) 
Fourier transform of the original interference pattern showing a single carrier 
frequency of 800 MHz. (c) The reconstructed time domain waveform with 33 
measurements. (d) The reconstructed DFT domain signal clearly identifying the 
800 MHz frequency component.  

 

Fig. 5. Experimental results showing data compressed PTS-OCT with improved 
frequency resolution. (a) The original temporal interference waveform with a 
carrier frequency of 725 MHz. (b) Its Fourier transform shows two closely 
located frequency peaks at 700 and 750 MHz. (c) The constructed temporal 
waveform based on normal one pulse integration. (d) Reconstructed DFT signal 
showing only the 750 MHz signal. This indicates a total failure in frequency 
identification. (e) and (f) show the reconstruction results based on dual pulse 
integration. The 725 MHz frequency component is successfully identified.  
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harmonic tone of 50 MHz but a midpoint in the frequency grid 
with 50 MHz separation. The original spectrally-encoded 
temporal waveform is captured using the oscilloscope and 
shown in Fig. 5a and its Fourier transform is plotted in Fig. 5b. 
We can see that two closely located frequency peaks at 700 
MHz and 750 MHz are presented due to the frequency grid. 
After normal compressive sensing process, the reconstructed 
time-domain and DFT-domain signals are shown in Figs. 5c 
and 5d respectively. The reconstructed frequency shows 750 
MHz only and identification of actual 725 MHz frequency has 
totally failed. This is because 750 MHz component has a 
slightly higher power than 700 MHz as shown in Fig. 5b and 
the reconstruction algorithm only can pick up one stronger 
frequency. Here we integrate two successive PRBS-mixed 
optical pulses to form one measurement element for 
compressive sensing. As shown in Fig. 5f, the actual carrier 
frequency of 725 MHz is accurately identified thanks to dual 
pulse integration, and a compression ratio of 66% is achieved. 
Note that the detection speed has to be reduced as a trade-off. 

VI. EVALUATION OF MINIMIZATION ALGORITHMS IN 
COMPRESSIVE SENSING PTS-OCT 

Thus far in this paper, a primal-dual interior point method for 
L1 minimization has been used for PTS-OCT signal 
reconstruction. In this section, a number of alternative 
optimization algorithms for the reconstruction of PTS-OCT 
signals have been compared in terms of their reconstruction 
accuracy and efficiency. This will provide useful information 
in selection of appropriate algorithms for this particular 
PTS-OCT scheme.  

In the context of compressive sensing, the time-stretched 
measurements can be modelled as a basis pursuit or a lasso L1 
minimization problem. Note that these minimization problems 
have a slightly different mathematical form to Eq. (6). Five 
sparsity promoting algorithms were compared: primal-dual 
interior point method (L1 Magic) [50], alternating direction 
method for multipliers for basis pursuit (ADMM BP) and lasso 
(ADMM Lasso) [54], lasso method using coordinate descent 
(Matlab Lasso) and its standardised version [55], and 
Nesterov’s algorithm method (NESTA) [56]. 

6.1. Reconstruction accuracy 
To make a fair comparison, without loss of generality, the 

original PTS-OCT signal is set to have four dominant carrier 
frequencies (2.6 GHz, 2.9 GHz, 3.6 GHz and 4.6 GHz) 
corresponding to a four-layer sample. A PRBS vector with 
probability of 0.5 and sampling rate of 10 Gbps is used to mix 
with the original PTS-OCT signal, which makes the overall 
signal length to be 200. We first show the reconstructed 
frequency spectrum, at a common compression ratio of 40% 
(80 measurements), for each of the five algorithms as shown in 
Fig. 6. The red line is the ground truth signal and blue line 
represents the reconstructed results. NESTA produces an 
acceptable result in which the dominant peaks are all 
reconstructed and L1 Magic performs similarly well. ADMM 
Basis pursuit produces a less noisy signal but the energy at the 

frequency bands of interest is suppressed, which results in a 
less accurate result. This is also the case for ADMM lasso. 
Matlab lasso produces a large frequency drift for the weakest 
frequency peak at 4.6 GHz. 
 

 

 
The reconstruction accuracy was evaluated using the root 

mean square error (RMSE) in the frequency domain. 
Reconstruction errors were first calculated, over the whole 

 

Fig. 7. Evaluation of reconstruction accuracy. (a) RMSE of reconstructed signal 
calculated over entire frequency range. All five candidate algorithms show a 
descending trend. NESTA and L1 Magic algorithm yield the smallest RMS 
error. (b) RMSE of reconstructed signal calculated for the frequencies spanned 
by the 4 dominant peaks only. Error rates similar for all five algorithms for 
small number of measurements. Relative performance of NESTA and L1 Magic 
improves as the number of measurements increases.  

 

Fig. 6. The reconstructed frequency domain signals for all five algorithms 
corresponding to a compression ratio of 40%. Red line is the ground truth signal 
and blue line represents reconstruction. From left to right, top row: (a) NESTA 
and (b) L1 Magic; middle row: (c) ADMM Basis pursuit and (d) lasso; bottom 
row: (e) Matlab lasso for non-standardised data and (f) standardised data 
respectively.  
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frequency range, for different numbers of measurements 
ranging from 30 (15% compression ratio) up to a maximum of 
200 measurements (no compression) as shown in Fig. 7a. The 
RMSE for the two ADMM methods is unstable but exhibits a 
decreasing trend w.r.t. measurements. Conversely, L1 Magic 
and NESTA show a smoothly decreasing error w.r.t. 
measurements and have the lowest error of the 5 algorithms 
tested. For the Matlab lasso algorithm, standardization reduces 
the error for fewer measurements but the error converges with 
non-standardised result as the number of measurements 
increases. 

Since the four dominant frequency bands indicate the most 
important information, RMSE was calculated again for four 
dominant frequency peaks only with the results shown in Fig. 
7b. Similar to Fig. 8a, NESTA and L1 Magic yield the smallest 
error over the frequency range. The reconstruction error for 
ADMM basis pursuit is again very unstable w.r.t. the number of 
measurements. Note at 70 to 90 measurements, ADMM basis 
pursuit achieves similar results to NESTA. This implies its 
advantage in reducing noise. In contrast, ADMM lasso remains 
stable at high sampling densities. Furthermore, standardisation 
for Matlab lasso has little effect on RMSE. 

6.2. Computation cost 
For each algorithm, the processing time for reconstruction 

was measured 5 times and averaged. The code was run in 
Matlab on a 64-bit Windows 10 machine with an Intel Core i7 
CPU @ 3.07GHz and 8GB RAM. As shown in Fig. 8 the 
processing time for most algorithms is within 1 second except 
ADMM Basis pursuit which takes longer time than 1.5 seconds, 
with the peak at 2.4 seconds. This is due to its slow converge 
speed. ADMM is an iterative algorithm that executes quicker 
when the number of iterations is reduced at the expense of 
accuracy. The ADMM lasso is the fastest of the 5 algorithms 
with relatively small increase in computation time w.r.t. the 
number of measurements. Note, NESTA takes much more time 
than L1 Magic although they have similar RMSE. 
 

 

6.3. Summary remarks 
To summarise, the five algorithms vary in performance in 

terms of accuracy and efficiency. For the PTS-OCT signal 
tested in this work, NESTA and l1 Magic algorithms produce 
the most reliable reconstruction accuracy. Because NESTA 
requires more computational time, L1 Magic can be a better 
choice if fast processing is important. In addition, the sparsity 
of original signal can affect the best compression ratio for 
acceptable reconstruction. According to our evaluation, the L1 
Magic implementation of the primal-dual interior point method 
offers the best compromise between accuracy and 
reconstruction time of the time-stretch OCT signal tested. 

VII. DISCUSSIONS 
In our proof-of-the-concept experimental demonstrations 

presented thus far, 33 measurements were required to 
reconstruct the original signal with a signal length of 50, 
leading to a compression ratio of 66%. There is great potential 
to improve the compression ratio based on the following three 
principles.  

Despite a single carrier RF frequency to be identified for a 
single-layer sample, the reconstructed DFT domain signal is 
not a single-tone but a “fat” Gaussian distribution with a 3-dB 
bandwidth of 200 MHz. In signal reconstruction, more 
calculation resources and hence more measurements are 
required to reconstruct the whole Gaussian frequency band, 
which however does not carry any useful information (apart 
from the central peak frequency) leading to a sacrificed 
compression ratio. This issue can be improved by stretching the 
optical pulse further to a longer time window. Then the Fourier 
domain bandwidth will be effectively reduced. With a 
full-stretch of 100% duty cycle, the Fourier domain bandwidth 
for each carrier frequency can be as low as the pulse repetition 
rate [53], which is 50 MHz in our case. The compression ratio 
can be improved by 4 times. 

Secondly, the compression ratio can be significantly 
improved by increasing the PRBS rate. In our demonstration, 
PRBS patterns are sampled at 2.5 Gbps, which is purely limited 
by the bandwidth of our AWG equipment. Low Nyquist rate 
not only limits the compression ratio but also the detection 
bandwidth of the PTS-OCT system. High data rate PRBS 
generator is a real challenge due to the electronic bottleneck. 
One solution is to partially compress over-stretched and 
PRBS-modulated optical pulse to increase the effective PRBS 
sampling rate [34]. 

Thirdly, the problem of Gaussian frequency band in the 
reconstructed DFT domain signal can be tackled from a 
different perspective. Here we use PRBS-modulated Gaussian 
pulse as an analog random bit sequence, rather than binary 
PRBS patterns as used in traditional compressive sensing 
systems. The use of Gaussian-shape analog random bit 
sequence in the reconstruction algorithm will effectively 
remove the Gaussian envelope of the information-carrying 
optical pulse and hence reduce the bandwidth of carrier 
frequencies in DFT domain. This method can be implemented 

 

Fig. 8. The computational time as a function of the number of measurements. 
ADMM Lasso, Matlab Lasso, Matlab Lasso (standardized) and L1 Magic show 
small linear increase with respect to number of measurements. Basis pursuit is 
unstable for measurements < 110 due to slow convergence rate.  
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purely in the digital domain during signal reconstruction and no 
hardware changes, such as pulse over-stretching and partially 
compression, are required. More simulations are carried out to 
verify this approach with parameters as same as used in Section 
3. As shown in Fig. 9, the bandwidth of frequencies of interest 
(3.5 and 4 GHz) has been greatly reduced due to the removal of 
Gaussian envelope (see inset of Fig. 9). Only 20 measurements 
are required to reconstruct the signal shown in Fig. 9, leading to 
a greatly improved compression ratio of 10%. 
 

 

VIII. SUMMARY AND CONCLUSION 
Massive data volume is an emerging challenge in 

high-throughput measurement systems, such as PTS-OCT. In 
this paper, we have proposed and experimentally demonstrated 
a data compression approach based on photonic compressive 
sensing for data-efficient time-stretch OCT systems. Random 
mixing and integration processes were implemented in the 
optical domain directly free from the electronic bottleneck. 
High-throughput axial scanning at 1.51 MHz has been achieved 
using low-speed data acquisition at 50 MS/s thanks to photonic 
compressive sensing with a compression ratio of 66 %. A new 
dual pulse integration approach has been proposed and 
demonstrated to improve the frequency resolution of the system. 
Options to further improve data compression have been 
exploited. A Gaussian-shape analog random bit sequence was 
used in the reconstruction algorithm, which leads to an 
improved compression ratio of 10%. In addition, a number of 
optimization algorithms for the reconstruction of the PTS-OCT 
signals have been compared in terms of reconstruction 
accuracy and efficiency. Our results suggest that the L1 Magic 
implementation of the primal-dual interior point method offers 
the best compromise between accuracy and reconstruction time 
of the time-stretch OCT signal tested. 

 

REFERENCES 
[1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. 

Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. 

Fujimoto, “Optical coherence tomography,” Science, vol. 254, no. 5035, 
pp. 1178-1181, Nov. 1991. 

[2] W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and 
J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence 
tomography," Nat. Med., vol. 7, no. 4, pp. 502-507, Apr. 2001. 

[3] D. Stifter, "Beyond biomedicine: a review of alternative applications and 
developments for optical coherence tomography," Appl. Phys. B: Lasers 
and Optics, vol. 88, no. 3, pp. 337-357, Aug. 2007. 

[4] R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of 
Fourier domain vs. time domain optical coherence tomography," Opt. 
Express, vol. 11, no. 8, pp. 889-894, Apr. 2003. 

[5] R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode 
Locking (FDML): A new laser operating regime and applications for 
optical coherence tomography," Opt. Express, vol. 14, no. 8, pp. 
3225-3237, Apr. 2006. 

[6] D. Choi, H. Hiro-Oka, H. Furukawa, R. Yoshimura, M. Nakanishi, K. 
Shimizu, and K. Ohbayashi, "Fourier domain optical coherence 
tomography using optical demultiplexers imaging at 60,000,000 lines/s," 
Opt. Lett., vol. 33, no. 12, pp. 1318-1320, Jun. 2008. 

[7] A. G. Podoleanu and A. Bradu, "Master–slave interferometry for parallel 
spectral domain interferometry sensing and versatile 3D optical coherence 
tomography," Opt. Express, vol. 21, no. 16, pp. 19324-19338, Aug. 2013. 

[8] S. Gupta and B. Jalali, "Time stretch enhanced recording oscilloscope," 
Appl. Phys. Lett., vol. 94, no. 4, pp. 041105, Jan. 2009. 

[9] K. Goda, K. K. Tsia, and B. Jalali, "Serial time-encoded amplified 
imaging for real-time observation of fast dynamic phenomena," Nature, 
vol. 458, no. 7242, pp. 1145-1149, Apr. 2009. 

[10] J. Chou, D. R. Solli, and B. Jalali, "Real-time spectroscopy with 
subgigahertz resolution using amplified dispersive Fourier 
transformation," Appl. Phys. Lett., vol. 92, no. 11, p. 111102, Mar. 2008. 

[11] K. Goda and B. Jalali, "Dispersive Fourier transformation for fast 
continuous single-shot measurements," Nat. Photon., vol. 7, no. 2, pp. 
102-112, Feb. 2013. 

[12] C. Wang, "Dispersive Fourier transformation for versatile microwave 
photonics applications," Photonics, vol. 1, no. 4, pp. 586-612, Dec. 2014. 

[13] T. Jannson, "Real-time Fourier transformation in dispersive optical 
fibers," Opt. Lett., vol. 8, no. 4, pp. 232-234, Apr. 1983. 

[14] M. A. Muriel, J. Azana, and A. Carballar, "Real-time Fourier transformer 
based on fiber gratings," Opt. Lett., vol. 24, no. 1, pp. 1-3, Jan. 1999. 

[15] C. Wang, F. Zeng, and J. P. Yao, "All-fiber ultrawideband pulse 
generation based on spectral-shaping and dispersion-induced 
frequency-to-time conversion," IEEE Photon. Technol. Lett., vol. 19, no. 
2-4, pp. 137-139, Feb. 2007. 

[16] V. Torres-Company, D. E. Leaird, and A. M. Weiner, "Dispersion 
requirements in coherent frequency-to-time mapping," Opt. Express, vol. 
19, no. 24, pp. 24718-24729, Nov. 2011. 

[17] L. R. Chen, "Photonic generation of chirped microwave and millimeter 
wave pulses based on optical spectral shaping and wavelength-to-time 
mapping in silicon photonics," Opt. Commun., vol. 373, pp. 70-81, 2016. 

[18] S. Moon and D. Y. Kim, "Ultra-high-speed optical coherence tomography 
with a stretched pulse supercontinuum source," Opt. Express, vol. 14, no. 
24, pp. 11575-11584, Nov. 2006. 

[19] K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, 
“High-throughput optical coherence tomography at 800 nm,” Opt. 
Express, vol. 20, no. 18, pp. 19 612–19 617, Aug. 2012. 

[20] J. J. Xu, C. Zhang, J. B. Xu, K. K. Y. Wong, and K. K. Tsia, "Megahertz 
all-optical swept-source optical coherence tomography based on 
broadband amplified optical time-stretch," Opt. Lett., vol. 39, no. 3, pp. 
622-625, Feb. 2014. 

[21] J. J. Xu, X. Wei, L. Yu, C. Zhang, J. B. Xu, K. K. Y. Wong, and K. K. 
Tsia, "High-performance multi-megahertz optical coherence tomography 
based on amplified optical time-stretch," Biomed. Opt. Express, vol. 6, no. 
4, pp. 1340-1350, Apr. 2015. 

[22] D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol. 52, 
no. 4, pp. 1289-1306, Apr. 2006. 

[23] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk, 
"Beyond Nyquist: efficient sampling of sparse bandlimited signals," IEEE 
Trans. Inf. Theory, vol. 56, no. 1, pp. 520-544, Jan. 2010.  

[24] G. C. Valley, G. A. Sefler, and T. J. Shaw, "Compressive sensing of sparse 
radio frequency signals using optical mixing," Opt. Lett., vol. 37, no. 22, 
pp. 4675-4677, Nov. 2012. 

 

Fig. 9. Improvement of compression ratio using a Gaussian-shaped analog 
random bit sequence. The bandwidth of frequency peaks have been reduced. 
The inset shows the reconstructed temporal waveform, clearly indicating the 
removal of Gaussian envelope.  



 

  

9 

[25] Y. Chen, X. Yu, H. Chi, X. Jin, X. Zhang, S. Zheng, and M. Galili, 
"Compressive sensing in a photonic link with optical integration," Opt. 
Lett., vol. 39, no. 8, pp. 2222-2224, Apr. 2014. 

[26] J. M. Nichols and F. Bucholtz, "Beating Nyquist with light: a 
compressively sampled photonic link," Opt. Express, vol. 19, no. 8, pp. 
7339-7348, Apr. 2011. 

[27] H. Chi, Y. Mei, Y. Chen, D. Wang, S. Zheng, X. Jin, and X. Zhang, 
"Microwave spectral analysis based on photonic compressive sampling 
with random demodulation," Opt. Lett., vol. 37, no. 22, pp. 4636-4638, 
Nov. 2012. 

[28] Y. Liang, M. Chen, H. Chen, C. Lei, P. Li, and S. Xie, "Photonic-assisted 
multi-channel compressive sampling based on effective time delay 
pattern," Opt. Express, vol. 21, no. 22, pp. 25700-25707, Nov. 2013. 

[29] F. Yin, Y. Gao, Y. Dai, J. Zhang, K. Xu, Z. Zhang, J. Li, and J. Lin, 
"Multifrequency radio frequency sensing with photonics-assisted 
spectrum compression," Opt. Lett., vol. 38, no. 21, pp. 4386-4388, Nov. 
2013. 

[30] C. Wang and N. J. Gomes, "Photonics-enabled sub-Nyquist radio 
frequency sensing based on temporal channelization and compressive 
sensing," in Microwave Photonics (MWP), 2014 IEEE Topical Meeting 
on, 2014, pp. 335-338. 

[31] H. Chi, Y. Chen, Y. Mei, X. Jin, S. Zheng, and X. Zhang, "Microwave 
spectrum sensing based on photonic time stretch and compressive 
sampling," Opt. Lett., vol. 38, no. 2, pp. 136-138, Jan. 2013. 

[32] B. T. Bosworth and M. A. Foster, "High-speed ultrawideband 
photonically enabled compressed sensing of sparse radio frequency 
signals," Opt. Lett., vol. 38, no. 22, pp. 4892-4895, Nov. 2013. 

[33] Y. Chen, H. Chi, T. Jin, S. L. Zheng, X. F. Jin, and X. M. Zhang, 
"Sub-Nyquist sampled analog-to-digital conversion based on photonic 
time stretch and compressive sensing with optical random mixing," J. 
Lightwave Technol., vol. 31, no. 21, pp. 3395-3401, Nov. 2013. 

[34] B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. 
Foster, "Ultrawideband compressed sensing of arbitrary multi-tone sparse 
radio frequencies using spectrally encoded ultrafast laser pulses," Opt. 
Lett., vol. 40, no. 13, pp. 3045-3048, Jul. 2015. 

[35] G. C. Valley, G. A. Sefler, and T. Justin Shaw, "Multimode waveguide 
speckle patterns for compressive sensing," Opt. Lett., vol. 41, no. 11, pp. 
2529-2532, Jun. 2016. 

[36] T. P. McKenna, J. H. Kalkavage, M. D. Sharp, and T. R. Clark, 
"Wideband photonic compressive sampling system," J. Lightwave 
Technol., vol. 34, no. 11, pp. 2848-2855, Jun. 2016. 

[37] B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. 
Foster, "High-speed flow microscopy using compressed sensing with 
ultrafast laser pulses," Opt. Express, vol. 23, no. 8, pp. 10521-10532, Apr. 
2015. 

[38] Q. Guo, H. Chen, Z. Weng, M. Chen, S. Yang, and S. Xie, "Compressive 
sensing based high-speed time-stretch optical microscopy for 
two-dimensional image acquisition," Opt. Express, vol. 23, no. 23, pp. 
29639-29646, Nov. 2015. 

[39] A. C. S. Chan, A. K. S. Lau, K. K. Y. Wong, E. Y. Lam, and K. K. Tsia, 
"Arbitrary two-dimensional spectrally encoded pattern generation - a new 
strategy for high-speed patterned illumination imaging," Optica, vol. 2, 
no. 12, pp. 1037-1044, Dec. 2015. 

[40] C. Lei, Y. Wu, A. C. Sankaranarayanan, S. M. Chang, B. Guo, N. Sasaki, 
H. Kobayashi, C. W. Sun, Y. Ozeki, and K. Goda, "GHz optical 
time-stretch microscopy by compressive sensing," IEEE Photon. J., vol. 
9, no. 2, pp. 1-8, Apr. 2017. 

[41] E. Lebed, P. J. Mackenzie, M. V. Sarunic, and M. F. Beg, "Rapid 
volumetric OCT image acquisition using Compressive Sampling," Opt. 
Express, vol. 18, no. 20, pp. 21003-21012, Sep. 2010. 

[42] X. Liu and J. U. Kang, "Compressive SD-OCT: the application of 
compressed sensing in spectral domain optical coherence tomography," 
Opt. Express, vol. 18, no. 21, pp. 22010-22019, Oct. 2010. 

[43] N. Zhang, T. Huo, C. Wang, T. Chen, J.-g. Zheng, and P. Xue, 
"Compressed sensing with linear-in-wavenumber sampling in 
spectral-domain optical coherence tomography," Opt. Lett., vol. 37, no. 
15, pp. 3075-3077, Aug. 2012. 

[44] C. Liu, A. Wong, K. Bizheva, P. Fieguth, and H. Bie, "Homotopic, 
non-local sparse reconstruction of optical coherence tomography 
imagery," Opt. Express, vol. 20, no. 9, pp. 10200-10211, Apr. 2012. 

[45] S. Schwartz, C. Liu, A. Wong, D. A. Clausi, P. Fieguth, and K. Bizheva, 
"Energy-guided learning approach to compressive FD-OCT," Opt. 
Express, vol. 21, no. 1, pp. 329-344, Jan. 2013. 

[46] D. Xu, Y. Huang, and J. U. Kang, "Real-time compressive sensing 
spectral domain optical coherence tomography," Opt. Lett., vol. 39, no. 1, 
pp. 76-79, Jan. 2014. 

[47] J. R. Stroud, B. Bosworth, D. Tran, T. D. Tran, S. Chin, and M. A. Foster, 
"72 MHz A-scan optical coherence tomography using continuous 
high-rate photonically-enabled compressed sensing (CHiRP-CS)," in 
Conference on Lasers and Electro-Optics, San Jose, California, 2016, p. 
SM2I.1. 

[48] B. Jalali and M. H. Asghari, “The anamorphic stretch transform: Putting 
the squeeze on “Big Data”,” Opt. Photonics News, vol. 25, no. 2, pp. 
24–31, Feb. 2014. 

[49] C. K. Mididoddi, G. Wang, and C. Wang, "Data compressed photonic 
time-stretch optical coherence tomography," in IEEE Photonics 
Conference (IPC), 2016, pp. 13-14. 

[50] K. M. Koh, S. J. Kim, and S. Boyd, "An interior-point method for 
large-scale l(1)-regularized logistic regression," J. Mach. Learn. Res., vol. 
8, pp. 1519-1555, Jul. 2007. 

[51] M. Mishali and Y. C. Eldar, "From theory to practice: sub-Nyquist 
sampling of sparse wideband analog signals," IEEE J. Sel. Topics Signal 
Process., vol. 4, no. 2, pp. 375-391, Apr. 2010. 

[52] C. V. McLaughlin, J. M. Nichols, and F. Bucholtz, "Basis mismatch in a 
compressively sampled photonic link," IEEE Photon. Technol. Lett., vol. 
25, no. 23, pp. 2297-2300, Dec. 2013. 

[53] C. Wang and J. Yao, "Ultrahigh-resolution photonic-assisted microwave 
frequency identification based on temporal channelization," IEEE Trans. 
Microw. Theory Tech., vol. 61, no. 12, pp. 4275-4282, Dec. 2013. 

[54] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed 
optimization and statistical learning via the alternating direction method 
of multipliers," Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1-122, Jan. 
2011. 

[55] J. Friedman, T. Hastie, and R. Tibshirani, "Regularization Paths for 
Generalized Linear Models via Coordinate Descent," J. Stat. Softw., vol. 
33, no. 1, pp. 1-22, Aug. 2010.  

[56] S. Becker, J. Bobin, and E. J. Candès, "NESTA: A fast and accurate 
first-order method for sparse recovery," SIAM J. Imaging Sci., vol. 4, no. 
1, pp. 1-39, Jan. 2011. 

 


	I. Introduction
	II. Principle
	III. Simulation Results
	IV. Experimental Results
	V. Improving the Frequency Detection Resolution
	VI. Evaluation of Minimization Algorithms in Compressive Sensing PTS-OCT
	6.1. Reconstruction accuracy
	6.2. Computation cost
	6.3. Summary remarks

	VII. Discussions
	VIII. Summary and Conclusion
	References

