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The Evolutionary Tracks for Low to High Mass Star Formation through

Variable Accretion Models

by DAVID HASTIE

Embedded star formation is largely obscured from even the most mod-
ern of telescopes therefore computational modelling is used to provide some
of the essential information required to fully understand the intrinsic star
forming processes. In this thesis, evolutionary models are calculated for
protostars and their environments using the hydrodynamic code STELLAR
to describe the growing star itself. The code is modified with constant and
variable accretion models with the inclusion of episodic bursts to produce
stars of final masses of 1 � 100M�. Luminosity, radius, temperature and
mass parameters are tracked throughout the stellar evolution to find poten-
tial signature features of each accretion model.
Indications as to why all accretion methods are supported by observation
are found and methods of distinguishing between them are suggested. Re-
cent ATLASGAL observations are used to investigate the appropriate meth-
ods of statistical comparison between observational and theoretical data.
Progress is made toward successful comparisons of theoretical and obser-
vational data, with suggestions for clump L/M distribution data analysed
using an initial mass function holding the greatest potential for direct com-
parisons between the two.
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Chapter 1

Introduction

Stars are the most fundamental objects in the Universe, they provide hosts

for planetary systems and other celestial objects. The energy they provide

is the driving force to many natural phenomena including life. Massive

stars provide the highly energetic radiation that drives the turbulence in

clouds aiding low mass star formation. Low mass stars form in large num-

bers locking up the majority of mass in their local cluster. The evolutionary

star formation processes are relatively well understood however there is

notable debate surrounding the early embedded stages. Observing the for-

mation process is difficult due to the embedded nature of protostars, and

the long time scale over which it occurs. New observations like those from

the Herschel Space Observatory are improving the ability of imaging ob-

jects in optically thick clouds, however other methods are still required to

achieve a complete understanding. A numerical model that is able to map

stellar evolution from protostar to Main Sequence for all star masses is the

next logical step for better understanding the processes and consequences

involved with star formation. We aim to do this by modelling the evolu-

tionary tracks for a range of star masses via variable accretion models. The

fundamental basis for star formation is the gravitational collapse of a giant

molecular cloud to form a protostellar core which further accumulates mass

from the same cloud to eventually reach Main Sequence. There are many

complexities involved in the process including radiation feedback and frag-

mentation.

Stellar astrophysics is a well documented field with many people work-

ing towards a general goal to better understand our place in the Universe.

As such, star formation holds a central position in astrophysical research.
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There are various fundamentals that are used as the basis of this thesis.

A brief selection of which are listed here.

• Gravitational collapse of molecular clouds to form a protostellar core

(Jeans, 1902).

• Protostellar core growth via circumstellar disk accretion due to con-

servation of angular momentum, 1.3. As a consequence, flow inver-

sion due to radiation is avoided (Krumholz et al., 2009).

• Radiative feedback and magnetic fields have long range, in the order

of 103AUs, influence of star formation in the cloud (Krumholz et al.,

2006).

• The equations that govern the internal evolution of protostellar cores

(Hansen et al., 2004).

There remains a lot to be worked out and ideas that need further de-

veloping. This research will aim to provide insight into some of the more

problematic ideas.

• Star formation occurs in thick molecular clouds blocking or hinder-

ing observation. As such, methods of implicitly drawing conclusions

must be used.

• The accretion rate is still largely debated.

• Spherically symmetric accretion is largely disregarded, but the con-

stant accretion rate it uses is still used widely in stellar modelling.

• Stars > 10M� are thought to accrue mass well into the Main Se-

quence, but their ability to do this is not understood.

• It is unknown if the stellar accretion method of low mass stars is ap-

plicable to high mass stars’ formation.

• There has been evidence for the inclusion of episodic accretion bursts

with recent works showing large fractions of mass being accumulated

in a few hundred years (Hartmann & Kenyon, 1996). The effects and

importance of which have not been fully developed.
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• It is uncertain if accretion rates conform to one model throughout the

entire evolution, or if there is a progressive change over the cycle.

Recent works have postulated an accelerated accretion rate for high

mass stars (Davies et al., 2011). The accretion rates for low mass stars

are unsure as models have shown to be within error of each other

(Offner & McKee, 2011).

We aim to address some of these problems through the use of a complete

core evolution hydrodynamic code. Adjusting key variables and compiling

the results to produce the evolutionary tracks for each model. We aim to be

able to use the tracks and other data as guide to what is happening in the

early embedded formation stages. We track the data of mass, luminosity

and, temperatures throughout the entire evolution to then plot the model

tracks. We then aim to compare the luminosity-mass (L/M ) function to

recent observational data from Urquhart et al. (2014). By the end of this

thesis, we aim to have determined the effectiveness of the modelling ap-

proach to solve a variety of astrophysical problems, if the accretion models

we used are viable and if the data produced can be used in aiding analysis

of observations.

1.1 Star formation history

Star formation has been a point of serious debate in astrophysics for nearly

two centuries, with many different opinions of the processes involved. In

the 1800’s, the laws of thermodynamics were applied to the idea of infalling

material to provide the energy of the Sun. Lord Kelvin and Hermann von

Helmholtz proposed that the Sun’s energy was sourced from the pool of

matter shrinking as it cooled (Helmholtz, 1856). They also realised the age

of the Sun could be estimated by comparing the gravitational potential en-

ergy to the luminosity. As such the Kelvin-Helmholtz timescale (Eq. 2.112)

was conceived, an equation that still holds great importance and an under-

standing of it is required later in our work.

The Kelvin idea for the energy source of the Sun would not be refuted suc-

cessfully for fifty years due to limited knowledge in other related fields,

namely atomic physics. With the progress made in understanding the atomic
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structure it became known that under extreme gravitational conditions the

electro-weak force could be overcome to combine atomic nuclei, resulting

in a massive release of energy, this idea was gradually accepted as the pre-

vailing theory, with further evidence from Aston (1920). It was apparent

that this energy was essential "life support" for stars by providing the en-

ergy to maintain high internal pressures to prevent star collapse.

The material state of stars had long been assumed as a liquid, but in 1870

Homer Lane made the first calculations of stellar structure with the star be-

ing composed of a gas (Lane, 1870). His work aimed to determine surface

temperature densities and pressure, and Whilst not completely successful,

it was the first observed result of when stars lose energy the subsequent

contraction would lead to an increase in temperature, not a decrease.

The early 1900’s led to the first use of a polytropic model, where the pres-

sure is dependent upon density. Robert Emden built upon previous work of

a fully convective spherically symmetric perfect gas by including the idea of

a pressure density relation which would later become known as the Lane-

Emden equation. Using the established equations of hydrostatic equilib-

rium and mass conservation (Eq. 2.23 and Eq. 2.25), a derivation for the

density dependence upon the radius of star could be found. This relation

was dependent upon the polytropic index, a function that is derived from

the bulk modulus.

In 1916, the idea of radiation pressure playing a crucial role in the stellar

equilibrium became a viable theory. Arthur Eddington revisited the idea of

radiation pressure as the major balancing force within stars and established

many other principles associated. Eddington proposed that the tempera-

ture gradient through the star is determined by the distribution of energy

sources within the star and the stellar opacity, which was evaluated mostly

by electron scattering. Eddington established an upper limit of luminosity,

at which point the radiation pressure would exceed the gravitational force

resulting in rapid loss of stellar material. Eddington was working alongside

Francis Aston when, in 1920 he published a paper on highly accurate mass

measurements of isotopes Aston (1920). Aston found the individual masses

of hydrogen atoms were greater than when combined into a helium atom,

the deficit of mass was related to energy by the speed of light squared. This
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FIGURE 1.1: The modern understanding of the convective
and radiative structures contained within stars. The low
mass stars are fully convective which would comply with
Emden’s work. The greater masses have more complex
systems involving both convective and radiative sectors.

(Sun.org, 2016)

revolutionary finding allowed Eddington to reach the conclusion that the

energy source within a star came from the combining of hydrogen into he-

lium (Eddington, 1920).

From the 1930’s through to the 1950’s further development in atomic and

quantum physics would give way to new, more complete, understanding

of Main Sequence evolution, including the proton-proton cycle and, the

carbon-nitrogen-oxygen cycle. Both fusion cycles are crucial for compre-

hensive evolutionary models.

Subrahmanyan Chandrasekhar and Eddington both individually worked

upon post Main Sequence astrophysics and extremely dense stars. Obser-

vation of a star in a binary system, now known as 40 Eridani, had shown

a spectral type of a very hot white star, but with a relatively low luminos-

ity, this was the first discovery of a white dwarf star. Eddington stated that

the observed density of the white dwarf was completely plausible. Chan-

drasekhar would eventually go on to derive the upper limit of white dwarf

mass which could be stable due to electron degeneracy pressure countering
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gravity (Chandrasekhar, 1931).

By this point in time the majority of the Main Sequence cycle, from birth

to death, was known but not understood. The 1950’s gave way to elec-

tromagnetic astronomy, Radio, X-ray, Gamma ray, ultra-violet and infrared

telescopes had advanced technologically enough to become viable for as-

trophysical observations. This progression opened up the Universe, allow-

ing deeper and further study than ever before. Star forming regions of dark

molecular clouds were now accessible and soon became known as the nurs-

eries of which stars are born. Previously never seen before star clusters were

now observed deep within their local cloud.

Long term evolution of star formation calculations were labourious and

largely impractical before the advent of computers. Mentioned by Martin

Schwarzschild (Schwartzchild, 1962);

”A person can perform more than twenty integration steps per

day...so that for a typical single integration of, say, forty steps,

less than two days is needed.”

The 1960’s would give astrophysicists access to the computation power

needed to run simulations and reduce the need for laborious calculations.

Conversion from mathematical integrations to computational compatible

methods were required. During this time period Louis G. Henyey pro-

duced an automatic solution finder for stellar evolution equations, now

known as the Henyey method (Bodenheimer et al., 2006), a numerical method

that is used within the main code of this thesis.

Modern simulation and modelling approaches to star formation are still

crucial to astrophysical understanding. Protostars are naturally much colder

than their Main Sequence counterpart and are still embedded within their

molecular cloud which hides signature evidence of the star. The time spent

in the protostellar and pre-Main Sequence are very short in comparison to

the full life cycle so, observationally they appear fewer in number. Even

with modern space telescopes, finding and defining protostars is still very

difficult. Modelling can help by converting principle mechanisms and ma-

terials into a simulated environment in which we can ’watch’ unhindered.

Modelling also has the advantage that the entire process is mapped from

beginning to end, giving a visualisation of the full cycle not just a snapshot
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as is found with observation.

In chapter 2, a quantitative evaluation is given of the accepted principle

physics which is used in astrophysics and this thesis. Here however, we

summarise the process for introductory purposes.

Giant molecular clouds contain thousands to several million solar masses

of material, which is balanced in an equilibrium of gas pressure, kinetic en-

ergy and gravity. An isolated system could exist almost perpetually. How-

ever, radiative losses will reduce the energy contained within over time,

combined with turbulent winds the equilibrium is destabilised and collapse

occurs. This is referred to as triggered formation. The mass requirement for

star formation is known as the Jeans mass.

A collapsing region will continue towards a protostellar stage if the gravita-

tional potential energy is successfully displaced through radiative losses. A

central region will become the protostellar core when its opacity increases

to a point where its internal energy cannot be removed. Further collapse of

outer gaseous regions only increase the core temperature through shocks.

On reaching around 2000K hydrogen molecules will begin to dissociate.

Infalling matter will coalesce into a circumstellar disk through which mat-

ter will accrete onto the star. This disk allows for bipolar outflows in which

the energy can be dissipated, this reduces the radiation pressure on the disk

and angular momentum of the disk, allowing for accretion to continue.

Once the temperature has increased sufficiently, deuterium fusion be-

gins. This process maintains internal core temperatures and allows the con-

tinuation of mass accretion before the hydrogen burning stages can begin,

at which point the star would be considered Main Sequence. Beyond this is

the post Main Sequence phase and the end-of-life paths that will be taken

depending upon star mass, these stages are beyond the aims of this paper

which just focuses on protostellar to Main Sequence.
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FIGURE 1.2: A collection of images of the Crab Nebula
(NGC 1952) highlight differences found in the different
wavebands. The left column, from top to bottom, con-
tains radio, visible and x-ray wavelengths. The right col-
umn, from top to bottom, contains infrared, ultraviolet and
gamma ray wavelengths. Infrared spectra shows the cooler
star forming regions whilst ultra violet show intense heat of
Main Sequence stars. Note the radio image is a combination

of two different radio wavebands combined.
Credit to; NRAO (2016b), NRAO (2016a), NASA/JPL-
Caltech/R. Gehrz (University of Minnesota) (2016), NASA,
ESA, J. Hester and A. Loll (Arizona State University)
(2016), NASA/Swift/E. Hoversten, PSU (2016), NASA/CX-
C/SAO/F.Seward et al (2016), NASA/DOE/Fermi LAT/R.

Buehler (2016)
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FIGURE 1.3: A false colour image of � Pictoris in the infrared band. The
bright regions on opposite sides of the centroid show the remnants of an
accretion disk around a young star. It is likely that the remaining disk will
go on to form planets. Credit to Jean-Luc Beuzit, et al. Grenoble Observa-

tory, European Southern Observatory (2016)
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Chapter 2

Method Theory

This section will lead through the majority of background knowledge re-

quired to understand the early pre-main sequence evolution of stars and

the hydrodynamic code used in this thesis. Starting with the well under-

stood theoretical physics and evolutionary mechanics, then moving to how

this translates into a computational simulation. (Note: All symbols and

constants are defined with their units in the symbols and constants lists

before the introduction.)

2.1 Jeans Criterion

The first stage to star formation requires a molecular cloud, a region of dif-

fuse gas and dust (typically 100-300 molecules per cm3), with enough mass

where a star can begin to form. The criteria required for collapse into a

proto-star is defined by the Jeans Mass. Assuming a spherical cloud, a por-

tion of the cloud can be determined to collapse if the local gravitational

force is greater than the pressure from within. Assuming a spherical cloud

of uniform density, the gravitational potential energy of the cloud can be

approximated as

U ⇠ �3

5

GM2
c

Rc
(2.1)

Where Mc and Rc are the mass and radius of the cloud, respectively. From

virial theorem, a gravitationally balanced system can be shown as stable

when

2K + U = 0 (2.2)
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where K is kinetic energy. A cloud’s internal kinetic energy can be approx-

imated as

K =
3

2
NkT (2.3)

Where N is the number of particles, which we can also define using

N =
Mc

µmH
(2.4)

Where µ is the average molecular weight. From 2.2 we can see that gravi-

tational collapse will occur when 2K < |U |, and then substituting what we

just defined

3
MckT

µmH
<

3

5

GM2
c

Rc
(2.5)

We can define the radius of a cloud assuming initial density of ⇢0, to replace

the mass of the system.

Rc =
⇣ 3Mc

4⇡⇢0

⌘1/3
(2.6)

Now we can substitute this into 2.5 to find the Jeans mass.

MJ '
⇣ 5kT

GµmH

⌘3/2⇣ 3

4⇡⇢0

⌘1/2
(2.7)

It should be noted, this derivation works under the assumption that the en-

tirety of the cloud is collapsing and that the thermal energy is the dominant

source of outward pressure. If, however, the spherical section of mass is

embedded within a GMC it will be subject to an external pressure which

will reduce the mass required. Known as the Bonner-Ebert mass it is given

as

MBE =
cBEv4T

⇢1/20 G3/2
(2.8)

Where

vT =
q
kT/µmH (2.9)

is the speed of sound in the isothermal material. cBE is a dimensionless

constant of ' 1.18
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We can also use the definitions of timescales to determine if a cloud will

collapse or expand. The time scale of expansion driven by radiation

ts '
R

cs
/ R⇢

1
2

P
1
2

/ m
1
3 ⇢�

1
3T� 1

2 (2.10)

Where R is radius of the cloud. cs is the speed of sound in the material. ⇢ is

the density of the cloud. T is the temperature. P is pressure and m is mass.

The timescale of free fall collapse is given as:

tff '
⇣Gm

r3

⌘� 1
2 / (G⇢)�

1
2 (2.11)

Where G is the gravitational constant.

As such a star can be shown to collapse if tff ⌧ ts.

More recent work has shown that the Jeans criteria, whilst classically

correct, is not the main mechanism of collapse. GMCs do not exist in a calm

motionless state, energy input from local clusters will cause turbulent mo-

tion within the clouds. The turbulence will cause confined dense regions

which then exceed the Jeans criteria. So whilst the Jeans criteria is applica-

ble to some extent, the turbulence induced changes happen on timescales

much shorter than if the cloud were only subject to the free fall collapse. As

such, it is much more likely that turbulence is the intial cause of collapse

which is then taken over by gravity.

2.1.1 Fragmentation

Once a cloud has exceeded the Jeans criteria and has begun to collapse,

a process of fragmentation takes place. Fragmentation is problematic in

understanding massive star formation. It would follow that a massive star

forms from a cloud in which its mass is many times the final mass of the star.

However, as a molecular cloud collapses its density increases, which leads

to portions of the cloud exceeding the Jeans criteria, the cloud then begins

to fragment into multiple collapsing regions. The size of these fragmenting

regions can be found by:

d2r

dt2
=

Gm(r)

r2
� 1

⇢

@⇢

@r
=

�Gm

r2
� 4⇡r2

@⇢

@m
(2.12)
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(The derivation of 2.12 can be found in SOURCE HERE as it is long and

non-essential to this work.)

The process of fragmentation will continue until either radiation feed-

back increases the temperature, and thus internal pressure, enough to pre-

vent collapse. The other method of framentation suppression is through

magnetic field interactions.

The optical depth of a material is defined as the ratio between the incident

and emitted radiation power through the material. The more optically thick

a material is, the greater attenuation of radiative power through it is. The

point where radiation can not travel through the material without being

absorbed is the definition of being optically thick. Initial isothermal cloud

collapse results in the internal temperature increasing. When the cloud is

optically thin, this energy can escape as radiation allowing the cloud to cool

and keep collapsing. As the density increases, the cloud becomes optically

thick and this radiation can not escape. The optical depth is defined by the

absorption of photons travelling through a medium:

⌧� =

Z s

0
�⇢ds (2.13)

Where s is the length travelled through a medium by a photon, � is the

absorption coefficient of the material for a specific wavelength and rho is

the density of the material. We define a material as optically thick when a

photon is absorbed and emitted many times, such that ⌧� � 1.

When the cloud is optically thick, the radiation is mostly contained, thus

increasing the internal gas pressure. This counters the gravitational force

preventing further collapse. This process, known as radiation feedback,

works best in the central regions of a collapsing molecular cloud up to '

1000AU . Discussed later, is how stars form through a circumstellar disc

which the cloud will feed into rather than directly onto the protostar. Due

to the Jeans mass requirement being dependent on T 3/2, even a moderate

increase in temperature increases the mass requirement by factors of ' 10

thus slowing or stopping fragmentation.

Magnetic fields work in two ways to prevent fragmentation. Firstly, a
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collapsing cloud needs to preserve angular momentum, doing so by rotat-

ing faster around the centroid as it moves closer to that point. However,

with the presence of magnetic field lines threaded throughout the cloud,

the faster rotation in the inner rings, cause the field lines to become twisted.

This twisted field generates a tension force, moving angular momentum

from inner regions to the outer. Commonly known as magnetic braking,

the result aids the collapse process drastically. The second effect of mag-

netic fields is similar to radiative feedback, in that the mass of the cloud

must overcome magnetic flux pressure. Whilst many regions in clouds have

a supercritical mass able to overcome the magnetic flux, it still provides a

preventative force which is shown in simulations to prevent fragmentation

by factors of ⇡ 2, (Krumholz, 2014).

There are complications in the fragmentation stages, notably starvation.

Fragmentation starvation is a common outcome (Girichidis et al., 2011) in

hydrodynamic simulations where stars can not accumulate enough mate-

rial to reach higher masses, however this was not explored in this thesis.

2.2 Stellar Equilibrium

The equilibrium of a star is reached when gravitational force is balanced

by the internal pressure. We can use these balanced equations at all stages

of the stars life, from protostar to main sequence, to determine its current

state. The gravitational force upon a small mass located at distance r from

centre of spherically symmetric sphere:

FGrav =
�GMr�m

r2
(2.14)

Where Mr is the interior mass, inside a sphere of radius r. Pressure being:

P ⌘ F

A
(2.15)

Where F is force, and A is area. If we consider first a cylindrical system of;

length r, mass dm and, circular face of area A, at distance from a star. The



16 Chapter 2. Method Theory

differential of force across the cylinder is

dFPres = �AdP (2.16)

By using Newton’s second law, we can now define the total force present

with change in radius over time.

dmr̈ = Fg + dFPres = �GMrdm

r2
�AdP (2.17)

Replacing the differential mass element with density.

dm = ⇢Adr (2.18)

Substituting into 2.17 and dividing by the volume.

⇢r̈ = �GMr⇢

r2
� dP

dr
(2.19)

This is the time dependent relation of the described scenario, substituting

for spherical geometry we get

r̈ = �Gm

r2
� @P

@r

1

⇢
(2.20)

and considering the relation

dr =
dm

4⇡r2⇢
(2.21)

we can get the spherical time dependent relation of forces over the sphere.

r̈ = �Gm

r2
� 4⇡r2

@P

@m
(2.22)

Once the star is in a state of equilibrium, i.e. no longer time dependent we

can finally see the forces balanced using

dP

dm
= � Gm

4⇡r4
(2.23)

It must be noted that there must exist a pressure gradient throughout the

sphere or protostar to counter gravity.
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2.3 Mass Conservation

Considering a spherically symmetric star with a thin shell of mass dMr and

thickness dr, located at distance r. The mass of the shell can be approxi-

mated to be

dM = ⇢(4⇡r2dr) (2.24)

and as such we can derive the mass conservation equation.

dMr

dr
= 4⇡r2⇢ (2.25)

This mass conservation shows the density of material decreases with dis-

tance from the stellar centre.

2.4 Upper Mass Limit

There are several problems that outline a hard limit to the mass a star can

reach through accretion, these problems include stellar winds and ionisa-

tion feedback, we will focus on two of the more directly influential prob-

lems to our model. The first being fragmentation, already discussed, and

the second being radiation feedback. The radiation problem arises from

the equilibrium of mass-to-radiation pressure, and that at some point the

internal energy, and therefore radiation pressure, will be greater than the

gravitational force. We can find this limit by equating the inward accel-

eration of gravity (Eq. 2.14) and the outward force of luminosity, defined

as

Frad =
L

4⇡r2c
(2.26)

where  is the opacity constant. Gravitational acceleration can be shown as

dominant only if

L

M
<

4⇡Gc


= 2500

⇣ 

5cm2g�1

⌘�1 L�
M�

(2.27)

From observations we know that proto stars exceeding ⇠ 20M� have lu-

minosities greater than 2500L�. As such, it would stand that a protostar

exceeding 20M� would generate radiation pressure great enough to blow
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away and starve itself of all further mass (Klassen et al., 2016). The first

understanding to how stars continue to accrete mass lies in the assumption

about spherical nature and uniform radiation from the protostar’s surface

on to the surrounding cloud. An upper mass limit of ⇠ 40M� is found in

spherically symmetric simulation (Hosokawa & Omukai 2009). We know

from observation that this ⇠ 40M� upper limit is not found in reality, and

that stars much more massive are able to form. A different mechanism of

formation must exist.

We know that molecular clouds hold a non-zero angular momentum value

as such, when matter falls inwards toward the protostellar core the angular

momentum is conserved, and thus results in the accreting matter to form

into a flattened accretion disk along the axis of net angular momentum.

This also allows for ’beamed’ radiation to be emitted from opposing polar

regions, perpendicular to the flattened disc. Thus, the polar radiation force

over a significant solid angle will far exceed the gravitational force, creating

radiation driven cavities. The resulting bipolar radiation reduces the pres-

sure on the accretion disc thus, the gravitational force along the disk axis is

then great enough to overcome radiation pressure and continues accreting

mass onto the protostar. New simulations such as figure 2.1 show strong

agreement with this idea (Krumholz et al. (2009), Kuiper et al. (2011) ).
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FIGURE 2.1: A heat map view of gas densities across the
x-z plane of a 3D simulation (Kuiper et al., 2011). The im-
age comes from the model at 10kyr and 120M� protostellar
core. The protostellar region of high density can be seen at

centered at the bottom of the figure.

2.5 Pressure

To fully understand the equations 2.23 and 2.25, we must determine the

pressure of the cloud system as an equation of state. The total pressure

within a star comes from several sources, including radiation, gas pressure

and degeneracy pressure, the derivations of which will be outlined below.

Derivations using methods from Carroll & Ostlie (2006)

The ideal gas law is an equation of state which will be used to help deter-

mine the other pressure relations involved in the star system.

PV = NkT (2.28)

where k is the Boltzmann constant and N is number of particles in the

system. It must be noted that the ideal gas law assumes the particles as

hard spheres, i.e, monoatomic helium. However, the molecular clouds can

consist of many molecular compounds which are diatomic (Hydrogen, H2,

Carbon Mon-oxide, CO) or polyatomic (Ammonia, NH3). Internal temper-

atures therefore must consider the internal energies of the molecules. The

internal energies are related by the degrees of freedom within the molecule
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and must be considered in calculating the total energy of a gas.

U =
f

2
nRT (2.29)

Where U is the internal energy of a molecule, f is the number of degrees

of freedom of the molecule, n is the number of moles, R is the ideal gas

constant and T is the temperature.

2.5.1 Pressure Integral

Taking a cyclinder of length �x and cross sectional area A, containing a

gas of point like particles all of mass m, figure 2.2. The gas is assumed to

behave like an ideal gas, i.e. interacts via perfectly elastic collisions, the

distance between particles is much greater than the particle size and the

particles are hard spheres (mon-atomic). The gas incident to the walls of

the container will change momentum entirely along the normal axis. Using

Newtons second and third law

f = ma =
dp

dt
J =

Z

�t
fdt = �p (2.30)

Where J is impulse. From our scenario we can determine that the impulse

imparted on the wall is the negative of the change in momentum experi-

enced by the particle.

f�t = ��p = 2pxî (2.31)

The gas will travel twice the length of the container before hitting the wall

again. The time between these intervals is then defined

�t = 2
2x

vx
(2.32)

Where vx is the velocity along the x axis. The speed scalar of the particle

will remain constant due to the perfect elastic collisions. The average force

exerted by a particle is then given

f =
2px
�t

=
pxvx
�x

(2.33)
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FIGURE 2.2: A diagram showing the scenario of a ’first prin-
ciples’ gas in a cylinder.

Given the velocity vector is

v2 = v2x + v2y + v2z (2.34)

and for a system containing a large number of particles it can be assumed

v̄2x = v̄2y = v̄2z =
v2

3
(2.35)

As such the average force per particle is

f(p) =
1

3

pv

�x
(2.36)

The particles in the cylinder will have a range of momenta between p

and p + dp and we can then define the number of particles with this mo-

menta as Npdp. Then the total number of particles in the box is given

N =

Z 1

0
Npdp (2.37)

with the total force of these particles given

dF (p) = f(p)Npdp =
1

3

Np

�x
pvdp (2.38)
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Integrating over all momentum

F =
1

3

Z 1

0

Np

�x
pvdp (2.39)

Noting that the volume of the cylinder is the area of the cross section mul-

tiplied by the length, �V = A�x.

npdp ⌘ Np

�V
dp (2.40)

so the pressure exerted on the wall of the cylinder is

P =
1

3

Z 1

0
nppvdp (2.41)

We have arrived at the pressure relation to the number density of particles

in the system. This equation will work for massless and massive particles.

Going further, we will evaluate the equation for an ideal gas in terms of the

average molecular weight.

2.5.2 Ideal Gas Pressure

In the case where the gas is non-relativistic we can equate momentum to

mass multiplied by velocity, p = mv. Which we can substitute into equation

2.41

P =
1

3

Z 1

0
mnvv

2dv (2.42)

Where nvdv has replaced npdp and now represents the number of particles

in the gas with speeds between v and v+ dv. In an ideal gas we can use the

Maxwell-Boltzmann velocity distribution as the function nvdv.

nvdv = n
⇣ m

2⇡kT

⌘ 3
2 e�mv2/2kT 4⇡v2dv (2.43)

where n =
R1
0 nvdv. When equation 2.43 is substituted back into the pres-

sure integral equation 2.41 and after simplification we get

Pg = nkT (2.44)
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the number of particles can be replaced by taking the density of the gas and

dividing by the average mass of particles in the system.

Pg =
⇢kT

m̄
(2.45)

Where m̄ is average mass of the particles in the gas. We can now define this

mean molecular weight average in terms of hydrogen atom masses.

µ =
m̄

mH
(2.46)

which we can now use to define the ideal gas pressure relation in terms of

molecular weights.

Pg =
⇢kT

m̄
(2.47)

To go further and simplify the definition of the equation, we can define the

average molecular weight in relation to hydrogen masses.

µ ⌘ m̄

mH
(2.48)

where mH is mass of a hydrogen atom. As such

Pg =
⇢kT

µmH
(2.49)

we have now arrived at the final relation of gas pressure to average molecu-

lar weight. This average molecular weight is more complex for star systems

as the gases contain a large mix of elements all in various ionisation states.

The ionisation plays a part as the free electron gas must also be considered.

The two final equations for average molecular weight of a neutral and a

fully ionised gas can be stated respectively as

1

µn
' X +

1

4
Y +

D 1

A

E

n
Z (2.50)

and
1

µi
' 2X +

3

4
Y +

D1 + z

A

E

i
Z (2.51)

where X is the fraction of Hydrogen, Y is the fraction of Helium, and Z

is the fraction of heavier elements.
D

1
A

E

n
is the averaged weight of the
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heavier elements. For young stars the typical values of X ,Y and Z are ⇡

0.70, 0.28, 0.02 respectively, which correspond to values of, µn = 1.30 and

µi = 0.62.

2.5.3 Radiation Pressure

Emitted radiation will generate a pressure due to the momentum imparted

by photons in absorption or reflections. The momentum of a photon is

defined as:

p� =
hv

c
(2.52)

Where h is the Planck constant, v is the frequency of the photon, c is the

speed of light. Going back to the fundamental pressure integral equation

2.41, we can substitute the photon value of momentum, noting the inter-

changeable relation that npdp = nvdv.

Prad =
1

3

Z 1

0
hvnvdv (2.53)

We can go further by noting that nvdv is the number density of photons

with frequencies in the range from v to v + dv. Multiplying by the energy

of each photon over that frequency range, we get energy density.

Prad =
1

3

Z 1

0
uvdv (2.54)

If we then substitute the energy density, uvdv, for the Planck blackbody

radiation distribution and integrating we get

Prad =
1

3
aT 4 (2.55)

where the radiation constant a ' 7.566 ⇥ 10�16Jm�3K�4. This is our final

expression of pressure driven by radiation from a blackbody of T > 0K. A

true black-body can not really exist as objects will not perfectly absorb and

emit radiation, thus Eq.2.55 requires a multiplicative factor of the emissivity

of the object.

Prad =
1

3
a✏�T

4 (2.56)
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Where ✏� is the emissivity factor at a specific wavelength as emissivity of a

material is rarely a normal distribution across all wavelengths. Thus, sum-

ming the power across many wavelengths would give a better value of total

power in real observations.

2.5.4 Degeneracy Pressure

So far the pressures defined have been described using classical physics,

however we must account for the quantum mechanical contributions within

the system. It can be seen from Eq. 2.28, that as T ! 0, V ! 0. We know

however that particles will have to occupy a non-zero volume even if tem-

perature is ⇠ 0. As such, at a point where the gas particles occupy a small

volume with low energies (corresponding to the low temperatures), they

will break the Pauli exclusion principle. To avoid this the particles must

hold a higher momentum than classical physics would dictate.

The maximum energy of an electron in a completely degenerate gas at

T = 0K, is given by the Fermi energy, ✏F . This maximum energy is deter-

mined by a 3d wave-in-a-box scenario and using the de Broglie wavelength

momentum relation. Assuming a box of length L on each side contains an

electron represented by a standing wave function. The wavelength of the

electrons can be stated as

�x =
2L

Nx
�y =

2L

Ny
�z =

2L

Nz
(2.57)

Where Nx/y/z is the integer quantum number associated with the respective

axis dimension. Using the de Broglie relation we can define these wave-

lengths as momenta

px =
hNx

2L
, py =

hNy

2L
, pz =

hNz

2L
(2.58)

So the total energy of a particle is written

✏ =
p2

2m
(2.59)
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where p2 = p2x + p2y + p2z and, as such, the total energy in this model is

✏ =
h2

8mL2
(N2

x +N2
y +N2

z ) =
h2N2

8mL2
(2.60)

Each electron holds an intrinsic spin value of ±1/2 and as such the total of

unique quantum numbers Nx, Ny, Nz , is equal to two times the total num-

ber of electrons in the gas. Assuming a large enough sample of electron,

which a protostar system would have, the space occupied would be out to

a radius of N =
q
N2

x +N2
y +N2

z for positive N -space values. This evalu-

ates the total number of electrons within a given space.

ne = 2
⇣1
8

⌘⇣4
3
⇡N3

⌘
(2.61)

Rewriting in terms of N

N =
⇣3ne

⇡

⌘ 1
3 (2.62)

Substituting into equation 2.60 we can determine the Fermi energy.

✏F =
h̄2

2me
(3⇡2ne)

2
3 (2.63)

where me is the mass of an electron and ne is the number of electrons within

the volume of the system, ne = Ne/L3. Now, with the definition of Fermi

energy we can use it to determine the degeneracy pressure. We make the

assumption that the condition for degeneracy has been met, which is stated

as
T

⇢2/3
< D (2.64)

where

D =
2✏F
3k⇡2

(2.65)

With degeneracy being greater for smaller values of T/⇢2/3. To find the

pressure due to degeneracy we must combine the Pauli exclusion principle

and the Heisenberg uncertainty principle. Using equation 2.41, and making

the assumption that momentum of each electron is equal, it becomes

P ⇡ 1

3
nepv (2.66)
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with ne being electron number density. In a completely degenerate gas the

separation between electrons is ⇠ n�1/3
e , as such the uncertainty of position

cannot be larger than their physical separation, so �x ⇡ n�1/3
e . So now we

can calculate the momentum in one axis as

px ⇡ �px ⇡ h̄

�x
⇡ h̄n1/3

e (2.67)

We can also assume that momentum in each of the three axes is equally

likely and therefore we can assume the same value. From equipartition

theorem we can say that

p2 = p2x + p2y + p2z = 3p2x, p =
p
3px (2.68)

We can now define the momentum using the number density of electrons

that are fully ionised.

p ⇡
p
3h̄n1/3

e (2.69)

For non-relativistic speeds we know v = p
me

, and as such

v ⇡
p
3h̄

me
n1/3
e (2.70)

As such we can now substitute equations 2.70 and 2.67 into the new pres-

sure integral, equation 2.66, resulting in the degeneracy pressure.

P =
(3⇡2)2/3

5

h̄

me
n5/3
e (2.71)

and then, by evaluating the electron number density in terms of the ratio

between protons and nucleons in the system, we can find the degeneracy

pressure for our protostar.

P =
(3⇡2)2/3

5

h̄

me

h⇣Z
A

⌘ ⇢

mH

i5/3
(2.72)

The electron degeneracy pressure during early stages of the star formation

contributes a small, but not insignificant portion of total pressure. If we

take a typical density of an early protostar 1023cm�3 with average number

of electrons per molecule as 1.9 (70% H, 30% He), using Eq.2.72 we get
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P ⇡ 1.24⇥ 10�17kgm�1s�2.

It must be noted that this is the non-relativistic case, the relativistic case

again has a greater effect in later stages of the stars life where energy is

much higher. It must also be noted that the neutron degeneracy pressure

and the Chandrasekhar limit are not considered, as it only becomes signif-

icant in the after the main sequence of a star, when the main fusion cycle’s

fuel has been consumed, a stage far beyond the early tracks we are research-

ing.

2.6 Equilibrium

The Virial theorem is used to determine the relation between gravitational

and internal energy.

V
dP

dm
= �1

3

Gm

r
(2.73)

V dP = d(PV )� PdV = d(PV )� P

⇢
dm = �1

3

Gmdm

r
(2.74)

Z surface

centre
d(PV ) = 0 (2.75)

V=0 at the centre and P(M)=0 at the surface.

�3

Z M

0

P

⇢
dm = �

Z M

0

Gmdm

r
= ⌦ (2.76)

Where ⌦ is the total gravitational potential energy. Using this theorem,

and applying it to an ideal gas with particles of mass mg, the temperature

relation to the total internal energy.

P =
⇣ ⇢

mg

⌘
kT (2.77)

The total internal energy at this phase of the stellar cycle is just the total

kinetic energy of the particles.

U =
3

2

kT

mg
=

3

2

P

⇢
(2.78)
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Substituting Eq. 2.78 and Eq. 2.76.

U = �⌦

2
(2.79)

and also

U =

Z M

0

3

2

kT

mg
dm =

3

2

k

mg

Z M

0
Tdm =

3

2

kT̄M

mg
(2.80)

Where T̄ is the average temperature, being defined as

T̄ =
1

M

Z M

0
Tdm (2.81)

As such, the average temperature is related to the gravitational potential

energy by

T̄ =
2mgU

3kM
= �mg⌦

3kM
(2.82)

A star’s gravitational energy can be written as ⌦ = �↵GM2/R where ↵ is

a constant of how the mass is distributed in the star. As such from Eq.2.25

gives

T̄ =
↵mgGM

3kR
(2.83)

Fundamentally stars heat up as they contract, and cool as they expand. Re-

writing Eq. 2.83, with the radius as the function of average density, ⇢̄ =

3M/4⇡R3, to give

T̄ =
↵

3

mgG

k

⇣4⇡
3

⌘1/3
M2/3⇢�1/3 (2.84)

2.7 Luminosity

The luminosity of the star is determined by considering the energy gener-

ated by stellar material. If we consider an infinitesimal mass the defined

contribution to luminosity is

dL = ✏dm (2.85)

where ✏ is the total energy contribution per second per kilogram of mass,

✏ = ✏gravity+✏nuclear. The early evolution energy contribution is all gravity

until deuterium burning begins. For a spherically symmetric star the mass
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of a thin shell of thickness dr is

dr = dMr = ⇢dV = 4⇡r2⇢dr (2.86)

dividing by the thickness of the shell, the luminosity is given as a differen-

tial
dLr

dr
= 4⇡r2⇢✏ (2.87)

This gives the luminosity due to all mass within the interior of the shell that

has radius r. We can also determine luminosity from temperature using the

Stephan-Boltzmann law

L = 4⇡�T 4 (2.88)

Where � is the Stephan-Boltzmann constant. P is the total power emitted

from an object over its surface given it emits like a black-body. Assuming

spherical geometry we can relate the luminosity to this power by

L = 4⇡R2�T 4 (2.89)

As such the luminosity can be determined from the temperature of the star.

The luminosity of a protostar is hard to evaluate in reality, due to the molec-

ular cloud surrounding the star being optically thick, blocking the majority

of radiation escaping. The luminosity of a star has complications in evalu-

ating as the radiation is absorbed by its surrounding cloud. However, this

radiation is emitted eventually but at longer wavelengths, as such the bolo-

metric luminosity will be the same but the distribution of wavelengths will

be shifted toward the lower end.

2.8 Energy Transport Mechanisms

The three standard energy transport mechanisms, radiation convection and

conduction are all present in stars. The impact of radiation and conduc-

tion is dependent on the mean free path of photons, 10�2m, and particles

10�10m, respectively. As such the conductive transport mechanism is many

orders of magnitude slower than radiation and thus, mostly insignificant to
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the total energy movement. Both radiation and convective mechanisms will

be outlined here.

Radiation transfers energy from gravitation and nuclear reactions via

photons. The photons are emitted, absorbed and re-emitted in almost ran-

dom directions. This radiation travel is clearly conditional to the opacity of

the material. If we consider a radiation pressure gradient

dPrad

dr
= � ̄⇢

c
F (2.90)

Where ̄ is the average opacity of the material. F is total radiative flux

through the material. We can also describe the radiation pressure as

dPrad

dr
=

4

3
aT 3dT

dr
(2.91)

equating the two
dT

dr
=

�3

4ac

̄⇢

T 3
F (2.92)

substituting the force due to radiation with the luminosity relation

F =
Lr

4⇡r2
(2.93)

The result for radiation transport is

dT

dr
= � 3

4ac

̄⇢

T 3

Lr

4⇡r2
(2.94)

The convection of matter is due to the more energetic buoyant mass

moving towards the surface of the star and the cooler mass sinking to the

centre. We can describe the rising mass as an adiabatically moving bub-

ble which, after travelling a distance, will then give up its energy to the

surroundings by dissolving into it. We can describe this bubble first by

differentiating the ideal gas equation 2.49

dP

dr
= �P

µ

dµ

dr
+

P

⇢

d⇢

dr
+

P

T

dT

dr
(2.95)



32 Chapter 2. Method Theory

Using the relation of V ⌘ 1/⇢, the adiabatic relation between pressure

and density is

P = K⇢� (2.96)

differentiating with respect to the radial distance

dP

dr
= �

P

⇢

d⇢

dr
(2.97)

If we assume that µ is a constant, then eqs. 2.95 and 2.97 can be combined

to give the adiabatic temperature gradient.

dT

dr

����
ad

= �
✓
1� 1

�

◆
µmH

k

GMr

r2
(2.98)

2.9 Stellar Equations

We have now derived the principle mechanisms and the associated equa-

tions that describe stellar evolution. These methods can be used throughout

the entire evolution from cloud, through to main sequence, to end-of-life.

These equations cannot be solved analytically and need adjustment for nu-

merical modelling. By replacing differentials with difference equations, this

places numerical limits to the equations allowing them to be evaluated com-

pletely. In most numerical simulations, these limits would be implemented

by incremental radial distances allowing evaluation of pressure, tempera-

ture, luminosity, and mass across these spherical shells. However the model

in this research has similar principles but uses grid based limits, as will be

outlined later.

2.10 Boundary Conditions

At the centre of stars, where Mr = 0 and where Lr = 0, singularities will

develop when using the equations previously defined. As such, the usual

solution is to expand a first order taylor series with the boundary condition

at a small value of Mr near the centre, where

r =
⇣ 3

4⇡⇢c

⌘1/3
M1/3

r (2.99)
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P = Pc �
1

2

⇣4⇡
3

⌘1/3
G⇢4/3c M2/3

r (2.100)

Lr =
⇣
Enuc �

d✏

dt
� P

dV

dt

⌘

c
Mr (2.101)

T = Tc �
1

2

⇣4⇡
3

⌘1/3
G
⇣⇢4/3c

Pc
·rc · Tc ·M2/3

r

⌘
(2.102)

The temperature gradient is set dependent upon if the layer is radiative

or convective (figure 1.1). The Luminosity Mass function goes to a constant

but must be evaluated off centre. Density, temperature and pressure are all

calculated.

Using 2.89 the boundary condition for the surface of the star can be de-

termined. Where in this case the luminosity would be the value from the

surface and R is the radius to the surface. If we assume a fixed gravitational

acceleration, the atmospheric hydrostatic equilibrium can be found

dP

dr
= �GMr⇢

r2
= �g⇢ (2.103)

with the optical depth being defined d⌧ = �R⇢dr and assuming M = Mr

in the atmosphere
dP

dr
=

g

R

d⌧

dr
(2.104)

By integrating between the limits of ⌧ being small at the surface inwards to

a value of 2/3 (Carroll B.W., 1996), obtained from the Eddingtion approxi-

mation, to define the photosphere as

phPph =
2

3
g (2.105)

As such the end equation is an approximation for the two boundary con-

ditions of the surface of the star. More detailed models of the atmospheric

composition are desired to be able to make better comparisons with obser-

vation. The hydrogen and helium elements tend to have different levels

of ionisation, dependent on their location within the star. Inner layer hy-

drogen and helium is mostly fully ionised, whereas outer layers have only

partial ionisation.
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2.11 The Model

We use the provided program, STELLAR, that comes alongside the text-

book of Bodenheimer et al. (2006) with some adaptations. The STELLAR

package is a hydrodynamic adaptive grid code that solves the stellar struc-

ture via the Henyey method.

The Henyey method solves implicitly, and simultaneously, the outlined

equations at time, tn+1 = tn +�t, where n is an integer of the current time

step. This has the requirement for a initial resolved function at tn. As with

other interpolation techniques, once resolved the found values are used to

update the model variables including the composition �, which will then be

used in the next iterative step. STELLAR used a grid of mesh points, J , with

j = 1 and j = J as the centre of the star and surface of the star respectively

(figure 2.3). The surface also has defined Mj = 0, where Mj = M where

M is total mass. Incremental masses, dMj = Mj �Mj�1 must be stored to

avoid the subtraction of nearly equal quantities between grid points. The

code will adapt the grid mesh to increase or decrease the numbers of mesh

points for regions of rapid change, this is set up so the difference between

Mj and Mj+1 is no more than 3 � 4%. As a star develops, the pressure

difference between the centre and the surface will increase greatly, as such

the number of zones will need to be increased as t increases. The three

principle equations previously outlined, Eq. 2.21, Eq. 2.23, Eq. 2.101 and

the diffusion approxmation for all types of energy transport

dT

dMr
= �GMrT

4⇡r4P
r (2.106)

The radius rj and the luminosity Lr are defined on the edges of the grid

points, Mj . The pressure, density and temperature Pj , ⇢j , Tj are all defined

as halfway between grid points such that the mass co-ordinate for them is

Mj�1/2. As such the equations used in the code are redefined as

Pj+1 � Pj +
(Mj+1/2 �Mj�1/2)GMj

4⇡r4j
= 0 (2.107)

r3j � r3j�1 � (Mj �Mj�1) ·
3

4⇡⇢j
= 0 (2.108)
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Lj�Lj�1�(Mj�Mj�1)
h
Enuc,j�

cP,j(Tj � Tn
j )

�t
+

�

⇢j

(Pj � Pn
j )

�t

i
= 0 (2.109)

Tj+1 � Tj +
(Mj+1/2 �Mj�1/2)GMj

4⇡r4j

Bj+1 +Bj

2
= 0 (2.110)

Where B = Tjrj/Pj .

FIGURE 2.3: The grid setup of the STELLAR as shown in
Bodenheimer et al. (2006), the variables of density, nuclear
energy, opacity and, total energy (⇢, Enuc,, ✏ respectively)
are all found as functions of the variables shown at the top
of the grid. Mr is the lagrangian co-ordinate, with pressure,
radius, temperature and, luminosity being the four depen-

dent variables (P, r, T, L, respectively).

STELLAR requires initial values for variables at tn point, as such a con-

verged model of a protostellar core of approximately 50 jupiter masses,

0.05M�, luminosity of 2.2 ⇥ 10�2L� and radius 0.56R� was used at the

centre of the grid.

The STELLAR code has been further developed to use an input file that

externally defines mass accretion rate, time step and total time. Minor ad-

justment to the internal time step of STELLAR was made to scale. The early

stages, and through the main accretion phase, require greater accuracy, and

thus a smaller internal time step, by adding a multiplicative factor of the

current time to the fixed time step. This has small impact in early stages
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but increases the time step later which reduces the total run time.

DTMIN = 1.0⇥ 104 + (1.0⇥ 10�5⇥ TIMOD) (2.111)

Where DTMIN is the minimum timestep and TIMOD is the internal current

time of the program. This proved effective in reducing program run time

with a change from ⇡ 150 hours to ⇡ 6�24 hours. We made small additions

to a makefile in order to reset certain files to an original state. These files

are altered when the program is run, which if reused will cause program to

fail. The solution was to include a copy function that overwrites the altered

file with the original, each time the program is compiled.

The main body of code has been designed to read in variables from a va-

riety of input files. These variables allow control over internal functions, an

example being the time step limits for the Henyey method. Assigning the

variables in external files makes for a much simpler process in controlling

how the program performs. We focused on developing one of these exter-

nal files, ’dummymain.f’. This file controls multiple fundamental variables,

namely the mass flux and time frame of formation. We aimed to modify this

file to specify variable or constant accretion models, with options to choose

final mass and then inclusion of episodic bursts.

2.12 Pre Main Sequence Phases

GMCs contain large quantities of mass, on the order of millions of solar

masses. These GMC’s will either expand, or collapse, depending on the

Jeans instability criteria shown in Eq. 2.3. A collapsing cloud is decreas-

ing in volume and, as such, increasing its density. This increase allows for

fragmentation to take place. Fragmentation is a series of localised collaps-

ing envelopes within the GMC. This fragmentation process will lead to the

generation of multiple protostellar cores. We focus on the processes after

this fragmentation has taken place, by looking at one protostellar core and

its encapsulating envelope.
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FIGURE 2.4: The evolutionary track for radius as a function
of stellar mass, as found by the code used in Smith (2014).
The figure shows an extreme example of the pre main se-
quence phases using a star with a final mass of 300M�. La-
bels on the figure, 1, 2, 3 and, 4 indicate the adiabatic ac-
cretion, swelling, KH contraction and main sequence tran-

sition phases, respectively.

2.12.1 Adiabatic Accretion

The central protostellar core will accrete mass from its surrounding enve-

lope as it continues to collapse. This process of collapse leads to the increase

of local density which corresponds to an increase in opacity. At some criti-

cal point during this stage, the opacity will have increased to a point where

all the internal energy converted from potential energy will be absorbed

and contained within the star itself. Since the energy is not lost from the

system, we call this adiabatic collapse. The accretion of matter in this stage

directly corresponds to an increase in temperature.

2.12.2 Swelling

The protostar will go through a swelling (interchangeably called bloating)

phase if it reaches, or exceeds, an accretion rate of Ṁ ⇠ 10�5M�/yr, as

shown by Palla & Stahler (1990 & 1991). This process will happen be-

fore reaching the zero age main sequence. The swelling occurs due to
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the internal temperatures of ⇠ 106K which initialises deuterium burning

in the shell. This deuterium burning stage is crucial; stars more massive

than ⇠ 3M� would not exist without the deuterium burning. The burn-

ing initiates convection within the core, thus regulating internal temper-

ature to keep below the hydrogen fusion temperature which allows the

star to continue accreting mass. A scenario where the accretion exceeds

Ṁ ⇠ 10�3M�/yr however, will go through the swelling phase regardless

to the effect of deuterium burning. This swelling occurs due to the entropy

contained in the deep centre of the star rapidly moving toward the outer

shells and surface.

2.12.3 Kelvin-Helmholtz Contraction

The previous swelling phase will contribute to a decrease in opacity, the

reversed method of reaching the adiabatic phase, as such the pre-main-

sequence star becomes much more luminous allowing the energy from within

to be radiated away. The Kelvin-Helmholtz timescale is given by

tkh =
Total Energy

Rate of energy Loss
=

GM2

RL
(2.112)

Where; G is the gravitational constant, M is the mass of the star, R is the

radius of the star, and L is the luminosity of the star. A critical point will

be reached whereby the timescale for radiating energy away, tKH , will be

shorter than the accretion timescale, tacc, allowing the total energy and

therefore temperature to decrease. To maintain virial equilibrium, the star

will contract. This contraction increases internal core temperature will lead

to the eventual ’ignition’ of the star, however this is not immediate and can

take a significant time to happen, on the order of 105 to 107yr.

2.12.4 Main Sequence Transition

The transition from contraction to main sequence is a mass dependent time

frame, massive stars will take somewhere in the same order as accretion

time of 1 � 10 ⇥ 105yrs, whereas low mass stars can take on the order of

106 � 108yrs. Over this time the temperature increases within the stellar

core to a value � 107K where it is now high enough that hydrogen fusion



2.12. Pre Main Sequence Phases 39

can take place. This is the point at which we now define the protostellar

core as a zero age main sequence star.
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Chapter 3

Method

We aim to find a connection between the results of our variable accretion

rate model to previous work and observational data, with the eventual de-

sire of being able to accurately produce a fully comprehensive stellar evo-

lution for stars of all masses. A key step is determining a complete accre-

tion method that holds true for all star formation within GMCs. Eventually

equipping a three dimensional magneto-hydrodynamic code with a con-

clusive accretion model will lead to better understanding of star formation

from cloud to main sequence.

Using the STELLAR code, provided by Bodenheimer et al. (2006), we

build on the ideas developed in Smith (2014), aiming to produce more de-

tailed tracks involving relations between mass, time, radius, temperature

and luminosity. We also aim to model short episodic accretion bursts in

line with the recent results from Hosokawa et al. (2016).

An interface to the STELLAR evolution code allowed the accretion mod-

els and the main and minimum phase’s timescales to be defined externally.

The accretion methods from Smith (2014), were coded into the input file

which then evaluates the accretion rate for each time step before being

passed into the main STELLAR evolution program.

3.1 Accretion

We explore four debated methods of protostellar accretion rates; constant

(Shu, 1977), accelerated (McKee & Tan, 2003), a power law (Calvet et al.,

2000), and an exponential (Myers et al., 1998). We split the process into

two defined stages of accretion; an initial main accretion phase set as the

first tacc = 1 ⇥ 105 year period, this transitions into a minimum accretion
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period of 9⇥ 105 years, which we call the "clean up" phase where accretion

rate is set to a minimum value of ⇡ 10�7M�. The clean up accretion stage is

crucial to allow time for the star to fully evolve. The incorporated minimum

accretion rate keeps the program from collapsing early and from breaking

boundary conditions, but the nominal accretion rate has small impact on

the end result. This "clean up" accretion rate adds another ⇡ 1 � 2% of the

mass at the end of the first stage.

In the case of the power law and exponential, the accretion rate contin-

ues to drop throughout the entire run, unless dropping below a 10�8M�
yr

threshold rate, if passing this rate the program will fix it at the threshold

rate until finishing all iterations. We still define it as the main accretion

phase, because 75% � 85% of the final mass is reached in the 105yr time

frame.

The total time for the evolution is tt = 106 years, which we set the pro-

gram to divide into 3⇥ 104 iterations at 1.052⇥ 109s = 33.3 years each.

For simplicity the accretion rate is calculated from a pre-defined value

for the desired final mass of the star, allowing just one integer variable to be

changed to achieve this. The calculations for accretion rate will be outlined

further, but note we include an efficiency factor of 0.7 as we assume a 30%

loss of mass in jets from the protostar, Shu et al. (1994).

FIGURE 3.1: The four different modelled accretion rates
plotted as a function time for a star of 10M�.

Shown in Figure 3.1 is the smooth accretion process for each method in

which a 10M� star was produced. Note the initial gradual increase to reach

the main accretion phase rate for the constant method, used for stability.

The clean up phase minimal accretion rates can be seen implemented after

the t = 105yr point by the sharp drop to the minimum accretion rate. Note
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the differences between the exponential and power law accretion methods;

the exponential rapidly increases in rate earlier but not peaking as high.

The power law rate begins to drop off sooner after reaching its peak but

levels off the declining rate, whereas the exponential does not.

3.1.1 Constant

The constant accretion rate is a simple fixed rate generally used in isother-

mal sphere models, originating from Shu (1977). Differing from Shu (1977),

our model has a finite limit of molecular gas. As such, we model an accre-

tion rate that holds steady until the end of the main accretion time, where

we assume the rate drops to a minimum as the molecular cloud resources

are exhausted. The initial rate is determined by the total mass of the enve-

lope and the speed of sound in the envelope.

The constant accretion rate coded is defined by the final mass desired

Ṁconst =
Mf

tacc
(3.1)

Where Mf is the final mass and tacc is the time of the main accretion phase.

We also include an efficiency of accretion later, due to the losses from jets

and outflows. The program is susceptible to failure if large rapid changes

occur, such as the first iteration. To minimise this effect a small 1000 year

stage at the beginning of the program is used, where the accretion is grad-

ually increased to match the main accretion rate as defined by Eq. 3.1 and

seen in Figure 3.1.

3.1.2 Accelerated

An accelerated accretion is generally used for low to intermediate mass

stars as it aids in solving the luminosity problem of protostellar cores (Offner

& McKee (2011)). Determined by the increase in mass flux as a function of

time, followed by a steep drop off as the envelope’s resources are depleted.

McKee & Tan (2003) has postulated a turbulent core model using a typ-

ical core density, ⇢ / r3/2 results in accretions rates as a function of time,
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with timescales of ⇡ 105yr.

Ṁ⇤ / t (3.2)

The definition coded for this accretion model is given using an initial

accretion rate

Ṁ0 =
M�
a

⇥Mf ⇥ 2.857

tacc
(3.3)

Where M�
a is in units of solar masses per year. Mf is the final mass of the

star given in solar masses. tacc is the time of the main accretion phase in

years. The factor of 2.857 is for inclusion of mass losses at 70% efficiency.

As such the total mass accreted is given by:

100,000X

t=0

Ṁt = M0 ⇥ t⇥ tt
tacc

(3.4)

Where t is the time. tt is the total time (1⇥ 106yrs).

3.1.3 Exponential

An exponential accretion model (Myers et al. (1998)), is the optimal adap-

tation of an accretion where infall is similar to the constant rate used with

isothermal spheres but followed by a declining rate. This is given by

Ṁ(t) =
M0

tf
e�t/⌧f (3.5)

This rate is proportional to the mass loss rate of the envelope, but going

further to model a rising period rather than starting at a high rate.

Ṁ(t) = Ṁ0e
(2⌧r/⌧f )1/2e�⌧r/⌧f e�t/⌧f (3.6)

Where ⌧f = tacc/tt and ⌧r = ⌧f/10. This generates the maximum accretion

rate at time, tm =
p
⌧r⌧f . For our model this peak time occurs at tm ⇡

1.58⇥ 104yrs.
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3.1.4 Power Law

Calvet et al. (1999), shows strong observation support for an accretion with

strong decay phase. As such we incorporate a power law drop off model

as an accretion rate. Power law accretion is generally the preferred method

for low-intermediate mass stars (Smith et al. (2000)).

The power law accretion rate is given as:

Ṁpower = Ṁ0

⇣ e

↵

⌘↵ ⇣ t

tacc

⌘�↵
e�tacc/t (3.7)

Where ↵ is a constant that corresponds to the accretion rate curvature. 0.5

being a gradual accretion and 2-3 being an abrupt accretion. The power

law and exponential models are similar but there are important differences.

The peak accretion rate in a power law model occurs early in the accretion

phase after a sharp initial increase in rate (figure 3.1). The power law has a

sharp increase in the accretion rate, M̈ , as such it manages to reach its peak

accretion rate earlier than the other variable models. The power law also

has a greater peak accretion rate value than the other models.

3.1.5 Accretion Bursts

We attempt to model episodic accretion shocks, which we refer to as "bursts"

from here on in. It is shown that the majority of mass accreted does not

come in the form of a steady progression, but instead in massive accretion

shocks of high intensity over a short time period. It has been shown that

bursts are key to the fragmentation within the accretion disk, which aids the

formation of multiple star systems and planetary objects(Stamatellos et al.

(2011)). The bursts are modelled to accrete 90% of the final stellar mass

through the short ⇡ 103yrs burst phases with the final 10% accumulating

in the ’off’ state lasting 9⇥ 103yrs.

To couple the modelled accretion methods and a burst counter part, we

pass the original calculation of accretion through a secondary modulo func-

tion which determines if the accretion will be in an on or off state. The

modulo functions used to determine accretion state are coded as such

IF
⇣ i

30
mod 10

⌘
6= 9 THEN Ṁ = Ṁmin (3.8)
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and

IF
⇣ i

30
mod 10

⌘
= 9 THEN Ṁ = Ṁmax (3.9)

where i is the current iteration of the program, and where:

Mmin = Ṁ ⇥ 0.111 (3.10)

and,

Mmax = Ṁ ⇥ 9.099 (3.11)

Where Ṁ has already been calculated for its respective accretion method at

that time point.

3.1.6 Input File

We make adjustments to an input file which calls the main STELCOR code.

This file was originally put together by H.W, Yorke and is used in Kuiper &

Yorke (2013). We made major alterations to the file to include the accretion

models outlined, and other front end adjustments. For simplified use, we

include a series of requests informing the user to specify final mass, accre-

tion time and which accretion model to use. Having all the models con-

tained in one file, and then being able to adjust the variables once executed

greatly reduces program run time.

1 C This i s a dummy " hydro " code t h a t c a l l s STELCOR

2 C AUTHOR: H.W. YORKE 12�FEB�11 ( JPL / CALTECH)

3 C Updated : D. HASTIE , M.D. SMITH, 1�MAY�16 ( SPS , Univers i ty

of Kent )

4 include ’parm . h ’

5 C Var iab les not included elsewhere are defined here .

6 double precis ion : : deetee , tpeak

7 double precis ion : : mdotzero , mdotstar , epsilon

8 double precis ion : : tnaught , t o s t a r

9 double precis ion : : r a t e u n i t , fluxmin , f l u x o l d

10 double precis ion : : decel , d e c e l r

11 double precis ion : : i n i t i a l r a t e , f inalmass , fsolmass

12 double precis ion : : numru , solmass , yearins , a c c i t e r s

13 double precis ion : : mdotstarramped , divpart

14 double precis ion : : taur , tauf , taueee

15 in teger : : accmethod
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16 C S t a r t i n g values f o r the e x t e r n a l mass and time .

17 CorM = 9.94373 E31

18 TIME = 0 .

19 C " hydro " time step ( independent of STELCOR ’ s i n t e r n a l time step )

20 DTIME = 1 .052 e9

21 solmass = 1 .989 d33

22 year ins = 3 .1557 d07

23 r a t e u n i t = solmass/year ins

24 C Terminal prompts to read user des ired values .

25 C I f t h i s i s to be run on a node , comment out the fol lowing

s e c t i o n

26 C and go to the s e c t i o n underneath where you can manually enter

values .

27 C Desired f i n a l mass

28 p r i n t ⇤ , " Enter the f i n a l des ired mass in s o l a r masses . "

29 read ⇤ , f solmass

30 C The fol lowing allows the user to choose how many i t e r a t i o n s

31 C and t h e r e f o r e time period of a c c r e t i o n phase .

32 C This s e c t i o n has yet to be coded i n t o power and a c c e l e r a t e d

methods

33 p r i n t ⇤ , " Enter the number of i t e r a t i o n s of main a c c r e t i o n

phase "

34 p r i n t ⇤ , " ( between 1000�30000) "

35 read (⇤ ,⇤ ) a c c i t e r s

36 C S e c t i o n f o r choosing the a c c r e t i o n method .

37 p r i n t ⇤ , " Enter an a c c r e t i o n method . "

38 p r i n t ⇤ , " Constant = 1 , Power Law = 2 , Accelerated = 3 ,

Exponential = 4"

39 read (⇤ ,⇤ ) accmethod

40 C C Manual s e c t i o n .

41 C fsolmass = 100

42 C C Changing a c c i t e r s w i l l a d j u s t t o s t a r value .

43 C a c c i t e r s = 3000

44 C accmethod =4

45 f ina lmass = fsolmass ⇤1 .989 d33

46 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

47 C Beggining of the Constant s e c t i o n . C

48 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

49 i f ( accmethod .EQ. 1 ) then

50 C Epsi lon i s the e f f i c i e n c y f a c t o r ( Mass l o s s to j e t s )

51 eps i lon = 0 . 3

52 C Tota l time s c a l e
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53 tnaught = 1 . 0 d06

54 C Time s c a l e of a c c r e t i o n phase

55 t o s t a r = ( tnaught /30000)⇤ a c c i t e r s

56 C E f f i c i e n c y applied to a c c r e t i o n

57 divpart = t o s t a r ⇤ (1� eps i lon )

58 C The a c c r e t i o n f a c t o r .

59 i n i t i a l r a t e = fsolmass / divpart

60 C Putt ing a c c r e t i o n f a c t o r i n t o cgs u n i t s

61 mdotzero = i n i t i a l r a t e ⇤ r a t e u n i t

62 C Accret ion with the e f f i c i e n c y included

63 mdotstar = mdotzero ⇤ (1� eps i lon )

64 C Reduced a c c r e t i o n f o r i n i t i a l s t a g e s

65 mdotstarramped = mdotstar /900

66 i p r i n t = 1

67 C The a c c r e t i o n r a t e s of high and low s t a t e s f o r burs t s .

68 fluxM1= 0 . 1 ⇤ mdotstar

69 fluxM2= 9 ⇤ mdotstar

70 f l u x o l d=fluxM2

71 do i =1 ,30000

72 C The fol lowing i f loop s p e c i f i e s the a c c r e t i o n r a t e .

73 i f ( i . LE . 3 1 .AND. i . LE . a c c i t e r s ) then

74 C The a c c r e t i o n r a t e i n c r e a s e s propot ional to

75 C the i t e r a t i o n number squared

76 fluxM = mdostarramped ⇤ ( i ⇤⇤2)

77 e l s e i f ( i . LE . a c c i t e r s ) then

78 C Burst s e l e c t i o n of high/low s t a t e

79 i f (mod( i /3 ,10) . eq . 9 ) then

80 fluxM = 0 . 1 ⇤ mdotstar

81 e l s e

82 fluxM= 9 . 0 ⇤ mdotstar

83 endi f

84 e l s e

85 C Low a c c r e t i o n r a t e f o r t r i c k l e phase

86 fluxM= r a t e u n i t ⇤ 1 . 0 d�08

87 endi f

88 i p r i n t = 1

89 C Update time and mass in the c a l l i n g program .

90 TIME=TIME+DTIME

91 CorM=CorM+DTIME⇤0 . 5⇤ ( fluxM+f l u x o l d )

92 c a l l s t e l c o r (CorM, CorR , CorL , fluxM , TIME , i p r i n t )

93 C S t e l l a r radius CorR and i n t r i n s i c luminosi ty CorL are determined

by s t e l l a r
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94 C evolut ion c a l c u l a t i o n s in STELCOR . For the t o t a l luminosity ,

add the i n t r i n s i c

95 C luminosi ty to the a c c r e t i o n luminosi ty .

96 accL = 0 . 7 5 ⇤ 6 .6832d�8 ⇤ CorM ⇤ fluxM / CorR

97 f l u x o l d=fluxM

98 C Var iab les to wri te to data f i l e

99 wri te ( 6 , 2 0 1 ) i , TIME , DTIME, CorM, CorR , CorL , accL+CorL , fluxM

100 enddo

101 stop

102 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

103 C This i s the end of the Constant s e c t i o n . C

104 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

105 C This i s the beggining of the PowerLaw s e c t i o n . C

106 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

107 e l s e i f ( accmethod .EQ. 2 ) then

108 alpha = 1 . 7 5

109 acon = ( exp ( 1 . 0 ) /alpha ) ⇤⇤alpha

110 deetee = 1 . 0 / 3 . 0 d04

111 tnaught = 1 . 0 d06

112 t o s t a r = 2 . 0 d04

113 mdotzero = r a t e u n i t ⇤ 2 .86143d�05 ⇤ fsolmass

114 eps i lon = 0 . 3

115 mdotstar = mdotzero ⇤ ( 1 . 0 � eps i lon )

116 fluxmin = r a t e u n i t ⇤1 . 0d�08

117 f l u x o l d = r a t e u n i t ⇤1 . 0d�07

118 do i =1 ,30000

119 tpeak = r e a l ( i ) ⇤deetee⇤ tnaught/ t o s t a r

120 teeaye = tpeak⇤⇤(�alpha )

121 fluxM = mdotstar ⇤acon⇤ teeaye ⇤ exp (�1.0/ tpeak )

122 i f ( fluxM . l e . fluxmin ) fluxM=fluxmin

123 i p r i n t = 1

124 TIME=TIME+DTIME

125 CorM=CorM+DTIME⇤0 . 5⇤ ( fluxM+f l u x o l d )

126 c a l l s t e l c o r (CorM, CorR , CorL , fluxM , TIME , i p r i n t )

127 C S t e l l a r radius CorR and i n t r i n s i c luminosi ty CorL are determined

by s t e l l a r

128 C evolut ion c a l c u l a t i o n s in STELCOR . For the t o t a l luminosity ,

add the i n t r i n s i c

129 C luminosi ty to the a c c r e t i o n luminosi ty .

130 accL = 0 . 7 5 ⇤ 6 .6832d�8 ⇤ CorM ⇤ fluxM / CorR

131 f l u x o l d=fluxM

132 wri te ( 6 , 2 0 1 ) i , TIME , DTIME, CorM, CorR , CorL , accL+CorL , fluxM
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133 enddo

134 stop

135 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

136 C End of the PowerLaw s e c t i o n . C

137 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

138 C Beggining of the Accelerated s e c t i o n . C

139 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

140 e l s e i f ( accmethod .EQ. 3 ) then

141 deetee = 1 . 0 / 3 . 0 d04

142 tnaught = 1 . 0 d06

143 t o s t a r = ( tnaught /30000)⇤ a c c i t e r s

144 eps i lon = 0 . 3

145 dece l = 1 . 0

146 d e c e l r =0.0

147 i n i t i a l r a t e = r a t e u n i t ⇤ fsolmass⇤2/ t o s t a r

148 p r i n t ⇤ , i n i t i a l r a t e

149 p r i n t ⇤ , t o s t a r

150 mdotstar = i n i t i a l r a t e ⇤ ( 1 . � eps i lon )

151 fluxmin = r a t e u n i t ⇤1 . 0d�08

152 f l u x o l d = r a t e u n i t ⇤1 . 0d�07

153 do i =1 ,30000

154 tpeak = r e a l ( i ) ⇤deetee⇤ tnaught/ t o s t a r

155 fluxM = mdotstar⇤ tpeak

156 i f ( tpeak . gt . 1 . 0 ) fluxM = d e c e l r ⇤mdotstar ⇤ ( decel�

tpeak )

157 i f ( tpeak . gt . dece l ) fluxM = 1 . 0 d+17

158 i p r i n t = 1

159 C Update time and mass in the c a l l i n g program

160 TIME=TIME+DTIME

161 CorM=CorM+DTIME⇤0 . 5⇤ ( fluxM+f l u x o l d )

162 c a l l s t e l c o r (CorM, CorR , CorL , fluxM , TIME , i p r i n t )

163 accL = 0 . 7 5 ⇤ 6 .6832d�8 ⇤ CorM ⇤ fluxM / CorR

164 f l u x o l d=fluxM

165 wri te ( 6 , 2 0 1 ) i , TIME , DTIME, CorM, CorR , CorL , accL+CorL , fluxM

166 enddo

167 stop

168 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

169 C End of the Accelerated s e c t i o n . C

170 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

171 C Beginning of the Exponential s e c t i o n . C

172 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

173 e l s e i f ( accmethod .EQ. 4 ) then



3.1. Accretion 51

174 deetee = 1 . 0 / 3 . 0 d04

175 tnaught = 1 . 0 d06

176 t o s t a r = 1 . 0 d5

177 mdotzero = r a t e u n i t ⇤ 1 .9804d�05 ⇤ fsolmass

178 eps i lon = 0 . 3

179 mdotstar = mdotzero ⇤ ( 1 . 0 � eps i lon )

180 t a u f = 0 . 5⇤ ( t o s t a r /tnaught )

181 taur = 0 . 1⇤ t a u f

182 taueee = exp ( 2 . 0⇤ s q r t ( taur/ t a u f ) )

183 fluxmin = r a t e u n i t ⇤1 . 0d�09

184 f l u x o l d = r a t e u n i t ⇤1 . 0d�09

185 do i =1 ,30000

186 tpeak = r e a l ( i ) ⇤deetee

187 fluxM = mdotstar⇤ taueee⇤exp(� taur/tpeak ) ⇤exp(� tpeak/t a u f )

188 i f ( fluxM . l t . fluxmin ) fluxM = fluxmin

189 i p r i n t = 1

190 TIME=TIME+DTIME

191 CorM=CorM+DTIME⇤0 . 5⇤ ( fluxM+f l u x o l d )

192 c a l l s t e l c o r (CorM, CorR , CorL , fluxM , TIME , i p r i n t )

193 accL = 0 . 7 5 ⇤ 6 .6832d�8 ⇤ CorM ⇤ fluxM / CorR

194 f l u x o l d=fluxM

195 wri te ( 6 , 2 0 1 ) i , TIME , DTIME, CorM, CorR , CorL , accL+CorL , fluxM

196 enddo

197 stop

198 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

199 C End of the Exponential s e c t i o n . C

200 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

201 201 format ( ’ HYDRO OUTPUT: ’ , i5 , 1 p , 7 d10 . 2 )

202 e l s e

203 P r i n t ⇤ , " I n v a l i d s e l e c t i o n "

204 end i f

205 end

The code contains all four accretion models with bursts. It can be seen

that there is some deviation in the equations outlined to the ones used in

the code for each model. There is limitation with the Fortran code when

it comes to more complex functions, such as those found in the power law

code and exponential models. An example, on lines 113 and 177, the in-

cluded multiplicative factors of 2.86143 ⇥ 105 and 1.9804 ⇥ 105 are found

using the ’capsule’ code from Smith (2014), as we cannot include solutions

to partial gamma functions and integrations with this version of Fortran.
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The constant section has been fully commented to aid the user. The other

three models use the same variables so are not commented and differences

in the calculations can be followed by the equations outlined earlier. Not

shown in the code above, but in the final dummymain.f file we include the

choice to include the episodic bursts.

3.2 Evolutionary Tracks

3.2.1 Mass Radius

We aim to provide a detailed map of the growth of stars through the pre-

main-sequence phases, providing insight into how the stellar evolution and

structure effects the radius of the protostar. Radii of stars is a key observa-

tional quantity and, as such, mapping it as a function of stellar mass gives

crucial understanding to the evolutionary stage a protostar is in.

3.2.2 Theoretical Hertzsprung Russell Track

Using our model and stellar equations (2.102, 2.103) outlined earlier we can

map the tracks of Log(L/L�) against Log(T/T�) for the pre-main sequence

stars, sometimes referred to as the theoretical Hertzsprung Russell diagram.

The tracks produced are governed by the chosen time frame and the values

of internal parameters such as, metallicity and opacity. These tracks aid

determining the age of stars and star clusters. The Hertzsprung-Russel di-

agrams we use compare stellar luminosity to temperature. We obtain these

tracks by taking the output data file produced by the STELLAR program

and then pass it through the CAPS code used in Smith (2014) to obtain the

temperature of the core, as this is not exclusively output from our STELLAR

code.

3.2.3 Mass Luminosity

In recent years there has been a tendency to record luminosity as a func-

tion of the clump mass. This method is effective in showing the evolu-

tionary stages and then the path taken to ZAMS and the final mass at-

tained. The track can be broken down into two stages, the pre-main and
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main sequence paths. A vertical line represents the growing luminosity

of the embedded protostar as the mass of the system (star and molecular

cloud) remains relatively constant. This growing luminosity is an evolu-

tionary aging technique. As the star reaches main sequence the cloud is

dissipated through various processes including molecular outflows. This

second stage is shown by luminosity remaining relatively constant and the

mass decreasing, shown by a horizontal plot. The luminosity of clump and

mass of clump are found to be easily measurable with modern telescopes,

as such large quantities of new data are available to overlay on the track

plots to provide comparison. Through this thesis, we model and track a

single star’s formation however, we model the clump as if it is host to a

complete cluster. Thus, in tables 5.1 and 5.2 we display clump masses be-

tween one and two orders of magnitude greater than the final mass of the

star we model.
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Chapter 4

Results

Which accretion model is most consistent with observational data? This

question is hard to answer because of the differences between reality and

the isolated single star scenario in this thesis. However, we can still try to

find significant data points, such as the model that has a greatest swelling

radius and/or greatest peak luminosity. By mapping these as reference

points we can determine if there is correlation with observation.

We recognise that protostellar accretion can collapse, or end, at any

stage if the mass supply is cut off. As such we must posit the question

of the effects of rapid shutoff during a key phase of the evolution. Does the

result of cutoff during the swelling or contraction phase lead to significant

differences in tracks or other indicators such as spectral signature.

Whilst the model we use is more advanced than the likes of classic

isothermal collapse, it is not fully inclusive of new research into star form-

ing environments. More recent findings have shown giant molecular clouds

tend to have long reaching, roughly cylindrical, arms that mass will flow

along, with protostars and their clump flowing too. As such the filaments

feed the clumps and the clumps feed the protostar, this dynamic process

will significantly change the gravity, density and opacity of the protostellar

clump. As such a higher mass star at an instantaneous point in time would

be forming from a lower mass clump than our model suggests. So we must

address the issue, is static spherical modelling a good enough representa-

tion of star formation?

Does a single base accretion rate apply throughout the entire protostel-

lar evolution phase? Do protostars accuse mass using just one method, for

all stages of evolution? We understand that stars form in dynamic regions,
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where the current state of the protostar will give varying effects on its sur-

roundings through the use of radiative feedback and jets, then we must

also question if these effects can have a large enough impact on the enve-

lope as to change the accretion rate. Is the space-time grid in our model

large enough to encapsulate the extent of protostellar feedback?

4.0.1 Notes

An overview table of each accretion method we modelled is presented be-

fore displaying the results in graphical form. The tables help reference key

values from each test and its corresponding series of graphs. The tables are

condensed versions of the complete sets of data which can be found in the

digital appendix.

The figures of evolutionary tracks shown in the results section give an

overview of the data produced in this theis. The range of star masses pro-

duced is across three orders of magnitude. All the tracks produced can be

found in the digital appendix, whilst all are not required to understand the

results, they may still be of interest.

4.1 Mass Radius

Here we compare the results from all four accretion models across a range

of masses for the radius of protostar as a function of the mass. By plotting

the tracks for all methods on one diagram we can easily spot significant

differences between them. The final masses stated in the following tabled

data are rounded to the nearest integer for ease of referencing between each

model, the true masses differ by ⇡ 1� 5%.

Table 4.1 shows the final radius and its corresponding mass. It is evi-

dent that once a protostar has ended its accretion phase, the final radius is

correlated to the final mass regardless of the accretion process. This can be

seen for all results where each of the model’s final radii are all within < 5%

of each other. The only exception is 100M� power law result of 34.32R�

which is ⇡ 12% less than the constant accretion model 38.92R�.



4.1. Mass Radius 57

TABLE 4.1: A comparative table of final radii and final
mass achieved using the respective accretion method. The
masses highlighted here are a selection of relevant data

points to the graphs featured.

Accretion Method’s Final Radius (R�)
Final Mass (M�) Acclerated Constant Exponential Power Law

1 2.48 2.50 2.48 2.50
5 2.69 2.69 2.69 2.69

10 4.11 4.09 4.09 4.08
15 5.37 5.36 5.37 5.31
20 6.53 6.53 6.53 6.46
25 7.70 7.70 7.68 7.53
100 37.20 38.92 38.35 34.32

TABLE 4.2: The data table of final mass and peak ra-
dius achieved using the respective accretion method. The
masses highlighted here are a selection of relevant data
points to the graphs featured. Full data available in the dig-

ital appendix.

Accretion Method’s Peak Radius (R�)
Final Mass (M�) Acclerated Constant Exponential Power Law

1 65.26 66.7 58.93 55.05
5 136.55 136.12 137.99 119.274

10 334.91 323.42 298.98 258.73
15 342.10 346.41 316.23 390.97
20 357.91 357.91 428.35 429.78
25 352.16 363.66 432.66 462.84
100 664.08 589.33 662.64 819.32

Table 4.2 shows how significantly larger the radius of the protostar is

during the accretion phase is from the final radius. The stars that undergo

the swelling phase exacerbate this difference.

Figure 4.1 shows the accelerated accretion sharply swelling at approxi-

mately the 5M� point, much before the other methods of 9� 10M�. How-

ever it can be seen that the accelerated accretion sharply swells later than

the others in the lower mass scenarios, Figures 4.2, 4.3.

The transition between no swelling occurring to a full swelling phase

occurs at masses between 4 � 8M� as shown by Figures 4.4 - 4.6. This also

correlates to a jump in peak radius over the 5 and 10M� data points shown

in Table 4.2. Note, the swelling phase does not begin simultaneously for

each accretion method of same final mass. The swelling phase also holds

up over different mass ranges; shown clearly in Figure 4.2, the power law

and exponential have higher peak values but radius drops at a lower mass,
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FIGURE 4.1: The radius tracks for protostars of final mass,
100M�. All four accretion methods are coloured accord-

ingly as found in the legend.

whereas the drop occurs at a higher mass for the constant and accelerated

models. As questioned earlier it can be seen over the range 5 � 10M�,

the accretion phase ends during the Kelvin-Helmholtz contraction phase,

resulting in a drop in radius until the program ends. The higher mass stars

continue to accrete mass during and after the contraction resulting in the

star partially gaining back the radius lost, figures 4.2 & 4.1.
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FIGURE 4.2: The radius tracks for protostars of final mass,
50M�. All four accretion methods are coloured accordingly

as found in the legend.

FIGURE 4.3: The radius tracks for protostars of final mass,
25M�.
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FIGURE 4.4: The radius tracks for protostars of final mass,
10M�.

FIGURE 4.5: The radius tracks for protostars of final mass,
8M�.
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FIGURE 4.6: The radius tracks for protostars of final mass,
6M�.

FIGURE 4.7: The radius tracks for protostars of final mass,
5M�.
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FIGURE 4.8: The radius tracks for protostars of final mass,
1M�.
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4.2 Theoretical Hertzsprung Russell

We aimed to use the H-R diagram as another indicator to potential signifi-

cant points of interest in the evolution of protostars. Here we plot the proto-

stellar models individually to keep the track simple to follow and avoiding

multiple overlapping points when using group plots. The temperature is

not a direct output from the STELLAR code so we use the results given and

calculate the temperatures using the ’capsule’ code from Smith (2014).

4.2.1 Constant Accretion

This section shows the resultant H-R tracks for the constant accretion model

(Figures 4.9 and 4.11).

FIGURE 4.9: The H-R track for a star of 100M� final mass
using the cold constant accretion method. The dashed line
represents the total luminosity and the solid coloured line

represents the core luminosity.
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FIGURE 4.10: The H-R track for a star of 10M� final mass
using the cold constant accretion method. The dashed line
represents the total luminosity and the solid coloured line

represents the core luminosity.

FIGURE 4.11: The H-R track for a star of 1M� final mass
using the cold constant accretion method. The dashed line
represents the total luminosity and the solid coloured line

represents the core luminosity.
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4.2.2 Accelerated Accretion

The following section contains the H-R tracks for the accelerated model

(Figures 4.12 and 4.14).

FIGURE 4.12: The H-R track for a star of 100M� final mass
using the cold accelerated accretion method. The dashed
line represents the total luminosity and the solid coloured

line represents the core luminosity.
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FIGURE 4.13: The H-R track for a star of 10M� final mass
using the cold accelerated accretion method. The dashed
line represents the total luminosity and the solid coloured

line represents the core luminosity.

FIGURE 4.14: The H-R track for a star of 1M� final mass
using the cold accelerated accretion method. The dashed
line represents the total luminosity and the solid coloured

line represents the core luminosity.
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4.2.3 Exponential Accretion

The following section contains the H-R tracks for the exponential model

(Figures 4.15 to 4.17).

FIGURE 4.15: The H-R track for a star of 100M� final mass
using the cold exponential accretion method. The dashed
line represents the total luminosity and the solid coloured

line represents the core luminosity.
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FIGURE 4.16: The H-R track for a star of 10M� final mass
using the cold exponential accretion method. The dashed
line represents the total luminosity and the solid coloured

line represents the core luminosity.

FIGURE 4.17: The H-R track for a star of 1M� final mass
using the cold exponential accretion method. The dashed
line represents the total luminosity and the solid coloured

line represents the core luminosity.
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4.2.4 Power Law Accretion

The following section contains the H-R tracks for the power law accretion

model (Figures 4.18 to 4.20).

FIGURE 4.18: The H-R track for a star of 100M� final mass
using the cold power law accretion method. The dashed
line represents the total luminosity and the solid coloured

line represents the core luminosity.
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FIGURE 4.19: The H-R track for a star of 10M� final mass
using the cold power law accretion method. The dashed
line represents the total luminosity and the solid coloured

line represents the core luminosity.

FIGURE 4.20: The H-R track for a star of 1M� final mass
using the cold power law accretion method. The dashed
line represents the total luminosity and the solid coloured

line represents the core luminosity.



4.3. Mass Luminosity 71

4.3 Mass Luminosity

We plot the clump luminosity - clump mass relation with observational data

overlaid. As mentioned previously, the clump mass is calculated as if it is

host to many stars, with the modelled star being dominant. We calculate the

total mass required for the star to form (envelope mass) using a modified

version of Equation 5 found in Molinari et al. (2008), the modification as

defined in Smith (2014) is given.

Menv = log(2.0) + 0.55 + 1.41⇥ log(3⇥Mf ) (4.1)

The result is a star formation efficiency of ⇡ 21% or envelope mass of ⇡ 4.7

times greater than the final mass the star formed, including the mass loss

from jets.

We also include recent ATLASGAL data provided by Urquhart et al.

(2014). The Urquhart data provides information on a large number of stellar

objects which primarily include intermediate to high mass stars found in

the region between 280� < l < 350�. We include dashed straight lines on all

the plots which represent fixed values of 0.1, 1, 10 and, 100 luminosity-to-

mass ratios. These are centred at x = 0, y = 1 on the log scale axis, as this

fits well with the observed data as shown later.
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4.3.1 Constant Accretion

FIGURE 4.21: The Mass Luminosity tracks using the cold
constant accretion method. The final masses of the stars as-
sociated with tracks from left to right, 1M�, 5M�, 10M�,

25M�, 100M�.
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4.3.2 Accelerated Accretion

FIGURE 4.22: The Mass Luminosity tracks using the cold
accelerated accretion method. The final masses of the stars
associated with tracks from left to right, 1M�, 5M�, 10M�,

25M�, 100M�
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4.3.3 Exponential Accretion

FIGURE 4.23: The Mass Luminosity tracks using the cold
exponential accretion method. The final masses of the stars
associated with tracks from left to right, 1M�, 5M�, 10M�,

25M�, 100M�
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4.3.4 Power Law Accretion

FIGURE 4.24: The tracks for clump luminosity as a function
of clump mass using the cold power law accretion method.
The final masses of the stars associated with tracks from left

to right, 1M�, 5M�, 10M�, 25M�, 100M�.

4.3.5 Clump Luminosity Clump Mass Distribution

Earlier we discussed the use of the luminosity mass diagram as an evolu-

tionary aging mechanism. We aim to compare the model to the observa-

tional data from Urquhart et al. (2014).

The instantaneous observation of a single stellar object provides very

little information of the long term evolution of stars. Even extended ob-

servation times on the order of human lifetimes of a single star would still

only offer a small amount of information. As such we implement a logi-

cal assumption that overcomes the time constraint. Given a large enough

sample of observed objects the resultant data will be a fair distribution and

provide a good representation of a full cycle. A consequence of this is that

rare events are perhaps not rare in occurrence but are just short lived events

and less commonly observed.
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With our model data we find the luminosity mass relation of the star at

each iteration. As such our model gives 30,000 ratios at equidistant time in-

tervals; by ’binning’ the ratios, as done with the ATLASGAL data the resul-

tant distribution of frequencies are representative of the time spent at each

ratio bin. The discussed assumption allows us to compare the two different

data sets, as such we plot the model histogram over the observed data his-

tograms for each object type. We achieve this by assuming that the chances

of observing a star at each equal time step of the evolution are equal. By

then binning equidistant time periods on our tracks we can calculate the

number of objects in each bin to see how well our model compares to ob-

servation. We convert both model and observed data to relative frequency

so they can be compared on the same axis scale.

4.3.6 Smooth Accretion results

The following sections contain the histogram plots for the accretion model

results of final masses. Each set of three figures has the model tracks (dashed

line) and one observed object type. The left column contains the MMB dis-

tribution (green), the central column contains the YSO distribution (orange)

and, the right column contains the HII distribution (blue). The models used

from top to bottom are final masses; 1, 2, 4, 5, 6, 8, 10, 15, 20, 25 and, 100 M�

respectively. This pattern is repeated for each accretion type.
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Constant Accretion

FIGURE 4.25: Constant Distribution Results

(A)

(B)

(C)
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(D)
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(F)



4.3. Mass Luminosity 79

(G)

(H)

(I)



80 Chapter 4. Results

(J)

(K)

FIGURE 4.25: The ATLASGAL distributions for MMB
YSO and HII object types for the left, central and
right column respectively. The dashed lines on plots
A,B,C,D,E,F,G,H,I,J,K represent star of final masses 1, 2,
4, 5, 6, 8, 10, 15, 20, 25 and, 100M� respectively, using the

constant accretion method.
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Accelerated Accretion

FIGURE 4.26: Accelerated Distribution Results
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(J)

(K)

FIGURE 4.26: The ATLASGAL distributions for MMB
YSO and HII object types for the left, central and
right column respectively. The dashed lines on plots
A,B,C,D,E,F,G,H,I,J,K represent star of final masses 1, 2,
4, 5, 6, 8, 10, 15, 20, 25 and, 100M� respectively, through the

accelerated accretion.
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Exponential Accretion

FIGURE 4.27: Exponential Distribution Results
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FIGURE 4.27: The ATLASGAL distributions for MMB
YSO and HII object types for the left, central and
right column respectively. The dashed lines on plots
A,B,C,D,E,F,G,H,I,J,K represent star of final masses 1, 2,
4, 5, 6, 8, 10, 15, 20, 25 and, 100M� respectively, through the

exponential accretion method.
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Power Law Accretion

FIGURE 4.28: Power Law Distribution Results
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(H)

(I)
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(J)

(K)

FIGURE 4.28: The ATLASGAL distributions for MMB
YSO and HII object types for the left, central and
right column respectively. The dashed lines on plots
A,B,C,D,E,F,G,H,I,J,K represent star of final masses 1, 2,
4, 5, 6, 8, 10, 15, 20, 25 and, 100M� respectively, through the

power law accretion method.
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4.4 Episodic Accretion Bursts

We incorporated episodic accretion bursts as recent findings have shown

their significance in the protostellar growth process. The process of apply-

ing bursts by using a modulo function was successful and required minimal

alterations to get the stellar code to work with it.

FIGURE 4.29: The accelerated accretion rate over time for
both the smooth and burst accretion models. The final mass

achieved is shown in the lower graph.

Figure 4.29 shows the accretion rate and mass versus time for the accel-

erated accretion model with, and without, bursts as an example of how the

process works. The accretion rate without bursts can be viewed as a base in

which the modulo function (Eq. 3.8 and 3.9) modifies to get the burst result,

the result is an identical final mass. It was found that the STELLAR code

would become unstable and cease running when exceeding a certain mass.

The episodic accretion rate during a high phase is nearly an order of mag-

nitude greater than the smooth accretion rate in the same time frame. As

such, when trying to produce a 100M� star the rate will peak at equivalent

rate for a 1, 000M� star in the base model. It was found that the code was

only stable for producing stars up to ⇡ 20 � 25M� masses. The following

results will reflect this.
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TABLE 4.3: The data table of final mass and the final radius
using the respective accretion method including episodic
bursts. Note that the accelerated accretion method could
not run to completion for final masses greater than 16M�.

Accretion Method incl. bursts Final Radius (R�)
Final Mass (M�) Acclerated Constant Exponential Power Law

1 2.43 2.51 2.53 2.56
2 3.36 3.5 3.52 3.52
5 2.67 2.7 2.7 2.73
6 2.94 4.83 3.0 3.03
8 3.55 3.59 3.59 3.6
10 4.05 4.14 4.14 4.15
15 5.37 5.43 5.41 5.41
20 N/A 6.3 6.59 6.58

TABLE 4.4: The data table of final mass and peak radius
achieved using the respective accretion method. Note that
the accelerated accretion method could not run to comple-

tion for final masses greater than 16M�.

Accretion Method incl. bursts Peak Radius (R�)
Final Mass (M�) Acclerated Constant Exponential Power Law

1 64.97 68.13 83.8 89.55
2 89.12 93.72 101.34 111.4
5 238.61 152.36 146.61 130.8
6 1170.04 344.98 205.55 171.05
8 1305.16 497.34 293.23 343.54
10 948.68 674.14 590.77 468.59
15 1868.62 620.96 666.95 764.7
20 N/A 334.91 1007.62 1266.35

4.4.1 Mass radius

We again tablulate the important radii data and mass data for all episodic

accretion models to view points of significant interest, noting the acceler-

ated model could not complete the full evolution at masses greater than

16M�, this is discussed later.

; The following Mass-Radius (Figures 4.30 to 4.37) graphs show four tracks

each of different stellar mass but all using the same accretion model. This

differs from the previous Mass-Radius graphs that included all models but

for the same mass. The inclusion of bursts results in large overlaps between

tracks making it difficult to distinguish the tracks, notably more so when

the tracks are of the same mass.
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Constant Accretion

FIGURE 4.30: The radius as function of mass tracks for cold
constant accretion with episodic bursts. The tracks stars of

final masses 1M�, 5M�, 10M� and, 20M� respectively.

FIGURE 4.31: The radius as function of mass tracks for cold
constant accretion with episodic bursts. The tracks of final

masses 2M�, 4M�, 6M� and, 8M� respectively.
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Accelerated Model

FIGURE 4.32: The radius as function of mass tracks for cold
accelerated accretion with episodic bursts. The tracks rep-
resent stars of final masses 15M�, 10M�, 5M� and, 1M�

respectively.

FIGURE 4.33: The radius as function of mass tracks for cold
accelerated accretion with episodic bursts. The tracks rep-
resent stars of final masses 8M�, 6M�, 4M� and, 2M� re-

spectively.
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Exponential Model

FIGURE 4.34: The radius as function of mass tracks for cold
exponential accretion with episodic bursts. The tracks rep-
resent stars of final masses 20M�, 10M�, 5M� and, 1M�

respectively.

FIGURE 4.35: The radius as function of mass tracks for cold
exponential accretion with episodic bursts. The tracks rep-
resent stars of final masses 8M�, 6M�, 4M� and, 2M� re-

spectively.
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Power Law Model

FIGURE 4.36: The radius as function of mass tracks for cold
exponential accretion with episodic bursts. The tracks rep-
resent stars of final masses 20M�, 10M�, 5M� and, 1M�

respectively.

FIGURE 4.37: The radius as function of mass tracks for cold
exponential accretion with episodic bursts. The tracks rep-
resent stars of final masses 8M�, 6M�, 4M� and, 2M� re-

spectively.
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4.4.2 Episodal theoretical H-R

We post the tracks (Figures 4.38 to 4.45) as individual results as the complex

tracks become hard to distinguish if grouped. During the burst phases the

luminosity drastically increases then subsides after the burst phases ends.

Due to the short time scale in which these events occur, there is large over-

laps in the tracks produced. Thus, the episodic bursts are harder to interpret

in graphical form.

4.4.3 Constant Accretion

This section shows the resultant H-R tracks for the constant accretion model.

FIGURE 4.38: The H-R track for a star of 10M� final mass
using the cold constant accretion method with bursts. The
dashed line represents the total luminosity and the solid

coloured line represents the core luminosity.



100 Chapter 4. Results

FIGURE 4.39: The H-R track for a star of 1M� final mass
using the cold constant accretion method including bursts.
The dashed line represents the total luminosity and the

solid coloured line represents the core luminosity.

4.4.4 Accelerated Accretion

FIGURE 4.40: The H-R track for a star of 10M� final
mass using the cold accelerated accretion method includ-
ing bursts. The dashed line represents the total luminosity
and the solid coloured line represents the core luminosity.
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FIGURE 4.41: The H-R track for a star of 1M� final mass us-
ing the cold accelerated accretion method including bursts.
The dashed line represents the total luminosity and the

solid coloured line represents the core luminosity.

4.4.5 Exponential Accretion

FIGURE 4.42: The H-R track for a star of 10M� final mass
using the cold exponential accretion method.
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FIGURE 4.43: The H-R track for a star of 1M� final mass us-
ing the cold exponential accretion method including bursts.
The dashed line represents the total luminosity and the

solid coloured line represents the core luminosity.

4.4.6 Power Law Accretion

FIGURE 4.44: The H-R track for a star of 10M� final
mass using the cold power law accretion method including
bursts. The dashed line represents the total luminosity and

the solid coloured line represents the core luminosity.
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FIGURE 4.45: The H-R track for a star of 1M� final mass
using the cold power law accretion method.
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4.4.7 Mass luminosity

Again, we plot the clump luminosity as function of clump mass along-

side the ATLASGAL data. The dashed lines again represent fixed values

of Mass-Luminosity at ratios of 0.1, 1, 10 and 100, from dark blue to light

blue respectively.

Constant Accretion

FIGURE 4.46: The Mass Luminosity tracks using the cold
constant accretion method. The final masses of the stars as-
sociated with tracks from left to right, 1M�, 5M�, 10M�,

20M�.
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Accelerated Accretion

FIGURE 4.47: The Mass Luminosity tracks using the cold
accelerated accretion method. The final masses of the stars
associated with tracks from left to right, 1M�, 5M�, 10M�.§
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Exponential Accretion

FIGURE 4.48: The Mass Luminosity tracks using the cold
exponential accretion method. The final masses of the stars
associated with tracks from left to right, 1M�, 5M�, 10M�,

20M�.
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4.4.8 PowerLaw Accretion

FIGURE 4.49: The tracks for clump luminosity as a function
of clump mass using the cold power law accretion method.
The final masses of the stars associated with tracks from left

to right, 1M�, 5M�, 10M�, 20M�.

4.4.9 Luminosity-to-Mass Ratio Distribution

This section follows the same layout as the non-episodic models luminosity-

to-mass section, but using the episodic burst models. It is important to

notice how minimal the differences of the smooth and burst accretion meth-

ods; very similar distribution curves but the burst methods showing slightly

greater frequencies in the greater luminosity mass ratio bins. This is more

noticeable in the lower final mass models.
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Constant

FIGURE 4.50: All Constant Burst Distribution Results

(A)

(B)

(C)
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(D)

(E)

(F)



110 Chapter 4. Results

(G)

(H)

(I)
FIGURE 4.50: The ATLASGAL distributions for MMB YSO
and HII object types for the left, central and right column
respectively. The dashed lines on plots A,B,C,D,E,F,G,H,I
represent star of final masses 1, 2, 4, 5, 6, 8, 10, 15 and, 20M�
respectively, using the constant accretion method including

episodic bursts.
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Accelerated

FIGURE 4.51: All Accelerated Burst Distribution Results

(A)

(B)

(C)
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(D)

(E)

(F)
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(G)

(H)
FIGURE 4.51: The ATLASGAL distributions for MMB YSO
and HII object types for the left, central and right column
respectively. The dashed lines on plots A,B,C,D,E,F,G,H
represent star of final masses 1,2,4,5,6,8,10 and 15M� re-
spectively, using the accelerated accretion method includ-

ing episodic bursts.
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Exponential

FIGURE 4.52: All Exponential Burst Distribution Results

(A)

(B)

(C)



4.4. Episodic Accretion Bursts 115

(D)

(E)

(F)
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(G)

(H)

(I)
FIGURE 4.52: The ATLASGAL distributions for MMB YSO
and HII object types for the left, central and right column
respectively. The dashed lines on plots A,B,C,D,E,F,G,H,I
represent star of final masses 1, 2, 4, 5, 6, 8, 10, 15 and,
20M� respectively, using the exponential accretion method

including episodic bursts.
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Power Law

FIGURE 4.53: All Power law distribution results

(A)

(B)

(C)
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(D)

(E)

(F)



4.4. Episodic Accretion Bursts 119

(G)

(H)

(I)
FIGURE 4.53: The ATLASGAL distributions for MMB YSO
and HII object types for the left, central and right column
respectively. The dashed lines on plots A,B,C,D,E,F,G,H,I
represent star of final masses 1, 2, 4, 5, 6, 8, 10, 15 and, 20M�
respectively, using the power law accretion method includ-

ing episodic bursts.
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Chapter 5

Discussion

Which accretion model is most consistent with observational data? This

question is hard to answer because of the differences between reality and

the isolated single star scenario in this thesis. However, we can still try to

find significant data points, such as the model that has a greatest swelling

radius and/or greatest peak luminosity. By mapping these as reference

points we can determine if there is correlation with observation.

We recognise that protostellar accretion can collapse, or end, at any

stage if the mass supply is cut off. As such we must posit the question

of the effects of rapid shutoff during a key phase of the evolution. Does the

result of cutoff during the swelling or contraction phase lead to significant

differences in tracks or other indicators such as spectral signature.

Whilst the model we use is more advanced than the likes of classic

isothermal collapse, it is not fully inclusive of new research into star form-

ing environments. More recent findings have shown giant molecular clouds

tend to have long reaching, roughly cylindrical, arms that mass will flow

along, with protostars and their clump flowing too. As such the filaments

feed the clumps and the clumps feed the protostar, this dynamic process

will significantly change the gravity, density and opacity of the protostellar

clump. As such a higher mass star at an instantaneous point in time would

be forming from a lower mass clump than our model suggests. So we must

address the issue, is static spherical modelling a good enough representa-

tion of star formation?

Does a single base accretion rate apply throughout the entire protostel-

lar evolution phase? Do protostars accuse mass using just one method, for

all stages of evolution? We understand that stars form in dynamic regions,
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where the current state of the protostar will give varying effects on its sur-

roundings through the use of radiative feedback and jets, then we must

also question if these effects can have a large enough impact on the enve-

lope as to change the accretion rate. Is the space-time grid in our model

large enough to encapsulate the extent of protostellar feedback?.

5.1 Hydrodynamic code

Before discussing the different observations and results of our model, we

must first discuss what is feasible to be within the code and its limits. The

STELLAR code was found to be fairly fragile, often failing at the intersec-

tions of accretions rates. The cause being the large changes of internal struc-

ture that occur with a change in energy input. If the number of Henyey it-

erations allowed within the code was increased and the minimum internal

time step increment decreased, it is likely that the code would find con-

vergence and continue without failing. This was not pursued as it would

largely increase total program run time, especially when using the burst

model, as such did not fit in the time frame of this thesis.

As briefly mentioned earlier; the older Fortran 77 code is limited in its

functionality, for instance evaluating complex integrals is not easily pos-

sible, such as solving the gamma function involved with the power law

model. An update to a modern version of Fortran (90, 95, 2003 etc) would

allow access to a wider range of libraries and improved functionality, which

in turn could simplify the whole process of experimental testing. The added

ability to include complex functions would also be useful and could help

achieve more accurate results. Whilst conversion would be a cumbersome

task the added benefit is likely to be worth making the change.

STELLAR is a spherically symmetric hydrodynamic code, in which it

models a quartered section of the stellar space and then uses the axial sym-

metry to give a complete image. This may remove potential interactions of

UV feedback (Hosokawa et al., 2016) and nonaxisymmetric clouds (Vorobyov

et al., 2013). An approach such as that found in Hosokawa et al. (2016),

whereby using the STELLAR code alongside a three dimensional hydrody-

namic radiation model is a logical step to maximising effectiveness of this
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code.

5.2 General

FIGURE 5.1: The four different models and the accumulated
mass as a function of time. From top to bottom, the plots
show the results of stars of final masses 100M�, 10M� and,

1M� respectively

Figure 5.1 displays the mass accumulation as a function of time and

shows important characteristic differences between the models. The accel-

erated model in particular has a much lower value of stellar mass for the

majority of the accretion time compared to the other three models, where

the other three models accumulate most of the mass earlier in the accre-

tion phase. This is likely the contributing factor to the differences in tracks

found between the accelerated model and the others.
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5.3 The Mass Radius tracks

Figures 4.1 through to 4.8 show the progressive changes in radius with the

change in final mass. First noting that all models spend a large portion

of the track on very similar paths, from the points of Log(M/M�) = �0.2

to 0.6. Through this range, the models would be indistinguishable form

each other. One exception we find is the accelerated 100M� model in Fig-

ure 4.1, as previously noted this is likely to be because of the accelerated

models mass accumulation being weighted toward the later stages of ac-

cretion compared to the others, as such the early stage has a much lower

radius. Secondly, we note that the swelling phase begins to occur in the

Exponential and Power law models around the 5�6M� final mass (Figures

4.5 and 4.6), and the Accelerated and Constant models occurring around

6 � 8M� final mass (Figure 4.4), this is due to the greater accretion rates

of the exponential and power law models earlier in the evolution. It can

also be seen from the same figures, that even though the accelerated mod-

els swelling phase occurs at greater masses, the peak radius is greater than

the other three models for mid-range masses. These two points indicate

that the swelling phase during evolution has a form of dependency upon

the energy input rate, and not just the protostellar core’s accumulated mass.

The 100M� results (Figure 4.1), show the exponential model reaching

greater peak radius than the accelerated model. If the model’s greatest

accretion rate and thus energy input, coincides with the beginning of the

swelling phase, the result is a greater radius.

Lastly, we must note that the 100M� mass stars, Figure 4.1, continue

to accrete after the Kelvin Helmholtz contraction phase. With between

50 � 60% of mass being gained after the contraction stage, the track is sig-

nificantly different to the lower mass models, showing evidence that, for

massive stars, there is a stage between the PMS contraction and ZAMS.
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FIGURE 5.2: The maximum peak radius achieved for each
of the smooth accretion models at each modelled mass.
Note the accelerated model 100M� result is obscured by the

constant accretion data point.

Figure 5.2 shows the variation in peak radii achieved across the com-

plete modelled range of masses. The models show similarity in peak ra-

dius at low masses, with distinction between the models becoming appar-

ent once the swelling phase is fully established around the 8M� mass point.

The constant and exponential models share similar peak radii for masses

� 40M�, whereas the power law model is much greater and accelerated

model is much less from the same point. The power law peak radii being

much greater aligns with the idea that the stellar evolution has a time de-

pendent factor, where energy and mass input to the protostellar core will

have a large affect on the tracks of the star. Leading from this we can as-

sume the power law reaches peak accretion around the time swelling occurs

thus increasing the radius reached.

If an approach of observing the radii distributions for massive protostars

as a function of their mass were possible, then each model would become

apparent at certain boundaries. The power law model, for instance, would

have a distribution shifted toward a greater radius-to-mass ratio compared

to the others, and the accelerated model would be shifted lower.

An interesting point is the two large jumps in peak radius for all the mod-

els, but occurring at different masses. The first jump coincides with the
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swelling phase, as expected, and can be seen by the difference in clusters

between the 2M� and 10M� points. The second occurs at different points

for each model; the constant model displays a jump between 30 and 40M�,

the accelerated between 90 and 100M�. In the power law model it is harder

to notice, but it occurs close after the establishment of a swelling phase, the

8 and 10M� results are similar but the 12M� result jumps from ⇡ 250R�

to 360R�. The exponential jump occurs between the 16 and 18M� with an

increase of 130R�, noticing the small plateau between 10 and 15M� points.

Noting that these points occur relative to when the accretion models reach

their peak rate, exponential and power law having peak rates early and

the accelerated model at the end. However as the constant rate is always

at its peak, there must be other factors involved. Thus, we suggest that

the total internal energy and the high accretion rate input energy are the

cause. These findings are similar to Hosokawa et al. (2010) showing stars

of � 30M� can reach radii of ⇡ 400R�.

5.4 Hertzsprung Russell Tracks

In Figures 4.9 to 4.20 and 4.38 to 4.45, we plot the bolometric luminosity

against the star temperature to give an effective HR track. We must note

that the star temperature would not be an observable quantity due to ob-

scuration from the cloud. Aspects of these tracks conform with expectation,

we see the maximum luminosity reached by each star increasing as a func-

tion of mass, also the temperature shows a general increase with time as to

be expected with stellar evolution (Palla & Stahler, 1993). We note that the

difference between solid line (star) and dashed line (accretion) luminosi-

ties show that the accretion luminosity is far more significant in the early

stages of the evolution. The arrows on our temperature - luminosity fig-

ures display the accretion time at fixed intervals, with the tracks showing a

tendency for the majority of track movement occurring early in the evolu-

tion, and a stagnation once accretion ends. We can attribute this quiet phase

to the stellar interior evolution of before reaching main sequence. This re-

mains relatively constant after accretion has stopped until main sequence is

reached, this is a slow and long process which is not within the 106yr time
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frame of most of our models. However, the 100M� star models (Figures

4.9, 4.12, 4.15 & 4.18) have an increase in luminosity from approximately

log(Lbol/L�) = 5.4to6.3 over the final 9⇥ 105 years, which could be a signi-

fying point of reaching main sequence.

Future use of similar tracks, finding the bolometric luminosity as func-

tion bolometric temperature rather than star temperature, may be more

beneficial. We can observe bolometric temperature directly, whereas cal-

culating the embedded star temperature will result in inaccuracies.

The theoretical HR tracks show the complexity of the time dependent

relationship between luminosity and temperature for protostellar evolu-

tion. We observe general trends across all models; the tracks will all move

upward to greater luminosities with increase in mass and time. The tem-

perature tends to move toward higher temperatures with the amplitude

of movement being mass dependent. This is comparable to the Henyey-

Hayashi condition (Henyey et al., 1955) of establishing star type. We can

see that the 1M� results (Figures 4.11, 4.14, 4.17, 4.20, 4.39, 4.41, 4.43 &

4.45) show a decrease in luminosity at the end of the tracks, whereas the

100M� (Figures 4.9, 4.12, 4.15 & 4.18) results show a move up by approx-

imately half an order of magnitude. The 10M� results show little move-

ment in luminosity at the end of the track. The episodic burst models add

fluctuations to luminosities and temperature throughout the track, with the

final temperature and luminosity being almost identical to the smooth ac-

cretion tracks. The 10M� power law bursts show a large time spent around

log(T ) = 3.6K before moving rapidly to higher temperatures. This is likely

to be linked to how the bursts coincide with the swelling and contraction

phases. The decreases in temperature toward the end of the tracks, in par-

ticular for the lower mass stars, occurs with the contraction phase where

we know the clump is dissipated allowing for radiation to escape and thus

reducing internal energy.

The HR diagrams offer insight to how a protostar behaves and is a use-

ful addition to use alongside the other theoretical model outputs to check

conformity to the. However, evaluating temperature for observed proto-

stellar cores is hard due to the diffuse nature of the core itself and sur-

rounding molecular clump. Another potential constraint on observation
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is the radio continuum emission which is extremely bright for luminous

objects. Temperature is easiest to observe once the surrounding cloud has

dissipated.

5.5 Clump Luminosity Mass Relation

We must consider the limitations of the comparisons of the observational

data in the clump luminosity as function of clump mass graphs made in

this thesis. Our modelled data has not included the luminosity from the

stars surrounding cloud. It is assumed that for the majority of the lifetime

the stellar and accretion luminosity are much greater than the surrounding

cloud. Early in the modelled evolution the luminosity of the cloud and the

protostellar core may be of a similar order of magnitude, however the core

will quickly increase its luminosity and the contribution of the clump to the

total luminosity will be a negligible factor. The clump luminosity is found

using the total kinetic energy of the clump assuming a turbulent velocity

of 1kms�1 (Heyer & Brunt, 2004) and the energy is released uniformly over

the life of the evolution.

Lclump =
1
2Mclumpv2turb
ttotal10�7

(5.1)

Where vturb is the turbulent velocity, the mass of the clump is Mclump. The

factor of 10�7 is the conversion from joules to ergs.

Tables 5.1 and 5.2 show data from smooth and burst models respec-

tively. Both tables show that the median luminosity of each model exceeds

the ambient clump luminosity by between four and six orders of magni-

tude. Thus, the data and figures created are exclusive of the clump lumi-

nosity due to the minor contribution throughout the long-term evolution.

Whilst ATLASGAL is one of the most comprehensive studies of the

Milky Way, notably for masses above 104M�, it still holds a level of selection

bias due to the fixed bandwidth of a telescope and also due to where, and

what, was observed. This is immediately obvious by the larger quantity

of observed HII objects than the other two object types. This is explained

by the nature of HII objects being brighter and therefore easier to observe.

We normalise the data for each object type, so the distributions of each can
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TABLE 5.1: Table of clump masses and calculated fixed lu-
minsoities from the associated smooth accretion star mod-

els.

Model Type Final Star Clump Clump Median
Mass (M�) Mass (M�) Luminosity (L�) Luminosity (L�)

Accelerated 100.05 6559.61 5.40E-01 1.47E+06
Constant 99.55 6512.89 5.36E-01 1.46E+06

Exponential 100.05 6559.61 5.40E-01 1.47E+06
Power Law 100.05 6559.61 5.40E-01 1.37E+06

Accelerated 25.09 917.35 7.56E-02 8.19E+04
Constant 24.94 909.49 7.49E-02 8.09E+04

Exponential 25.04 914.73 7.53E-02 8.14E+04
Power Law 25.04 914.73 7.53E-02 7.30E+04

Accelerated 10.06 248.24 2.04E-02 5.74E+03
Constant 10.01 246.47 2.03E-02 5.64E+03

Exponential 10.06 248.24 2.04E-02 5.71E+03
Power Law 10.06 248.24 2.04E-02 5.17E+03

Accelerated 5.08 92.96 7.66E-03 5.48E+02
Constant 5.03 91.64 7.55E-03 5.43E+02

Exponential 5.03 91.64 7.55E-03 5.43E+02
Power Law 5.03 91.64 7.55E-03 3.57E+02

Accelerated 1.07 9.57 7.88E-04 3.91E+00
Constant 1.07 9.64 7.94E-04 4.12E+00

Exponential 1.05 9.37 7.72E-04 3.91E+00
Power Law 1.05 9.37 7.72E-04 4.83E+00

be compared with greater confidence. Massive YSO’s have been shown to

have K-H timescales in the order of 0.5to 4⇥105 years (Mottram et al., 2011)

across the 104 to 105L� range, comparable to main sequence timescales

and thus missing from the ATLASGAL survey meaning YSO object data

may be bias toward lower luminosities. Whereas HII have flat lifetimes of

⇡ 3 ⇥ 105years, across the same luminosity range. The naturally dimmer

objects found in the infrared range are much harder to observe. A case

where smaller protostars are greatly unaccounted for is plausible, in which

the distributions of the YSO and MMB data could be far different. Further

notes on the completeness of the ATLASGAL data are found in Urquhart

et al. (2014), however the selection bias of the L/M ratio is undefined and

would require further work to understand.

We used Urquhart’s ATLASGAL data (Urquhart et al. (2014)) in the
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TABLE 5.2: Table of clump masses and calculated fixed lu-
minsoities from the associated burst accretion star models.

Model Type Final Star Clump Clump Median
Mass (M�) Mass (M�) Luminosity (L�) Luminosity (L�)

Constant 20.36 681.09 5.609E-02 5.17E+04
Exponential 20.36 681.09 5.609E-02 4.67E+04
Power Law 20.61 693.13 5.709E-02 4.36E+04

Accelerated 9.90 242.92 2.001E-02 5.40E+03
Constant 10.21 253.60 2.089E-02 5.97E+03

Exponential 10.21 253.60 2.089E-02 5.97E+03
Power Law 10.31 257.19 2.118E-02 5.64E+03

Accelerated 5.01 91.24 7.515E-03 5.30E+02
Constant 5.13 94.29 7.766E-03 5.74E+02

Exponential 5.13 94.29 7.766E-03 5.71E+02
Power Law 5.18 95.63 7.876E-03 4.67E+02

Accelerated 1.01 8.78 7.231E-04 3.37E+00
Constant 1.07 9.64 7.936E-04 3.99E+00

Exponential 1.07 9.57 7.881E-04 4.10E+00
Power Law 1.08 9.70 7.991E-04 5.11E+00

clump-luminosity-to-clump-mass tracks as comparison. As such we evalu-

ate the observed data to find correlation between the two variables.

FIGURE 5.3: Urquhart et al. (2014) ATLASGAL observa-
tional data. Luminosity and mass are given in solar units.

We find linear least square regression for each data type and for the

combined data set, shown in Figure 5.3. The YSO data shows the weakest

correlation of the individual object types with an R squared value of 0.338.
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We can attribute some of the variation from the line of best fit by the dif-

ficulty in observing the dimmer objects. The HII and MMB data shows a

greater correlation both holding R squared values of ⇡ 0.56, meaning the

line of best fit is a fairly good representation of the data. The R squared

value for the combined data shows the YSO data has little effect on the re-

gression as it is ⇡ 0.55, similar to the HII and MMB data. The YSO has a

small effect due to the lower mass data being above the combined line of fit,

and the higher mass being below, with the transition at almost exactly half

way in the data seen at the Log Mass point of 3. In general, there is clear

evidence of a positive linear correlation between the two variables, with an

approximate ratio of ⇡ 0.8L� : 1M�. The other general observation is that

HII data tends to be in the higher clump masses, the other two data sets are

found distributed across the whole range.

We used Urquhart’s ATLASGAL data (Urquhart et al., 2014) as reference

in the clump mass - clump luminosity relation. To help understand how our

model holds up in comparison, we evaluate the data in histogram form to

see how well it compares to a normal distribution function. Dividing the

clump luminosity by the clump mass to give the ratio for each data point

and then taking the log of the ratio. The ratios are binned in 0.5 intervals

from negative one, to positive 2. Figure 5.4 shows the difference in numbers

FIGURE 5.4: Frequency distribution of luminosity mass ra-
tios from Urquhart et al. (2014) ATLASGAL data. L-M ratio

is in solar units.
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of each object type observed. As mentioned previously, the HII objects are

naturally brighter and therefore easier to observe, thus why there is a 50%

greater count compared to the YSOs and MMBs. This figure demonstrates

the difficulty for a dedicated telescope in finding dimmer objects. As a re-

sult of this, the data cannot be truly evaluated as a distribution function

until normalised. Figure 5.5 shows clearly that MMB data are more prev-

FIGURE 5.5: Normalised frequency distribution of L/M ra-
tios from Urquhart et al. (2014) ATLASGAL data. Each ob-

ject type was normalised against itself only.

elant at the lower luminosity to mass ratio with a larger decline in relative

number from the 1 to 1.5 bin. The YSOs show a similar agreement to this ex-

cept with a lesser decline in the 1.5 bin. The HII objects show an increase in

count rather than decline in the 1.5 bin, as to be expected with hotter objects

with greater luminosity for same equivalent mass. Figure 5.5 shows there

is a level of normal distribution function to the number of objects across

the range, we attempt to quantify this using a Kolmogorov-Smirnov sin-

gle sample test on each object type. The single sample test test, compares

the given data against a normal distribution curve with the result being a

measure of similarity.

From Table 5.4 we can see that the standard deviation for each object

type has a fair closeness to the mean, as we expect with a normal distribu-

tion. The HII data holds a smaller deviation which would correspond to the
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TABLE 5.3: Part one of tabled ATLASGAL observation
data and key values found and used with the Kolmogorov

Smirnov test.

Object Type Data Points Mean Ratio Median Ratio Mean Squared
HII 338 0.9556 0.9958 0.9132

MMB 197 0.5926 0.6344 0.3512
YSO 207 0.9022 0.9176 0.8139

TABLE 5.4: Part two of tabled evaluated ATLASGAL data.
The K-S test on this data is found with an ↵ value of 0.05. A
positive K-S score indicates that the difference between the
data bins and a binned normal distribution function is less

than the Dcrit value, indicating a good fit.

Object Type Variance Std. Deviation K-S Score
HII 0.1631 0.4038 0.0325

MMB 0.2583 0.5082 0.0801
YSO 0.2474 0.4974 0.0639

sharper peak observed in Figure 5.5. The tabulated data shows positive K-

S scores for each object type which is found by subtracting the distribution

function of the data away from the critical distribution function. A positive

value is a good indication that the sampled frequency data follows a nor-

mal distribution curve.

From the distribution comparisons between model and ATLASGAL data,

we can see the models obey similar normal distribution curves with the

distribution being shifted dependent on mass. Generally, the lower mass

models of 1 � 4M� spend the majority of time in the lower L/M ratio bins

of -1 and below. With increased mass the distributions move into greater

luminosity mass ratios.

The low mass models can attribute the majority of luminosity to the accre-

tion, whereas high mass attribute it to the stellar core. The model star of

mass 100M�, spends the majority of time at LOG(L/M) � 1.5. An interest-

ing feature to note is the 5M�, and some 6M�, models are bimodal distri-

butions. The distributions show two distinct peaks in relative frequency an

order of magnitude apart, from 0.5-1.5, with a large drop in between. This

is likely to be due to these mid-range mass stars having similar timescales

for the adiabatic accretion phase to the swelling and contraction phases.
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The drop in luminosity between the peaks could be a result of the swollen

cloud blocking the accretion and stellar luminosities. The stellar luminosity

will increase, but still be contained within the swollen cloud and then over

a short time the KH contraction will occur, causing the jump in L-M ratio

rather than a steady progression between the two.

We applied a two sample Kolmogorov Smirnov test to compare the

ATLASGAL distributions against each model distribution (Figures 4.25 to

4.29 and Figures 4.50 to 4.53). The data are tabulated in the appendix A.1

through A.6.The low and high mass KS tests show there is significant differ-

ences between the distributions meaning, the two cannot be reliably com-

pared, indicated by a value of one in the respective field. We can clearly see

this in the distribution figures, where the high and low mass curves are at

extreme ends of the scale, whereas observational data distributions are cen-

tralised. From this, we see some of the mid range masses show that there

is statistically no significant difference between the two distributions. The

YSO data found good matches at final stellar mass 10M� for all but the con-

stant accretion models, and the MMB data had good matches at 6M� for all

but the power law model. The HII object data was found to have no match-

ing model distribution, this however can be explained by our samples of

higher masses being more sparse. More model data points are needed be-

tween 10M� and 15M� masses to find the statistical match of distribution

curves. Whilst these data on their own may not be of significant use as the

models are of individual stars and the observational data are for all masses,

the result of finding matching masses to the overall distributions could hold

potential for IMF analysis. Our results show that MMB data has an equiv-

alent L-M distribution of a 6M� mass star. As such, by counting the easily

observable high mass stars within a cluster and finding the resultant L/M

distribution, then the more obscured and embedded low mass stars can be

effectively counted by using the model 6M� distribution result as a weight-

ing function to the observed high mass distribution. The same process can

be applied for each individual, or a combination, of object types.
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5.5.1 Smooth - Burst Comparison

There are some notable differences between the smooth clump L/M ratio

results (Figures 4.25 to 4.28, and the burst data (Figures 4.50 to 4.53). All

models, except the accelerated burst, show a bimodal distribution at the

5M� and/or 6M� masses (Sub Figures, C and D respectively in the range

stated previously). All the bimodal burst models show a greater frequency

in the peak corresponding to higher L/M ratio, than their smooth accre-

tion equivalents. The episodic bursts will input a large amount of energy

and drastically increase the luminosity. The larger second peaks can be at-

tributed to the fact that there is a gradual decline in luminosity after the

burst phase, thus there is an overall tendency for higher L/M ratios than

the smooth accretion models.

At masses greater than 6M� where the bimodal distributions disappear,

the results for smooth and burst models become very similar with only mi-

nor variations in frequencies at the same L/M bins. As mentioned previ-

ously the bimodal nature is likely due to similar timescales for adiabatic

and swelling phases. Thus we can make the assumption that the swelling

and contraction timescales far exceed the adiabatic accretion timescale for

when the bimodal features disappear. By the fact that the results between

the burst and smooth model are so similar, we can state that the swollen star

suppresses the rapid and large increases in luminosity. The method of do-

ing so may be similar to the UV feedback mechanism shown in Hosokawa

et al. (2016).

The 6M� burst constant results show a much great second peak in the

bimodal data than the smooth data (Figure 4.25, 4.50). This is the same for

the 6M� power law and exponential results. The smooth accelerated model

only has a bimodal distribution for the 5M� results, whilst the burst model

does not have any bimodal distribution results.

5.5.2 Clusters, Multiplicity and SFE

The model used in this thesis tracks the evolution of a single star using a

single star formation efficiency rate. The back end equations for; clump

mass, it’s dispersal rate and the star formation efficiency (Equation 4.1), are
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taken from Molinari et al. (2008). The dispersal in clump mass can be seen

in the L/M plots and is defined by equation six in Molinari et al. (2008).

The clump mass is calculated as if it hosts a complete cluster of stars, with

the modelled star being the dominant source of energy. More massive stars

tend to have a shorter evolution timescales, thus we can assume that the

other less massive stars in the cluster do not provide significant luminosity

or temperature over the same period of time. A limitation of our method is

that it assumes only a dominant single star, but up to thirty three percent

of star systems are binary or greater multiplicity (Lada, 2006). Given our

model tracks the dominant star, we can assume that if it were part of binary

system then it is of equal or greater mass than the other star and thus it is at

most a factor of two off (three for tertiary etc.). A potential solution would

be to statistically evaluate the mass ratios of multiple star systems, then to

use this ratio to model a parent star and its daughter. Combining the result

will provide a better track of the bolometric luminosity of the clump. This

does come with complications, such as the effect on clump dispersal rate

and the overall evolution of stars when in close proximity.

Another consideration that was maintained as constant throughout this the-

sis was the SFE, ⇡ 21% as shown in Molinari et al. (2008). However, vari-

ations (Frank et al. (2014) has SFE at thirty percent) in the SFE will have

an impact upon the general evolution in particular the outflow rate, pro-

tostellar temperature and luminosity. Modelling for different efficiencies is

a potential avenue for further work, simply modifying the Molinari equa-

tions used in this paper to represent other SFEs.

5.5.3 IMF Adjusted Clump Luminosity

We take the frequencies of Clump L/M ratios and adjust them according to

the initial mass function of Kroupa (2001). Firstly, we calculate the expected

population using the final mass of the dominant star in the clump.

⇣(m) = m�2.3 (5.2)

Where m is star mass and ⇣(m) is the population ratio at that mass. We find

⇣(m) for the stellar masses 1, 2, 4, 5, 6, 8, 10, 15, 20, 25 and 100 M�, and then
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multiply this factor by the clump L/M frequencies for the respective star.

We then total the frequencies and normalise the result to between 0 and 1.

To compare to the ATLASGAL data we multiply by a factor of ⇡ 41 to get

the same number of data points and normalise to be between 0 and 1.

FIGURE 5.6: The four smooth accretion models binned
clump luminosity - clump mass data has been adjusted us-
ing the initial mass function from Kroupa (2001). The grey
solid line is the binned ATLASGAL data Urquhart et al.

(2014). Both sets of data are normalised.

Figure 5.6 shows a clear distinction between the data sets where the AT-

LASGAL data tends towards higher L/M ratios. There are several factors

that are not quantified in this data and thus result in the large discrepency.

Firstly, as mentioned previously, the ATLASGAL data is assumed complete

for 104 clump masses and above, thus the data should be shifted toward

higher L/M ratios. Secondly, the ATLASGAL data has no data points in

the low (< �1.0) and high (> 2.0) L/M ratios. Therefore when normalising

the data, the ATLASGAL data has multiple points where the frequency is

zero, whereas the model data has only the minimum frequency as the zero

point. Combining ATLASGAL with other surveys could help get a wider

spread of data with fewer zero data points. Lastly, the model data only

includes star masses down to 1M�, whereas a complete IMF holds a large

proportion of stars in a cluster at < 1M�. This last factor may have minimal
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effect as per the first point. This is an imperfect method of analysis how-

ever, it makes new steps toward comparisons between observational and

model data. As mentioned previously, the IMF holds a fundamental role in

the formation of stars and further work to use the modelled results with an

IMF to match to real data will be critical in producing a complete evolution

of molecular clouds and star formation.

5.6 Episodic Bursts

In Table 4.4, it is shown that the STELLAR code would not work for masses

greater than 15M� for the accelerated accretion model, and 25M� for the

other models. The burst models in their ’high’ accretion phases reach rates

9.099 times greater (Equation. 3.11) than the ’smooth’ model equivalents.

We did not pursue the issue further as we had obtained results for all the

low and intermediate mass stars and most of the high masses. However,

the failure is likely to be due to the extreme quantities of mass moving and

the Henyey method not finding convergence.

The burst accretion method has shown the protostellar peak radii achieved

are much larger than the smooth accretion equivalents. Again showing evi-

dence for the swelling phases occurring due to energy input rate and less so

on the current mass. Another note to this is that if observational evidence

does not conform to the peak radii achieved then it is likely the 90%� 10%

ratio of mass accumulated in the high and low accretion states is incorrect.

Further testing with our accretion model with different ratios could lead to

a relationship between this ratio and the maximum radius and luminosity

achieved.

As shown in Figure 5.7, it is unlikely to be that episodic accretion that

is perfectly modulated as used in our model is what occurs in reality. It

is more likely to be that the bursts peak but then followed shortly by a

power law decrease in rate as radiation feedback would begin to slow it. An

interesting extension to this model would be to establish a multiplicative

factor to the accretion rate that combines a series of sinusoidal functions

to provide a nearly random accretion rate. In its simplest form an initial

main sinusoidal function would establish the change between high and low
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FIGURE 5.7: This figure is taken from Calvet et al. (2000).
The accretion versus time graph displays potential ideas on
the evolution of disk accretion and the different phases that
occur. Early infall burst accretion, moving to a more irregu-

lar ’noisy’ disk accretion.

accretion states, with further sine functions providing a ‘noise’ factor to the

accretion as would be expected in reality. This would also require a more

diverse final mass calculation.

In concurrence we modelled short accretion burst followed by a rela-

tively long quiescent phase (Smith et al. (2012)). Recent findings however,

have shown that the time frame of these bursts can vary from a few decades

(Audard et al. (2014)) to several hundred years (Vorobyov et al. (2013)).

Modelling both short cycle and long cycle bursts would be beneficial.

5.7 Early Accretion Cut Off

Previously we posed the question of accretion cut off during swelling or

contraction phases and its effect. Seen in the mass radius tracks for 6�10M�

masses, the accretion cuts off during these stages as seen by the sharp de-

cline in radius. Looking at the episodic 8M� mass radius tracks, the change

to low accretion phase causes a very similar drop in radius from the peak.
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The accretion cut off has little effect on the end result, in which the primary

factor of final radius and luminosity, is the mass. This may change with a

hot accretion method where internal energy would be greater. The 100M�

mass radius tracks show a more gradual decline in radius, with eventual

growth again as the mass is still increasing. How much influence of this

effect is due to the continued accretion, or just a consequence of being a

massive star, is hard to determine.

5.8 Molecular cloud influence

Here we define an accretion scenario within cylindrical filaments as a pri-

mary property of GMCs with star formation occuring within these fila-

ments. Figure 5.8 shows a simplified view of the growth of a protostellar

FIGURE 5.8: An ideal scenario depicting the growth of a
sphere of influence by a protostellar core in a cylindrical fil-
ament. The black dot serves as a central point for a proto-
star. The red lines represent the sphere of influence, with
dashed line as sphere at a future time. d is the diameter
of cylinder, �r is the change is radius, �L is the change in

length.

clouds sphere of influence. Initially, in the upper figure section, the growth

of the sphere is unaffected by cloud shape and so the mass encapsulated

by the SOI grows proportionally to the volume of the sphere. Once the SOI

diameter exceeds the diameter of the filament, the mass encapsulated will

no longer be proportional to sphere volume but to the volume of a cylinder,

as shown in the lower section of the figure. Protostellar SOIs would have



5.9. Other comparative works 141

a very large radius of curvature, so the curve of the SOI could be approx-

imated as a flat disc growing along the length of the cylinder. The result

being mass encapsulated grows proportional to ⇡(d2)
2 when r > (d2), and

the SOI grows at a rate proportional to the speed of sound in the molecular

cloud. Including the collapse across the width of the filament would result

in a time dependent differential equation that requires further analysis. The

scale of this gas envelope is much greater than the size of an accretion disk

which would be around the central protostellar core. We know that the en-

velope mass slowly feeds onto the accretion disk, which in turn feeds the

protostellar core, Kenyon & Hartmann (1995). There are questions that re-

main. How does the envelope feeding the accretion disk affect the accretion

rate onto the core from the disk? What orientation does the accretion disk

take, relative to the filament? Can this be incorporated into the model we

used?

5.9 Other comparative works

Hosokawa et al. (2016) has shown relatively slow accretion of < 50M� stars

in the primordial era, where stars stop accreting at the Kelvin-Helmholtz

contraction phase due to UV feedback. This does not seem to be the case

for our findings, as the high mass star models continue to contract and even

continue accretion after the KH phase. However we do notice massive in-

creases in radius for the episodic burst accretion, and we question if this

is indicative of accretion slowing as energy cannot be radiated away quick

enough. If our code is correct, then the slowing of < 100M� primordial

stars shows the importance of establishing the correct chemical composi-

tion of protostars, as the differences are significant. Thus when trying to

model protostellar evolution as an aid in observation, the stars local molec-

ular cloud composition must be evaluated.

Episodic bursts have been shown to contribute to a significant drop in

the UV feedback corresponding to when a burst has occurred (Hosokawa

et al., 2016) but there is an increase in bipolar outflow rate. Thus, it is sug-

gested to research the UV feedback mechanism in this model.
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Our findings have shown a clear distinction between two types of pro-

tostellar evolution; the lower masses where swelling does not occur, and

higher masses where swelling does occur. We have also shown that the

mass range at which this swelling occurs is not dependent on mass but

upon multiple factors, notably energy input in the form of accretion rate

and, at what stage the majority of mass is accumulated. This becomes

problematic with comparing to observational data of protostars where the

swelling radii overlap if compared at different ages. Multiple examples can

be seen in the figures produced, notably Figures 4.1 and 4.2 the 100M� stars

have a peak radius greater than the 50M� stars, but both occur around the

same 10M� mass point.

Another limitation of this research has been the fixed scale of accretion

time, observation has shown that massive stars could accrete in much less

than the 105yr scale we defined, and the smaller masses over much longer

scales (Mottram et al., 2011). If the accretion time is mass dependent, then

this could further alter the protostellar masses where swelling occurs.

Our model runs using the cold accretion mechanism, being the slow in-

fall from the disk where energy is lost through radiative feedback. Further

work using our model but implementing a hot accretion method would

help establish differences and provide evidence for, and against, each con-

cept.
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Conclusion

Our research has shown the validity and value of computational modelling.

The results build upon previous stellar evolutionary codes by showing more

detailed paths taken in each type of evolutionary track studied, achieved

through smaller time steps and convergence modelling of a complete stel-

lar structure.

The research has made initial steps toward finding valid methods of com-

paring theoretical and observational data and to try make conclusions from

them. In doing so we show the importance of simulations and the extent

of how much useful data can be extracted and analysed to provide useful

information.

The updates made to the code will reduce the total time requirement when

running the program in future. The updates also provide a good ground-

work for running similar accretion methods, or building upon them, as the

equations have already been successfully incorporated into the main code.

The smooth accretion models serve as a good baseline for understanding

stellar evolution. Using the smooth model as a baseline result, the effect the

burst models have can be observed clearly.

6.1 Summary of Findings

Our models clearly demonstrate the similarities in the evolutionary tracks

taken between accretion models, in particular in the early stages of stellar

growth. This similarity potentially holds key information as to why all the

accretion models in this research have observational support. The acceler-

ated model shows the greatest differences to the others for early stages of
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evolution, or at mid to high masses, and therefore holds a greater potential

to be identified in observation.

We must note the second surge in peak radii achieved by each model as

shown in Figure 5.2. The cause is indeterminate but clearly occurs at differ-

ent mass points for each accretion model and as such holds potential as a

signatory feature.

The episodic burst tests have shown a blurring effect in the mass ra-

dius evolutionary track. The switching between high and low accretion

rates causes large fluctuations in the radius of the protostar, an observed

star with the same accretion properties could appear to be a large star in

a low accretion phase or a small star in high accretion phase. The use

of Lclump � Mclump distributions were better for comparing to observation

(Figures 4.25-4.28 and 4.50-4.53). The results produced good distributions,

closely matching the observed equivalents. The episodic bursts compared

to the smooth accretion distributions show the lower luminosity mass ratios

are shifted up, but the overall distribution is still very similar for models of

the same final mass. As such mapping clump luminosity as a function of

clump mass has shown to be a powerful, relevant tool and is suggested for

use in others research of a similar nature.

We add minor additions to literature versions of the luminosity - tem-

perature tracks, with the addition of episodic bursts showing again a blur-

ring effect between the high or low state. We notice that early in the evolu-

tion, the bursts only have a minor effect on the temperature, indicating the

protostar temperature is more dependent upon the long term evolution,

and not the short term accretion changes.

6.2 Future work

The work completed in this project has shown how diverse the STELLAR

code can be. With many variables unchanged, a lot is left to explore. We
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know that the composition of GMCs vary, especially when comparing mod-

ern and early universe examples. The fractions of hydrogen, helium and

heavier elements could easily be adjusted to observe changes in tracks.

This project exclusively worked using a cold accretion model, whereby

the material in accretion disk accrued onto protostellar core via steady in

fall. The code contains an energy parameter which can be adjusted to easily

switch to a hot accretion model. Both methods are still debated upon and

the insight given by this code could be beneficial.

Further inclusion of other observational data of clump luminosities and

masses appended to the distributions and tracks we produced would be

beneficial. A focus on finding, and including, low mass objects would be

beneficial as the ATLASGAL data used in this project lacks information in

this region. As mentioned before, with more observational data and im-

proving upon our models, it could prove useful for IMF research.

To produce a more realistic model, we should look to model a secondary

function that simulates accretion disk growth from infalling envelope mass.

Currently the model is an enclosed system where total mass remains con-

stant, modelling the steady input of more mass into the system to simulate

envelope accretion could produce interesting results that better align with

other works.

As previously mentioned, the episodic bursts we simulated were an

ideal scenario between two clearly defined states. A more realistic model

using shorter and/or variable time scales between states would be a good

step to make. Developing the code to include a secondary function, which

works with the bursts code but add small fluctuations to the total accretion

rate would also be a good addition to the base code used in this research..
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6.3 End

The research conducted in this project has shown the worth of hydrody-

namic modelling and how, with effective data analysis methods, results can

be used alongside or compared to real observational data. The evolution-

ary tracks we produced show evidence for complexities that are not found

in literature due to the instantaneous nature of observations.

Hopefully the data presented here will prove useful for other works and

fields of research, which will ultimately help in understanding our local

cluster, galaxy, Solar system and our place in the universe.
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Appendix A

Appendix

Included in the appendix is all the individual Kolmogorov Smirnov test re-

sults. The significant difference row is a choice result, a value of one shows

there is a significant difference between distributions and a value of zero

shows there is no significant difference in distributions. If the D-crit value

is greater than D-stat value then a zero is given when the p-value is greater

than 0.05. A value of one is given if D-crit is less than D-stat or the p-value

is less than 0.05.
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