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Abstract We present a mechanised semantics for higher-order logic (HOL), and a proof of
soundness for the inference system, including the rules for making definitions, implemented
by the kernel of the HOL Light theorem prover. Our work extends Harrison’s verification
of the inference system without definitions. Soundness of the logic extends to soundness
of a theorem prover, because we also show that a synthesised implementation of the kernel
in CakeML refines the inference system. Apart from adding support for definitions and
synthesising an implementation, we improve on Harrison’s work by making our model of
HOL parametric on the universe of sets, and we prove soundness for an improved principle
of constant specification in the hope of encouraging its adoption. Our semantics supports
defined constants directly via a context, and we find this approach cleaner than our previous
work formalising Wiedijk’s Stateless HOL.
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1 Introduction

In this paper, we present a mechanised proof of the soundness of higher-order logic (HOL),
including its principles for defining new types and new polymorphic constants, and de-
scribe production of a verified implementation of its inference rules. This work is part
of a larger project (see Myreen et al. [26] and Kumar et al. [17]), to produce a verified
machine-code implementation of a HOL theorem prover. This paper continues the top half
of the project: soundness of the logic, and a verified implementation of the logical kernel in
CakeML [18].

What is the point of verifying a theorem prover and formalising the semantics of the
logic it implements? One answer is that it raises our confidence in its correctness. A theorem
prover implementation usually sits at the centre of the trusted code base for verification
work, so effort spent verifying the theorem prover multiplies outwards. Secondly, it helps
us understand our systems (logical and software), to the level of precision possible only via
formalisation. Finally, a theorem prover is a non-trivial piece of software that admits a high-
level specification and whose correctness is important: we see it as a catalyst for tools and
methods aimed at developing complete verified systems, readying them for larger systems
with less obvious specifications.

We build on Harrison’s proof of the consistency of HOL without definitions [11], which
shares our larger goal of verifying concrete HOL theorem prover implementations, and ad-
vance this project by verifying an implementation of the HOL Light [12] kernel in CakeML,
an ML designed to support fully verified applications. We discuss the merits of Harrison’s
model of set theory defined within HOL, and provide an alternative not requiring axiomatic
extensions to the theorem prover’s logic.

Definition by conservative extension is one of the hallmarks of using HOL, and makes
the logic expressive with a small number of primitives. When considering implementations
of the logic, the definitional rules are important because defined constants are not merely
abbreviations, but are distinguished variants in the datatypes representing the syntax of the
logic. For this reason, we think it is important to formalise the rules of definition and to use
a semantic framework that supports that goal.

The rule for defining term constants that we formalise, which is actually a rule for constant
specification, generalises the one found in the various HOL systems by adding support for
implicit definitions with fewer constraints and no new primitives. A full account of its history
and design can be found in Arthan [5] (and the extended version in this issue). As reported
there, our proof of its soundness has cleared the way for adoption of the improved rule.

The main result of the work described in this paper is a verified CakeML implementation of
the logical kernel of HOL Light. We intend to use this kernel implementation as the foundation
for a verified machine-code implementation of a complete LCF-style [23] theorem prover
with the kernel as a module. The specific contributions of this paper are:

— aformal semantics for HOL that supports definitions (Sect. 4), against a new specification
of set theory (Sect. 3),

— proofs of soundness and consistency (Sect. 5) for the HOL inference system, including
type definitions, the new rule for constant specification, and the three axioms used in
HOL Light,
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— averified implementation of a theorem-prover kernel (based on HOL Light’s) in CakeML
(Sect. 6) that should be a suitable basis for a verified implementation of a theorem prover
in machine code.

All our definitions and proofs have been formalised in the HOL4 theorem prover [29] and
are available from https://cakeml.org.! We briefly discuss the natural question of trusting an
unverified theorem prover for this work, and how we might skate along the barriers around
true self-verification, in the conclusion.

A version of this paper [17] was originally published in the conference proceedings of
ITP 2014, and describes a semantics for Stateless HOL [34]. By contrast, the semantics
presented in this paper works directly on standard HOL and uses a theory context to handle
definitions (in the style of Arthan [4]). We found this new style of semantics to be both
easier to understand and simpler to work with. It also enables us to better characterise the
abstraction barrier provided by the generalised rule of constant specification. As well as
describing an improved formalisation, we use the space available in this Special Issue to give
a more complete description than was possible in the conference paper.

2 Approach

Higher-order logic, or HOL, as we use the term in this paper, is a logic that was first proposed
and implemented as an alternative object logic for LCF by Mike Gordon [10]. It adds poly-
morphism a la Milner [22] to Church’s simple type theory ([3, Chapter 5], [8],) resulting in a
tool that has proved remarkably powerful over the last 30 years in a wide range of mechanised
theorem-proving applications. The logic is well-understood: a rigorous informal account of
its simple and natural set-theoretic semantics has been given by Pitts and is included in the
HOL4 theorem prover’s documentation [27]. Our aim here is to build a formal model of
this semantics, against which we can verify a formalisation of the HOL inference system.
We will then take the inference system as a specification, against which we can verify an
implementation of a theorem-prover kernel based on HOL Light’s. This task can be broken
down into the following steps:

1. Specify the set-theoretic notions needed. (Sect. 3)

2. Define the syntax of HOL types, terms, and sequents. (Sect. 4.1)

3. Define semantic functions assigning appropriate sets to HOL types and terms, and use
these to specify validity of a sequent. (Sect. 4.2)

4. Define the inference system: how to construct sequents-in-context (the rules of inference),
and how to extend a context (the rules of definition). (Sect. 4.3)

5. Verify the inference system: prove that every derivable sequent is valid. Deduce that the
inference system is consistent: it does not derive a contradiction. (Sect. 5)

6. Write an implementation of the inference system as recursive functions in HOL, and
verify it against the relational specification of the inference rules. (Sect. 6.1)

7. Synthesise a verified implementation of the inference rules in CakeML. (Sect. 6.2)

We construct the specifications, definitions, and proofs above in HOL itself (using the
HOLA4 theorem prover), in the style of Harrison’s work [11] towards self-verification of
HOL Light. Compared to Harrison’s work, items 67 are new, items 2—5 are extended and
reworked to support a context of definitions, and item 1 uses an improved specification. Our
implementation language, CakeML [17], is an ML-like language (syntactically a subset of

1 Specifically, https://code.cakeml.org/tree/version1/hol-light.
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Fig. 1 Producing a sound
implementation by refinement

’ Set Theory Specification ‘

HOL semanticsT Tsoundness proof
’ HOL Inference Rules ‘

refinement proof

’ Monadic Kernel Functions ‘

synthesisl Tautomatic refinement proof

’ Implementation in CakeML ‘

Standard ML) with a formal semantics specified in HOL and for which there are automated
techniques (Myreen and Owens [25]) for accomplishing item 7.

The bulk of our programme is concerned with soundness: we say an inference rule is
sound if whenever its antecedents hold in all models? then so does its succedent. Observe
that soundness does not require the existence of models. Given a deductive system defined
by axioms and inference rules, the soundness of the inference rules does not imply the
consistency of the axioms, but it does imply that deductive closure of any set of axioms that
admits a model is consistent. It is useful to distinguish between soundness of the inference
rules and consistency of the deductive system, as we are able to give a formal proof of the
soundness of the inference system within HOL, while we cannot expect to prove consistency:
Godel’s second incompleteness theorem [9] prevents us from proving HOL’s consistency in
HOL, assuming HOL is consistent. Nonetheless, to validate our formalisation of the semantics
we have carried out some proofs that give evidence of consistency. In particular, we prove in
HOL the consistency of HOL with its axiom of infinity omitted. This gives fairly convincing
evidence that we have correctly captured the semantics.

Our approach avoids making any axiomatic extensions to HOL. We also isolate results
that are dependent on the set-theoretic axiom of infinity, so that as much as possible is proved
without any undischarged assumptions. We are able to use assumptions on our theorems
rather than asserting new axioms in the logic because we formalise a specification of set
theory rather than defining a particular instance of a set theory as Harrison [11] did.

The results of following the plan above fit together as shown in Fig. 1. The overall theo-
rems we obtain are about evaluating the CakeML implementations of the HOL Light kernel
functions in CakeML’s operational semantics. For each kernel function, we prove that if the
function is run in a good state on good arguments, it terminates in a good state and produces
good results. Here “good” refers to our invariants. In particular, a good value of type thm
must be a HOL sequent that is valid according to the set-theoretic semantics.

We prove these results by composing the three proof layers in the diagram. The top layer is
the result of steps 1-5. The HOL semantics gives meaning to HOL sequents, from which we
obtain definitions of validity and consistency. Validity concerns the truth of a sequent within
a fixed context of definitions, whereas consistency is about whether the context itself has a
model. The soundness proof says that each of the HOL inference rules preserves validity of
sequents, and each of the HOL principles of definition preserves consistency of the context.

The middle layer corresponds to step 6. As described in our previous work [17,26],
we define shallowly-embedded HOL functions, using a state-exception monad, for each
of the HOL Light kernel functions. These “monadic kernel functions” are a hand-crafted

2 Throughout the paper, we are concerned only with standard models of HOL, that is, where the Boolean
and function types and the equality constant are interpreted in the standard way, and function spaces are full
(unlike in Henkin semantics [13]). See the paragraph on standard interpretations in Sect. 4.2.
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implementation, but are written following the original OCaml code for HOL Light closely,
and we prove that they implement the inference rules. Specifically, if one of these functions
is applied to good arguments, it terminates with a good result; any theorem result must refine
a sequent that is provable in the inference system.

Finally, for step 7 we use the method developed by Myreen and Owens [25] to synthe-
sise CakeML implementations of the monadic kernel functions. The automatic translation
from shallowly- to deeply-embedded code is proof-producing. We use the generated certifi-
cate theorems to complete the refinement proof that links theorem values produced by the
implementation to sequents that are semantically valid.

In the context of our larger project, the next steps include: a) proving, against CakeML’s
semantics, that our implementation of the kernel can be wrapped in a module to protect the
key property, provability, of values of type thm; and b) using CakeML’s verified compiler
to generate a machine-code implementation of the kernel embedded in an interactive read-
eval-print loop that is verified to never print a false theorem.

The focus for most of the rest of the paper is the top layer of Fig. 1, wherein we describe how
we formalise the syntax, semantics, and soundness of HOL with full support for the definition
of new types and constants as well as support for non-definitional context-extension. We
return to the verified implementation part of the story, corresponding to the lower layers of
the figure, in Sect. 6. The paper ends with a discussion about self-verification and related
work.

Terminology and Notation — As our programme involves both refinement proofs (linking
implementations to specifications) and soundness proofs (linking an inference system to the
semantics of a logic), and for the latter both our meta-logic and object-logic are HOL, we
often need to refer to similar but different things and some care must be paid for clarity.
By “HOL” we refer, as in the section above, to higher-order logic itself. Particular inference
systems for HOL are implemented by interactive theorem-proving systems. The two theorem
provers of interest to us are HOL Light, because we formalise its inference system and use its
implementation as inspiration for our implementation in CakeML; and HOLA4, because we
use it to mechanise our proofs. We use “HOL4” and “HOL Light” unqualified to refer to the
theorem provers, and clarify explicitly when we mean the inference system instead. HOL4
implements a different inference system from HOL Light’s, but the two are inter-translatable.

We include extracts, generated by HOL4, from our formalisation in the paper. These
include definitions, for example, here is the standard library function for checking a predicate
holds for all elements of a list:

everyP[] < T
every P (h:it) <= PhneveryPt

Since the result of every P [s is Boolean, we use (<) in the defining equations; at other
types we simply use (=). As well as definitions we have theorems, which are shown with a
turnstile, for example:

F —every Pls < exists ((—) o P) Is
Free variables may appear in theorems; semantically, they behave as if universally quantified.
Datatype definitions are shown as in the following example of the polymorphic option type

with two constructors:

« option = None | Some «

@ Springer



226 R. Kumar et al.

Terms are sometimes annotated with their types, for example: (Some : bool — bool
option) F. Quantifiers are printed as binders, as in Vx. 3y. x # Some y, although in
HOL the quantifiers are ordinary constants (that operate on predicates, that is, functions with
codomain bool). The existential quantifier in the previous sentence might more pedantically
be printed as an application of (3) to Ay. x # Some y. Finally, we show the rules of
inductive relations using a horizontal line to separate premises from the conclusion. Thus the
rule, F Rxy A R* y z = R* x z, about the reflexive transitive closure of a relation can also
be written as follows:

Rxy
R*yz
R*xz

3 Set Theory Specification

We now begin the technical part of the paper, starting with a specification of set theory over
which the semantics of HOL will be specified in the next section. Axiomatic set theory can be
specified in terms of a single binary relation, the membership relation. In HOL, we can give
a quite straightforward development of the basic concepts of set theory as may be found in
any standard text (e.g., Vaught [30]) thus achieving clarity through familiarity and making it
easy to compare our formalisation with Pitts’ informal account [27]. Since our specification
is in HOL, we can write the membership relation and its axioms within the logic without
resorting to the metavariables and schemata required in the first-order setting?.

The most common set theory in textbook accounts is Zermelo—Fraenkel set theory ZF.
However, ZF’s axiom of replacement plays no role in giving semantics to HOL, so all we need
are the axioms of Zermelo’s original system: extensionality, separation (a.k.a. comprehension
or specification), power set, union, (unordered) pairing, and infinity. It will be convenient to
deal with the axiom of infinity separately. So we begin by defining a predicate on membership
relations, is_set_theory (mem : %# — % — bool), that asserts that the membership
relation satisfies each of the Zermelo axioms apart from the axiom of infinity. By formalising
the set-theoretic universe as a type variable, %/, we can specify what it means to be a model of
Zermelo set theory, while deferring the problem of whether such a model can be constructed.

The specification of the set-theoretic axioms is as follows:

is_set_theory mem <—
extensional mem A (3sub. is_separation mem sub) A
(Apower. is_power mem power) A (union. iS_union mem union) A
Aupair. is_upair mem upair

3 In our statement of the separation axiom, if the set x is infinite then P ranges over an uncountable set
corresponding to all subsets of x. Technically, this is a significant strengthening of the axiom of separation,
since it is not restricted to the countably many subsets of x that can be specified in the language of first-order set
theory. However, this is irrelevant to our purposes: it would simply complicate the description of the semantics
to impose this restriction (although our proofs in fact do not need instances of the axiom that could not be
expressed in first-order set theory). Similarly, we find it convenient to use the metalanguage choice function
and the metalanguage notion of finiteness rather than trying to give a first-order description of these notions
in a model.
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where

extensional mem <—
Vxy.x=y <= Va.memax < memay

is_separation mem sub <—
Vx P a.mema (subx P) <= memax AP a

is_power mem power <
Vx a. mem a (power x) <= Vb. mem b a= memb x

is_union mem union <+
Vx a. mem a (union x) <= 3Ib. mem a b A\ mem b x

is_upair mem upair <
Vxya.mema (upair xy) <= a=xVvVa=y

To state the (set-theoretic) axiom of infinity, we define what it means for an element
of 7 to be infinite: is_infinite mem s <= —FINITE {a | mem a s }. Here FINITE is
inductively defined (in HOL) for sets-as-predicates, so we are saying a set is infinite if it does
not have finitely many members. The (set-theoretic) axiom of infinity asserts that such a set
exists.

3.1 Derived Operations

Using the axioms above, it is straightforward to define standard set-theoretic constructions
that will support our specification of the semantics of HOL. In this subsection, we intro-
duce some of our notation for such derived operations. All our definitions are parametrised
by the membership relation, (mem : % — % — bool); we often elide this argu-
ment with a pretty-printing abbreviation, for example writing Funspace x y instead of
funspace mem x y.* When mem is used as a binary operator, we will from now on write
it infix as x < y instead of mem x y. Also, most of our theorems are under the assumption
is_set_theory mem; we often elide this assumption.

Using the axiom of separation we define the empty set and prove it has no elements, then
using pairing we define sets containing exactly one and exactly two elements. The latter
serves as our representation of the set of Booleans. We have the following, shown with and
without abbreviations for clarity:

(full notation)
F is_set_theory mem =
Vx. mem x IW0 mem) <= x =true mem Vv x = false mem

(abbreviated notation)
F x < Boolset <= x =True v x = False

4 We follow a loose convention that capitalised functions have the hidden mem argument. Be aware that
datatype constructors, which are also capitalised, are amongst the exceptions.
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We define Kuratowski pairs (Defn. V in [19]) as well as the cross product of two sets so
that the following properties hold.

F (a,b)=(c,d) < a=cAb=d
Fa<xxy <<= 3bc.a=b,c)Ab<xAc<y

From cross products, we can define relations, and then functions (graphs) as functional
relations. Abstract s ¢ f is our notation for the subset of s x ¢ that is the graph of (f : % —
%), and a / x denotes application of such a set-theoretic function a to an argument x. The
main theorem about application in set theory is that it acts like application in HOL:

Fx<sAfx<t= Abstractsrf/x=fx
Furthermore, we know functions obey extensional equality:

FVxx<s=fix<unAphx<bAfix=fHx) =
Abstract s 11 fi = Abstract s 1, f»

We define the set of functions between two sets, and prove that its elements are precisely
those made using Abstract:

F (Vx.x <s=fx<1t) = Abstract s t f < Funspace s ¢
F a < Funspace s t =
df.a=Abstractstf AVx.x <s=fx <t

The derived operations in our formalisation (a selection of which were shown in this
subsection) may be considered as an alternative description (compared to the Zermelo axioms)
of the interface required for giving semantics to HOL. In other words, any structure supporting
such constructions as pairs and functions is suitable.

It is worth noting that a relation (mem :  — % — bool) satisfying is_set_theory
mem will automatically satisfy the set-theoretic axiom of choice (AC), that is, we can prove
the following (where inhabited a stands for 3. s < a):

F Vx.(Va.a <x=inhabiteda) = 3f.Va.a<x=fra<a

We prove this by using the axiom of choice in HOL (i.e., the language we are using to
formalise set theory) to provide a HOL function (g :  — %) such that for every non-
empty (a : %), wehave g a < a. Then, givenaset (x : %) whose members are all non-empty,
we use Abstract (ultimately depending on our strong form of the axiom of separation) to
define the graph of g restricted to the members of x (as a member of the set-theoretic universe
7 ) and hence conclude that AC holds in our set theory. This is a consequence of our decision
to give a standard semantics to HOL.

3.2 Consistency of the Specification

So far we have specified a predicate on a membership relation asserting that it represents a
set theory with our desired structure (without the axiom of infinity). As a sanity check to
convince us that this part of the specification is consistent, we can construct a membership
relation that satisfies the predicate.

The hereditarily finite sets provide a simple model of set theory without the axiom of
infinity. This model can be represented concretely by taking % to be the type num of natural
numbers and defining mem n m to hold whenever the nth bit in the binary representation of
m is not zero. Of course, the axiom of infinity fails in this model since every set in the model
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is finite. Nevertheless, we can prove that it satisfies the other axioms (V_mem is essentially
the membership relation just described):

F is_set_theory V_mem

This shows that the notion of a set theory that we have formalised is not vacuous. One might
argue that we could just use the monomorphic type num in place of the type variable %/. Or
a little more abstractly, we could introduce a new type witnessed by the above construction
on num. However, we wish to state some properties that are conditional on the set-theoretic
axiom of infinity. Unfortunately, the axiom of infinity is provably false in a model obtained
from the countable set num and so results that assumed the axiom of infinity would be
trivially true.

Instead, if we identify the universe of the hereditarily finite sets construction with the
right-hand summand of the polymorphic type « + num, we can define a subtype o V of
o + num whose defining property is the existence of a membership relation satisfying
the Zermelo axioms other than infinity. Hence we can introduce a constant V_mem of type
aV — oV — boolwith I-is_set_theory V_mem as its defining property. Thus if we
work with V_mem the axiom of infinity is not provably false and we can meaningfully take
it is as an assumption when necessary.

In the remainder of our development, we leave mem as a free variable and add one or both
of the assumptions, is_set_theory mem and 3 inf. is_infinite mem inf, whenever they are
required. We provide V_mem in this section as a possible non-contradictory instantiation
for the free variable mem in our theorems. Any instantiation that satisfies both assumptions
would do, but we know we cannot exhibit one within HOL itself, so we prefer to leave the
theorems uninstantiated. Our decision to leave mem loosely specified (i.e., as a free variable)
throughout the development is made easier by HOL4’s parsing/printing support for hiding
the free variable. In a theorem prover without such syntactic abbreviations, the notational
clutter might have lent some encouragement to picking an instantiation up front.

Comparison to Harrison’s Approach ~ Rather than formalising a specification of axiomatic
set theory (which can then be instantiated), Harrison [11] constructs his model of HOL in
HOL at the same time as proving its requisite properties. In fact, his proof scripts allow one
to choose (by rearranging comments) between an axiomatic formalisation of the set theory
with an axiom of infinity or a conservative definition of the set theory without that axiom.
More specifically, with the first option, he declares a new type, intended to be the universe of
sets and asserts the axiom of infinity and a certain closure property® hold in that type, while in
the second option he defines the type to be countably infinite. He then (in both options) uses
what amounts to a type system (Harrison calls the types “levels”) to define a coherent notion
of membership in terms of injections into the universe. As a result, his sets are not extensional
since there are empty sets at every level; because of this technicality his construction does
not satisfy our is_set_theory.

Under the conservative option, Harrison still achieves a model without axiomatic exten-
sions for HOL without the axiom of infinity, since he can prove his closure property using
a construction similar to our V_mem above and that is all that is required to construct the
type system. The disadvantage is that the set-theoretic axiom of infinity is provably false
when one chooses the conservative option. In our approach, the polymorphism means that

5 The closure property asserts that, if X is any set of cardinality strictly less than that of the universe, then
the cardinality of the power set of X is also strictly less than that of the universe. This property holds but the
axiom of infinity fails in a countably infinite universe.
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the set-theoretic axiom of infinity is unprovable rather than false, and so it is meaningful to
prove theorems with that axiom as an assumption.

Harrison’s use of levels is motivated by the desire to assert just one axiom: the cardinality
property of the universe. With only this property, levels are required to distinguish different
embeddings into the universe (e.g., to distinguish powersets from cross products). Our ap-
proach with an explicit membership relation gives us a specification where these distinctions
are explicit. We do not need to appeal to a theory of cardinalities in the meta-logic, since
the assumptions we make (is_set_theory mem A Finf. is_infinite mem inf) mirror the
standard axioms of Zermelo set theory.

4 HOL Specification

With our specification of set theory in place, we now turn to the task of specifying the syntax
and semantics of HOL. At the level of terms and types, our specification of the syntax is
almost the same as Harrison’s [11]. Our terms are simplified by not needing to bake in any
primitive constants since we support a general mechanism for introducing new constants,
and our approach to substitution and instantiation of bound variables is improved. Also, our
abstraction terms match the implementation better by using a term (rather than just a name
and type) for the bound variable (see Sect. 4.1.1 below).

At the level of sequents, we introduce the notion of a theory describing the defined con-
stants, which we implement in the inference system as a context of theory-extending updates.
Compared to our previous work [17] on Stateless HOL [34], where information about defined
constants is carried on the terms and types themselves, this separate context of definitions
makes the inference system clearer and allows us to easily quantify over all interpretations
of the constants.

We present the HOL specification concisely, but give the important definitions in full so
that it might serve as a reference.

4.1 Sequents: The Judgements of the Logic

Formally, derivations in HOL produce judgements of the following form®:
(thy,h) | - ¢

This judgement is known as a sequent. It has a conclusion, ¢, a set of hypotheses (represented
by a list of terms), &, and is interpreted in a theory, thy consisting of axioms and a signature.
The meaning of a sequent is that the conclusion is true whenever all the hypotheses are true,
all the axioms are true, and all the terms are well-formed with respect to the signature. We
begin our specification at the bottom of this structure, starting with terms and types.

4.1.1 Terms and Types

The syntax of HOL is the syntax of the (polymorphic) simply-typed lambda-calculus.
Types are either variables or applied type operators.

type = Tyvar string | Tyapp string (type list)

6 We use the symbol (| -) for the sequents defined in our specification of HOL, reserving () for theorems
proved in the meta-logic (that of HOL4).
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Primitive type operators include Booleans and function spaces. We abbreviate Tyapp
"bool" []by Bool and Tyapp "fun" [x; y] by Funx y.
A term is either a variable, a constant, a combination (application), or an abstraction.

term =
Var string type
| Const string type
| Comb term term
| Abs term term

Variables carry their types: two variables with the same name but different types are distinct.
We expect the first argument to Abs to be a variable, but use a term so the implementation
can avoid destructing and reconstructing variables whenever it manipulates an abstraction.

Constants also carry a type, but are identified by their name: the type is there only to indicate
the instantiation of polymorphic constants. (Different constants with the same name are
disallowed, as we will see when we describe the signature of a theory and how it is updated.)
The sole primitive constant is equality; we abbreviate Const "=" (Fun zy (Fun ¢ty Bool))
by Equal ry.

Well-Typed Terms  The datatype above might better be called “pre-terms”, because the only
terms of interest are those that are well-typed. Every well-typed term has a unique type,
which is specified by the following relation.

(Var n ty) has_type ty (Const n ty) has_type ry
s has_type (Fun dty rty)

t has_type dty t has_type rty
(Comb s 1) has_type rty (Abs (Var n dty) t) has_type (Fun dty rty)

Well-typed terms differ from pre-terms only in that the first argument of every combination has
a function type, where the domain matches the second argument’s type, and the first argument
of every abstraction is a variable. We say welltyped rm <= 3Jty. rm has_type ty and it is
straightforward to define a function, typeof, to calculate the type of a term if it exists so that
welltyped rm <= rm has_type (typeof tm) holds.

Two operations over terms and types remain for us to describe, namely alpha-equivalence
and substitution. Both are complicated by the need to correctly implement the concept of
variable binding.

4.1.2 Alpha-Equivalence

Terms are alpha-equivalent when they are equal up to a renaming of bound variables. The
key idea of Harrison’s original approach is to formalise when two variables are equivalent in
a context of pairs of equivalent bound variables.

avars [] (vi,n2) <= vi =1
avars ((by,by)::bvs) (vi,vp) <—
vi =by Ava =by V vy # by Avy # by Aavars bvs (v, )

The variables must be equal to some pair of bound variables (or to themselves) without either
of them being equal to (captured by) any of the bound variables above. We lift this relation
up to terms, for example:
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avars bvs (Var x; ty;,Var x; ty,)
aterms bvs (Var x; ty;,Var x; ty,)

typeof v; = typeof v,
aterms ((vi,v2)::bvs) (t1,t2)

aterms bvs (Abs vy t1,Abs v 1)

Finally, we define aconv t; t, <= aterms [] (¢1,t2) Itis straightforward to show that this
is an equivalence relation.

4.1.3 Substitution and Instantiation

Now on substitution, let us first deal with types. Since there are no type variable binders,
type variables can simply be replaced uniformly throughout a type, given a type substitution
mapping variable names to types. We define tysubst i ry as the type obtained by instantiating
ty according to the type substitution i. We say is_instance ty, ty if 3i. ty = tysubst i zy,.

Substitution of terms for variables and of types for type variables in terms are the most
complex operations we need to deal with. Naive substitution for variables in a term may
introduce unwanted binding, for example when substituting Comb v; #; for v, in Abs vy v
the variable v; ought to remain free. The algorithm for term substitution (subst) therefore
renames bound variables as required to avoid unintended capture.

The algorithm for type instantiation (inst) in terms is also complicated by this kind of
problem. Consider, with x; = Var "x" (Tyvar "A") and x, = Var "x" Bool, substitution
of Bool for Tyvar "A" in Abs x; (Abs x, x1). The inner x; refers to the outer binder, but
after a naive substitution (which makes x; = x») it would incorrectly refer to the inner binder.
The solution is for the type instantiation algorithm to keep track of potential shadowing as it
traverses the term, and if any occurs to backtrack and rename the shadowing bound variable.

In Harrison’s original formulation of HOL in HOL, the main lemma about type instantia-
tion takes 377 lines of proof script and mixes reasoning about name clashes with the semantics
of instantiation itself. To clarify our formalisation’, we develop a small theory of nameless
terms using de Bruijn indices, where substitution and instantiation are relatively straight-
forward, and shift the required effort to the task of translating to and from de Bruijn terms,
which is somewhat easier than tackling capture-avoiding substitution directly. The analogous
lemma about type instantiation in our formalisation is only 47 lines: the bulk of the work
about name clashes appears in two lemmas totalling 166 lines about how instantiation can
just as well be done on de Bruijn terms.®

We prove that two terms are alpha-equivalent if and only if their de Bruijn representations
are equal. Using this fact, the main theorems we obtain about substitution and instantiation
are that they both respect alpha-equivalence:

F welltyped 1; A welltyped r, A subst_ok ilist A aconv t; t, =
aconv (subst ilist t) (subst ilist tp)

F welltyped 1; A welltyped r, A aconv ¢ 1, =
aconv (inst tyin 1) (inst tyin t;)

7 Porting Harrison’s proof directly would have been another option, but a less rewarding one involving
reconciling all the minor differences between our definitions and between HOL Light and HOLA4.

8 Harrison’s lemma is called SEMANTICS_INST_CORE, and ours are INST_CORE_dJbINST, INST_-
CORE_simple_inst, and termsem_simple_inst.
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Here subst_ok ilist means ilist is a substitution mapping variables to well-typed terms of
the same type. Since we also prove that alpha-equivalent terms have the same semantics,
these theorems allow us to prove soundness of the inference rules that do substitution and
instantiation.

To be clear, the inference rules do not use de Bruijn terms and our reasoning about them
is simply a proof technique. Verifying substitution and instantiation for an inference system
that used de Bruijn terms natively may have been easier. But additional work would then
have been required to verify a user-friendly interface, with named variables, for the kernel.

4.1.4 Theories

In our specification of HOL, every sequent carries a theory, which embodies information
about constants and type operators and thereby allows us to support principles of definition.
Formally, a theory (thy) consists of a signature (Sigof thy) together with a set of axioms
(axsof thy). The signature restricts the constants and type operators that may appear in a
sequent, and the axioms provide sequents that may be derived immediately. The principles
of definition introduce axioms to characterise the things that are defined.

We specify a signature as a pair of maps, (tysof sig,tmsof sig), assigning the defined type
operator names to their arities and the defined term constant names to their types. Well-formed
types obey the type signature:

lookup rysig name = Some (length args)
every (type_ok tysig) args

type_ok tysig (Tyvar x) type_ok tysig (Tyapp name args)
And well-formed terms obey both signatures:

type_ok (tysof sig) ty
lookup (tmsof sig) name = Some ty,

type_ok (tysof sig) ty is_instance ry ty
term_ok sig (Var x ty) term_ok sig (Const name ty)
term_ok sig tm;
term_ok sig tmy type_ok (tysof sig) ty
welltyped (Comb 1m tmy) term_ok sig tm
term_ok sig (Comb tm 1m;) term_ok sig (Abs (Var x ty) tm)

We include the condition that the term be well-typed in the combination case, and only allow
abstractions of variables, hence we have - term_ok sig = welltyped z.

We say a signature is standard if it maps the primitive type operators—function spaces
and Booleans—and the primitive constant—equality—in the way we would expect:

is_std_sig sig «—
lookup (tysof sig) "fun" = Some 2 A
lookup (tysof sig) "bool" = Some 0 A
lookup (tmsof sig) "=" = Some (Fun (Tyvar "aA") (Fun (Tyvar "A") Bool))
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We have a straightforward condition for a theory to be well-formed: all its components
are well-formed and the axioms are Boolean terms.

theory_ok thy <—
(Yty. ty € range (tmsof thy) = type_ok (tysof thy) ty) A
(Vp. p € axsof thy = term_ok (sigof thy) p A p has_type Bool) A
is_std_sig (sigof thy)

(Here tmsof thy is shorthand for tmsof (sigof thy), and similarly for the types.)

4.2 Semantics

The idea behind the standard (e.g., Pitts [27]) semantics for HOL is to interpret types as non-
empty sets and terms as their elements. Equality and function application and abstraction are
interpreted as in set theory, and a sequent is considered true if its interpretation is the true
element of the set of Booleans. Semantics for HOL in this style are a mostly straightforward
example of model theory.

The most fiddly parts of the semantics arise when dealing with polymorphic constants and
type operators with arguments, followed closely by issues arising from substitution and type
instantiation (which we covered in Sect. 4.1.3). Polymorphism is especially relevant to being
able to support defined constants. The approach we have taken here is to keep the treatment
of constants and type operators separate from the semantics of the lambda-calculus terms,
by parametrising the semantics by an interpretation, so that both pieces remain simple.

Our goal is to show how we give semantics to sequents (and their component parts) in a
theory. The ultimate notion we are aiming for is validity, (thy,h) = ¢, which says that the
semantics of c is true whenever the semantics of all the / are true and the axioms of thy are
satisfied. Validity quantifies over, and hence does not need to mention the semantic parameters
that give meaning to constants and variables. But these parameters, called interpretations
and valuations, are required for building the definition of validity out of semantics for the
component parts of a sequent.

The details of our semantic apparatus are new, compared to Harrison’s work [11] on HOL
semantics in a fixed context without definitions, and are inspired by the second author’s
specification [4] of ProofPower HOL’s logic.

Semantics of Types  The meaning of a HOL type is a non-empty set. Thus, we require type
valuations (7) to assign type variables to non-empty sets.

is_type_valuation t <= Vx. inhabited (t x)

The type signature (fysig below) says what the type operators are and how many arguments
they each expect. A type assignment (§) gives semantics to type operators; we require it to
assign correct applications of type operators to non-empty sets.

is_type_assignment rysig § <—
every
(X (name,arity).
VIs. length Is = arity A every inhabited Is = inhabited (8 name Is))
tysig
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The semantics of types simply maps the type valuation and type assignment through the type,
as follows:

typesem § v (Tyvars) =t s
typesem § t (Tyapp name args) = § name (Mmap (typesem § t) args)

Observe that since the type assignment (§) is a function in HOL, there are not necessarily
any set-theoretic functions involved in the semantics of type operators.

Semantics of Terms  The meaning of a HOL term is an element of the meaning of its type.
Thus, a term valuation (o) must assign each variable to an element of the meaning of its type.
To speak of valid types and their meanings requires a type signature and type assignment, so
the notion of a term valuation depends on them.

is_term_valuation tysig § 1 0 <—
Vv ty. type_ok tysig ty = o (v,ty) < typesem § t ty

The constant signature (tmsig below) gives the names and types of the constants, and a term
assignment () must assign each constant to an element of the meaning of the appropriate
type. This picture is complicated by the fact that constants may be polymorphic (that is,
their types may contain type variables), so a term assignment takes not only the name of
the constant but a list of meanings for the type variables, and the condition it must satisfy
quantifies over type valuations. For any type valuation, the term assignment must assign the
constant under that type valuation to an element of the meaning of the constant’s type.

is_term_assignment tmsig § y <—
every
(A (name,ty).
Vr.
is_type_valuation r =
y name (map t (sorted_tyvars ty)) < typesem § t ty) tmsig

The semantics of terms is defined recursively as follows. For variables, we simply apply
the valuation.

termsem mmsig (8,y) (t,0) (Var x ty) = o (x,ty)

For constants, we apply the interpretation but need to match the instantiated type of the
constant against its generic type, that is, the type given for the constant in the signature. This
is done using the instance function, explained in the next paragraph.

termsem msig (8,y) (r,0) (Const name ty) =
instance tmsig (8,y) name ty ©

Assuming® the given type is an instance of the generic type under some type substitution i,
instance applies the term assignment for the constant passing the meanings of the types to
which the type variables are bound under i.

lookup tmsig name = Some ty, =
instance tmsig (8,y) name (tysubst i tyy) © =
y name (Map (typesem § t o tysubst i o Tyvar) (sorted_tyvars ry,))

9 We leave unspecified the semantics of constants that are not in the signature or whose types do not match
the type in the signature.
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For applications, we simply use function application at the set-theoretic level.

termsem msig (8,y) (r,0) (Comb t; 1) =
termsem mmsig (5,y) (t,0) t1 / (termsem mmsig (8,y) (t,0) 1)

Similarly, for abstractions we create a set-theoretic function that takes an element, m, of
the meaning of the type of the abstracted variable to the meaning of the body under the
appropriately extended valuation.

termsem mmsig (8,y) (t,0) (Abs (Var x ty) b) =
Abstract (typesem § t ty) (typesem § t (typeof b))
(A m. termsem rmsig (8,y) (t,((x,ty) — m) o) b)

Above, ((x,ty) — m) o means the valuation that returns m when applied to (x,zy) but
otherwise acts like o.

Standard Interpretations  Our semantics so far makes no special treatment of HOL’s primi-
tive types and constants; indeed, we can neatly factor out the special treatment as a condition
on interpretations. First, we collect the parameters for terms and types together. A pair of a
type valuation and a term valuation is called a valuation. Similarly, a pair of a type assignment
and a term assignment is called an interpretation.

is_valuation tysig § (t,0) <—
is_type_valuation t A is_term_valuation tysig § t o
is_interpretation (rysig,tmsig) (8,y) <
is_type_assignment rysig § A is_term_assignment rmsig § y

We say an interpretation is standard if it interprets the primitive constants in the standard
way; namely, functions types as set-theoretic function spaces, Booleans as the set of Booleans,
and equality as set-theoretic equality (which is inherited from the meta-logic).

is_std_type_assignment § «—
(Ydom rng. § "fun" [dom; rng] = Funspace dom rng) A
8 "bool" [] = Boolset

is_std_interpretation (8,y) <—
is_std_type_assignment § A
y interprets "="on ["A"] as
1.
Abstract (head ) (Funspace (head /) Boolset)
(A x. Abstract (head /) Boolset (1 y. Boolean (x =y))))

The notation used above is defined as follows:

y interprets name on args as f <
V7. is_type_valuation T = y name (map t args) =f (map t args)

We will only be concerned with standard interpretations.
Satisfaction ~ We now turn to packaging the basic semantics of types and terms up and
lifting it to the level of sequents. A sequent, containing both hypotheses and a conclusion,

represents an implication. We say that an interpretation satisfies a sequent if the conclusion
of the sequent is true whenever the hypotheses are (for all valuations). Precisely,
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(8,y) satisfies ((tysig,tmsig),h,c)
Y.
is_valuation tysig § v A every (A t. termsem tmsig (8,y) v ¢t = True) h =
termsem mmsig (8,y) v ¢ = True

We defer checking syntactic well-formedness of the sequent (for example, that ¢ has type
Bool) until the definition of validity below.

Modelling  An interpretation models a theory if it is standard and satisfies the theory’s
axioms.

i models thy <—
is_interpretation (sigof thy) i A is_std_interpretation i A
V p. p € axsof thy = i satisfies (sigof thy,[ 1,p)

Validity ~ Finally, a sequent is valid if every model of the sequent’s theory also satisfies the
sequent itself.

(thy,h) = ¢ <—
theory_ok rhy A every (term_ok (sigof thy)) (c::h) A
every (A p. p has_type Bool) (c::h) A hypset_ok i A
Vi. i models thy = i satisfies (sigof thy,h,c)

(hypset_ok is a syntactic check on the list of hypotheses, ensuring that it is sorted; see
comments at the start of Sect. 4.3.1).

4.3 Inference System

We have seen what HOL sequents look like and how they are to be interpreted in set theory.
Now we turn to the inference system used to construct derivations of sequents.

Whereas the notion of a derivable sequent in a particular theory depends only on the
abstract formulation (signature plus axioms) of theories, when it comes to extending the
theory with new definitions (and other extensions) we introduce the more concrete notion
of a context. A context is a linear sequence of theory-extending'® updates. This formulation
corresponds nicely to the actual behaviour of an implementation of the inference system (that
is, a theorem prover).

We first look at the (within-theory) inference rules, then turn to the rules for theory
extension (definitions and non-definitional updates). At the end of the subsection, we look at
how we use theory extension to provide the initial axioms for the system.

4.3.1 Inference Rules

Recall that a sequent has the form (thy,h) | - ¢ where thy is a theory, / is a set of hypotheses
(Boolean terms) and c is the conclusion (another Boolean term). We represent the hypothesis
set by a list whose elements are sorted (and hence distinct) according to a term ordering that
equates only alpha-equivalent terms; we write the union of two such lists as 41 U A3, removal
of an element ¢ from & as & \ ¢, and the image of & under f as map_set f h.

10 oyr updates have a finer granularity than HOL4 theory segments or Isabelle/HOL theories, which usually
include multiple updates in our sense.
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In the HOL Light kernel, there are ten inference rules. Like Harrison, we define an abbre-
viation for equations since they appear frequently:

s ==t = Comb (Comb (Equal (typeof s)) s) ¢

We also use the following helper functions: vfree_in v tm means v occurs free in fm, and
subst_ok sig ilist ensures only well-formed terms are substituted and only for variables of
the same type. The rules are as follows:

(thy,h1) | -1 ==m

theory_ok thy (thy,hy) |-mp ==r
term_ok (sigof rhy) ¢ aconv mp mp
Wy D) |- r==1 TEFE (hyiy Uy [~ [==r TTANS
theory_ok rhy (thy,h1) |- p==¢q
p has_type Bool (thy,ho) |- P
term_ok (sigof thy) p ss aconv p p’ EQ MP
Wiph [-p  SSUME Why iy Uho) [-q o=
(thy,h1) | - ¢
(thy,h2) |- c2

DEDUCT_ANTISYM
(thy!hl \CZUhZ\Cl) |—Cl == —

(thy,h1) |- 11 ==n
(thy,h2) |-l ==r
welltyped (Comb [; 1)

(thy,h1 U hy) |— Comb I, I, == Comb r; rp MK_COMB
—exists (vfree_in (Var x ty)) h
type_ok (tysof thy) ty
(thy,h) |- 1==r
ABS

(thy,h) |- Abs (Var x ty) [ == Abs (Var x ty) r

theory_ok rhy
type_ok (tysof thy) ty
term_ok (sigof thy) t

(thy,[1) | - Comb (Abs (Var x ty) r) (Var x ry) ==t BETA
subst_ok (sigof thy) ilist
(thy,h) |- ¢
(thy,map_set (subst ilist) h) | - subst ilist ¢ INST
every (type_ok (tysof thy)) (map fst ryin)
(thy,h) |- ¢
INST_TYPE

(thy,map_set (inst tyin) h) | - inst tyin ¢
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There is one additional way for a sequent to be provable, namely, if it is an axiom of the
theory:

theory_ok thy
¢ € axsof thy

(thy,[]D |- ¢

Thus the new piece of the sequent syntax, the theory, interacts with the inference system
(which remains essentially as formalised by Harrison) only via the axioms of the theory and
the checks that all types and terms respect the signature of the theory.

4.3.2 Theory Extension

In the previous section, we defined provability within a fixed theory. To complete the inference
system, we also need mechanisms for changing the theory. At this point, we take a more
concrete view of theories, which we call contexts, by considering the specific changes that
can be made. For simplicity, we restrict ourselves to a linear sequence of extensions and
do not allow redefinition or branching or merging of theories. This linear view is sufficient
for HOL Light; a more complicated model might be necessary for theorem provers like
HOLA4, which supports redefinition, or Isabelle/HOL [33] which supports both redefinition
and context merging.

In our linear view, each change is an update and updates come in two kinds: definitional
extensions (the first two) and postulates (a.k.a. axiomatic extensions, the last three).

update =
ConstSpec ((string x term) list) term
| TypeDefn string term string string
| NewType string num
| NewConst string type
| NewAxiom term

We call a list of such updates a context. From a context (ctxt) we can recover a theory
(thyof ctxt) by calculating the constants and axioms introduced by each kind of update.
Postulates simply add new constants or axioms to the theory. We will specify exactly how
the definitional updates extend a theory shortly.

Some basic well-formedness conditions are required. The relation upd updates ctxt
specifies when upd is a valid extension of czxt. It can be considered as specifying the con-
ditions under which an update is allowed to be made. For example, the conditions for the
postulates, which simply ensure names remain distinct and that each piece of the postulate
is well-formed, are shown below.

name ¢ domain (tmsof czxt)
name ¢ domain (tysof ctxt) type_ok (tysof cixt) ry

NewType name arity updates ctxr NewConst name ry updates ctxt

prop has_type Bool
term_ok (sigof ctxt) prop

NewAxiom prop updates ctxt
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A context extends another if it is a series of valid updates applied to the other. The initial
context, supporting only equality, can be specified as an extension of the empty context:

init_ctxt =
[NewConst "=" (Fun (Tyvar "a") (Fun (Tyvar "A") Bool));
NewType "bool" 0; NewType "fun" 2]

We turn now to the changes introduced by definitional extensions and the conditions
on making them. Let us start with the definition of new types, represented by the update
TypeDefn name pred abs rep. Here name is the name of the new type and pred is a
predicate on an existing type called the representing type. The intuition behind the principle
of type definition is to make the new type isomorphic to the subset of the representing type
carved out by pred, which is required to be inhabited. Type definition introduces the new type
and also two constants between the new type and the representing type, asserting a bijection
via the following two axioms.

axioms_of_upd (TypeDefn name pred abs_name rep_name) =

(let abs_type = Tyapp name (sorted_tyvars pred) in
let rep_type = domain (typeof pred) in
let abs = Const abs_name (Fun rep_type abs_type) in
let rep = Const rep_name (Fun abs_type rep_type) in
leta = Var "a" abs_type in
let r = Var "r" rep_type
in

[Comb abs (Comb rep a) == a;

Comb pred r == (Comb rep (Comb abs r) == r)])

As can be seen in the construction of abs_type above, the new type has a type argument for
each of the type variables appearing in pred. The type variables are sorted (according to their
name) to ensure a canonical order for the new type’s arguments. The two introduced axioms
assert that the introduced constants, abs and rep, are inverses (when restricted to elements of
the representing type that satisfy pred).

The main condition on making a type definition is that the new type is non-empty. This is
ensured by requiring a sequent asserting that the predicate holds of some witness. Additionally
the predicate itself must not contain free variables, and the new names must not already appear
in the context.

(thyof ctxt,[ 1) | - Comb pred witness
closed pred
name ¢ domain (tysof czxt)
abs ¢ domain (tmsof czxt)
rep ¢ domain (tmsof czxr)
abs # rep

TypeDefn name pred abs rep updates ctxt

We will prove that context extension by type definition is sound, that is, the axioms it
introduces are not contradictory, in Sect. 5.1.2.

Finally, let us look at the definition of new term constants via our new generalised rule
for constant specification. The update ConstSpec egs prop, where egs are equations with
variables (varsof egs) on the left, signifies introduction of a new constant for each of the
variables which together share the defining specification prop. Thus prop (after substituting
the new constants for the variables) is the sole new axiom:
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axioms_of_upd (ConstSpec egs prop) =
(let ilist = consts_for_vars egs in [subst ilist prop])

The purpose of the equations is to provide witnesses that prop is satisfiable, so the rule takes
as input a theorem concluding prop assuming the equations. The complete list of conditions
can be seen below:

(thyof ctxt,map (A (s,2). Var s (typeof ) == 1) eqs) | - prop
every (At. closed ¢t A closed_tyvars r) (map snd egs)
V x ty. vfree_in (Var x ty) prop = member (x,ty) (varsof egs)
Vs. member s (map fst egs) = s ¢ domain (tmsof czxr)
all_distinct (map fst egs)

ConstSpec egs prop updates cixt

Here closed_tyvars ¢t means that type variables appearing in ¢ also appear in typeof ¢. The
design of this principle of constant specification is explained in detail by Arthan [5]. We prove
its soundness in Sect. 5.1.2. The rule of constant definition, which defines a new constant x
to be equal to a term t, can be recovered as an instance of constant specification:

ConstDef x r = ConstSpec [(x,1)] (Var x (typeof 1) ==1).

4.4 Axioms

We need some logical connectives and quantifiers to state two of the axioms asserted in HOL
Light. Since they are generally useful, it is convenient to define them first before asserting
the axioms.

4.4.1 Embedding Logical Operators

The connectives of propositional logic and universal and existential quantifiers (ranging over
HOL types) can be defined as constants!! in HOL. We define a list of updates each of which
defines a connective or quantifier as it is defined in HOL Light, and show, by calculating out
the semantics, that they all behave as intended.

Each of the connectives and quantifiers can be defined by an equation, so we use the
simple ConstDef name term version of the rule for constant specification. The following
function extends a context with definitions of the Boolean constants'2.

mKk_bool_ctxt ctxt =
ConstDef "~" NotDef::ConstDef "F" FalseDef::
ConstDef "\ \ /" OrDef::ConstDef "2 " ExistsDef::
ConstDef " ! " ForallDef::ConstDef "==>" ImpliesDef::
ConstDef " /\\ " AndDef::ConstDef "T" TrueDef::ctxt

1 In HOL theorem prover parlance these are sometimes collectively known as the theory of Booleans.

12 The names, "\\/" and " /\\ ", associated with OrDef and AndDef may appear to include extra back-
slashes, because backslashes must be escaped in strings in HOL4. The names are intended to be textual
representations of v and A.
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Here the definition terms are as in HOL Light, for example,

ForallDef =
Abs (Var "p" (Fun (Tyvar "A") Bool))
(Var "p" (Fun (Tyvar "A") Bool) ==
Abs (Var "x" (Tyvar "a")) (Const "T" Bool))

FalseDef =
Comb (Const " ! * (Fun (Fun Bool Bool) Bool))
(Abs (Var "p" Bool) (Var "p" Bool))

(Pretty-printed as shallow embeddings, they are (V) = (A P. P = (Ax. T)) and F = Vp. p.)
We also specify the expected signature for constants with these names, for example,

is_forall_sig mmsig <—
lookup tmsig " ! " = Some (Fun (Fun (Tyvar "aA") Bool) Bool)

and we show, by simple calculation, that sigof (mk_bool_ctxt ctxr) has the right signatures.

For the desired semantics of the Boolean constants, we refer to the connectives and quan-
tifiers in the meta-logic (that is, for us, the logic of HOL4). For example, for implication and
universal quantification, we have

is_implies_interpretation y < y interprets "==>" on [] as (A y. Boolrel (=))
is_forall_interpretation y <=
y interprets "!" on["A"] as
ML
Abstract (Funspace (head /) Boolset) Boolset
(A P.Boolean (Vx.x < head [ = P/ x = True)))

where the following helper functions interpret meta-level Booleans and relations on Booleans
in our set theory:

Boolean b = i £ b then True else False
Boolrel R =
Abstract Boolset (Funspace Boolset Boolset)
(A p. Abstract Boolset Boolset (1 g. Boolean (R (p = True) (¢ = True))))

The desired interpretations for all the Boolean constants are collected together as follows.

is_bool_interpretation (§,y) <—
is_std_interpretation (8,y) A is_true_interpretation y A
is_and_interpretation y A is_implies_interpretation y A
is_forall_interpretation y A is_exists_interpretation y A
is_or_interpretation y A is_false_interpretation y A
is_not_interpretation y

The theorem we prove about the definitions of the Boolean constants says they have the
desired semantics, that is, any interpretation that models a theory containing the definitions
interprets the constants as specified by is_bool_interpretation.

F theory_ok (thyof (mk_bool_ctxt ctxt)) A
i models (thyof (mk_bool_ctxt ctxt)) =
is_bool_interpretation i
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The semantics of a constant defined by an equation is uniquely specified, since that equation
must be satisfied by any model of the definition. So, proving the theorem above is simply
a matter of calculating out the semantics of the definitions of each of the constants and
observing that they match the specification.

4.4.2 Statement of the Axioms

The standard library of HOL Light appeals to NewAxiom exactly three times, to assert
the basic axioms of HOL that make it a classical logic and allow it to define the natural
numbers. The axioms are: functional extensionality, choice, and infinity. Since the deeply-
embedded syntax for the statements of the axioms is somewhat verbose, let us first look at
their statements at the meta level:

— extensionality: (Ax. f x) =f
— choice: P x = P ((¢) P)
— infinity: 3(f : ind — ind). ONE_ONE f A ONTO f

While extensionality can be asserted in the initial context, the other two need additional
constants to be added to the signature. For choice, we need to define implication, and to
introduce the choice operator (¢ above, but named “@” in the deep embedding.) For infinity,
we need to introduce the type ind of individuals, and to define the existential quantifier'?,
conjunction, and the ONE_ONE and ONTO functions.

We define context-updating functions for each of the axioms, asserting the axiom with
NewAxiom after introducing new constants if necessary. These are defined below, with
some of the deeply-embedded syntax abbreviated (SelectAx, InfinityAx, OntoDef, and
OneOneDef).

mk_eta_ctxt cixr =
NewAxiom
(Abs (Var "x" (Tyvar "A"))
(Comb (Var "£" (Fun (Tyvar "a") (Tyvar "B"))) (Var "x" (Tyvar "A"))) ==
Var "£" (Fun (Tyvar "aA") (Tyvar "B")))::ctxt

mk_select_ctxt cixt =
NewAxiom SelectAx::NewConst "@" (Fun (Fun (Tyvar "A") Bool) (Tyvar "a"))::ctxt

mk_infinity_ctxt czxt =
NewAxiom InfinityAx::NewType "ind" 0::ConstDef "ONTO" OntoDef::
ConstDef "ONE_ONE" OneOneDef::ctxt

4.5 Comparison to Stateless HOL

The semantics (and inference system) we have just described cleanly separates the semantics
of types from the semantics of terms. It also uses an explicit theory, with an interpretation,
to track which constants are defined, what their semantics are, and the axioms. By contrast,
Stateless HOL [34] puts types and terms in mutual recursion and has no separate theory
parameter. Stateless HOL constants carry their definitions as syntactic tags (rather than in
a separate signature), and the semantics interprets those tags directly (instead of using a

13- Axioms do not need to universally quantify their variables: free variables act as if universally quantified
because of the INST rule of inference.
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separate interpretation parameter). We described the semantics for Stateless HOL in the ITP
paper [17] on which this paper is based. By keeping the theory and its interpretation separate
in the present work, we gain the following advantages:

— The semantics of types and terms are no longer in mutual recursion, and are simpler to
understand individually.

—  We can more naturally use functions (typesem and termsem) for the semantics, instead
of mutually recursive relations.

— Specific parameters to support the axioms of choice and infinity are no longer required
within the semantics. Instead, they are handled generically by the type and term inter-
pretations, applied to "ind" and "@".

—  We can support new axioms, beyond the initial three axioms asserted in HOL Light, in
the same manner as the initial ones; the initial axioms are not baked into the semantics.

— The semantics of constants defined by new specification now properly captures the ab-

straction intended to be provided by that rule. The semantics are not tied to the specific
witnesses given when the definition is made.
In the Stateless HOL semantics, the semantics of a defined constant needs to be given in
terms of the tag on the constant which provides the witnesses. By contrast in the current
setup, the witnesses are only used in proving that the rule is sound (see Sect. 5.1.2). Since
we now have an explicit interpretation of the constants, it can vary over many possible
interpretations, constrained only by the axiom produced by the definition.

The primary motivation for Stateless HOL is the ability to “undo” definitions (this is
achieved by soundly allowing simultaneous distinct definitions of constants with the same
name). We did not take advantage of this ability in our verified implementation built under
a Stateless HOL semantics [17], since we first translated to a stateful implementation. If we
wanted to support undoing definitions, Stateless HOL is still an option worth consideration,
but based on our experience we would first consider adding undo support to the context-based
approach.

Additional advantages of Stateless HOL are that its kernel is purely functional, and there-
fore, we thought, would be easier to understand theoretically. We now claim that the difficulty
of verifying a stateful implementation (as we do in Sect. 6.2) is smaller than the difficulty of
giving semantics to the mutually recursive datatypes of Stateless HOL especially when the
rules of definition are included.

As an alternative approach to purely functional kernels, the OpenTheory [14] kernel
achieves purity by a careful redesign of the interface to the kernel while maintaining the
traditional idea of a context-extending mechanism for making definitions. The semantics
of an OpenTheory article is specified via a stateful virtual machine, but the higher-level
operations on the resulting OpenTheory packages are pure, and names are carefully managed,
so definitions never accidentally collide or go out of date. We expect to be able to verify an
OpenTheory proof checker against our HOL semantics.

5 Soundness and Consistency

We have now seen HOL's inference system, which provides rules for proving sequents within
a theory and updating that theory, and we have seen a specification of the meaning of such
sequents: in particular, when they are considered valid. The main results of this section are
that every sequent proved by the inference system is valid (soundness), with the corollary that
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some sequents cannot be proved, and that non-axiomatic extensions of contexts containing
HOL'’s axioms are modelled (consistency).

Soundness holds for both the inference rules and the rules for theory extension, with the
exception of NewAxiom. For an extension rule to be sound, it must put the inference system
in a state whereby it continues to produce only valid sequents. We ground this idea by proving
the continued existence of a model of the theory. Since we cannot prove NewAxiom sound
in general, we also need to prove the three axioms used in HOL Light to set up the initial
HOL context sound on a case-by-case basis.

We prove consistency for any non-axiomatic extensions of the following contexts:

fhol_ctxt = mk_select_ctxt (mk_eta_ctxt (mk_bool_ctxt init_ctxt))
hol_ctxt = mk_infinity_ctxt fhol_ctxt

The name of the first context above stands for “finitary HOL” since it omits the axiom of
infinity. We name it separately because the consistency theorem we can prove of it has no
assumptions apart from is_set_theory mem, which we saw in Sect. 3.2 can be discharged.
The consistency theorem for the full hol_ctxt requires the set-theoretic axiom of infinity as
an additional assumption.

5.1 Soundness
5.1.1 Inference Rules

The main soundness result for a fixed theory context is that every provable sequent is valid:
F (thy,h) |- ¢ = (thy,h) = ¢

Our proof of this does not differ substantially form Harrison’s, apart from our indirect treat-
ment of substitution and instantiation via de Bruijn terms. Recall that by convention we elide
on the theorem above the assumption is_set_theory mem and the mem argument passed to
the validity relation ().

The result above is proved by induction on the provability relation ( | -). Thus we have a
case for each of HOL’s inference rules, for example for EQ_MP:

F (thy,h) = p == q A (thy,hp) = p’ A aconv p p’ = (thy,hy U ha) k= q

The proof for each case typically expands out the semantics of the sequents involved then
invokes properties of the set theory. The case for the rule allowing an axiom to be proved is
trivial by the definition of validity which assumes the theory is modelled.

The main work in proving soundness of the inference rules is establishing properties of
the semantics of the operations used by the inference rules in constructing their conclusions.
For example, for instantiation of type variables in terms, we show that instead of instantiating
the term we can instantiate the valuations:

F term_ok (rysig,tmsig) tm =
termsem mmsig (8,y) (t,0) (inst tyin tm) =
termsem tmsig (8,y)
((A x. typesem § t (tysubst ryin (Tyvar x))),
(A (x,ty). o (x,tysubst tyin ty))) tm
This lemma is the main support for the INST_TYPE case of the soundness theorem
F every (type_ok (tysof thy)) (map fst tyin) A (thy,h) = c =

(thy,map_set (inst ryin) h) = inst tyin ¢
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since we need to establish conclusions about instantiations of terms from hypotheses about
the terms themselves.

5.1.2 Theory Extension

The definition of new types and constants extends the context in which sequents may be
proved, in particular it changes the signature of the theory and introduces new axioms de-
pending on the kind of definition. Intuitively, we do not want such extensions to invalidate
previously proved sequents, nor do we want the definitions to introduce an inconsistency.
The first property, preserving existing sequents, is easy to prove because the only depen-
dence of a term’s semantics on the theory is via the signature of constants and type operators
that appear in the term. Thus, as shown below, satisfaction is preserved as long as the context
grows monotonically, that is, without changing the signature of existing constants and type
operators (the syntax f C f’ means that f” agrees with f on everything in domain f).

b tmsig T tmsig’ A tysig C tysig’ A every (term_ok (tysig,tmsig)) (c::h) A
i satisfies ((rysig,tmsig),h,c) =
i satisfies ((tysig’,tmsig’),h,c)

All of our context-updating rules are monotonic, since we do not allow redefinition.

The second desired property of an update, not introducing an inconsistency, is what we
shall designate as making the update sound. To be precise, we call an update sound if any
model of a theory before the update can be extended to a model of the theory with the update:

sound_update ctxt upd <—
Vi.
i models (thyof ctxt) =
3i’. equal_on (sigof cxt) i i’ A i models (thyof (upd::cixt))

The constant equal_on helps formalise what we mean by one interpretation being an exten-
sion of another: they must be equal on terms and types in the previous context.

equal_on sigii <=
(Y name. name € domain (tysof sig) = tyaof i’ name = tyaof i name) A
Y name. name € domain (tmsof sig) = tmaof i’ name = tmaof i name

It is now simply a matter of showing that each of our rules for updating the context are sound
when their side conditions are met.

It is straightforward to show that NewType and NewConst are sound, because they do
not introduce any new axioms. We simply need to extend the interpretation with some plau-
sible interpretation of the data. The extended interpretation cannot be completely arbitrary,
because to be a model of a theory an interpretation must be well-formed (that is, must satisfy
is_interpretation). But a well-formed extension is always possible: for example mapping
each new type to the set of Booleans and each new constant to an arbitrary member of the
interpretation of its type (which is non-empty since the original theory is modelled). We
thereby prove the following theorems.

F theory_ok (thyof ctxt) A name ¢ domain (tysof ctxt) =
sound_update ctxr (NewType name arity)

F theory_ok (thyof cixt) A name ¢ domain (tmsof cixr) A type_ok (tysof cixt) ty =
sound_update cixt (NewConst name ty)
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Soundness of Type Definition A type definition, TypeDefn name pred abs rep, is sound if
the two axioms it introduces (asserting the abs and rep constants form a bijection between
the new type and the range of pred) can be made true by extending the original model with
well-formed interpretations for the new type and two new constants. Such an extension is
always possible, thus we can prove the following:

F (thyof ctxt,[1) | - Comb pred witness A closed pred A
name ¢ domain (tysof ctxt) A abs ¢ domain (tmsof czxt) A
rep ¢ domain (tmsof ctxt) A abs # rep =

sound_update cxt (TypeDefn name pred abs rep)

The idea behind the proof is to interpret the new type as the subset of the representing type
delineated by the semantics of pred, and to interpret the new constants as inclusion maps.
When the abs constant is applied to a member of the representing type that is not in the new
type, it simply picks an arbitrary element of the new type. The new type is guaranteed not to
be empty by the theorem saying pred holds for some witness, which is required to make the
type definition.

The proof of soundness of type definitions is the longest of the proofs about the rules
for extension, taking around 400 lines of proof script compared to around 200 for constant
specifications below and 40 for each of the other (non-definitional) updates. The reason is not
that the soundness argument is significantly more complicated; rather, it is because the rule
introduces many things (two axioms, two constants, and a type operator), where by contrast
constant specification only introduces one axiom and introduces its constants uniformly; some
work is required to calculate out the semantics of the equations in the axioms introduced by
a type definition, and to ensure that each piece of the extension is well-formed.

Soundness of Constant Specification  Specification of new constants, via ConstSpec egs
prop, introduces a single axiom, namely prop with its term variables replaced by the new
constants, and is sound if the new constants are interpreted so as to make this axiom true.
Such an interpretation is always possible when the side-conditions of the rule are met, thus
we have the following:

+ theory_ok (thyof cixt) A
(thyof ctxt,map (X (s,t). Var s (typeof r) == 1) egs) | - prop A
every (At. closed ¢t A closed_tyvars ¢) (map snd egs) A
(Vx ty. viree_in (Var x ty) prop = member (x,ty) (varsof egs)) A
(Vs. member s (map fst egs) = s ¢ domain (tmsof ctxr)) A
all_distinct (map fst egs) =
sound_update cixt (ConstSpec egs prop)

The idea behind the proof is to interpret the new constants as the semantics of the witness
terms (that is, map snd egs) given in the input theorem that concludes prop. This works
because then substitution of the new constants for the variables in prop has the same effect,
semantically, as discharging the hypotheses of the input theorem.

The key lemmas required are about how the term semantics interacts with the interpretation
and valuation. In particular, term substitution can be moved into the valuation; and, we can
ignore extensions made to the interpretation when considering the semantics of a term that
does not mention the new constants, since the semantics only cares about the interpretation
of things in the signature.
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F welltyped rm A subst_ok ilist =
termsem mmsig i (t,0) (subst ilist tm) =
termsem mmsig i (t,0 W map_subst (termsem tmsig i (t,0)) ilist) tm

F is_std_sig (tysig,tmsig) A term_ok (rysig,tmsig) tm A equal_on (rysig,tmsig) i i’ =
termsem mmsig i’ v rm = termsem rmsig i v tm

Above, f W Is means the function that maps according to a binding in Is if it exists else
defaults to applying f; and map_subst g ilist modifies the substitution ilist, which binds
variables to terms, by applying g to all the terms.

Using these lemmas, we can reduce showing that the new axiom is satisfied to showing
that prop is true under a valuation assigning the variables to the interpretations of the new
constants. Since we interpreted the new constants as the witness terms corresponding to each
variable, this then follows directly from the input theorem.

Sequences of Definitions  Combining the results in this subsection, which cover soundness
of each kind update except for NewAxiom, we prove that well-formed updates are sound.

F upd updates cixt A theory_ok (thyof ctxt) A (Y p. upd # NewAxiom p) =
sound_update ctxt upd

It is then a straightforward induction to show that a sequence of updates that do not introduce
any axioms except via definitions preserve the existence of a model.

F ctxty extends cixt; A theory_ok (thyof cixt1) A i models (thyof ctxty) A
(Vp. member (NewAxiom p) ctxt, = member (NewAxiom p) ctxt;) =
37'. equal_on (sigof ctxty) i i’ A i models (thyof ctxzy)

5.2 Consistency
5.2.1 Axioms

We show that each of the axioms is consistent by proving: if the axiom is asserted in a theory
that has a model, there is an extended interpretation that models the resulting theory. (This
is the same idea as was formalised for sound_update, which we do not reuse since it only
applies to a single update).

At this point, we drop our convention of eliding the is_set_theory mem assumption from
our theorems, to make clear which of the axioms depend on which facts about the set theory.

The semantics of the axiom of extensionality is true because set-theoretic functions are
extensional, and HOL functions are interpreted as set-theoretic functions. No constants are
introduced, so the interpretation does not need extending.

F is_set_theory mem =
is_std_sig (sigof ctxt) =
Vi. i models (thyof czxt) = i models (thyof (mk_eta_ctxt czxr))

For the axiom of choice, the soundness theorem asserts existence of a model of the context
extension produced by mKk_select_ctxt, presuming the original context has a model, does
not already define "@", and correctly interprets implication. The theorem is as follows
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F is_set_theory mem =
"@" ¢ domain (tmsof ctxr) A is_implies_sig (tmsof ctxt) A
theory_ok (thyof ctxt) =
Vi.
i models (thyof czxt) A is_implies_interpretation (tmaof i) =
7.

equal_on (sigof ctxr) i i’ A
i’ models (thyof (mk_select_ctxt ctxr))

To prove this theorem, we need to provide an interpretation of the Hilbert choice constant,
“@", that satisfies the axiom: given a predicate on some type it should return an element
of the type satisfying the predicate if one exists, or else an arbitrary element of the type. A
suitable interpretation can be constructed using the choice operator in the meta-logic, that is,
the logic of HOL4 (whose properties imply the set-theoretic axiom of choice, as shown at
the end of Sect. 3.1).

For the axiom of infinity, the statement of the soundness theorem follows essentially
the same structure as for the axiom of choice, except it uses mk_infinity_ctxt instead of
mk_select_ctxt and assumes the set-theoretic axiom of infinity. Additionally, there are
more assumptions about the context—that it contains certain constants, and does not al-
ready contain others—so we can define ONE_ONE and ONTO correctly. The theorem is as
follows:

F is_set_theory mem A (Finf. is_infinite mem inf) =
theory_ok (thyof ctxt) A "ONTO" ¢ domain (tmsof ctxt) A
"ONE_ONE" ¢ domain (tmsof ctxt) A "ind" ¢ domain (tysof czxt) A
is_implies_sig (tmsof ctxt) A is_and_sig (tmsof cixt) A
is_forall_sig (tmsof ctxr) A is_exists_sig (tmsof cxt) A
is_not_sig (tmsof ctxr) =

Vi.
i models (thyof ctxt) A i models (thyof czxr) A
is_implies_interpretation (tmaof i) A
is_and_interpretation (tmaof i) A
is_forall_interpretation (tmaof i) A
is_exists_interpretation (tmaof i) A
is_not_interpretation (tmaof i) =
37.
equal_on (sigof czxt) i i’ A
i’ models (thyof (mk_infinity_ctxt czxr))

To prove this theorem, we need to provide an interpretation of the type of individuals in such
a way that the axiom of infinity is satisfied. We pick the infinite set inf whose existence is
assumed. Then proving the theorem is simply a matter of calculating out the semantics and
observing that the axiom holds because the set is infinite.

Having proved the soundness of each axiom separately, we can put them together within
a single context and prove soundness for it and all its extensions (as long as they do not
introduce further axioms). Recall the definitions of the contexts that assert the axioms:

fhol_ctxt = mk_select_ctxt (mk_eta_ctxt (mk_bool_ctxt init_ctxt))
hol_ctxt = mk_infinity_ctxt fhol_ctxt
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We obtain the following results by combining the soundness theorems for the three axioms
presented in this section with the result from Sect. 5.1.2 about theory extensions that do not
add any further new axioms.

F is_set_theory mem =
V ctxt.
ctxt extends fhol_ctxt A
(¥ p. member (NewAxiom p) ctxt = member (NewAxiom p) fhol_ctxt) =
theory_ok (thyof ctxt) A 3i. i models (thyof czxt)

F is_set_theory mem A (Finf. is_infinite mem inf) =
V ctxt.
ctxt extends hol_ctxt A
(Vp. member (NewAxiom p) ctxt = member (NewAxiom p) hol_ctxt) =
theory_ok (thyof ctxt) A 3i. i models (thyof ctxt)

The order in which the extensions are made ensure that the signature and interpretation
assumptions of each of the soundness theorems for the axioms is satisfied.

5.2.2 Syntactic Consistency

We have seen that the inference system for HOL (as implemented by HOL Light) is sound
in that every sequent it derives is semantically valid. As a corollary, we can show that there
are some sequents which cannot be derived (since some sequents are not valid). Our strategy
for proving this syntactic notion of consistency is to use the fact, sometimes called semantic
consistency, that every theory produced by the inference system has a model (as proved in
the previous section).

We define a consistent theory as one for which there are sequents one of which can be
derived and the other which cannot. In fact, we choose particular sequents for this purpose,
an equation of equal variables and an equation of potentially different variables:

consistent_theory thy <—
(thy,[]) |- Var "x" Bool == Var "x" Bool A
=((thy,[ 1) |- Var "x" Bool == Var "y" Bool)

Any theory with a model is consistent, as the following lemma demonstrates.

F is_set_theory mem =
V thy. theory_ok thy A (3i. i models thy) = consistent_theory thy

We prove the lemma by appeal to soundness: if the sequent equating two different variables
were derivable, it would be valid (by soundness), and since the theory has a model it would
be true in that model under every valuation. But it is not true under the valuation that sends
Var "x" Bool to True and Var "y" Bool to False, so it cannot be derivable. As for the
sequent equating equal variables, it is derivable as an instance of the REFL rule.
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Combining the lemma above with the results in the previous section, the following con-
sistency theorems follow immediately.

F is_set_theory mem =
Y ctxt.
ctxt extends fhol_ctxt A
(VY p. member (NewAxiom p) ctxt = member (NewAxiom p) fhol_ctxt) =
consistent_theory (thyof ctxr)

F is_set_theory mem A (Finf. is_infinite mem inf) =
Y ctxt.
ctxt extends hol_ctxt A
(Vp. member (NewAxiom p) ctxt = member (NewAxiom p) hol_ctxt) =
consistent_theory (thyof czxt)

The free variable mem in these theorems only appears in the assumptions, but those assump-
tions are of course necessary since we appealed to soundness, which depends on mem via
the i models thy relation (and ultimately the semantics of terms and types).

6 Verifying the Kernel in CakeML

We have now seen that the HOL inference system, as specified by the provability relation (| -)
and the rules for updating the context, is sound and consistent. Next, we turn our attention to
producing a verified theorem prover implementing this sound inference system. Recall that
our strategy is to produce the implementation in two steps: first, we define a theorem-prover
kernel as recursive functions in a state-exception monad within the logic of HOL4, then we
use an automated proof-producing technique to translate these recursive functions into code
in the CakeML programming language. A preliminary description of this strategy can be
found in our short paper [26] at ITP 2013.

6.1 The Monadic Functions

In implementations of HOL theorem provers, including the original OCaml implementation
of HOL Light, the kernel module defines a datatype of theorems whose values correspond to
the provable sequents of the HOL inference system. Our theorem datatype is defined with a
single constructor as follows.

thm = Sequent (term list) term

In the implementation, the theory part of a sequent is not included on the theorem values,
being instead embodied by the state of the theorem prover and the history of computations
that led it into that state. The state of the theorem prover consists of the following four values,
which will be implemented as references in CakeML.

state =
(the_type_constants : ((string x num) list);
the_term_constants : ((string x type) list);
the_axioms : (thm list);
the_context : (update list))
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The first three fields of the state correspond to references found in the original OCaml
implementation of HOL Light. The fourth field represents the current context. As we saw
when describing the inference system, the type constants, term constants, and axioms can
all be calculated from the context, so it is redundant to include them all in the state. For
efficiency, and faithfulness to the original, we do not discard the other three references in
favour of the context; rather, we think of the context as a “ghost” variable, which we will
prove is always consistent with the rest of the state but which is not actually required for the
implementation. For clarity, we leave it in the implementation rather than as an existentially
quantified variable on our correctness theorems.

The monadic functions only raise two kinds of exceptions: failure with an error message,
and, in the implementation of instantiation of type variables within a term, a “clash” exception
for backtracking when unintended variable capture is detected.

exn = Fail string | Clash term

With our models of state and exceptions in place, we define our state-exception monad (o M)
as follows.

o result = HolRes « | HolErr exn
o M= state — « result x state

We define monadic bind as would be expected (that is, we either compute with the result or
propagate the exception, and propagate the state in both cases), and make use of HOL4’s
support for do notation (as found also in Haskell) for composition of monadic binds.

Let us look now at how the monadic functions are defined. For example, here is the
function implementing the ASSUME rule of inference.

ASSUME m =
do
ty <« type_of mm;
bty < mk_type ("bool",[]);
if ry = bty then return (Sequent [tm] tm)
else failwith "ASSUME: not a proposition"
od

Here type_of #m computes the type of 7m (failing on ill-typed terms), mk_type (name,args)
constructs a type operator (failing if the number of arguments does not match the current
signature in the state’s type constants reference), and failwith msg raises the Fail msg excep-
tion. We define a function like the above for each of the rules of inference and of definition,
as well as all the requisite helper functions (like type_of), following the original OCaml
implementation closely.

The monadic functions operate over the thm datatype, and re-use the underlying terms
and types from the inference system. What we prove about them is that every computation
preserves invariants on the values being computed. Importantly, the invariant on theorem
values states that they are provable within the HOL inference system. The full list of invariants
we use, each of which is parametrised by the current context, is given below.
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TYPE ctxt ty < type_ok (tysof ctxr) ty
TERM cixt tm <= term_ok (sigof ctxr) m

THM ctxt (Sequent h ¢) <= (thyof cixt,h) |- ¢

STATE cixt state =
ctxt = state.the_context A ctxt extends init_ctxt A
state.the_type_constants = type_list ctxt A
state.the_term_constants = const_list ctxt

The STATE invariant requires the current context to be a valid extension (of init_ctxt). Thus
preserving the STATE invariant entails only making valid updates to the context.

For each monadic function, we prove that good inputs produce good output. For example,
for the ASSUME function, we prove that, if the input is a good term and the state is good,
then the state will be unchanged on exit and if the function returned successfully, the return
value is a good theorem:

~ TERM citxt tm A STATE ctxt s A ASSUME tm s = (res,s’) =
s’ =5 A Vth. res = HolRes th = THM ctxt th

This theorem is proved by stepping through the definition of ASSUME, and, at the crucial
point where a Sequent value is created, observing that the assumptions for the ASSUME
clause of the provability (| -) relation are satisfied, so the THM invariant holds.

We prove a similar theorem for each function in the kernel, showing that they implement
the HOL inference system correctly. As another example, consider the rule for constant
specification, which may update the state. We prove that the new state still satisfies our
invariants, as does the returned theorem.

= THM ctxt th A STATE ctxt s =
case new_specification th s of
(HolRes th,s")y = Jupd. THM (upd::ctxt) th A STATE (upd::cixt) s’
| (HolErr exn,s’) = s’ =s

6.2 Producing CakeML

The monadic functions constitute a shallow embedding of a theorem-prover-kernel imple-
mentation, because they are functions whose semantics is given implicitly by HOL (as
implemented by HOL4): consider the fact that the ASSUME function has type term —
thm M. In this section, we turn to production of a deep embedding of the same functions,
with semantics given explicitly as the operational semantics of the CakeML programming
language. In the deep embedding, the ASSUME function is a piece of syntax; its type is
dec, that is, a CakeML declaration. Furthermore, since CakeML supports references and
exceptions directly, the functions no longer need to be monadic.

We produce the deep embeddings from our shallow embeddings automatically, using the
proof-producing translation technique described in Myreen and Owens [25]. The result of
translation is syntax and a certificate theorem. For example, for the monadic ASSUME
function, we obtain the following syntax (shown as abbreviated CakeML abstract syntax):
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~ nth_element 99 ml_hol_kernel_decls =
Dlet (Pvar "assume"
(Fun "v3"
(Let (Some "v2")
(App Opapp [Var (Short "type_of"); Var (Short "v3")])
(Let (Some "v1")

(App Opapp [Var (Short "mk_type"); Con None [... ... )
(If (App Equality [Var (... ... ) D
(Con (Some (Short "Sequent™"))
[Con (... ... )} ;.. ] Var (.. )
(Raise

(Con (Some (Short "Fail"))
[Lit (StrLit "ASSUME: not a proposition")]))))))

The same code pretty-printed in CakeML concrete syntax:

fun assume v3 =
let val v2 = type_of v3
val vl = mk_type ( “bool”, [])

in

if (v2 = vl)

then (Sequent([v3],v3))

else (raise Fail( ““ASSUME: not a proposition’’))
end;

The meaning of the declaration above is specified by CakeML’s operational semantics.
The certificate theorem produced by translation connects evaluation of the declaration to the
monadic function ASSUME:

+ DeclAssum (Some "Kernel") ml_hol_kernel_decls env tys =
EvalM env (Var (Short "assume"))
((PURE TERM_TYPE % HOL_MONAD THM_TYPE) ASSUME)

Here, DeclAssum mn decls env tys means that (env,tys) is the environment (of declared
values and types) obtained by evaluating the list decls of declarations within a module mn;
and, EvalM env exp P means that evaluation of the expression exp in environment env
terminates and produces a result satisfying the refinement invariant P. In the theorem above,
the refinement invariant takes the form (A -M> B) f, which specifies a closure that, when
applied to an input value satisfying A, terminates and produces an output value, which will
satisfy B, according to the monadic function f.

To understand the guarantee provided by the certificate theorem, let us unpack the re-
finement invariant a little further. The thing to remember is that the refinement invariants
specify the relationship between certain HOL terms (values in the shallow embedding)
and deeply-embedded CakeML values. For example, the following fact demonstrates how
the THM_TYPE invariant relates values of type thm to CakeML values (Conv denotes a
CakeML value made from application of a CakeML constructor):

~ LIST_TYPE TERM_TYPE []vi A TERM_TYPE mm v, =
THM_TYPE (Sequent [ ] tm)
(Conv (Some ("Sequent",Typeld (Long "Kernel" "thm"))) [vi; v2])
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Here, we have CakeML values, v; and v, that are related by the refinement invariants for
terms (and lists of terms) to the empty list and a term #m, and they are used to put together
a CakeML value that is related to the theorem Sequent [] fm. The operators PURE and
HOL_MONAD extend these refinement invariants to also relate the CakeML store (that
is, the contents of references) and result (normal termination or raised exception) to the
corresponding parts of the state-exception monad. (PURE lifts non-monadic values into the
monad while HOL_MONAD works directly on a monadic value.)

Finally, (A 4> B) f is the refinement invariant for monadic functions as explained earlier.
Thus using the certificate theorem for ASSUME we can prove in CakeML’s operational
semantics that the return value of any successful application of the deeply-embedded as sume
function will be related by the THM_TYPE invariant to the corresponding application of the
monadic ASSUME function. And, as we saw in the previous section, the result of applying
the monadic ASSUME function is related by the THM invariant to a sequent in the sound
inference system (| -).

We have certificate theorems like this for every function in the CakeML implementation of
the HOL Light kernel. It is on that basis that we make the claim that our kernel only produces
theorem values that correspond to true sequents according to the semantics of HOL.

7 Related Work

The themes of the work described in this paper are formalising (and mechanising) the syntax
and semantics of logic, and verifying (or producing verified) theorem-prover implemen-
tations. We factor our review of prior work in these areas by the particular logic under
consideration.

Higher-Order Logic  There has been prior work on producing a formal (mechanised) spec-
ification of the semantics of HOL. The documentation for HOL4 includes a description,
originally due to Pitts [27], of the semantics of HOL. However, this description is given in
the traditional semiformal style of the mathematical logic literature. In the early 1990s, the
development of the ProofPower logical kernel was informed by a formal specification in
ProofPower-HOL of the proof development system, including a formalisation of the HOL
language, logic and semantics. However, no formal proofs were carried out. The present work
found several errors in the ProofPower formalisation of the semantics (all now corrected [4]).
Pioneering work by von Wright [31] includes a mechanised formalisation of the syntax of
HOL and its inference system (though no semantics). As discussed in Sect. 1, Harrison’s
work [11] on a proof in HOL Light of the consistency of the HOL logical kernel without
definitions formed the starting point for the present work (initially, [17,26]).

Krauss and Schropp [16] have formalised a translation from HOL to set theory, automat-
ically producing proofs in Isabelle/ZF [33]. Their motivation was to revive Isabelle/ZF by
importing Isabelle/HOL proofs into it, but this task necessitates formalising an interpretation
of HOL in set theory for which they use the standard approach (as we did) sending types
to non-empty sets and terms to elements of their types. Although the Isabelle/HOL logic is
slightly more complicated than the HOL we described, due to type classes and overload-
ing, they remove the extra features in a preprocessing phase. They handle type definitions
and (equational) constant definitions by making equivalent definitions in Isabelle/ZF, which
supports Isabelle’s general facility for definitions.

Dependent Type Theory Barras [6] has formalised a reduced version of the calculus of
inductive constructions, the logic used by the Coq proof assistant [7], giving it a semantics
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in set theory and formalising a soundness proof in Coq itself. The approach is modular,
and Wang and Barras [32] have extended the framework and applied it to the calculus of
constructions plus an abstract equational theory.

Anand and Rahli [2] have formalised the semantics of NuPRL’s type theory and proved
soundness for its sequent calculus. The mechanisation is carried out within Coq. The seman-
tics of NuPRL is rather more complex than of HOL, so its formalisation is impressive; on
the other hand, they do not yet go so far as producing a verified implementation, but allude
to the interesting possibility of producing it directly from the proof term for the soundness
of the inference system.

First-Order Logic  Myreen and Davis [24] formalised Milawa’s ACL2-like first-order logic
and proved it sound using HOL4. This soundness proof for Milawa produced a top-level
theorem which states that the machine-code which runs the prover will only print theorems
that are true according to the semantics of the Milawa logic. Since Milawa’s logic is weaker
than HOL, it fits naturally inside HOL without encountering of the delicate foundational
territory necessitating our is_set_theory mem and 3 inf. is_infinite mem inf assumptions.

Other noteworthy prover verifications include a simple first-order tableau prover by
Ridge and Margetson [28] and a SAT solver algorithm with many modern optimizations
by Mari¢ [20].

8 Conclusion

A theorem prover is a computer program whose correctness can be understood at many levels.
Atthe highestlevel, we focus solely on the logic, which should be consistent, and the particular
inference system, which should be sound. At the next level down, we consider whether
the inference system is implemented correctly, that is, whether the (abstract) computations
performed by the theorem prover correspond to construction of derivations in the inference
system. The remaining levels all concern correct implementation of those computations
at more concrete levels of abstraction, from a high-level programming language down to
hardware. In this paper we have dealt with correctness of a theorem prover for higher-order
logic (HOL) spanning all the levels between consistency of the logic itself and implementation
in a high-level programming language (CakeML), within a single mechanically-checked
formalisation.

We have gone further than the previous work in this vein in two directions: the coverage
of the logic formalised and the concreteness of the theorem-prover implementation verified.
Our formalisation, with full support for making extensions to the context, now covers all of
HOL as it is implemented by real theorem provers. Our implementation is a deeply-embedded
program verified against the operational semantics of a realistic programming language. On
both fronts, however, the end of the line has not been reached: one might like to verify a more
sophisticated approach to contexts (such as the one implemented by Isabelle [33]), and a
more concrete implementation (for example, in machine code). Additionally, we have so far
only verified the kernel of a theorem prover, and would like to extend the result to a complete
theorem prover, which means formally validating the LCF design [23] by reasoning about
the guarantees provided by a protected (abstract) type in CakeML.

In constructing a formal specification of the semantics of HOL that is suitable both for
proofs about the logic and inference system, and for proofs about implementing that inference
system, we faced several design decisions. The main theme of the lessons learned is to value
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explicitness and separation of concerns. Using an explicit theory context gives a simpler
semantics than that of Stateless HOL, as was discussed in Sect. 4.5. Similarly, specifying
the axioms of set theory with an explicit membership relation yields a development that is
easier to work with than the theoretically equivalent approach based solely on a cardinality
assumption. And by specifying the set theory separately from defining an instance of it, we
obtain a conservative approach using isolated assumptions about free variables rather than
global axiomatic extensions. On a smaller scale, our choice to factor our reasoning about
substitution and instantiation, which is complicated with name-carrying terms, through a
separate small theory about de Bruijn terms led to simplifications.

Continuing the self-verification project initiated by Harrison [11] for HOL Light, our
formalisation of HOL is conducted within HOL itself. It is common to cite Godel’s incom-
pleteness theorems as making it meaningless or impossible for a logical system to be used
to prove its own properties. However, this objection applies only to proofs of consistency. In
the present work, our primary concern is with soundness, and what we have done is analo-
gous to proving the soundness of first-order logic within a first-order formalisation of ZF set
theory, which as standard logic textbooks (e.g., Mendelson [21]) show is well-known and
uncontroversial.

The theorem prover we use for our mechanisation (HOL4) is distinct from the verified
implementation we produce (in CakeML of a kernel based on HOL Light’s). The imple-
mentation of HOL4 is not itself verified; one might wonder whether we gain anything by
trusting one theorem prover to verify another of a similar (in fact lesser) complexity. While
we acknowledge this objection, our reply is that HOL4 can be seen merely as a tool to help us
organise our development if we consider the fact that our proofs can be exported from HOL4
(for example, via OpenTheory [14]) for independent checking. Thus although something
ultimately needs to be trusted, we do not require it to be HOL4. A second reply is that the
exercise of developing the formalisation leads us to clarify our thinking about the systems
under consideration, and, on the implementation side, uncovers the kinds of bugs that are
likely to occur in theorem provers in practice.

In future work, one might like to import our verified kernel into HOL Light for independent
checking, or, more interestingly, to replay the proof in the verified CakeML implementation
itself. Checking a correctness proof about its own concrete implementation would be closer
to true self-verification than any theorem prover has yet achieved. Of course, such a check
does not rule out the possibility that the theorem prover is not sound, because it might be
broken in such a way that it fails to detect an incorrect correctness proof. But we would
have high confidence in a theorem prover with such an ability (alongside other evidence for
soundness, like a readable, concise implementation) and would expect the practical facility
required for self-verification to be useful for tackling more ambitious software verification
challenges.
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