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Abstract 

This study investigated how sample size affects the reproducibility of findings 

from univariate voxel-based lesion-deficit analyses (e.g., voxel-based lesion-

symptom mapping and voxel-based morphometry). Our effect of interest was the 

strength of the mapping between brain damage and speech articulation difficulties, 

as measured in terms of the proportion of variance explained. First, we identified a 

region of interest by searching on a voxel-by-voxel basis for brain areas where 

greater lesion load was associated with poorer speech articulation using a large 

sample of 360 right-handed English-speaking stroke survivors. We then randomly 

drew thousands of bootstrap samples from this data set that included either 30, 60, 

90, 120, 180, or 360 patients. For each resample, we recorded effect size estimates 

and p values after conducting exactly the same lesion-deficit analysis within the 

previously identified region of interest and holding all procedures constant. The 

results show (1) how often small effect sizes in a heterogeneous population fail to be 

detected; (2) how effect size and its statistical significance varies with sample size; 

(3) how low-powered studies (due to small sample sizes) can greatly over-estimate 

as well as under-estimate effect sizes; and (4) how large sample sizes (N ≥ 90) can 

yield highly significant p values even when effect sizes are so small that they 

become trivial in practical terms. The implications of these findings for interpreting 

the results from univariate voxel-based lesion-deficit analyses are discussed. 
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1. Introduction 1 

There is a great deal of evidence showing how both false positive and false 2 

negative results increase as sample size decreases (Bakker et al., 2012; Button et 3 

al., 2013a; Chen et al., 2018; Cremers et al., 2017; Ingre, 2013; Ioannidis, 2008) and 4 

how inadequate statistical power can lead to replication failures (Anderson et al., 5 

2017; Bakker et al., 2012; Perugini et al., 2014; Simonsohn et al., 2014a; Szucs and 6 

Ioannidis, 2017). However, the impact of sample size on false negative and false 7 

positive rates has never been quantified in mass-univariate voxel-based lesion-deficit 8 

mapping (e.g., voxel-based lesion-symptom mapping and voxel-based 9 

morphometry). Using data from a large sample of stroke patients, we firstly 10 

estimated the magnitude of a lesion-deficit mapping of interest and then formally 11 

investigated how effect size and its statistical significance varies with sample size. In 12 

addition to demonstrating how small samples can result in over- and under-13 

estimations of effect size, we also highlight an issue with large sample sizes whereby 14 

high statistical power dramatically increases the likelihood of detecting effects that 15 

are so small that they become uninteresting from a scientific viewpoint (i.e. the 16 

fallacy of classical inference; Friston et al., 2012). In other words, statistically 17 

significant findings when sample sizes are large can hide the fact that the effect 18 

under investigation might be of little importance in practical terms, or, even worse, 19 

the result of random chance alone and thereby a false positive (Smith and Nichols, 20 

2018).  21 

To investigate the effect of sample size on the results of univariate voxel-22 

based lesion-deficit mapping, we randomly drew thousands of resamples (with a 23 

range of sample sizes) from a set of data from 360 stroke survivors who had 24 

collectively acquired a wide range of left hemisphere lesions and cognitive 25 

impairments. By using a single patient population and holding all procedures and 26 

analyses constant, we ensured that variability in the results across thousands of 27 

random resamples cannot be explained by methodological confounds - such as the 28 

use of dissimilar recruitment strategies and/or behavioural assessments - that are 29 

likely to influence the findings of studies that aggregate data from multiple 30 

independent sources (e.g., meta-analyses; Müller et al., 2018). Furthermore, by 31 

performing our statistical analyses on actual data, rather than running simulations on 32 
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synthetically-generated data, we attempt to recreate real-world scenarios that could 33 

be encountered by researchers conducting lesion-deficit mapping studies. 34 

The goal of our resampling procedure was to estimate the degree to which the 35 

magnitude and statistical significance of the exact same lesion-deficit mapping (i.e. 36 

brain areas where damage is associated with difficulties articulating speech) 37 

changed with sample size. We report the frequency of significant and non-significant 38 

effects (using standard significance thresholds) for 6 different sample sizes: N = 30, 39 

60, 90, 120, 180 and 360. In a real world situation where only one sample is typically 40 

analysed, results are far more likely to be published when they reach statistical 41 

significance (i.e. the associated p values are below a certain alpha threshold) than 42 

when they fail to produce any evidence in favour of the tested hypothesis. This is 43 

known as “publication bias” (e.g., Fusar-Poli et al., 2014; Ioannidis et al., 2014; 44 

Johnson et al., 2017; Simonsohn et al., 2014a). For example, the prevalence of 45 

“positive” (i.e. statistically significant) findings across a wide range of publication 46 

outlets, including neuroscience and psychology, has been shown to be well over 47 

80% (Fanelli, 2010, 2012), which suggests that the vast majority of studies that yield 48 

“negative” findings are left unpublished. This is known as “the file drawer problem” 49 

(Franco et al., 2014; Simonsohn et al., 2014b). Moreover, the number of “positive” 50 

results in the fMRI (David et al., 2013) and brain volume abnormalities (Ioannidis, 51 

2011) literature has been demonstrated to be significantly greater than the number 52 

expected on the basis of statistical power considerations.   53 

By leaving non-significant results in the file drawer, it becomes increasingly 54 

difficult to ascertain which effects are true (and would replicate in subsequent 55 

studies) and which are false (and would not replicate in subsequent studies). A 56 

highly significant result from a heterogeneous population could, for example, be 57 

driven by random noise when a study selects, by chance, a sample that renders an 58 

inflated (unstandardized) effect size and under-estimated variance. In line with this 59 

rationale, it has been claimed that more than 50% of all significant effects reported in 60 

cognitive neuroscience and psychology journals are likely to correspond to false 61 

positives (Szucs and Ioannidis, 2017).  62 

Our study therefore speaks directly to the “replication crisis” that is currently 63 

being highlighted in psychology and neuroscience (Forstmeier et al., 2017; Gelman 64 
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and Geurts, 2017; Ioannidis, 2005; Loken and Gelman, 2017; Munafò et al., 2017; 65 

Pashler and Wagenmakers, 2012). In the field of psychology, for example, a large-66 

scale collaborative initiative reported that it could only successfully replicate less 67 

than 40% of original effects from a representative set of one hundred randomly 68 

selected studies (Open Science Collaboration, 2015). Similar failed replication 69 

attempts have also been recorded in other research areas including those 70 

investigating structural brain-behaviour correlations (Boekel et al., 2015) and the 71 

blood-oxygen-level-dependent response (Chen et al., 2018; Wende et al., 2017). 72 

2. Materials and Methods 73 

2.1. Participants 74 

Data from all participants were retrieved from the Predicting Language 75 

Outcome and Recovery After Stroke (PLORAS) database (Price et al., 2010; Seghier 76 

et al., 2016). At a minimum, the data available for each patient included: a full 77 

assessment of speech and language abilities and a 3D lesion image, in standard 78 

space, created from a T1-weighted high resolution (1 mm isotropic voxels) 79 

anatomical whole-brain volume, using our automated lesion identification software 80 

(Seghier et al., 2008). The study was approved by the Joint Research Ethics 81 

Committee of the National Hospital for Neurology and Neurosurgery and the Institute 82 

of Neurology. All patients gave written informed consent prior to participation and 83 

were compensated for their time. 84 

Our patient selection criteria included all adult stroke survivors who: (i) had a 85 

left-hemisphere lesion (as attested by a clinical neurologist: co-author A.P.L.) that 86 

was greater than 1 cm3 (as measured by our automated lesion identification tool; 87 

Seghier et al., 2008); (ii) had no history of neurological or psychiatric illness that was 88 

not related to their stroke; (iii) were right-handed (pre-morbidly); and, (iv) were native 89 

speakers of English. Additionally, individuals who had missing scores on the tasks of 90 

interest (see below for details) were excluded from the study. These criteria were 91 

met by a total of 363 stroke patients whose data were collected between April 2003 92 

and December 2016. To ensure that our full sample could be divided evenly into 93 

smaller resampled data sets (see below for details), we additionally excluded from 94 

any further analyses the 3 patients with the smallest lesions (i.e. 1.2, 1.3 and 1.4 cm3 95 
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in size). See Table 1 for demographic and clinical details of the full sample of 360 96 

stroke patients. 97 

2.2. Behavioural assessment 98 

All patients recruited to the PLORAS database are assessed on the 99 

Comprehensive Aphasia Test (CAT) (Swinburn et al., 2004). The CAT is a fully 100 

standardised test battery, which consists of a total of 27 different tasks. For ease of 101 

comparison across tasks, the authors of the CAT encourage the conversion (through 102 

a non-linear transformation) of raw scores into T-scores, which represent how well 103 

the patient performed relative to a reference population of 113 patients with aphasia, 104 

56 of whom were tested more than once. For example, a T-score of 50 indicates the 105 

mean of the patient sample used to standardise the CAT, whereas a T-score of 60 106 

represents one standard deviation above the mean. Most people without post-stroke 107 

aphasia would therefore be expected to score above the average of the patient 108 

standardisation sample on any given task from the CAT. The threshold for 109 

impairment is defined relative to a second reference population of 27 neurologically-110 

normal controls. Specifically, it is the point below which the score would place the 111 

patient in the bottom 5% of the control population (Swinburn et al., 2004). Lower 112 

scores indicate poorer performance. Importantly, the two standardisation samples 113 

referred to before (i.e. 113 patients with aphasia and 27 neurologically-normal 114 

controls) are completely independent of the data we report in the current paper (for 115 

more details on the standardisation samples, see Swinburn et al., 2004). 116 

As stated in the CAT manual (p. 71), the main advantages of converting raw 117 

scores into T-scores is that this allows: (i) scores from different tasks to be compared 118 

because they have been put on a common scale; and (ii) the use of parametric 119 

statistics given that T-scores are normally distributed scores with a mean of 50 and a 120 

standard deviation of 10. 121 

The current study focused exclusively on a total of 5 tasks from the CAT. Task 122 

1 used nonword repetition to assess the patient’s ability to articulate speech. Task 2 123 

used written picture naming to test the patient’s ability to find the names of objects 124 

(lexical/phonological retrieval). Tasks 3-5 tested the patient’s ability to recognise, 125 

process and remember the semantic content of pictures and auditory words. Task 126 

details were as follows: 127 
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Task 1: The CAT nonword repetition (Rep-N) task aurally presents five nonsense 128 

words (e.g., gart), one at a time, with instructions to repeat them aloud. Immediate 129 

correct responses were given a score of 2; incorrect responses were given a score 130 

of 0; correct responses after a self-correction or a delay (> 5 seconds) were given a 131 

score of 1. Articulatory errors (e.g., dysarthric distortions) not affecting the perceptual 132 

identity of the target were scored as correct. Verbal, phonemic, neologistic and 133 

apraxic errors were scored as incorrect. T-scores equal to or below 51 constitute the 134 

impaired range. 135 

Task 2: The CAT written picture naming (Writt-PN) task visually presents five 136 

pictures of objects (e.g., tank), one at a time, with instructions to write their names 137 

down. Letters in the correct position were given a score of 1 each. Substitutions, 138 

omissions and transpositions were given a score of 0. One point was deducted from 139 

the total score if one or more letters were added to the target word. T-scores equal to 140 

or below 54 constitute the impaired range. 141 

Task 3: The CAT semantic associations (Sem-A) task visually presents five pictures 142 

of objects simultaneously. The instructions were to match the picture at the centre 143 

(e.g., mitten) with one of four possible alternatives according to the strongest 144 

semantic association (e.g., hand, sock, jersey, and lighthouse). The inclusion of a 145 

semantically related distractor (e.g., sock) encouraged deeper levels of semantic 146 

processing/control. There are a total of ten test trials plus a practice one at the 147 

beginning. Correct responses were given a score of 1; incorrect responses were 148 

given a score of 0. T-scores equal to or below 47 constitute the impaired range. 149 

Task 4: The CAT recognition memory (Recog-M) task visually presents each of the 150 

ten central items from the CAT semantic associations task (one at a time) along with 151 

three unrelated distractors. The instructions were to indicate which of the four 152 

pictures on display had been seen before. There are a total of ten test trials plus a 153 

practice one at the beginning. The scoring system for this task was identical to that 154 

used in the semantic associations task. T-scores equal to or below 43 constitute the 155 

impaired range. 156 

Task 5: The CAT auditory word-to-picture matching (AW-P) task involves hearing a 157 

word produced by the examiner and selecting the picture among four possible 158 

alternatives that best matches the meaning of the heard word. There are a total of 159 
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fifteen test trials plus a practice one at the beginning. Immediate correct responses 160 

were given a score of 2; incorrect responses were given a score of 0; correct 161 

responses after a self-correction or a delay (> 5 seconds) were given a score of 1. T-162 

scores equal to or below 51 constitute the impaired range. 163 

2.3. MRI data acquisition, pre-processing and lesion identification 164 

T1-weighted high resolution anatomical whole-brain volumes were available 165 

for all patients (n = 360). Four different MRI scanners (Siemens Healthcare, 166 

Erlangen, Germany) were used to acquire the structural images: 167 patients were 167 

imaged on a 3T Trio scanner, 131 on a 1.5T Sonata scanner, 57 on a 1.5T Avanto 168 

scanner, and five on a 3T Allegra scanner. For anatomical images acquired on the 169 

1.5T Avanto scanner, a 3D magnetization-prepared rapid acquisition gradient-echo 170 

(MPRAGE) sequence was used to acquire 176 sagittal slices with a matrix size of 171 

256 × 224, yielding a final spatial resolution of 1 mm isotropic voxels (repetition 172 

time/echo time/inversion time = 2730/3.57/1000 ms). For anatomical images 173 

acquired on the other three scanners, an optimised 3D modified driven equilibrium 174 

Fourier transform (MDEFT) sequence was used to acquire 176 sagittal slices with a 175 

matrix size of 256 × 224, yielding a final spatial resolution of 1 mm isotropic voxels: 176 

repetition time/echo time/inversion time = 12.24/3.56/530 ms and 7.92/2.48/910 ms 177 

at 1.5T and 3T, respectively (Deichmann et al., 2004). 178 

The T1-weighted anatomical whole-brain volume of each patient was 179 

subsequently analysed with our automated lesion identification toolbox using default 180 

parameters (for more details, see Seghier et al., 2008). This converts a scanner-181 

sensitive raw image into a quantitative assessment of structural abnormality that 182 

should be independent of the scanner used. The procedure combines a modified 183 

segmentation-normalisation routine with an outlier detection algorithm according to 184 

the fuzzy logic clustering principle (for more details, see Seghier et al., 2007). The 185 

outlier detection algorithm assumes that a lesioned brain is an outlier in relation to 186 

normal (control) brains. The output includes two 3D lesion images in standard MNI 187 

space, generated at a spatial resolution of 2 x 2 x 2 mm3. The first is a fuzzy lesion 188 

image that encodes the degree of structural abnormality on a continuous scale from 189 

0 (completely normal) to 1 (completely abnormal) at each given voxel relative to 190 

normative data drawn from a sample of 64 neurologically-normal controls. A voxel 191 
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with a high degree of abnormality (i.e. a value near to 1 in the fuzzy lesion image) 192 

therefore means that its intensity in the segmented grey and white matter deviated 193 

markedly from the normal range. The second is a binary lesion image, which is 194 

simply a thresholded (i.e. lesion/no lesion) version of the fuzzy lesion image. All our 195 

statistical analyses were based on the fuzzy images. The binary images were used 196 

to delineate the lesions, to estimate lesion size and to create lesion overlap maps.  197 

2.4. Lesion-deficit analyses 198 

We used voxel-based morphometry (Ashburner and Friston, 2000; Mechelli et 199 

al., 2005) to assess lesion-deficit relationships (Mummery et al., 2000; Tyler et al., 200 

2005), performed in SPM12 using the general linear model. The imaging data 201 

entered into the voxel-based analysis were the fuzzy (continuous) lesion images that 202 

are produced by our automated lesion identification toolbox.  203 

The most important advantage of utilising the fuzzy lesion images (as in Price 204 

et al., 2010) over alternative methods is that they provide a quantitative measure of 205 

the degree of structural abnormality, at each and every voxel of the brain, relative to 206 

neurologically-normal controls. In contrast to fuzzy lesion images, (i) binary lesion 207 

images do not provide a continuous measure of structural abnormality and will be 208 

less sensitive to subtle changes that are below an arbitrary threshold for damage 209 

(e.g., Fridriksson et al., 2013; Gajardo-Vidal et al., 2018); (ii) normalised T1 images 210 

do not distinguish between typical and atypical (abnormal) variability in brain 211 

structure (e.g., Stamatakis and Tyler, 2005); and (iii) segmented grey or white matter 212 

probability images when used in isolation (as in standard VBM routines) do not 213 

provide a complete account of the whole of the lesion (e.g., Mehta et al. 2003). 214 

In Analysis 1, the fuzzy lesion images were entered into a voxel-based 215 

multiple regression model with 6 different regressors (5 behavioural scores and 216 

lesion size); see Fig. 1. The regressor of interest was nonword repetition scores that 217 

are sensitive to difficulties articulating speech. In addition, the following regressors 218 

were included to factor out other sources of variance: written picture naming scores 219 

(which are sensitive to name retrieval abilities), semantic associations scores (which 220 

are sensitive to visual recognition and semantic processing), auditory word-to-picture 221 

matching scores (which are sensitive to auditory recognition and lexical-semantic 222 

processing), recognition memory scores (which are sensitive to picture recognition 223 
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and memory) and lesion size (to partial out linear effects of lesion size). For the 224 

voxel-based lesion-deficit analysis (with 360 patients), the search volume was 225 

restricted to voxels that were damaged in at least five patients (as in Fridriksson et 226 

al., 2016; for rationale, see Sperber and Karnath, 2017). For this purpose, a lesion 227 

overlap map based on the binary lesion images from all 360 patients was created, 228 

thresholded at five, and used as an inclusive mask before estimating the model (see 229 

Fig. 2A). Our statistical voxel-level threshold was set at p < 0.05 after family-wise 230 

error (FWE) correction for multiple comparisons (using random field theory as 231 

implemented in SPM; Flandin and Friston, 2015) across the whole search volume 232 

(for alternative approaches, see Mirman et al., 2018).  233 

Having identified a significant lesion-deficit mapping, we quantified the 234 

strength of the association between lesion and deficit by: (i) extracting the raw signal 235 

(which indexes the degree of structural abnormality) from each statistically significant 236 

voxel; (ii) averaging the signal across voxels (i.e. a single value per patient); and, 237 

finally, (iii) computing the partial correlation between lesion load in the region of 238 

interest and nonword repetition scores, after adjusting for the effect of the covariates 239 

of no interest (i.e. 4 behavioural scores and lesion size). Our measure of effect size 240 

was the proportion of variance (= R2) in nonword repetition scores explained 241 

uniquely by lesion load in the region of interest (i.e. the best estimate of the true 242 

population effect that we have). 243 

In Analysis 2, we investigated how sample size affected the reproducibility of 244 

the lesion-deficit mapping within the region of interest identified in Analysis 1. 245 

Specifically, we generated 6000 bootstrap samples of the following sizes: 360, 180, 246 

120, 90, 60 and 30 (i.e. 36000 resamples in total). These sample sizes were 247 

selected to follow as closely as possible those observed in the vast majority of 248 

published voxel-based lesion-deficit mapping studies (e.g., Dressing et al., 2018; 249 

Fridriksson et al., 2013, 2016; Halai at el., 2017; Schwartz et al., 2011, 2012). For 250 

each iteration of the resampling procedure, individuals were drawn randomly from 251 

the full set of 360 patients with replacement, meaning that the probability of being 252 

chosen remained constant throughout the selection process (i.e. the procedure 253 

satisfied the Markovian, memory-less, property). For each bootstrap sample, the 254 

partial correlation between nonword repetition scores and lesion load (averaged 255 

across voxels in the region of interest from Analysis 1) was computed. The resulting 256 
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R2 and p values were recorded, after regressing out the variance accounted for by 257 

the covariates of no interest. Of note, when we re-ran the resampling procedure 258 

outlined above with the replacement feature disabled (i.e. sampling without 259 

replacement), virtually the same results were obtained (for more details, see 260 

Supplementary Material). 261 

In addition, to rule out the possibility that variability in the results could simply 262 

be explained by differences in the distribution of damage across the brain, we 263 

quantified statistical power in the region of interest from Analysis 1 for a 264 

representative subset of bootstrap samples. Specifically, only those resamples that 265 

produced an R2 value which fell exactly at a particular decile (i.e. 0th, 10th, 266 

20th…100th) of the distribution of effect sizes were considered. This resulted in the 267 

selection of a total of 66 bootstrap samples (i.e. 11 for each sample size); see Table 268 

2. Critically, our power calculations show where in the brain there was sufficient 269 

statistical power to detect a significant lesion-deficit association at a threshold of p < 270 

0.05 after correction for multiple comparisons. The statistical power maps were 271 

generated using the “nii_powermap” function of NiiStat 272 

(https://www.nitrc.org/projects/niistat/), which is a set of Matlab scripts for analysing 273 

neuroimaging data from clinical populations. 274 

Importantly, we have chosen to assess in-sample effect sizes, i.e. without 275 

validating in a separate data set (Friston, 2012). In this context, the effect size is 276 

providing an estimate of the strength of the particular effect identified by our analysis 277 

in our data. It may be that an out-of-sample prediction - on new data - would indicate 278 

a smaller effect size. However, this would not invalidate the logic of our reasoning, 279 

particularly since the essential point we are making here is that our effect size 280 

estimate (i.e. approximately 11% in R2 terms) is very small. If there is inflation in this 281 

estimate, it could only mean that the out-of-sample effect size would be even less. 282 

Therefore, we have been able to show that even for an over-estimated effect size (if 283 

it would turn out to be), there are serious problems that arise from small sample 284 

sizes, the fallacy of classical inference, and publication bias. The impact of these 285 

issues on the reliability of the findings would only be worse if the effect size were to 286 

come down. 287 

Furthermore, we have first statistically selected an ROI in a large sample of 288 

patients, with a “left-hemisphere” analysis, and then used smaller and smaller 289 

bootstrap samples that focused on the identified ROI. In this sense, we are 290 
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performing (non-orthogonal) statistical tests in a previously selected ROI, which 291 

could potentially inflate false positive rates (Brooks et al., 2017). Consequently, the 292 

results derived from the analysis of smaller samples should not be taken as robust 293 

findings: they are being presented to make important methodological points. Our 294 

best statistical estimates of the effect considered are those obtained from the full 295 

data set. 296 

3. Results 297 

3.1. Analysis 1: identifying a region of interest 298 

Poorer speech articulation was significantly associated with greater lesion 299 

load (after controlling for written picture naming, recognition memory, semantic 300 

associations and auditory word-to-picture matching scores in addition to lesion size) 301 

in 549 voxels (= 4.4 cm3 in size; see Table 3). These voxels became our region of 302 

interest (ROI) for all subsequent analyses. They were located in parts of the left 303 

ventral primary motor and somatosensory cortices (i.e. tongue, larynx, head and face 304 

regions), anterior supramarginal gyrus, posterior insula and surrounding white matter 305 

(see Fig. 2B). 306 

This highly significant lesion-deficit relationship accounted for 11% of the 307 

variance (95% credible interval calculated using a flat prior: 0.06-0.18; Morey et al., 308 

2016); see Fig. 3. In the following analyses, we ask how sample size affects the 309 

reproducibility of the identified effect. 310 

3.2. Analysis 2: effect size variability and replicability  311 

Although the mean/median effect sizes were similar across sample sizes, the 312 

mean/median p values changed considerably with sample size (see Fig. 4), because 313 

there was wide sample-to-sample variability in the extent to which the original effect 314 

was replicated. For instance, less than 40% of the random resamples where N = 30 315 

generated significant p values, while this raised to virtually 100% for the resampled 316 

data sets where N ≥ 180. Overall, R2 values ranged between 0.00 and 0.79, whereas 317 

p values ranged between 6*10-27 and 1 (see Fig. 5A and B). Additionally, our 318 

analyses showed that, as sample size increased, R2 values tended to fall closer to 319 

the mean of the effect size distribution, although a not inconsiderable degree of 320 

uncertainty regarding R2 estimation remained (even for N = 180 and 360). In other 321 
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words, the dispersion of the R2 values tended to be larger with smaller sample sizes 322 

(see Fig. 5A), resulting in less precision in the estimation of the magnitude of the true 323 

population effect.  324 

3.2.1. Low-powered resamples can inflate effect sizes 325 

Since studies that obtain statistically non-significant results (i.e. typically p ≥ 326 

0.05) are hardly ever published (also known as the file drawer problem or study 327 

publication bias), we focused directly upon the resampled data sets that produced 328 

significant p values. For N = 30, the mean and median effect sizes of these 329 

significant resamples (i.e. roughly 37%) were 0.26 and 0.24 (range = 0.16-0.79). 330 

Conversely, the mean and median effect sizes for the N = 30 resamples where the 331 

lesion-deficit mapping did not reach statistical significance (roughly 63%) were 0.07 332 

and 0.06 (range = 0.00-0.16); see Table 4 for similar findings when N = 60. Critically, 333 

using a more stringent statistical threshold would only aggravate the problem (for 334 

more details, see Table 4). With larger sample sizes (N ≥ 90), however, effect size 335 

inflation is counteracted since both over- and under-estimations of the true effect 336 

size surpassed the threshold for statistical significance, resulting in relatively 337 

accurate mean estimates (0.13, 0.12, 0.12, and 0.11 respectively). 338 

3.2.2. High-powered resamples are sensitive to trivial/small effects 339 

The frequency with which a significant association was observed between 340 

lesion load in the ROI and nonword repetition scores increased dramatically with 341 

sample size. For example, whereas roughly 37% of the effects for N = 30 would be 342 

typically regarded as statistically significant (i.e. p < 0.05), more than 85% of the 343 

lesion-deficit mappings for N ≥ 90 generated equally low or even lower p values (see 344 

Table 4). More importantly, effects as small as 0.05 in R2 terms (i.e. that only 345 

accounted for 5% of the variance) reached statistical significance for N = 90; and this 346 

phenomenon was even more pronounced in the presence of larger sample sizes: 347 

0.02 for N = 180 (see Table 4 and Fig. 5A). Reporting point and interval estimates of 348 

effect sizes is therefore essential for assessing the importance or triviality of the 349 

identified lesion-deficit mapping, which is particularly relevant when the study uses 350 

large sample sizes.  351 

4. Discussion 352 
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The goal of this study was to examine how sample size influences the 353 

reproducibility of voxel-based lesion-deficit mappings. First, we identified a significant 354 

lesion-deficit association and estimated its magnitude using data from a very large 355 

sample of 360 patients who were all right-handed, English speaking stroke survivors 356 

with unilateral left hemisphere damage. By repeating the same analysis on 357 

thousands of bootstrap samples of different sizes we illustrate how the estimated 358 

effect size, and its statistical significance, varied across replications. This allowed us 359 

to index the degree of uncertainty in the estimation of the true population effect as a 360 

function of sample size. As expected, effect sizes were more likely to be over-361 

estimated or under-estimated with small sample sizes (i.e. variability in the results 362 

increased as sample size decreased). Conversely, we demonstrate how highly 363 

significant lesion-deficit mappings can be driven by a negligible proportion of the 364 

variance when the sample size is very large. 365 

4.1. Estimating the true effect size 366 

The first part of our investigation identified a region of interest (ROI) where 367 

damage was reliably associated with impairments in speech articulation. We then 368 

calculated what proportion of the variance in nonword repetition scores could be 369 

accounted for by the degree of damage to the identified region after factoring out 370 

confounds from auditory and visual perception, speech recognition, lexical/semantic 371 

processing and word retrieval abilities. The ROI included anatomical brain structures 372 

that have been associated with speech production in many previous lesion studies. 373 

These include the insula (Ogar et al., 2006), the precentral gyrus, the postcentral 374 

gyrus, the supramarginal gyrus and surrounding white matter (Baldo et al., 2011; 375 

Basilakos et al., 2015). It did not involve the inferior frontal gyrus/frontal operculum 376 

as reported in Hillis et al. (2004) and Baldo et al. (2011), even though our full sample 377 

incorporated plenty of patients with damage to these regions (see Fig. 2A). We do 378 

not attempt here to adjudicate whether this discrepancy was a consequence of a 379 

false negative in our study or a false positive in prior studies. Our focus was on how 380 

well the identified lesion-deficit mapping could be replicated across thousands of 381 

bootstrap samples drawn randomly from the original data set of 360 patients. For 382 

each resample, we estimated how much of the variance in nonword repetition scores 383 

could be accounted for by lesion load in the ROI (after adjusting for the effect of the 384 

covariates of no interest). These effect sizes and their statistical significance were 385 
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then compared to our best estimate of the “true” population effect size, which was 386 

found (from our full sample of 360 patients) to be 11%.  387 

4.2. Variability in the estimated effect size and its statistical significance 388 

The second part of our investigation showed that the probability of finding a 389 

significant lesion-deficit association in the ROI from the first analysis (with 360 390 

participants), depended on the size of the sample. For larger samples (N ≥ 180), the 391 

effect of interest was detected in virtually 100% of resamples. Whereas for smaller 392 

samples (N = 30), it was detected in less than 40% of resamples (see Table 4). We 393 

can also show that p values decrease as N increases, even when effect sizes are 394 

equated (see Fig. 4 and 50th percentile in Table 2). This observation is in line with 395 

prior reports that p values exhibit wide sample-to-sample variability (Cumming, 2008; 396 

Halsey et al., 2015; Vsevolozhskaya et al., 2017), particularly in the presence of 397 

small sample sizes (Hentschke and Stüttgen, 2011).  398 

When considering the central tendency of effect size estimates, the difference 399 

between larger and smaller resamples is dramatically reduced compared to that 400 

seen for p values (see mean/median effect sizes in Fig. 4). Nevertheless, even if p 401 

values were completely abandoned (e.g., Trafimow and Marks, 2015), there is still a 402 

great deal of uncertainty in the accuracy with which effect sizes can be estimated 403 

when small samples are used. This highlights the importance of reaching a better 404 

balance between null-hypothesis significance testing and effect size estimation 405 

(Chen et al., 2017; Cumming, 2014; Morey et al., 2014). Indeed, p values only 406 

indicate the likelihood of observing an effect of a given magnitude (when the null 407 

hypothesis is true). As such, they cannot convey the same information provided by 408 

point and interval estimates of effect sizes (Steward, 2016; Wasserstein and Lazar, 409 

2016), particularly since the relationship between p values and effect sizes is non-410 

linear (Hentschke and Stüttgen, 2011; Simonsohn et al., 2014a, 2014b). 411 

There are several potential reasons why the magnitude and statistical 412 

significance of the same effect varies so markedly across resamples. For example, 413 

high sample-to-sample variability could reflect (i) sampling error due to heterogeneity 414 

in the lesion-deficit association across participants (Button, 2016; Stanley and 415 

Spence, 2014), (ii) outliers that are confounding the effects (Rousselet and Pernet, 416 

2012) or (iii) measurement error (Button, 2016; Loken and Gelman, 2017; Stanley 417 
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and Spence, 2014). In this context, the field needs to adopt informed sampling 418 

strategies that ensure representative samples and maximise the probability of 419 

identifying generalizable lesion-deficit mappings (Falk et al., 2013; LeWinn et al., 420 

2017; Paus, 2010).  421 

4.3. Unreliable effect sizes in smaller samples  422 

High variance in the results of our lesion-deficit mappings with smaller 423 

samples (N = 30 and 60) demonstrates how effects can be over- as well as under-424 

estimated (e.g., Cremers et al., 2017; Ioannidis, 2008). Indeed, we show that 85% of 425 

all significant random data sets for N = 30 yielded effect size estimates that were 426 

larger than the upper bound of the credible interval (see Table 5). This is consistent 427 

with prior observations that low-powered studies (with small sample sizes) can only 428 

consistently detect large deviations from the true population effect (Szucs and 429 

Ioannidis, 2017). Put another way, even when effect sizes are accurately estimated 430 

from small samples, they are unlikely to attain statistical significance; particularly 431 

when the magnitude of the effect under investigation is small or medium. In our data, 432 

for example, we found that more than half the analyses with N = 30 that did not 433 

reach statistical significance produced effect sizes that fell within the credible interval 434 

(i.e. accurate estimations of effect sizes resulted in false negatives). Even worse, 435 

analyses of small sample sizes can invert the direction of the effect (Gelman and 436 

Carlin, 2014) as seen in our data where we found that 5% of all results for N = 30 437 

were in the wrong direction. Furthermore, reporting such findings as if they were 438 

accurate representations of reality would lead to misleading conclusions (Nissen et 439 

al., 2016). 440 

Critically, the problem was not solved but became worse when we adopted a 441 

more stringent statistical threshold, which is contrary to that proposed by Johnson 442 

(2013) and Benjamin et al. (2018). For example, if we were to raise the statistical 443 

threshold from p < 0.05 to p < 0.001 for the N = 30 resamples, the statistically 444 

significant effect sizes would range from 38% to 79% of the variance (compared to 445 

11% in the full sample of 360 patients). Increasing sample size, however, does 446 

improve accuracy, with less than 10% of significant p values associated with inflated 447 

effect sizes when N ≥ 180 (see Table 5). 448 
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Given that results are more likely to be published if they reach statistical 449 

significance than if they do not (i.e. the file drawer problem or study publication bias), 450 

our findings highlight three important implications for future lesion-deficit mapping 451 

studies. First, low-powered studies (due to small sample sizes) could lead a whole 452 

research field to over-estimate the magnitude of the true population effect. Second, 453 

power calculations based on inflated effect sizes from studies with small samples will 454 

inevitably over-estimate the statistical power associated with small sample sizes 455 

(Anderson et al., 2017). Third, although the mean effect size measured over many 456 

studies with small sample sizes will eventually converge on the true effect size, in 457 

reality, the same study is seldom replicated exactly and null results are only rarely 458 

reported. It has therefore been advocated that, contrary to current practices, it is 459 

better to carry out a few well-designed high-powered studies than it is to assimilate 460 

the results from multiple low-powered studies (Bakker et al., 2012; Higginson and 461 

Munafò, 2016). In brief, large scale studies increase the probability that an identified 462 

lesion-deficit mapping is correct (Button et al., 2013a; Szucs and Ioannidis, 2017). 463 

4.4. Trivial effect sizes in larger samples 464 

Another important observation from the current study is that, when samples 465 

are sufficiently large, relatively weak lesion-deficit associations can be deemed 466 

statistically significant (i.e. p < 0.05). For instance, effects that only accounted for as 467 

little as 3% of the variance reached statistical significance when N ≥ 120 - an 468 

inferential problem known as the fallacy of classical inference (Friston, 2012; Smith 469 

and Nichols, 2018). However, our findings are consistent with the view that this issue 470 

can be addressed by reporting point and interval estimates of effect sizes (Button et 471 

al., 2013b; Lindquist et al., 2013), which allow one to assess the practical 472 

significance (as opposed to statistical significance only) of the results. In other 473 

words, it can be argued that the fallacy of classical inference is specific to statistical 474 

tests (e.g., t, F and/or p values), leaving effect sizes largely unaffected (Reddan et 475 

al., 2017). Furthermore, there are two important advantages of conducting high-476 

powered studies: (i) they greatly attenuate the impact of study publication bias as 477 

both over- and under-estimations of the true effect size will surpass the threshold for 478 

statistical significance; and (ii) the precision with which the magnitude of the true 479 

population effect can be estimated is substantially improved (Lakens and Evers, 480 

2014; see Table 5 and Figs. 4 and 5A). Our study also indicates that, even with 481 
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sample sizes as large as N = 360, a not inconsiderable degree of uncertainty in R2 482 

estimation remained, which suggests that increasing sample size beyond this N will 483 

continue to bring benefit. 484 

4.5. Study limitations 485 

The focus of the current paper has been on establishing the degree to which 486 

the replicability of lesion-deficit mappings is influenced by sample size. To illustrate 487 

our points, we have (i) searched for brain regions where damage is significantly 488 

related to impairments in articulating speech; (ii) estimated the strength of the 489 

identified lesion-deficit association; and, (iii) run the exact same analysis on 490 

thousands of samples of varying size. However, we have not attempted to account 491 

for all possible sources of inconsistencies in univariate voxel-based lesion-deficit 492 

mapping. Nor have we investigated how our results would change if we selected 493 

another function of interest (e.g., word retrieval or phonological processing). Indeed, 494 

it has already been pointed out that higher-order functions might be associated with 495 

smaller effects than lower-level ones (Poldrack et al., 2017; Yarkoni, 2009). 496 

We also acknowledge that there are many different ways of conducting voxel-497 

based lesion-deficit analyses (for more information see de Haan and Karnath, 2018; 498 

Karnath et al., 2018; Rorden et al., 2007; Sperber and Karnath, 2018). We have 499 

selected one approach, using mass-univariate multiple regression on continuous 500 

measures of structural abnormality, behaviour and lesion size. However, we could 501 

have used other types of images or other behavioural regressors. For example, 502 

several recent studies have adopted dimensionality reduction techniques, such as 503 

principal component analysis (PCA), to transform a group of correlated behavioural 504 

measures into a smaller number of orthogonal (uncorrelated) factors (e.g., Butler et 505 

al., 2014; Corbetta et al., 2015; Mirman et al., 2015a). This PCA approach has made 506 

an important contribution to finding coarse-grained explanatory variables (e.g., Halai 507 

et al., 2017; Lacey et al., 2017; Mirman et al., 2015b; Ramsey et al., 2017), but some 508 

of its limitations are that it: (i) involves an arbitrary criterion for factor extraction; (ii) 509 

ignores unexplained variance when selecting a limited number of components; and, 510 

(iii) necessitates subjective, a posteriori, interpretation as to what the components 511 

might mean based on the factor loadings, which is not typically clear cut. Instead, we 512 

propose that a better solution for tackling orthogonality issues is to adopt both a 513 
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rigorous sampling strategy as well as behavioural measures that offer an optimal 514 

sensitivity-specificity balance. 515 

Finally, we have highlighted that the reliance on small-sized samples of 516 

patients in the presence of publication bias can undermine the inferential power of 517 

univariate voxel-based lesion-deficit analyses. However, we have not attempted to 518 

provide guidance on how prospective power calculations - that correct for the various 519 

forms of bias present in scientific publications - can be conducted. Nor have we 520 

illustrated how the presence of publication and other reporting biases in the lesion-521 

deficit mapping literature, specifically, can be ascertained. The reason simply being 522 

that others have already devoted considerable effort to developing tools that identify 523 

and deal with problems such as: (i) the excess of statistically significant findings 524 

(e.g., Ioannidis and Trikalinos, 2007); (ii) the proportion of false positives (e.g., 525 

Gronau et al., 2017); (iii) the presence of publication bias and questionable research 526 

practices (e.g., Du et al., 2017; Simonsohn et al., 2014a, 2014b); (iv) errors in the 527 

estimation of the direction and/or magnitude of a given effect (e.g., Gelman and 528 

Carlin, 2014); and, (v) sample size calculations that take into account the impact of 529 

publication bias and uncertainty on the estimation of reported effect sizes (e.g., 530 

Anderson et al., 2017). With respect to statistical power, the situation is further 531 

complicated by the fact that - in the context of univariate voxel-based lesion-deficit 532 

mapping - it not only depends on the size of the sample, the magnitude of the effect 533 

under study and the statistical threshold used (Cremers et al., 2017), but also on the 534 

distribution of damage across the brain (which is non-uniform; Inoue et al., 2014; 535 

Kimberg et al., 2007; Mah et al., 2014; Sperber and Karnath, 2017). More research 536 

on the topic will be required before prospective power calculations can be fully 537 

trusted. Until that moment, the recruitment of representative patient samples in 538 

combination with high-powered designs seems to be the best available solution to 539 

the issues discussed here.      540 

4.6. Interpreting voxel-based lesion-deficit mappings 541 

 The strength of the lesion-deficit association that we identified in a large 542 

sample of 360 patients illustrates that the majority of the variability in speech 543 

articulation abilities was driven by factors other than the degree of damage to the 544 

ROI. A clear implication of this is that the field of lesion-deficit mapping still has a 545 
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long way to go before it can inform current clinical practice, which is arguably one of 546 

its most important goals. Future studies will need to control and understand other 547 

known sources of variance (apart from lesion site and size) such as time post-stroke, 548 

age and education in order to improve our ability to predict language outcome and 549 

recovery after stroke at the individual patient level (Price et al., 2017). Furthermore, 550 

to map all the possible ways in which brain damage can affect behaviour, it will in all 551 

likelihood be necessary to use increasingly larger samples of patients (e.g., Price et 552 

al., 2010; Seghier et al., 2016) and multivariate methods (e.g., Hope et al., 2015; 553 

Pustina et al., 2018; Yourganov et al., 2016; Zhang et al., 2014). 554 

5. Conclusions 555 

This study investigated the impact of sample size on the reproducibility of 556 

voxel-based lesion-deficit mappings. We showed that: (i) highly significant lesion-557 

deficit associations can be driven by a relatively small proportion of the variance; (ii) 558 

the exact same lesion-deficit mapping can vary widely from sample to sample, even 559 

when analyses and behavioural assessments are held constant; (iii) the combination 560 

of publication bias and low statistical power can severely affect the reliability of 561 

voxel-based lesion-deficit mappings; and, finally, (iv) reporting effect size estimates 562 

is essential for assessing the importance or triviality of statistically significant 563 

findings. Solutions to the issues highlighted here will, in our view, likely involve the 564 

use of: (a) improved reporting standards; (b) increasingly larger samples of patients; 565 

(c) multivariate methods; (d) informed sampling strategies; and, (e) independent 566 

replications. Careful reflection on some deeply-rooted research practices, such as 567 

biases in favour of statistically significant findings and against null results, might also 568 

be necessary.569 
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Table 1: Summary of demographic and clinical data for full sample. 

Factor   N = 360 

Age at stroke  M 54.4 

onset (years) SD 12.9 

 
Range 17.2-86.5 

Age at testing  M 59.4 

(years) SD 12.4 

 
Range 21.3-90.0 

Time post-stroke  M 4.9 

(years) SD 5.2 

 
Range 0.2-36.0 

Education  M 14.5 

(years)* SD 3.2 

 
Range 10.0-30.0 

Lesion size  M 85.7 

(cm3) SD 87.6 

 Range 1.5-386.2 

Gender Males 250 

 Females 110 

Rep-N Imp/Non 132/228 

 
M 54.4 

 
SD 9.1 

Writt-PN Imp/Non 105/255 

 
M 58.6 

 
SD 8.7 

Recog-M Imp/Non 37/323 

 
M 53.9 

 
SD 7.0 

Sem-A Imp/Non 36/324 

 
M 56.6 

 
SD 6.1 

AW-P Imp/Non 77/283 

 
M 57.0 

 
SD 6.8 

 
Imp/Non = number of patients with impaired/non-impaired performance. *Missing 

data: three patients. 
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Table 2: Statistical power in the region of interest. 
 

%tile  Sample Size 

 

 30 60 90 120 180 360 

0th Power 98% 100% 100% 100% 100% 100% 

 R2 0.00 0.00 0.00 0.00 0.00 0.01 

 P 0.999 0.999 0.999 0.999 0.404 0.093 

10th Power 99% 100% 100% 100% 100% 100% 

 R2 0.01 0.03 0.04 0.05 0.06 0.07 

 P 0.638 0.218 0.064 0.015 0.001 0.000 

20th Power 63% 100% 100% 100% 100% 100% 

 R2 0.03 0.05 0.06 0.07 0.08 0.09 

 P 0.400 0.093 0.022 0.004 0.000 0.000 

30th Power 86% 100% 100% 100% 100% 100% 

 R2 0.06 0.07 0.08 0.08 0.09 0.10 

 P 0.250 0.046 0.009 0.002 0.000 0.000 

40th Power 92% 100% 100% 100% 100% 100% 

 R2 0.08 0.09 0.10 0.10 0.10 0.11 

 P 0.158 0.025 0.004 0.001 0.000 0.000 

50th Power 98% 100% 100% 100% 100% 100% 

 R2 0.11 0.11 0.11 0.11 0.11 0.11 

 P 0.099 0.012 0.002 0.000 0.000 0.000 

60th Power 100% 100% 100% 100% 100% 100% 

 R2 0.15 0.14 0.13 0.13 0.13 0.12 

 P 0.060 0.006 0.001 0.000 0.000 0.000 

70th Power 83% 100% 100% 100% 100% 100% 

 R2 0.18 0.16 0.15 0.14 0.14 0.13 

 P 0.032 0.002 0.000 0.000 0.000 0.000 

80th Power 96% 100% 100% 100% 100% 100% 

 R2 0.23 0.19 0.17 0.16 0.15 0.14 

 P 0.015 0.001 0.000 0.000 0.000 0.000 

90th Power 100% 100% 100% 100% 100% 100% 

 R2 0.30 0.23 0.21 0.19 0.18 0.16 

 P 0.004 0.000 0.000 0.000 0.000 0.000 

100th Power 99% 100% 100% 100% 100% 100% 

 R2 0.79 0.52 0.39 0.39 0.38 0.28 

 P 0.000 0.000 0.000 0.000 0.000 0.000 

 

The table shows that in all but one case, more than 80% of the voxels comprising the 

region of interest from Analysis 1 had sufficient statistical power to detect a 

significant lesion-deficit association at a threshold of p < 0.05 after correction for 

multiple comparisons. %tile = percentile of the effect size (R2) distribution; Power = 
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percentage of voxels within the region of interest from Analysis 1 that had sufficient 

statistical power to detect a significant lesion-deficit association at a statistical 

threshold of p < 0.05 after correction for multiple comparisons; R2 = R2 value (at a 

particular decile); P = p value (at a particular decile). 
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Table 3: Brain regions where lesion load is associated with speech articulation 

abilities. 

 

Brain region Peak coordinates Voxel-level Cluster-level 

 
x y z Z-score PFWE-corr Extent PFWE-corr 

Post-Central  -60 -16 12 5.8 0.000 549* < 0.001 

 -52 -14 24 4.7 0.009   

 -56 -12 18 4.6 0.012   

Posterior Insula -40 -16 8 5.3 0.001   

Anterior SMG -66 -30 20 4.7 0.008   

WM -48 -24 26 4.6 0.010 
  

 
The table shows representative (peak) voxels where a significant association 

between stroke damage and difficulties articulating speech was found. All were in the 

left hemisphere and the coordinates are reported in MNI space. SMG = 

supramarginal gyrus; WM = white matter; PFWE-corr = p value corrected (family-wise 

error correction) for multiple comparisons. *At a cluster-forming voxel-wise threshold 

of p < 0.05 FWE-corrected. 
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Table 4: Mean and median effect size of the significant and non-significant random 

data sets by sample size. 

 

R
2
 Sample Size 

 30 60 90 120 180 360 

 
s ns s ns s ns s ns s ns s ns 

Count 2214 3786 4272 1728 5289 711 5747 253 5974 26 5999 1 

 258 5742 1279 4721 2613 3387 3911 2089 5369 631 5997 3 

M 0.26 0.07 0.16 0.04 0.13 0.03 0.12 0.02 0.12 0.01 0.11 --- 

 0.45 0.12 0.24 0.09 0.18 0.07 0.15 0.06 0.12 0.05 0.11 0.02 

Mdn 0.24 0.06 0.15 0.04 0.12 0.03 0.11 0.02 0.11 0.01 0.11 --- 

 0.43 0.11 0.23 0.09 0.17 0.08 0.14 0.06 0.12 0.05 0.11 0.03 

Min 0.16 0.00 0.07 0.00 0.05 0.00 0.03 0.00 0.02 0.00 0.03 0.01 

 0.38 0.00 0.19 0.00 0.12 0.00 0.09 0.00 0.06 0.00 0.03 0.01 

Max 0.79 0.16 0.52 0.07 0.39 0.05 0.39 0.03 0.38 0.02 0.28 0.01 

 0.79 0.38 0.52 0.19 0.39 0.12 0.39 0.09 0.38 0.06 0.28 0.03 

 

For each summary statistic, the upper row indicates the corresponding value when 

the alpha threshold was set at 0.05, whereas the lower row indicates the 

corresponding value when the alpha threshold was set at 0.001. Count = the number 

of resampled data sets that generated significant or non-significant R2 values; s = 

significant (i.e. p < α); ns = not significant (i.e. p ≥ α); M = mean R2 value; Mdn = 

median R2 value; Min = minimum R2 value; Max = maximum R2 value. 
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Table 5: Frequency of accurate and inaccurate effect size estimates by sample size 

and statistical significance. 

 

N Effect Size 

 Significant Not significant 

  > 95% CI = 95% CI < 95% CI > 95% CI = 95% CI < 95% CI 

360 173 5686 140 0 0 1 

180 556 4925 493 0 0 26 

120 795 4430 522 0 0 253 

90 1081 3887 321 0 0 711 

60 1417 2855 0 0 421 1307 

30 1873 341 0 0 2007 1779 

 

The table shows, for each sample size, the frequency with which effect size 

estimates reached statistical significance (i.e. p < 0.05) and fell within (=) or outside 

the 95% credible interval (i.e. 0.06-0.18) of the best estimate of the “true” population 

effect (i.e. R2 = 0.11). 95% CI = 95% credible interval; > = larger than the upper 

bound of 95% CI; < = smaller than the lower bound of 95% CI. 
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Fig. 1. Design matrix. The design matrix for Analysis 1 is shown, where the columns 

represent the subject-specific independent variables (IVs), with one value for each 

subject, and the rows correspond to the dependent variable (DV) indexing the 

degree of structural abnormality in the fuzzy lesion images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

 

Fig. 2. Lesion overlap map and region of interest from Analysis 1. (A) Lesion overlap 

map for the full sample of 360 stroke patients, depicting voxels that were damaged in 

a minimum of 5 and a maximum of 215 patients. The colour scale indicates the 

number of patients with overlapping lesions at each given voxel. (B) In red, the 

region of interest identified in Analysis 1 (i.e. 549 voxels) where a significant 

association between lesion load and speech articulation abilities was found. 
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Fig. 3. Effect of interest. Visual illustration of the strength of the relationship between 

lesion load in the region of interest and nonword repetition scores, after factoring out 

variance explained by the covariates of no interest (i.e. a plot of the lesion load and 

nonword repetition residuals; Analysis 1). 
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Fig. 4. Differential sensitivity of effect sizes and p values to sample size. The figure 

highlights that, while the mean and median of the effect size distributions remained 

relatively constant across the different sample sizes, the mean and median of the p 

value distributions exhibited substantial and systematic variability. Box plots depict 

medians with interquartile ranges and whiskers represent the 5th and 95th 

percentiles. The crosses indicate the mean for each sample size. The horizontal 

dashed line in red signals the R2 value obtained in Analysis 1 (including data from all 

360 patients), whereas the horizontal dashed line in blue shows the standard alpha 

level (i.e. 0.05). 
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Fig. 5. Distribution of R2 and p values. (A) From left to right, the frequency (in 

intervals of 0.02) and probability distributions of effect sizes for each sample size. 

The vertical dotted lines indicate the boundary between non-significant (p ≥ 0.05; to 

the left) and significant (p < 0.05; to the right) R2 values. (B) From left to right, the 

frequency (in intervals of 0.05) and probability distributions of p values for each 

sample size. 
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Highlights 

 The same lesion-deficit analysis was repeated on thousands of bootstrap 

samples. 

 Replicability of the original effect was contingent upon the size of the sample. 

 With smaller samples, only inflated effect size estimates reached significance. 

 With larger samples, even trivial effect sizes yielded significant p values. 

 


