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Abstract Interior point methods provide an attractive class of approaches for solving
linear, quadratic andnonlinear programmingproblems, due to their excellent efficiency
and wide applicability. In this paper, we consider PDE-constrained optimization prob-
lems with bound constraints on the state and control variables, and their representation
on the discrete level as quadratic programming problems. To tackle complex problems
and achieve high accuracy in the solution, one is required to solve matrix systems of
huge scale resulting from Newton iteration, and hence fast and robust methods for
these systems are required. We present preconditioned iterative techniques for solv-
ing a number of these problems using Krylov subspace methods, considering in what
circumstances one may predict rapid convergence of the solvers in theory, as well as
the solutions observed from practical computations.

Mathematics Subject Classification 65F08 · 65F10 · 65F50 · 76D55 · 93C20

1 Introduction

We are concerned with optimization problems which involve partial differential equa-
tions. Problems of this type appear for example in numerous applications of optimal
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control, where onewishes state variables to be close to a certain desired form and hopes
to achieve it by an appropriate choice of control variables. LetΩ ⊂ R

d , d ∈ {2, 3}, be
a bounded open domain with sufficiently smooth boundary ∂Ω . An optimal control
problem with constraints may be written as:

min
y∈Y, u∈U J (y, u) s.t. c(y, u) = 0, (1)

where the state y and control u belong to appropriate function spaces Y andU , respec-
tively. The objective J : Y × U �→ R and the constraints c : Y × U �→ Λ, where
Λ is another function space, are assumed to satisfy certain smoothness conditions
to guarantee the existence and uniqueness of the solution. Many real-life problems
may be modelled as optimal control problems (1). There exists rich literature on the
subject which addresses specific applications and provides theoretical background to
such problems. The rigorous analysis of optimal control problems requires the use
of nontrivial function spaces and involves sophisticated techniques from functional
analysis. We refer the interested reader to excellent books on the subject [22,24,45],
while for simplicity in this paper we assume that Y , U and Λ are all equal to L2(Ω).

The objective function J may take many different forms but it is often given as:

J (y, u) = 1

2
‖y − ŷ‖2L2(Ω) + β

2
‖u‖2L2(Ω), (2)

which corresponds to balancing between two goals: keeping the state y close to a
certain desired form ŷ, and minimizing the “energy” of the applied control u. The
constraints c in (1) involve some PDE operator(s), and restrict y and u to Ω and its
boundary ∂Ω . Additionally they may include simple bounds on y and u. In Sect. 3 we
will introduce two particular classes of optimal control problems: time-invariant and
time-dependent PDE-constrained problems.

Computational techniques for PDE-constrained optimal control problems involve
a discretization of the underlying PDE. There are two options for doing this, and the
typical paradigm in PDE-constrained optimization literature is for both approaches
to solve the problem in a similar manner. The first is to apply an optimize-then-
discretize method, involving constructing continuous optimality conditions, and then
discretizing these. Howeverwe find that this approach is inconvenient when examining
the resulting discrete systems for the problems considered in this paper, specifically
with regard to the reduction of the dimension of the system, as well as symmetry of the
matrix involved. The alternativemethod,whichwe apply in this paper, is the discretize-
then-optimize approach: here a discrete cost functional is constructed and discretized
constraints are formulated. Then optimality conditions are derived for such (possibly
huge) problems. Ourmotivation for using this approach originates from an observation
that for a particular (quadratic) cost functional (2) the discretized PDE-constrained
problem takes the form of a quadratic optimization problem for linear PDEs. The use
of fine discretization leads to a substantial size of the resulting optimization problem.
Therefore we will apply an interior point algorithm to solve it.

Interior point methods (IPMs) are very well-suited to solving quadratic optimiza-
tion problems and they excel when sizes of problems grow large [17,52], which

123



Fast IPM solvers for PDE-constrained optimization

makes them perfect candidates for discretized PDE-constrained optimal control prob-
lems. The use of IPMs in PDE-constrained optimization is not new. There have been
several developments which address theoretical aspects, including the functional anal-
ysis viewpoint, and study the convergence properties of an interior point algorithm
[46,49,51], and many others which focus on the practical (computational) aspects.
IPMs belong to a broad class of methods which rely on the use of Newton methods
to compute optimizing directions. There have been several successful attempts to use
Newton-based approaches in the PDE-constrained optimization context [4,5,25,28].
The main computational challenge in these approaches is the solution of the linear
system which determines the Newton direction. For fine PDE discretizations such
systems quickly get very large. Additionally, when IPMs are applied, the added
interior point diagonal scaling matrices degrade the conditioning of such systems
[17] and make them numerically challenging. Direct methods for sparse linear alge-
bra [10] can handle the ill-conditioning well but struggle with excessive memory
requirements when problems get larger. Inexact interior point methods [16,18,50]
overcome this difficulty by employing iterative methods to solve the Newton
equations.

Because of the unavoidable ill-conditioning of these equations the success of any
iterative scheme for their solution depends on the ability to design efficient precon-
ditioners which can improve spectral properties of linear systems. The development
of such preconditioners is a very active research area. Preconditioners for IPMs in
PDE-constrained optimization exploit the vast experience gathered for saddle point
systems [2], but face an extra difficulty originating from the presence of IPM scaling.
There have already been several successful attempts to design preconditioners for such
systems, see [1,3,18] and the references therein.

In this paper, we propose a general methodology to design efficient precondition-
ers for such systems. Our approach is derived from the matching strategy originally
developed for a particular Poisson control problem [37]. We adapt it to much more
challenging circumstances of saddle point systems arising in IPMs applied to solve
the PDE-constrained optimal control problems. We briefly comment on the enjoyable
spectral properties of the preconditioned system, and provide computational results to
demonstrate that they work well in practice.

This paper is structured as follows. In Sect. 2 we briefly recall a few basic facts
about interior point methods for quadratic programming. In Sect. 3 we demonstrate
how IPMs can be applied to PDE-constrained optimization problems. In Sect. 4 we
introduce the preconditioners proposed for problems originating from optimal control.
We consider separately two different cases of time-independent and time-dependent
problems. In Sect. 5 we illustrate our findings with computational results and, finally,
in Sect. 6 we give our conclusions.

2 Interior point methods for quadratic programming

Within this paper, we are interested in the solution of quadratic programming (QP)
problems. In their most basic form, such problems may be written as

min
x

c�x + 1

2
x�Qx
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s.t. Ax = b,

x ≥ 0. (3)

We consider the case where A ∈ R
m×n (m ≤ n) has full row rank, Q ∈ R

n×n

is positive semidefinite, x, c ∈ R
n , and b ∈ R

m . This formulation is frequently
considered alongside its dual problem

max
y

b�y − 1

2
x�Qx

s.t. A�y + z − Qx = c,

y free, z ≥ 0,

where z ∈ R
n , and y ∈ R

m . We note that a subset of this setup is that of linear
programming (LP) problems, where Q = 0.

In this manuscript, we consider the solution of quadratic programming problems
using interior point methods [17]. The nonnegativity constraints x ≥ 0 are “replaced”
with the logarithmic barrier penalty function, and the Lagrangian associated with the
barrier subproblem is formed:

Lμ(x, y ) = c�x + 1

2
x�Qx + y�(b − Ax) − μ

∑

j

log(x j ).

Differentiating Lμ with respect to x and y and defining z j = μ/x j , ∀ j , gives the first
order optimality conditions (or Karush-Kuhn-Tucker conditions):

Ax = b,

A�y + z − Qx = c,

x j z j = μ, j = 1, 2, . . . , n,

(x, z) ≥ 0, (4)

in which the standard complementarity condition for (3), that is x j z j = 0, ∀ j , is
replaced with the perturbed complementarity condition x j z j = μ, ∀ j . IPMs drive
the barrier term μ to zero and gradually reveal the activity of the primal variables x j
and dual slacks z j . This is achieved by applying Newton’s method to the system of
(mildly) nonlinear equations (4)

⎡

⎣

−Q A� I
A 0 0
Z 0 X

⎤

⎦

⎡

⎣

δx
δy
δz

⎤

⎦ =
⎡

⎣

ξd
ξ p
ξ c

⎤

⎦ , (5)

where δx, δy and δz denote Newton directions, ξ p, ξd and ξ c denote primal and
dual infeasibilities and the violation of complementarity conditions. X and Z denote
diagonal matrices with elements of x and z spread on the diagonals, respectively. By
eliminating δz, the Newton system (5) is further reduced to a saddle point form
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[−Q − X−1Z A�
A 0

] [

δx
δy

]

=
[

ξd − X−1ξ c
ξ p

]

. (6)

Since for any j = 1, 2, . . . , n at least one of the variables x j and z j reaches zero at
optimality, the elements of the diagonal scalingmatrix X−1Z added to the (1, 1)-block
may significantly differ in magnitude: some of them go to zero while the others go to
infinity. This feature of IPMs [17] is a challenge for any linear equation solver applied
to (6). We skip further details about IPMs and refer the interested reader to [17,52].
We also highlight that y in this description relates to a dual variable, whereas for PDE-
constrained optimization the function y corresponds to a primal variable—we elect to
use the standard notation within the respective fields.

However, before moving on to PDE-constrained optimization, it is worth drawing
the reader’s attention to the fact that, although in (3) we assume only the one-sided
bound x ≥ 0, IPMs can also be easily applied to variables with two-sided bounds:

xa ≤ x ≤ xb.

This requires introducing two nonnegative Lagrange multipliers associated with two
inequalities. Later on we will denote them as za and zb, respectively.

3 PDE-constrained optimization

We now wish to demonstrate how interior point methods may be applied to PDE-
constrained optimization problems. These are a crucial class of problems which may
be used to model a range of applications in science and industry, for example fluid
flow, chemical and biological processes, shape optimization, imaging problems, and
mathematical finance, to name but a few. However the problems are often of complex
structure, and sophisticated techniques are frequently required to achieve accurate
solutions for the models being considered. We recommend the works [22,45], which
provide an excellent introduction to the field.

Let us first consider a time-independent linear PDE-constrained optimization prob-
lem with additional bound constraints:

min
y,u

1

2
‖y − ŷ‖2L2(Ω) + β

2
‖u‖2L2(Ω)

s.t. Ly = u, in Ω,

y = f, on ∂Ω,

ya ≤ y ≤ yb, a.e. in Ω,

ua ≤ u ≤ ub, a.e. in Ω. (7)

Here y, ŷ, u denote the state, desired state and control variables, with L some PDE
operator, and β a positive regularization parameter. The problem is solved on domain
Ω (with boundary ∂Ω), for given functions f , ya , yb, ua , ub.

We will now apply the discretize-then-optimize approach to (7), commencing with
the construction of a Lagrangian on the discrete space. The alternative optimize-then-

123



J. W. Pearson, J. Gondzio

discretize method will guarantee an accurate solution of the continuous first order
optimality conditions, however when applied in conjunction with interior point meth-
ods the resultingmatrix systems are not necessarily symmetric, nor can they be reduced
to such low dimensions for these problems as the matrix systems illustrated later in
this section. For these reasons, we find it is advantageous to apply the discretize-then-
optimize approach for the interior point solution of PDE-constrained optimization
problems—we highlight that this follows the approach used in important literature
on the field such as [5,28]. Provided reasonable choices are made for the discretiza-
tion of the problem, it is frequently observed that both methods lead to very similar
behaviour in the solutions, and indeed this paradigm has recently been used to derive
discretization schemes for PDE-constrained optimization (see [20], for instance).

We wish to construct a finite element discretization of the cost functional in (7): for
the problems considered in this paper it is beneficial to use equal order finite elements
for state and control variables, and observe that a discretized approximation of the
cost functional is

1

2
‖y − ŷ‖2L2(Ω) + β

2
‖u‖2L2(Ω) ≈ 1

2
y�My − y�

d y + 1

2

∫

Ω

ŷ 2 dΩ
︸ ︷︷ ︸

constant

+β

2
u�Mu,

where y, u are the discretized versions of y, u. The (symmetric) finite element mass
matrix M contains entries of the form [M]i j = ∫

Ω
φiφ j dΩ , where {φi } are the finite

element basis functions used, and yd contains entries of the form
∫

Ω
ŷφi dΩ .

We therefore write (7) on the discrete level as

min
y,u

1

2
y�My − y�

d y + β

2
u�Mu

s.t. Ky − Mu = f,

ya ≤ y ≤ yb,

ua ≤ u ≤ ub, (8)

with f , ya , yb, ua , ub the discrete versions of f , ya , yb, ua , ub. The matrix K depends
on the PDE operator L considered: for example when a Poisson control problem
(with L = −∇2) is examined, K denotes a finite element stiffness matrix with entries
[K ]i j = ∫

Ω
∇φi · ∇φ j dΩ . Alternatively for convection-diffusion control problems

(with L = −ν∇2 + (w · ∇), and without stabilization applied within the solution
method), K contains a sum of diffusion and convection termswith [K ]i j = ∫

Ω

(

ν∇φi ·
∇φ j + (w · ∇φ j )φi

)

dΩ .
We observe that, using our equal order finite element method, the matrices M, K ∈

R
N×N , where N denotes the number of finite element nodes used, and furthermore

that y,u ∈ R
N .

It can be easily seen that the problem statement (8) is in the form of the quadratic
programming problem (3), with

x =
[

y
u

]

, Q =
[

M 0
0 βM

]

, A = [

K −M
]

,
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c =
[−yd

0

]

, xa =
[

ya
ua

]

, xb =
[

yb
ub

]

.

It should be highlighted that, as there has been relatively little previous research
on interior point methods for PDE-constrained optimization, there are a number of
theoretical considerations that one should account for. As discussed in the paper [46],
the majority of the theory available for primal-dual interior point methods is based
on finite-dimensional mathematical programming, as opposed to the function space
setting of optimal control problems. The authors then proceed to carry out a global and
local convergence analysis in the L∞ and Lq (for q < ∞) settings. It is also important
to note that the regularity properties of the optimal state and control are different,
which as highlighted in [5] is a crucial feature of the continuous (infinite dimensional)
problem which tends to be overlooked when moving to a discretized setting. It is
essential to recognise the differences between the continuous formulations involving
control constraints and state constraints [5,46], in particular the greater scope for a
rigorous analysis of the control constrained problem, as well as the possibility of
generating provably mesh-independent algorithms (including interior point methods)
for problems with control constraints, in constrast to problems with state constraints
[5]. As the main objective of this paper is to demonstrate the possibility of solving
large scale linear systems that arise from interior point methods, we focus for the most
part on the challenges faced on the discrete level, however it is crucial to also be aware
of the issues present when examining the associated infinite dimensional problem, and
in particular the implications of the discretization strategy employed.

In the next section we consider interior point methods for solving problems of
structure (8), for a range of operators L and all β > 0. Although there has at this point
been relatively little research into such strategies, we highlight that the paper [46]
considers the numerical solution of problems of this type with control constraints only,
and [1] derives effective preconditioners for large values of β and Ly = −∇2y + y.
We also point to the development of solvers of different forms to those presented in
this paper: in [18] reduced-space preconditioners are considered for optimal control
problems, and in [9] multigrid methods are discussed for a class of control problems.

3.1 Newton iteration

We now wish to derive the equations arising from a Newton iteration applied to the
(nonlinear) problem (7). Let us define

J (

y,u
) = 1

2
y�My − y�

d y + β

2
u�Mu

to be the discrete functional which we wish to minimize. Applying the discretized
version of the PDE constraint, alongside a barrier function for the bound constraints
as in the previous section, leads to the Lagrangian
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Lμ

(

y,u,λ
) = J (

y,u
) + λ�(Ky − Mu − f)

−μ
∑

j

log
(

y j − ya, j
) − μ

∑

j

log
(

yb, j − y j
)

−μ
∑

j

log
(

u j − ua, j
) − μ

∑

j

log
(

ub, j − u j
)

,

of which we wish to find the stationary point(s). Here λ denotes the discretized adjoint
variable (or Lagrange multiplier), y j , ya, j , yb, j , u j , ua, j , ub, j denote the j-th entries
of y, ya , yb, u, ua , ub, and μ is the barrier parameter used.

Differentiating Lμ with respect to y, u and λ gives the first order optimality condi-
tions (or Karush-Kuhn-Tucker conditions):

My − yd + K�λ − zy,a + zy,b = 0, (9)

βMu − Mλ − zu,a + zu,b = 0, (10)

Ky − Mu − f = 0, (11)

where the j-th entries of zy,a , zy,b, zu,a , zu,b are defined as follows:

(

zy,a
)

j = μ

y j − ya, j
,

(

zy,b
)

j = μ

yb, j − y j
,

(

zu,a
)

j = μ

u j − ua, j
,

(

zu,b
)

j = μ

ub, j − u j
. (12)

Note that, by construction, the following bound constraints apply for the Lagrange
multipliers enforcing the constraints on y and u:

zy,a ≥ 0, zy,b ≥ 0, zu,a ≥ 0, zu,b ≥ 0.

Applying a Newton iteration to (9)–(12) gives, at each Newton step,

Mδy + K�δλ − δzy,a + δzy,b = yd − My∗ − K�λ∗ + z∗
y,a − z∗

y,b, (13)

βMδu − Mδλ − δzu,a + δzu,b = − βMu∗ + Mλ∗ + z∗
u,a − z∗

u,b, (14)

K δy − Mδu = f − Ky∗ + Mu∗, (15)
(

y∗ − ya
) ◦ δzy,a + z∗

y,a ◦ δy = μe − (

y∗ − ya
) ◦ z∗

y,a, (16)
(

yb − y∗) ◦ δzy,b − z∗
y,b ◦ δy = μe − (

yb − y∗) ◦ z∗
y,b, (17)

(

u∗ − ua
) ◦ δzu,a + z∗

u,a ◦ δu = μe − (

u∗ − ua
) ◦ z∗

u,a, (18)
(

ub − u∗) ◦ δzu,b − z∗
u,b ◦ δu = μe − (

ub − u∗) ◦ z∗
u,b. (19)

Here, y∗, u∗, λ∗, z∗
y,a , z

∗
y,b, z

∗
u,a , z

∗
u,b denote the most recent Newton iterates for

y, u, λ, zy,a , zy,b, zu,a , zu,b, with δy, δu, δλ, δzy,a , δzy,b, δzu,a , δzu,b the Newton
updates, e defines the vector of ones of appropriate dimension, and ◦ relates to the
multiplication componentwise of two vectors.
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In matrix form, (13)–(19) read

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M 0 K� −I I 0 0
0 βM −M 0 0 −I I
K −M 0 0 0 0 0
Zy,a 0 0 Y − Ya 0 0 0

−Zy,b 0 0 0 Yb − Y 0 0
0 Zu,a 0 0 0 U −Ua 0
0 −Zu,b 0 0 0 0 Ub −U

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

δy
δu
δλ

δzy,a
δzy,b
δzu,a

δzu,b

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

yd − My∗ − K�λ∗ + z∗
y,a − z∗

y,b
−βMu∗ + Mλ∗ + z∗

u,a − z∗
u,b

f − Ky∗ + Mu∗
μe − (y∗ − ya) ◦ z∗

y,a
μe − (yb − y∗) ◦ z∗

y,b
μe − (u∗ − ua) ◦ z∗

u,a
μe − (ub − u∗) ◦ z∗

u,b

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where Y ,U , Zy,a , Zy,b, Zu,a , Zu,b are diagonal matrices, with the most recent iterates
for y, u, zy,a , zy,b, zu,a , zu,b appearing on the diagonal entries. Similarly, the matrices
Ya , Yb, Ua , Ub are diagonal matrices corresponding to ya , yb, ua , ub.

Now, we may write that fourth, fifth, sixth and seventh rows lead to

δzy,a = − (Y − Ya)
−1Zy,aδy − z∗

y,a + μ(Y − Ya)
−1e, (20)

δzy,b = (Yb − Y )−1Zy,bδy − z∗
y,b + μ(Yb − Y )−1e, (21)

δzu,a = − (U −Ua)
−1Zu,aδu − z∗

u,a + μ(U −Ua)
−1e, (22)

δzu,b = (Ub −U )−1Zu,bδu − z∗
u,b + μ(Ub −U )−1e, (23)

whereupon we may consider instead the solution of the reduced system

⎡

⎣

M + Dy 0 K�
0 βM + Du −M
K −M 0

⎤

⎦

⎡

⎣

δy
δu
δλ

⎤

⎦

=
⎡

⎣

μ(Y − Ya)−1e − μ(Yb − Y )−1e + yd − My∗ − K�λ∗

μ(U −Ua)
−1e − μ(Ub −U )−1e − βMu∗ + Mλ∗

f − Ky∗ + Mu∗

⎤

⎦ , (24)

where

Dy = (Y − Ya)−1Zy,a + (Yb − Y )−1Zy,b, (25)

Du = (U −Ua)
−1Zu,a + (Ub −U )−1Zu,b. (26)

The conditions written in (24) are applied, alongside the imposition of (20)–(23), at
each Newton iteration.
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Note that, due to the fact that state and control bounds are enforced as strict inequal-
ities at each Newton step, the diagonal matrices Dy and Du are positive definite.

Of course, it is perfectly natural to consider a problem with only state constraints or
only control constraints (or indeed only lower or upper bound constraints). For such
cases we may follow exactly the same working to obtain a matrix system of the form
(24), removing individual matrices corresponding to constraints that we do not apply.

3.2 Algorithm

We now present the structure of the interior point algorithm, adapted from the paper
[17], that we apply to the problems considered in this paper. The essence of themethod
is to traverse the interior of the feasible region where solutions may arise—we do this
by applying a relaxed Newton iteration, reducing the barrier parameter by a factor
σ at each Newton step. Having computed the Newton updates δy, δu, δλ, δzy,a ,
δzy,b, δzu,a , δzu,b, we make a step in this direction that also guarantees that the strict
bounds are enforced at each iteration. Upon convergence the iterates approach the true
solution of the optimization problem, with the additional state and control constraints
automatically satisfied.

Let us now consider appropriate stopping criteria for the method. Two natural
requirements are for the norms of the primal and dual infeasibilities (at the k-th itera-
tion)

ξ kp = f − Kyk + Muk, ξ kd =
[

yd − Myk − K�λk + zky,a − zky,b
−βMuk + Mλk + zku,a − zku,b

]

,

to be lower than some prescribed tolerances εp, εd , respectively. Additionally, we
require the error in the complementarity products

ξ kc =

⎡

⎢

⎢

⎢

⎣

μe − (

yk − ya
) ◦ zky,a

μe − (

yb − yk
) ◦ zky,b

μe − (

uk − ua
) ◦ zku,a

μe − (

ub − uk
) ◦ zku,b

⎤

⎥

⎥

⎥

⎦

, (27)

to fall below some specified tolerance εc, and μ ≤ εμ.
We present the algorithm that we apply—its structure is similar to the algorithm

outlined in [17, Section 2].
It is clear from the presentation of this method that the dominant computational

work arises from the solution of the Newton system (24). It is therefore crucial to
construct fast and robust solvers for this system, and this is what we focus on in
Sect. 4.

3.3 Time-dependent problems

It is also important to be able to handle time-dependent problems using this method-
ology, due to the complexity and practical utility of such setups. To provide a brief
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Interior Point Method for Quadratic Programming

Parameters

α0 = 0.995, step-size factor to boundary

σ ∈ (0, 1), barrier reduction parameter

εp, εd , εc, εμ, stopping tolerances,

Interior point method stops when
∥

∥ξkp
∥

∥ ≤ εp,
∥

∥ξkd

∥

∥ ≤ εd ,
∥

∥ξkc
∥

∥ ≤ εc, μ ≤ εμ

Initialize IPM

Initial guesses for y0, u0, λ0, z0y,a , z0y,b, z0u,a , z0u,b

Barrier parameter μ0

Primal infeasibility ξ0p = f − Ky0 + Mu0

Dual infeasibility ξ0d =
[

yd − My0 − K�λ0 + z0y,a − z0y,b
−βMu0 + Mλ0 + z0u,a − z0u,b

]

Complementarity products ξ0c , as in (27) with k = 0

Interior Point Method

while
(

∥

∥ξkp
∥

∥ > εp or
∥

∥ξkd

∥

∥ > εd or
∥

∥ξkc
∥

∥ > εc or μ > εμ

)

Reduce barrier parameter μk+1 = σμk

Solve Newton system (24) for primal-dual Newton direction δy, δu, δλ

Use (20)–(23) to find δzy,a , δzy,b, δzu,a , δzu,b

Find αP , αD s.t. bound constraints on primal and dual variables hold

Set αP = α0αP , αD = α0αD

Make step: yk+1 = yk + αPδy, uk+1 = uk + αPδu, λk+1 = λk + αDδλ

zk+1
y,a = zky,a + αDδzy,a , zk+1

y,b = zky,b + αDδzy,b

zk+1
u,a = zku,a + αDδzu,a , zk+1

u,b = zku,b + αDδzu,b

Update infeasibilities:

ξk+1
p = f − Kyk+1 + Muk+1,

ξk+1
d =

[

yd − Myk+1 − K�λk+1 + zk+1
y,a − zk+1

y,b

−βMuk+1 + Mλk+1 + zk+1
u,a − zk+1

u,b

]

Compute error of complementarity products as in (27)

Set iteration number k = k + 1

end

illustration of how this may be accomplished, let us consider the time-dependent
problem:

min
y,u

1

2

∫ T

0

∫

Ω

(y − ŷ)2 dΩdt + β

2

∫ T

0

∫

Ω

u2 dΩdt

s.t. yt + Ly = u, in Ω × (0, T ],
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y = f, on ∂Ω × (0, T ],
y = y0, at t = 0,

ya ≤ y ≤ yb, a.e. in Ω × (0, T ],
ua ≤ u ≤ ub, a.e. in Ω × (0, T ].

The state, control and adjoint variables are now solved in a space-time domain Ω ×
(0, T ], with L the time-independent component of the PDE operator.

As in [35,44] for heat equation control problems, we may apply a discretize-then-
optimize approach, using the trapezoidal rule to approximate the integrals within the
cost functional, and the backward Euler method to account for the time derivative. We
thus rewrite the problem in the discrete setting as follows:

min
y,u

τ

2
y�M1/2y − τy�

d,T y + βτ

2
u�M1/2u

s.t. Ky − τMu = fT ,

ya ≤ y ≤ yb,

ua ≤ u ≤ ub.

Here the matrix M1/2 = blkdiag( 12M, M, . . . , M, 1
2M), M = blkdiag(M, . . . , M),

and

K =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

M + τK
−M M + τK

. . .
. . .

−M M + τK
−M M + τK

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

yd,T =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
2yd,1
yd,2

...

yd,Nt−1
1
2yd,Nt

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, fT =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

My0 + f
f
...

f
f

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

where K corresponds to the time-independent part of the PDE operator, and τ denotes
the (constant) time-step taken. The vectors yd,i relate to the values of ŷ at the i-th time-
step, and y0 is the vector representation of y0. We denote by Nt := T

τ
the number of

time-steps taken.
We apply Newton iteration to the discrete optimality conditions, in an analogous

way to the time-independent problem. This yields the matrix system
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⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

τM1/2 0 K� −I I 0 0
0 βτM1/2 −τM 0 0 −I I
K −τM 0 0 0 0 0

Zy,a 0 0 Y − Ya 0 0 0
−Zy,b 0 0 0 Yb − Y 0 0

0 Zu,a 0 0 0 U −Ua 0
0 −Zu,b 0 0 0 0 Ub −U

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

δy
δu
δλ

δzy,a
δzy,b
δzu,a
δzu,b

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

τyd,T − τM1/2y∗ − K�λ∗ + z∗y,a − z∗y,b
−βτM1/2u∗ + τMλ∗ + z∗u,a − z∗u,b

fT − Ky∗ + τMu∗
μe − (

y∗ − ya
) ◦ z∗y,a

μe − (

yb − y∗) ◦ z∗y,b
μe − (

u∗ − ua
) ◦ z∗u,a

μe − (

ub − u∗) ◦ z∗u,b

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (28)

with zy,a , zy,b, zu,a , zu,b the same as for the time-independent setting, except now
measured over all points in space and time.

Reducing (28) as for the time-independent case gives a block matrix system

⎡

⎣

τM1/2 + Dy 0 K�
0 βτM1/2 + Du −τM
K −τM 0

⎤

⎦

⎡

⎣

δy
δu
δλ

⎤

⎦

=
⎡

⎢

⎣

μ(Y − Ya)−1e − μ(Yb − Y )−1e + τyd,T − τM1/2y∗ − K�λ∗

μ(U −Ua)
−1e − μ(Ub −U )−1e − βτM1/2u∗ + τMλ∗

fT − Ky∗ + τMu∗

⎤

⎥

⎦ , (29)

with Dy , Du analogous to Dy , Du , as defined in (25), (26), except with the quantities
measured within the entire space-time domain.

4 Preconditioning for the Newton system

For the matrix systems considered in this paper, particularly those arising from time-
dependent problems, great care must be taken when seeking an appropriate scheme
for obtaining an accurate solution. The dimensions of these systems mean that a
direct method is often infeasible, so we find that the natural approach is to develop
preconditioned Krylov subspace solvers.

When seeking preconditioners for such methods, we exploit the fact that the matrix
systems for the PDE-constrained optimization problems are of saddle point form:

[

Φ Ψ �
Ψ Θ

]

︸ ︷︷ ︸

A

[

x1
x2

]

=
[

b1
b2

]

. (30)
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Here Φ ∈ R
n×n , Ψ ∈ R

m×n and Θ ∈ R
m×m (with m ≤ n, as in Sect. 2). Further

Φ and Θ are symmetric matrices, meaning that A is itself symmetric, and all of
the matrices are sparse for the finite element method used. We recommend [2] for a
thorough overview of saddle point systems and their numerical properties.

The study of preconditioners for systems of this form is a well-established subject
area: indeed it is known that two ‘ideal’ preconditioners are given by

PD =
[

Φ 0
0 S

]

, PT =
[

Φ 0
Ψ −S

]

,

where S := −Θ + Ψ Φ−1Ψ T defines the (negative) Schur complement of A. It can
be shown [23,26,29] that the eigenvalues of the preconditioned systems are given by

λ
(

P−1
D A

)

∈
{

1,
1

2
(1 ± √

5)

}

, if Θ = 0,

λ
(

P−1
T A

)

∈ {1} , generally,

provided that these systems are invertible.
In practice, of course, one would not wish to invert Φ and S exactly within a

preconditioner, so the main challenge is to devise effective approximations ̂Φ and ̂S
which can be applied within a block diagonal or block triangular preconditioner of the
form

P =
[

̂Φ 0
0 ̂S

]

or

[

̂Φ 0
Ψ −̂S

]

. (31)

Such preconditioners are very often found to be extremely potent in practice, and
in many cases one can prove their effectiveness as well (we discuss this further in
Sect. 4.1).

A major objective within the remainder of this paper is to develop effective repre-
sentations of the (1, 1)-block Φ and Schur complement S for matrix systems arising
from interior point solvers.

4.1 Time-independent problems

We now wish to apply saddle point theory to matrix systems arising from time-
independent problems. So consider the matrix system (24), for instance in the case
where the matrix K arises from a Laplacian operator (considered for Poisson control)
or convection-diffusion operator. This system is of saddle point form (30), with

Φ =
[

M + Dy 0
0 βM + Du

]

, Ψ = [

K −M
]

, Θ = [

0
]

.
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Let us consider approximating the (1, 1)-block and Schur complement of this matrix
system. For this problemM is a positive definite matrix, with positive diagonal entries,
and the same applies to K in the case of Poisson control problems.

We now highlight that mass matrices may in fact be well approximated by their
diagonal: for instance, in the case of Q1 mass matrices on a uniform two dimen-
sional domain, the eigenvalues of [diag(M)]−1M are all contained within the interval
[ 14 , 9

4 ] (see [47]). As Dy and Du are diagonal and positive definite, one option for
approximating Φ is hence to take

̂Φ =
[

diag
(

M + Dy
)

0
0 diag (βM + Du)

]

.

The effectiveness of the approximation may be measured in some sense by the eigen-
values of ̂Φ−1Φ, which may themselves be determined by the Rayleigh quotient

v�Φv

v�̂Φv
= v�

1 (M + Dy)v1 + v�
2 (βM + Du)v2

v�
1

[

diag(M + Dy)
]

v1 + v�
2

[

diag(βM + Du)
]

v2

= v�
1 Mv1 + βv�

2 Mv2 + v�
1 Dyv1 + v�

2 Duv2
v�
1

[

diag(M)
]

v1 + βv�
2

[

diag(M)
]

v2 + v�
1 Dyv1 + v�

2 Duv2

∈
[

min

{

v�
1 Mv1 + βv�

2 Mv2
v�
1

[

diag(M)
]

v1 + βv�
2

[

diag(M)
]

v2
, 1

}

, (32)

max

{

v�
1 Mv1 + βv�

2 Mv2
v�
1

[

diag(M)
]

v1 + βv�
2

[

diag(M)
]

v2
, 1

}]

⊆
[

min
{

λmin

(

[

diag(M)
]−1

M
)

, 1
}

,max
{

λmax

(

[

diag(M)
]−1

M
)

, 1
}]

,

where (32) follows from the fact that v�
1 Dyv1 + v�

2 Duv2 is non-negative. Here v =
[

v�
1 , v�

2

]� �= 0, with v1, v2 vectors of appropriate length, and λmin, λmax denote the
smallest and largest eigenvalues of a matrix. We therefore see that if [diag(M)]−1M
is well-conditioned, then the same is true of ̂Φ−1Φ.

As an alternative for our approximation ̂Φ, one may apply a Chebyshev semi-
iteration method [14,15,48] to approximate the inverses of M + Dy and βM + Du .
This is a slightly more expensive process to approximate this component of the entire
system (in general the matrices with the most complex structure are K and K�),
however due to the tight clustering of the eigenvalues of [diag(Φ)]−1Φ we find greater
accuracy in the results obtained.

The main task at this stage is to approximate the Schur complement

S = K (M + Dy)
−1K� + M(βM + Du)

−1M. (33)

The aim is to build an approximation such that the eigenvalues of the preconditioned
Schur complement are tightly clustered. We motivate our approximation based on a
‘matching’ strategy originally derived in [37] for the Poisson control problem without
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bound constraints: for this particular problem, K is the finite element stiffness matrix,
and thematrices Dy = Du = 0. It was shown that by ‘capturing’ both terms (KM−1K
and 1

β
M) of the Schur complement, one obtains the result

λ

(

[(

K + 1√
β
M

)

M−1
(

K + 1√
β
M

)]−1 [

KM−1K + 1

β
M

]

)

∈
[

1

2
, 1

]

,

(34)

independently of problem size, as well as the value of β.
Furthermore, it is possible to prove a lower bound of the preconditioned Schur

complement for a very general matrix form, as demonstrated below.

Theorem 1 Let SG and ̂SG be the general matrices

SG = X̄ X̄� + Ȳ Ȳ�, ̂SG = (X̄ + Ȳ )(X̄ + Ȳ )�,

which we assume to be invertible, and with real X̄ , Ȳ . Then the eigenvalues of̂S−1
G SG

are real, and satisfy λ ≥ 1
2 .

Proof As SG and̂SG are invertible, they are symmetric positive definite by constuction.
To examine the spectrum of ̂S−1

G SG we therefore consider the Rayleigh quotient (for
real v �= 0):

R := v�SGv

v�̂SGv
= χ�χ + ω�ω

(χ + ω)�(χ + ω)
, χ = X̄�v, ω = Ȳ�v,

which is itself clearly real. By the invertibility of SG and ̂SG , both numerator and
denominator are positive. Therefore

1

2
(χ − ω)�(χ − ω) ≥ 0 ⇔ χ�χ + ω�ω ≥ 1

2
(χ + ω)�(χ + ω) ⇔ R ≥ 1

2
,

which gives the result. ��
For the Schur complement given by (33), the matrices X̄ = K (M + Dy)

−1/2 and
Ȳ = M(βM + Du)

−1/2, which we use below to derive our approximation. Note that
to demonstrate an upper bound for this problem, one would write

R = 1 − 2ω�χ

(χ + ω)�(χ + ω)

= 1 − 2v�M(βM + Du)
−1/2(M + Dy)

−1/2K�v
v�K (M + Dy)−1K�v + v�M(βM + Du)−1Mv + 2v�M(βM + Du)−1/2(M + Dy)−1/2K�v

≤ 1 − min
v �=0

{

2v�M(βM + Du)
−1/2(M + Dy)

−1/2K�v
v� [

K (M + Dy)−1K� + M(βM + Du)−1M + 2M(βM + Du)−1/2(M + Dy)−1/2K�] v

}

= 1 − min
v �=0

⎧

⎨

⎩

(

1 + v� [

K (M + Dy)
−1K� + M(βM + Du)

−1M
]

v

2v�M(βM + Du)−1/2(M + Dy)−1/2K�v

)−1
⎫

⎬

⎭

, (35)
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provided v /∈ ker(K�). We may therefore draw the following conclusions:

– The Rayleigh quotient R is certainly finite, as the case χ + ω = 0 is disallowed
by the assumption of invertibility of ̂SG .

– Furthermore, depending on the (typically unknown) entries of Dy , the term
v�K (M + Dy)

−1K�v should be large compared with the term v�M(βM +
Du)

−1/2(M + Dy)
−1/2K�v arising in the denominator above, due to the fact that

K has larger eigenvalues than M in general. The term being minimized in (35) will
therefore not take a large negative value in general, and hence R will not become
excessively large.

– However, it is generally not possible to demonstrate a concrete upper bound unless
X̄ and Ȳ have structures which can be exploited. The reason for this is that the
diagonal matrices Dy and Du that determine the distribution of the eigenvalues
can take any positive value (including arbitrarily small or infinitely large values,
in finite precision), depending on the behaviour of the Newton iterates, which is
impossible to control. In practice, we find it is rare for the largest eigenvalues of
the preconditioned Schur complement to exceed values of roughly 5 − 10.

– However, using the methodology of Theorem 1, results of this form have been
demonstrated for problems such as convection-diffusion control [36] and heat
equation control [35] (without additional bound constraints). We also highlight
that, in [39,42], preconditioners for problems with bound constraints1, solved with
active set Newtonmethods, are derived. In [39], parameter-independent bounds are
derived for a preconditioned Schur complement, however the additional require-
ment is imposed that M is a lumped (i.e. diagonal) mass matrix. As we do not
assume that the mass matrices are lumped in this work, we may not exploit this
method to obtain an upper eigenvalue bound.

– In general, the eigenvalues of̂S−1
G SG are better clustered if the term X̄ Ȳ� + Ȳ X̄�

is positive semi-definite, or ‘nearly’ positive semi-definite. The worst case would
arise in the setting where χ ≈ −ω, however for our problem the matrices X̄ and Ȳ
do not relate closely to each other as the activities in the state and control variables
do not share many common features.

We now provide an indicative result for the situation which corresponds to the
limiting case when the barrier parameter μ → 0 and all state and control bounds are
satisfied as strict inequalities, i.e. all bounds remain inactive at the optimum. In such
a case all Lagrange multipliers zy,a , zy,b, zu,a and zu,b would take small values of
order μ and so would the diagonal matrices Dy and Du defined by (25) and (26),
respectively. In the limit we would observe Dy = 0 and Du = 0.

Lemma 1 If Dy = Du = 0, and the matrix K + K� is positive semi-definite2, then
the eigenvalues of ̂S−1

G SG satisfy λ ≤ 1.

1 For the problems considered in [39], bounds for αy y + αuu are specified, where αy and αu are given
constants.
2 This assumption holds for both Poisson control and convection-diffusion control problems, for instance.
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Proof From the above working, we have that

R=1 − 2ω�χ

(χ + ω)�(χ + ω)
= 1 −

1√
β
v�(K + K�)v

v�KM−1K�v + 1
β
v�Mv + 1√

β
v�(K + K�)v

,

using the assumption that Dy = Du = 0. The denominator of the quotient above
is clearly positive, due to the positive definiteness of M , and the numerator is
non-negative by the assumption of positive semi-definiteness of K + K�. This auto-
matically leads to the statement R ≤ 1, and hence the result. ��

The ‘matching strategy’ presented here guarantees a lower bound for the pre-
conditioned Schur complement of matrices of this form, provided some very weak
assumptions hold3, and often results in the largest eigenvalue being of moderate mag-
nitude. We therefore wish to make use of this matching approach to generate effective
Schur complement approximations for the very general class of matrix systems con-
sidered in this manuscript. In particular, we consider matrices K of general form (as
opposed to the stiffness matrix as in (34)), as well as diagonal matrices Dy and Du

which can be extremely ill-conditioned. Motivated by Theorem 1, we may therefore
consider a matching strategy for the Schur complement (33), by writing

̂S1 := (

K + ̂M1
)

(M + Dy)
−1(K + ̂M1

)�
, (36)

where ̂M1 is chosen such that the matrix ̂M1(M+Dy)
−1

̂M�
1 captures the second term

of the exact Schur complement (33). That is,

̂M1(M + Dy)
−1

̂M�
1 ≈ M(βM + Du)

−1M.

This leads to the following requirement when selecting ̂M1:

̂M1 ≈ M(βM + Du)
−1/2(M + Dy)

1/2.

We take diagonal approximations where appropriate, in order to avoid having to con-
struct square roots of matrices, which would be extremely expensive computationally.
That is, we take

̂M1 = M
[

diag(βM + Du)
]−1/2[diag(M + Dy)

]1/2
. (37)

We now present a result concerning this choice for ̂M1.

3 The main assumption made is that ̂SG is invertible. This certainly holds unless (X̄ + Ȳ )�v = 0 for
some v, which in our setting implies that M−1(βM + Du)1/2(M + Dy)

−1/2K� has an eigenvalue exactly
equal to −1. As the matrices M , Dy , Du and K are unlikely to interact closely at any Newton step, this is
extremely unlikely to occur and our assumption is therefore reasonable.
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Lemma 2 When the Schur complement (33) is approximated by ̂S1, and with ̂M1
given by (37), then, provided K + ̂M1 is invertible, the eigenvalues of ̂S

−1
1 S satisfy

λ ≥ 1

2
·
min

{

λmin

(

[

diag(M)
]−1

M
)

, 1
}

max
{

λmax

(

[

diag(M)
]−1

M
)

, 1
} .

In other words the eigenvalues are bounded below by a fixed constant, depending only
on the finite element discretization used.

Proof Selecting ̂M1 as in (37) gives that the eigenvalues of ̂S−1
1 S are determined by

the Rayleigh quotient

R := v�Sv

v�̂S1v
= χ�χ + ω�ω

(χ + γ )�(χ + γ )
=

χ�χ + ω�ω

γ �γ
γ �γ

(χ + γ )�(χ + γ )
,

where for this problem the vectors of interest areχ = (M+Dy)
−1/2K�v,ω = (βM+

Du)
−1/2Mv and γ = (M +Dy)

−1/2
[

diag(M + Dy)
]1/2 [diag(βM + Du)

]−1/2
Mv.

As the numerator and denominator both consist of positive quantities, using the
assumption that K + ̂M1 is invertible, with the possible exception of χ�χ which
may be zero, we can state that

R ≥ min

{

ω�ω

γ �γ
, 1

}

· χ�χ + γ �γ

(χ + γ )�(χ + γ )
≥ 1

2
· min

{

ω�ω

γ �γ
, 1

}

,

by setting X̄ =K (M+Dy)
−1/2 and Ȳ =M

[

diag(βM + Du)
]−1/2 [diag(M + Dy)

]1/2

(M + Dy)
−1/2 within Theorem 1.

We then observe that the quotient ω�ω
γ �γ

can be decomposed as

w�
1 (βM + Du)

−1w1

w�
1

[

diag(βM + Du)
]−1/2 [diag(M + Dy)

]1/2
(M + Dy)−1

[

diag(M + Dy)
]1/2 [diag(βM + Du)

]−1/2 w1

= w�
1 (βM + Du)

−1w1

w�
1

[

diag(βM + Du)
]−1 w1

· w
�
2

[

diag(M + Dy)
]−1 w2

w�
2 (M + Dy)−1w2

,

where w1 = Mv �= 0 and w2 = [

diag(M + Dy)
]1/2 [diag(βM + Du)

]−1/2 w1 �= 0.
Now, it may be easily shown that

w�
1 (βM + Du)

−1w1

w�
1

[

diag(βM + Du)
]−1 w1

≥
[

max
{

λmax

(

[

diag(M)
]−1

M
)

, 1
}]−1

,

w�
2

[

diag(M + Dy)
]−1 w2

w�
2 (M + Dy)−1w2

≥ min
{

λmin

(

[

diag(M)
]−1

M
)

, 1
}

,
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using the working earlier in this section. Combining these bounds gives the desired
result. ��

Clearly, it is valuable to have this insight that using our approximation ̂M1 retains
the parameter independence of the lower bound for the eigenvalues of̂S−1

1 S. We note
that this can potentially be a weak bound, as the large diagonal entries in Dy and
Du are likely to dominate the behaviour of M + Dy and βM + Du , thus driving the
eigenvalues of the preconditioned Schur complement closer to 1.

We highlight that, in practice, onemay also approximate the inverses of K+ ̂M1 and
its transpose effectively using a multigrid process. We apply the Aggregation-based
Algebraic Multigrid (AGMG) software [30–33] for this purpose within our iterative
solvers.

Combining our approximations of Φ and S, we propose the following block diag-
onal preconditioner of the form (31):

P1 =
⎡

⎣

(M + Dy)approx 0 0
0 (βM + Du)approx 0
0 0 ̂S1

⎤

⎦ ,

where (M + Dy)approx, (βM + Du)approx indicate our choice of approximations for
M+Dy ,βM+Du (i.e. diagonal approximation, or Chebyshev semi-iterationmethod),
and ̂S1 is given by (36). This preconditioner is symmetric positive definite, and may
thus be applied within a symmetric solver such asMinres [34].

It is useful to consider the distribution of eigenvalues of the preconditioned system,
as thiswill control the convergence properties of theMinresmethod. The fundamental
result we use for our analysis of saddle point matrices (30) is stated below [40, Lemma
2.1].

Theorem 2 If Φ is symmetric positive definite, Ψ is full rank, and Θ = 0, the eigen-
values of A are contained within the following intervals:

λ(A) ∈
[

1

2

(

μmin −
√

μ2
min + 4σ 2

max

)

,
1

2

(

μmax −
√

μ2
max + 4σ 2

min

)]

∪
[

μmin,
1

2

(

μmax +
√

μ2
max + 4σ 2

max

)]

,

where μmax, μmin denote the largest and smallest eigenvalues of Φ, with σmax, σmin
the largest and smallest singular values of Ψ .

We now wish to apply a result of this form to the preconditioned system. The
preconditioned matrix, when a general block diagonal preconditioner of the form (31)
is used, is given by

P−1A =
[

̂Φ 0
0 ̂S

]−1 [
Φ Ψ �
Ψ 0

]

=
[

̂Φ−1Φ ̂Φ−1Ψ �
̂S−1Ψ 0

]

.
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Now, to analyse the properties of this system, let

λ(̂Φ−1Φ) ∈ [φmin, φmax], λ(̂S−1S) ∈ [smin, smax],

where φmin, smin > 0. The analysis of this section gives us information about these
values.

By the similarity property of matrix systems (using that for our problem ̂Φ and ̂S
are positive definite) the eigenvalues will be the same as those of

P−1/2AP−1/2 =
[

̂Φ−1/2 0
0 ̂S−1/2

] [

Φ Ψ �
Ψ 0

] [

̂Φ−1/2 0
0 ̂S−1/2

]

=
[

̂Φ−1/2Φ̂Φ−1/2
̂Φ−1/2Ψ �

̂S−1/2

̂S−1/2Ψ ̂Φ−1/2 0

]

.

The eigenvalues of the (1, 1)-block of this matrix, ̂Φ−1/2Φ̂Φ−1/2, are the same
as those of ̂Φ−1Φ by similarity, and so are contained in [φmin, φmax]. The singu-
lar values of the (2, 1)-block are given by the square roots of the eigenvalues of
̂S−1/2Ψ ̂Φ−1Ψ �

̂S−1/2, i.e. the square roots of the eigenvalues of ̂S−1(Ψ ̂Φ−1Ψ �) by
similarity. Writing the Rayleigh quotient (for v �= 0),

v�Ψ ̂Φ−1Ψ �v
v�̂Sv

= v�Ψ ̂Φ−1Ψ �v
v�Ψ Φ−1Ψ �v

· v
�Ψ Φ−1Ψ �v

v�̂Sv
= v̄�

̂Φ−1v̄
v̄�Φ−1v̄
︸ ︷︷ ︸

∈[φmin,φmax]

· v
�Ψ Φ−1Ψ �v

v�̂Sv
︸ ︷︷ ︸

∈[smin,smax]

,

where v̄ = Ψ �v, enables us to pin the singular values of the (2, 1)-block within
[√

φminsmin,
√

φmaxsmax
]

.
So, using Theorem 2, the eigenvalues of P−1A are contained within the interval

stated below.

Lemma 3 If Φ and S are symmetric positive definite, and the above bounds on
λ(̂Φ−1Φ) and λ(̂S−1S) hold, then the eigenvalues of P−1A satisfy

λ(P−1A) ∈
[

1

2

(

φmin −
√

φ2
min + 4φmaxsmax

)

,
1

2

(

φmax −
√

φ2
max + 4φminsmin

)]

∪
[

φmin,
1

2

(

φmax +
√

φ2
max + 4φmaxsmax

)]

.

It is therefore clear that, for our problem, a good approximation of the Schur comple-
ment will guarantee clustered eigenvalues of the preconditioned system, and therefore
rapid convergence of the Minres method. As we have observed for our problem, the
quantities of interest are therefore the largest eigenvalues of ̂S−1S, which can vary at
every step of a Newton method.

We now present a straightforward result concerning the eigenvectors of a precon-
ditioned saddle point system of the form under consideration.
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Proposition 1 Consider an eigenvalue λ that satisfies

[

Φ Ψ �
Ψ 0

] [

v1
v2

]

= λ

[

̂Φ 0
0 ̂S

] [

v1
v2

]

, (38)

with Φ, S = Ψ Φ−1Ψ �, ̂Φ, ̂S symmetric positive definite. Then either λ is an eigen-
value of ̂Φ−1Φ, or λ, v1 and v2 satisfy

(

λ̂Φ − Φ − 1

λ
Ψ �

̂S−1Ψ

)

v1 = 0, v2 = 1

λ
̂S−1Ψ v1.

Proof Equation (38) is equivalent to

Ψ �v2 = (

λ̂Φ − Φ
)

v1, (39)

Ψ v1 = λ̂Sv2. (40)

Let us first consider the case where Ψ v1 = 0 (there are at most n − m such linearly
independent vectors that correspond to eigenvectors). Then (40) tells us that v2 = 0,
from which we conclude from (39) that (λ̂Φ − Φ)v1 = 0. Therefore, in this case,
the eigenvalues are given by eigenvalues of ̂Φ−1Φ, with eigenvectors of the form
[

v�
1 , 0�]�—there are at most n − m such solutions.
If Ψ v1 �= 0, we may rearrange (40) to obtain

v2 = 1

λ
̂S−1Ψ v1 ⇒ Ψ �v2 = 1

λ
Ψ �

̂S−1Ψ v1,

which we may substitute into (39) to obtain

1

λ
Ψ �

̂S−1Ψ v1 = (

λ̂Φ − Φ
)

v1.

This may be trivially rearranged to obtain the required result. ��
We observe that the eigenvalues and eigenvectors of the (1, 1)-block and Schur

complement (along with their approximations) interact strongly with each other. This
decreases the likelihood of many extreme eigenvalues of ̂S−1S arising in practice,
as this would have implications on the numerical properties of Φ and Ψ (which for
our problems do not interact at all strongly). However the working provided here
shows that this is very difficult to prove rigorously, due to the wide generality of the
saddle point systems being examined—wemust also rely on the physical properties of
the PDE operators within the optimization framework. Our numerical experiments of
Sect. 5 indicate that the eigenvalues of̂S−1S, and therefore the preconditioned system,
are tightly clustered, matching some of the observations made in this section.

As an alternative to the block diagonal preconditioner P1, we may take account of
information on the block lower triangular parts of the matrix system, and apply the
block triangular preconditioner
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P2 =
⎡

⎣

(M + Dy)approx 0 0
0 (βM + Du)approx 0
K −M −̂S1

⎤

⎦ ,

within a non-symmetric solver such as Gmres [41].
It is possible to carry out eigenvalue analysis for the block triangular preconditioner

P2 in the same way as for the block diagonal preconditioner P1. However it is well
known that the convergence of non-symmetric solvers such as Gmres does not solely
depend on the eigenvalues of the preconditioned system, and therefore such an analysis
would be less useful in practice.

We now consider a completely different strategy for preconditioning the matrix
system. We may first rearrange (24) to the form

⎡

⎣

βM + Du −M 0
−M 0 K
0 K� M + Dy

⎤

⎦

⎡

⎣

δu
δλ

δy

⎤

⎦ (41)

=
⎡

⎣

μ(U −Ua)
−1e − μ(Ub −U )−1e − βMu∗ + Mλ∗

f − Ky∗ + Mu∗
μ(Y − Ya)−1e − μ(Yb − Y )−1e + yd − My∗ − K�λ∗

⎤

⎦ .

The matrix within (41) is a saddle point system of the form (30), with

Φ =
[

βM + Du −M
−M 0

]

, Ψ = [

0 K� ]

, Θ = [

M + Dy
]

.

This approach also has the desirable feature that the (1, 1)-block Φ can be inverted
almost precisely, as all that is required is a method for approximating the inverse of a
mass matrix (to be applied twice). Once again, a very cheap and accurate method is
Chebyshev semi-iteration [14,15,48], so we apply this strategy within our precondi-
tioner.

Once again, the main challenge is to approximate the Schur complement:

S = − (M + Dy) + [

0 K� ]

[

βM + Du −M
−M 0

]−1 [ 0
K

]

= − (M + Dy) + [

0 K� ]

[

0 −M−1

−M−1 −M−1(βM + Du)M−1

] [

0
K

]

= −
[

K�M−1(βM + Du)M
−1K + (M + Dy)

]

.

Let us consider a ‘matching’ strategy once again, and write for our approximation:

̂S2 := −(

K� + ̂M2
)

M−1(βM + Du)M
−1(K + ̂M�

2

)

,

where ̂M2 is selected to incorporate the second term of S, i.e.

̂M2M
−1(βM + Du)M

−1
̂M�
2 ≈ M + Dy,
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which may be achieved if

̂M2 ≈ (M + Dy)
1/2(βM + Du)

−1/2M.

For a practical preconditioner, we in fact select

̂M2 = [

diag(M + Dy)
]1/2[diag(βM + Du)

]−1/2
M.

To approximate K� + ̂M2 and K + ̂M�
2 in practice, we again make use of the AGMG

software to apply a multigrid process to the relevant matrices within ̂S2.
One may therefore build a block triangular preconditioner for the permuted system

(41), of the form PT in (31). Rearranging the matrix system (and hence the precondi-
tioner) to the form (24), we are therefore able to construct the following preconditioner
for (24):

P3 =
⎡

⎣

−̂S2 0 K�
0 βM + Du −Mcheb
0 −Mcheb 0

⎤

⎦ ,

where Mcheb relates to a Chebyshev semi-iteration process for the mass matrix M . We
notice that this relates to observations made on nullspace preconditioners for saddle
point systems in [38].

It is clear that to apply the preconditioner P3, we require a non-symmetric solver
such asGmres, as it is not possible to construct a positive definite preconditioner with
this rearrangement of the matrix system. Within such a solver, a key positive property
of this strategy is that we may approximateΦ almost perfectly (and cheaply), and may
apply K� exactly withinP3 without a matrix inversion. An associated disadvantage is
that our approximation of S is more expensive to apply than the approximation̂S1 used
within the preconditioners P1 and P2—whereas Theorem 1 may again be applied4 to
verify a lower bound for the eigenvalues of the preconditioned Schur complement, the
values of the largest eigenvalues are frequently found to be higher than for the Schur
complement approximation ̂S1 described earlier.

4.2 Time-dependent problems

Due to the huge dimensions of the matrix systems arising from time-dependent PDE-
constrained optimization problems, it is very important to consider preconditioners
for the resulting systems, which are of the form (29). These are again of saddle point
type (30), with

Φ =
[

τM1/2 + Dy 0
0 βτM1/2 + Du

]

, Ψ = [K −τM ]

, Θ = [

0
]

.

4 In the notation of Theorem 1, the matrices involved are X̄ = K�M−1(βM + Du)1/2 and Ȳ = (M +
Dy)

1/2.
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As for the time-independent case we may approximate Φ using diagonal solves or
the Chebyshev semi-iteration method applied to the matrices from each time-step.

To approximate the Schur complement of (29),

S = K(τM1/2 + Dy
)−1K� + τ 2M(

βτM1/2 + Du
)−1M,

we again apply a matching strategy to obtain

̂S1,T := (K + ̂M1,T
)(

τM1/2 + Dy
)−1(K + ̂M1,T

)�
,

where

̂M1,T
(

τM1/2 + Dy
)−1

̂M�
1,T ≈ τ 2M(

βτM1/2 + Du
)−1M.

This in turn motivates the choice

̂M1,T = τM [

diag
(

βτM1/2 + Du
)]−1/2 [diag

(

τM1/2 + Dy
)]1/2

,

and we require two multigrid processes per time-step to apply ̂S−1
1,T efficiently.

Combining our approximations of (1, 1)-block and Schur complement, we may
apply

P1,T =
⎡

⎢

⎣

(

τM1/2 + Dy
)

approx 0 0

0
(

βτM1/2 + Du
)

approx 0

0 0 ̂S1,T

⎤

⎥

⎦

withinMinres, for example, or

P2,T =
⎡

⎢

⎣

(

τM1/2 + Dy
)

approx 0 0

0
(

βτM1/2 + Du
)

approx 0

K −τM −̂S1,T

⎤

⎥

⎦ ,

within a nonsymmetric solver such as Gmres.
Alternatively, in complete analogy to the time-independent setting, one could rear-

range the matrix system such that the (1, 1)-block may be approximated accurately,
and select the preconditioner

P3,T =
⎡

⎣

−̂S2,T 0 K�
0 βτM1/2 + Du −τMcheb
0 −τMcheb 0

⎤

⎦ .

Inverting Mcheb requires the application of Chebyshev semi-iteration to Nt mass
matrices M , and the Schur complement approximation is given by

̂S2,T := − 1

τ 2

(K� + ̂M2,T
)M−1(βτM1/2 + Du

)M−1(K + ̂M�
2,T

)

,
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with

̂M2,T = τ
[

diag
(

τM1/2 + Dy
)]1/2 [diag

(

βτM1/2 + Du
)]−1/2 M.

Similar eigenvalue results can be shown for the Schur complement approximation
̂S1,T as for the approximations used in the time-independent case.

Remark 1 We highlight that a class of methods which is frequently utilized when
solving PDE-constrained optimization problems, aside from the iterative methods
discussed in this paper, is that of multigrid. We recommend [8] for an overview of
such methods for PDE-constrained optimization, [7] for a convergence analysis of
multigrid applied to these problems, [20,21] for schemes derived for solving flow
control problems, and [6] for a method tailored to problems with additional bound
constraints. These solvers require the careful construction of prolongation/restriction
operators, as well as smoothing methods, tailored to the precise problem at hand.
Applying multigrid to the entire coupled matrix systems resulting from the problems
considered in this paper, as opposed to employing this technology to solve sub-blocks
of the system within an iterative method, also has the potential to be a powerful
approach for solving problemswith bound constraints. Similarmultigridmethods have
previously been applied to the interior point solution of PDE-constrained optimization
problems in one article [9], and we believe that a carefully tailored scheme could be
a viable alternative when solving at least some of the numerical examples considered
in Sect. 5.

Alternative problem formulations

We have sought to illustrate our interior point solvers, and in particular the precon-
ditioned iterative methods for the solution of the associated Newton systems, using
quadratic tracking functionals with a quadratic cost for the control, as in (2). We now
wish to briefly outline some of the possible extensions to this problem that we believe
we could apply our method to, as below:

– Boundary control problems Our methodology could be readily extended to prob-
lems where the control (or state) variable is regularized on the boundary only
within the cost functional, for instance where

J (y, u) = 1

2
‖y − ŷ‖2L2(Ω) + β

2
‖u‖2L2(∂Ω).

For such problems, we would need to take account of boundary mass matrices
within the saddle point system that arises, however preconditioners have previously
been designed for such problems that take into account these features (see [35],
for instance).

– Control variable regularized on a subdomain Analogously, problems may be
considered using our preconditioning approach where the cost functional is of the
form
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J (y, u) = 1

2
‖y − ŷ‖2L2(Ω) + β

2
‖u‖2L2(Ω1)

,

where Ω1 ⊂ Ω . The matching strategy of Sect. 4.1 may be modified to account
for the matrices of differing structures.

– Alternative regularizations Afurther possibility is for the control (or state) variable
to be regularized using a different term, for instance an H1 regularization term of
the following form:

J (y, u) = 1

2
‖y − ŷ‖2L2(Ω) + β

2
‖u‖2H1(Ω)

= 1

2
‖y − ŷ‖2L2(Ω) + β

2
‖u‖2L2(Ω) + β

2
‖∇u‖2L2(Ω).

Upon discretization, stiffness matrices arise within the (1, 1)-block in addition to
mass matrices, however the preconditioning method introduced in this paper may
still be applied, by accounting for the new matrices within the matching strategy
for the Schur complement.

– Time-dependent problems Finally, we highlight that modifications to the cost
functional considered for time-dependent problems in Sect. 3.3 may be made. For
instance, one may measure the control (or state) variables at the final time only,
that is

J (y, u) = 1

2

∫ T

0

∫

Ω

(

y(x, t) − ŷ(x, t)
)2 dΩdt + β

2

∫

Ω

u(x, T )2 dΩ.

On the discrete level, this will lead to mass matrices being removed from portions
of the (1, 1)-block, and this information may be built into new preconditioners
[35,44].

We emphasize that there are some examples of cost functional, for instance a functional
where a curl function is applied to state or control, or one which includes terms of the
form

∫

max{0, det(∇ y)} (see [19]), where the preconditioning approach presented
here would not be directly applicable. As PDE-constrained optimization problems
are widespread and varied in type, much useful further work could be carried out on
extending the method presented in this paper to more diverse classes of optimization
problems.

5 Numerical experiments

Having motivated our numerical methods for the solution of the problems considered,
we now wish to test our solvers on a range of examples. These test problems are of
both time-independent and time-dependent form, and are solved on a desktop with a
quad-core 3.2GHz processor. For each test problem, we discretize the state, control
and adjoint variables using Q1 finite elements. Within the interior point method, the
value of the barrier reduction parameter σ is set to be 0.1, with α0 = 0.995, and εp =
εd = εc = 10−6. To solve the Newton systems arising from the interior point method,
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we use the Ifiss software package [11,43] to construct the relevant finite element
matrices. When the symmetric block diagonal preconditioner P1 is used, we solve
the Newton systems using theMinres algorithm to a relative preconditioned residual
norm tolerance of 10−8, and the Chebyshev semi-iteration method to approximate
the inverse of the (1, 1)-block (apart from within one experiment where we use a
diagonal approximation), as well as the AGMG method to approximate the inverse
Schur complement.Where the block triangular preconditionersP2 andP3 are applied,
we solve the Newton systems with the preconditioned Gmres method to a tolerance
of 10−8; we apply 20 steps of Chebyshev semi-iteration to approximate the (1, 1)-
block, and once again utilize AGMG for the Schur complement approximations. We
highlight that it would be feasible to relax the tolerances for Minres and Gmres in
order to lower the overall CPU time for the interior point scheme [16], however we
elect to solve the matrix systems relatively accurately in order to fully demonstrate
the potency of our preconditioned iterative methods. All results are computed using
Matlab R2015a.

Control constrained problems The first experiments we carry out involve a Poisson
control problem, with L = −∇2 applied on Ω := [0, 1]2, y = 0 on the bound-
ary of Ω , and the desired state given by ŷ = e−64

(

(x1−0.5)2+(x2−0.5)2
)

, where the
spatial coordinates x = [x1, x2]�. We solve this problem using the Minres algo-
rithm with preconditioner P1, using both the Chebyshev semi-iteration method and
the matrix diagonal to approximate the (1, 1)-block within the preconditioner. The
results obtained are shown in Table 1, for a range of mesh-sizes h and regularization
parameters β. A solution plot for β = 10−2 is also shown in Fig. 1. We select box con-
straints for the control variable only, based on the value of β used and the behaviour of
the optimal control problem when no bound constraints are imposed—we are careful
to make sure that the constraints are sensible physically, but also challenging for our
interior point solver. The constraints taken for each value of β are stated in Table 1.
It is worth pointing out that increasing the accuracy of discretization (decreasing h
by a factor of 2) typically adds about one extra interior point iteration, which once
again demonstrates that interior point methods are not very sensitive to the problem
dimension (as discussed in [17], for instance). We find that both the number of itera-
tions of the interior point method, and the average number of Minres iterations per
interior point (Newton) step, are very reasonable for the problem considered. Whereas
we observe an increase in iterative steps for the more challenging case of smaller β,
all numbers are low, in particular the very encouraging iteration counts for moderate
regularization parameters. We also find that, as one might expect, the computational
cheapness of a diagonal approximation of the (1, 1)-block is counteracted by the higher
Minres iteration numbers that result.

Problemswith state constraints Wenext examine a Poisson control problem involving
state constraints, where ŷ = sin(πx1)sin(πx2), and y = ŷ on the boundary of Ω . We
apply the preconditioners P2 (with Chebyshev semi-iteration used to approximate the
(1, 1)-block) and P3, and solve using Gmres to a tolerance of 10−8 for a range of
h and β. Again the results, which are presented in Table 2, are very promising when
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Fig. 1 Contour and mesh plots of the solution to the Poisson control example with control constraints, for
state variable y (top) and control variable u (bottom), with β = 10−2

either preconditioner is used, and a large degree of robustness is achieved despite
the very general matrix systems which can arise at each interior point iteration. We
highlight that the iteration counts are likely to vary depending on how severe the box
constraints that we impose are, as the structure of the matrices can change drastically.
In Table 3 we present results for this problem (for β = 10−2) with preconditionersP1,
P2 and P3—we observe in particular that the CPU times scale in an approximately
linear fashion with the dimension of the matrix systems being solved.

In order to illustrate the potential of our solvers to handle PDE constraints of
varying forms, in Table 4 we present results where the PDE constraint is an indefinite
Helmholtz equation, that is Ly = −∇2y − k2y for a given (positive) parameter
k. We highlight that the forward Helmholtz equation itself is a notoriously difficult
problem to solve numerically [12], and a great deal of research has been undertaken
concerning the preconditioning of such systems (we recommend [13] for a discussion
of shifted Laplacian preconditioners for these problems). We therefore emphasize
that, given the challenges involved and the inherent indefiniteness of the problem, it
is extremely difficult to obtain completely robust solvers, and much future research
could be undertaken in this area. However the results obtained indicate that, at least
for some test problems, the interior point method presented can be applied for a range
of parameter setups.
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Table 2 Results for the Poisson control example with state constraints, for a range of values of h and β

β = 1 β = 10−2 β = 10−4 β = 10−6

−0.1 ≤ y ≤ 0.002 −0.1 ≤ y ≤ 0.175 −0.1 ≤ y ≤ 0.9 −0.1 ≤ y ≤ 1

P2

h

2−2 11 5.3 8 5.0 9 5.0 10 5.0

2−3 12 9.9 9 10.2 10 13.3 10 10.9

2−4 13 11.4 10 12.9 11 16.8 11 13.5

2−5 14 12.1 11 13.3 13 27.4 12 15.0

2−6 16 12.5 12 13.6 14 17.8 13 15.7

2−7 17 12.7 13 14.6 16 16.9 14 16.3

P3

h

2−2 11 5.0 8 5.1 9 5.0 10 5.0

2−3 12 9.6 9 9.1 10 10.5 10 10.5

2−4 13 11.2 10 10.3 11 12.3 11 12.4

2−5 14 12.1 11 10.8 13 12.9 12 13.5

2−6 16 12.6 12 11.4 14 13.3 13 13.9

2−7 17 13.1 13 13.0 16 13.5 14 14.5

Presented are the number of interior point iterations required to achieve convergence (italic, left), and
average number of Gmres steps needed (plain text, right). Results are given when the preconditioners P2
(top) and P3 (bottom) are used

Table 3 Number of interior point (Newton) iterations, average number of iterations of the Krylov subspace
method per interior point step, and CPU time required to solve the Poisson control example with state
constraints, when the preconditioners P1, P2 and P3 are used

β = 10−2 P1 P2 P3

IPM Krylov CPU IPM Krylov CPU IPM Krylov CPU

h

2−2 8 8.0 0.13 8 5.0 0.20 8 5.1 0.22

2−3 9 11.8 0.23 9 10.2 0.35 9 9.1 0.34

2−4 10 14.5 0.46 10 12.9 0.63 10 10.3 0.57

2−5 11 14.1 1.8 11 13.3 2.6 11 10.8 2.4

2−6 13 14.8 9.1 12 13.6 11.4 12 11.4 10.1

2−7 14 14.9 37.4 13 14.6 54.4 13 13.0 53.8

Results are presented for a range of h, and fixed β = 10−2

Number of interior point (Newton) iterations is shown in italics. CPU time required to solve the Poisson
control example with state constraints is shown in bold

Both state and control constraints In Table 5 we investigate a problem of convection-
diffusion control type, with L = −0.01∇2 + [ − 1√

2
, 1√

2

]� · ∇, and ŷ =
e−64

(

(x1−0.5)2+(x2−0.5)2
)

. We now impose both state and control constraints (as spec-
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Fig. 2 Contour and mesh plots of the solution to the convection-diffusion control example with state and
control constraints, for state variable y (top) and control variable u (bottom), with β = 10−2

ified for each value of β), and test the preconditioners P2 and P3 using Gmres. We
also present a solution plot for β = 10−2 in Fig. 2. For convection-diffusion control
problems such as this, we find there is a great advantage in applying the precondi-
tioner P3 over the preconditioner P2, due in part to the accurate approximation of the
(1, 1)-block within it. Indeed this is demonstrated by the numbers ofGmres iterations
required, which are much lower when using the preconditioner P3, especially for the
final interior point iterations when convergence is close to being achieved. TheGmres
solver with P3 demonstrates excellent robustness considering the complexity of the
problem.

3D test problems It is also important to emphasize that the methodology presented
in this work can be readily applied to three dimensional test problems—indeed these
are problems for which it is generally accepted that preconditioned iterative meth-
ods are essential, as the huge computer storage requirements associated with such
problems ensure that direct methods are out of reach. We therefore experiment using
a Poisson control problem applied on the domain Ω := [0, 1]3, with desired state
ŷ = e−64

(

(x1−0.5)2+(x2−0.5)2+(x3−0.5)2
)

and spatial coordinates x = [x1, x2, x3]�.
We present numerical results in Table 6, demonstrating that, as for two dimensional
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Table 7 Results for the heat equation control example with control constraints, for a range of values of h,
τ , and β, and preconditioner P1,T

β = 10−1 β = 10−2 β = 10−3 β = 10−4

0 ≤ u ≤ 0.1 0 ≤ u ≤ 1 0 ≤ u ≤ 3 0 ≤ u ≤ 30

P1,T (τ = 0.04)

h

2−2 13 13.1 15 16.5 16 19.7 21 31.3

2−3 15 13.7 16 16.6 18 20.5 24 30.6

2−4 16 14.0 18 17.1 20 20.8 24 28.2

2−5 16 14.0 19 17.5 21 21.0 25 27.5

2−6 18 14.5 19 17.5 22 21.1 27 27.2

P1,T (τ = 0.02)

h

2−2 14 13.0 16 15.9 17 19.8 23 31.9

2−3 15 13.4 17 15.6 19 20.5 25 30.9

2−4 16 13.7 18 16.0 21 20.9 25 27.6

2−5 17 14.0 19 16.4 22 21.1 28 28.3

2−6 15 13.4 19 16.2 22 20.8 27 27.6

P1,T (τ = 0.01)

h

2−2 14 12.2 16 15.4 18 19.6 24 31.0

2−3 15 12.4 18 15.7 19 19.9 28 30.9

2−4 16 12.8 18 15.7 21 20.2 27 28.2

2−5 16 12.8 18 15.7 22 20.5 30 28.3

2−6 17 13.0 19 15.8 22 20.4 29 28.5

Presented are the number of interior point iterations required to achieve convergence (italic, left), and
average number of Minres steps needed (plain text, right)

problems, rapid convergence is achieved with robustness in problem size and regular-
ization parameter.

Time-dependent PDE constraints To demonstrate that our solvers are also able to han-
dle matrix systems of vast dimension arising from time-dependent PDE-constrained
optimization problems, we present results in Table 7 for a heat equation control prob-
lem, with the PDE constraint given by yt − ∇2y = u (for t ∈ (0, 1]), and with
additional control constraints imposed. The number of interior point iterations, and
averageMinres iteration count whenP1,T is applied, are provided for a range of h and
β. Asmentioned earlier, the backward Euler method is used for the time discretization,
and values of τ = 0.04, 0.02 and 0.01 are tested for the time-step (in other words
with 25, 50 and 100 time intervals). In Table 8, we present results obtained for the
same problem using block triangular preconditionerP2,T withGmres. We once again
observe a high degree of robustness in problem size (whether increased by refining
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the mesh in the spatial coordinates, or by decreasing the time-step) and regularization
parameter.

Our final investigation involves the optimal control of the wave equation, which is
the same problem as above, except with the PDE operator ytt − ∇2y = u and with an
initial condition imposed on yt (which we set to be zero). The recent work [27] derives
an implicit scheme for this problem,which involves averaging theLaplacian term in the
PDEoperator.Within thematrixK, this leads to discrete approximations of the operator
I − τ 2

2 ∇2 on the block diagonal entries, as well as additional entries on the two blocks

below the diagonal (corresponding to the operators −2I and I − τ 2

2 ∇2, respectively).
The method is designed to be unconditionally convergent, while also removing the
requirement of a Courant–Friedrichs–Lewy (CFL) condition of the form τ ≤ h [27].
We investigate the potency of our preconditioners for this matrix system. In Table 9,
we present the average number of Minres or Gmres iterations required to solve the
systems arising from the interior point method. Although there is a larger variation in
the number of steps required, due to the additional terms within the matrix system,
the performance of the method is very encouraging considering the high complexity
of the problem. We emphasize once again that the performance of the method is
dependent somewhat on the severity of the box constraints imposed, however the
numerical results obtained for a range of time-independent and time-dependent PDE-
constrained optimization problems demonstrate the potency of the solvers presented
in this manuscript.

6 Concluding remarks

In this paper we have presented a practical method for the interior point solution
of a number of PDE-constrained optimization problems with state and control con-
straints, by reformulating the minimization of the discretized system as a quadratic
programming problem.Having outlined the structure of the algorithm for solving these
problems, we derived fast and feasible preconditioned iterative methods for solving
the resulting Newton systems, which is the dominant portion of the algorithm in terms
of computational work. Encouraging numerical results indicate the effectiveness and
utility of our approach.

The problems we considered involved Poisson control, heat equation control, and
both steady and time-dependent convection-diffusion control. A natural extension of
this work would be to consider the control of systems of PDEs, for instance Stokes
control and other problems in fluid flow, as well as the control of nonlinear PDEs,
which arises in a wide range of practical scientific applications. The latter task would
be accomplished by reformulating the discretization as a nonlinear programming
problem—the robust solution of such formulations is a substantial challenge within
the optimization community, but would represent significant progress in tackling real-
world optimal control problems.
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