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Generalised regular form based SMC for
nonlinear systems with application to a WMR

Jianqiu Mu, Xing-Gang Yan, Sarah K. Spurgeon and Zehui Mao

Abstract—In this paper, a generalised regular form is
proposed to facilitate sliding mode control (SMC) design
for a class of nonlinear systems. A novel nonlinear sliding
surface is designed using implicit function theory such
that the resulting sliding motion is globally asymptotically
stable. Sliding mode controllers are proposed to drive the
system to the sliding surface and maintain a sliding mo-
tion thereafter. Tracking control of a two-wheeled mobile
robot is considered to underpin the developed theoretical
results. Model-based tracking control of a wheeled mobile
robot (WMR) is first transferred to a stabilisation problem
for the corresponding tracking error system, and then the
developed theoretical results are applied to show that the
tracking error system is globally asymptotically stable even
in the presence of matched and mismatched uncertainties.
Both experimental and simulation results demonstrate that
the developed results are practicable and effective.

Index Terms—Nonlinear systems, sliding mode control,
generalised regular form, nonlinear sliding surfaces, mo-
bile robots, tracking control.

I. INTRODUCTION

Sliding mode control (SMC) is a powerful technique be-
cause of its fast convergence and strong robustness [1], [2].
The invariance properties of systems in the sliding mode
to matched uncertainties and parameter variations [3] has
motivated numerous applications of sliding mode techniques
to nonlinear systems including multi-machine power systems
[4], direct-drive robot system [5], induction motor [6], power
converters [7] and wheeled mobile robot (WMR) systems [8].
The concept of the SMC is also used to observer design and
fault detection [9]. Moreover, it has been demonstrated that the
sliding mode approach can be applied to control systems with
mismatched uncertainties, see for example [10]–[13]. In [14],
the bounds on the uncertainties are estimated using adaptive
techniques. However, the uncertainties are inevitably assumed
to satisfy a linear growth condition in order to adaptively
compensate the parameter uncertainty. In [11], by using an
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extended disturbance observer with a modified time-varying
sliding surface, a novel sliding mode control is applied to
stabilise a SISO system with continuous external disturbance
which does not vanish at the origin. Ultimate boundedness of
the system is guaranteed and the obtained ultimate bound can
be further reduced by choosing appropriate design parameters.
However, the structure of the system is restricted, which makes
the method difficult to extend to the MIMO case. The method
proposed by [15] also shows the strong robustness of SMC
for systems with an uncertain input distribution where the
considered systems are linear with nonlinear disturbances.
In [16], SMC for general nonlinear stochastic systems has
been investigated. It is shown that for some special nonlinear
stochastic systems, LMIs can be used for controller design.
Furthermore, this method can also be applied for nonlinear
uncertain stochastic systems with state-delay based on a T-
S fuzzy modeling and control approach [17]. With the SMC
above, the system is usually required to be in regular form or
to be transferred into such a form for analysis. However, for
nonlinear systems, it is very difficult to find a diffeomorphism
to transfer a nonlinear system into the traditional regular form.
Moreover, the associated conditions may be too strong to be
applied for most general nonlinear systems,(see, for example
[18] and reference therein). In this paper, a generalised regular
form is proposed for a class of nonlinear systems, which in-
cludes the traditional regular form as a special case. Therefore,
the developed results can be applied to a wide class of systems.

The WMR is increasingly used for both industrial and
service purposes owning to its flexible mobility [19]. Although
it is not necessary to satisfy Brockett’s well known necessary
condition [20] if the reference trajectory does not involve
stabilisation to a rest configuration [21], it is challenging to
use PID control or linear control methods to obtain desired
tracking performance for WMR systems because of the inher-
ent nonlinearity caused by the nonholonomic constraints. This
has motivated the development of nonlinear control approaches
for trajectory tracking of WMR systems. In existing work
considering mobile robot systems [22], [23], the controller for
the kinematic model is based on the back-stepping method
proposed in [24]. In [8], the kinematic controller based on
the back-stepping technique was simplified and mismatched
uncertainty is not considered. Due to the dynamic behaviour
of the linear and steering velocities in implementation, the
proposed control scheme requires the actuator to reduce the
tracking error in practice [24]. Therefore, actuator dynamic
control design is inevitably required in many control ap-
proaches to improve the system performance [8], [22], [23].
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In a driftless nonholonomic system, since the uncertainties
mainly come from the input channel, SMC can be a very
powerful tool owing to the invariance of the sliding mode
dynamics to matched uncertainty. A SMC scheme for tra-
jectory tracking with polar coordinates has been previously
proposed by Yang and Kim [25]. However, due to hardware
limitations, the designed controller did not exhibit the expected
tracking performance in practice. In both [23] and [8], SMC
strategies were used in the dynamic layer. Although the
simulation results in [8], [23] show robustness against matched
uncertainties, the SMC was only applied to the dynamic
model, which only ensures that the reference velocities can
be tracked. In [26], sliding mode techniques were applied to
a WMR system using a feedback linearisation approach and
results have been obtained not only for the tracking control
problem but also for regulation tasks. However, this requires
that the propulsive force of the WMR can be measured as one
of the states in the system so that the strict relative degree
condition required for feedback linearisation can be satisfied.
This is very difficult to implement from the practical point
of view. In [27], SMC was applied to the kinematic model
of a WMR. However, the system can only be controlled in a
local domain to avoid singularity. In most of the existing work
for the WMR, mismatched uncertainties are not considered.
However, in the presence of drift of the wheels, the uncertain
drift term will result in mismatched uncertainties. Therefore,
it is necessary to consider WMR systems with mismatched
uncertainties to ensure high tracking performance.

In this paper, a generalised regular form is proposed for a
class of nonlinear control systems, which is an extension of
the traditional/classical regular form for sliding mode control
design. This is an extension of the traditional/classical regular
form for sliding mode design. Then, a novel nonlinear sliding
surface is designed associated with the generalised regular
form such that the corresponding sliding mode dynamics are
globally asymptotically stable using implicit function theory.
Robust sliding mode controllers are designed to guarantee that
the considered system is driven to the sliding surface in finite
time and remains on it thereafter even in the presence of
matched and mismatched uncertainties. All the uncertainties
are assumed to be bounded by known functions and the bounds
on the uncertainties are fully used to reduce the effects of
the uncertainties. The developed results are tested by model-
based tracking control of a WMR with a differential driving
mechanism through simulation and experiment. The tracking
error dynamics are derived initially, and then the developed
results are applied to the error system to demonstrate the
developed strategies. Experimental and simulation results on
the WMR show that the proposed controller is insensitive
to matched uncertainties, and can tolerate a certain level of
mismatched uncertainties in both theory and application.

II. SYSTEM DESCRIPTION

Consider a class of nonlinear systems with matched and
mismatched uncertainties described by

ẋ = F (t, x) + G(t, x)(u+ Φ(t, x)) + Ψ(t, x) (1)

where x ∈ Rn and u ∈ Rm are the state variables and control
inputs respectively. The nonlinear vector F (·) ∈ Rn and the
input matrix function G(·) ∈ Rn×m are known with full rank
for x ∈ Rn and t ∈ R+. The terms Φ(·) and Ψ(·) denote
the matched and mismatched uncertainties respectively. It is
assumed that all the nonlinear functions are smooth enough so
that the existence of the solution of system (1) is guaranteed.

Assumption 1. There exist known continuous nonnegative
functions δ(t, x) and µ(t, x) such that the mismatched un-
certainty Ψ(t, x) and the matched uncertainty Φ(·) in system
(1) satisfy

‖Ψ(t, x)‖ ≤δ(t, x) (2)
‖Φ(t, x)‖ ≤µ(t, x) (3)

Remark 1. Assumption 1 requires that the bounds on the
uncertainties are known. These will be employed in the control
design to reject/reduce the effects of the uncertainties.

For further analysis, partition F (·), G(·) and Ψ(·)

F (t, x) :=

[
F1(t, x)
F2(t, x)

]
(4)

G(t, x) :=

[
G1(t, x)
G2(t, x)

]
(5)

Ψ(t, x) :=

[
Ψ1(t, x)
Ψ2(t, x)

]
(6)

where F1(·) ∈ Rn−m, F2(·) ∈ Rm, G1(·) ∈ R(n−m)×m,
G2(·) ∈ Rm×m, Ψ1(·) ∈ Rn−m and Ψ2(·) ∈ Rm. Then from
the partitions (4)-(6), the system (1) can be rewritten as

ẋ1 =F1(t, x) + G1(t, x)
(
u+ Φ(t, x)

)
+ Ψ1(t, x) (7)

ẋ2 =F2(t, x) + G2(t, x)
(
u+ Φ(t, x)

)
+ Ψ2(t, x) (8)

where x1 ∈ Rn−m, x2 ∈ Rm and x = col(x1, x2). Since
G(·) ∈ Rn×m is full rank for x ∈ Rn and t ∈ R+, without
loss of generality, it is assumed that G2(t, x) is nonsinglar in
(t, x) ∈ R+ ×Rn.

Choose the sliding function σ(x) as follows:

σ(x) = Kx2 + ϕ(x1, x2) (9)

where K = diag{k1, k2, . . . , km} with ki > 0 for i =
1, 2, . . . ,m, ϕ(·) is a known class C1 function and each
entry of the Jacobian matrix [ ∂ϕ∂x2

]
ij

for i, j = 1, 2, . . . ,m
is bounded.

Remark 2. There is no general way to design the function
ϕ(x1, x2) for a general nonlinear system since the function is
dependent on the system dynamics. However, for a specific
system, system knowledge can be used in conjunction with
the assumptions to establish a design. It should be noted that
the sliding function (9) proposed in this paper includes both
the linear sliding function σ(x) = Cx where C ∈ Rm×n is a
constant matrix, and the nonlinear sliding function in the form
of σ(x) = x2 + ϑ(x1) where ϑ(·) ∈ Rm as special cases.

For the sliding function in (9), the sliding surface is de-
scribed by

S = {x ∈ Rn| σ(x) = 0} (10)
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Definition 1. System (7)-(8) with the sliding function defined
in (9) is called the generalised regular form of system (1) if
the function G1(·) defined in (5) satisfies

G1(t, x)|x∈S = 0 (11)

Remark 3. It should be emphasised that the classical regular
form requires that G1(t, x) = 0 for all t ≥ 0 and x ∈ Rn (see,
e.g. [1], [18]) while the generalised regular form defined above
requires that G1(t, x) = 0 only for all t ≥ 0 and x ∈ S . It is
clear to see that the classical regular form is a special case of
the generalised regular form defined above as S is just a surface
in Rn. From the Frobenius Theorem, the distribution spanned
by the column vectors of the input matrix G(·) is completely
integrable if and only if the distribution is involutive (e.g.
see [28]). This implies that the classical regular form may
not exist for a nonlinear system. In contrast, the generalised
regular form may exist and thus to develop a sliding mode
theory associated with the proposed generalised regular form
is valuable since the proposed method can be applied in cases
where the classical regular form is not available.

Define function matrices ΓG (t, x) and ΓF (t, x) as

ΓG (t, x) :=
∂σ

∂x
G(t, x) = KG2(t, x) +

∂ϕ

∂x
G(t, x) (12)

ΓF (t, x) :=
∂σ

∂x
F (t, x) = KF2(t, x) +

∂ϕ

∂x
F (t, x) (13)

where F1(·), F2(·), G1(·) and G2(·) are defined in (4)-(5) and
σ(·) is defined in (9). The following assumption is imposed
on system (7)-(8).

Assumption 2. The function matrix ΓG (t, x) defined in (12)
is nonsingular for x ∈ Rn and t ∈ R+

Remark 4. Assumption 2 is a limitation on the input distri-
bution matrix G(t, x) and the designed sliding surface σ(x) in
(9). It is required to guarantee that the system can be driven
to the sliding surface (10). Since G2(·) is nonsingular, it is
straight forward to see from (13) that Assumption 2 usually
can be satisfied by choosing an appropriate parameter K, and
thus this condition is not strict.

It should be noted that under condition (11), when the
system (1) is limited to the sliding surfaces (10), the system
(7) has the following form

ẋ1 = F1(t, x)|x∈S + Ψ1(t, x)|x∈S (14)

The objective now is to study under what conditions system
(14) is the sliding mode dynamics of system (1) with respect to
the sliding surface (10). Therefore it is necessary to guarantee
that there exists a unique solution of the functional equation
σ(x) = 0 for x2 in terms of x1. The following lemma is
introduced to facilitate further analysis.

Lemma 1 (see [29]). Assume that f : Rp × Rm 7−→ Rm
is a continuous mapping and it is continuously differentiable
with respect to the variable ξ ∈ Rm. If there exists a constant
d > 0 such that∣∣∣[∂f

∂ξ

]
ii

∣∣∣−∑
j 6=i

∣∣∣[∂f
∂ξ

]
ij

∣∣∣ ≥ d, i = 1, . . . ,m. (15)

for any (z, ξ) ∈ Rp×Rn where
[
∂f
∂ξ

]
ij

denotes the ij th entry
of the Jacobian matrix ∂f

∂ξ and p = n −m, then there exists
an unique mapping g : Rp 7−→ Rm such that f(z, g(z))=0.
Moreover, this mapping g(·) is continuous. Furthermore, if
f(·) is a class C1 function, then g(·) is a class C1 function.

Lemma 2. Under condition (11), there exists a function g :
Rn−m → Rm such that when system (7) is constrained to the
sliding surface (10), the dynamical system (7) can be described
by

ẋ1 =F s
1 (t, x1) + Ψs

1(t, x1) (16)

where

F s
1 (t, x1) =F1(t, x)|x2=g(x1) (17)

Ψs
1(t, x1) =Ψ1(t, x)|x2=g(x1) (18)

if K = diag{k1, k2, . . . , km} in (9) satisfies

ki ≥ ε+

m∑
j=1

sup
∣∣∣[∂ϕ
∂x

]
ij

∣∣∣, i = 1, 2, . . . ,m (19)

where ε is a positive constant.

Proof. When system (7) is limited to the sliding surfaces (10),
it follows from condition (11) that the system (7) can be
described by (14). From (9) and (19),∣∣∣[ ∂σ

∂x2

]
ii

∣∣∣ =
∣∣∣ki +

[ ∂ϕ
∂x2

]
ii

∣∣∣ ≥ ki − ∣∣∣[ ∂ϕ
∂x2

]
ii

∣∣∣
≥ε+

m∑
j=1

sup
∣∣∣[∂ϕ
∂x

]
ij

∣∣∣− ∣∣∣[ ∂ϕ
∂x2

]
ii

∣∣∣
=ε+

m∑
j=1

j 6=i

sup
∣∣∣[∂ϕ
∂x

]
ij

∣∣∣ (20)

for i = 1, 2, . . . ,m. This implies that∣∣∣[ ∂σ
∂x2

]
ii

∣∣∣− m∑
j=1

j 6=i

∣∣∣[ ∂σ
∂x2

]
ij

∣∣∣ ≥ ε, i = 1, 2, . . . ,m (21)

Then from Lemma 1, there exists a unique class C1 function
x2 = g(x1) satisfying σ(x1, g(x1)) = 0.

The analysis above shows that x2 = g(x1) when x ∈ S .
Hence the result follows by substituting x2 = g(x1) into the
right-hand side of the equation (14). �

III. SLIDING MOTION ANALYSIS AND CONTROL DESIGN

A. Stability analysis of the sliding mode

Assumption 3. There exists a continuously differentiable
Lyapunov function V (t, x1) : R+ ×Rn−m 7−→ R satisfying
the inequalities

ς1(‖x1‖) ≤ V (t, x1) ≤ ς2(‖x1‖) (22)
∂V

∂t
+
∂V

∂x1
F s
1 (t, x1) ≤ −ς3(‖x1‖) (23)∥∥∥ ∂V

∂x1

∥∥∥ ≤ ς4(‖x1‖) (24)
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where the functions ςi(·) for i = 1, 2, 3, 4 are continuous class
K functions, and F s

1 (·) is given in (16).

Remark 5. Assumption 3 implies that the nominal system
of the sliding mode dynamics (16) is asymptotically stable.
The conditions (22)-(24) are developed from the well known
converse Lyapunov Theorem (see [30]).

From Assumption 1, it is straightforward to see that the
mismatched uncertainty Ψs

1(t, x1) in (16) satisfies

‖Ψs
1(t, x1)‖ ≤ γ(t, x1) (25)

where γ(·) is a known positive continuous function, which
is assumed to satisfy γ(t, 0) = 0 such that the origin is the
invariant equilibrium point of the sliding mode dynamics (14).

Theorem 1. Under condition (11) in Definition 1 and As-
sumptions 1 and 3, the sliding mode (16) is globally uniformly
asymptotically stable if there exists a continuous nondecreas-
ing function w : R+ 7−→ R+ satisfying w(r) > 0 for r > 0
and w(r)→∞ when r →∞ such that for any x1 ∈ Rn−m

w(‖x1‖) ≤ ς3(‖x1‖)− ς4(‖x1‖)γ(t, x1) (26)

Proof. Consider the Lyapunov candidate function V (·) satis-
fying Assumption 3 for system (16). The time derivative of
V (·) along the trajectory of system (16) is given by

V̇ =
∂V

∂t
+ (

∂V

∂x1
)τ (F s

1 (t, x1) + Ψs
1(t, x1))

≤∂V
∂t

+ (
∂V

∂x1
)τF s

1 (t, x1) +

∥∥∥∥(
∂V

∂x1
)τ
∥∥∥∥ ‖Ψs

1(t, x1)‖

≤ − ς3(‖x1‖) + ς4(‖x1‖)γ(t, x1)

≤− w(‖x1‖) (27)

where the conditions (22)-(24) are used above. Hence, the
conclusion follows. �

Remark 6. It should be pointed out that condition (26) shows
the limitation on the mismatched uncertainty Ψ(t, x) in system
(1) through the bounds γ(t, x1) in (25). It should be noted that:
i) γ(t, x1) is the bound on Ψs

1(t, x1) (see (25), ii) Ψs
1(t, x1) is

the contribution from the function Ψ1(t, x) when the system
is on the sliding surface (see (18)), and iii) Ψ1(t, x) is a
sub-component of Ψ(t, x) (see (6)). Therefore, inequality (26)
represents the limitation on the bounds of the sub-component
Ψ1(·) of Ψ(·) when Ψ1(·) is on the sliding surface instead of
the uncertainty Ψ(·) in the whole space x ∈ Rn.

Remark 7. For systems with mismatched disturbances which
do not vanish at the origin or in the presence of mismatched
external disturbances d(t) which do not vanish when time t
goes to infinity, the problem is particularly challenging. In this
case, usually only ultimate bounded results can be obtained
under appropriate conditions unless other techniques such as
adaptive control are used to identify the disturbance [31]. In
this paper, global asymptotic stabilization is considered where
it is required that the mismatched disturbances vanish at the
origin, which is reflected in (25) where γ(t, 0) = 0.

B. Reachability

From Assumption 2, ΓG (t, x) is nonsingular. Consider the
control law

u(t, x) =− Γ−1G (t, x)ΓF (t, x)− Γ−1G (t, x)sgn
(
σ(x)

)
·
{∥∥∥∂σ

∂x

∥∥∥δ(t, x) + ‖ΓG (t, x)‖µ(t, x) + η
}

(28)

where ΓG (·) and ΓF (·) are defined in (12) and (13) respec-
tively, δ(·) and µ(·) satisfy (2) and (3) respectively, and
η > 0 is a constant parameter selected to define the reaching
behaviour.

Theorem 2. Consider the nonlinear system (7)–(8). Under
Assumptions 1 and 2, the control (28) is able to drive system
(1) to the sliding surface (10) in finite time and maintain a
sliding motion on it thereafter.

Proof. From (9)

σ̇(x) =
∂σ

∂x

(
F (t, x)+Ψ(t, x)

)
+
∂σ

∂x
G(t, x)(u+Φ(t, x))

=ΓF (t, x)+ΓG (t, x)
(
u+Φ(t, x)

)
+
∂σ

∂x
Ψ(t, x) (29)

Substituting the control in (28) into (29),

στ (x)σ̇(x)

=στ (x)
{∂σ
∂x

Ψ(t, x)+ΓG (t, x)Φ(t, x)
}
−

στ (x)sgn(σ(x))
{∥∥∥∥∂σ∂x

∥∥∥∥ δ(t, x)+‖Γ(t, x)‖µ(t, x)+η
}

≤‖σ(x)‖
{∥∥∥∥∂σ∂xΨ(t, x)

∥∥∥∥+‖Γ(t, x)Φ(t, x)‖

−
∥∥∥∥∂σ∂x

∥∥∥∥ δ(t, x)−‖Γ(t, x)‖µ(t, x)−η
}

(30)

From Assumption 1.∥∥∥∥∂σ∂xΨ(t, x)

∥∥∥∥ ≤∥∥∥∥∂σ∂x
∥∥∥∥ ‖Ψ(t, x)‖

≤
∥∥∥∥∂σ∂x

∥∥∥∥ δ(t, x) (31)

‖Γ(t, x)Φ(t, x)‖ ≤‖Γ(t, x)‖‖Φ(t, x)‖
≤‖Γ(t, x)‖µ(t, x) (32)

Substituting inequalities (31) and (32) into (30) yields

στ (x)σ̇(x) ≤‖σ(x)‖
{∥∥∥∥∂σ∂xΨ(t, x)

∥∥∥∥− ∥∥∥∥∂σ∂x
∥∥∥∥ δ(t, x)

+ ‖Γ(t, x)Φ(t, x)‖ − ‖Γ(t, x)‖µ(t, x)− η
}

≤− η‖σ(x)‖ (33)

Hence the conclusion follows. �

IV. APPLICATION TO A WMR SYSTEM

A. Problem formulation

Consider a WMR with differential driving mechanism. As
the wheels of the robot may drift, which may result in mis-
matched uncertainty, it is necessary to consider mismatched
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disturbances. From [32], the kinematic model of the WMR
can be described by

q̇ =

 cos θc 0
sin θc 0

0 1

(u+ φ(t, q)
)

+ ψ(t, q) (34)

where q = col(qx, qy, θc) ∈ R3 is the state with coordinates
(qx, qy) on the x − y plane and the heading angle θc, u =
col(v, ω) is the control input where v is the linear velocity and
ω is the steering velocity, φ(·) ∈ R2 includes all uncertainties
in the input channel (i.e. the matched uncertainty) and the term
ψ(·) ∈ R3 denotes the mismatched uncertainty.

Without loss of generality, it is assumed that ψ(·) has the
form ψ(t, q) := col(ψ1(t, q), ψ2(t, q), 0) where ψ1(·) ∈ R and
ψ2(·) ∈ R. Note that the third component of ψ(·) is assumed
to be zero. If it is not zero, then it can be included in the
matched uncertainty φ(·) in (34).

Assume that the reference trajectory is model based, and it
is given by the following dynamic system

 q̇xr
q̇yr
θ̇r

 =

 cos θr 0
sin θr 0

0 1

[ vr(t)
ωr(t)

]
(35)

where qr = col(qxr, qyr, θr) is the reference trajectory and
ur = col(vr(t), ωr(t)) is the reference control with vr 6=
0. Then the objective of the model-based tracking control
is to design a controller u for the system (34) such that
limt→∞ ‖qr − q‖ = 0 where q = col(qx, qy, θc) ∈ R3 is
the state of the system (34) and qr = col(qxr, qyr, θr) is the
reference trajectory created by (35).

Remark 8. Due to the complex nonlinearity in the nonholo-
nomic WMR system, it is straightforward to see that not all
trajectories can be tracked. Therefore, the trajectory in this
paper is assumed to be model based. It should be noted that the
initial misalignment of the WMR may result in different initial
misalignment of the tracking error system. Such an effect can
be included in the system uncertainty which can be overcome
by redesign of the sliding mode control if necessary.

Introduce a diffeomorphism T : R3 −→ R3 with x = T (q)
as (see e.g. [27])

x :=

[
x1
x2

]
=

 x1
x21
x22

 = T̃ (q)(qr − q) := T (q) (36)

where x1 ∈ R, x2 = col(x21, x22) ∈ R2 and

T̃ (q) =

 − sin θc cos θc 0
cos θc sin θc 0

0 0 1



From (34), (35) and (36), the dynamics of the new error system
in x coordinates is given by

ẋ =

 vr(t) sin θr cos θc − vr(t) cos θr sin θc
vr(t) cos θr cos θc + vr(t) sin θr sin θc

ωr(t)


+

 0 − cos θc(qrx − qx)− sin θc(qry − qy)
−1 − sin θc(qrx − qx) + cos θc(qry − qy)
0 −1


·
(
u+ φ̂(t, x)

)
+ Ψ(t, x)

=

 vr(t) sinx22
vr(t) cosx22

ωr(t)


︸ ︷︷ ︸

F (t,x)

+

 0 −x21
−1 x1
0 −1


︸ ︷︷ ︸

G(t,x)

(
u+ φ̂(t, x)

)

+ Ψ(t, x) (37)

where

φ̂(t, x) =φ(t, q)|q=T−1(x)

Ψ(t, x) :=

[
Ψ1(t, x)
Ψ2(t, x)

]
=
∂T

∂q
ψ(t, q)|q=T−1(x) (38)

By direct calculation,

∂T

∂q
=
(
− T̃ (q) + T̂ (x)

)
(39)

where

T̂ (x) =

 0 0 −x21
0 0 x1
0 0 0


Substitute (39) into (38) yields

Ψ(t, x) = −T̃ (q)ψ(t, q)|q=T−1(x) (40)

Then it is straightforward to see that the mismatched uncer-
tainty Ψ(t, x) in the new error system (37) has the form

Ψ(t, x) =

[
Ψ1(t, x)
Ψ2(t, x)

]
=

 Ψ1(t, x)
Ψ21(t, x)

0


Thus system (37) can be described in the form (7)-(8) as
follows

ẋ1 = vr(t) sinx22︸ ︷︷ ︸
F1(t,x)

+
[

0 −x21
]︸ ︷︷ ︸

G1(t,x)

(
u+ Φ(t, x)

)
+ Ψ1(t, x) (41)

ẋ2 =

[
vr(t) cosx22

ωr(t)

]
︸ ︷︷ ︸

F2(t,x)

+

[
−1 x1
0 −1

]
︸ ︷︷ ︸

G2(t,x)

(
u+ Φ(t, x)

)
(42)

where x2 = col(x21, x22) ∈ R2, x1 ∈ R and

Φ(t, x) := φ̂(t, x)−Ψ2(t, x) (43)

It is straightforward to verify that T̃ (q) is nonsingular and
T̃−1(q) is bounded. From (36), ‖qr − q‖ ≤ ‖T̃−1(q)‖ ‖x‖
which implies that limt→∞ ‖qr − q‖ = 0 if limt→∞ ‖x‖ = 0.
Therefore, the model-based reference tracking control problem
for the kinematic model (34) has now been transformed to a
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stabilisation problem for the error system (37). It remains to
design a control u to stabilise the system (37) globally and
asymptotically.

B. Control design
Assume that the reference trajectory only moves forward

with vr(t) ≥ Vm where Vm is a positive constant such
that a continuously differentiable feedback control law that
asymptotically stabilizes the tracking error system exists [21],
[33], and the reference velocities (vr(t), ωr(t)) are bounded
with vr(t) ≤ Vx and |ωr(t)| ≤ Wx for any t ∈ R+.
Further, the mismatched and matched uncertainties Ψ1(t, x)
and Φ(t, x) satisfy

‖Ψ1(t, x)‖ ≤ sin2(x22)
√
x221+α+0.1|x1x21|

√
x221+α︸ ︷︷ ︸

δ(t,x)

(44)

‖Φ(t, x)‖ ≤ 0.5‖x‖+ 0.6|vrωr|︸ ︷︷ ︸
µ(t,x)

(45)

where α is a positive constant satisfying α < V 2
m. Design the

switching functions

σ(x) =

[
k1x21
k2x22

]
+

[
0
x1√

c+x2
1+x

2
21

]
︸ ︷︷ ︸

ϕ(x1,x2)

(46)

where k1 > 0 and k2 > 1 are design parameters and c > 0 is
a constant. The sliding surface is described by

S = {x ∈ R3| σ(x) = 0} (47)

where σ(x) is defined in (46). Then on the sliding surface
(47), x21 = 0 and thus from (41), G1(t, x) = 0. Therefore,
system (41)-(42) has the generalised regular form. From F (·)
and G(·) in (37) and by direct calculation,

ΓF (t, x) :=
∂σ

∂x
F (t, x)

=

[
k1vr cosx22

(c+x2
21)vr sin x22−x1x21vr cos x22√

c+x2
1+x

2
21

+ k2ωr

]
(48)

ΓG (t, x) :=
∂σ

∂x
G(t, x)

=

[
−k1 k1x1
x1x21

(c+x2
1+x

2
21)

3
2
− x21

(c+x2
1+x

2
21)

1
2
−k2

]
(49)

which is nonsingular when k2 ≥ 1. When system (41) is
limited to the sliding surface (47), it can be described by

ẋ1 = vr(t) sin
(
− x1

k2
√
c+ x21

)
︸ ︷︷ ︸

F s
1 (t,x1)

+Ψs
1(t, x1) (50)

where
‖Ψs

1(t, x1)‖ ≤
√
α sin2(

x1

k2
√
c+ x21

)︸ ︷︷ ︸
γ(t,x1)

(51)

Therefore system (50) with Ψs
1(·) satisfying (51) is the slid-

ing mode dynamics associated with the sliding surface (47).

For system (50), define the candidate Lyapunov function as
V (t, x1) = 1

2x
2
1, then it is clear to see that

0.4x21︸ ︷︷ ︸
ς1(t,x1)

≤ V (t, x1) ≤ 0.6x21︸ ︷︷ ︸
ς2(t,x1)

The time derivative of V along the trajectories of system
(50) is given by

∂V

∂t
+
∂V

∂x1
F s
1 (t, x1) =vr(t) sin

(
− |x1|
k2
√
c+ x21

)
x1

≤− Vm sin(
|x1|

k2
√
c+ x21

)|x1|︸ ︷︷ ︸
ς3(|x1|)

(52)

∥∥∥∥ ∂V∂x1
∥∥∥∥ = |x1|︸︷︷︸

ς4(|x1|)

(53)

From k2 ≥ 1 > 2
π , which implies

τ

k2
√
c+ τ2

<
π

2
(54)

it is straightforward to see that ς3(τ) is a class K function.
Thus

ς3(|x1|)− ς4(|x1|)γ(t, x1)

=Vm sin(
x1

k2
√

1+x21
)|x1|−

(√
α sin2(

x1

k2
√
c+ x21

)
)
|x1|

≤
(

Vm sin(
x1

k2
√

1+x21
)−
√
α sin2(

x1

k2
√
c+ x21

)
)
|x1|

=w(|x1|) (55)

where

w(τ) =
(

Vm sin(
τ

k2
√
c+ τ2

)−
√
α sin2(

τ

k2
√
c+ τ2

)
)
τ (56)

where τ ∈ R+. Since Vm ≥
√
α ≥

√
α sin( τ

k2
√
c+x2

1

), it is

clear that w(τ) is positive definite. Therefore, the conditions of
Theorem 1 hold. By limiting the minimum reference velocity
Vm = 0.01, the kinematic controller u = col(v, ω) is
described by

u(t, x) =− Γ−1G (t, x)ΓF (t, x)− Γ−1G (t, x)sgn
(
σ(x)

)
·{∥∥∥∂σ

∂x

∥∥∥δ(t, x) + ‖ΓG (t, x)‖µ(t, x) + 5
}

(57)

where the uncertainties δ(·) and µ(·) for the WMR are defined
in (44) and (45) respectively. σ(x) for the WMR is defined in
(46) with k1 = k2 = 1 and c = 0.01, and the corresponding
ΓG (·) and ΓF (·) are defined in (48) and (49) respectively.
Then, from Theorems 1 and 2, it is straightforward to see
that systems (41)-(42) are globally asymptotically stable.

The performance of the proposed controller is tested with a
smoothed sharp corner trajectory which can be described by
the following equations:

qrx(t) =

{
0 t < 4− β√

(t+β−4)2+β−
√
β√

16+β
t ≥ 4− β

(58)

qry(t) =

{
1−
√

(t−4)2+β√
16+β

t < 4

1 t ≥ 4
(59)
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Fig. 1. The reference trajectory of the Lemniscate curve and the
trajectory of the robot in the x− y plane
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Fig. 2. Time response of the tracking errors

where β = 0.81 is a positive parameter that smoothes the
corner.

The initial point of the reference is (0, 0, π2 ) and the initial
point of the robot is chosen as (0.5, 0.1, 2.17). The motion of
the robot and the reference trajectory given by (58)-(59) are
shown in Fig.1. The time response of the tracking errors and
the control signal (v, ω) shown in Fig.2 and Fig.3 respectively.
From Fig.3, it can be seen that the system is affected by
the matched uncertainties at the corner. However, due to the
complete robustness of SMC to matched uncertainties, the
performance of the system is not affected. From Fig.1-Fig.3,
it is straightforward to see that the proposed approach is
effective. It should be noted that due to the discontinuity of the
sgn function, the control in reality may experience chattering
[34]. To avoid such problems, the boundary-layer technique
proposed in [35] has been introduced to reduce the chattering
in the simulation and experiments presented in this paper.

Remark 9. Uncertainties are added in the WMR simulation
and bounds on the uncertainties are given to show the ro-
bustness of the proposed methodology. In the real system, the
uncertainties will vary on a case-by-case basis and can be
obtained by statistical data analysis or engineering experience.

V. EXPERIMENTAL TEST

A low-cost WMR was built at the University of Kent for
experimental testing, the overview of the system is shown in
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Fig. 3. Time response of the control pair (v, ω)
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Fig. 4. System overview for the WMR

Fig. 4. Two wheels with a radius of 0.063m are assembled
on the right and left side equipped with 12V DC motors
as actuators for differential driving. The size of the chassis
is 20 cm(l/w) with a 12V battery and electronics. A rate
gyroscope and two encoders with 1600 pulses/turn assembled
on the shaft of the motors are used to estimate the coordinates.
It should be noted that the motors are independently driven
by two H-bridge MOSFET-based motor drivers. The actual
control signals are pulse-width-modulation signals controlled
by a micro-controller embedded in the robot. In order to obtain
data from the controller, a bluetooth module is used to transfer
data to the PC via a serial communication with cycle time of
10ms.

A. Implementation of the control with DC motors
It should be noted that the control inputs of system (41)

and (42) are the linear velocity v and the steering velocity ω.
As assumed by other authors (e.g see [32]), such a controller
can be implemented directly using the differential driving
mechanism to produce the desired inputs (v, ω) required by
the controller (28). Two DC motors are used as actuators
driving the wheels on each side of the robot independently.
The relationship between the velocities of the robot (v, ω)
and the rotational velocities of the wheels (ωR, ωL) can be
described as follows (e.g. see [32]):[

v
ω

]
=

1

2

[
r r
r
b − rb

] [
ωR
ωL

]
(60)

where (ωR, ωL) denote the rotational velocities of the wheels
on the right and left sides, respectively. r and b denote the
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radius of the wheel and width of the robot respectively. The
dynamics of the motor are also investigated to achieve the
input (v, ω) required by controller (28). The model of the
motor system can be described by (e.g. see [3])[

ω̇m
i̇m

]
=

[
0 Kt

Jm

−Ke

Lm
−Rm

Lm

] [
ωm
im

]
+

[
0
1
Lm

]
uv

+

[
−TL

0

]
(61)

y =ωm (62)

where ωm and im are the angular velocity and motor current,
and y is the measured output. uv denotes the input voltage
adjusted by the microcomputer with Pulse-width modulation
techniques. Parameters Jm, Lm, Kt, Ke and Rm denote the
motor inertia, inductance, torque constant, back-emf constant
and resistance respectively. TL is the external disturbance
representing the effects of friction and the motor load.

Parameters identified through experiments with no-load are
Jm = 0.0012Kg ·m2, Lm = 0.0054F , Kt = 0.034N ·m/A,
Ke = 1.04V · s/rad and Rm = 2.4Ω. The comparison
between the model response (61) and the response of the
actual motor is shown in Fig.5. The experimental results when
tracking a constant reference and sine wave reference signals
are shown in Fig.6. From the test results, it can be seen
that although the system is affected by the limitation of the
hardware, the tracking performance is as expected. Although
the control performance of the motors may also be affected
by parameter variations, the uncertainties caused by friction
between the wheels and ground in the motor system will not
affect the performance of the WMR system since the SMC is
robust to uncertainties implicit in the input channel.
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Fig. 5. Comparison between the actual time response of angular
velocity of the motor and the simulation

B. Experimental results
The experimental results for the WMR are presented in this

section. The control of the robot is designed with the same
process described in Section IV-B and the control performance
is tested with the reference curve described in (58)-(59) which
denotes a smoothed right-angled curve. The actual motion of
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Fig. 6. Tracking performance of the motor control

the robot and the reference trajectory are shown in Fig.7. The
time response of the tracking errors is shown in Fig.8, and the
control signal is shown in Fig.9. From Fig.8, it is seen that
the system experiences uncertainties caused by the hardware.
However, the robot exhibits good tracking performance as
shown in Fig.7 due to the high robustness of the designed
sliding mode control.
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Fig. 7. Motion of robot in x-y plane in tracking task experiment
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Fig. 8. Time response of tracking errors in tracking task experiment

From the experimental results, it is evident that although
modelling error and noise may exist, the robustness properties
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Fig. 9. Measured control input (v, ω) based on sensors data in tracking
task experiment

of the SMC ensure that the system exhibits the expected
tracking performance in the presence of uncertainties. It should
be noted that the noise usually comes from the motors and thus
it is matched. Since sliding mode control is completely robust
to matched uncertainty, good tracking accuracy is achieved in
the experiments.

VI. CONCLUSION

This paper has proposed a novel generalised regular form
for a class of nonlinear systems. Based on the generalised
regular form, a novel sliding surface has been designed and
global asymptotic stability of the corresponding sliding motion
has been presented. A SMC scheme is designed to guarantee
reachability of the sliding mode. The developed results have
been applied to a WMR. Based on the WMR dynamics, a
nonlinear sliding surface is formed and global asymptotic
stability is exhibited. This application demonstrates that sliding
mode techniques can be used to stabilise systems when the
normal regular form is not available. Simulation and experi-
mental results show that the proposed results are effective and
practicable.
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