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Abstract
A key problem in spoken language identification (LID) is how
to design effective representations which are specific to lan-
guage information. Recent advances in deep neural networks
have led to significant improvements in results, with deep end-
to-end methods proving effective. This paper proposes a novel
network which aims to model an effective representation for
high (first and second)-order statistics of LID-senones, defined
as being LID analogues of senones in speech recognition. The
high-order information extracted through bilinear pooling is ro-
bust to speakers, channels and background noise. Evaluation
with NIST LRE 2009 shows improved performance compared
to current state-of-the-art DBF/i-vector systems, achieving over
33% and 20% relative equal error rate (EER) improvement for
3s and 10s utterances and over 40% relative Cavg improvement
for all durations.
Index Terms: language identification, utterance representation
extraction, end-to-end neural network, bilinear pooling

1. Introduction
The key problem for language identification (LID) is how to
distill an efficient and compact representation specific to LID
information. This is challenging due to large variation in speech
content, speakers, channels and background noise, coupled with
a scarcity or mismatch in training resources. At present, total
variability (TV) methods achieve state-of-the-art performance
through their powerful ability to model, exploiting zeroth, first
and second order Baum-Welch statistics of features in a speaker,
phoneme and channel dependent space, both in speaker recog-
nition (SR) [1] and language identification (LID) [2] domains.
However, i-vectors are extracted in an unsupervised fashion and
consequently need discriminant backends such as Linear Dis-
criminant Analysis (LDA) and Within-Class Covariance Nor-
malization (WCCN). Due to the generative attributes of Gaus-
sian Mixture Models (GMM), it is more difficult to model the
variance of short speech utterances, thereby significantly reduc-
ing performance compared to long utterances.

Deep learning techniques have achieved impressive results
in applications like large scale speech recognition and image
classification. Deep Neural Networks (DNN) demonstrate par-
ticularly strong learning capabilities in both front-end feature
extraction and back-end modelling. For example, Song et.al,
Richardson et.al and Jiang et.al [3, 4, 5] proposed using deep
bottleneck features (DBFs) from a well trained DNN for auto-
matic speech recognition (ASR) [6]. DBFs are inherently robust
to phonotactically irrelevant information. Lei et.al, Kenny et.al
and Ferrer et.al [7, 8, 9] proposed collecting sufficient statis-
tics using a structured DNN to form effective representations

from posteriors of phoneme or phoneme states. DNNs have
been shown to excel when combined with phonotactic training
in LID modelling, nevertheless both the DBFs and calculated
statistics are extracted from phoneme or phoneme states, which
are not always discriminative to languages.

To extract language discriminant features and representa-
tions, more and more end-to-end NNs have been proposed
to span frame level to utterance level LID identity – avoid-
ing the need for discriminative back-end algorithms. End-to-
end schemes have been used in image processing [10, 11, 12]
and speech recognition [13], combining good performance with
convenience in training.

Lopez-Moreno et.al [14] proposed an end-to-end scheme
for LID using large scale DNNs, which performed well. Speech
is segmented into small parts containing just a few frames, with
each part aligned into a specific language ID. However it can be
difficult to train a language discriminant model because DNN
input dimension may not scale to the size necessary to repre-
sent a language discriminant unit. Garcia-Romero et.al [15]
improved this by introducing a time delay neural network
(TDNN), which spans a wider temporal context. A bottom-
up hierarchical structure used to produce a posterior probabil-
ity over the set of languages concatenated over a long time
span. Gelly et.al [16] and Gonzalez et.al [17] proposed building
Long Short Term Memory-Recurrent Neural Networks (LSTM-
RNN) to identify languages. This architecture has natural ad-
vantages of sequence modelling which can choose what to
remember and to forget automatically across a wide context.
Geng et.al [18] applied attention-based RNN mechanisms, first
used in neural machine translation, to LID. Each speech frame
has a posterior, forming vectors that are weighted and summed
into one utterance representation. This unified architecture al-
lowed end-to-end training, and boosted system performance.

Compared to LSTM-RNN, convolutional neural networks
(CNN) have more flexibility with many variant architec-
tures [19, 20, 21]. In our previous work [22], a novel end-to-end
approach named LID-net was proposed, combining the proven
frame-level feature extraction capabilities of the DNN with the
effective utterance level mapping abilities of the CNN. This
allowed language discriminant features to be obtained, which
we termed LID-senones. Performance was good compared to
state-of-the-art DBF/i-vector systems, particularly for short ut-
terances, however LID-net only averaged LID-senone posteri-
ors using zeroth order Baum-Welch statistics.

The above end-to-end networks have demonstrated the ca-
pability of discriminative modelling. However instead of mod-
elling an utterance as LID-senones in the time dimension, the
bilinear pooling computes the output product of LID-senone se-
quences from two CNN layers. This yields an utterance repre-



Figure 1: LID-net (top) where features are extracted frame-by-frame from DNN layers 1-3. LID-senones are obtained through several
convolutional layers, with the expansion of filter size in convolutional layer 1 to a context of 21 frames, followed by several 1 × 1
filters (convolutional layers 2 to n). LID-bilinear-net (bottom) is identical to LID-net up to the bilinear pooling layer. This is the outer
product of two feature maps from lower convolutional layers, from which first and second order statistics can be obtained.

sentation in terms of LID-senone statistics that is invariant to
the time dimension of the original recording, and is considered
to be more robust to within-class variance, channels and back-
ground noise. The output representation acts like a covariance
matrix formed between the same or two different layers of LID-
senones, from which LID statistics are obtained.

This approach is inspired by the image processing do-
main where two dimensional feature maps are common. Per-
ronnin et.al and Carreira et.al introduced fisher vector (FV) [23]
and second order pooling (O2P) [24] respectively, showing that
first and second order statistics, widely used in patten recogni-
tion, can contribute outstanding performance to classification.

1.1. Contribution

We introduce an end-to-end DNN-CNN neural network that
utilizes high-order LID-senone statistics. This system, named
LID-bilinear-net, combines the advantage of both the high-
order Baum-Welch statistics calculation of i-vector systems and
the natural discriminant attributes of neural networks. High-
order statistics are obtained through a bilinear pooling model
borrowed from fine-grained visual recognition [25]. Two con-
volutional layer outputs are combined using outer product mul-
tiplication at each dimension of the LID-senone and pooled to
obtain an utterance representation. The architecture of LID-
bilinear-net, shown in Fig. 1, is based upon that of LID-net [22],
except the bilinear pooling layer replaces the original single-
layer spatial pyramid pooling (SPP) (which was also adapted
from image processing [26]). First and second order statistics
can then be obtained from the bilinear pooling. The detailed
theory and mechanism of bilinear pooling will be discussed in
Section 2.2 while the proposed LID-bilinear-net architecture is
detailed in Section 2.3. In Section 3, extensive experiments ex-
plore the strong modelling capability of LID-bilinear-net.

To summarise, the contribution of this paper is a novel end-
to-end architecture named LID-bilinear-net, that utilizes LID-
senones to obtain high-order statistics. Experiments on the full
23 languages of NIST LRE 2009 compare performance to state-
of-the-art DBF/i-vector systems, demonstrating a very consid-
erable improvement, especially for the shortest utterances.

2. Bilinear Models for LID
2.1. A Statistical View of LID-net

The structure of LID-net [22], shown in Fig.1(a), consists of a
DNN-based front-end to derive LID-related acoustic features,
followed by a CNN back-end, using SPP to form an utterance
representation. The DNN is configured with a constricted bot-
tleneck (BN) layer to transform acoustic features into a com-
pact representation in a frame-by-frame manner. Convolutional
layers then perform nonlinear transformations of BN features
into units which are discriminative to language, termed LID-
senones. The SPP layer forms an utterance representation from
LID-senones, then the derived vector can be classified directly
as described in [22].

The size1 of LID-senone after convolutional layer n (fn) is
Kn@1 ×N2, and for convenience it can be reshaped to Kn ×
N2, then the LID-senone statistics (N ) are also reshaped from
Kn@1 × 1 to Kn × 1. The fn is transferred into γn after
softmax γn = softmax(fn). The elements of γn are γnk(t)
(k = 1 . . .Kn and t = 1 . . . N2) while the elements of N are
Nk (k = 1 . . .Kn). Therefore if average pooling is used, zeroth
order statistics are Nk = 1

N2

∑N2
t=1 γnk(t).

It is clear that with this method the kth senone statis-
tic is computed just like the zeroth Baum-Welch statistic of
acoustic features in the kth Gaussian in the standard i-vector
system. The previous end-to-end system that used only ze-
roth order LID-senone statistics [22] outperformed state-of-the-
art DBF/i-vector systems which utilized high-order statistics.
Therefore utilizing higher order statistics obtained using the
back-propagation algorithm in LID-bilinear-net would be ex-
pected to improve performance even further.

2.2. Bilinear Pooling Mechanism

The formation of a bilinear model B in CNN can be viewed
as fA,B = B(fA,fB). Let fA and fB be the A and B
feature maps derived from structured CNN layers; A and B
could be from the same or different layer feature maps. fA,B

is the output of bilinear pooling. The size of fA and fB are
(H ×W ) ×KA and (H ×W ) ×KB respectively (reshaped

1A size of Kn@1×N2 means the height is 1, the number of weights
is N2 and there are Kn channels.



from KA@H ×W and KB@H ×W respectively), implying
both fA and fB must have the same feature dimension W and
H to be compatible, but could have different numbers of chan-
nels.

The expression of bilinear pooling can be developed to
fA,B = B(fA,fB) = P(fAT ·fB). The feature map outputs
are combined at each location using the matrix outer product,
thus the shape of (fAT · fB) is simply KA ×KB . To obtain
an utterance representation descriptor, the pooling function P
aggregates the bilinear feature across the entire spatial domain
of one combination, and here we choose average pooling and
so fA,B will end up with size KA ×KB , effectively reshaped
to (KA ×KB)@1× 1. The descriptor then can be used with a
classifier, and here we use a multi-layer neural network.

2.3. Bilinear model for LID

Referring to the structure of the existing LID-net and proposed
LID-bilinear-net shown in Fig.1, a DNN-based front-end ex-
tracts LID-features while a CNN-based back-end derives LID-
senones. LID-bilinear-net’s bilinear pooling layer extracts a
high-order utterance representation utilizing correlation of di-
mensions in LID-senones. This utterance descriptor could then
be directly used with a classifier, and the whole network can use
back-propagation rather than typical high-order statistics algo-
rithms such as FV [23] or O2P [24].

As Section 2.1 mentioned, feature maps fA and fB could
be reshaped into sizes of KA ×N2 and KB ×N2 respectively
(where N2 is the number of elements in each channel). Due
to the filter size of convolutional layer 1 covering the full LID-
feature dimension, the height of feature maps after it are set
to unity. Elements in feature map fA are defined as fAd(t)
(d = 1 . . .KA, t = 1 . . . N2) and in feature map fB the el-
ement could be fBk(t) (k = 1 . . .KB , t = 1 . . . N2). After
the softmax operation, fB becomes γ, which can be viewed as
the posterior of corresponding LID-senones at frame level, with
its elements defined as γk(t) (k = 1 . . .KB , t = 1 . . . N2).
Following the mechanism of bilinear pooling, using the feature
map fA and its corresponding posterior γ, the bilinear pooling
models the first order LID-senone statistics,

fAB(k) =
1

N2

N2∑
t=1

γk(t) · fA(t) (1)

With feature maps fA and fB , the bilinear pooling can also
model the second order LID-senone statistics with vectorization
expression

fAB =
1

N2
fA

T · fB (2)

If fA and fB come from the same layer in the CNN, this would
be the standard formula to calculate O2P (e.g. eqn.(2) in [24]).

The high-order LID-senone statistics can not only cover a
wide speech context, but also extract the relationship along its
feature dimension. Typically, i-vector methods do not learn the
feature extractor functions, with only the parameters of the en-
coder being learnt. Furthermore, even though an i-vector is
compact, its training procedure is not end-to-end. The advan-
tage of LID-bilinear-net is to learn the feature extractor and en-
coder simultaneously, allowing the whole network to be easily
fine-tuned. Owing to the flexibility of CNNs, the input feature
maps of bilinear pooling can be either from the same or differ-
ent layers. We believe that bilinear pooling from different input
layers can further improve performance since the information
that they contain is to some extent complementary.

2.4. Training Procedure

Due to the large quantity of training parameters in LID-bilinear-
net, many of which are in the full connection layer, and the fact
that LID-net and LID-bilinear-net share a structure for their first
half, we initialize the network with the trained LID-net parame-
ters, then train the new network directly. The process is namely:

(1) Train a 6 layer DNN (48 × 21-1024-1024-50-1024-1024-
3020) with an internal BN layer using SwitchBoard;

(2) Transfer parameters from the first 3 layers to DNN layer1-
layer3 of LID-net and train LID-net;

(3) Transfer all layer parameters below the SPP layer to LID-
bilinear-net and train LID-bilinear-net.

Steps (1) and (2) are the same as for LID-net so detailed infor-
mation can be found in [22]. Step (3) is described below.

3. Experimental evaluation
3.1. Experiments Setup

To evaluate the effectiveness of the proposed network, we con-
duct extensive experiments with the NIST LRE09 corpus com-
prising 23 languages. Equal error rate (EER) and Cavg are
used to measure performance. Due to the evaluations being
performed on 30s, 10s and 3s temporal scales, when training
the two shorter scales, we randomly extract shorter speech seg-
ments from the 30s training dataset during each epoch. For
comparison, the following system are implemented.

DBF/i-vector: This is the state-of-the-art baseline system
used for comparison. The i-vector method uses DBF as front-
end features and back-end modeling from a well-trained DNN
trained on ASR data. LDA and WCCN compensate the vari-
ability, and cosine distance is used to obtain the final score.

LID-net: The end-to-end network in [22] is used for com-
parison. This only employs zeroth order Baum-Welch statistics
from LID-senones.

LID-bilinear-net: The new network proposed in this pa-
per, where high-order statistics of LID-senones can be obtained
via the end-to-end scheme utilizing posteriors pooled from two
different CNN layers.

Each network is trained and tested independently for 30s,
10s and 3s duration data. For LID-net and LID-bilinear-net, co-
sine distances on corresponding language posteriors are directly
utilized to obtain scores without LDA and WCCN.

3.2. Configuration of LID-bilinear-net

Separate LID-bilinear-net systems for different scales are
trained with 6 convolutional layers. The feature maps from
CNN layers 1-5 have 512 channels and the feature maps af-
ter layer 6 are evaluated with between 32 and 512 channels.
Each convolutional layer is followed by a batch normalization
layer [27] and first and second order LID-senone statistics are
evaluated. The feature map f is obtained before the batch nor-
malization while the feature map γ is extracted from a con-
volutional layer output followed by a softmax operation. The
input of the bilinear pooling process could be from either the
same or different feature maps, so two configurations of bilinear
pooling input are evaluated: one is same-layer bilinear pooling
with input feature maps from after convolutional 6; the other is
cross-layer bilinear pooling with input feature maps from con-
volutional layers 5 and 6.



Figure 2: Evaluation of LID-bilinear-net on 3s utterances. Re-
sults are shown in EER (%), for same-layer pooling and cross-
layer pooling of first and second order statistics.

3.3. Experiments on LID-net and DBF/i-vector

Before training LID-bilinear-net, we must train the correspond-
ing LID-net first. This also has six convolutional layers, and
must also be trained with 32 to 512 channels in the feature map
after layer 6 for comparison. The performance of various LID-
net configurations is shown in Table 1 alongside the current
state-of-the-art DBF/i-vector system. The notation LID-net-32
means the feature map after CNN layer 6 has 32 channels.

Table 1: Comparison between LID-net and DBF/i-vector. Per-
formance is given in EER (%) and Cavg (%) for all systems and
scales.

System 3s 10s 30s
EER Cavg EER Cavg EER Cavg

DBF/i-vector 10.79 7.48 3.05 2.14 1.48 1.10
LID-net-32 7.67 6.02 2.74 1.54 1.49 1.05
LID-net-64 7.76 5.99 2.92 1.64 1.54 0.75

LID-net-128 7.58 6.15 2.89 2.00 1.55 0.91
LID-net-256 7.57 5.05 2.66 1.46 1.46 1.21
LID-net-512 7.79 6.64 2.81 1.49 1.50 0.74

Thanks to the end-to-end nature of LID-net, it achieves bet-
ter performance than the baseline DBF/i-vector system over all
scales. In general, the shorter the segment, the greater the ad-
vantage for LID-net. The compelling improvement achieved by
LID-net at almost all scales lends confidence to the ability of the
discriminative training procedure. As far as we concerned, the
discriminative model can handle the variance of speakers, chan-
nels and noise in short utterances better than a generative model.
However the number of channels should not be too small or
too large, as too many trained parameters leads to over-fitting
whereas too few parameters cannot model the LID-senones ef-
fectively.

3.4. Evaluation on LID-bilinear-net

After transferring trained LID-net parameters to the correspond-
ing LID-bilinear-net, we re-train using the same training data,
and verify whether bilinear pooling improves performance fur-
ther. Focusing on 3s utterances, we conduct extensive experi-
ments to explore the mechanism for computing first/second or-
der statistics through same- or cross-layer pooling.

Fig. 2 shows EER performance for various systems on 3s

utterances. The number N along the x axis indicates that the
LID-bilinar-net system was initialised from LID-net-N . Results
are shown for both same-layer pooling and cross-layer pooling,
with the latter computed using either first or second order statis-
tics. Comparing with Table 1 we first see that all LID-bilinear-
net systems outperform LID-net. This is thanks to the robust-
ness that is gained by using high-order LID-senone statistics.
Cross-layer bilinear pooling performs better than same-layer
pooling, and we argue that computing statistics across layers
provides some degree of complementary information. Results
also show that using the second order statistics is more robust
in every case than that from first order statistics. Therefore the
following evaluations only list the performance of second or-
der statistics of LID-senones obtained from cross-layer bilinear
pooling.

Table 2: Evaluations on cross layer LID-bilinear-net for all
scales. Performance is given in EER (%) and Cavg (%) for all
test conditions.

LID-bilinear-net 3s 10s 30s
EER Cavg EER Cavg EER Cavg

32-relu 6.97 6.20 2.39 1.20 1.52 0.77
64-relu 6.94 5.32 2.40 1.38 1.48 0.95

128-relu 7.05 5.52 2.33 1.50 1.59 0.66
256-relu 7.09 5.26 2.32 1.74 1.58 0.87
512-relu 6.86 4.38 2.43 1.46 1.51 0.87

Table 2 includes 3s, 10s and 30s LID-bilinear-net results,
for different numbers of channels in the output layer. Perfor-
mance is good compared to Table 1, although the 30s result
seems to be data-limited rather than architecture-limited (LID-
bilinear-net has more parameters to train than LID-net through
having an additional fully connected output layer). Note that the
bilinear pooling method demonstrates its compactness: just 64
channels in LID-bilinear-net outperforms both the DBF/i-vector
and the LID-net systems for shorter utterances in terms of EER.

4. Conclusion
This paper has introduced a novel end-to-end neural network,
named LID-bilinear-net. DNN layers are first used to extract
LID-features from acoustic training features, then LID-senones
obtained through several convolutional layers which span a time
context. LID-senones are thought to be discriminative to lan-
guages in the way that senones are discriminative to phonetic
content. The LID-senone derivation is followed by a bilinear
pooling layer that spans from frame to utterance level, from
which high-order (first and second order) statistics are com-
puted. The system is trained end-to-end via back-propagation.
LID-bilinear-net shares lower layer trained parameters with
LID-net, a previous DNN/CNN network that did not incorpo-
rate bilinear pooling and could utilize only zeroth order statis-
tics. Experimental results demonstrate the strong modelling ca-
pability of LID-bilinear-net, achieving relative improvements in
EER of over 33% and 20% for 3s and 10s durations and over
40% relative improvement in Cavg for all durations, compared
to the current state-of-the-art DBF/i-vector system.
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