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Fig. 1.6 - The process of spermatogenesis. In the testis, spermatogonia form primary 
spermatocytes, which in turn form spermatocytes by meiotic division. The round, early 
spermatids differentiate into elongated spermatids and are released into the seminiferous 
tubule lumen as mature spermatozoa. Sertoli cells support the process of male gametogenesis. 
(Image taken from: human-fertility.com). 
 
Fig. 1.7 – Key events in fertilisation. A-B) The sperm cell makes contact with the cumulus cells. 
C) The acrosome reaction is initiated with release of lytic enzymes. D) The spermatozoon 
breaches through the zona pellucida. E) The equatorial segment of the sperm head fuses to the 
oocyte’s membrane. F) The sperm enters the oocyte. (Image source: clinicalgate.com). 
 
Fig. 1.8 – Early development of a human embryo. A) A zygote is forming as the pronuclei (arrow) 
are about to merge. B) 2-cell stage embryo after the first cleavage division. C) 3-cell stage 
embryo. D) 4-cell stage embryo. E) 8-cell stage embryo. F) Compaction: the blastomeres become 
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well evident. (Image adapted from Montag et al. 2014). 
 



XIII 

 

Fig. 1.9 – Ovum pick-up (OPU). Following ovarian stimulation, the mature oocytes are retrieved 
from their follicles shortly before ovulation. An ultrasound guided needle is inserted through the 
cervix and used to aspirate the contents of the antral follicles. (Image adapted from 
http://thamaraihealthcare.com). 
 
Fig. 1.10 – Immature porcine cumulus-oocyte complexes (COC) of different morphology. A) 
Good quality oocyte surrounded by a compact and dense cumulus. B) An oocyte surrounded 
only by a single layer of cumulus cells is expected to have a low developmental competence. C) 
Denuded oocyte, no cumulus cells are present leading to the expectation of very low 
developmental competence. Scale bar represents 50 μm. (Image adapted from Alvarez et al. 
2009). 
 
Fig. 1.11 – Key steps of in vitro fertilisation (IVF). Mature oocytes from a superovulated donor 
or oocytes matured in vitro are co-cultured with prepared semen to achieve fertilisation outside 
of the body (1), resulting in the formation of a zygote (2) and finally of an embryo (3) which can 
then be transferred in utero (4). (Image adapted from http://www.cpma.ch). 
 
Fig. 1.12 – The reproductive tract of the cow. Notably, the cranial part of the uterus is divided 
in two separate chambers known as the uterine horns. During embryo transfer, a catheter is 
used to deliver an embryo through the cervix and up to the middle point of one of the uterine 
horns. (Image from www.ansci.wisc.edu). 
 
Fig. 1.13 – Comparative morphology of human and bovine cleavage stage embryos. A) Human 
8-cell stage embryo of excellent morphology presenting eight even and translucent blastomeres. 
B) Bovine 8-cell stage embryo of excellent morphology. The specimen is opaque due to the 
presence of lipid droplets, which make the morphological assessment more challenging. (Image 
sources: part A: atlas.eshre.eu; part B: adapted from Lechniak et al. 2008). 
 
Fig. 1.14 – Embryo classification in cattle at day 7 of culture. Embryos of grade 1 are considered 
excellent or good, with minor irregularities and less than 15% fragmentation and are suitable for 
transfer and cryopreservation. Embryos of grade 2 are considered fair and display moderate 
irregularities; their use for transfer is acceptable but they are expected to display reduced 
cryotolerance. Embryos of grade 3 are considered poor with major irregularities and obvious 
fragmentation; they are not expected to survive freeze/thawing and provide very modest results 
upon transfer. Embryos of grade 4 are dead or degenerating and should be immediately 
discarded, as they are non-viable. (Image adapted from Bo & Mapletoft 2013). 
 
Fig. 1.15 – Well of the well (WOW) culture dish. In the WOW culture system, embryos are 
cultured in the same dish (left) and can therefore take advantage of the benefits of co-culture. 
Additionally, the embryos can be individually tracked thanks to their positioning within micro-
wells (zoom, right). (Image source: http://www.vitrolife.com). 
 
Fig. 1.16 – Application of optical coherence tomography (OCT) to the imaging of early stage 
murine embryos. The images on the top row were captured by standard bright field microscopy 
and are compared to images of the same specimen captured through the use of OCT. With OCT, 
nuclei are clearly visible in zygotes and cleavage stage embryos. At the same time, all the 
characteristic features of a blastocyst (trophectoderm ring, inner cell mass, blastocoel) can be 
easily observed (Image adapted from Karnowski et al. 2017). 
 
Fig. 1.17 – Cleavage stage embryo splitting. Two 4-cell stage murine embryos (1) are subjected 
to enzymatic digestion of their zona pellucida (2). Once freed from the zona pellucida, the 
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blastomeres are separated (3) and transferred either singly or in groups into an empty zona 
pellucida (4). The embryos are then cultured until the blastocyst stage (5-6). (Image adapted 
from Tang et al. 2012). 
 
Fig. 1.18 – Blastocyst stage embryo splitting. In this form of embryo splitting a blastocyst is 
divided mechanically in two equal halves. To remain viable, the resulting demi-embryos should 
receive similar proportions of both the trophectoderm (TE) and, more importantly, of the inner 
cell mass (ICM). With reference to the above, the dashed line indicates the optimal position for 
the cut. (Image adapted from Escriba et al. 2002). 
 
Fig. 1.19 – Somatic cell nuclear transfer (SCNT). A schematic representation of the SCNT method 
is presented. An enucleated oocyte is fused with the nucleus of an adult somatic cell. The 
activated embryo is transferred to a foster mother leading to the birth of an animal genetically 
identical to the somatic cell nuclear donor (Image from Gifford & Gifford 2013). 
 
Fig. 1.20 – Examples of segregation patterns arising from normal disjunction, non-disjunction 
and premature predivision of chromatids. Maternal chromosomes in red, paternal 
chromosome in blue. PB: polar body. The net result of each segregation pattern is described on 
the right of each panel as gain (G), loss (L) or normal (N) copy number for PB1, PB2 and Zygote, 
respectively. Note that not all possible segregation patterns are represented and for premature 
predivision reciprocal patterns are also possible leading to a balanced outcome. (Image from 
Handyside et al. 2012). 
 
Fig. 1.21 – Application of karyomapping in a case of preimplantation genetic diagnosis (PGD) 
in human embryos. The genotype of an affected sibling (reference) at specific single nucleotide 
polymorphism (SNP) loci was compared to 7 embryo biopsies. Two pairs of columns are given 
for each chromosome examined. P: paternal chromosome, M: maternal chromosome. Blue: 
paternal informative SNP concordant with reference; Red: paternal informative SNP different 
from reference; Yellow: maternal informative SNP shared with reference; Green: maternal 
informative SNP different from reference; Grey: absence of information. In embryos 3 and 6, the 
paternal chromosome is missing (paternal monosomy).  (Image from Thornhill et al. 2015) 
 
Fig. 1.22 – Biopsy stages. A) Polar body biopsy. B) Cleavage stage biopsy, a single blastomere is 
being removed from an 8-cell stage embryo. C) Trophectoderm biopsy, a group of cells are 
removed from a blastocyst. (Image sources: A: www.cambridge.org; B: www.mitosis.gr; C: 
nordicalagos.org). 
 
Fig. 2.1 – Grading of porcine cumulus oocyte complexes (COCs). Grades were assigned based 
on the extension of the cumulus complex. A) Three or more intact cumulus cell layers; B) two 
intact cumulus cell layers; C) one incomplete cumulus layer; D) denuded oocyte. Images 
captured with a Hoffman inverted microscope at x200 total magnification. 
 
Fig. 2.2 – Principle of the Ellman’s reaction. Glutathione disulphide (GSSG) is reduced by the 
enzyme glutathione reductase (GR) to glutathione (GSH). The Ellman’s reagent 5,5'-dithiobis-(2-
nitrobenzoic acid) (DTNB) reacts with GSH to form a new disulphide bond (GSTNB), releasing 2-
nitro-5-thiobenzoate (TNB). Then, the GR reduces GSTNB releasing a second TNB molecule, thus 
allowing GSH to re-enter the cycle. The accumulation of TNB can be tracked by a 
spectrophotometer set at 412 nm. Assuming the reagents are provided in excess, the reaction 
rate is only limited by the starting concentration of GSH. (Image adapted from 
https://www.funakoshi.co.jp/data/datasheet/NWS/NWK-GSH01.pdf). 
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Fig. 2.3 – Embryo splitting strategies applied in this study. Several alternative protocols are 
shown. A 2-cell stage embryo is disaggregated into two 1/2 type splits. Alternatively, an 8-cell 
stage embryo can be split in several symmetric ways leading to the formation of either two 4/8 
type splits, four 2/8 type splits or eight 1/8 type splits or even to a combination of these. Finally, 
blastocysts can be bisected leading to the formation of two blastocyst splits. 
 
Fig. 2.4 – Bisectioning setup and demonstration. A) Assembly of a disposable P-730 
microsurgical blade on an Integra TI micromanipulation rig. B-E) The image sequence (from left 
to right) demonstrates a blade bisectioning test performed on an arrested oocyte, which 
resulted in a neat cut. The microscopical images were captured with a Hoffman inverted 
microscope at x200 total magnification. 
 
Fig. 2.5 – Schematic of serial embryo splitting by disaggregation and bisectioning. A potential 
way of performing serial splitting could be to bisect blastocysts derived from a previous 
blastomere separation experiment. In the diagram, an 8-cell stage embryo is divided in two 4/8 
splits by blastomere separation. The resulting blastocysts are then bisected to produce up to 
four twins. 
 
Fig. 2.6 – Total cell count estimation with SmartCapture 3 on Hoechst 33342 stained bovine 
blastocysts. To improve the accuracy of the cell count, the embryo was sequentially divided into 
smaller sections (red rectangles, panels 1 to 4) which could be individually brought into focus. 
Cell nuclei from the different focal planes were then counted in each section. The total 
magnification used was x200. 
 
Fig. 2.7 - SS-OCT microscope experimental set-up. The dish containing the embryo was 
positioned on the microscope’s translation stage for lateral scanning. C1-C2: optical couplers, 
PC: polarisation controllers, L1,2 – lenses, Is: isolator. This image was kindly provided by Miss 
Sophie Caujolle (School of Physical Sciences, University of Kent, Canterbury, UK). 
 
Fig. 3.1 – Meiotic stage of porcine oocytes visualized by α-tubulin immunostaining. Tubulin in 
green, DNA counterstained with Hoechst 33342 (blue). A) Prophase I, no spindle is detected. B) 
Metaphase I, a clear tubulin spindle has formed around the chromosomal compartment. C) 
Anaphase I, two sets of chromosomes are separated by a tubulin bridge. D) Metaphase II, two 
independent spindles can be detected belonging to either the oocyte or to polar body I (arrow). 
Images captured by fluorescence microscopy at x200 total magnification. 
 
Fig. 3.2 – Meiotic stage of porcine oocytes of different grades after IVM. Oocytes clad by more 
cumulus layers were more likely to achieve full nuclear maturation (metaphase II). However, the 
number of oocytes in metaphase I appeared consistent across grades A-C. Grade D oocytes were 
found to be unable to complete nuclear maturation. 
 
Fig. 3.3 – Cortical granules (CG) stain with PNA-lectin in porcine oocytes. CGs in green, DNA 
counterstained with Hoechst 33342 (blue). In the images, N indicates the oocyte’s nucleus, PB 
indicates polar body I. A) A cytoplasmically immature oocyte, no clear CG distribution is present. 
The presence of a polar body indicates asynchrony between nuclear and cytoplasmic maturation 
in this cell. B) A cytoplasmically mature oocyte, a clear ring of CGs can be detected (arrow). 
Images captured by fluorescence microscopy at x200 total magnification. 
 
Fig. 3.4 – Rates of cytoplasmic maturation in gilt oocytes after IVM. Oocytes clad by either 2 or 
3+ layers of cumulus cells (grades A and B) performed similarly in this test and complete 
cytoplasmic maturation more often than oocytes of other grades. Data given as mean ± S.E.M. 
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Fig. 3.5 - Calibration curve for the measurement of glutathione (GSH). Known amounts of GSH 
(0.01 nmol, 0.1 nmol and 1 nmol) were used to calculate the average increase in A412 for each 
20 second interval. A calibration curve was then produced by linear regression. 
 
Fig. 3.6 - Reaction rate curves for the measurement of glutathione (GSH) levels in oocytes of 
different grades. The reaction rate was measured by tracking the increase in the A412 of each 
sample over time, a metric directly proportional to its intrinsic GSH content. Each reaction curve 
presented is the average obtained from triplicate experiments. Grade A and grade B oocytes 
showed very similar kinetics, whilst grade C and grade D oocytes displayed much slower reaction 
rates, indicating a reduced GSH content. Error bars given as S.E.M.  
 
Fig. 3.7 - Total glutathione (GSH) content per oocyte according to grade. Oocytes clad by more 
layers of cumulus cells (grades A and B) were richer in GSH in absolute terms. However, the GSH 
content of grade B oocytes was found to be highly variable. Data given as mean ± S.E.M. 
 
Fig. 3.8 - Polyspermic zygote. Three pronuclei can be distinguished (arrows), indicating this 
zygote has been penetrated by two separate sperm cells. DNA stained with Hoechst 33342, total 
magnification x200. 
 
Fig. 3.9 - Penetration rate (A) and polyspermy rate (B) in zygotes derived from oocytes of 
different grades. A) The cumulus investment appeared to have only a moderate effect on sperm 
penetrability with only denuded oocytes (grade D) showing a reduction. B) Moreover, no 
difference was found in the polyspermy rates across the four experimental groups. Data given 
as mean ± S.E.M, statistical analysis performed with chi-square using α=0.05. 
 
Fig. 3.10 - Cleavage stage porcine embryos. Image captured with a Hoffman microscope at x200 
total magnification. 
 
Fig. 3.11 - Cleavage rates achieved by fertilized oocytes of different grades. The original 
cumulus investment appeared to correlate with embryo developmental potentials. Oocytes clad 
by two or more layers of cumulus cells (grades A and B) produced cleavage stage embryos 
significantly more often, while denuded oocytes (grade D) only rarely produced embryos. Data 
given as mean ± S.E.M. 

 
Fig. 3.12 - Cleavage pattern in embryos derived from oocytes of different grades. The lines 
portray the proportion of embryos reaching each successive cleavage stage. A pattern can be 
seen with embryos derived from grade A and B oocytes being both more abundant and tending 
to reach more advanced stages.  
 
Fig. 4.1 – Embryo splits produced following different strategies. A) A 4/8 type split produced 
by blastomere separation from an 8-cell stage embryo. B) An embryo split derived from the 
bisectioning of a blastocyst, the embryo appears collapsed, a normal occurrence immediately 
after the cut. Images captured by phase contrast microscopy at x200 total magnification in a 
well-of-the-well culture system. 
 
Fig. 4.2 – Variation in the blastulation rate of 8-cell stage splits in accordance with the splitting 
ratio. A significant correlation was detected by logistic regression between the two variables. 
For display purposes, in this graph grouping of data was operated and a trendline was given to 
guide the reader. However, logistic regression was performed on the raw, ungrouped data.  
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Fig. 4.3 – Variation in the cell count of blastocysts derived from 8-cell stage splits in accordance 
with splitting ratio. A direct correlation appears to be present between the two variables in 
study. 
 
Fig. 4.4 – Blastulation and recovery rates achieved by embryos split following different 
strategies. While 1/8 type splits consistently underperformed, the other splitting strategies 
appeared to produce blastocyst stage embryos at similar rates. Averages with different 
superscripts differ significantly (Chi-square, P < 0.05). Data given as mean ± S.E.M. 
 
Fig. 4.5 – Projected blastocyst yield for different embryo splitting strategies. When the 
potentials of each different strategy and its efficiency were taken into account, a 2/8 type split 
was the strategy that yielded the greatest number of blastocysts per starting zygote. Data given 
as mean ± S.E.M. 
 
Fig. 4.6 – Blastocyst staining for cell count estimation. Blastocysts were stained using two 
alternative strategies. A) Immunostaining for CDX-2. Cells expressing CDX-2 were stained in red, 
and Hoechst 33342 (blue) was used a nuclear counterstain. CDX-2 appeared to co-localise with 
Hoechst 33342 in all cells indicating that the immunostaining had no ability to discriminate 
between trophectoderm and inner cell mass cells. B) Simple nuclear staining by Hoechst 33342, 
all nuclei stained in blue. This approach consistently allowed total cell counts to be estimated. 
Images captured by fluorescence microscopy at x200 total magnification. 
 
Fig. 4.7 – Average cell counts in day 7 post-IVF blastocysts produced according to different 
embryo splitting strategies as compared to unsplit controls. Averages with different 
superscripts differ significantly (Tukey-Kramer post-hoc test, P < 0.05). Data given as mean ± 
S.E.M. 
 
Fig. 4.8 – Example blastocysts derived from different splitting strategies. A) Blastocyst derived 
from a 1/8 type split. B) Blastocyst derived from a 2/8 type split. C) Blastocyst derived from a 
4/8 type split. All the pictures were captured 168 h after IVF using a PrimoVision EVO 
microscope. The splitting ratio appears to have a clear effect on blastocyst size. 
 
Fig. 4.9 – Series of ideal comparisons between cell counts in blastocysts derived from embryos 
split according to different strategies and control blastocysts the counts of which were 
reduced by an appropriate factor. Cell counts form intact control embryos were divided by 2 
for comparison against 4/8, 1/2 and blastocyst type splits; by 4 for comparison against 2/8 type 
splits and by 8 for comparison against 1/8 type splits. Embryo splits had statistically more cells 
than these ideal controls in all cases but for blastocyst stage splits. Data given as mean ± S.E.M. 
 
Fig. 4.10 – Blastulation rates for embryos produced by serial splitting as compared to embryos 
produced by single splitting strategies.  Embryos split according to serial splitting strategy B and 
C blastulated to statistically similar rates to embryos produced by comparable single splitting 
strategies. Data given as mean ± S.E.M. 
 
Fig. 4.11 – Average cell counts in blastocysts produced by serial splitting as compared to 
embryos produced by single splitting strategies. Blastocysts derived from single splitting 
strategies consistently showed higher cell counts when compared to embryos produced by serial 
splitting. Data given as mean ± S.E.M. 
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Fig. 4.12 – Timing of developmental landmarks in control and cleavage stage split embryos. 
For each event, columns with different superscripts differ significantly (Tukey-Kramer post-hoc 
test P<0.05). Data given as mean ± S.E.M. 
 
Fig. 5.1 – A 2-cell stage bovine embryo imaged by SS-OCT. While cell boundaries are not 
evident, the embryo clearly shows two dark areas (arrows) which are consistent with the 
presence of nuclei.  
 
Fig. 5.2 – Bovine blastocysts imaged by SS-OCT. A) Axial view showing a section of the entire 
embryo. The white lines determine the boundaries used for the transversal analysis. B) Selection 
of transversal cross-sections at different depths, allowing distinguishing the size, shape, and 
distribution of the inner cell mass. 
 
Fig. 5.3 – 3D reconstruction of a bovine blastocyst. A) A selection of en-face images captured at 
different depths in the embryo. B) 3D model of the embryo reconstructed on ImageJ from 
approximately 300 en-face images. For display purposes, images containing cumulus cells or 
reflections from the plastic dish were cropped, artificial colours were applied to the 
trophectoderm (blue) and the inner cell mass (purple) and a window was created to allow the 
visualisation of the inside of the embryo. 
 
Fig. 5.4 – Average speckle variance measured on live bovine blastocysts at an arbitrary fixed 
depth over 10 minutes. Five live embryos were observed and one dead embryo was used as a 
control. Data given as mean ± S.E.M. 
 
Fig. 5.5 – Total speckle variance (SV) for a single blastocyst at several depths over 26 hours.  
Movement was simultaneously detected by SV at multiple depths within the same embryo. In 
the graph, motion measurements at superficial (25 µm and 300 µm), intermediate (75 µm and 
225 µm) and central layers (150 µm) are displayed. 
 
Fig. 5.6 – Percentage of cross-sectional (en-face) images displaying speckle variance values 
above threshold at any given time for a single blastocyst. Information from all depths within 
the same embryo was considered to track the decreasing motion of the embryo over time. 
 
Fig. 5.7 – Cross-sectional SS-OCT images of a blastocyst over long-term observation and 
corresponding motion maps. A) En-face SS-OCT images of the observed embryo over 26 h 
(actively monitored over the first 18 h) at a fixed depth (150 µm from the top embryo surface). 
B) Corresponding motion maps, black represents absence of movement while movement 
intensity is given on a Red/Green scale (red higher). Scale bar = 50 µm. The images were kindly 
provided by Sophie Cajoule (Applied Optics, University of Kent). 
 
Fig. 5.8 - 3D reconstruction of a day 8 bovine blastocyst for automated cell count. A) 3D model 
of the embyo. TE: trophectoderm, IMC: inner cell mass. B) By using ImageJ, the 3D model was 
analysed and the position of each putative cell was highlighted with a dot of a different colour, 
then a count was produced. 
 
Fig. 6.1 – Call rates obtained from blade assisted or laser assisted biopsies. After whole genome 
amplification, the embryo biopsy samples obtained with either method were submitted for 
Single Nucleotide Polymorphism (SNP) typing and the call rates achieved by each group were 
recorded. No statistical differences were evident between the two methods (P>0.05). 
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Fig. 6.2 – Birth of the first karyomapped calf in the world. Cookie Four is the daughter of the 
sire Cinderdoor (Semex) and the dam Crossfell Uno Cookie (Paragon Veterinary Group) and was 
born in 2017 in Cumbria following the transfer of a karyomapped embryo. 
 
Fig. 6.3 – Number of embryos displaying zero, one or multiple chromosomal abnormalities. 
Interestingly, the affected embryos had either few or many chromosomal errors with no in-
between clusters.  
 
Fig. 6.4 – Example karyomaps. A series of karyomaps are presented from both normal and 
abnormal cases. Gray bands imply absence of information. Euploid chromosomes are 
characterised by few, large alternating blocks of blue/red (for paternal) or green/yellow (for 
maternal) bands, representing alternating haplotypes. Monosomies appear as complete or 
almost complete lack of information for a full chromosome, while trisomies appear as frequent 
and short blocks of alternating haplotypes. Uniparental disomies appear as a monosomy for one 
chromosome and a trisomy for its homologue, and, finally, parthenogenetic activation events 
appear similar to a monosomy of paternal origin at all loci. Chr: Chromosome; Ref.: Reference 
sibling; MS: Monosomy; TS: Trisomy; UPD: Uniparental Disomy. These karyomaps were 
produced by BoVision (version 3). Additionally, karyomapping was employed in order to 
characterise the frequency and type of numerical abnormalities on a chromosome by 
chromosome basis. Parthenogenetically activated embryos were excluded from this analysis to 
avoid overrepresenting paternal monosomy events. Moreover, triploidy and uniparental disomy 
were only detected once and therefore could not be investigated further from a statistical point 
of view. 
 
Fig. 6.5 – Number of monosomies and trisomies detected per chromosome. The results were 
collected from n=56 embryo karyomaps and a total of 3248 chromosomes. No information on 
the paternal X chromosome was available. 
 
Fig. 6.6 – Number of monosomies per chromosome by parent of origin. No obvious pattern 
was detected from the analysis of 56 embryos. 
 
Fig. 6.7 – Number of trisomies per chromosome by parent of origin. Overall, trisomies appeared 
more common in the maternal chromosome population (chi-square, P<0.05) as detected from 
the analysis of 56 embryos. 
 
Fig. 6.8 – Average number of crossovers per chromosome and parent of origin. The analysis 
was completed on a total of 56 embryos. For each chromosome pair, a star (*) indicates that a 
significant difference was found between the number of events per parent (paired student t-
test, P<0.05). Data given as mean ± S.E.M. 
 
Fig. 6.9 – Average number of crossovers as correlated with chromosome size measured in 
mega base pairs (Mb). A moderate but significant association was found suggesting that smaller 
chromosomes allow for less space between crossover events. Chromosome X appeared as an 
outlier due to its reduced recombination frequency. 
 
Fig. 6.10 – Non-recombination rate per chromosome and parent of origin. The analysis was 
completed on a total of 61 embryos and error bars are given as confidence intervals for 
proportions. Smaller chromosomes appeared to be more often affected by non-recombination. 
Data given as mean ± C.I. 95% for proportions. 
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Abstract 

In vitro production (IVP) in agricultural species such as pigs and cattle is performed in a 

similar manner to human IVF, and involves ovum pick up or oocyte maturation, 

fertilization outside the body and subsequent transfer of viable embryos. Its application 

in agricultural breeding can significantly speed up genetic gain rates by reducing 

generational intervals, increasing selection intensity, and facilitating the dissemination 

of valuable genetics. IVP is an increasingly important tool for breeding companies given 

the ongoing emphasis on feeding a growing population with fewer resources. With the 

above in mind, the aim of this work was to improve the yield of competent, euploid, and 

high genetic merit IVP embryos available for transfer. 

 

Oocytes destined for IVP are commonly assessed for developmental competence by 

morphological screening. To determine whether it would be possible to improve the 

utilisation of oocytes per donor, the developmental competence of porcine oocytes with 

decreasing cumulus oocyte complex (COC) investment was examined. It was found that 

current IVP practice is wasteful, through the elimination of oocytes with slightly 

impaired morphology, which still have remarkable developmental potentials. 

 

Moreover, whilst it is accepted that embryo splitting (generating more than one embryo 

from a single fertilized zygote) could benefit the breeding industry by increasing the 

offspring of the most desirable parents, a comparative analysis of the different splitting 

methodologies available, including stage of the split and single versus serial splitting 

strategies, is currently missing in the literature. Here, the splitting of an 8-cell stage 

embryo into four identical twins was identified as the strategy producing the greatest 

output of good quality embryos. Additionally, time-lapse investigation of the embryo 

splits found evidence of the existence of a developmental clock that tightly regulates 

early cleavage events. 

 

Normally, only embryos that display satisfactory morphology are selected for transfer. 

However, in cattle and pigs, this assessment is complicated by the accumulation of lipid 

droplets within the embryo, which renders it opaque. Consequently, there is scope for 



XXV 

 

the application of new imaging modalities, such as optical coherence tomography (OCT), 

which are able to image an embryo in full depth and non-invasively. In this work, swept 

source OCT was successfully tested for use in early stage bovine embryos to obtain both 

structural and functional imaging. Moreover, micron-scale movements were measured 

within blastocysts by OCT as a way to rapidly discriminate between living and deceased 

embryos, representing a novel application of this methodology. 

 

Embryo biopsies can be used to establish the genetic merit of an embryo through single 

nucleotide polymorphism (SNP) analysis, allowing the application of genomic selection 

soon after fertilisation rather than at birth. Moreover, SNP information can be analysed 

by karyomapping to select the most chromosomally normal embryos for transfer. Here, 

the birth of the first five karyomapped calves in the world is reported. Additionally, 

karyomapping was used to measure the incidence of aneuploidy in bovine blastocysts 

by parent of origin and to determine the recombination frequency for each 

chromosome, demonstrating the applicability of this methodology to basic research. 
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1. Introduction 

The current trend in world population growth suggests that the human population might 

reach 9 billion individuals by 2050, which in return will cause an increase in the food 

demand of between 70 to 100% (Godfray et al. 2010). Already today, demand for meat 

is rising globally due to an increased consumption in the developing countries (Godfray 

et al. 2010). Because of the environmental costs of animal production and concerns 

about animal welfare (Vries & Boer 2010), it is important that this demand is met by way 

of greater production efficiency rather than just by a crude increase in the number of 

animals bred (Godfray et al. 2010). A possible way for the breeding industry to cope with 

current and future challenges could be the application of new breeding and selection 

methodologies like in vitro production (IVP) and genomic selection by means of pre-

implantation genetic screening (PGS) which have the potential to rapidly improve the 

genetic merit of the breeding population. Whilst these principles can be applied to 

several farm animal species, the work of this thesis will focus in particular on cattle and 

pigs, whose meat is the most consumed worldwide (Alexandratos & Bruinsma 2012). 

 

1.1 Natural reproduction 

1.1.1 The cell division cycle 

The cell division cycle is a series of events that characterise dividing eukaryotic cells (Bell 

& Dutta 2002; Bertoli et al. 2013). The cycle features a number of distinct phases as 

presented in figure 1.1. A cell that has just originated will enter the gap phase one (G1) 

during which it will display a high metabolism (Pardee 1989, Bell & Dutta 2002). During 

G1, the cell might interrupt the cell cycle by entering the rest phase G0 (Nurse & Bissett 

1981; Freytag 1988) or it might enter the synthesis phase (S phase) during which its 

genetic material is duplicated (Nurse & Bissett 1981; Aparicio et al. 1997). After the S 

phase, the cell enters a new gap phase (G2) which allows the recruitment of the 

resources necessary for duplication (Zhai et al. 1996). Importantly, the G2 phase acts as 

a checkpoint before a division (O'Connor 1997; O’Connell et al. 2000); errors that cannot 
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be repaired will conduct the cell to apoptosis (Li et al. 1998), otherwise the cell will 

proceed towards mitosis.  

 

 

Fig. 1.1 - The cell division cycle. Several distinct phases characterise the cycle. Two gap phases 
(G1 and G2); an S phase (synthesis) during which DNA replication occurs; and an M phase 
(mitosis) during which the cell divides to form two copies of itself. After the M phase, the cell 
cycle begins again. However, a cell might also exit the cycle during G1 by entering a rest phase, 
which is quiescent from a replication standpoint and is known as the G0 phase. (Image source: 
www2.le.ac.uk). 

 

1.1.2 Mitosis 

During mitosis, two daughter cells with an identical genome are produced by the 

balanced segregation of the chromosomes replicated during the S phase (Minton 2014). 

The process of mitosis is divided in separate stages, which are depicted in figure 1.2. At 

the beginning of mitosis, chromosomes are formed of two sister chromatids held 

together by the centromere (Michaelis et al. 1997). During prophase, the nuclear 

membrane disintegrates, the chromosomes condense and their centrosomes become 

connected by a network of microtubules: the mitotic spindle (Zhu et al. 2005; Foley et 

al. 2013; Mitchinson 2014; Wieser & Pines 2015). At prometaphase, the mitotic spindle 

binds to the centromeres through the kinetochore (Fugakawa et al. 2014; Godek et al. 

2015), then at metaphase, the chromosomes align (Chan & Yen 2003) and the sister 
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chromatids are pulled to opposing poles during anaphase (Civelekoglu-Scholey & Cimini 

2014). Finally, the cell enters telophase, a nuclear membrane reforms (Sansregret & 

Petronczki 2013) and the cell divides by cytokinesis (Skop et al. 2004). 

 

 

Fig. 1.2 – Mitotic phases. The images illustrate the behaviour of a human cell during the different 
stages of mitosis, from prophase to cytokinesis. Microtubules are coloured in red, while DNA in 
blue. The images were captured by fluorescence microscopy. (Adapted from Zhu et al. 2005). 

 

1.1.3 Meiosis 

Meiosis is a specialised form of cell division, which is characterised by two successive 

phases (meiosis I and meiosis II), and the formation of four unique haploid cells (Kleckner 

1996; Teresawa et al. 2007). The steps necessary for the completion of meiosis are 

summarised in figure 1.3. 

 

 

Fig. 1.3 – Meiosis. The diagram illustrates the successive phases that characterise meiosis I and 
II which lead to the formation of four haploid cells from a common precursor. P: prophase; M: 
metaphase; A: anaphase; T: telophase. (Image source: http://ib.bioninja.com.au). 
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The prophase of meiosis I (prophase I) is further divided in: leptotene, zygotene, 

pachytene, diplotene and diakinesis (Page & Hawley 2003). During leptotene, 

chromosomes condense and the homologous chromosomes connect forming the 

synaptonemal complex during zygotene (Sym et al. 1993). In pachytene, homologous 

chromosomes form chiasmata and non-sister chromatids exchange genetic material 

through crossing over (Jones & Franklin 2006), see figure 1.4.  

 

 

Fig. 1.4 – Crossing over. During meiosis, each chromosome is formed of two sister chromatids 
and is paired to its homologue. The exchange of genetic material between non-sister chromatids 
can results in new combinations of alleles (letters a-c) to be inherited by the offspring. 
Chromatids carrying combinations of alleles not present in the parental genotypes are called 
recombinants. (Image adapted from opentextbc.ca). 

 

Interestingly, the number of crossovers per meiotic event differs significantly between 

the two sexes in several mammalian species (Barton & Charlesworth 1998; Otto & 

Lenormand 2002; Lynn et al 2005). For example, female mice have higher recombination 

rates as compared to males (Otto & Lenormand 2002) but crossovers are more frequent 

in rams rather than in ewes (Maddox et al. 2001). The formation of chiasmata is 

considered essential for the successive correct segregation of chromosomes (Fledel-

Alon et al. 2009) as these structures are responsible for maintaining the correct 

positioning of the homologous chromosome pairs (Fedotova et al. 1989). 

 

By the time the cell reaches diakinesis, chromosomes are fully aligned at the equator 

and the nuclear envelope fragments. The remaining phases of meiosis I (metaphase, 

anaphase and telophase) mimic the homonym mitotic phases (Fedotova et al. 1989). 
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Meiosis II is normally initiated immediately after meiosis I. During this phase, sister 

chromatids separate and segregate to different daughter cells, producing four non-

identical haploid cells named gametes (Lamb et al. 2005). In mammals and other 

organisms, specialised forms of meiosis occur in the female and in the male leading to 

the formation of oocytes and sperm cells, respectively (Hunt & Hassold 2002).  

 

1.1.4 Oogenesis, ovulation and the menstrual/oestrus cycle 

In the mammalian female, the oocyte pool (ovarian reserve) is established during 

gestation (Gondos et al. 1986). The primordial germ cells migrate to the ovary where 

they form oogonia and then primary oocytes by differentiation. The primary oocytes 

initiate meiosis but become arrested at diplotene and enter a prolonged quiescent 

phase known as dictyate while encapsulated in the primordial follicles and surrounded 

by a monolayer of granulosa cells (Czolowska & Tarkowski 1996). In humans, this 

dormant state can last for up to approximatively 50 years (Wallace & Kelsey 2010). 

 

During the menstrual cycle in primates, or the oestrus cycle in other species (Martin 

2007), follicle activation leads primordial follicles to give rise to primary follicles, and 

then to secondary follicles while the oocyte grows and is surrounded by the zona 

pellucida (ZP) and several layers of cumulus cells forming the cumulus-oocyte complex 

(COC) (Gilula et al. 1978; Malgorzata et al. 2016). The follicle stimulating hormone (FSH) 

then rescues follicles of the appropriate stage from apoptosis and allows for the 

development of tertiary follicles. As the amount of FSH decreases over the cycle, only a 

few (in multiparous species) or one (in uniparous species) dominant follicle(s) develop(s) 

further. Following the luteinising hormone (LH) surge, the oocyte resumes meiosis, 

extrudes the first polar body, becomes arrested at metaphase II (Mueller et al. 2015), 

and is then expelled from the follicle (ovulation). If the oocyte is fertilised, it will then 

complete meiosis II and extrude its second polar body (Austin & Braden 1954). The 

process of ovulation is schematically represented in figure 1.5. 
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Fig. 1.5 - The process of ovulation. In the ovary, primary oocytes reside within the primordial 
follicle. A fully mature follicle is called the antral (or Graafian) follicle; inside it, the oocyte 
resumes meiosis to produce a secondary oocyte, which arrests again at metaphase II. The 
mature oocyte, also called an ovum, is expelled from the follicle during the process of ovulation. 
The follicle develops in the corpus luteum and then degenerates. (Image source: 
https://www.repropedia.org). 

 

1.1.5 Spermatogenesis 

The formation of spermatozoa (spermatogenesis) begins immediately prior to puberty 

and proceeds continuously over the entire reproductive life of the male (Hilscher 1974). 

This process is divided in three main stages: the proliferative, the meiotic and, finally, 

the differentiation phase. During the proliferative phase, part of the spermatogonial 

stem cell population undergoes differentiation and forms primary spermatocytes. 

During the meiotic phase, a primary spermatocyte undergoes meiosis I to form two 

secondary spermatocytes that, in turn, will complete meiosis II to produce a total of four 

haploid spermatids (Bellevé et al. 1977). The spermatids enter the differentiation phase 

which is characterised by tight packaging of the genomic content, substitution of 

histones with protamines, the formation of the acrosome, the exocytosis of excess 

cytoplasm, and the formation of the flagellum (Gliki et al. 2004; Miller et al. 2010). The 
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fully differentiated cells are called spermatozoa and are released in the lumen of the 

seminiferous tubule (Russell et al. 1993) and then transported to the epididymis where 

they are stored in readiness for ejaculation (Hoskins et al. 1978). The process of 

spermatogenesis is further illustrated in figure 1.6. 

 

 

Fig. 1.6 - The process of spermatogenesis. In the testis, spermatogonia form primary 
spermatocytes, which in turn form spermatocytes by meiotic division. The round, early 
spermatids differentiate into elongated spermatids and are released into the seminiferous 
tubule lumen as mature spermatozoa. Sertoli cells support the process of male gametogenesis. 
(Image taken from: human-fertility.com). 

 

1.1.6 Fertilisation 

Spermatozoa undergo their final maturation steps within the female reproductive tract 

and acquire the ability to fertilise during the process of capacitation (Banerjee & 

Chowdhury 1995; Austin 2012; Ma et al. 2012). The phenomenon of capacitation was 

firstly observed in the early 1950s (Austin 1951), and since then much effort has been 

dedicated to optimising the conditions for capacitation in vitro in view of the application 

of several reproductive technologies (reviewed in Bailey 2010). Importantly, during 

capacitation an influx of calcium results in increased cell motility, a phenomenon called 
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hyperactivation (White & Aitken 1989). At the same time, chemoattractant molecules 

released from the COC impart a preferential movement direction to spermatozoa (Sun 

et al. 2005).  

 

To complete fertilisation, the sperm cell needs to breach through the cumulus cells and 

the ZP, which surround the oocyte. This is achieved by both the swimming motion and 

the release of lytic enzymes such as hyaluronidase and acrosin as part of the acrosome 

reaction (Lin et al. 1994). The presence of extracellular calcium is fundamental for the 

acrosome reaction to take place, as is the binding of the sperm cell to the ZP3 protein of 

the ZP (Rossato et al. 2001; Sánchez-Cárdenas et al. 2014). The spermatozoon can then 

enter the oocyte by fusing its equatorial segment to the oolemma (Langlais & Kenneth 

1985; De Jonge et al. 2013).  

 

As an immediate response to a sperm cell entry, the oocyte initiates the release of the 

cortical granules (CG), in what is described as the cortical reaction. The content of the 

granules causes the proteolytic removal of sperm specific binding sites from the ZP 

(Dandekar & Talbot 1992) and is one of the primary mechanisms employed by the 

oocyte to prevent polyspermy (penetration of multiples sperm cells into a single oocyte) 

(Wang et al. 1997). At the same time, the oocyte establishes a membrane block to 

prevent fusion of additional sperm cells (Gardner & Evans 2005; Gardner et al. 2007). A 

schematic of fertilisation is presented in figure 1.7. 

 

Finally, the tightly packed male genome decondenses and forms the male pronucleus 

while the sperm tail degenerates (Perreault et al. 1984). During syngamy, the male and 

female pronuclei fuse to reconstitute a diploid organism with the formation of the 

zygote (Sathananthan & Trounson 1985). 
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Fig. 1.7 – Key events in fertilisation. A-B) The sperm cell makes contact with the cumulus cells. 
C) The acrosome reaction is initiated with release of lytic enzymes. D) The spermatozoon 
breaches through the zona pellucida. E) The equatorial segment of the sperm head fuses to the 
oocyte’s membrane. F) The sperm enters the oocyte. (Image source: clinicalgate.com). 

 

1.1.7 Early embryonic development 

After fertilisation, the zygote initiates a series of rapid mitotic division known as cleavage 

events, which are characterised by absence of cellular growth. As a result, the 

originating cells, which are known as the blastomeres, decrease in size at each division. 

During the cleavage stage, the embryo has a distinctive appearance and the number of 

blastomeres can often easily be counted by standard microscopy (Boiso et al. 2002). The 

duration of the cleavage stage is different across different species; in cattle, for example, 

it has an approximate duration of four days (Holm et al. 1998). After several cleavage 

divisions the blastomeres undergo the process of compaction and form a morula as the 

cells become tightly bound to each other (Ducibella & Anderson 1975; Iwata et al. 2014). 

Compaction is made possible by calcium-dependent adhesion molecules like E-caderin, 

which accumulate at the sites of cell-to-cell contact (Winkel et al. 1990; Adams et al. 

1998). Following compaction, an increased activity of ionic pumps causes an influx of 

water and sodium, which accumulate within the spaces between the internal 

blastomeres, ultimately causing the formation of a liquid filled cavity. This process is 
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called cavitation while the cavity itself is referred to as the blastocoel (Manejwala et al. 

1989). After the formation of the blastocoel, the embryo is identified as a blastocyst. 

Importantly, by this time two separate cell populations have become established in the 

embryo: the inner cell mass (ICM) lineage and the trophectoderm (TE) lineage. The ICM 

will eventually differentiate in two cell layers known as the hypoblast and the epiblast; 

this latter layer will then proceed to form the entireity of the foetus, while the hypoblast 

and the TE will form the extraembryonic tissues (Gardner & Papaioannou 1975). During 

early development, the embryo travels through the fallopian tube and reaches the 

uterus where implantation can occur after the embryo has hatched out of the ZP (Aplin 

& Kimber 2004). Figure 1.8 provides a visual summary of some key developmental 

events in a mammalian embryo. 

 

 

Fig. 1.8 – Early development of a human embryo. A) A zygote is forming as the pronuclei (arrow) 
are about to merge. B) 2-cell stage embryo after the first cleavage division. C) 3-cell stage 
embryo. D) 4-cell stage embryo. E) 8-cell stage embryo. F) Compaction: the blastomeres become 
tightly adherent and it is no longer possible to obtain a cell count by simple observation. G) 
Cavitation, the blastocoel begins to form. H) The embryo has developed into a blastocyst. I) The 
blastocyst has fully expanded; both the trophectoderm (TE) and the inner cell mass (ICM) are 
well evident. (Image adapted from Montag et al. 2014). 
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1.1.8 Developmental clock and cell fate specification models in early 

development 

Interestingly, work in the murine model has demonstrated that twin embryos derived 

from the application of embryo splitting (an artificial twinning method further discussed 

in section 1.4.2) maintain very similar developmental kinetics (Morris et al. 2012). 

Indeed, several studies have reported the existence of a clock that paces early 

developmental events and ensures that the whole embryo is synchronised. This 

mechanism has been named the “developmental clock” and is thought to have a role in 

the timing of cell fate specification in early embryos (Satoh 1982; Poueymirou & Schultz 

1989; Rougvie 2001; Morris et al. 2012; Noli et al. 2015). However, the molecular 

mechanism underlying the operation of this clock are yet to be elucidated (Noli et al. 

2015). 

 

The first cell fate decision appears evident at the morula stage, when asymmetric cell 

divisions cause one daughter cell to orientate towards the periphery of the embryo and 

the other daughter cell to be pushed towards its centre (Bruce & Zernicka-Goetz 2010; 

Lorthongpanich et al. 2012). Currently, at least three models have been proposed to 

explain how fate specification occurs. The inside-out model (Tarkowski & Wroblewska 

1967), postulates that the asymmetric cell divisions ultimately cause differentiation by 

exposing the inner and the outer cell populations to different microenvironments. In 

similarity to this model, the cell polarity model (Johnson & Ziomek 1981) also assumes 

that a position dependent mechanism is responsible for fate specification, by suggesting 

that the asymmetrical cell division observed after the 8-cell stage are by themselves the 

cause of lineage specification by enforcing an asymmetrical distribution of certain 

cellular structures between daughter cells. In contrast, a third model, the pre-patterning 

model (Piotrowska & Zernicka-Goetz 2001), suggests that ICM and TE fate specifications 

are predetermined at fertilisation due to the asymmetrical distribution of determinants 

in the oocyte, which are then inherited by the blastomeres. 

 

While no clear consensus exists in the literature about which model is the most correct, 

from a molecular standpoint, it is known that immediately after asymmetric division, 
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the outer cells still exhibit a degree of plasticity as they express both pluripotency 

markers like SOX2, NANOG and OCT4 which are typically found in ICM cells, and TE 

specific markers like HLA-G and KRT18 (Cauffman et al. 2009; Chen et al. 2009; Verloes 

et al. 2011). However, as development proceeds, the appearance of other transcription 

factors such as CDX2 is known to reduce or remove this plasticity, finally committing the 

outer cells towards TE fate specification (Niwa et al. 2005; Strumpf et al. 2005). 

 

1.2 Assisted reproductive technology (ART) 

In humans, reproduction is a rather inefficient process. It has been estimated that 10-

15% of couples have difficulties conceiving (Evans 2002); moreover, around 30% of 

pregnancies result in spontaneous loss (Dey 2010). The term assisted reproductive 

technology (ART) indicates an array of methodologies used to enable subfertile couples 

to conceive (Kupka et al. 2014). However, ART has also been used successfully in farm 

animal breeding where it can provide important benefits including: a rapid distribution 

of a genetics of interest, enhanced selection intensity, reduced generational intervals, 

and better disease control (Mapletoft & Hasler 2005). 

 

The first studies describing the manipulation of mammalian embryos outside of the body 

and their transfer to recipient animals were published in 1890 and these methodologies 

were further developed during the first half of the 20th century (Betteridge 1981). 

Following these preliminary studies, improvements in superovulation protocols 

(Rowson 1951), culture media (Foote & Onuma 1970), and recovery and transfer of 

embryos (Rowson & Dowling 1949) led to the establishment of a viable embryo transfer 

industry for animal breeding (Betteridge 1981; Hasler 2014). Today, embryo transfer is 

a massive commercial undertaking. For example, in 2015 in North America alone, over 

360,000 good quality in vivo derived bovine embryos were recovered from donors and 

more than 200,000 bovine embryos were produced by fertilisation of oocytes in vitro 

(Perry 2016). 

 

The following sections will focus on describing some of the ARTs that have found wider 

scope in farm animal breeding: artificial insemination (AI), IVP, embryo transfer (ET) and 
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cryopreservation. The redistribution across several recipient animals of embryos 

produced in vivo following superovulation and insemination of high merit dams 

(multiple ovulation and embryo transfer, MOET) has also been widely applied to animal 

breeding programmes (Hasler et al. 2014); however, for reasons of brevity, this topic 

will not be discussed in detail. 

 

1.2.1 Artificial insemination (AI) 

The practice of AI might be the less sophisticated of the ARTs. The procedure  simply 

consists in delivering through a catheter a sufficient dose of semen into the female 

reproductive tract at an appropriate time during the oestrus cycle (Diskin & Sreenan 

1980). AI has been used in animal breeding since the 1900s and became routine practice 

in the 1980s (Knox 2016). 

 

The semen used for AI may be fresh, but in commercial settings semen is almost always 

collected at a dedicated facility, then diluted and preserved in an appropriate medium 

known as an extender which will keep it viable for 3 to 7 days whilst the doses are 

distributed to farms (Waterhouse et al. 2004). The use of an extender not only allows 

the wide geographical distribution of the genetics carried by a particularly desirable sire, 

but it also increases the number of dams that can be serviced by each single ejaculate 

(Roca et al. 2006). The use of AI is wide-spread in farm animal breeding; for example, by 

the year 2000 several countries were reported to rely almost exclusively on AI for 

commercial pig breeding (Weitze 2000) where AI has been shown to be highly 

dependable with farrowing rates above 85% and litter sizes of 14 now common (Yeste 

et al. 2014). Overall, the spreading of AI practices reduced the need to breed male 

animals at farms, reduced venereal diseases and improved the accuracy of breeding 

records (Funk 2006). In cattle breeding, the ability to use top sires to inseminate a large 

pool of dams resulted in a steady rate of genetic gain over the end of the last century 

(Cunningham 1999) thanks to an increased selection intensity on the male line 

(Robinson & Buhr 2005; Safranski 2008). 
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More recently, the development of suitable protocols for the cryopreservation of semen 

has eliminated transportation problems (Yeste et al. 2014). Additionally, the 

development of technologies for sperm sexing (Johnson et al. 1999) allowed performing 

AI with sex-sorted spermatozoa reducing the wastage and animal welfare issues 

associated with the birth of animals of unwanted sex (Garner 2006). Although sex-sorted 

sperm doses for AI are more expensive, more fragile and more diluted than regular 

extended doses, their use has been exploited in a number of domesticated animals 

including sheep (De Graaf et al. 2009), pig (Guthrie et al. 2002) and is especially common 

in cattle (Trigal et al. 2012; Seidel et al. 2014). 

 

1.2.2 In vitro production (IVP) 

The most obvious limitation of AI is that it only allows the distribution of male genetics. 

IVP is a more sophisticated technique, which involves the manipulation of the female 

gametes outside of the body and the production of embryos in vitro, which can then be 

transferred to synchronised recipients. IVP involves several steps. Firstly, mature 

oocytes are obtained either by ovum pick-up (OPU), or by in vitro maturation (IVM) of 

abattoir-derived material. Secondly, the oocytes are fertilised by in vitro fertilisation 

(IVF). Thirdly, the resulting embryos are maintained in an incubator during in vitro 

culture (IVC) untill good quality embryos can be transferred to synchronised recipients 

by embryo transfer. Not only can IVP be used to benefit the breeding industry directly, 

it also paves the way for the application of more refined breeding strategies which might 

include reproductive cloning (discussed under section 1.4) and preimplantation genetic 

screening (discussed under section 1.6). 

 

1.2.2.1 Ovum pick-up (OPU) 

Before mature oocytes can be harvested by OPU, donors are normally subjected to 

ovarian stimulation therapy (da Silva et al. 2017). As discussed under section 1.1.4, 

during a normal cycle, only a limited number of follicles (usually one in uniparous 

animals) will develop enough to contain a mature oocyte, limiting the possible OPU 

yield. Appropriate drugs, notably analogues of FSH and LH, are administered to favour 
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the maturation of multiple antral follicles (Revelli et al. 2015; Mikkola & Taponen 2017). 

The timing and nature of the pharmacological regimen is pivotal to successful 

superovulation and has been reviewed elsewhere (Bó & Mapletoft 2014; Landry et al. 

2016). The in vivo matured oocytes can then be recovered surgically (Metz & 

Mastroianni 1979), although minimally invasive methods are generally preferred (Van 

Wagtendonk-de Leeuw 2006). In the latter approach, shortly before ovulation an 

ultrasound guided needle is inserted through the vagina and is used to aspirate the 

follicles and recover the oocytes (Galli et al. 2001), as illustrated in figure 1.9.  

 

The advantage of OPU is that it allows the collection of oocytes which are already mature 

and therefore ready to be further employed for IVP. Moreover, OPU enhances selection 

intensity among females by increasing the oocyte availability from elite dams, and can 

be used for the reduction of generation intervals thanks to the ability to harvest oocytes 

from appropriately managed peripubertal animals (Callesen et al. 1996).  

 

 

Fig. 1.9 – Ovum pick-up (OPU). Following ovarian stimulation, the mature oocytes are retrieved 
from their follicles shortly before ovulation. An ultrasound guided needle is inserted through the 
cervix and used to aspirate the contents of the antral follicles. (Image adapted from 
http://thamaraihealthcare.com). 
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1.2.2.2 In vitro maturation (IVM) 

As an alternative to OPU, oocytes can also be harvested directly from abattoir material, 

shortly after the culling of the donor (Neglia et al. 2003). Commonly, ovaries are 

recovered from an abattoir and transported to a laboratory in a warmed saline solution 

within a few hours after collection (Wongsrikeao et al. 2005). The oocytes contained in 

superficial follicles are then aspirated through a needle of appropriate size either 

manually or with the aid of an aspirator pump (Jain et al. 1995). Alternative methods for 

the collection exist such as slicing of the follicles with a blade or complete dissection of 

the ovary (Lonergan et al. 1991). 

 

The oocytes retrieved by any of these methods, however, are likely to be immature due 

to the animal being culled at a random point during its oestrus cycle. This is not 

necessarily a shortcoming since immature follicles are more common than mature 

follicles (Bagg et al. 2007) and, therefore, it is possible to harvest large numbers of 

oocytes in this way without need for ovarian stimulation. However, the immature 

oocytes will need to be cultured in vitro under appropriate conditions in order for them 

to reach the MII stage and be ready for fertilisation, a process known as IVM (Lonergan 

& Fair 2016). 

 

Successful methods for the IVM of both bovine (Gandolfi et al. 1998; Gilchrist & 

Thompson 2007; Bernal et al. 2015) and porcine oocytes (Nagai 1996; Jeon et al. 2014; 

Appeltant et al. 2015) have been described in the literature. In cattle, IVM oocytes 

displayed blastulation rates of 40 to 50% following fertilisation and embryo culture 

(Bavister et al. 1992; Watson 2007). However, success rates appear reduced in pigs 

where blastulation rates of about 20% are common (Gil et al. 2010). Therefore, IVM is 

still a very active field of research, especially in the porcine model.  

 

Unfortunately, the oocytes aspirated from follicles of different stages form a 

heterogeneous population adding variability to this setup (Van Blerkom et al. 1990). 

Therefore, methods for the selection of just the competent oocytes before IVM appear 

fundamental to avoid a waste of resources. Oocyte quality is known to be linked to 
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follicle size. Indeed, only oocytes derived from follicles larger than 3 mm are known to 

be developmentally competent in the pig (Bagg et al. 2007) and similar observations 

were reported for cattle (Lonergan et al. 1994; Carolan et al. 1996). Additionally, the 

morphology of the COC has been linked to oocyte developmental competence and used 

as a screening parameter. Although the cumulus is not essential for fertilisation 

(Schroeder & Eppig 1984), it is known to support the oocyte’s ability to complete meiosis 

and its ability to develop into an embryo (Nagai et al. 1993; Dang-Nguyen et al. 2011; 

Lin et al. 2016). Cumulus cells directly control meiosis resumption in the oocyte (Mattioli 

& Barboni 2000; Norris et al. 2008), support the migration of CG to the oocyte’s 

periphery (Galeati et al. 1991), and protect the oocyte from reactive oxygen species 

(ROS) damage through the supply of glutathione (GSH) (Tatemoto et al. 2000). Several 

studies have recommended selecting for IVM only COCs formed of multiple (three or 

more) compact layers of cumulus cells (Rath et al. 1995; Long et al. 1999; Esaki et al. 

2004; Sherrer et al. 2004; Bagg et al. 2007; Alvarez et al. 2009; Lee et al. 2012, Lin et al. 

2015). However, a comprehensive investigation of the developmental potentials of 

oocytes with reduced cumulus investment appears missing in the literature. Figure 1.10 

presents a selection of porcine COCs with different expected developmental potentials. 

 

 

Fig. 1.10 – Immature porcine cumulus-oocyte complexes (COC) of different morphology. A) 
Good quality oocyte surrounded by a compact and dense cumulus. B) An oocyte surrounded 
only by a single layer of cumulus cells is expected to have a low developmental competence. C) 
Denuded oocyte, no cumulus cells are present leading to the expectation of very low 
developmental competence. Scale bar represents 50 μm. (Image adapted from Alvarez et al. 
2009). 

 

After selection, the most suitable oocytes are matured for 18-22 h in cattle (Rizos et al. 

2008) or for 44 h in pigs (Abeydeera & Day 1997; Appeltant et al. 2015) under an 

appropriate hormonal stimulation based on FSH and LH analogues, in similarity to 
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ovarian stimulation regimens (Knitlova et al. 2017). During this time, the oocytes have 

the opportunity to progress to the MII stage of meiosis (nuclear maturation) and to 

complete cytoplasmic maturation (Dang‐Nguyen et al. 2011).  

 

The cytoplasmic maturation encompasses a number of metabolic and structural changes 

that allow an oocyte to be fertilised and develop (Ferreira et al. 2009). The redistribution 

of CG to the periphery of the cell is one of the most notable examples of a cytoplasmic 

maturation event; other examples include mitochondria redistribution and 

accumulation of ribosomes and are reviewed elsewhere (Ferreira et al. 2009). While 

both nuclear and cytoplasmic maturation are essential for development, the two 

processes are not necessarily synchronised in IVM oocytes leading to a possible 

reduction in their developmental competence (Eppig 1996; Grupen et al. 1997). As a 

result, methods have been put forward to favour the synchronisation between nucleus 

and cytoplasm. In the oocyte, cyclic adenosine monophosphate (cAMP) is known to 

inhibit nuclear maturation (Norris et al. 2009). Therefore, during IVM, cAMP modulating 

agents can be supplied to the oocytes to postpone meiosis and to improve 

synchronisation between nucleus and cytoplasm (Appeltant et al. 2015). 

 

In order to achieve shorter generational intervals, IVM has also been used for the 

production of embryos from peripubertal animals. Indeed, the vast majority of the 

abattoir population of pigs is constituted of peripubertal gilts, which in turn become the 

principal donors of oocytes for IVM. However, it is well established that oocytes derived 

from gilts display reduced developmental potentials when compared to oocytes derived 

from sows (Marchal et al. 2001; Bagg et al. 2004; Bagg et al. 2006; Lechniak et al. 2007). 

Moreover, IVM oocytes generally show reduced ability to produce blastocyst stage 

embryos as compared to in vivo derived oocytes (Rizos et al. 2002) and polyspermy is 

known to be more common in IVM rather than in in vivo derived oocytes (Wang et al. 

1998). 
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1.2.2.3 In vitro fertilisation (IVF) 

The technique of IVF was firstly developed to treat human infertility and involves the co-

culture of both mature oocytes and sperm cells under controlled conditions (Steptoe & 

Edwards 1978). If successful, IVF will lead to the formation of a zygote, which can then 

be further cultured in vitro prior to transfer to a recipient in an attempt to establish a 

pregnancy (Hasler et al. 1995). The general principle of IVF is illustrated in figure 1.11. 

 

 

Fig. 1.11 – Key steps of in vitro fertilisation (IVF). Mature oocytes from a superovulated donor 
or oocytes matured in vitro are co-cultured with prepared semen to achieve fertilisation outside 
of the body (1), resulting in the formation of a zygote (2) and finally of an embryo (3) which can 
then be transferred in utero (4). (Image adapted from http://www.cpma.ch). 

 

As discussed above, IVF can also be applied to farm animal breeding where it forms part 

of an IVP system. Both in vivo derived oocytes retrieved by OPU and IVM oocytes can be 

fertilised by IVF (Wang et al. 1999). IVF is normally carried out in specialised media 

designed to assist the capacitation of the sperm (Izquierdo et al. 1998). As described in 

section 1.1.6, sperm cells would normally acquire the ability to fertilise an oocyte 

(capacitation) during their voyage through the female reproductive tract. Therefore, 

during IVF appropriate conditions must be created to induce sperm capacitation. Most 

media for mammalian IVF contain high concentrations of calcium ions, which are known 

to induce capacitation in vivo (Parrish et al. 1999). Other important factors are 
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bicarbonate and magnesium (Cran et al. 1986). Moreover, most IVF media described in 

the literature make use of additional compounds to stimulate capacitation: these are 

mainly caffeine for porcine IVF (Yamaguchi et al. 2012; Nabavi et al. 2013) and heparin 

for bovine IVF (Parrish et al. 1988). Additional components that have been shown to 

assist the capacitation of bull semen are epinephrine, penicillamine and hypotaurine 

(Miller et al. 1994). 

 

However, one of the key issues with IVF is the incidence of polyspermy (Tanihara et al. 

2013; Kosman et al. 2014). The problem of polyspermy is especially relevant for pig IVP 

where rates of up to 65% have been detected (Wang et al. 1998). While the causes of 

this unusually high rate of polyspermy in pig IVP are still uncertain, some risk factors 

have been identified in the literature (Coy & Avilés 2010), such as the high concentration 

of sperm cells surrounding the oocyte in vitro as compared to natural fertilisation (Nagai 

et al. 1990) and the specific formulation of the capacitating agents in the culture 

medium (Coy et al. 1993; Abeydeera et al. 1997; Abeydeera 2001; Abeydeera 2002; Gil 

et al. 2010). Caffeine has been shown to induce spontaneous acrosome reactions in boar 

spermatozoa in the absence of contact with an oocyte, which is thought to cause actively 

polyspermy (Gil et al. 2008; Yamaguchi et al. 2012; Nabavi et al. 2013). As a result, 

several alternatives to caffeine have been described including the use of adenosine, 

theophylline, cysteine and fertilisation promoting peptide (Funahashi et al. 2000; 

Yoshioka et al. 2003). In cattle IVF, heparin and sperm concentration have been shown 

to have a direct effect on polyspermy, so that both these parameters should be carefully 

calibrated based on the IVF system used and the specific bull employed (Parrish 2014). 

Additionally, it has been noted that alterations in the culturing method can also reduce 

polyspermy. For example, accurate washing of the zygotes after co-culture, and 

optimised co-incubation timing can positively reduce polyspermy (Matas et al. 2003). 

 

1.2.2.3.1 Sperm preparation for IVF 

Successful IVF has been described with sperm cells derived from a variety of sources 

including fresh semen (Parrish et al. 1985), extended semen (Xu et al. 1996), 

cryopreserved semen (Parrish et al. 1986) and sex sorted semen (Xu et al. 2006), 
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allowing great flexibility to this tool. The use of cryopreserved semen is particularly 

common in bovine IVF due to its wide commercial availability. The use of cryopreserved 

semen is advantageous because it allows high reproducibility over time (Parrish 2014). 

However, sperm samples of any kind are formed of both viable and non-viable sperm 

cells, and while motile sperm cells are prevalent in fresh ejaculates, they may represent 

as little as 30% of the population in cryopreserved samples, making it difficult to 

measure the effective dose used for IVF and potentially impairing culture (Parrish et al. 

1995). 

 

To circumvent this issue, methods for the selection of the motile fraction of an ejaculate 

have been developed, most notably the swim up method and the Percoll gradient 

method (Van der Zwalmen et al. 1991). During swim up, a sperm sample is deposited at 

the bottom of a column of medium, and then incubated for a set time. The top fraction 

of the column is then collected and is expected to contain only sperm cells that were 

able to swim actively towards the top and are therefore motile (Younglai et al. 2001). 

The Percoll gradient method instead relies on the different density exhibited by viable 

and non-viable sperm cells. By centrifugation of a sperm sample through an appropriate 

density gradient, is possible to separate the heavier viable sperm cells from the lighter 

non-viable ones (McClure et al. 1989). Of the two methodologies, the Percoll gradient 

method has found greater scope in animal IVF due to its rapidity and ability to recover 

greater amounts of viable cells (Parrish et al. 1995). 

 

1.2.2.4 In vitro culture (IVC) 

Following successful fertilisation, embryos must be cultured under appropriate 

conditions to be able to develop further, a phase known as IVC. In particular, the ability 

to culture embryos until the blastocyst stage is thought to be pivotal to selecting the 

best quality embryos for transfer thus ensuring high implantation rates (Gardner et al. 

1998). 
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1.2.2.4.1 Development of an adequate IVC system 

Early attempts in the field failed to maintain the embryos in culture for prolonged 

periods. Research into methods for extended IVC was intense in the 1950s, leading to 

the development of media that could fully support the growth of in vivo derived 

embryos to the blastocyst stage (Whitten 1956; Whitten 1957; McLaren & Biggers 1958) 

and to the development of the M16 medium that could support blastulation of early 

embryos reliably (Whittingham 1971). However, initial media could not support the 

complete development of zygotes, as these arrested at specific stages depending on the 

model organism employed: 2-cell in mice, 8-cell in cattle, 4-cell in pigs and humans; at a 

time seemingly correlated with the activation of the embryonic genome (Rieger 1992).  

 

Later studies demonstrated that this cell block could be overcome by the 

supplementation of adequate energy sources (like glutamine, pyruvate and lactate) and 

by the addition to the culture medium of chelating agents like 

ethylenediaminetetraacetic acid (EDTA) (Chatot et al. 1989). Furthermore, the analysis 

of the composition of tubal fluids led to the development of several efficient IVC media 

still in use today, like the human tubal fluid (HTF) medium (Quinn et al. 1984) and the 

synthetic ovarian fluid (SOF) medium, which is commonly employed in cattle IVP (Tervit 

et al. 1972). Following the initial success, IVC stayed an active field of research. For 

example, modern media for cattle IVC based on SOF generally carry other improvements 

like the inclusion of essential amino acids, citrate and myo-inositol (Holm et al. 1999). 

However, a medium which could support the growth of porcine embryos was not 

developed until 1992 after much optimisation, this medium was called North Carolina 

State university 23 (NCSU-23) (Petters & Wells 1993). The rather tardive development 

of an IVC system for the porcine model somewhat explains the reduced impact IVP has 

made in this species to date as compared to cattle. 

 

At the same time, efforts were dedicated towards the optimisation of culture conditions 

other than the medium itself. In particular, it was found that the use of adequate buffers 

is important for embryo development (reviewed in Pool 2004; Swain 2010). Bicarbonate 

is the main buffering system employed in embryo culture as the pH of the culture 
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medium can be conveniently controlled by adjusting the CO2 pressure in the incubator. 

However, several other buffers were described for the manipulation of embryos outside 

an incubator, which included among the others trishydroxymethylaminomethane 

(TRIS), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and 3-(N-

morpholino)-propanesulfonic acid (MOPS) (Will et al. 2011). The osmolarity of the 

medium was also investigated and it was found that embryos tend to develop better 

when cultured in slightly hypoosmolar media, which are close to 280 mOsm (Baltz & 

Tartia 2009). Additionally, the presence of high levels of ROS is known to affect embryo 

development (Yang et al. 1998), and he culture of embryos under low O2 pressure, 

typically 5%, was generally found to increase the quantity and quality of the blastocysts 

produced (Umaoka et al. 1992; Noda et al. 1994). It was also observed that embryos 

tend to develop better when cultured in groups because they can benefit from the 

reciprocal secretion of paracrine growth factors (Gandolfi 1994; Nagao et al. 2008). As a 

result, some efforts were dedicated towards determining the optimal number of 

embryos to be cultured in a specific volume to maintain a balance between nutrients, 

catabolites and growth factors. Although there is no clear consensus in the literature 

regarding the optimal embryo density, culture conditions featuring one embryo per 3 to 

10 µl of medium are commonly employed (Choi et al. 2003; Fujita et al. 2006; Rebollar–

Lazaro et al. 2010). 

 

Finally, the addition of serum, often in the form of foetal bovine serum (FBS), to IVC 

media in the proportion of 5 to 10%, is commonplace, since serum is an abundant source 

of nutrients, growth factors and antioxidants (Burnouf et al. 2016). However, the current 

trend in the literature is to move away from serum-supplemented media towards the 

use of completely defined IVC media instead, which guarantee higher reproducibility 

and eliminate biosecurity concerns (Rizos et al. 2002). Defined media able to fully 

support the development of zygotes for the IVC of both cattle (Holm et al. 1999) and pig 

embryos (Yoshioka et al. 2008) have been published.  
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1.2.2.4.2 Effects of culture media composition on embryo development 

The “quiet embryo hypothesis” put forward by Leese (2002) suggests that embryos with 

a moderately active metabolism have fewer chances of becoming arrested as compared 

to embryos with high metabolism. The rationale behind this hypothesis is that viable 

embryos are efficient in their utilisation of resources while stressed embryos will require 

a higher energy input to cope with the damage that might be present (Leese et al. 2007). 

The quiet embryo hypothesis is supported by evidence suggesting that embryos with a 

greater developmental competence display a reduced amino acid turnover (Stokes et al. 

2007) as well as reduced protein and DNA synthesis (Baumann et al. 2007). 

 

Even though, as described in the previous section, progress has been made in the 

development of culture media that can mimic the conditions encountered by embryos 

in vivo, IVP embryos generally exhibit a reduced developmental competence (Pomar et 

al. 2005). For example, it has been demonstrated that IVP embryos have a significantly 

higher glucose metabolism as compared to in vivo derived embryos of the same age 

(Khurana et al. 2000), which, according to the quiet embryo hypothesis, suggests they 

might not be as viable. Moreover, IVP embryos are known to accumulate lipids as a 

consequence of the media used for IVC (Abe et al. 2002; Sudano et al. 2012; Sanches et 

al. 2013), a behaviour that has been associated with decreased developmental 

potentials (Sturmey et al. 2009). As a result, methods to reduce lipid accumulation 

during IVP have been proposed, such as the addition to the medium of L-carnitine, a co-

factor of lipid β-oxidation (Dunning et al. 2011; Sutton-McDowall et al. 2012).  

 

These observations indicate that there is still scope for the development of optimal IVC 

media and indeed, research in this field is currently very active (Baldoceda-Baldeon et 

al. 2014; Wang et al. 2014; Mullaart et al. 2015; Kelly & Gardner 2017; Murillo-Ríos et 

al. 2017). 

 

1.2.3 Embryo transfer 

The final step of IVP is the transfer in utero of the embryos produced. Usually, the 

recipient animal is treated with oestrus controlling drugs to ensure that the embryos are 
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transferred into a uterus that is ready to accept implantation (Spell et al. 2001; Stroud 

& Hasler 2006). 

 

Embryo transfer, often in the form of MOET, has been commercially exploited in cattle 

breeding over the last four decades to improve the genetic merit of livestock by 

enhancing selection for traits like milk production and disease resistance (Hasler 2014). 

Initially, the methods used for embryo transfer were surgical, and the transfer was 

operated with local anaesthesia on standing cows (Smith 1988; Hasler 2014). However, 

the development of catheter based non-surgical methodologies for embryo transfer has 

revolutionised the industry (Dawson 2000). Non-surgical embryo transfer simply 

involves the use of a catheter not too dissimilar from those used for AI, while the 

recipient animal is restrained in a standing position. The catheter is designed to pass 

through the cervix so that the embryos can be deposited approximatively in the middle 

of one uterine horn (Rowe et al. 1980; Wright 1981; Mapletoft 2006); a schematic 

representation of the cow’s reproductive tract is presented in figure 1.12. Several 

studies have indicated that pregnancy rates between 41-56% can be achieved following 

non-surgical embryo transfer of IVP embryos in cattle (Hastler et al. 1995; Trigala et al. 

2012; Merton et al. 2013). However, the management of the recipients at a farm level 

is known to play a key role for success (Stroud & Hasler 2006). 

 

On the other hand, embryo transfer has not been applied as extensively in pigs. 

However, specialised catheters, which take into account the peculiar length of the 

uterine horns found in the porcine female reproductive tract, have been developed, 

allowing non-surgical embryo transfer in the pig (Martinez et al. 2004). By this method, 

the completion of an embryo transfer round in less than five minutes in around 95% of 

recipient sows has been made possible (Martinez et al. 2002) and a study by Martinez 

et al. (2013) achieved a farrowing rate of 80% and an average litter size of 9.5 following 

the transfer of 30 embryos per recipient, indicating the birth of one piglet per each 4 

embryos transferred. 
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Fig. 1.12 – The reproductive tract of the cow. Notably, the cranial part of the uterus is divided 
in two separate chambers known as the uterine horns. During embryo transfer, a catheter is 
used to deliver an embryo through the cervix and up to the middle point of one of the uterine 
horns. (Image from www.ansci.wisc.edu). 

 

1.2.4 Cryopreservation 

Cryopreservation is a technology that allows the storage of sperm, oocytes and embryos 

at sub-zero temperatures and their successive recovery (Saragusty & Arav 2011; 

Medeiros et al. 2012). In IVP, cryopreservation allows the long-term storage of embryos 

and their commercialisation across long geographic distances (Sudano et al. 2012). 

 

Two general methods are used for cryopreservation: slow freezing and vitrification. 

During slow freezing, the cooling rate of the sample is strictly controlled to prevent the 

formation of ice crystals inside cells (Van Wagtendonk-De Leeuw et al. 1995). The main 

advantage of slow freezing is the use of low concentrations of cryoprotecting agents 

(Vajta & Nagy 2006). Whilst cryoprotectants can be detrimental to cell survival due to 

their toxicity, their use in cryopreservation is essential due to their ability to reduce or 

eliminate the damages associated with ice crystal formation (cryodamage) (Bondioli 

2015). Conversely, during vitrification high concentration of cryoprotectants are used to 

dehydrate the sample before direct immersion in liquid nitrogen to achieve a very steep 

cooling rate, which prevents the formation of ice crystals altogether (Vajta et al. 1998). 

Of the two techniques, vitrification has found a wider use in animal IVP because of its 

effectiveness and low cost (Van Wagtendonk-de Leeuw et al. 1997; Mucci et al. 2006). 
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Despite some technical advances in cryopreservation (Lane et al. 1999), such as the use 

of microdroplets (Papis et al. 2000) and cryotop techniques (Kuwayama et al. 2005; 

Dode et al. 2013), the freezing process can still impair the viability of embryos due to 

cryodamage (Overstrom 1996; Baguisi et al. 1999a). This is especially true for IVP 

embryos, where cryopreservation is complicated by their lower cryotolerance as 

compared to in vivo derived embryos (Pollard & Leibo 1994). This reduced tolerance to 

cryopreservation is thought to be caused, at least in part, by the greater amount of lipids 

found in IVP embryos (Abe et al. 2002; Sanches et al. 2013) and their reduced number 

of mature mitochondria (Crosier et al. 2001; Farin et al. 2004). In particular, lipid 

accumulation has been shown to be detrimental for the cryopreservation of porcine 

embryos (Larman et al. 2014) and, interestingly, the removal of lipids (delipation) has 

been shown to increase markedly their cryotolerance (Esaki et al. 2004). Furthermore, 

the use of serum-free media or the modulation of the lipid content of embryos through 

appropriate changes in the culture media have been shown to increase cryotolerance as 

well (Sudano et al. 2013). 

 

1.3 Non-invasive methods for embryo selection 

Embryos manipulated in vitro are normally screened to estimate their developmental 

potentials before being selected for embryo transfer. Several non-invasive selection 

methodologies have been described in the literature including morphology, 

morphokinetics and assessment of spent culture medium. 

 

1.3.1 Morphology 

The morphological evaluation of embryos has found wide use in human IVF (Boiso et al. 

2002). However, the appearance of human embryos is somewhat different to the 

appearance of many ungulate embryos, such as porcine and bovine embryos, due to the 

distinctive accumulation of lipid droplets in the latter specimens, which renders the 

embryo opaque, and more challenging to assess though conventional methods (Van 

Soom et al. 2003; Sturmey et al. 2009). Figure 1.13 further illustrates this difference by 

comparing a human embryo to a bovine embryo of the same developmental stage. 
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Nevertheless, the cattle embryo transfer industry has long been able to exploit the 

principle that the transfer of embryos of better morphology leads to higher pregnancy 

rates (Lindner & Wright 1983).  

 

 

Fig. 1.13 – Comparative morphology of human and bovine cleavage stage embryos. A) Human 
8-cell stage embryo of excellent morphology presenting eight even and translucent blastomeres. 
B) Bovine 8-cell stage embryo of excellent morphology. The specimen is opaque due to the 
presence of lipid droplets, which make the morphological assessment more challenging. (Image 
sources: part A: atlas.eshre.eu; part B: adapted from Lechniak et al. 2008). 

 

A vast body of literature has been published regarding which embryo morphological 

parameters best correlate with developmental competence, the most noteworthy 

example being drafted after the Istanbul consensus workshop (Balaban et al. 2011). 

According to the developmental stage of an embryo, different parameters can be taken 

into account. Examples of the most common parameters considered are given below. 

 

In zygotes, pronuclei should be of equal size, abutted, and close to the centre of the 

zygote (Rienzi et al. 2013). This configuration has been demonstrated to be correlated 

positively to developmental competence in humans (Nagy et al. 2003; Balaban et al. 

2011). However, the morphology of the pronuclei is difficult to identify in ungulates due 

to the discussed opacity of their oocytes and embryos. Some studies have suggested the 

use of centrifugation to accumulate the lipid content of the zygote towards the 

periphery of the cell thereby allowing visualisation of the pronuclei (Tatham et al. 1995; 

Wall 2001), however this method is most commonly used to facilitate certain 

applications requiring nuclei micromanipulation rather than for embryo selection. 
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In cleavage stage embryos, the presence of fragmentation, intended as the 

accumulation of non-viable, sub-cellular material in the embryo, has been identified as 

having a negative impact on developmental competence (Alikani et al. 1999; Balaban et 

al. 2011). The degree and pattern of fragmentation is known to have clinical significance 

(Alikani et al. 1999), although embryos seem to be able to tolerate fragmentation <10% 

without a loss in developmental competence (Van Royen et al. 2001). The percentage 

of fragmentation within an embryo is often estimated subjectively by microscopy 

observation, presenting a challenge to reproducibility (Alikani et al. 1999; Ebner et al. 

2001; Johansson et al. 2003). Uneven cleavage, resulting in the formation of 

blastomeres of unequal sizes has also been correlated with a reduced developmental 

competence (Hardarson et al. 2001; Racowsky et al. 2011).  

 

The morphological assessment of blastocyst stage embryos is possibly the methodology 

that has found greater use in animal IVP due to this stage being favoured for embryo 

transfer (Rizos et al. 2002). The main parameters evaluated in blastocysts are the 

extension of the ICM, the extension of the TE and blastocoel expansion (Gardner & 

Schoolcraft 1999; Balaban et al. 2011). With particular reference to cattle IVP, a formal 

grading system has been developed to classify blastocysts in four grades from 1 to 4 (Bo 

& Mapletoft 2013) with only embryos belonging to grades 1 and 2 being of interest for 

embryo transfer, and embryos of grade 1 being generally expected to produce higher 

pregnancy rates than embryos of grade 2 (Hasler et al. 1987). Details of this classification 

are presented in figure 1.14.
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Fig. 1.14 – Embryo classification in cattle at day 7 of culture. Embryos of grade 1 are considered excellent or good, with minor irregularities and less 
than 15% fragmentation and are suitable for transfer and cryopreservation. Embryos of grade 2 are considered fair and display moderate irregularities; 
their use for transfer is acceptable but they are expected to display reduced cryotolerance. Embryos of grade 3 are considered poor with major 
irregularities and obvious fragmentation; they are not expected to survive freeze/thawing and provide very modest results upon transfer. Embryos of 
grade 4 are dead or degenerating and should be immediately discarded as they are non-viable. (Image adapted from Bo & Mapletoft 2013).
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1.3.2 Time lapse 

To support the morphological assessment of embryos, and in an attempt to provide a 

better prediction of viability, time-lapse systems have been introduced in clinical IVF 

settings. These systems require a microscope and a camera and are able to tack embryo 

development during the entire duration of IVC (Kaser & Racowsky 2014). Several 

systems are commercially available like Embryoscope and PrimoVision, both from 

Vitrolife, Sweden. Some systems, like Embryoscope, feature fully insulated culture 

chambers that function like incubators, while other systems, like PrimoVision, are 

designed to fit inside standard incubators. 

 

The availability of time-lapse systems allows for continuous embryo monitoring 

providing embryologists with a greater amount of information as compared to static 

observation (Cruz et al. 2011; Chamayou et al. 2013). Moreover, observations can be 

carried out without removing the specimen from its incubator, allowing for an 

undisturbed culture. The use of time-lapse as a method to predict accurately the 

developmental competence of embryos has generated some controversy in the 

literature, with several studies finding a net positive impact (Hesters et al. 2008; Ciray 

et al. 2012; Meseguer et al. 2012; Gardner et al. 2015) and some authors failing to detect 

significant improvements (Racowski et al. 2015; Goodman et al. 2016). Moreover, it has 

been suggested that continuous monitoring could have a negative impact on embryo 

development due to frequent exposure of the embryos to light, leading to phototoxicity 

(Pribenszky et al. 2010; Wong et al. 2013). However, this effect, if present, appears to 

be minimal (Sugimura et al. 2010; Kirkegaard et al. 2012; Kaser & Racowsky 2014).  

 

One interesting feature offered by some time-lapse platforms like PrimoVision, is the 

ability to culture embryos in individual micro-wells within the same culture dish, an 

approach referred to as the well-of-the-well (WOW) culture system (Wood et al. 1993). 

This application permits tracking of several embryos at the same time whilst also 

allowing the embryos to benefit from the effects of co-culture, which have been 

described under section 1.2.2.4. A commercial dish designed for the WOW culture of 

embryos is shown in figure 1.15. Interestingly, the WOW culture system has immediate 
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applications in research because it allows experimenters to track individual embryos 

under the same experimental conditions, an approach described by Vajita et al. (2000). 

Nonetheless, in IVP, time-lapse technology has found limited application from a 

commercial perspective with most users focusing on the research benefits offered 

(Holm et al. 1998; Somfai et al. 2010). Indeed, time-lapse is well suited to study the 

dynamics of early embryonic development (Wong et al. 2010; Kirkegaard et al. 2012; 

Herrero et al. 2013; Kellam 2015) which, as discussed under section 1.1.8, are not yet 

fully elucidated. 

 

 

Fig. 1.15 – Well of the well (WOW) culture dish. In the WOW culture system, embryos are 
cultured in the same dish (left) and can therefore take advantage of the benefits of co-culture. 
Additionally, the embryos can be individually tracked thanks to their positioning within micro-
wells (zoom, right). (Image source: http://www.vitrolife.com). 

 

1.3.3 Novel imaging modalities for the study of embryonic development 

Time-lapse systems used for research purposes are limited in that they offer a poor 

depth of view, and this problem is made worse in post-compaction embryos like 

blastocysts, and in ungulate embryos due to their unfavourable lipid distribution (Van 

Soom et al. 2003). Moreover, time-lapse analysis packages do not allow for an embryo 

to be easily be observed from different angles, and the observation becomes especially 

difficult when the embryo presents overlapping cells or is highly fragmented (Wong et 

al. 2010). Therefore, there is currently some interest in the literature for the 

development of new imaging modalities which can resolve the embryo structure in full 

depth, in real time, and non-invasively. A technique currently showing some promise in 

this context is optical coherence tomography (OCT) (Drexler & Fujimoto 2015). 
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1.3.3.1 Optical coherence tomography (OCT) 

Due to its ability to non-invasively produce well defined images through living tissues up 

to a depth of several millimetres, OCT is currently considered one of the most innovative 

emerging optical methods (Huang et al. 1991; Fercher et al. 2003; Schuman et al. 2003; 

Drexler et al. 2014; Drexler & Fujimoto 2015), a fact well testified by the filing of over 

one thousand related patents since 1980 (Drexler et al. 2014).  

 

From an intuitive point of view, OCT can be thought of as a being similar to 

ultrasonography, in that it is capable of producing cross-sectional images from multiple 

depth layers within the sample. However, OCT uses light instead of sound and displays 

a far greater resolution than ultrasound (Drexler et al. 1999). In OCT, an optical beam, 

often from a laser source, is directed at a sample. To ensure penetrability, low power 

laser sources are normally employed (infrared lasers) ensuring the safety of the 

technique (Choma et al. 2005). A small proportion of the illuminating light is reflected 

by the sample whilst the majority of the light is scattered in all possible directions. In 

standard microscopy, scattered light contributes to background noise; however, in OCT 

scattered light is filtered out of the image by interpherometry, a method to measure the 

optical path of photons and remove the information carried by those with a scattered 

pattern (Fercher et al. 1999). 

 

Originally, OCT was developed for use in ophthalmology (Puliafito et al. 1995) where it 

has become a standard tool for the investigation of the posterior part of the eye (Hee et 

al. 1995; Budenz et al. 2007; Staurenghi et al. 2014). Resolutions of 1 µm have become 

achievable allowing detailed investigations at the cellular and subcellular level (Drexler 

et al. 2000). Other medical applications of OCT include diagnostics procedures in 

oncology (Assayag et al. 2014), cardiology (De Rosa et al. 2017), gastroenterology 

(Kirtane & Wagh 2014) and dermatology (Dalimier et al. 2014). Whilst OCT can certainly 

be used to obtain a structural characterisation of a sample and reconstruct 3D models 

of the specimen analysed, this method can also be used to acquire functional images 

from living tissues. One example is Optical Coherence Tomography Angiography (OCTA), 

a method used to detect flowing blood cells (Jia et al. 2014). This application is made 
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possible by algorithms such as speckle variance (SV) analysis, which can detect and 

quantify the changes in the optical pattern of a sample associated with movement 

(Federici et al. 2015; Ruminski et al. 2015; Gorczynska et al. 2016).  

 

Today, OCT encompasses a number of different but related techniques, including ultra-

high-resolution (UHR)-OCT (Herman et al. 2004), full field (FF)-OCT (Bonin et al. 2010), 

and swept source (SS)-OCT (Shimada et al. 2014). In particular, SS-OCT employs as a light 

source a tuneable laser that sequentially emits light at different frequencies over time, 

a method that can increase tissue penetration. Moreover, SS-OCT has the potential to 

offer higher scanning speeds as compared to other methods and might be better suited 

to analyse samples in motion (Drexler et al. 2014). Finally, recent advancements in the 

SS-OCT field have greatly simplified image acquisition as compared to earlier platforms, 

rendering the operation of SS-OCT microscopes more similar to standard microscopes 

from an operator’s perspective (Podoleanu & Bradu 2013; Cernat et al. 2017). 

 

1.3.3.1.1 Applications of OCT in embryology 

OCT has already found some limited application in developmental biology. The first of 

such studies was completed by Drexler et al. (1999) who used UHR-OCT to produce 

detailed cross-sectional imaging of a living tadpole. A later paper by Larina et al. (2009a) 

applied the principles of SS-OCT to rat embryos, which were recovered surgically from 

donors 10 or 11 days after mating. In their work, the authors used SS-OCT and OCTA to 

produce 3D reconstructions of the beating heart of the embryos and to detect the blood 

flow within vessels. More recently, OCT has been applied to the study of early 

mammalian embryos as well. Zheng et al. (2012) applied FF-OCT to the imaging of 

cleavage stage and blastocyst stage murine embryos, and were able to reconstruct 3D 

models of the embryos examined which included an assessment of the cell numbers 

completed with no need for fluorescent labelling. Additionally, in a recent study, high-

resolution intracellular imaging on live mouse and pig oocytes and embryos has been 

reported (Karnowski et al. 2017). In their work, Karnowski and colleagues were able to 

record fertilisation and early cleavage divisions, effectively representing the first 

application of OCT to time-lapse. In this context, the fundamental advantages of OCT 



G. Silvestri Introduction 

 

35 

 

are its ability to image embryos in a complete non-invasive way thanks to the use of low 

power light sources, the absence of chemical labelling, and the ability to penetrate 

through the lipid content of ungulate embryos (Zheng et al. 2012; Karnowski et al. 2017). 

An example of the images produced by the application of OCT on early mouse embryos 

is given in figure 1.16.  

 

Considering the limited number of publications in this field, it is safe to assume that the 

application of OCT to embryology is still a new area of research. While several authors 

have described the application of structural OCT imaging to the study of embryo 

development, just one paper has applied functional OCT imaging to early embryos 

(Larina et al. 2009a), while the applicability of SS-OCT and SV to the detection of the 

structure and the vital status of early ungulate embryos remains completely unexplored.  

 

 

Fig. 1.16 – Application of optical coherence tomography (OCT) to the imaging of early stage 
murine embryos. The images on the top row were captured by standard bright field microscopy 
and are compared to images of the same specimen captured through the use of OCT. With OCT, 
nuclei are clearly visible in zygotes and cleavage stage embryos. At the same time, all the 
characteristic features of a blastocyst (trophectoderm ring, inner cell mass, blastocoel) can be 
easily observed (Image adapted from Karnowski et al. 2017).  
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1.3.4 Analysis of culture medium 

The idea of analysing spent culture medium as a method to gain insight into an embryo’s 

developmental competence non-invasively has also been discussed in the literature 

(Sturmey et al. 2008). A key breakthrough in this direction was described in 2002 when 

it was demonstrated that the pattern in which embryos modify the amino acid content 

of the culture medium is predictive of their ability to develop to the blastocyst stage 

(Houghton et al. 2002). Further investigation found that the pattern of amino acid 

consumption, and particularly of asparagine, glycine and leucine, was also related to the 

ability of the embryo to establish an ongoing pregnancy (Brison et al. 2004). 

 

This methodology for the selection of highly competent embryos appears especially 

powerful when used in combination with other more traditional selection methods. For 

example, Booth et al. (2007) showed that the combination of amino acid profiling from 

spent culture medium with classic morphokinetic parameters resulted in the ability to 

predict which porcine zygotes would proceed to form a blastocyst with an accuracy of 

80%. More recently, Guerif et al. (2013) proposed combining amino acid profiling with 

the measurement of the consumption rates of pyruvate and glucose in order to gauge 

the developmental competence of bovine embryos. The authors found that embryos 

with a high pyruvate uptake were less likely to develop to the blastocysts stage than 

embryos with a moderate uptake, providing further evidence for the quiet embryo 

hypothesis discussed in section 1.2.2.4.2. 

 

Additionally, it is known that male and female embryos can exhibit different gene 

expression and metabolic profiles (Gutiérrez‐Adán et al. 2000). This led to the 

development of criteria for the determination of embryo sex from culture media 

analysis through amino acid profiling, an application that could have immediate 

applications in farm animal IVP (Sturmey et al. 2010). A different but related approach 

was proposed by Muñoz et al. (2014) who applied infrared spectroscopy to obtain non-

invasive sexing of cattle embryos with an accuracy of 74.4 to 86.0%.  
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Finally, recent studies have demonstrated the presence of cell-free RNA and DNA of 

embryonic origin in spent culture medium (Capalbo et al. 2016; Shamonki et al. 2016; 

Liu et al. 2017). The analysis of the microRNA profile recovered in this way has been 

proposed as a methodology to assess developmental competence, although this 

approach seems only suitable for blastocyst stage embryos (Capalbo et al. 2016). 

Moreover, several authors have attempted to use DNA samples extracted from spent 

culture medium to establish a diagnosis of aneuploidy through conventional PGS 

methods (Shamonki et al. 2016; Xu et al. 2016; Feichtinger et al. 2017; Liu et al. 2017). 

However, the concordance between these investigations and the diagnosis established 

by classic embryo biopsy ranged between 46.6 and 90.0%, suggesting that further 

optimisation will be required before introducing aneuploidy screening based on spent 

culture medium into clinical practice (Xu et al. 2016; Feichtinger et al. 2017; Liu et al. 

2017). 

 

1.4 Reproductive cloning 

The term “clones” identifies separate organisms with essentially identical genomic 

constitution. In mammals, clones can appear spontaneously when monozygotic (MZ) 

twins are born, or their formation can be induced by the application of reproductive 

cloning techniques (Paterson et al. 2003). 

 

1.4.1 Natural twinning 

The mechanisms leading to the formation of MZ twins in vivo are not yet well 

understood, although it is known that they arise from the fragmentation of a single 

embryo (Knopman et al. 2014; Herranz 2015). The frequency of MZ twins in natural 

human reproduction has been estimated to be 1 in 250 conceptions (MacGillivray 1986). 

Interestingly, this figure becomes significantly higher for pregnancies established from 

IVF embryos, although, once again, the reasons for this are not understood (Knopman 

et al. 2014). In cattle, the MZ twinning rate appears to vary slightly according to the 

specific breed considered; however, from the information presented in table 1.1, it can 

be estimated to be close to 1 in 360 births. 
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Breed Calvings (n) MZ births (n) 
MZ twinning 
(% of births) 

Reference 

Holstein Friesians 10,885 14 0.13 (1) 

Holstein Friesians 7,387 22 0.30 (2) 

Swedish Red & White 495,470 842 0.17 (3) 

Swedish Friesians 169,144 237 0.14 (3) 

German Schwarzbunt 734,297 2,056 0.28 (3) 

Bavaria 140,054 252 0.18 (3) 

German Fleckvieh 683,807 2,257 0.33 (3) 

German Braunvieh 271,283 1,194 0.44 (3) 

Holstein 23,978 55 0.23 (4) 

Holstein Friesians 11,951 27 0.23 (5) 

Holstein Friesians 24,843 184 0.74 (6) 

Holstein 1,212 4 0.33 (7) 

TOTAL 2,574,311 7,140 0.27 - 

 

Table 1.1 – Frequency of monozygotic (MZ) twins across several cattle breeds. From the 
information presented, it can be estimated that, in the general cattle population, MZ twins 
appear with an average frequency of 0.27% equivalent to 1 in 360 calving events. References: 
(1) Meadows et al. 1957; (2) Erb & Morrison 1959; (3) Johansson et al. 1974; (4) Cady & Van 
Vleck 1978; (5) Nielen et al. 1989; (6) Ryan & Boland 1991; (7) Del Rio et al. 2006. 

 

On the other hand, it is difficult to describe the frequency of MZ twinning in multiparous 

animals such as the pig, since only fingerprinting tests rather than standard observation 

can discriminate between littermates (dizygotic twins) and true MZ twins. While a few 

studies have reported the occurrence of MZ twins in the pig, their sample size was too 

small to draw any conclusions about the incidence of MZ twinning in the general porcine 

population (Ashworth & Barrett 1998; Bjerre et al. 2009). 

 

The frequency of MZ twinning appears low in cattle and possibly in the pig (Del Rio et al. 

2006; Bjerre et al. 2009); however, the ready availability of identical animals could be 

beneficial to the breeding industry as a means of breeding more efficiently from parents 

of high genetic merit or for use in research. The formation of identical animals can, 

however, be induced through the reproductive cloning techniques embryo splitting and 

nuclear transfer, which are discussed hereafter. 
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1.4.2 Embryo splitting 

It is possible to take advantage of the totipotency of early stage embryos to create MZ 

twins purposely. The technique of embryo splitting is effectively a type of reproductive 

cloning: by artificially dividing embryos and transferring the resulting splits to surrogate 

mothers it is possible to obtain multiple, genetically homogenous offspring (Willadsen 

1979; Willadsen & Polge 1981; Escriba et al. 2002). 

 

Arguably, the first successful reproductive cloning experiment on a vertebrate was 

carried out by Spemann at the beginning of the 20th century when the embryologist used 

a baby-hair loop to split a salamander embryo in two halves, and discovered that both 

the halves had the ability to develop into fully formed twins if the embryo splitting had 

been performed at an early enough stage (Spemann 1901). One of the very first embryo 

splitting procedures completed on a mammal was performed in 1967 to investigate the 

developmental competence of 1/4, 1/8 and 2/8 mouse embryo splits produced from in 

vivo derived cleavage stage embryos (Tarkowski & Wroblewska 1967). Later studies in 

the field found that embryo splits derived from 2-cell stage embryos had better 

survivability than splits derived from 8-cell stage embryos when transferred to foster 

mothers (65% versus a maximum of 27%) (Tsunoda & McLaren 1983).  

 

Two general methods have been described for the purpose of generating embryo splits: 

cleavage stage embryo splitting (or blastomere separation) (Willadsen et al. 1981), and 

blastocyst stage embryo splitting (or embryo bisectioning) (Williams et al. 1982). 

Interestingly, there are currently no reports in the literature directly comparing the 

efficiency of cleavage stage and blastocyst stage splitting strategies performed under 

the same IVP system. 
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1.4.2.1 Cleavage stage embryo splitting (blastomere separation) 

During cleavage stage embryo splitting, intact blastomeres are removed from their ZP. 

A common approach is to remove the ZP completely via mechanical or chemical 

procedures. The zona-free embryos can then be fully disaggregated by culture in Ca2+ 

and Mg2+ free medium and gentle agitation. Therefore, the separation is achieved by 

weakening the intracellular junctions between blastomeres rather than just by 

mechanical action. After separation, single or multiple blastomeres can be placed into 

an evacuated ZP often derived from an oocyte (Escriba et al 2002). This methodology is 

further illustrated in figure 1.17. 

 

One of the most interesting features of the cleavage stage embryo splitting is that it can 

potentially lead to the formation of a number of embryos equal to the number of 

blastomeres recovered. Unfortunately, no study has reported the birth of MZ octuplets 

as a result of cleavage stage embryo splitting. However, the technique has produced the 

birth of triplets and quadruplets in cattle (Johnson et al. 1995; Willadsen & Polge 1981) 

and pairs of twins in several other farm animal species including sheep (Willadsen 1979; 

Willadsen 1980), goat (Tsunoda et al. 1984), pig (Saito & Niemann 1991), and horse 

(Allen 1982; Allen & Pashen 1984). 

 

 

Fig. 1.17 – Cleavage stage embryo splitting. Two 4-cell stage murine embryos (1) are subjected 
to enzymatic digestion of their zona pellucida (2). Once freed from the zona pellucida, the 
blastomeres are separated (3) and transferred either singly or in groups into an empty zona 
pellucida (4). The embryos are then cultured until the blastocyst stage (5-6). (Image adapted 
from Tang et al. 2012).  
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1.4.2.2 Blastocyst stage embryo splitting (embryo bisectioning) 

The splitting of a blastocyst is commonly performed by passing a fine bore pipette 

through the embryo so that the separation is achieved purely by mechanical means. This 

approach limits the number of splits producible to just two, with each identical half of 

the embryo known as “demi”. Only demi-embryos receiving a sufficient proportion of 

the ICM will be able to survive the splitting and continue development (Escriba et al. 

2002). An example of this methodology is presented in figure 1.18.  

 

Embryo bisectioning has led to the birth of MZ twins in several mammals (Leibo & Rall 

1987; Williams et al. 1984; Tsunoda et al. 1984; Nagashima et al. 1989). The success of 

the technique, however, is limited to high quality blastocysts, as only good quality 

embryos appear able to withstand the stress caused by the splitting (Escriba et al. 2002). 

 

 

Fig. 1.18 – Blastocyst stage embryo splitting. In this form of embryo splitting, a blastocyst is 
divided mechanically in two equal halves. To remain viable, the resulting demi-embryos should 
receive similar proportions of both the trophectoderm (TE) and, more importantly, of the inner 
cell mass (ICM). With reference to the above, the dashed line indicates the optimal position for 
the cut. (Image adapted from Escriba et al. 2002).  
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1.4.2.3 Zona-free embryo splitting 

The standard embryo splitting technique recommends culturing the splits into 

evacuated ZPs. This recommendation serves at least two purposes: it allows the 

experimenter to keep track of his work with more ease (for example blastomeres from 

different embryos might diffuse in the medium) and, more importantly, provides the 

embryo with a solid matrix within which it may correctly organise itself (Tagawa et al. 

2008). However, a study in mouse demonstrated that the functions of the ZP might be 

completely replaced by the use of the WOW system (Wood et al. 1993), and a similar 

finding was confirmed in cattle (Vajta et al. 2000).  

 

The application of the WOW culturing technique to embryo splitting provides for a 

quicker, more effective protocol and removes the need for the collection and 

preparation of additional ZPs, although this approach seems suited to cleavage stage 

embryo splitting only (Tagawa et al. 2008). Interestingly, post-compaction embryos that 

are denuded of their ZP, bisected and immediately transferred to their recipient show 

conception rates comparable to zona-clad controls (Seike et al. 1989). In similarity to 

what described for the WOW culture system, this approach provides for a quicker and 

less resource intensive protocol (Seike et al. 1989).  

 

1.4.2.4 Applications of embryo splitting to livestock production 

The application of embryo splitting might be beneficial to the breeding industry in those 

circumstances when an IVP system is in place. In this scenario, embryo splitting could be 

used to maximise the number of embryos available for transfer as well as to increase 

embryo transfer success rates (Gary et al. 1991). Therefore, embryo splitting could 

further amplify selection intensity on both female and male lines due to the ability to 

produce numerous animals from a few elite parents. 

 

In cattle, pregnancy rates >50% per demi-embryo have been reported resulting on 

average in more than one pregnancy established per single embryo and therefore in a 

true multiplication of the offspring (Gary et al. 1991). Embryo splitting in cattle is a well-

established technique with bisected embryos achieving similar pregnancy rates to intact 
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embryos (respectively 50-60% and 55-61%) (Lopes et al. 2001). As a result, embryo 

splitting has already been applied commercially in this species (Gary et al. 1991; Kippax 

et al. 1991). 

 

Conversely, embryo splitting has been applied only sparingly in pigs. Nevertheless, 

splitting of cleavage stage porcine embryos has been reported and led to the formation 

of blastocysts in vitro (Menino & Wright 1983) and even to live births (Niemann & 

Reichelt 1992). Moreover, live births have been recorded after blastocyst stage embryo 

splitting (Rorie et al. 1985; Nagashima et al. 1988) with one study reporting pregnancy 

rates of 82% with healthy piglets but reduced litter sizes (Reichelt & Niemann 1994). 

However, in the pig, embryo bisectioning can lead to substantial disruption of the 

embryo’s developmental ability, especially when blastocysts of a lesser grade are split 

(Tao et al. 1995). In general, the survivability of porcine embryo splits appears somewhat 

compromised, as they tend to perform poorly in comparison to intact control embryos 

with pregnancy rates upon transfer of 14.3% and 50%, respectively, reported in one 

study (Brüssow & Schwiderski 1990).  

 

In the horse, in vivo derived cleavage stage embryos could be split, cultured into ligated 

ewe oviducts and then transferred to foster mares leading to normal term pregnancy 

(Allen & Pashen 1984). While the need for in vivo culture seems surpassed (Skidmore et 

al. 1989), horse embryo splitting has been reported only occasionally in the literature. 

 

1.4.2.5 Embryo splitting and genomic screening 

It is well accepted that the breeding industry would benefit from the ability to select the 

sex of the offspring before a pregnancy is established (Johnson et al. 2005). Reliable sex 

determination of IVP embryos before embryo transfer was first reported in the early 

1990s (Herr & Reed 1991) and subjected to several improvements shortly after 

(Bredbacka et al. 1995). Currently, the procedure is used to some extent with 0.3% and 

3.7% of biopsied cattle embryos being sexed in the USA and in Canada, respectively 

(Hasler 2014). Furthermore, at present there is a growing interest into applying genomic 

selection to farm animal IVP, which would result in an improved rate of genetic gain 
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thanks to the ability to perform a selection without the need to establish a pregnancy 

(Hall et al. 2013), as further discussed in section 1.8. In this context, the availability of 

twin embryos could simplify sexing and genomic selection by providing additional 

samples for the analysis. At the same time, it could reduce the cost of the screening 

since a single test would be informative for all twins simultaneously.  

 

1.4.2.6 Embryo splitting in biomedical research 

Animal embryo splitting might also be useful in biomedical research. Indeed, the 

availability of identical twins would provide for excellent control samples, allowing 

hypothesis testing against a fixed genetic background. For example, pharmacokinetic 

studies are known to benefit from the availability of MZ twins (Tang & Endrenyi 1998). 

Additionally, splits can be frozen and transferred at different times to test epigenetic 

effects such as the role of maternal hypothyroidism in reduced IQ (Haddow et al. 1999); 

or to allow the investigation of identical protocols in twins of different ages to address 

cellular senescence questions (Chan et al. 2000). 

 

1.4.2.7 Embryo splitting applications in primates 

The possibility of applying embryo splitting to non-human primates has received some 

interest. The production of clones of model organisms like the rhesus monkey could find 

immediate research applications in the fields of epigenetics, tissue transplant, and 

disease prevention among the others (Schramm & Paprocki 2004). A breakthrough in 

this direction was achieved in 2000 with the birth of Tetra, the first live rhesus monkey 

born from cleavage stage embryo splitting after numerous unfruitful attempts (Chan et 

al. 2000). Since then, both pre- and post-compaction embryo splitting techniques have 

been trialled in the rhesus monkey (Mitalipov et al. 2002). However, the complex 

requirements of the rhesus embryo led to sub-optimal birth rates and mostly singleton 

births (Schramm & Paprocki 2004). 

 

The use of embryo splitting has also been proposed for human assisted reproductive 

procedures as a way to increase chances of implantation. Due to ethical implications, 
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this application is not allowed in all countries. However, a review of this topic falls 

beyond the scope of this introduction, and a more detailed discussion is presented 

elsewhere (ASRM 2004; Illmensee et al. 2010). 

 

1.4.2.8 Embryo splitting limitations 

Theoretically, it would be possible, via embryo splitting, to create as many embryos as 

there are blastomeres at the time of split. In practice, this is not possible due to some 

limitations of the technique. Splits seem to survive less well than intact controls 

(Willadsen & Polge 1981); additionally, apoptotic processes tend to be more prevalent 

in the splits, especially within the ICM (Chan et al. 2000). 

 

In embryo bisectioning, it was observed that demi-embryos possess less than half the 

total cells of the original embryo due to a loss of cells in both the ICM and the TE 

(Skrzyszowska & Smorag 1989; Tao et al. 1995; Rho et al. 1998). The low cell count found 

in splits might explain a lower conception rates for embryo splits as compared to intact 

controls (Heyman 1985; McEvoy & Sreenan 1990). 

 

Similarly, the decrease in survivability of cleavage stage splits might be caused by a 

reduction in the number of cells present in the embryo at time of compaction. Indeed, 

it is known that an insufficient number of cells at time of blastulation results in the 

formation of aberrant blastocysts deprived of an ICM, which cannot develop further 

(Gardner et al. 1973). 

 

As a r 

esult of these effects, the maximum number of viable embryos produced by splitting is 

restricted. Current reports suggest a limit of four twins might be difficult to overcome 

(Johnson et al. 1995; Chan et al. 2000). Interestingly, although embryo splits have a 

reduced cell count as compared to intact embryos, the offspring appear of normal size 

suggesting that embryos are capable of compensating for the initial cell number loss 

during development (Papaioannou et al. 1989). 
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1.4.2.9 Serial embryo splitting 

The question arises as to whether it would be possible to perform successfully the 

splitting of an embryo derived from a previous split, the so-called “serial splitting”. A 

study that has investigated the effectiveness of serial splitting in mice found that the 

blastulation rate of first splits of 2-, 4- and 6-cell stage embryos was 74.3%, 75.0%, and 

66.6%, respectively and was maintained to comparable levels for second splits (71.8%, 

62.6%, 48.4%). However, blastulation rates fell sharply with the third split, which only 

yielded rates of 48.4%, 38.1%, and 10.6% resulting in a loss rather than an increase in 

the number of embryos produced (Illmensee et al. 2006).  

 

While perpetual splitting seems definitively unachievable, serial splitting still holds 

promise to increase the number of viable blastocysts obtainable from each produced 

embryo. Nevertheless, a comprehensive comparison between single and serial splitting 

strategies has not been previously reported in the literature and the application of serial 

splitting to farm animal breeding is equally underreported. 

 

1.4.3 Somatic cell nuclear transfer (SCNT) 

Another method that is suitable for the artificial creation of clones is somatic cell nuclear 

transfer (SCNT). In brief, the technique requires the transfer of an intact nucleus derived 

from a somatic cell into an enucleated suitable cell that has the ability to reprogram the 

somatic nucleus. While it is possible to use zygotes and blastomeres as recipient cells, in 

most cases MII oocytes show the highest aptitude for reprogramming donor nuclei (Kato 

et al. 1998; Holker et al. 2005; Hall et al 2006). The nature of the somatic donor cell is 

also important, as some cell lines are more readily reprogrammed; for example, one 

study in cattle reported improved success with cumulus cells as compared to fibroblasts 

(Tian et al. 2003). It is perhaps not surprising that pluripotent cells like blastomeres and 

embryonic stem cells seem to support cloning efficiency to higher rates than somatic 

cells (Zhou et al. 2001; Eggan et al. 2002). The transfer of nuclei is normally operated by 

micromanipulation using highly specialised equipment (Li et al. 2004). However, 

protocols for the performing of the nuclear transfer by hand (the so-called “hand-made 

cloning”) have also been reported for cattle (Vajta et al. 2003) and pigs (Kragh et al. 
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2005). After the fusion of nucleus and cytoplasm donors, the construct must be 

activated either by an electrical pulse or chemically (reviewed in Campbel et al. 2007). 

The activated construct will then occasionally proceed to form a viable embryo with an 

identical genomic constitution as the somatic cell donor (Wilmut et al. 2002). The 

methodology of SCNT is further illustrated in figure 1.19. 

 

Certainly, the most well known example of the application of SCNT to reproductive 

cloning belongs to Wilmut and colleagues: in 1997, the news of the birth of Dolly the 

sheep, the first animal born by SCNT, hit the major newspapers’ headlines worldwide 

(Wilmut et al. 1997). However, nuclear transfer had previously been reported in the 

1950s (Briggs & King 1952; Gurdon et al. 1958) and was perfected for use in mammals 

in 1984 when sheep embryos, resulting in live births, were constructed by fusing a sheep 

blastomere with a bisected oocyte (Willadsen 1986). To date, an ever-growing number 

of mammals have been cloned by means of nuclear transfer. Among them are the rhesus 

monkey (Meng et al. 1997), mouse (Wakayama et al. 1998), cattle (Kato et al. 1998), 

goat (Baguisi et al. 1999b), pig (Polejaeva et al. 2000), rabbit (Chesne et al. 2002), cat 

(Shin et al. 2002), mule (Woods et al. 2003), horse (Galli et al. 2003), dog (Lee et al. 

2005), and more recently camel (Wani et al. 2010). However, the overall cloning 

efficiency has remained low with reports consistently indicating rates between 0 and 3% 

(Wilmut & Paterson 2015), even though several technical improvements have allowed 

for simplified protocols, reduced costs and better offspring survival (Campbel et al. 

2007). 
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Fig. 1.19 – Somatic cell nuclear transfer (SCNT). A schematic representation of the SCNT method 
is presented. An enucleated oocyte is fused with the nucleus of an adult somatic cell. The 
activated embryo is transferred to a foster mother leading to the birth of an animal genetically 
identical to the somatic cell nuclear donor. (Image from Gifford & Gifford 2013). 
 

1.4.3.1 Nuclear transfer in commercial breeding 

SCNT might be used to multiply animals of proven genetic merit. One USA programme 

resulted in the transfer of 2.683 cloned cattle embryos (Faber et al. 2003) and recent 

reports suggest that meat and milk derived from cloned animals are safe for human 

consumption although public acceptance is not widespread (Yang et al. 2007).  

 

Nonetheless, for SCNT to be applied for large-scale reproductive cloning some technical 

improvements appear mandatory (Smith et al. 2012). Disappointingly, a 2011 survey 

conducted in Japan that examined 3264 ET procedures with SCNT cattle embryos 

between the years 1998-2007 highlighted how the cloning efficiency had substantially 

remained stable over the decade with an average calving rate of 9.2% (Watanabe & 

Nagai 2011). Furthermore, for SCNT to be commercially viable, it is indispensable that 

clones can be produced at reasonable costs; however, current estimates suggest around 
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15,000-20,000 USD might be required per clone (Hasler 2014). For all these reasons, in 

the immediate future large-scale application of this practice seems very unlikely. 

However, SCNT could be useful to reproduce animals of exceptional value, such as top 

performing reproduction bulls (Bousquet & Blondin 2004) or elite horses (Lagutina et al. 

2005).  

 

1.4.3.2 SCNT in biomedical applications 

Introducing modifications in the genome of a mammal has been possible since the 1980s 

by microinjection of DNA into a zygote; however, microinjection is subjected to several 

shortcomings yielding only a very low efficiency and imprecise control over the 

integration site of the transgene (Krisher et al. 1994). An alternative is applying SCNT 

using genetically modified cells as nucleus donors. Site-specific gene recombination in 

cultured cell lines coupled with SCNT has proven a powerful technique to produce 

transgenic animals with the exact desired genotype (Schnieke et al. 1997). Moreover, 

recent advancements following the development of the novel CRISPR/Cas9 system for 

gene editing have led to a much more precise control of the modifications induced 

(Whitworth et al. 2014; Zhou et al. 2015).  

 

Transgenic animals can be exploited in a number of different ways. For example, it is 

possible to induce the production of desired proteins in the milk of a transgenic animal 

(Schnieke et al 1997). Reports suggest that good protein yields might be achieved by 

using this strategy, which could result in a commercial scale production of important 

molecules like insulin, anti-clotting proteins, growth factors, and cytokines (Baguisi et al. 

1999b; Niemann et al. 2012). Similarly, it is possible to exploit transgenic animals’ milk 

to supplement the human diet for example with important fatty acids not readily 

available otherwise (Wu et al. 2012). Moreover, transgenic animals might be uselful for 

xenotransplantation, the transfer of organs or tissues between two different species, 

thus alleviating the need for human organ donors. The main issue associated with 

xenotransplantation is the violent immunological response enacted by the transplant. 

However, the application of genetic modifications in the donor animal might provide for 

organs unlikely to be rejected, for example by removing epitopes from cell surfaces 
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(Sandrin et al. 1993). Due to the ethical concerns with the use of primates for 

xenotransplantation, and the higher risk to transmit infectious diseases, the use of 

different donor animals is desirable (Weiss 1998). Due to its physiology and size, the pig 

appears the most promising candidate (Ekser et al. 2012; Nagashima 2012). For 

example, the transplant of porcine islets cells might help diabetic patients to recover 

normal pancreatic functions (Groth et al. 2000; Nagashima 2012). Transgenic animals 

can also be designed to model certain human diseases in order to study their treatment, 

a well-known example being the creation of knockout mice (Capecchi 1989). However, 

larger animal models have the advantage of mimicking human physiology more 

precisely; for example, knockout mice are poor models of human cystic fibrosis while 

sheep provide a far better representation (Harris 1997). These models can be used for 

drug testing and assessment of novel therapies.  

 

1.4.3.3 SCNT for wildlife conservation 

SCNT might be used to recover wholly the nuclear genetic constitution of an animal of 

interest without the losses caused by hybridisation with related species/subspecies 

(Corley-Smith & Brandhorst 1999). Furthermore, SCNT could allow for the clonal 

propagation of animals that breed with difficulty in captivity, in view of their 

reintroduction in the wild (Tong et al. 2002). Some attempts, reaching various degree of 

success, have already been described in the literature. The first example was reported 

by Wells et al. who demonstrated the use of SCNT for the conservation of a nearly 

extinct subspecies: the Enderby Island cattle (Wells et al. 1998). A similar attempt was 

made in Bos gaurus, resulting in pregnancies but no live birth (Lanza et al. 2000).  

 

1.4.3.4 SCNT limitations 

Current technical limitations and lack of public acceptance have prevented SCNT from 

achieving all of its goals. Moreover, cloned offspring suffer from a number of 

abnormalities both during and after gestation, leading to increased mortality. It has 

been reported that only around 10% of cloned cattle embryos transferred to recipients 

develop to term owing to higher rates of pregnancy loss (Hill et al. 2000). The presence 
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of these abnormalities is well exemplified by the markedly higher prevalence of large 

offspring syndrome (LOS) in cloned animals as compared to other IVP controls (Liu et al. 

2013). Other common abnormalities affect the placenta, the cardiovascular system, and 

the liver (Wilmut et al. 2002; Farin et al. 2006). These abnormalities are almost certainly 

caused, at least in part, by incomplete epigenetic reprogramming of the somatic nucleus 

after reconstruction (Rideout et al. 2001; Su et al. 2011); this claim is also supported by 

the observation that more readily reprogrammable cell lines result into a lessened 

prevalence of LOS (Liu et al. 2013). In addition, incompatibilities between the nuclear 

DNA and the mitochondrial DNA caused by the fusion might account for a proportion of 

the abnormalities (Hiendleder et al. 2004). Finally, certain SCNT techniques and certain 

media supplementations, like serum, are definitively associated with increased rates of 

abnormality providing room for further technical refinements (Campbel et al. 2007). 

 

On the other hand, some encouraging reports have demonstrated that long-term 

surviving offspring have similar physiology to their original cell donors. In particular, one 

study found that the semen of a cloned bull has comparable fertilising potential to its 

original donor (Tecirlioglu et al. 2006). Furthermore, clones’ offspring seems to be free 

from the typical issues faced by their parent suggesting a complete normal embryonic 

development (Abeni et al. 2012). Finally, it is a common conception that cloned animals 

face accelerated ageing due to telomere shortening (Blasco 2007) and Dolly the sheep 

was known to have shorter telomeres than its nuclear donor (Shiels et al. 1999). 

However, more recent reports suggest that complete genomic reprogramming leads to 

telomerase reactivation, producing clones with telomere lengths at least comparable to 

their donors (Alexander et al. 2007; Kishigami et al. 2008). In conclusion, SCNT still holds 

great promise for the future but further refinements seem crucial before its widespread 

application becomes possible. 
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1.5 Aneuploidy 

Aneuploidy refers to the presence of an abnormal number of chromosomes within a 

cell, such as the lack of a homologue chromosome (monosomy) or the presence of an 

extra homologus chromosome (trisomy), representing a deviation from euploidy 

(Griffiths et al. 2000, Nagaoka et al. 2012). The clinical outcome of aneuploidy varies 

considerably based on the type of numerical aberration and on the specific 

chromosomes involved. For example, the vast majority of somatic chromosome 

trisomies are fatal during embryonic development. In humans, the only somatic trisomy 

leading to development past infancy is the trisomy of chromosome 21 which, however, 

is the cause of Down’s syndrome, and is characterised by cognitive impairment, 

abnormal birth weight, and cardiomegaly (Hassold et al. 2007, Nagaoka et al. 2012). 

Aneuploidies of the sexual chromosomes, whilst better tolerated, are also associated 

with a variety of clinical outcomes ranging from only a modest cognitive impairment to 

skeletal problems and infertility, the most common examples being the Turner 

syndrome (45, X0) and the Klinefelter syndrome (47, XXY) (Gravholt et al. 1998; 

Lanfranco et al. 2004). 

 

Importantly, aneuploidy is widely recognised as a leading cause of developmental arrest, 

miscarriage, IVF failure and infertility (Hassold & Hunt 2001; Hassold et al. 2007; Munné 

et al. 2007; King 2008; Hodes-Wertz et al. 2012; Mir et al. 2014). Consequently, the study 

of aneuploidy has found wide application in embryology. In humans, it has been shown 

that the majority of IVF embryos are affected by at least some degree of chromosomal 

abnormality (Lathi & Milki 2004; Baart et al. 2007; Franasiak et al. 2014), and several 

studies have attempted to characterise the frequency of aneuploidy on a chromosome 

basis across different developmental stages (Griffin 1996; Munné et al. 2004; Daphnis 

et al. 2008). 

 

1.5.1 Origin of aneuploidy 

The exact origin of aneuploidy is still an active research field (Handyside 2012) as several 

possible mechanisms have been described. Ultimately, aneuploidy is caused by the 

improper segregation of chromosomes (malsegregation) during either meiosis or 
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mitosis, which gives raises to a gain or a loss of a whole chromosome (Potter 1991; 

Cimini et al. 2005). Possible mechanisms of aneuploidy during mitosis include non-

disjunction, anaphase lag and endoreplication. During non-disjunctions, sister 

chromatids remain attached during anaphase, leaving one daughter cell monosomic and 

the other trisomic (Fragouli et al. 2013; Baart et al. 2014). When anaphase lag occurs, 

sister chromatids segregate correctly at anaphase, but then a single chromatid fails to 

be incorporated in the reforming nuclear envelope, resulting in a monosomy in a 

daughter cell, but a normal chromosome number in the other daughter cell (Munné et 

al. 1994; Kalousek 2000; Coonen et al. 2004). A third mechanism is endoreplication, 

during which a cell cycle error or the initiation and abortion of mitosis might lead to the 

accidental replication of a chromosome without cytokinesis (Santos et al. 2010a; 

Mantikou et al. 2012; Taylor et al. 2014).  

 

During meiosis, malsegregation can lead to different outcomes depending on the type 

of error and on whether it occurred at meiosis I or at meiosis II. In particular, a type of 

error that has been described in meiosis is premature predivision of sister chromatids. 

This is caused by sister chromatids becoming prematurely detached at meiosis I and 

then segregating independently, leading to a combination of possible outcomes, 

including balanced errors resulting in the production of a normal gamete, but also 

disomies and monosomies (Handyside et al. 2012; Ottolini et al. 2015), as illustrated in 

figure 1.20. 
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Fig. 1.20 – Examples of segregation patterns arising from normal disjunction, non-disjunction 
and premature predivision of chromatids. Maternal chromosomes in red, paternal 
chromosome in blue. PB: polar body. The net result of each segregation pattern is described on 
the right of each panel as gain (G), loss (L) or normal (N) copy number for PB1, PB2 and Zygote, 
respectively. Note that not all possible segregation patterns are represented and for premature 
predivision reciprocal patterns are possible leading to a balanced outcome. (Image from 
Handyside et al. 2012). 
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1.5.2 Aneuploidy in sperm cells 

In humans, aneuploidy is thought to be a cause of infertility in males (Tempest 2011; 

Harton et al. 2012; Gibson et al. 2013). For example, high levels of disomy have been 

detected in infertile men (Tempest & Griffin 2004) and an association has been found 

between aberrant sperm parameters such as oligo-, astheno-, or terato-zoospermia and 

aneuploidy (Martin 2005; Mehdi et al. 2012). However, similar studies in farm animals 

have been much less comprehensive, partly because sub-fertile males tend to be simply 

excluded from breeding regimens. Only a few papers have been published detailing the 

aneuploidy levels in boar and bull spermatozoa, but used relatively small sample sizes 

and focused their screening on only a subset of chromosomes so their conclusions 

cannot be readily extended to the general population (Rubes et al. 1999; Rybar et al. 

2010). 

 

1.5.3 Aneuploidy in oocytes 

The incidence of aneuploidy in human oocytes has been estimated to range between 2 

to 14.5%, suggesting that aneuploidy is much more common in oocytes than in sperm 

cells (Hassold & Hunt 2001). A total aneuploidy rate of 30% has been described in cattle 

oocytes (Nicodemo et al. 2010) and a similar figure was discovered in pig oocytes, 

although these numbers are known to be affected by the age of the female (Lechniak et 

al. 2007). 

 

Indeed, it is well accepted that a link exists between maternal age and aneuploidy 

incidence in oocytes, a phenomenon often described as maternal age effect (Hunt & 

Hassold 2008; Hassold et al. 2009; Chiang et al. 2012). Up to 33% of pregnancies in 

women over the age of 40 are affected by trisomies as compared to an incidence of just 

2% in women under 25 years of age (Hunt 2006; Hassold et al. 2007; Loane et al. 2013). 

As described previously, the peculiar mechanics of oogenesis mean that oocytes are 

maintained in meiotic arrest at diplotene from early foetal life until recruited for 

ovulation, which might only occur after decades (see section 1.1.4). During all this time, 

chromosomes are bound together by kinetochores, but these structures are known to 

lose stability with age, which might account for an increased rate of segregation errors 
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(Chiang et al. 2010). Other possible mechanisms underlying the maternal age effect 

include an increase in meiotic non-disjunctions after meiosis resumption, and defective 

spindle assembly checkpoints (Chiang et al. 2012). 

 

1.5.4 Mosaicism 

In embryology, mosaicism is defined as the presence of at least two cells within the same 

embryo with a different chromosomal constitution. For example, the embryo could 

contain a mixture of euploid and aneuploid cells, or a mixture of different aneuploidies 

(Frumkin et al. 2008; Lebedev 2011). Mosaicism is caused by mitotic malsegregation 

errors that occur after the formation of the zygote and are therefore known as post-

zygotic errors to distinguish them from meiotic errors, which do not give rise to a mosaic 

phenotype. All the mechanisms listed under section 1.5.1 for mitotic errors are 

considered as a possible cause of mosaicism; moreover, repair mechanisms attempting 

to restore euploidy following a meiotic chromosomal error during later mitotic divisions 

may also result in mosaicism (Taylor et al. 2014). Interestingly, mosaicism can also be 

caused by uniparental disomy (UPD), a mitotic event that creates no net loss or gain of 

chromosomes. In UPD, a cell inherits two homologous chromosomes from one parent 

and no chromosome from the other parent, often as the result of a trisomic rescue event 

(Robinson 2000; Conlin et al. 2010; Eggermann et al. 2015; Taylor et al. 2014). 

 

Mosaicism is a common occurrence in human embryos, although the incidence of 

mosaicism reported in the literature varies considerably based on the investigation 

method. Harper et al. observed a mosaicism incidence of 15% in cleavage stage embryos 

(Harper et al. 1995), while Daphnis et al. reported a 90% incidence (Daphnis et al. 2005). 

Additionally, one particularly comprehensive study that analysed all the blastomeres 

derived from over 800 embryos reported an incidence of 73% (Van Echten-Arends et al. 

2011). Similar high rates of mosaicism have also been detected in human blastocyst 

stage embryos (Liu et al. 2012). Interestingly, though, there has been some indication 

suggesting that mosaicism tends to be more prevalent in the TE rather than in the ICM 

(Taylor et al. 2014).   
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Since mosaicism is so common, it is likely that mechanisms are in place for embryos to 

tolerate it. Indeed, it has been suggested that a normal genomic constitution in at least 

50% of the cells of an embryo would be sufficient to maintain developmental 

competence (Kuliev et al. 2004; Baart et al. 2005; Daphnis et al. 2005; Baart et al. 2014). 

Mosaic embryos have been known to exhibit normal morphology (Li et al. 2005; Frumkin 

et al. 2008), and some authors have suggested the existence of a self-correction process 

(Munné et al. 2005; Bazrgar et al. 2013; Scott et al. 2013).  

 

Once again, while a wealth of information is available for the human model, only a few 

authors investigated the presence of mosaicism in cattle and pig embryos. For example, 

in cattle a study from Iwasaki & Nakahara (1989) found that 13.7% of the blastomeres 

examined carried aneuploidy, whilst a study published by Kawarsky et al. (1996) 

discovered abnormalities in over one thirds of the blastomeres examined. Two later 

studies detected chromosomal abnormalities in up to 80% of the observed cells 

(Yoshizawa et al. 1999) or in between 15 to 42% of cells depending on the exact 

developmental stage of the cleaving embryo (Viuff et al. 1999), and a figure of 38% was 

detected in bovine blastocysts (Iwasaki & Nakahara 1989). Whilst the results reviewed 

prove the existence of mosaicism in cattle embryos, there is no consensus on its 

incidence in the literature.  

 

1.5.5 Aneuploidy and embryo morphology 

A link between aneuploidy and embryo morphology has been described in the literature. 

For example, pronuclear morphology has been shown to be predictive of the ploidy 

status of the embryo (Gianaroli et al. 2003). Moreover, several studies have established 

a direct correlation between the presence of fragmentation and aneuploidy (Ziebe et al. 

2003; Munné 2006; Chavez et al. 2012). Therefore, the availability of accurate methods 

for the description of embryo morphology might prove valuable for the selection of the 

best embryos for transfer in commercial IVPfuture test. 
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1.6 Methods for preimplantation genetic diagnosis (PGD) and 

preimplantation genetic screening (PGS) 

Preimplantation genetic diagnosis (PGD) indicates an array of testing methods for 

assessing the genetics of oocytes and embryos following their manipulation in vitro 

(Handyside 2011). PGD encompasses methods for the diagnosis of monogenic disorders, 

for human leukocyte antigen (HLA) typing, and for the detection of aneuploidy aimed at 

reducing the risk of congenital abnormalities or pregnancy loss (Braude et al. 2002; 

Frumkin et al. 2008; Harton et al. 2010b). The first reported PGD was performed in rabbit 

in 1968, where the aim was to select for embryos of a specific sex (Gardner & Edwards 

1968). Conversely, the first human PGD cases were described in 1990 and used 

polymerase chain reaction (PCR) to select the sex of the offspring to be female in human 

couples carrying X-linked disorders thereby preventing the birth of children with the 

affected phenotype (Handyside et al. 1990). Shortly thereafter, in 1992, the first use of 

PGD for the detection of the recessive monogenic disorder cystic fibrosis was also 

published (Handyside et al. 1992). 

 

In contrast, the term PGS is specifically restricted to the use of diagnostic procedures for 

the screening of aneuploidy in embryos. PGS is particularly used in cases of advanced 

maternal age or recurrent miscarriage when there is reason to suspect underlying 

aneuploidy issues (Delhanty et al. 1993; Geraedts & De Wert 2009; Geraedts 2010; 

Harper & SenGupta 2012). Importantly, in contrast with other screening methods like 

chorionic villus sampling and amniocentesis, PGS is performed before the establishment 

of a pregnancy (Stern 2014) and has, therefore, the unquestionable advantage of 

removing the need to terminate a pregnancy following an unfavourable diagnosis 

(Sermon et al. 2004). However, the use of PGS is only compatible with methodologies 

allowing the manipulation of embryos in vitro, such as IVF (Geraedts et al. 2002). Whilst 

the aims of PGD and PGS might be somewhat different, they largely share the same array 

of techniques, which are described hereafter. 
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1.6.1 Polymerase chain reaction (PCR) 

The development of sensitive PCR methods allowed the application of PGD to single cell 

biopsies (Thornhill & Snow 2002; Handyside et al. 2004; Ben‐Nagi et al. 2016). However, 

this procedure suffered from issues of sensitivity and contamination. In fact, the minute 

amount of DNA recovered from a single blastomere can be a cause of allele drop out 

(ADO), an error that occurs when one of the alleles of a heterozygous locus fails to 

amplify leading to a diagnosis of homozygosity instead. The introduction of nested PCR, 

which is based on two successive rounds of amplification using different, more internal 

primers for the second round, increased specificity and reduced ADO issues (Handyside 

et al. 1992). Following its development, several other improvements were published (Liu 

et al. 1995; Hussey et al. 1999; Ray et al. 2001; Dahdouh et al. 2015), the most notable 

of which was probably multiplexing, which allowed for the amplification of multiple loci 

in each reaction (Ao et al. 1998; Spits & Sermon 2009; De Rycke 2010). 

 

Another important advancement was the development and application of quantitative 

real-time PCR (RT-qPCR) to PGS. In this approach, the samples undergo a preliminary 

amplification step followed by multiplex amplification of two regions on each 

chromosome arm for all chromosomes (Treff et al. 2012; Yang et al. 2015; Treff et al. 

2016). By comparing the signal intensity from each probe to the intensity of a known 

control, it is possible to evaluate the chromosome copy number across the genome 

(Dahdouh et al. 2015). The fundamental advantage of this approach is that it can be 

directly applied to biopsy samples without need for preparatory steps. However, this 

also limits the application of RT-qPCR to TE biopsies only, due to the need to supply 

sufficient template DNA for reliable diagnosis (Treff et al. 2012; Dahdouh et al. 2015). 

 

Later on, the availability of the genomic sequence of humans revealed the presence of 

many polymorphic markers that could be used for diagnostic procedures (Lander et al. 

2001; Sachidanandam et al. 2001; Venter et al. 2001; International Human Genome 

Sequencing Consortium 2004). In particular, PCR reactions designed to amplify short 

tandem repeats (STRs) facilitated analysis and minimised the problems caused by ADO 

and contamination (Harton et al. 2010a; Thornhill et al. 2015).  



G. Silvestri Introduction 

 

60 

 

1.6.2 Fluorescence in situ hybridisation (FISH) 

Due to the limitations of PCR, many studies described the application of a different 

technique: fluorescence in situ hybridisation (FISH). In its beginning, FISH was used with 

sex chromosome specific probes (Griffin et al. 1991), which led to clinical application 

and live births (Griffin et al. 1992; Griffin et al. 1993; Delhanty et al. 1993; Griffin et al. 

1994). Soon, though, the use of FISH was extended to the detection of aneuploidy and 

translocations becoming the most common form of PGS (Munné & Cohen 1993; Munné 

et al. 1994; Munné et al. 1996; Munné & Cohen 1998). 

 

However, often only a limited panel of chromosomes could be screened through FISH 

(Munné et al. 1994; Munné et al. 1996) which led to some controversy in the field 

(Summers & Foland 2009). Moreover, the use of FISH was faced with several technical 

challenges, including accidental loss of nuclear material, overlapping or split signals, high 

levels of background, and hybridisation failure (Ruangvutilert et al. 2000; Fiorentino et 

al. 2011). In view of this, PGS by FISH with probe panels has been largely discontinued, 

and even though 24 chromosome FISH could be successfully applied in human embryos, 

technical burdens were considerable (Ioannou et al. 2011; Ioannou et al. 2012). Today 

the application of FISH is mostly limited to a research setting, and particularly to studies 

of cytogenetics (Yang & Graphodatsk 2017). 

 

1.6.3 Comparative genomic hybridisation (CGH) 

The successor of FISH was comparative genomic hybridisation (CGH). This method uses 

differentially labelled test and control DNA that are competitively hybridized to 

metaphase chromosomes (Theisen 2008), allowing for a more rapid assessment of 

chromosome copy number across the entire genome (Spelcher et al. 1993; Forozan et 

al. 1997) but with limited resolution (Kirchhoff et al. 1998; Lichter et al. 2000).  

 

Later, CGH was adapted for use in a completely artificial environment, which did not rely 

on cells. In array CGH (aCGH), test and control DNA are hybridised to a panel of probes 

on a microarray chip. If test and sample DNA are present in equal measures, a 1:1 colour 

ratio will result at each locus. Deviation from parity might indicate losses or gains in 
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specific chromosomal regions arising from trisomy, monosomy, deletion, insertions or 

translocation (Le Caignec et al. 2006; Vanneste et al. 2009; Fishel et al. 2010; Traversa 

et al. 2011). Remarkably, though, this method is unable to detect UPD events due to the 

absence of change in copy number and is not well suited for the detection of 

duplications of the entire chromosome constitution such as triploidy. 

 

1.6.4 Next generation sequencing (NGS) 

Once again, though, technology has evolved and the use of aCGH has recently been 

superseded in clinical settings by the use of next generation sequencing (NGS) instead. 

In this approach, the DNA recovered from an embryo is cut into small 100-200 bp 

sections and analysed by massive parallel sequencing (Fiorentino et al. 2014). The data 

acquired can then be compared to a reference genome to detect mutations, and the 

inheritance of traits or genetic disorders can thus be investigated (Simpson et al. 2013). 

Moreover, the number of reads obtained for each section of DNA can be counted 

(binning) to obtain an indication of copy number as well (Fiorentino et al. 2014), leading 

to the detection of monosomy, trisomy or segmental alterations (Handyside 2013; 

Handyside & Wells 2013). NGS migh also be used to predict mosaicism in TE biopsies 

when intermediate copy numbers are detected (Vera-Rodríguez et al. 2016). However, 

in this context, the sensitivity of NGS has been shown to be highly dependent on the 

percentage of mosaicism present, and attempts to increase sensitivity have led to a 

parallel increase in false positives (diagnosig euploid embryos as mosaic) (Goodrich et 

al. 2016). 

 

1.6.5 Single nucleotide polymorphism (SNP) analysis  

A single nucleotide polymorphism (SNP) is a variation in a single nucleotide at a specific 

position in the genome. Interestingly, SNPs are bi-allelic, resulting from the inheritance 

of an ancestral point mutation (LaFramboise 2009; Habela et al. 2013). The two alleles 

for an SNP can be labelled with different fluorophores on array chips, and the detection 

of the resulting fluorescence ratio can indicate heterozygosity or homozygosity for 

either allele (Habela et al. 2013). 
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Specialised microarrays for the detection of thousands of SNPs are now commonly 

available commercially (Handyside 2015). With infinium technology (Illumina), a 

platform used for SNP typing, a SNP locus resulting in an uncertain genotype call is 

assigned a low “genecall” score, and readings with a genecall score beneath the no-call 

threshold are removed from analysis and result in a decrease in the sample’s call rate 

(proportion of loci for which a genotype call above the threshold was generated) 

(Oliphant et al. 2002; Fan et al. 2003). Therefore, call rates represent an overall indicator 

of the performance of a DNA sample at SNP typing, a metric that is known to be sensitive 

to the quality of the starting sample (Kennedy et al. 2003). 

 

Although the variability of SNPs is much smaller than that of STRs, they are remarkably 

widespread across the genome, with about 40 million SNPs identified in humans 

(Dahdouh et al. 2015). Thanks to their properties, the study of SNPs makes it possible to 

track the inheritance of specific chromosome sections when the parental genotypes are 

known, allowing PGD by way of linkage analysis (Rabinowitz et al. 2011; Treff et al. 

2011). 

 

1.6.6 Whole genome amplification (WGA) 

An embryo biopsy sample will routinely require amplification in order to generate a 

sufficient DNA content for array-based analysis like SNP typing (Harper & Harton 2010). 

The most commonly used method for providing a sufficient DNA sample for analysis is 

whole gnome amplification (WGA) (Macaulay & Voet 2014). During WGA, the DNA is 

amplified by the use of specialised polymerase enzymes that can efficiently reproduce 

the DNA strands while operating at a constant temperature. Several commercial kits are 

on the market including GenomePlex (Treff et al. 2011), REPLI-g (Le Bourhis et al. 2011), 

or GenomiPhi V2 (Fisher et al. 2012). These kits have the ability to produce 

approximately 5 µg of DNA from a biopsied sample, representing at least a 40,000-fold 

increase in the initial DNA amount (Ponsart et al. 2014). 

 

However, genotyping errors can arise when less than 30 cells are used for WGA for 

example due to some alleles escaping amplification (Fisher et al. 2012; Lauri et al. 2013). 
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Therefore, WGA can be a cause of misdiagnosis and strategies to reduce the impact of 

these ADO events should be emploied (Le Bourhis et al. 2011). 

 

1.6.7 Karyomapping 

Karyomapping is a recently established PGD methodology which can track the 

inheritance pattern of chromosomes through the recapitulation of haploblocks, where 

haploblocks are defined as sub-chromosome sections of DNA that are inherited together 

(Handyside et al. 2010). To achieve that, karyomapping takes the SNP fingerprint of a 

sample (most often an embryo) and compares it to the SNP fingerprint acquired from its 

parents and a sibling of known disease status identified as the reference. SNPs that 

appear homozygous in one parent and heterozygous in the other parent can positively 

identify the parental origin of a haploblock and are therefore called “informative” or 

“key” SNPs (Handyside et al. 2010). The genome of the sample and that of the reference 

are compared at each key SNP locus to establish whether the sample inherited the same 

or a different haploblock as compared to the reference as well as the parent of origin 

for that haploblock (Handyside et al. 2010). Because the reference is of known disease 

status, tracking haploblock inheritance will provide information on the disease status of 

the sample too, by exploiting the principle of genetic linkage (Handyside 2015).  

 

Karyomapping can be applied for the detection of a vast number of abnormalities, for 

example single gene disorders, meiotic trisomy, monosomy, triploidy, parthenogenetic 

activation and UPD (Handyside et al. 2010; Natesan et al. 2014a; Natesan et al. 2014b). 

On analysis, monosomies and deletions appear as absence of haploblocks from one 

parent. Conversely, meiotic trisomies are visualised as a complex pattern involving 

frequent shifting between haploblocks. Furthermore, karyomapping can discriminate 

between error arisen during meiosis I or meiosis II depending on whether or not the 

centromere is involved in a double haplotype event (Handyside et al. 2010). An example 

of a clinical application of karyomapping is given in figure 1.21. 
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Fig 1.21 – Application of karyomapping in a case of preimplantation genetic diagnosis (PGD) 
in human embryos. The genotype of an affected sibling (reference) at specific single nucleotide 
polymorphism (SNP) loci was compared to 7 embryo biopsies. Two pairs of columns are given 
for each chromosome examined. P: paternal chromosome, M: maternal chromosome. Blue: 
paternal informative SNP concordant with reference; Red: paternal informative SNP different 
from reference; Yellow: maternal informative SNP shared with reference; Green: maternal 
informative SNP different from reference; Grey: absence of information. In embryos 3 and 6, the 
paternal chromosome is missing (paternal monosomy).  (Image from Thornhill et al. 2015) 

 

One of the key advantages of karyomapping is that it only relies on heterozygous 

genotype calls to establish haploblock inheritance, and this greatly reduces the chances 

of misdiagnosis associated with ADO (Griffin & Gould 2017). Nonetheless, in spite of the 

advantages of this method, karyomapping is also faced with several limitations. Firstly, 

the need to have a reference available, such as a sibling of known disease status, reduces 

the applicability of karyomapping to disorders that severely limit lifespan. Moreover, 

crossing over events that occur in the same or a similar region between the individual 

and the reference (juxtaposing crossovers) might lead to difficult data interpretation. 

Finally, karyomapping will not detect de novo mutations or traits that are not inherited 

by a Mendelian pattern (Rechitsky et al. 2015). Importantly, karyomapping is also unable 

to detect post-zygotic trisomies because these abnormalities do not cause any change 

in the haploblock inheritance pattern (Griffin & Gould 2017).  
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1.6.7.1 Future applications for karyomapping 

In the future, karyomapping could be combined with methods for the measurement of 

allele intensity to allow for the detection of post-zygotic trisomies (Giménez et al. 2015), 

thereby overcoming one of its key limitations. Haplarithmisis is an extension of the 

karyomapping algorithm that takes into account allele frequency (Esteki et al. 2015). 

This method tracks the frequency of heterozygous calls across the genome to reduce 

the artefacts created by the process of WGA and detect the presence of numerical 

abnormalities as well as to distinguish between meiotic and post-zygotic errors (Zamani 

Esteki et al. 2015). 

 

Whilst karyomapping has found use in clinical settings, its application to farm animal 

breeding is completely unreported in the literature. In the context of IVP, the availability 

of sibling embryos would simplify the application of karyomapping because a reference 

would often be readily available. Moreover, karyomapping could be used as a PGS 

method to select for the most chromosomally normal embryos for transfer. 

 

1.7 Biopsy methods  

Embryo biopsy is essential to produce a DNA sample for PGD and PGS. Biopsy can be 

operated at three levels: by recovering polar bodies (Verlinsky et al. 1990); by biopsying 

blastomeres from cleavage stage embryos (Handyside et al. 2004) or by removing a 

fraction of the TE from a blastocyst (Hahn et al. 2000; Bick et al. 2006). These approaches 

are demonstrated in figure 1.22. 

 

 

Fig 1.22 – Biopsy stages. A) Polar body biopsy. B) Cleavage stage biopsy, a single blastomere is 
being removed from an 8-cell stage embryo. C) Trophectoderm biopsy, a group of cells are 
removed from a blastocyst. (Image sources: A: www.cambridge.org; B: www.mitosis.gr; C: 
nordicalagos.org). 



G. Silvestri Introduction 

 

66 

 

Polar bodies are extruded from the maturing oocyte as a byproduct of meiosis and 

contain genetic material that will not be required to form the female gamete. Because 

of this, polar body biopsy can be used to gather information on the genomic status of 

the oocyte without affecting embryo development (Verlinsky et al. 1990). Critically, 

however, this technique does not allow for the detection of aneuploidies of paternal 

origin nor of post-mitotic aneuploidies, and involves the manipulation of an early stage 

embryo which might not continue development causing a waste of resources. However, 

because a polar body biopsy can be obtained as soon as possible during development, 

this approach is well suited for the transfer of fresh embryos because it allows sufficient 

time to establish a diagnosis while the embryo develops (Geraedts et al. 2009). 

 

Cells can be removed from cleavage stage embryos that have reached the 8-cell stage 

without significantly affecting its developmental competence (Hardy et al. 1989; Magli 

et al. 2004). With this method, a more comprehensive diagnosis on the genomic status 

of the embryo is achievable. However, because only one or two cells can be removed at 

this time, cleavage stage biopsy is thought to be more susceptible to ADO issues than 

biopsy at the blastocyst stage (Kokkali et al. 2007). Additionally, the sampling of such a 

limited subset of blastomeres carries the risk of misdiagnosis due to the presence of 

mosaicism, although the risk is mitigated when two blastomeres are removed instead of 

one (Kuo et al. 1998).  

 

A final approach is to perform a biopsy at the blastocyst stage by removing a small 

portion of the TE. Because TE will not form part of the foetus, this approach is thought 

to be minimally invasive (McArthur 2014). Moreover, biopsy at the blastocyst stage 

allows for a greater number of cells to be sampled, reducing the issues associated with 

ADO and mosaicism and allowing better amplification by WGA (Kokkali et al. 2007; 

Harton et al. 2010b; Capalbo et al. 2013). Additionally, it has been found that the TE is a 

good indicator of the ploidy status of the ICM, with a concordance greater than 95% 

(Johnson et al. 2010; Cater et al. 2012; Capalbo et al. 2013). Interestingly, because of 

the existence of repair mechanisms, aneuploidy that affects cleavage stage embryos 

might not be present in blastocysts, suggesting that TE biopsy might provide for a better 
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indication of the future phenotype of the offspring (Capalbo et al. 2013). However, 

embryos biopsied at the blastocyst stage will often require to be cryopreserved while a 

diagnosis is established. 

 

1.8 Genomic selection 

Traditionally, breeding programmes aimed at improving the genetic merit of farm 

animals have been based on progeny testing (Henderson 1984), meaning that the 

desirability of an animal as a parent was judged not on its phenotype, but on the 

phenotype of its offspring, the assumption being that the performance of the offspring 

is a better representation of that specific animal’s genotype (Robertson & Rendel 1950). 

Whilst progeny testing was effective and widely adopted, its key disadvantage was the 

long time required to judge the performance of the offspring; for example, a 5-year long 

observation period was common to fully evaluate a bull (Weller et al. 2017). 

 

An alternative approach was described in the 1980s and postulated the selection of 

breeders based on DNA markers (Weller 2009). Many traits of commercial interest, such 

as milk yield or ease of parturition, are in fact polygenic, meaning that phenotypes 

reflect the joint action of several DNA segments, known as quantitative trait loci (QTL) 

(Georges et al. 1995). Early efforts in this field attempted to establish an association 

between QTLs and small subsets of known genetic markers (Geldermann et al. 1985; 

Cowan et al. 1990; Hoeschele & Meinert 1990; Bovenhuis 1992; Schutz et al. 1993), 

without necessarily needing to elucidate the nature of the genes underlying the 

variation in the traits of interest. In this context, the discovery of STRs was pivotal since 

it allowed to perform genotyping by PCR and expanded the availability of markers for 

association studies (Weber & May 1989). 

 

More recently, though, the availability of a complete sequence for the genome of cattle 

(Elsik et al. 2009) and pigs (Groenen et al. 2012) has allowed the discovery of thousands 

of SNPs which can be used as evenly spaced markers across the genome for QTL 

association studies. The individuals used to discover associations are collectively known 

as the reference population. In order to obtain truly accurate predictions, association 
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studies must be completed on very large reference populations (Lund et al. 2011). 

However, after the association is established, SNP analysis can be used for the 

production of genomic estimated breeding values (GEBV) and for the selection of 

livestock based on genomic data alone, a process termed “genomic selection” 

(Meuwissen et al. 2001). The accuracy of predictions based on GEBV has been shown to 

be as high as 85%, (Meuwissen et al. 2001), comparing well with, or even exceeding the 

precision obtained with traditional methods (Hayes 2009).  

 

Low-density chips for the simultaneous analysis of 5,000 SNPs in livestock were the first 

to become commercially available and are still in use today (Pryce et al. 2014a). 

However, the availability of high-density chips for the assessment of over 50,000 SNPs 

per sample is now widespread for both pigs and cattle 

(https://emea.illumina.com/products; accessed 04.09.2017). 

 

In comparison to traditional breeding schemes, genomic selection allows an improved 

ability to select for poorly heritable traits, the evaluation of a higher number of 

candidate animals, and shorter generational intervals (Yudin et al. 2016). As a result, 

genomic selection is being adopted rapidly in the cattle breeding industry, with up to 

50% of reproduction bulls sold across different countries now being evaluated solely on 

GEBVs (Pryce & Daetwyler 2012). Genomic selection has the potential to significantly 

increase rates of genetic gain (Schaeffer 2006), and a recent report confirmed that the 

adoption of genomic selection in Holstein cattle in the USA substantially decreased 

generational intervals, while rapidly increasing fertility, lifespan, and health (Garcia-Ruiz 

et al. 2016). 

 

Remarkably, the methodologies of genomic selection can be applied to IVP embryos in 

order to establish which ones carry the most desirable traits and should be given 

preference for embryo transfer. The ability to combine IVP and genomic selection has 

the potential to magnify the advantages already identified for both techniques in terms 

of genetic gain, shortening of generational intervals and selection intensity (Humbolt et 

al. 2010; Ponsart et al. 2014).   

https://emea.illumina.com/products
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1.9 Rationale for this thesis 

IVP is currently a hot topic in reproductive medicine because the benefits it offers in 

terms of selection and distribution of superior genetics are thought to be a possible 

answer to the growing demand for highly efficient animal production systems. 

Therefore, the breeding industry would benefit from the availability of optimised 

methods for the production and transfer of large numbers of developmentally 

competent, high genetic merit embryos. At the same time, IVP embryos represent 

valuable models for the study of infertility and early embryonic development and the 

ready availability of twins would allow the design of specific biological studies. A 

successful IVP system is formed of several components: culture of developmentally 

competent oocytes, culture of embryos, and selection of the best possible embryos for 

transfer. The intent of the present work was to propose an optimised IVP protocol by 

pursuing improvements on each of these areas.  

 

As described under section 1.2.2.2, cumulus cells play a pivotal role in the maturation of 

the oocyte and the morphology of the COC has long been used to select for the most 

competent oocytes for IVM. However, the current screening criteria might be wasteful, 

due to the general recommendation to discard oocytes with a reduced but not fully 

depleted cumulus in the interest of maximising developmental rates but at the cost of 

not achieving a maximal embryo yield. A comprehensive investigation of the actual 

developmental potentials of oocytes with a reduced cumulus investment could lead to 

an improved availability of IVP embryos derived from specific donors.  

 

As mentioned under section 1.4.2.4, the ability to multiply the offspring of superior 

parents would increase selection intensity. This could be achieved by the application of 

reproductive cloning methods such as embryo splitting which would further increase 

such availability. Moreover, the ready availability of twins would allow for the design of 

stringent case-control studies for research purposes, and would be useful for the 

investigation of early mammalian development. However, a comprehensive comparison 

between different embryo splitting strategies has not been described in the literature 
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and indications on the suitability for splitting of embryos displaying asymmetry is largely 

underreported. 

 

Morphological screening has proven to be an invaluable tool for embryologists to 

achieve high pregnancy rates after the transfer of the most promising embryos (refer to 

section 1.3.1). However, this assessment is often hampered by issues of subjectivity 

whilst the peculiar morphology of ungulate embryos makes the screening more 

challenging. Novel optical methods, like the combination of OCT and speckle variance 

analysis (see section 1.3.4.1), could be applied for the non-invasive investigation of the 

developmental competence of ungulate embryos for both research and commercial 

purposes. If successful, these methods would allow obtaining estimates of embryo 

viability in a rapid, non-invasive and objective way. 

 

Finally, the manipulation of embryos in vitro paves the way to the application of PGS and 

genomic selection, which are expected to speed up dramatically the rate of genetic gain 

in livestock, as described under section 1.8. Novel tools for PGS, like karyomapping, have 

recently been developed for use in a clinical setting (refer to section 1.6.7). Their 

application to animal IVP could assist practitioners in selecting the most chromosomally 

normal embryos for transfer while SNP information can be used simultaneously for 

genomic selection. At the same time, the data generated from the application of these 

methodologies would provide insights on the process of meiosis in model organisms 

such as pigs and cattle.  
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1.10 Specific aims 

With reference to what discussed above, the specific aims of this thesis were: 

 

Specific Aim 1: To test the hypothesis that gilt oocytes with a depleted cumulus display 

similar developmental competence to oocytes clad by three or more layers of cumulus 

cells. 

 

Specific Aim 2: To test a variety of embryo splitting strategies in the bovine model in 

order to identify the optimal methodology for the production of a high number of viable 

blastocysts. 

 

Specific Aim 3: To apply optical coherence tomography (OCT) to investigate embryo 

structure and viability non-invasively. 

 

Specific Aim 4: To demonstrate the application of karyomapping to blastocyst stage 

bovine embryos and characterise the type, level, and origin of chromosomal aberrations 

and rearrangements.
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2. Materials and Methods 

 

2.1 Materials 

For the assessment of the developmental potential of porcine oocytes (specific aim 1), 

pig ovaries from unsynchronised gilts were sourced weekly from an abattoir (Dunbia, 

Mansfield, UK) and transported to the University of Kent in phosphate buffered saline 

(PBS) at 38 °C within 6 to 8 h from culling. Moreover, extended boar semen from sires 

of mixed breeds and proven fertility history was acquired from a commercial supplier 

(JSR Genetics, Southburn, UK) and shipped at RT in the post, then preserved at 17 °C for 

up to two days before use. 

 

In order to produce the bovine embryos required for investigation (specific aims 2, 3 and 

4), ovaries from cows of mixed breed and age were sourced weekly from a local abattoir 

(Charing Meats, Charing, UK). Additionally, frozen bull semen straws from several 

different Holstein sires were acquired from a commercial supplier (Semex, Monkton, 

UK) and stored under liquid nitrogen until use. 

 

In order to investigate the viability of bovine embryos via OCT (specific aim 3), day 7 

post-IVF bovine embryos were assessed through a SS-OCT experimental microscope 

assembled by Dr Ramona Cernat (School of Physical Sciences, University of Kent, 

Canterbury, UK). Furthermore, motion maps of the embryos were produced by applying 

a speckle variance algorithm developed by Dr Ramona Cernat and Miss Sophie Caujolle 

(School of Physical Sciences, University of Kent, Canterbury, UK). 

 

For the production of haplotype maps from bovine embryos via karyomapping (specific 

aim 4), biopsies from bovine blastocysts 7 to 8 days post-IVF were either obtained from 

in-house produced embryos or supplied by Paragon Veterinary Group (Carlisle, UK). The 

in-house biopsies were performed by Dr Kara J. Turner (School of Human and Life 

Sciences, Canterbury Christ Church University, Canterbury, UK) using a standard laser-

assisted method. The biopsies received from Paragon Veterinary Group were produced 
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by either a standard laser-assisted or a standard blade-assisted method by a single 

operator and were shipped on dry ice. In all cases, the biopsies contained an estimated 

5 to 12 TE cells, were stored in 4 µl of PBS, and were preserved at -80 °C until required 

for WGA. Additionally, a DNA sample from each parent of the biopsied embryo was 

isolated from either blood, sperm or ovarian tissue as appropriate. For in house biopsied 

embryos, ovarian tissue and sperm samples were available from the regular sources 

detailed before (abattoir and commercial semen supplier). Blood samples and additional 

sperm samples were supplied by Paragon Veterinary Group (Carlisle, UK), were shipped 

to the University of Kent in the post on dry ice, and were preserved at -20 C°. Moreover, 

blood samples from calves born following the transfer of karyomapped embryos were 

supplied by Paragon Veterinary Group (Carlisle, UK) following the same way. The 

software used to create the karyomaps was BoVision (version 3), which was kindly 

provided by Prof Alan Handyside (Illumina Cambridge Ltd, Capital Park CPC4, Cambridge, 

UK). 

 

Reagents and culture medium components were normally sourced from Sigma-Aldrich, 

(Gillingham, UK) unless stated otherwise. Additionally, FBS was only sourced from 

known Creutzfeldt-Jakob disease free territories and was supplied by Gibco (Grand 

Island, NY). A detailed summary of the culture media employed and of their specific 

methods of preparation is given under Appendix I. 
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2.2 Methods 

 

2.2.1 Assessment of the developmental potentials of porcine oocytes 

To investigate the developmental competence of porcine oocytes in relation to their 

cumulus investment, a number of functional tests were implemented which are 

described below.  

 

2.2.1.1 Porcine COC retrieval, selection and IVM 

Ovaries from unsynchronised gilts were sourced from an abattoir and transported to the 

University of Kent by a same day courier in PBS flasks at 38 °C within 6 to 8 h from culling. 

Follicles ranging between 3 to 8 mm were manually aspirated using a 5 ml syringe and a 

gauge 19 needle, which were primed with a small volume of Tyrode’s Lactate (TL) –

HEPES – poly vinyl alcohol (PVA) medium (Funahashi et al. 1997). Using a dissecting 

microscope, the COCs were collected, washed twice in TL-HEPES-PVA medium and 

divided in four morphological grades A - D according to the number and appearance of 

their cumulus cell layers: grade A had three or more cumulus layers, grade B had two 

intact cumulus layers, grade C had a single cumulus layer either complete or incomplete, 

and finally grade D were denuded oocyte (see fig. 2.1). The graded oocytes were in vitro 

matured in separate wells for 44 h in groups of 50 in 500 µl of NCSU-23 medium (Petters 

& Wells 1993) under 6% CO2 at 37 °C. During the first 22 h, the culture medium was 

supplemented with 10% porcine follicular fluid (pFF), 1:100 PG600, 0.8 mM L-cysteine, 

10 ng/ml epithelial growth factor (EGF), 1 mM dibutyryl cyclic-adenosine 

monophosphate (db-cAMP) and 50 µM β-mercaptoethanol. The same supplements 

excluding PG600 and db-cAMP were used for the remaining 22 h. 
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Fig. 2.1 – Grading of porcine cumulus oocyte complexes (COCs). Grades were assigned based 
on the extension of the cumulus complex. A) Three or more intact cumulus cell layers; B) two 
intact cumulus cell layers; C) one incomplete cumulus layer; D) denuded oocyte. Images 
captured with a Hoffman inverted microscope at x200 total magnification. 

 

2.2.1.2 Porcine oocyte meiotic spindle immunostaining with anti α-tubulin 

In order to visualize the meiotic spindle following IVM, oocytes were denuded by 

incubation for 10 min with 0.2% w/v hyaluronidase type VIII from bovine testis and 

passing them several times through a 125 µm wide tip (EZ-Tip, RI, Falmouth, UK), then 

fixed overnight at 4 °C in 4% paraformaldehyde (PFA) in PHEM buffer (60 mM 1,4-

Piperazinediethanesulfonic acid (PIPES), 25 mM HEPES, 10 mM Ethylene-

bis(oxyethylenenitrilo)tetraacetic acid (EGTA), 4 mM MgSO4, pH 7.0). The fixed oocytes 

were rinsed for 5 min in PBS three times and then permeabilized for 10 min in 1% Triton 

X-100 in PHEM buffer. After a further brief rinse in PBS, the oocytes were blocked in 20% 

FBS in PHEM buffer for 1 h at RT. The meiotic spindle was then stained with anti-α 

tubulin-Alexa 488 conjugated antibodies (ab195887, Abcam, Cambridge, UK) diluted 

1:200 in 5% FBS in PHEM buffer. After a single rinse in PBS, the oocytes were 

counterstained in 0.05 mg/ml Hoechst 33342 in PBS and mounted on slides with the 

permanent anti-fade mounting medium Fluoroshield. The samples were then observed 

under epifluorescence microscopy using a BX60 Olympus microscope equipped with 

standard 4',6-diamidino-2-phenylindole (DAPI) and Fluorescein isothiocyanate (FITC) 

filters at a total magnification of x200, and their meiotic stage was classified as described 

by Ma et al. (2003). 
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2.2.1.3 CG staining with PNA-lectin in pig oocytes 

After IVM, the oocytes were denuded as described in section 2.2.1.2, and then fixed in 

4% PFA in PBS overnight at 4 °C. The CGs were then stained using peanut agglutinin 

(PNA). The staining was generally performed as previously described (Zhang et al. 2010a) 

with some modifications. Briefly, the fixed oocytes were rinsed three times in 0.3% BSA 

in PBS for 5 min and then permeabilised by immersion in 0.1% Triton X-100 in PBS for 5 

min. After two washes in PBS, the oocytes were stained in 100 μg/mL PNA lectin-Alexa 

488 (L21409, Life Technologies, Paisley, UK) in PBS. After three more 5 min washes in 

0.3% BSA, 0.01% Triton X-100 in PBS, the oocytes were counterstained with 0.05 mg/ml 

Hoechst 33342, mounted, and observed as described in section 2.2.1.2. The oocytes 

were defined cytoplasmically mature if showing a clear, continuous ring of CGs close to 

their membrane instead of a dispersed pattern throughout the ooplasm. 

 

2.2.1.4 Measurement of porcine oocyte GSH content 

The oocytes were denuded as described in section 2.2.1.2, then washed 3 times in PBS 

to eliminate any possible thiol carryover from the culture media (mainly in the form of 

β-mercaptoethanol and L-cysteine). The GSH measurement was completed by 

measuring the speed of an Ellman’s reaction (see figure 2.2) using a previously 

established methodology (Funahashi et al. 1994). Briefly, the oocytes were transferred 

to a microcentrifuge tube in groups of 30 in 5 µl of PBS, then mixed with 5 µl of 1.25 M 

orto-phosphoric acid, homogenised by vortexing for 30 sec and stored at -20°C until 

assessment. On thawing, each sample was supplemented with 700 µl of stock buffer 

(0.33 mg/ml NADPH, 10 mM EDTA, 0.2 M Na-phosphate, pH 7.2), 100 µl of 6 mM 5,5′-

Dithiobis(2-nitrobenzoic acid) (DTNB) in stock buffer, and 190 µl of water to give a final 

reaction volume of 1 ml. Finally, immediately before analysis, 0.25 U GSH reductase was 

mixed into the solution to initiate the reaction. A Biomate 3S spectrophotometer 

(ThermoScientific) was set for continuous reading at 412 nm and was used take 

Absorbance measurements every 20 sec for 2 min. Additionally, calibration curves were 

produced by using several GSH standards (1 nmol, 0.1 nmol, and 0.01 nmol GSH 

dissolved in 10 µl of PBS). 
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Fig. 2.2 – Principle of the Ellman’s reaction. Glutathione disulphide (GSSG) is reduced by the 
enzyme glutathione reductase (GR) to glutathione (GSH). The Ellman’s reagent 5,5'-dithiobis-(2-
nitrobenzoic acid) (DTNB) reacts with GSH to form a new disulphide bond (GSTNB), releasing 2-
nitro-5-thiobenzoate (TNB). Then, the GR reduces GSTNB releasing a second TNB molecule, thus 
allowing GSH to re-enter the cycle. The accumulation of TNB can be tracked by a 
spectrophotometer set at 412 nm. Assuming the reagents are provided in excess, the reaction 
rate is only limited by the starting concentration of GSH. (Image adapted from 
https://www.funakoshi.co.jp/data/datasheet/NWS/NWK-GSH01.pdf). 

 

2.2.1.5 Boar sperm preparation by swim-up 

In preparation for IVF, 1 ml of extended boar semen (JSR genetics, Southburn, UK) was 

diluted with 5 ml of sperm wash medium (154 Mm NaCl, 2 mg/ml BSA, antibiotics 

(Pen/Strep), pH 7.4) and spun at 475 g for 5 min. The supernatant was then discarded 

and the wash step was repeated a second time. The pellet was then resuspended in 5 

ml of pre-equilibrated modified TRIS (mTRIS) buffered medium (Abeydeera & Day 1997) 

and spun as before. The supernatant was once again removed and the washed sperm 

pellet was resuspended in about 500 µl of remaining medium. At this point, sperm 

motility was confirmed by standard microscopy and only samples showing a total motile 

fraction of at least 50% were processed further. For the sperm selection by swim-up, 4 

cell culture tubes were filled with 2.4 ml of mTRIS medium and allowed to equilibrate at 

37 °C and under 6% CO2 for at least 30 min. When ready, 100 µl of the sperm suspension 

was layered at the very bottom of each culture tube and incubated for 20 min at 37 °C 

and under 6% CO2. After the required time, 2.1 ml of medium was removed from the 

top of each culture tube and pooled. The sperm suspension was then spun at 475 g for 

7 min, the supernatant was removed and the pellet was resuspended in about 500 µl of 

the remaining medium and de-clumped by passing it several times through a gauge 21 

needle attached to a standard 5 ml syringe. Finally, the concentration of the sperm 
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suspension was measured with a Makler chamber and the sperm was diluted to a final 

concentration of 104 motile cells/ml with mTRIS medium supplemented with 2 mM 

caffeine. 

 

2.2.1.6 Porcine IVF and embryo culture 

Shortly before the completion of the sperm selection by swim-up, the in vitro matured 

COCs (see section 2.2.1.1) were removed to 500 µl of mTRIS medium supplemented with 

2 mM caffeine in groups of 50 and returned to an incubator set at 37 °C and 6% CO2 

pressure. When the sperm preparation was completed, the washed COCs were moved 

in groups of 50 to a well containing 500 µl of the sperm suspension to begin the IVF 

process. The gametes were then co-incubated at 37 °C and under 6% CO2 for 4 h. After 

this time, the presumptive zygotes were removed to 500 µl of TL-HEPES-PVA medium at 

37 °C and denuded by resolute pumping with a P200 Gilson pipette. The denuded 

presumptive zygotes were then washed once in pre-equilibrated NCSU-23 medium 

supplemented with 0.4% BSA and 0.8 mM L-cysteine, then cultured in 500 µl of this 

medium in groups of 50 at 37 °C and under 6% CO2 until required. Cleavage rates were 

recorded by modulation contrast microscopy at x200 total magnification 72 h post-IVF. 

 

2.2.1.7 Oocyte penetration rate and polyspermy assessment in the pig 

The penetration rate and polyspermy assessments were carried out 16 h post-IVF by 

detecting the presence and number of pronuclei whithin zygotes. Since the presence of 

sperm cells still bound to the ZP could interfere with the pronuclei observation, the 

putative zygotes were washed for up to 30 sec in Acid Tyrode’s Medium (8 g/L NaCl, 0.2 

g/L KCl, 0.24 g/L CaCl dihydrate, 0.1 g/L MgCl hexahydrate, 1 g/L glucose, 0.4% BSA, pH 

2.5) and immediately rinsed twice in PBS. The samples were then fixed in 4% PFA in PBS, 

stained with Hoechst 33342, mounted, and observed as described in section 2.2.1.2. The 

penetration rate was calculated as the fraction of oocytes showing at least 2 pronuclei, 

while the polyspermy rate was calculated as the fraction of penetrated oocytes showing 

more than 2 pronuclei. 
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2.2.2 In vitro production of bovine embryos 

The same in vitro production protocol was used consistently to produce all the bovine 

embryos required for the present work, and is described hereafter. 

 

2.2.2.1 Oocyte recovery from bovine ovaries 

Abattoir sourced bovine ovaries were transported to the University of Kent’s premises 

in warm (36-38°C) PBS in a thermos flask within 3 h from culling. The ovaries were rinsed 

several times in clean PBS to reduce their contamination load then maintained at 38 °C 

in PBS until ready for oocyte recovery. Follicles ranging between 3 to 8 mm were 

manually aspirated using a 5 ml syringe equipped with a gauge 19 needle and the 

aspirate was distributed between several 15 ml conical tubes taking care not to pool 

more than 4 ml of fluid in each container. The aspirate was then allowed to settle by 

gravity for about 20 min whilst being kept at 38 °C. After the required time, the 

supernatant was carefully discarded with the use of a Gilson pipette and replaced with 

3 ml of 10% FBS in PBS. The pellet was then gently resuspended, removed to a 35 mm 

culture dish and kept on a heated stage. COCs showing homogenous ooplasm and at 

least 2 compact layers of cumulus cells, were selected under 20x observation and 

removed with a Gilson P10 to a second dish containing 3 ml of pre-warmed HEPES 

modified tissue culture medium 199 (TCM-199) supplemented with 10% FBS, 0.2 mM 

pyruvate and antibiotics (Pen/Strep, Gibco, Grand Island, NY). 

 

2.2.2.2 In vitro maturation of bovine oocytes 

An appropriate number of 35 mm culture dishes was set up in advance of oocyte 

retrieval (IVM dishes). Each dish contained seven 90 µl drops of TCM-199 which had 

been supplemented immediately before use with 10% FBS, 10 IU/ml pregnant mare 

serum gonadotrophin (PMSG) and 5 IU/ml human chorionic gonadotrophin (hCG) 

(PG600, Intervet, Milton Keys, UK), 0.2 mM pyruvate, and antibiotics (Pen/Strep, Gibco, 

Grand Island, NY). The drops were fully covered with embryo grade mineral oil and the 

dish was allowed to pre-equilibrate at 38.5 °C and under 6.5% CO2 in air. 
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After retrieval and selection, COCs were washed through two drops of the IVM dish, 

then removed to a third drop and matured for 18 to 22 h in groups of 20 to 30 per drop 

at 38.5 °C and under 6.5% CO2 in air. After the required time, COCs showing a 

homogenous ooplasm and an expanded cumulus were selected for fertilisation, while 

oocytes clad by a compact and/or dark cumulus and those that became strongly 

adherent to the bottom of the dish were discarded. 

 

2.2.2.3 Bovine in vitro fertilisation setup 

The IVF medium used was glucose-free Tyrode’s Albumin Lactate Pyruvate (TALP), which 

was supplemented immediately prior to use with antibiotics (Pen/Strep, Gibco, Grand 

Island, NY), 10 µg/ml heparin and 1:25 penicillamine, hypotaurine and epinephrine (PHE) 

solution prepared as described by Miller et al. (1994). Appropriate numbers of 35 mm 

culture dishes were prepared each containing seven 90 µl drops of glucose-free TALP 

medium covered by embryo grade mineral oil, and were allowed to pre-equilibrate at 

38.5 °C and under 6.5% CO2 in air for at least 20 min. After the appropriate time, selected 

COCs were washed three times in this medium and kept in groups of 20 to 30 per drop 

at 38.5 °C under 6.5% CO2 in air in preparation for their co-incubation with the sperm. 

 

2.2.2.4 Bull sperm preparation and IVF 

Frozen/thawed bull spermatozoa were selected using the commercial discontinuous 

density gradient system BoviPure™ (Nidacon, Mölndal, Sweden) according to 

manufacturer’s instructions. Briefly, a discontinuous density gradient was created in a 

microcentrifuge tube by overlaying 590 µl of an 80% BoviPure™ solution with an equal 

volume of a 40% BoviPure™ solution. A frozen sperm straw was transported to the 

laboratory in liquid nitrogen and thawed by immersion for 30 to 60 sec in sterile water 

at 38 °C.  After thawing, the contents of the straw were immediately layered on the top 

of the BoviPure™ density gradient and the tube was spun at 900 G for 6 min to favour 

the accumulation of normal sperm cells at the bottom of the tube. The supernatant was 

then discarded and the sperm rich pellet was removed to 1 ml of BoviWash™ (Nidacon, 

Mölndal, Sweden) and spun at 900 G for 2 min. The majority of the supernatant was 
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discarded and the pellet was gently re-suspended in the remaining 100 to 200 µl of 

BoviWash™. The motility of the sample was confirmed by x200 observation under 

modulation contrast microscopy and only samples with high (>70%) progressive motility 

were further employed. The sperm concentration was then estimated with the aid of an 

improved Neubauer chamber and an appropriate volume of the sperm preparation 

(usually between 2 to 4 µl) was added directly to the TALP drop containing the matured 

oocytes to give a final concentration of 10^5 motile sperm cells/ml. Finally, the gametes 

were co-cultured at 38.5 °C under 6.5% CO2 in air for 18-22 h. 

 

2.2.2.5 Bovine embryo culture 

After IVF, the putative zygotes were removed to a 35 mm culture dish containing 3 ml 

of HEPES modified, glucose-free TALP medium at 38 °C and mechanically denuded with 

the assistance of a 125 µm wide tip (EZ-Tip, RI, Falmouth, UK). At this stage, the putative 

zygotes showing uneven cytoplasm or sign of apoptosis were discarded. 

 

The medium used for embryo culture was synthetic ovarian fluid amino acids citrate 

inositol (SOFaaci) (Holm et al. 1999) supplemented immediately before use with 5% FBS, 

5 mg/ml BSA and antibiotics (Pen/Strep, Gibco, Grand Island, NY). Seven 90 µl drops of 

SOFaaci were set up in each embryo culture dish, were covered in embryo grade mineral 

oil and were allowed to pre-equilibrate at 38.5 °C and under 6.5% CO2 and 5% O2 for at 

least 20 min.  

 

The selected putative zygotes were washed three times in the SOFaaci drops, and then 

cultured in this medium in groups of 20 to 30 at 38.5 °C and under 6.5% CO2 and 5% O2 

for as long as required. The culture medium was partially replaced after 48 h and again 

after 92 h of culture. 
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2.2.3 Embryo splitting 

Depending on the stage of the embryo and the type of experiment performed (single or 

serial splitting) a variety of protocols were implemented. These are discussed below. 

Moreover, the strategies adopted are summarised under figure 2.3. 

 

2.2.3.1 Pronase E stock preparation 

Pronase E, also known as Protease from Streptomyces griseus, is a protease cocktail that 

has long been known to be able to digest the ZP without disrupting cell membranes 

(Mintz 1962). Lyophilised Pronase E was reconstituted in sterile PBS to a concentration 

of 2.5 mg/ml (equal to 0.25% w/v), then activated by heating at 56 °C for 15 min followed 

by cooling at 37 °C for 60 min. The cooled enzyme was filtered through a 0.45 µm 

membrane to remove any unwanted residues and tested on unfertilised eggs. If the 

enzyme preparation was able to thin visibly an oocyte’s ZP under x20 observation within 

the first 5 min of exposure at 38 °C, the enzyme passed the quality control test and 

working aliquots of the 0.25% solution were stored at -20 °C until required. 

 

 

Fig. 2.3 – Embryo splitting strategies applied in this study. Several alternative protocols are 
shown. A 2-cell stage embryo is disaggregated into two 1/2 type splits. Alternatively, an 8-cell 
stage embryo can be split in several symmetric ways leading to the formation of either two 4/8 
type splits, four 2/8 type splits or eight 1/8 type splits or even to a combination of these. Finally, 
blastocysts can be bisected leading to the formation of two blastocyst splits.  
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2.2.3.2 Blastomere separation 

Cleavage stage embryos were disaggregated either 31 h or 72 h post IVF, when most 

embryos could be expected to be at the 2-cell stage or at the 8-cell stage, respectively. 

Depending on the experimental design, cleavage stage embryos found to possess 

asymmetrical cell numbers (between 7 to 14) at 70 h post-IVF, were processed following 

this same protocol and marked as “asymmetrical”. All manipulations were carried out 

on a heated stage at 38 °C with the assistance of a 125 µm wide tip (EZ-Tip, RI, Falmouth, 

UK). The cleavage stage embryos were briefly rinsed in PBS to remove most Ca2+ and 

Mg2+ carryover from the culture medium. The embryos’ ZP was digested by exposure for 

up to 7 min to 0.25% w/v pronase E in PBS. The denuded embryos were then 

immediately washed two more times in PBS to remove the excess enzyme and if 

necessary allowed to disaggregate fully by gentle agitation. Finally, the disaggregated 

blastomeres from each embryo were washed once in 10% FBS in PBS and once in pre-

equilibrated SOFaaci. Then the blastomeres were cultured either alone or in groups as 

required by the experimental setup in commercial culture dishes designed to allow for 

up to 16 samples to be cultured under a WOW system (Primo Vision 16-well culture dish, 

Vitrolife, Göteborg, Sweden) in 90 µl drops of pre-equilibrated SOFaaci at 38.5 °C and 

under 6.5% CO2 and 5% O2. As illustrated in figure 2.3, the splitting of an 8-cell stage 

embryo allows for the pooling of separated blastomeres in groups of different sizes. The 

resulting embryos were named after the number of blastomeres received from the 

parent embryo and its original cell count. For example, the nomenclature 3/7 would 

indicate an embryo resulting from the grouping of 3 blastomeres harvested from an 

original embryo containing 7 cells (and therefore marked as asymmetrical). 

 

2.2.3.3 Blastocyst bisectioning 

Only grade I blastocysts (as defined by Nagashima et al. 1989) obtained 6 days post-IVF 

were used for this experiment. Firstly, embryos were rinsed once in PBS, and then 

positioned in a 50 µl drop of PBS under embryo grade mineral oil. A sterile, disposable 

P-730 ophthalmic scalpel with a 30° blade (Feather, Osaka, Japan) was directly 

assembled on an Integra TI micromanipulator platform (RI, Falmouth, UK). The P-730 

blade was used to divide the embryo in two halves using a cutting technique previously 
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described (Rho et al. 1998). Briefly, the blastocysts were positioned so that the blade 

would divide their ICM in two even parts, then the embryos were bisected by gently 

lowering the surgical blade while slowly moving it sideways. An example of the cutting 

procedure is given in figure 2.4. After complete separation of the two halves, the PBS 

drop containing the splits was supplemented with 10% FBS to allow for the embryos to 

detach from the dish and improve their handling. The splits were then washed once in 

10% FBS in PBS and once in pre-equilibrated SOFaaci. The splits were then cultured for 

a further 24 h in SOFaaci in single drops at 38.5 °C and under 6.5% CO2 and 5% O2 

 

 

    

Fig. 2.4 – Bisectioning setup and demonstration. A) Assembly of a disposable P-730 
microsurgical blade on an Integra TI micromanipulation rig. B-E) The image sequence (from left 
to right) demonstrates a blade bisectioning test performed on an arrested oocyte, which 
resulted in a neat cut. The microscopical images were captured with a Hoffman inverted 
microscope at x200 total magnification. 
 

2.2.3.4 Serial splitting: blastomere separation and bisectioning (strategy A) 

In this test, embryos were split twice in succession applying different methods as 

appropriate for their stage. Eight-cell stage embryos were disaggregated 70 h post IVF 

following the procedure described above. Blastomeres were then cultured in groups of 

two in 12.5 µl drops of pre-equilibrated SOFaaci at 38.5 °C and under 6.5% CO2 and 5% 

O2 for a further 70 h. After this time, the splits that had progressed to form a blastocyst 

were split a second time following the bisectioning protocol described above and were 
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then cultured for a further 24h in SOFaaci. A synopsis of this splitting approach is 

presented in figure 2.5. 

 

 

Fig. 2.5 – Schematic of serial embryo splitting by disaggregation and bisectioning. A potential 
way of performing serial splitting could be to bisect blastocysts derived from a previous 
blastomere separation experiment. In the diagram, an 8-cell stage embryo is divided in two 4/8 
splits by blastomere separation. The resulting blastocysts are then bisected to produce up to 
four twins. 

 

2.2.3.5 Serial splitting: serial disaggregation (Strategies B and C) 

In this experiment, two-cell stage embryos were split for the first time 30 h post-

fertilisation following the blastomere disaggregation protocol discussed above. These 

splits were cultured for 24 h in 12.5 µl drops of pre-equilibrated SOFaaci at 38.5 °C and 

under 6.5% CO2 and 5% O2. After this time, embryos showing cleavage were 

disaggregated again following the same protocol but omitting the pronase E step. In all 

cases, the blastomeres were segregated in two equal groups and cultured as before 

resulting in the production of second serial splits, which were then cultured in SOFaaci 

until day 7 post IVF (strategy B). In an alternative protocol (strategy C), second serial 

splits that showed cleavage after a further 24 h of culture were disaggregated a third 

time and the blastomeres from each embryo divided in two equal groups to form third 

serial splits which were cultured in SOFaaci until day 7 post IVF. 
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2.2.4 CDX-2 immunostaining 

To obtain separate cell counts for the TE and ICM cell populations of some of the 

blastocysts in this study, a protocol for the immunostaining of the transcription factor 

CDX-2 was implemented. 

 

2.2.4.1 Selection of suitable antibodies 

A candidate anti-CDX-2 antibody for the immunostaining of bovine blastocysts was 

identified in the AB88129 (Abcam, Cambridge, UK) - a rabbit polyclonal antibody raised 

against a portion of the human CDX-2 protein. A preliminary confirmation of the 

suitability of this antibody was obtained by aligning the full amino acid sequence of the 

immunogen peptide used to raise this antibody against the known sequence of the 

bovine CDX-2 protein (Genbank accession number: NP_001193228) by using Clustal 

Omega (version 1.2.2, Sievers et al. 2011). The secondary antibody selected was AB6719 

(Abcam, Cambridge, UK) - a standard polyclonal goat anti-rabbit immunoglobulin G 

conjugated to the fluorophore Texas Red (TR). 

 

2.2.4.2 CDX-2 immunostaining protocol 

Blastocysts from day 7 post-fertilisation were fixed in 4% PFA in PBS for 40 min at 4 °C 

under oil and were then washed three times for 5 min in 0.1% Triton X-100 in PBS. The 

permeabilization step was completed by immersion in a 1% solution of Triton X-100 in 

PBS for 10 min. To minimise aspecific anybody binding, the samples were blocked in 10% 

normal goat serum, 0.1% Tween 20 in PBS for 1 h at RT. After this step, the samples were 

incubated with a 1:400 dilution of the primary antibody AB88129 in blocking solution 

overnight at 4 °C. The following day, the embryos were washed in 0.1% Triton X-100 in 

PBS as before, then incubated in a 1:400 dilution of the secondary antibody AB6719 in 

0.1% Tween 20 in PBS for 1 h at RT. Then, the embryos were washed a further two times 

in PBS for 5 min and a final time in a PBS solution containing 0.05 mg/ml Hoechst 33342 

for counterstaining. Finally, the stained samples were mounted under a 10-mm round 

coverslip in 5 µl of an anti-bleaching mounting medium (Fluoroshield™). The samples 
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were observed under x200 magnification with an Olympus BX60 epifluorescence 

microscope equipped with standard 4',6-diamidino-2-phenylindole DAPI and TR filters. 

 

2.2.5 Total cell number estimation in bovine blastocysts 

Day 7 blastocysts (171 to 175 h post-IVF) were fixed overnight in drops of 4% PFA in PBS 

at 4 °C under oil. Nuclei were then stained with the fluorescent dye Hoechst 33342 by 

direct addition of Hoechst 33342 to the fixative to achieve a final concentration of 0.05 

mg/ml. The embryos were then incubated in the dark for 5 min at RT, and mounted 

under a 10-mm round coverslip in a 5 µl droplet of an anti-bleaching mounting medium 

(Fluoroshield™). Cell counts were obtained under epifluorescence observation using an 

Olympus BX60 microscope equipped with a standard DAPI filter and a Hamamatsu 

ORCA03-G camera. The software used to collect and store the images was SmartCapture 

(version 3, Digital scientific, Cambridge, UK). To ensure that cells from the entirety of 

the embryo and from all focal planes were taken into account, each embryo was broken 

down into smaller sections using the tools provided with SmartCapture and cell counts 

from all planes were obtained for each section until the whole embryo was assessed. An 

example of this method is presented in figure 2.6. 

 

 

Fig. 2.6 – Total cell count estimation with SmartCapture 3 on Hoechst 33342 stained bovine 
blastocysts. To improve the accuracy of the cell count, the embryo was sequentially divided into 
smaller sections (red rectangles, panels 1 to 4) which could be individually brought into focus. 
Cell nuclei from the different focal planes were then counted in each section. The total 
magnification used was x200.  
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2.2.6 Time-lapse observation 

Embryos cultured in the PrimoVision 16-well dishes were available for time-lapse 

observation. A PrimoVision EVO microscope was used together with the acquisition and 

analysis software provided by the supplier (Vitrolife, Goteborg, Sweden) to annotate the 

timing of cleavage, compaction and blastulation events. Observation began 22 h post-

IVF or immediately after splitting for control and split embryos, respectively. The timing 

of these events was then compared between experimental groups and against known 

examples from literature (Holm et al. 1998).  

 

2.2.7 Swept-source optical coherence tomography (SS-OCT) 

SS-OCT is a microscopy imaging modality that can acquire both depth profile (B-scan) 

and cross-sectional (en-face) images of a sample. Coupled with image analysis 

algorithms like SV analysis, it is also capable of detecting fine differences between 

sequential images and can be used to track movement on a pixel level. The following 

sections describe the use of an experimental SS-OCT microscope to obtain static images 

of fixed bovine embryos and to quantify micron-scale movements in live bovine 

blastocysts. 

 

2.2.7.1 SS-OCT system setup 

The image acquisition was completed using an experimental SS-OCT microscope 

assembled by Dr Ramona Cernat (School of Physical Sciences, University of Kent, 

Canterbury, UK). A 1310 nm centre wavelength swept source (Axsun Technologies, 

Billerica, MA) was used to illuminate the sample with a bandwidth in the range 1256.6 

to 1362.8 nm. The light from both sample and reference was collected by a 

photodetector (PDB460C, Thorlabs, Newton, NJ) and routed to a digitaliser (ATS9350, 

AlazarTech, Point-Claire, Canada). Axial and cross-sectional images were reconstructed 

by master/slave interpherometry following a procedure described before (Cernat et al. 

2017). In air, the axial resolution of the microscope was approximatively 5 µm, while the 

transversal resolution was approximately 4.2 µm. A schematic of the system used is 

presented in figure 2.7. 
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Fig. 2.7 - SS-OCT microscope experimental set-up. The dish containing the embryo was 
positioned on the microscope’s translation stage for lateral scanning. C1-C2: optical couplers, 
PC: polarisation controllers, L1,2 – lenses, Is: isolator. This image was kindly provided by Miss 
Sophie Caujolle (School of Physical Sciences, University of Kent, Canterbury, UK). 

 

2.2.7.2 Static SS-OCT imaging and 3D model reconstruction of fixed embryos 

Bovine embryos of different stages were fixed in 4% PFA in PBS overnight, then washed 

in PBS and distributed, one per well, across a PrimoVision 9-well dish (Vitrolife, 

Goteborg, Sweden). The embryos were maintained in PBS under mineral oil and stored 

at -4 °C for up to a week until required for observation. For each embryo, approximately 

300 cross-sectional images were acquired at different depths within its structure. The 

image stacks were then reconstructed into 3D models of the embryo by using the free 

software ImageJ (version 1.51n, Rasband W., National Institutes of Health, USA, 

https://imagej.nih.gov/ij). 

 

2.2.7.3 Live embryo handling for SS-OCT microscopy 

Bovine blastocysts from day 7 post-IVF were produces as described above. In 

preparation for observation, the embryos were distributed, one per well, across a 

PrimoVision 9-well dish (Vitrolife, Goteborg, Sweden) pre-warmed at 38 °C. To 

minimalize the effects of refraction, each well contained only a minimum volume of 

HEPES modified, glucose-free TALP medium which was overlaid with a thin mineral oil 
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layer to prevent rapid evaporation. After loading, the embryos were immediately 

transported to the nearby optics department in a portable hot box set at 38 °C. Because 

of the dish setup, the micro wells were not communicating stopping embryos from being 

displaced over transport. The image acquisition started within 30 min of live embryos 

being loaded into the dish. 

 

2.2.7.4 Speckle variance analysis of embryo movements 

For the detection and quantitation of micron-scale movements, embryos were observed 

for 10 min and a set of data was acquired every minute. Additionally, to establish a proof 

of principle, one embryo was continually monitored for 18 h acquiring a set of data every 

minute for 10 min followed by 20 min of rest. The SV analysis was performed on 

successive images at 1 min intervals, using an algorithm defined by Miss Sophie Caujolle 

(School of Physical Sciences, University of Kent, Canterbury, UK). To compensate the 

effects of Brownian motion, image sets from dead control embryos were also processed 

by SV analysis to establish a minimum variance threshold for a pixel to be considered in 

active motion. During the SV measurements on live embryos, all pixel values below this 

threshold were arbitrarily set to zero. The SV calculation from each optical plane 

considered was then used to highlight the portion of the embryo in movement during 

the observation period. For each optical plane, a quantitative assessment of motion was 

also obtained simply by summation all pixel values.  

 

2.2.8 Karyomapping 

In order to produce karyomaps for all the embryos and calves in this study, adequate 

DNA samples were derived from embryos, calves and their parents. For the embryos 

produced at the University of Kent, DNA samples were obtained from embryo biopsies, 

sperm and ovarian tissue as appropriate. While for the embryos produced at Paragon 

Veterinary Group, samples were obtained from embryo biopsies, sperm, and blood from 

either cow or calf as appropriate. The DNA obtained from embryo biopsies was 

incremented by application of a WGA step and in all cases the samples were genotyped 
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on an Illumina BovineSNP50 chip from which karyomaps could be produced. A detailed 

account of these protocols is presented hereafter. 

 

2.2.8.1 Whole genome amplification of embryo biopsies 

To produce a sufficient quantity of DNA for SNP typing, all embryo biopsies were 

processed by WGA using a REPLI-g Single Cell Kit (Qiagen, Manchester, UK), following 

manufacturer’s instructions. In brief, a clean cabinet was sterilised with a 70% alcohol 

solution before starting the amplification protocol and used for all manipulations. The 

lyophilised buffer DLB was reconstituted by addition of 500 µl of water then used to 

prepare a sufficient volume of buffer D2 (0.25 µl dithiothreitol (DTT) 1 M, 2.75 µl 

reconstituted DLB per reaction) which was kept on ice. The embryo biopsies, which were 

contained in 4 µl of PBS in a sterile microcentrifuge tube and stored at -80 °C, were 

thawed on ice and received 3 µl of buffer D2 each. Then all samples were denatured for 

10 min in a thermocycler (Mastercycler gradient S, Eppendorf, Stevenage, UK) set at 65 

°C with a 105 °C heated lid. During the denaturation, a sufficient volume of the 

amplification master mix was prepared (9 µl water, 29 µl REPLI-g SC reaction buffer, 2 µl 

REPLI-g SC polymerase per reaction). Immediately after the denaturation step, the 

samples were put on ice to prevent DNA renaturation and each tube was supplemented 

with 3 µl of stop solution, which had the same function. Following this, 40 µl of the 

amplification master mix were mixed in each tube giving a final reaction volume of 50 

µl. The amplification reaction was then carried out in a thermocycler (Mastercycler 

gradient S, Eppendorf, Stevenage, UK) set at 30 °C with a 70 °C heated lid for 4 h, which 

was followed by a single enzyme inactivation step carried out at 65 °C for 3 min. The 

concentration of the resulting amplified DNA samples was then tested by fluorometry 

using a Qubit 2.0 (Thermo Fisher Scientific, Loughborough, UK) and its dedicated dsDNA 

BR Assay Kit (Thermo Fisher Scientific, Loughborough, UK) following manufacturer’s 

instructions. Briefly, a sufficient volume of Qubit working solution was prepared by a 

1:200 dilution of Qubit dsDNA BR reagent in Qubit dsDNA BR buffer. Then, 1 µl from 

each amplified DNA sample was diluted in 199 µl of this working solution and briefly 

incubated at RT before taking a fluorometry reading. The sample DNA concentration 

was calculated by comparing the obtained reading against a 2-point calibration curve 
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obtained by using the standards provided with the kit and taking into account the 

appropriate dilution factor.  

 

2.2.8.2 Blood DNA purification 

A qualified veterinary practictioner (Paragon Veterinary Group, Carlisle, UK) drew a 

blood sample from the dams used by Paragon Veterinary Group a part of a routine 

procedure. Moreover, a blood sample from each calf born as a result of the transfer of 

one of the embryos biopsied during this study was also obtained in a similar manner. An 

aliquot from each of these blood samples was stored at -20 °C and then shipped to the 

University of Kent premises on dry ice in the post. At receipt, the blood was thawed at 

RT, and its DNA was isolated by using a QIAamp DNA Blood Mini Kit (Qiagen, 

Manchester, UK), following manufacturer’s instructions. In brief, 200 µl of whole blood 

was dispensed in a microcentrifuge tube and was supplemented with 200 µl of buffer 

AL and 20 µl of proteinase K (Qiagen), then carefully mixed to initiate the lysis of the 

sample. The blood was then incubated at 56 °C in a water bath to complete the lysis 

step. After this time, 200 µl of ethanol was added to favour DNA precipitation and the 

mixture was loaded in a QIAamp Mini spin column and spun at 20,000 g for 1 min to 

allow the DNA to bind to the column. The ultrafiltrate was discarded and the column 

loaded with 500 µl of buffer AW1 and spun as before. The ultrafiltrate was again 

discarded and the column loaded with 500 µl of buffer AW2 and spun at 20,000 g for 3 

min. The column was then removed to a clean microcentrifuge tube, received 50 µl of 

the elution buffer AE and was spun at 20,000 g for 1 min to release and recover the DNA. 

Finally, the eluted DNA sample was tested for concentration and purity by using a 

Nanodrop (ThermoScientific) and was judged suitable for karyomapping analysis if it had 

a minimum concentration of 20 ng/µl and an A260/280 between 1.60 – 1.90. All samples 

were stored at -20 °C until required. 

 

2.2.8.3 Ovarian tissue DNA purification 

All embryos produced at the University of Kent were derived from abattoir material. For 

each of the dams used at Kent, a DNA sample was extracted from ovarian tissue by using 
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a DNeasy Blood & Tissue Kit (Qiagen, Manchester, UK), following manufacturer’s 

instructions. In brief, a fragment (< 25 mg) of fibrous tissue from an ovary was cut using 

a sterile disposable scalpel and finely chopped, then placed in a clean microcentrifuge 

tube. The tube was then filled with 180 µl of buffer ATL and 20 µl of proteinase K 

(Qiagen), and the sample was mixed by vortexing. To complete the lysis of the tissue, 

the tube was incubated at 56 °C in a water bath and regularly vortexed until the 

fragments were completely dissolved. The lysed sample was then supplemented with 

200 µl of buffer AL and 200 µl of ethanol to promote DNA precipitation and the mixture 

was loaded in a DNeasy Mini spin column and spun at 6,000 g for 1 min. The flow through 

was discarded, then the column received 500 µl of buffer AW1 and was spun as before. 

After discarding the flow-through, the column was loaded with 500 µl of buffer AW2 and 

spun at 20,000 g for 3 min. Finally, the DNA bound to the column was eluted by adding 

200 of buffer AE and centrifugation at 20,000 g for 1 min. After elution, the ovarian 

tissue DNA was tested for concentration and purity by using a Nanodrop 

(ThermoScientific) and was judged suitable for karyomapping analysis if it had a 

minimum concentration of 20 ng/µl and an A260/280 between 1.60 – 2.00. All samples 

were stored at -20 °C until required. 

 

2.2.8.4 Sperm DNA purification 

For each sire in this study, surplus sperm aliquots left unused after sperm preparation 

for IVF (refer to section 2.2.2.4) were preserved at -20 °C in readiness for DNA extraction. 

Alternatively, similarly treated sperm aliquots were supplied by Paragon Veterinary 

Group (Carlisle, UK) and shipped in the post on dry ice. In all cases, the samples were 

thawed at RT, then 50 µl of the sperm suspension was aliquoted in a fresh 

microcentrifuge tube, supplemented with 1 ml of wash buffer (150 mM NaCl, 10 mM 

EDTA, pH 8.0) and carefully mixed. The sample was then spun at 6,000 g for 10 min to 

pellet the sperm cells while the supernatant was discarded. The pellet was resuspended 

in a further 500 µl of wash buffer and the sample was spun at 15,000 g for 2 min. The 

supernatant was again removed and the pellet was gently resuspended in 300 µl of lysis 

buffer (500 mM NaCl, 100 mM TRIS, 10 mM EDTA, 1% sodium dodecyl sulphate (SDS), 

100 mM DTT, pH 8.0) and incubated at 65 °C for 90 min. After this time, 150 µl of 
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ammonium acetate 7.5 M was added to the mixture to precipitate dissolved proteins. 

The sample was spun at 15,000 g for 10 min, then the supernatant was recovered and 

transferred to a clean tube while the protein-rich pellet was discarded. To isolate the 

DNA in suspension, 900 µl of isopropanol was added and the sample was spun at 20,000 

g for 10 min. The supernatant was then discarded and the DNA-rich pellet was washed 

in 500 µl ethanol then spun as before. Finally, all supernatant was discarded and the 

DNA pellet was briefly allowed to dry at RT. The sample was then re-hydrated overnight 

at 4 °C in 20 µl of TE buffer (1 mM EDTA, 10 mM TRIS, pH 8.0). Finally, the sperm DNA 

sample was tested for concentration and purity by using a Nanodrop (ThermoScientific) 

and was judged suitable for karyomapping analysis if it had a minimum concentration of 

20 ng/µl and an A260/280 between 1.60 – 2.00. All samples were stored at -20 °C until 

required. 

 

2.2.8.5 Illumina BovineSNP50 microarray analysis  

The appropriate DNA samples were shipped by courier on dry ice to Neogen Europe 

(Auchincruive, UK) for SNP typing. The SNP typing was completed on a BovineSNP50 

bead chip (Illumina, Cambridge, UK) following manufacturer’s instructions. The 

microarray chip contained 47,843 polymorphic SNPs uniformly spaced across the target 

genome (median spacing approximatively 37,000 bp). As a quality metric, call rates were 

calculated for each DNA sample. Only samples showing a call rate of at least 80% were 

considered suitable for karyomapping and included in the final analysis. At each SNP 

locus tested, the genotype was reported as either AA, BB or AB according to the tested 

genome being homozygous for the reference nucleotide, homozygous for the 

alternative nucleotide or heterozygous, respectively. 

 

2.2.8.6 Production and interpretation of the karyomaps 

Data from the BovineSNP50 microarray analysis was exported on Excel (version 2016, 

Microsoft, Redmond, WA) then analysed by BoVision (version 3, Prof Alan Handyside, 

Illumina, Cambridge, UK). To complete the karyomap of each test subject, the genome 

of its parents together with that of a sibling were used to establish haplotype blocks. 
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The resulting karyomaps were interpreted following the instructions provided in “A 

Technical Guide to Karyomapping: Phasing Single Gene Defects” (revision C Jan 2015, 

www.support.Illumina.com). For chromosomal abnormalities, three independent 

operators reviewed each case. The number of crossover events and aneuploidy events 

were determined on a per chromosome basis for all the assessed samples. At least three 

consecutive informative SNPs had to be counted before a crossover event was recorded. 

 

2.3 Statistical analysis 

Wherever applicable, results were presented as means and error bars were shown as 

standard error of the mean (SEM), and confidence intervals (C.I.) were calculated at 95%. 

Additionally, when the result took the form of a proportion, confidence intervals were 

calculated as confidence intervals for proportions by applying the Wilson interval. For 

statistical analysis, appropriate tests were selected depending on the specific 

experiment following the guidelines presented in McDonald (2014), and the α value for 

statistical significance was set at 0.05. 

 

T-student, chi-square and ANOVA test were carried out on Excell (version 2016, 

Microsoft, Redmond, WA). Kendal correlation tests were carried out on Kendall tau Rank 

Correlation (v1.0.13) in Free Statistics Software (v1.2.1) (Office for Research 

Development and Education, https://www.wessa.net). ANCOVA tests, linear regression 

tests, and logistic regression tests were carried out on VassarStats (Lowry R., version 

2017, http://vassarstats.net). 

  

http://www.support.illumina.com/
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2.4 Ethical approval 

All the embryos produced at the University of Kent during the course of this project were 

derived from abattoir material and destroyed by day 8 post-IVF. Moreover, during 2016 

and 2017, routine commercial IVP procedures were regularly undertaken by the 

Cumbria OPU team and the Penrith IVP lab (Paragon Veterinary Group, Carlisle, UK). A 

subset of embryos that were part of this commercial breeding programme were 

biopsied in view of karyomapping and then transferred on animals already committed 

to an IVP/ET programme by the breeder. Because the present work did not require a 

bespoke intervention on live animals, ethical approval was not deemed necessary. 
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3. Specific Aim 1: To test the hypothesis that gilt oocytes with a 

depleted cumulus display similar developmental competence 

to oocytes clad by three or more layers of cumulus cells. 

 

3.1 Background 

Substantial improvements of the protocols currently in place for the IVM of porcine 

oocytes are likely required to unlock the full potential benefits of IVP in pig breeding. 

One of the focal hypothesis in the current literature is that the poor developmental 

potentials exhibited by porcine embryos derived from IVM oocytes are a consequence 

of incomplete oocyte nuclear and cytoplasmic maturation; as a result, in recent years 

much effort has been dedicated to the optimization of IVM in the pig (Wu et al. 2011; 

Jeon et al. 2014; Appeltant et al. 2015; Lin et al. 2016; Yuan et al. 2017). However, this 

research has often been complicated by the fact that the vast majority of the abattoir 

population of pigs is constituted of peripubertal gilts, which in turn become the principal 

donors of oocytes for IVM. Indeed, it is well established that oocytes derived from gilts 

display reduced developmental potentials when compared to oocytes derived from 

sows (Marchal et al. 2001; Bagg et al. 2004; Bagg et al. 2006; Lechniak et al. 2007). 

Moreover, the average follicle size is smaller in gilts than in sows (Bagg et al. 2007) and 

oocyte in vitro developmental competence is known to increase linearly with follicle size 

(Marchal et al. 2002). In pigs, primary oocytes for IVP are normally retrieved from 

follicles ranging between 3 to 8 mm in size since full oocyte meiotic competence is only 

achieved in follicles with a diameter of at least 3 mm (Bagg et al. 2007). However, it is 

difficult for operators to judge follicle size accurately during collection (Lin et al. 2016) 

and the problem is made worse in gilt ovaries due to the prevalence of small follicles 

(Bagg et al. 2007). Therefore, efficient criteria for post-retrieval oocyte selection are 

essential. 

 

Currently, the morphology of the COC is used as a key indicator to select suitable oocytes 

for IVM (Somfai et al. 2004; Alvarez et al. 2009). This practice is based on the observation 

that cumulus cells and oocytes share an intricate network of interactions (Gilchrist et al. 
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2004) and that the oocyte’s ability to fully complete both nuclear and cytoplasmic 

maturation is strongly influenced by the number of cumulus cells present in culture 

(Nagai et al. 1993; Dang-Nguyen et al. 2011; Lin et al. 2016). The oocyte is maintained 

in meiotic arrest by a stable supply of the meiotic progress inhibitor cAMP supplied from 

the cumulus via gap junctions (Anderson & Albertini 1976; Racowsky 1985). The meiotic 

arrest is also reinforced by the supply from the cumulus of cyclic guanosine 

monophosphate (cGMP) which inhibits the PDE3A phosphodiesterase that would 

otherwise decrease cAMP levels by hydrolysis (Norris et al. 2009). Remarkably, cumulus 

cells also control meiosis resumption in the oocyte in response to the LH surge through 

a variety of mechanisms including Ca2+ dependent signalling, membrane potential 

depolarization, and gap junction closure forcing a reduction of cAMP levels in the oocyte 

(Mattioli & Barboni 2000; Norris et al. 2008). 

 

Furthermore, the cumulus plays a key role in cytoplasmic maturation by promoting the 

migration of CGs to the periphery of the oocyte (Galeati et al. 1991). The exocytosis of 

the CGs in the perivitelline space immediately after fertilisation, a process known as the 

cortical reaction, causes the proteolytic removal of sperm specific binding sites from the 

ZP (Dandekar & Talbot 1992) and is one of the primary mechanisms employed by the 

oocyte to prevent polyspermy: the penetration of multiple spermatozoa in a single 

oocyte (Wang et al. 1997). Therefore, inadequate cytoplasmic maturation in IVM 

oocytes is regarded as a cause of the high levels of polyspermy typically found in porcine 

zygotes, which is still one of the greatest challenges limiting the application of IVP in this 

species (Han et al. 1999; Sun & Nagai, 2003; Grupen 2014). Cytoplasmic maturation can 

be improved by the presence of GSH, which is actively produced and supplied to the 

oocyte by cumulus cells (Maedomari et al. 2007; You et al., 2010). In the oocyte, GSH 

acts as a ROS scavenger, (Tatemoto et al. 2000), and increases amino acid transport as 

well as protein synthesis (Lafleur et al. 1994). Additionally, the presence of GSH is 

important for correct fertilization as it plays a role in the correct male pronuclear 

formation (Niwa 1993) by assisting the decondensation of the sperm head through 

reducing the disulphide bonds between protamines (Yoshida et al. 1993). 
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From the literature, it appears that the current recommendation is to select for IVM only 

COCs formed of multiple (three or more) compact layers of cumulus cells (Rath et al. 

1995; Long et al. 1999; Esaki et al. 2004; Sherrer et al. 2004; Bagg et al. 2007; Lee et al. 

2012; Lin et al. 2015). However, this practice could result in wastage since it has been 

reported that COCs with of three or more layers of cells form only 39% of the total yield 

(Lin et al. 2016). In an effort to improve the utilization of the resources available for IVP 

in the pig, the aim of this chapter was to establish whether oocytes clad by fewer than 

three layers of cumulus cells display levels of maturational and developmental 

competence comparable to those of oocytes clad with three or more layers of cumulus 

cells. 

 

3.2 Specific aims 

With reference to the background above, the specific aims of this chapter were: 

 

Specific aim 1a: To test the hypothesis that gilt oocytes clad by fewer than three layers 

of cumulus cells are able to achieve complete nuclear maturation to levels comparable 

to oocytes clad by three or more layers after IVM. 

 

Specific aim 1b: To test the hypothesis that gilt oocytes clad by fewer than three layers 

of cumulus cells display levels of CG migration comparable to oocytes clad by three or 

more layers after IVM. 

 

Specific aim 1c: To test the hypothesis that cumulus investment is directly correlated to 

the GSH content of gilt oocytes following IVM. 

 

Specific aim 1d: To test the hypothesis that, in gilt oocytes, the sperm penetration and 

polyspermy rates following IVF are, respectively, directly and inversely correlated to 

cumulus investment. 
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Specific aim 1e: To test the hypothesis that gilt oocytes clad by fewer than three layers 

of cumulus cells have reduced embryo developmental potentials as compared to 

oocytes clad by three or more layers of cumulus cells. 

 

3.3 Methods 

Oocytes were separated into four experimental groups A-D representing oocytes clad 

by 3 or more, 2, 1 or 0 layers of cumulus cells, respectively (refer to section 2.2.1.1). A 

total of 3005 porcine oocytes were obtained by manual aspiration from 3365 follicles, 

indicating a retrieval rate of 89.3%. Following IVM, the nuclear and cytoplasmic 

maturation levels achieved by oocytes of different grades were established by α-tubulin 

immunostaining and PNA lectin staining (refer to sections 2.2.1.2 and 2.2.1.3). 

Additionally, post-IVM GSH levels per oocyte were estimated spectrophotometrically 

(refer to section 2.2.1.4). Following IVF, sperm penetration and polyspermy rates were 

measured on oocytes of different grades (refer to section 2.2.1.7), and finally, records 

of embryo development after 72 h of culture were obtained for each grade (refer to 

section 2.2.1.6). 

 

3.4 Results 

As a general observation, it was found that the oocyte yield was unequally distributed 

across the experimental grades (Grade A: 17.9%; Grade B: 26.3%; Grade C: 36.9%; Grade 

D: 18.9%; chi-square, χ2
3=249.63, P=7.9x10-53). 

 

3.4.1 Specific aim 1a: To test the hypothesis that oocytes clad by fewer than 

three layers of cumulus cells achieve complete nuclear maturation to 

levels comparable to oocytes clad by three or more cumulus cell layers. 

The nuclear maturation was evaluated on stripped oocytes by visualizing the meiotic 

stage of the cell via α-tubulin immunostaining. As depicted in figure 3.1, meiotic stages 

were classified as either Prophase I indicating an oocyte that made no progression on 

nuclear maturation, Metaphase I indicating an oocyte that initiated but did not complete 

nuclear maturation, Anaphase I indicating an oocyte very close to completing nuclear 

maturation, or Metaphase II indicating full nuclear maturation. Due to the transient 
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nature of the Anaphase I, oocytes in this stage were rarely detected (n= 9/289), and 

therefore, Anaphase I oocytes were pooled together with Metaphase II oocytes and 

considered fully mature for the purpose of statistical analysis. 

 

 

Fig. 3.1 – Meiotic stage of porcine oocytes visualized by α-tubulin immunostaining. Tubulin in 
green, DNA counterstained with Hoechst 33342 (blue). A) Prophase I, no spindle is detected. B) 
Metaphase I, a clear tubulin spindle has formed around the chromosomal compartment. C) 
Anaphase I, two sets of chromosomes are separated by a tubulin bridge. D) Metaphase II, two 
independent spindles can be detected belonging to either the oocyte or to polar body I (arrow). 
Images captured by fluorescence microscopy at x200 total magnification. 

 

Generally, oocytes clad by fewer layers of cumulus cells were found to be arrested in 

Prophase I more frequently (Grade A: 48.0%; Grade B: 56.8%; Grade C: 69.8%; Grade D: 

97.1%; chi-square, χ2
3=45.15, P=8.6x10-10). Nonetheless, the difference between grade 

A and grade B oocytes was not statistically significant (chi-square, χ2
1=1.21, P=0.27), nor 

it was the difference between grade B and grade C oocytes (chi-square, χ2
1=2.57, 

P=0.11). Interestingly, the proportion of oocytes in metaphase I was found to be 

consistent across grades A-C (Grade A: 16.0%; Grade B: 18.5%; Grade C: 19.1%; chi-

square, χ2
2=0.26, P=0.87). However, higher rates of MII oocytes were obtained from the 

COCs with the greatest investment (Grade A: 36.0%; Grade B: 24.7%; Grade C: 11.1%; 



G. Silvestri  
 

Porcine in vitro maturation 

 

102 

 

grade D: 0.0%; chi-square, χ2
1=35.19, P=1.1x10-7). This difference was statistically 

significant between grade A and grade C oocytes (chi-square, χ2
1=11.42, P=7.25x10-4), 

but it was not between grade A and grade B oocytes (chi-square, χ2
1=2.36, P=0.12). 

Finally, denuded oocytes (grade D) were never able to achieve full nuclear maturation.  

 

When a Kendall correlation test was performed to look more generally at the nuclear 

maturation pattern across grades, grade A and grade B oocytes appeared statistically 

indistinguishable (Kendall tau, τ=0.105, P=0.17), whilst a comparison between grade B 

and grade C oocytes resulted in τ=0.150 and P= 0.06. These findings are presented in 

figure 3.2. 

 

 

Fig. 3.2 – Meiotic stage of porcine oocytes of different grades after IVM. Oocytes clad by more 
cumulus layers were more likely to achieve full nuclear maturation (metaphase II). However, the 
number of oocytes in metaphase I appeared consistent across grades A-C. Grade D oocytes were 
found to be unable to complete nuclear maturation. 
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3.4.2 Specific aim 1b: To test the hypothesis that oocytes clad by fewer than 

three layers of cumulus cells display patterns of CG migration comparable 

to those of oocytes clad by three or more cumulus cell layers. 

Cytoplasmic maturation post IVM was investigated on fixed oocytes by Alexa Fluor 488-

PNA-lectin staining. Mature oocytes were expected to display a clear ring of CGs 

immediately beneath their ZP, as illustrated in figure 3.3. A total of 332 oocytes were 

used in this test. 

 

 

Fig. 3.3 – Cortical granules (CG) stain with PNA-lectin in porcine oocytes. CGs in green, DNA 
counterstained with Hoechst 33342 (blue). In the images, N indicates the oocyte’s nucleus, PB 
indicates polar body I. A) A cytoplasmically immature oocyte, no clear CG distribution is present. 
The presence of a polar body indicates asynchrony between nuclear and cytoplasmic maturation 
in this cell. B) A cytoplasmically mature oocyte, a clear ring of CGs can be detected (arrow). 
Images captured by fluorescence microscopy at x200 total magnification. 

 

Results seemed to support the hypothesis that COC investment linearly correlates with 

cytoplasmic maturation levels post IVM, with oocytes clad by more cumulus layers 

displaying higher rates of cytoplasmic maturation (Grade A: 58.9%; Grade B: 51.6%; 

Grade C: 29.0%; Grade D: 27.9%; chi-square, χ2
3=26.64, P=7.0x10-6). Specifically, oocytes 

in complex with two or more complete layers of cumulus cells (grades A and B) displayed 

a continuous peripheral ring of CGs more often than partially or fully denuded oocytes 

(grades C and D), whilst no significant difference was found between grade A and grade 

B oocytes (chi-square, χ2
1= 0.87, P=0.35), or between grade C and grade D oocytes (chi-

square, χ2
1= 0.02, P=0.88). These results are summarised in figure 3.4. 
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Fig. 3.4 – Rates of cytoplasmic maturation in gilt oocytes after IVM. Oocytes clad by either 2 or 
3+ layers of cumulus cells (grades A and B) performed similarly in this test and completed 
cytoplasmic maturation more often than oocytes of other grades. Data given as mean ± S.E.M. 

 

3.4.3 Specific aim 1c: To test the hypothesis that cumulus investment is directly 

correlated to the GSH content of gilt oocytes following IVM. 

The intrinsic GSH content per oocyte was measured spectrophotometrically to 

investigate the oocyte’s ability to cope with oxidative stress. Firstly, known amounts of 

GSH were used in triplicate experiments to establish a calibration curve by measuring 

the average increase in the A412 produced over the time interval considered (ΔA412), as 

demonstrated in figure 3.5. 
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Fig. 3.5 - Calibration curve for the measurement of glutathione (GSH). Known amounts of GSH 
(0.01 nmol, 0.1 nmol and 1 nmol) were used to calculate the average increase in A412 for each 
20 second interval. A calibration curve was then produced by linear regression. 

 

Following calibration, a total of 120 oocytes for each grade were examined, 30 at a time, 

over four replicates. All the reaction rate curves produced showed high linearity (r2 

≥0.95) and were therefore included in the analysis. A summary of the reaction curves 

recorded is given in figure 3.6, showing the average increase in the A412 of a sample as a 

function of time. The reaction rate across the different oocyte grades appeared to differ 

significantly (one-way ANCOVA, F3,107=26.87, P<1.0x10-4), suggesting that the COC 

investment has an effect on the GSH abundance in the oocyte following IVM. When a 

more detailed comparison was operated, it was found that grade A and grade B oocytes 

had statistically indistinguishable reaction rates (one-way ANCOVA, F1,53=0.25, P=0.62), 

supporting the hypothesis that their GSH content is similar. Conversely, all the other 

individual comparisons between the reaction rates of the different test groups resulted 

in statistically significant differences (one-way ANCOVA, df=1,53, P<1.0x10-4). 
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Fig. 3.6 - Reaction rate curves for the measurement of glutathione (GSH) levels in oocytes of 
different grades. The reaction rate was measured by tracking the increase in the A412 of each 
sample over time, a metric directly proportional to its intrinsic GSH content. Each reaction curve 
presented is the average obtained from triplicate experiments. Grade A and grade B oocytes 
showed very similar kinetics, whilst grade C and grade D oocytes displayed much slower reaction 
rates, indicating a reduced GSH content. Error bars given as S.E.M. 

 

Finally, the total GSH amount per oocyte was calculated by comparing the slope of each 

reaction curve to the calibration curve. As shown in figure 3.7, grade A oocytes 

contained an average of 6.3 ± 0.5 pmol/oocyte of GSH which was similar to the amount 

calculated for grade B oocytes (5.8 ± 1.9 pmol/oocyte) but almost three times greater 

than the content measured for grade C oocytes (2.2 ± 0.3 pmol/oocyte). On the other 

hand, grade D oocytes appeared almost completely depleted of GSH with a content of 

just 0.9 ± 0.3 pmol/oocyte. Remarkably, grade B oocytes exhibited quite a high variability 

in terms of GSH concentration.  
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Fig. 3.7 - Total glutathione (GSH) content per oocyte according to grade. Oocytes clad by more 
layers of cumulus cells (grades A and B) were richer in GSH in absolute terms. However, the GSH 
content of grade B oocytes was found to be highly variable. Data given as mean ± S.E.M. 

 

3.4.4 Specific aim 1d: To test the hypothesis that, in gilt oocytes, the sperm 

penetration and polyspermy rates following IVF are, respectively, directly 

and inversely correlated to cumulus investment. 

A total of 297 presumptive zygotes derived from oocytes of different grades were 

examined by fluorescent microscopy to investigate sperm penetration and polyspermy 

rates. The oocytes were considered penetrated if showing at least 2 pronuclei (PNs); 

conversely, the polyspermy rate was calculated as the proportion of penetrated oocytes 

containing more than 2 PNs. An example of a polyspermic zygote is presented in figure 

3.8.  
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Fig. 3.8 - Polyspermic zygote. Three pronuclei can be distinguished (arrows), indicating this 
zygote has been penetrated by two separate sperm cells. DNA stained with Hoechst 33342, total 
magnification x200. 

 

When assessed on the overall sample population, sperm penetrability appeared to be 

influenced by the oocyte’s original cumulus investment (Grade A: 40.2%, Grade B: 

38.7%, Grade C: 32.6%, Grade D: 16.7%, chi-square, χ2
3=9.50, P=0.02). A closer analysis, 

however, showed that only grade D oocytes had a significant decrease in sperm 

penetrability (chi square, df=1, P<0.01), whilst oocytes from grades A-C showed 

statistically indistinguishable penetration rates. Moreover, all penetrated oocytes 

suffered from similar rates of polyspermy regardless of their original cumulus 

investment (Grade A: 60.6%, Grade B: 44.9%, Grade C: 71.4%, Grade D: 66.7%, Fisher’s 

exact test, df=3, P=0.23). These findings are reported in figure 3.9.  
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Fig. 3.9 - Penetration rate (A) and polyspermy rate (B) in zygotes derived from oocytes of 
different grades. A) The cumulus investment appeared to have only a moderate effect on sperm 
penetrability with only denuded oocytes (grade D) showing a reduction. B) Moreover, no 
difference was found in the polyspermy rates across the four experimental groups. Data given 
as mean ± S.E.M, statistical analysis performed with chi-square using α=0.05. 

 

3.4.5 Specific aim 1e: To test the hypothesis that gilt oocytes clad by fewer than 

three layers of cumulus cells have reduced embryo developmental 

potentials as compared to oocytes clad by three or more layers of 

cumulus cells. 

To conclude the evaluation, the developmental potentials of oocytes from different 

grades were evaluated by fertilising them through IVF and culturing the resulting 

embryos for three days. A total of 1609 oocytes across the different grades were used 

in this investigation. Examples of cleavage stage porcine embryos are given in figure 

3.10. 

 

   

Fig 3.10 - Cleavage stage porcine embryos. Image captured with a Hoffman microscope at x200 
total magnification  
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Unfortunately, the embryos rarely achieved the blastocyst stage regardless of the 

starting oocyte grade; therefore, the analysis of embryonic developmental competence 

had to be limited to the first three days of development.In accordance with the other 

findings presented in this chapter, the original COC investment appeared to be 

predictive of embryonic developmental rates, with oocytes clad by more layers of 

cumulus cells being able to produce cleavage stage embryos more often (Grade A: 

46.3%, Grade B: 40.0%, Grade C: 22.9%, Grade D: 7.4%, chi square, χ2
3= 122.6, P=2.1x10-

26), see also figure 3.11. Individual comparisons between the four experimental groups 

showed that grade A and grade B oocytes produced cleavage stage embryos with similar 

frequency (chi square, χ2
1= 3.7, P=0.54), whilst all the other individual comparisons 

yielded statistically significant differences (chi square, df=1, P<1.0x10-6).  

 

 

Fig. 3.11 - Cleavage rates achieved by fertilized oocytes of different grades. The original 
cumulus investment appeared to correlate with embryo developmental potentials. Oocytes clad 
by two or more layers of cumulus cells (grades A and B) produced cleavage stage embryos 
significantly more often, while denuded oocytes (grade D) only rarely produced embryos. Data 
given as mean ± S.E.M. 

 

Following this initial analysis on overall cleavage rates alone, the final developmental 

stage achieved by each embryo was also taken into account, to investigate whether 

oocytes clad by more cumulus cells also tended to reach more advanced stages over the 

time frame considered. To this end, a rank correlation test was performed by assigning 
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higher ranks to embryos that reached later developmental stages. Again, no statistical 

difference was found between grade A and grade B oocytes (Kendall tau, τ=0.05, P=0.13) 

suggesting that not only did these two grades produce cleavage stage embryos with 

similar frequency, but also that the embryos produced will develop at comparable rates. 

Moreover, embryos derived from grade A and grade B oocytes tended to reach more 

advanced stages when compared with embryos derived from grade C or grade D oocytes 

(Kendall tau, P<1.0x10-6). Finally, the difference in the cleavage pattern of grade C and 

grade D oocytes was also significant (Kendall tau, τ=0.17, P=1.8x10-6). Figure 3.12 

presents a visual summary of these findings by comparing the proportion of embryos 

that reached each successive cleavage stage for all the oocyte grades in this study. 

 

 

Fig. 3.12 - Cleavage pattern in embryos derived from oocytes of different grades. The lines 
portray the proportion of embryos reaching each successive cleavage stage. A pattern can be 
seen with embryos derived from grade A and B oocytes being both more abundant and tending 
to reach more advanced stages.  
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3.5 Discussion 

The acquisition of adequate numbers of competent oocytes is, intuitively, a key element 

for successful embryo production. In line with another report (Lin et al. 2016), it was 

found that top grade COCs (intended as COCs with at least three compact layers of 

cumulus cells) form only a minority of the total yield from gilt ovaries, suggesting that 

the use of selection criteria that are too stringent risks further restriction of the number 

of IVP embryos available from the porcine model. 

 

3.5.1 Nuclear maturation potentials 

Overall, oocytes clad by more layers of cumulus cells were able to complete nuclear 

maturation more often. However, there was no difference in the nuclear maturation 

pattern of grade A and grade B oocytes. One interesting feature was that for grades A-C 

there was a noticeable subset of oocytes found in MI suggesting they were able to 

initiate nuclear maturation but did not complete maturation in the expected time. This 

finding could suggest that a proportion of gilt oocytes physiologically arrest during the 

maturation process.  

 

Also, it is interesting to note that a Kendall correlation test was unable to discriminate 

between the nuclear maturation pattern of grade B and grade C oocytes resulting in a 

P=0.06. However, this finding should be interpreted with caution since the relatively 

small sample size and a result so close to the α value selected could have led to the 

retention of a false H0 (a type II error). On the one hand, the comparison between the 

nuclear maturation pattern of grade B and grade C oocytes should be expanded to 

provide a more robust statistical answer. On the other hand, when the other evidence 

from this chapter is considered, grade C oocytes appear to be unlikely to possess high 

developmental potentials and therefore a more detailed investigation of their nuclear 

maturation behaviour would be unlikely to bring further benefits to pig IVP. 

 

3.5.2 Cytoplasmic maturation potentials 

The cytoplasmic maturation rate across the four oocyte grades could be divided in just 

two statistical populations: grade A and B oocytes which matured to higher levels and 
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grade C and D oocytes which matured to lower levels, supporting the hypothesis that 

COC investment influences cytoplasmic maturation post IVM. Of interest, was that fully 

denuded oocytes (grade D), which were never observed completing nuclear maturation, 

could occasionally progress toward full cytoplasmic maturation, providing further 

evidence that these two processes are not necessarily synchronous (Grupen et al. 1997).  

Moreover, previous studies have shown that denuded oocytes’ developmental 

capabilities can be rescued by co-culturing with COCs (Luciano et al., 2005). As some 

cumulus cells could have been present in grade D wells this may have been enough to 

induce some level of cytoplasmic maturation. 

 

3.5.3 GSH content 

To maintain a cellular environment free from oxidative stress and reduce ROS damage 

to the oocytes in culture, the IVM system used in this study included both cysteine and 

β-mercaptoethanol. Abeydeera et al. (1998) reported an average GSH content in pig 

oocytes of 7.9 ± 0.6 pmol/oocyte which increased to 10.4 ± 2.8 pmol/oocyte in the 

presence of 50 µM β-mercaptoethanol, while Yoshida et al. (1993) found that 

supplementing the maturation medium with 0.57 mM cysteine increased oocyte GSH 

from 4.0 ± 0.8 pmol/oocyte to 15 ± 0.3 pmol/oocyte. 

 

In this work, it was found that grade A and grade B oocytes had levels of GSH compatible 

with previous reports (Yoshida et al. 1993; Abeydeera et al. 1998; Choe et al. 2010) while 

grade C and grade D oocytes appeared largely depleted of GSH. Therefore, it could be 

argued that the presence of cysteine and β-mercaptoethanol alone during IVM is not 

sufficient to increase intracellular GSH levels in pig oocytes as cumulus cells are likely 

required to complete the process. Moreover, the absence of sufficient quantities of GSH 

in grade C and grade D oocytes could well explain their reduced cytoplasmic and 

especially nuclear maturation potentials. 

 

3.5.4 Sperm penetrability and polyspermy 

A high polyspermy incidence has often characterized porcine IVP zygotes and can result 

in their reduced viability as compared to in vivo derived embryos (Funahashi et al. 2000). 
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Considering the role of CGs in the prevention of polyspermic events and considering that 

their distribution appeared more favourable in grade A and grade B oocyte as compared 

to oocytes of lesser grades, it was surprising to find no significant difference between 

the polyspermy rates of the four oocyte populations in study. However, polyspermy 

rates are known to vary on the basis of the individual boar used as a sperm donor (Sirard 

et al. 1993), and the use of caffeine as a capacitating agent in the IVF medium can lead 

to an increase in polyspermy rates due to the induction of a premature acrosome 

reaction (Funahashi & Nagai 2001). It is conceivable that these effects masked any 

difference between the populations in study. Additionally, grade D oocytes were rarely 

penetrated by sperm (n= 9/54); because of this, a reliable assessment of their 

polyspermy rate was difficult. To mitigate the issue, appropriate statistical methods for 

small samples (in this case, Fisher’s exact test) were used to obtain a conservative 

comparison of their polyspermy rate against that of oocytes of other grades. However, 

a greater sample size and the use of the same frozen/thawed ejaculate for all replicates 

would probably be required to improve the ability of polyspermy rate assessment to 

describe an oocyte’s maturational competence.  

 

3.5.5 Embryo development 

Taken together, the observations on the maturational competence of oocytes of 

different grades fit in line with the well-established link between COC investment and 

oocyte maturational competence (Marchal et al., 2002; Nagano et al., 2006; Bagg et al., 

2007; Alvarez et al., 2009; Kim et al., 2010; Lin et al., 2016). Therefore, it is not surprising 

that the cleavage rates of the graded oocytes followed this trend. Interestingly, 

however, grade A and grade B oocytes showed statistically indistinguishable cleavage 

rates and embryonic developmental pattern, in contradiction with current literature 

which seems to favour the use of grade A-like oocytes over that of grade B-like (Esaki et 

al. 2004, Sherrer et al. 2004, Bagg et al. 2007, Lee et al. 2012, Lin et al. 2015), further 

supporting the hypothesis of a wasteful selection process currently in place. 

Interestingly, oocytes of lesser grades were still able to produce cleavage stage embryos, 

occasionally. However, both the quantity and the developmental pattern of cleavage 

stage embryos produced by grade C and grade D oocyte support the hypothesis that 
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reduced cumulus cell layers during IVM cause reduced embryo developmental 

competence.  

 

3.5.6 Study limitations, reasons for caution 

One of the greatest challenges in this work was establishing a convenient supply of gilt 

ovaries. Although a reliable supplier was found, the logistics of transportation were such 

that the abattoir material could not reach the laboratory before 6 hours from culling. It 

is difficult to find examples in the literature of porcine oocytes used for IVM after such 

a long interval, and information on the length of time considered acceptable after culling 

before starting IVM in the pig is scarce. Nevertheless, one study by Wongsrikeao et al. 

(2005) suggested that ovaries stored at 35°C for 6 hours are still likely to contain 

developmentally competent oocytes. However, the authors showed that a storage time 

of 3 hours resulted in a nuclear maturation rate of 72.4%, which fell to 44.8% after 6 

hours and to 35.0% after 9 hours of storage. The latter two figures compare well with 

the results presented in this chapter for the nuclear maturation of grade A and B oocytes 

and suggest that, potentially, oocytes with higher developmental competence could be 

obtained by improvements in the logistics of ovary transportation.  

 

Moreover, the difficulty in reliably producing blastocyst stage embryos detracts from a 

comprehensive evaluation of oocyte developmental potentials across the four groups in 

this study. While grade A and B oocytes outperformed grade C and D oocytes by day 3 

of development in terms of cleavage stage embryos produced, it could be that a 

difference between grade A and grade B oocytes would only emerge past the 8-cell stage 

and was therefore missed in the current tests. 

 

Furthermore, the IVM system in this study made use of pFF, which is known to enhance 

the maturation of porcine oocytes (Ocampo et al. 1993). However, being a physiological 

fluid extracted from abattoir material derived from animals of unknown health and 

fertility, pFF is an obvious source of experimental viability. Moreover, it has been shown 

that pFF extracted from follicles with a diameter of 3 mm or less contains maturation 

inhibiting factors such as hypoxanthine (Downs et al. 1985). Although the in-house 
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recovery of pFF was done with care, it was impossible for operators to ensure complete 

exclusion of follicles smaller than 3 mm, further adding to the variability of the pFF 

source. Recently, Yuan et al. (2017) have demonstrated that high levels of oocyte 

maturation in the pig can be achieved in a serum-free, fully defined IVM medium 

containing three key cytokines (FGF2, LIF and IGF1). Although the authors did not 

directly compare the performance of this new defined medium against a pFF 

supplemented variant, it is easy to imagine that the availability of a fully defined medium 

would be superior in providing at least a consistent testing environment. Therefore, its 

implementation would be an obvious future step to validate further the findings 

presented. 

 

Finally, the grading system applied in this study was, by its own nature, subjective. 

Although two independent operators agreed on the final grading of the collected 

oocytes, a degree of interpretation could not be avoided. This could have caused a 

partial overlapping between the oocyte grades in this study, especially between oocytes 

belonging to the two central groups B and C. Whilst this could have contributed 

additional variability to the experimental setup, it did not seem to prevent a sound 

statistical evaluation of the four oocyte populations in this study.  

 

3.6 Conclusions 

As mentioned in the introduction, porcine IVM is still a very active field of research. 

Because the limitations in the embryonic development observed during this set of 

experiments made it impossible to test more complex IVP techniques, like embryo 

splitting, alternative methods to increase the yield of porcine IVP embryos were 

considered, such as the better utilization of the resources already in place. 

 

It was found that oocytes clad by only two layers of cumulus cells (grade B) possess 

considerable developmental competence as they performed to levels statistically 

comparable to oocytes clad by 3+ layers of cells (grade A) in all investigations. The use 

of grade B oocytes in porcine IVP should therefore be encouraged, especially when 

embryo yield is a priority. Such practice would be expected to reduce wastage and 
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improve the number of embryos produced per donor. Exactly as it is the case for embryo 

splitting, this consideration becomes more relevant the higher the genetic merit of the 

donor. Additionally, the application of a single parameter oocyte screening method, 

such as testing on cumulus investment alone, would reduce inter-operator variability 

and simplify the collection process. 

 

Based on the evidence presented in this chapter, then, pig oocyte screening for IVM 

should be simplified to a two-tier system with only oocytes clad by 2+ layers of cumulus 

cells being of interest for further manipulation. Taken together, the figures presented 

imply that, under the culture system here described, when only grade A oocytes are 

used for IVP, just about 8.3% of the starting oocyte population will result in a cleavage 

stage embryo. Nevertheless, this figure improves to 18.8% with the inclusion of grade B 

oocytes, a 230% yield increase. However, before accepting these results, a closer 

comparison between grade A and grade B oocytes should be performed after the 

establishment of a more reliable culture system, which would allow for a complete 

analysis of embryo developmental potentials.
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4. Specific Aim 2: To test a variety of embryo splitting strategies 

in the bovine model in order to identify the optimal 

methodology for the production of a high number of viable 

blastocysts. 

 

4.1 Background 

Embryo splitting has the potential to offer significant benefits to cattle IVP by increasing 

the number of embryos available for transfer and therefore increasing embryo transfer 

success rates (Kippax et al. 1991). At the same time, it can multiply the offspring of the 

most valuable gamete donors, allowing for improved rates of genetic gain in the 

breeding population (Nicholas & Smith 1983). Additionally, the availability of IVP twin 

embryos could simplify PGS for sex selection or for estimating the breeding value of the 

embryo (Le Bourhis et al. 2010) since a single test would be simultaneously informative 

for each set of twins. 

 

Bovine embryo splitting was firstly developed in the 1980s (Willadsen 1980; Willadsen 

& Polge 1981) and it has been successfully applied on both cleavage stage (Johnson et 

al. 1995) and blastocyst stage embryos (Lopes et al. 2001). Although, surprisingly, no 

previous study has compared the developmental potentials of cleavage stage and 

blastocyst stage embryos produced and split under the same IVP system, and such a 

comparison might be useful to identify the strategy most likely to produce the greatest 

yield of viable, transferable embryos. Moreover, a comprehensive evaluation of the 

developmental potentials of 8-cell stage bovine embryos split according to different 

ratios has not been reported in the literature, and a previous report failed to test 8-cell 

stage embryos split in more than two parts (Loskutoff et al. 1993).Furthermore, the 

suitability for embryo splitting of day 3 post-IVF embryos with asymmetrical cell 

numbers (7 to 14) is equally under-reported. 
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Additionally, a question arises as to whether it would be possible to perform successfully 

the splitting of an embryo derived from a previous split, so-called “serial splitting”.  The 

underlying hypothesis is that application of serial splitting could lead to the production 

of embryos with higher viability when compared to single splitting strategies due to the 

embryos having more time to recover after each reductional event. A study that has 

investigated the effectiveness of serial splitting in the murine model found that the 

blastulation rate of first splits derived from cleavage stage embryos was maintained to 

comparable levels for second splits, but fell sharply with the third split resulting in a loss 

in the number of embryos produced (Illmensee et al. 2006). However, a similar 

investigation has never been performed in cattle. 

 

Moreover, as discussed in the introduction, in mice no difference has been found in the 

morphokinetic development of 2-cell split embryos as compared to control embryos, 

providing evidence for the existence of a “developmental clock” that synchronises early 

embryonic developmental events without necessarily accounting for cell numbers 

(Morris et al. 2012). A more recent study performed on human embryos found similar 

evidence (Noli et al. 2015). However, comparable reports for cattle appear absent in the 

literature and while the existence of this “clock” in mammalian embryos is 

acknowledged, its underlying mechanisms are not completely understood (Martinez 

Arias et al. 2013; Noli et al. 2015). 

 

Intuitively, embryo transfers followed by live births are the only method to obtain a 

definitive evaluation of embryo viability (Van Soom et al. 1997). However, this level of 

evaluation requires extended periods of time and is burdened with considerable 

material and logistic costs (Amann 2005; Hansen 2006). As a result, researchers have 

employed a variety of both invasive and non-invasive methods to estimate the viability 

of IVP embryos. Among these, embryo morphology (Lindner & Wright 1983) and 

morphokinetics (Holm et al. 1998), blastulation rates (Chian et al. 2004), cell counts in 

the blastocyst (Loskutoff et al. 1993, Vajta et al. 2000) and different techniques for the 

assessment of TE/ICM cell count ratio (Handyside & Hunter 1984; Thouas et al. 2001). 

For the latter test in particular, methods for the detection of TE specific markers have 
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also been developed which offer the additional advantage of providing an assessment 

of the differentiation status of the tissues in the embryo. For example, CDX-2 is a nuclear 

transcription factor whose expression in the TE is essential for the proper differentiation 

of TE and ICM cells in the blastocyst (Niwa et al. 2005; Strumpf et al. 2005). 

Immunostaining for CDX-2 has been used to obtain separate TE and ICM cell counts in 

several mammals, including cattle (Ono et al. 2010, Su et al. 2012). 

 

In an attempt to close some of the gaps identified in the literature review above, the 

aim of this chapter was to use blastulation rates and cell counts in blastocysts to identify 

the embryo splitting strategy likely to yield the highest number of viable embryos and 

to determine whether cleavage stage embryos with asymmetrical cell numbers are still 

suitable for splitting. Moreover, the developmental potentials of serially split embryos 

were also investigated in a similar way. Finally, to test the hypothesis that the 

developmental clock is affected by cell removal in bovine embryo splits, a time-lapse 

system (PrimoVision) was used to track the development of both control and split 

embryos. 

 

4.2 Specific aims 

With reference to the background above, the specific aims of this chapter were: 

 

2a. To develop simple protocols for the splitting of bovine embryos at the 2-cell stage, 

8-cell stage, and blastocyst stage. 

 

2b: To test the hypothesis that embryo splits derived from symmetrical and 

asymmetrical cleavage stage embryos possess similar developmental potentials. 

 

2c. To identify the single embryo splitting strategy likely to produce the greatest 

blastocyst yield under the same IVP system. 

 

2d. To use cell counts to assess the viability of blastocysts produced according to 

different embryo splitting strategies. 
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2e. To test the hypothesis that embryo splits have reduced cell numbers when compared 

to intact embryos of the same age. 

 

2f. To test the hypothesis that the serial splitting of bovine embryos would lead to the 

production of higher number of blastocyst stage embryos when compared to single 

splitting strategies. 

 

2g. To test the hypothesis that embryo splits display an accelerated developmental rate 

as compared to unsplit control embryos. 

 

4.3 Methods 

In vitro produced bovine embryos (refer to section 2.2.2) were split at either the 2-cell 

stage, the 8-cell stage (refer to section 2.2.3.2), or the blastocyst stage (refer to section 

2.2.3.3) in an attempt to determine the most effective splitting strategy. A grand total 

of 740 embryo splits were produced across different splitting methodologies and were 

derived from 239 intact embryos over n=21 IVP rounds, including at least 4 replicates 

for each test. To investigate the viability of blastocysts derived from embryo splits, cell 

counts were obtained by either CDX-2 immunostaining (refer to section 2.2.4) or by 

simple nuclear staining (refer to section 2.2.5) on both control and split embryos. In 

another set of tests, embryos derived from a previous split were split again (refer to 

sections 2.2.3.4 and 2.2.3.5) to explore the efficiency of serial embryo splitting. 

Moreover, split and control embryos were cultured in a PrimoVision system to annotate 

the timing of several developmental landmarks (refer to section 2.2.5). 
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4.4 Results 

 

4.4.1 Specific aim 2a: to develop simple protocols for the splitting of bovine 

embryos at the 2-cell stage, 8-cell stage, and blastocyst stage. 

Protocols for the splitting of embryos at both the cleavage and the blastocyst stage were 

drafted employing only a minimal range of components to allow for their potential 

application under field conditions. For both 2-cell and 8-cell stage embryo splitting, a 

relatively brief exposure to a Ca2+ and Mg2+ free medium, like PBS, was found to be 

sufficient to favour the complete disaggregation of the blastomeres after the zona 

digestion. This approach appeared to be reliable as 100% of the 2-cell stage embryos 

(n=44) and 97.5% (n=120) of the 8-cell stage embryos tested yielded at least one 

morphologically normal split. 

 

Moreover, during the splitting of blastocyst stage embryos, PBS was found to favour 

cohesion between the blastocyst and the plastic dish, keeping the sample in place and 

eliminating the need for a holding pipette during the splitting procedure. Again, the 

splitting method appeared robust, with 95.7% of the bisections (n=46) appearing 

normal.  

 

For serial splitting, 95.1% of the first split embryos (n=61 derived from n=29 intact 

embryos) survived to produce at least one serially split embryo, suggesting the protocols 

in place were indeed suitable. Examples of successfully split embryos are presented in 

figure 4.1.A breakdown of the methods employed has been presented under figure 2.3. 
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Fig. 4.1 – Embryo splits produced following different strategies. A) A 4/8 type split produced 
by blastomere separation from an 8-cell stage embryo. B) An embryo split derived from the 
bisectioning of a blastocyst, the embryo appears collapsed, a normal occurrence immediately 
after the cut. Images captured by phase contrast microscopy at x200 total magnification in a 
well-of-the-well culture system. 

 

4.4.2 Specific aim 2b: to test the hypothesis that embryo splits from 

symmetrical and asymmetrical cleavage stage embryos possess similar 

developmental potentials. 

A splitting ratio can be calculated by dividing the number of blastomeres pooled after 

disaggregation of cleavage stage embryos by the number of blastomeres originally 

present in the intact embryo. By this logic, all symmetrical 8-cell stage splits had a 

splitting ratio of either 0.125, 0.25 or 0.50 for the 1/8, 2/8 or 4/8 type splits, respectively. 

However, the actual splitting ratio range across all tests on 8-cell stage embryos fell 

between 0.08 and 0.57 when asymmetrical splits are taken into account. As presented 

in figures 4.2 and 4.3, preliminary regression tests were performed to investigate the 

effects of the splitting ratio on both blastulation rates and cell numbers in the resulting 

blastocysts. Because the formation of a blastocyst from an embryo split is a binary event, 

the effects of the splitting ratio on it were measured by logistic regression which showed 

a highly significant association (χ2
1=29.6650, O.R.=59.9, P<1x10-4). Conversely, the 

relationship between cell numbers present in a blastocyst and splitting ratio was 

investigated by linear regression, which showed a moderate but highly significant 

association (R2=0.256, F=42.43, P=1.7x10-9). 
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In view of this preliminary result, and to test the hypothesis that asymmetrical cleavage 

stage embryos had similar developmental competence as compared to symmetrical 

embryos, the asymmetrical embryos were divided in three groups based on which 

symmetrical splitting ratio they were closest to, then compared to their symmetrical 

counterparts. A summary of these test groups is presented in table 4.1. 

 

 

Fig. 4.2 – Variation in the blastulation rate of 8-cell stage splits in accordance with the splitting 
ratio. A significant correlation was detected by logistic regression between the two variables. 
For display purposes, in this graph grouping of data was operated and a trendline was given to 
guide the reader. However, logistic regression was performed on the raw, ungrouped data.  
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Fig. 4.3 – Variation in the cell count of blastocysts derived from 8-cell stage splits in accordance 
with splitting ratio. A direct correlation appears to be present between the two variables in 
study. 

 

Group Splitting ratio 
Sample 

size 
Group 

Splitting ratio 
range 

Sample 
size 

4/8 
symmetrical 

0.50 45 
4/8 

asymmetrical 
0.40 – 0.57 66 

2/8 
symmetrical 

0.25 55 
2/8 

asymmetrical 
0.20 – 0.36 95 

1/8 
symmetrical 

0.125 53 
1/8 

asymmetrical 
0.08 – 0.18 45 

Table 4.1 – Symmetrical and Asymmetrical embryo split grouping. The different test groups are 
presented. 

 

4.4.2.1 Comparison between symmetrical and asymmetrical 4/8 

The embryos belonging to the 4/8 symmetrical group had an overall higher blastulation 

rate (75.5%) as compared to the 4/8 asymmetrical group (62.1%); however, this 

difference was not statistically significant (chi-square, χ2
1=2.20, P=0.14). Furthermore, 

when cell counts were obtained for blastocysts belonging to the two groups, the 4/8 

symmetrical and 4/8 asymmetrical embryos had an average count of 93.5 and 82.6 

cells/embryo, respectively; but again, this difference was not significant (t-test, t41=0.81, 

P=0.42). 
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4.4.2.2 Comparison between symmetrical and asymmetrical 2/8 

In similarity to the previous test, embryos belonging to the 2/8 symmetrical group had 

an overall higher blastulation rate (65.4%) as compared to the 2/8 asymmetrical group 

(52.6%); but this difference was not statistically significant (chi-square, χ2
1=2.34, 

P=0.13). However, when cell counts were obtained for blastocysts belonging to the two 

groups, the 2/8 symmetrical and 2/8 asymmetrical embryos had an average respective 

count of 40.7 and 64.0 cells/embryo, and this difference was found to be highly 

significant (t-test, t56=3.12, P=0.003). 

 

4.4.2.3 Comparison between symmetrical and asymmetrical 1/8 

Furthermore, embryos belonging to the 1/8 symmetrical group had an overall higher 

blastulation rate (28.3%) as compared to the 1/8 asymmetrical group (22.2%); however, 

this difference was not statistically significant (chi-square, χ2
1=0.47, P=0.49). Finally, the 

1/8 symmetrical and 1/8 asymmetrical embryos had an average count of 25 and 30 

cells/embryo, respectively; but again, this difference was not significant (t-test, t19=1.06, 

P=0.30). 

 

4.4.3 Specific aim 2c: to identify the embryo splitting strategy likely to produce 

the greatest blastocyst yield under the same IVP system. 

Because the results presented in section 4.4.2 supported the hypothesis that 

asymmetrical embryo splits perform at least as well as symmetrical embryos in terms of 

blastulation rates and cell counts, symmetrical and asymmetrical embryos with similar 

splitting ratios were pooled together for the purpose of statistical analysis in this and 

the following sections.  

 

On analysis, it was found that the embryos split at the 8-cell cleavage stage had a 

blastulation rate of 67.6%, 57.3%, and 25.5% for the 4/8, 2/8 and 1/8 type splits, 

respectively. Conversely, the blastulation rate of splits derived from 2-cell stage embryos 

was 61.9%. For embryos split at the blastocyst stage, recovery rates were recorded in 

place of blastulation rates and defined as the proportion of blastocyst bisections that 
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survived the cut and were able to re-form a blastocoel. In these tests, the recovery rate 

of the blastocyst bisections was 76.4%. Control experiments performed on 10 IVP 

rounds on n=520 zygotes, showed that the average cleavage rate achieved by intact 

control embryos was 81.0 ± 5.6% (C.I. 95%) and that 51.1 ± 6.7% (C.I. 95%) of those 

embryos that cleaved proceeded to form a blastocyst (n=208). 

 

A chi-square test designed to investigate differences among the blastulation/recovery 

rates achieved by each test group as compared to standard IVP found a highly significant 

difference (χ2
5=64.06, P=1.8x10-12). To clarify which groups performed to statistically 

higher levels, further one-to-one comparisons were performed by chi-square analysis 

applying the Bonferroni correction for multiple tests.  Embryos split at the 2-cell stage 

and blastocyst stage plus 4/8 type splits performed to statistically indistinguishable 

levels. Type 2/8 splits blastulated as often as type 4/8 and 2-cell stage splits but less 

often than blastocyst splits. Furthermore, 2/8 and 1/2 type splits blastulated as often as 

controls. Finally, 1/8 type splits were shown to consistently yield lower blastulation rates 

as compared to all other groups. These results are summarised in figure 4.4. 

 

 

Fig. 4.4 – Blastulation and recovery rates achieved by embryos split following different 
strategies. While 1/8 type splits consistently underperformed, the other splitting strategies 
appeared to produce blastocyst stage embryos at similar rates. Averages with different 
superscripts differ significantly (Chi-square, P < 0.05). Data given as mean ± S.E.M. 
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However, it is important at this point to highlight that the potential blastocyst yield per 

original embryo differs according to the strategy used. While 1/2, 4/8 and blastocyst 

splits can form a maximum of only two blastocysts, type 2/8 splits can potentially result 

in the formation of up to four blastocysts and, similarly, 1/8 types splits can form up to 

eight. Therefore, a test group with a slightly decreased blastulation rate could still yield 

a greater net blastocyst output simply thanks to its greater splitting potentials. Indeed, 

after accounting for cleavage rates, splitting efficiency, and blastulation/recovery rates, 

the strategy with the greatest final blastocyst output per starting fertilised egg was the 

splitting of an 8-cell stage embryo in four parts (2/8 splits) which led to the production 

of 1.8 blastocysts per zygote, a 3.4-fold increase as compared to control IVP cycles which 

only produced 0.4 blastocysts/zygote. Remarkably, the 1/8 type splitting still produced 

1.6 blastocysts/zygote, while 4/8 and 1/2 type splits showed similar rates of 1.1 and 1.0 

blastocysts/zygote, respectively. Finally, blastocyst splitting performed only slightly 

better than unsplit controls, yielding 0.6 blastocysts/zygote. Theses finding are shown 

in figure 4.5.  

 

 

Fig. 4.5 – Projected blastocyst yield for different embryo splitting strategies. When the 
potentials of each different strategy and its efficiency were taken into account, a 2/8 type split 
was the strategy that yielded the greatest number of blastocysts per starting zygote. Data given 
as mean ± S.E.M. 
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4.4.4 Specific aim 2d: to use cell counts to assess the viability of blastocysts 

produced according to different embryo splitting strategies. 

On a first approach, immunostaining for the nuclear transcription factor CDX-2 was used 

as a method to assess the number of cells present in a blastocyst and to attempt to 

obtain separate counts for TE and ICM cells. However, as shown in figure 4.6A, this 

method was not satisfactory since it failed to establish a clear differential stain between 

the two cell populations. Therefore, total cell counts were estimated instead by using a 

simple nuclear staining procedure (figure 4.6B).  

 

 

Fig. 4.6 – Blastocyst staining for cell count estimation. Blastocysts were stained using two 
alternative strategies. A) Immunostaining for CDX-2. Cells expressing CDX-2 were stained in red, 
and Hoechst 33342 (blue) was used a nuclear counterstain. CDX-2 appeared to co-localise with 
Hoechst 33342 in all cells indicating that the immunostaining had no ability to discriminate 
between trophectoderm and inner cell mass cells. B) Simple nuclear staining by Hoechst 33342, 
all nuclei stained in blue. This approach consistently allowed for total cell counts to be estimated. 
Images captured by fluorescence microscopy at x200 total magnification. 

 

When total cell counts were obtained from n=82 unsplit control blastocysts 7 days post-

IVF, it was found that, on average, they contained 122.4 ± 12.1 cells (C.I. 95%), compared 

to an average count of 87.7 ± 13.2 (C.I. 95%) for 4/8 splits, of 54.3 ± 7.7 (C.I. 95%) for 2/8 

splits, of 27.0 ± 4.7 (C.I. 95%) for 1/8 splits, of 80.7 ± 8.6 (C.I. 95%) for 1/2 splits and 

finally of 70.7 ± 9.0 (C.I. 95%) for blastocyst stage splits as summarised in figure 4.7; 

moreover, examples of blastocysts derived from 4/8, 2/8 and 1/8 type splits are given 

under figure 4.8 These findings were compare statistically by using a one-way ANOVA 

test followed by a Tukey-Kramer post-hoc test. The ANOVA test showed a highly 
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significant difference between the six populations studied (F5,308=30.1, P=6.4x10-25) and 

the results of the post-hoc test are presented in figure 4.7. Briefly, no groups had as 

many cells as the intact control blastocysts, while 1/2, 4/8, 2/8 and blastocyst type splits 

performed to various degrees of similarity between them. Finally, 1/8 type splits had 

statistically fewer cells than any other group.  

 

 

Fig. 4.7 – Average cell counts in day 7 post-IVF blastocysts produced according to different 
embryo splitting strategies as compared to unsplit controls. Averages with different 
superscripts differ significantly (Tukey-Kramer post-hoc test, P < 0.05). Data given as mean ± 
S.E.M. 
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Fig. 4.8 – Example blastocysts derived from different splitting strategies. A) Blastocyst derived 
from a 1/8 type split. B) Blastocyst derived from a 2/8 type split. C) Blastocyst derived from a 
4/8 type split. All the pictures were captured 168 h after IVF using a PrimoVision EVO 
microscope. The splitting ratio appears to have a clear effect on blastocyst size. 

 

4.4.5 Specific aim 2e: to test the hypothesis that embryo splits have reduced 

cell numbers as compared to intact embryos of the same age. 

To test the hypothesis that in blastocysts derived from embryo splits, cell counts are 

reduced as compared to unsplit controls by a factor identical to their splitting ratio (for 

example that a 4/8 type blastocyst with a splitting ratio of 0.5 possesses half as many 

cells as a blastocyst derived from an unsplit embryo), cell counts from split embryos 

were compared to cell counts from control blastocysts reduced by an appropriate factor 

(for example, by a factor of 4 when comparing against 2/8 type splits). When the groups 

were compared two by two by a classic student t-test, it was found that embryo splits 

had statistically greater cell counts than expected in all cases apart for blastocyst stage 

splits (T143=1.78, P=0.08). The detailed results of this analysis are presented in figure 4.9.  
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Fig. 4.9 – Series of ideal comparisons between cell counts in blastocysts derived from embryos 
split according to different strategies and control blastocysts the counts of which were 
reduced by an appropriate factor. Cell counts form intact control embryos were divided by 2 
for comparison against 4/8, 1/2 and blastocyst type splits; by 4 for comparison against 2/8 type 
splits and by 8 for comparison against 1/8 type splits. Embryo splits had statistically more cells 
than these ideal controls in all cases but for blastocyst stage splits. Data given as mean ± S.E.M.  
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4.4.6 Specific aim 2f: to test the hypothesis that the serial splitting of bovine 

embryos would lead to the production of higher number of blastocysts 

stage embryos as compared to single splitting strategies. 

Three different strategies for the serial splitting of bovine embryos were developed and 

tested. In strategy A, embryos derived from a 2/8 type split (1st serial split) would be split 

again at the blastocyst stage to produce 2nd serial splits. In strategy B, embryos were 

split at the 2-cell stage (1st serial split), then again after two cleavage events (8-cell sage 

equivalent) to produce 2nd serial splits then allowed to develop. In strategy C, embryos 

were split at the 2-cell stage (1st serial split), again after cleavage (4-cell sage equivalent), 

and again after the following cleavage (8-cell stage equivalent) to produce 3rd serial 

splits, then allowed to develop. For all strategies, the splits were performed 

symmetrically, and blastulation rates and cell counts were recorded. 

 

4.4.6.1 Strategy A 

Strategy A appeared largely unsuccessful. N=11 2/8 type splits that had reached the 

blastocyst stage were split again to produce n=23 serial splits. However, these serial 

splits showed a recovery rate of just 15% resulting in a loss, rather than a gain in the 

number of blastocysts produced. Because of this result, strategy A was abandoned in 

favour of testing strategies B and C instead. 

 

4.4.6.2 Strategies B and C  

The application of strategy B led to the production of n=67 2nd serial splits which 

blastulated with a frequency of 44.7%. The average cell count in the blastocysts 

produced was 37.9 ± 6.3 cells/embryo (C.I. 95%). Conversely, strategy C led to the 

production of n=116 3rd serial splits that developed to the blastocyst stage at a rate of 

24.1%. On average, the blastocysts produced in this way only contained 15.0 ± 2.0 

cells/embryo (C.I. 95%). 

 

Because, potentially, strategy B could lead to the production of up to 4 blastocysts from 

a single embryo, and strategy C could lead to the production of 8; their performance was 
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compared to the 2/8 and 1/8 splitting strategies, respectively, which had identical 

potentials. When efficiency, cleavage and blastulation rates were accounted for, 

strategy B led to a production of 1.4 blastocysts per starting zygote, while strategy C 

produced 1.5 blastocysts/zygote. When appropriate statistical tests were run between 

single and serial split strategies, it was found that the blastulation rate in strategy B did 

not differ significantly from the blastulation rate achieved by 2/8 type splits (chi-square, 

χ2
1=2.93, P=0.09); similarly, there was no difference between the blastulation rates of 

strategy C and 1/8 type splits (chi-square, χ2
1=0.05, P=0.82). However, when cell counts 

were taken into account, it was found that both 2/8 type splits and 1/8 type splits had a 

greater number of cells at the blastocyst stage as compared to strategy B (t-student, 

T83=2.64, P=9.7x10-3) and strategy C (t-student, T43=4.82, P=1.8x10-5) produced embryos, 

respectively. These findings are summarised in figures 4.10 and 4.11. 

 

 

Fig. 4.10 – Blastulation rates for embryos produced by serial splitting as compared to embryos 
produced by single splitting strategies.  Embryos split according to serial splitting strategy B and 
C blastulated to statistically similar rates to embryos produced by comparable single splitting 
strategies. Data given as mean ± S.E.M. 
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Fig. 4.11 – Average cell counts in blastocysts produced by serial splitting as compared to 
embryos produced by single splitting strategies. Blastocysts derived from single splitting 
strategies consistently showed higher cell counts when compared to embryos produced by serial 
splitting. Data given as mean ± S.E.M. 

 

4.4.7 Specific aim 2e: to test the hypothesis that embryo splits display an 

accelerated developmental rate as compared to unsplit control embryos. 

To test the hypothesis that cleavage stage embryo splits display a different development 

rate when compared to intact embryos, a morphokinetic analysis was completed on a 

number of developmental landmarks as appropriate for each group, which included 

timing of 2nd and 3rd cleavage, compaction, onset of cavitation, blastocyst expansion. It 

was found that the timing of 2-cell stage embryo splits compared well with intact control 

embryos up to the 3rd cleavage division (one-way ANOVA, df=1,57, P>0.05), however, 2-

cell stage splits started the process of compaction earlier than both 8-cell stage splits 

and controls (one-way ANOVA, F2,87=24.36, P=3.97x10-9 followed by Tukey-Kramer post-

hoc analysis) and were similarly quicker than the other two groups in forming a 

blastocoel and then an expanded blastocyst (one-way ANOVA, df=1,57, P>0.05). While 

8-cell stage splits compacted later as compared to controls, they formed a blastocoel 

and an expanded blastocyst with similar timing as controls (one-way ANOVA, df=2,87, 

P>0.05 followed by Tukey-Kramer post-hoc analysis). The results of this analysis are 

displayed in figure 4.12. 
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Additionally, the developmental timings of embryo splits derived from the same original 

embryo (twins) were compared to investigate whether twin embryos develop at the 

same rate. For each pair of twins (n=9 pairs for 2-cell stage splits, n=11 pairs for 8-cell 

stage splits) the difference in time required to achieve the same developmental stage 

was recorded. The results of this investigation are presented in table 4.2. 

 

 

Fig. 4.12 – Timing of developmental landmarks in control and cleavage stage split embryos. 
For each event, columns with different superscripts differ significantly (Tukey-Kramer post-hoc 
test P<0.05). Data given as mean ± S.E.M. 

 

 

 2-cell stage splits 8-cell stage splits 

2nd cleavage 53.6 ± 48.2 min n/a 

3rd cleavage 70.0 ± 48.3 min n/a 

Compaction 495.8 ± 495.3 min 781.8 ± 299.8 min 

Cavitation 469.3 ± 213.6 min 535.8 ± 273.8 min 

Expansion 362.5 ± 138.5 min 595.8 ± 313.2 min 

 

Table 4.2 – Difference in the time required by twin embryos to achieve the same 
developmental landmark. Results are given as average difference between two twins for each 
group and confidence intervals at 95% are shown. 
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4.5 Discussion 

Only 2-cell stage and 8-cell stage embryos were employed for cleavage stage embryo 

splitting while 4-cell stage embryos were not. This decision was made based on the 

morphokinetics of bovine cleavage stage embryos. The first cleavage division is easy to 

identify and 2-cell stage embryos could be reliably found in culture about 30 h post-IVF. 

However, most 4-cell stage bovine embryos developed overnight, precluding a suitable 

window for testing. On the other hand, 8-cell stage embryos are known to become 

prevalent in culture about 50 h post-IVF and remain prevalent until about 100 h post-

IVF (Holm et al. 1998), therefore this stage provided for a convenient, extended window 

over which to perform the splitting. 

 

4.5.1 Protocol development for embryo splitting 

The removal of the ZP is not known to affect the potential of the embryo to implant and 

develop (Seike et al. 1989) and has been shown to have no significant impact on the 

ability of bovine embryos to correctly develop when cultured under suitable conditions, 

for example by employing a WOW culture system (Vajta et al. 2000). The high technical 

efficiency demonstrated by the cleavage stage splitting reported here is in agreement 

with these previous studies and suggests that cleavage stage embryo splitting can be 

effectively performed without the need for fine micromanipulation of the blastomeres 

required to position them into surrogate zone pellucidae (Tagawa et al. 2008).  

 

For blastocyst splitting, the same method described by Rho et al. (1998) was employed; 

for which the authors reported a 100% efficiency for their cutting strategy as compared 

to the 95.7% reported here. In both cases, a micromanipulation platform was used to 

deliver the cuts. While this approach has been successfully implemented under field 

conditions (Lopes et al. 2001), it restricts the use of this technique only to laboratories 

able to afford the expensive instrumentation required. However, it is possible to find 

examples of successful bisectioning protocols employing simple, custom-made splitting 

instruments (Müller & Cikryt 1989), while some authors hare reported hand-made 
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splitting techniques that did not require any micromanipulation tools (Wu et al. 1995, 

Velasquez et al. 2016) broadening the applicability of this method. 

 

4.5.2 Developmental potentials of asymmetrical splits 

The applicability of cleavage stage embryo splitting to embryos with atypical cell 

numbers has been largely underreported in literature. However, the results presented 

support the hypothesis that asymmetrical embryos are able to survive the splitting and 

develop to form blastocyst stage embryos as often as symmetrical embryos and that 

those blastocysts will be of similar or even better quality in the case of 2/8 type splits as 

judged by total cell counts. 

 

On the other hand, the performance of embryos split at the 8-cell stage seems to be 

directly correlated to their splitting ratio, as shown in figures 4.2 and 4.3. Therefore, it 

is conceivable that asymmetrical embryos with a smaller splitting ratio would 

underperform as compared to symmetrical embryos and that asymmetrical embryos 

with a greater splitting ratio would outperform similar symmetrical splits, and that 

therefore the asymmetrical group would perform just as well as the symmetrical group, 

on balance. In summary, the results presented support the use of asymmetrical embryos 

for embryo splitting, but caution might be advisable when the resulting splitting ratio 

does not exceed that of the most similar possible symmetrical split.  

 

4.5.3 Embryo splitting yield 

While several studies have reported on the potential embryo production increase in 

cattle thanks to embryo splitting (Gary et al. 1991; Kippax et al. 1991; Lopes et al. 2001), 

no study so far has compared the potentials of a wide variety of strategies under the 

exact same IVP system. 

 

In these experiments, the splitting of an 8-cell embryo in four parts was the strategy that 

produced the greatest blastocyst output. This result is in agreement with previous 
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findings suggesting that a limit of 4 identical twins from a single donor embryo would be 

difficult to overcome (Willadsen & Polge 1981; Johnson et al. 1995; Chan et al. 2000). 

 

Interestingly, split embryos largely appeared to perform better than controls in terms of 

blastulation rates. This consideration could erroneously bring to the conclusion that 

embryo splitting is beneficial to embryo development. In reality, it is likely that embryo 

splitting amplifies the number of embryos derived from good quality embryos whilst 

having no effect on the development of poor quality embryos leading to an apparent 

increase in the blastulation rates of the splits as compared to the controls. However, in 

agreement with previous reports (Gray et al. 1991; Escriba et al. 2002; Tagawa et al. 

2008), this finding suggests embryo splitting in its different forms is well tolerated by 

early stage embryos. Additionally, a recent study from Velasquez et al. (2016) 

demonstrated that embryo splits derived from blastocyst bisectioning show no 

difference when compared to control embryos in terms of developmental capability and 

gene expression; however, the authors discovered an alteration in the elongation of the 

split embryos after transfer. Nevertheless, a previous study found no difference in the 

pregnancy rates between split and intact blastocysts (Gray et al. 1991). 

 

4.5.4 Cell counts in embryo splits and control embryos 

The total cell count in a blastocyst is an indicator of embryo viability (Wurth et al. 1988) 

and is promptly reduced when embryos are cultured under stressful conditions (Hill & 

Gilbert 2008). Moreover, Loskutoffl et al. (1993) discussed how bovine blastocysts 

derived from quarter embryos containing about 40 cells could proceed to establish a 

pregnancy in 20% of cases after transfer, whilst blastocysts containing about 72 cells 

could establish a pregnancy in 35-40% of cases. Given the results presented in figure 4.7, 

it seems plausible that embryo splits derived from most of the strategies employed in 

the present work would preserve enough developmental potentials to yield acceptable 

pregnancy rates upon transfer. However, this might not be the case for 1/8 type splits 

which showed a total cell count of just 27 cells/embryo. 
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It is known that embryo splits possess, in absolute terms, fewer cells than intact control 

embryos (Heyman 1985; McEvoy & Sreenan 1990); however, the offspring derived from 

embryo splitting is of normal size (Papaioannou et al. 1989) suggesting that embryo 

splits will catch up on control embryos at some point during development. Interestingly, 

in these tests, embryos split at cleavage stage consistently demonstrated higher cell 

numbers than expected when an ideal experiment was performed and they were 

compared to artificially reduced cell counts from intact embryos. This finding seems to 

suggest that cleavage stage splits might have an increased mitotic index as compared to 

control embryos. An alternative explanation might be that the fractions of the embryo 

that survive are composed of cells of better quality perhaps due to mosaicism in the 

embryo (Iwasaki et al. 1992). However, this hypothesis does not explain well the high 

cell numbers observed in multiple twins derived from the same embryo. In order to 

clarify whether the morphokinetics of embryo splits is truly affected by the cut, time 

lapse-observations might be used. It is also interesting to note that blastocyst stage 

embryos had similar cell numbers to half of the intact controls. This finding is not 

necessarily surprising, since this type of splits were only cultured for a short amount of 

time before cell counts were obtained. However, the specific comparison between 

blastocyst stage splits and control embryos yielded a P value of 0.08, which is close to 

the significance threshold, perhaps providing for an indication that the embryo half that 

randomly received more cells after the initial cut survives more often to re-form a 

blastocoel. 

 

4.5.5 Serial embryo splitting  

Serial embryo splitting in cleavage stage bovine embryos has not been reported before 

in literature and only one study exists describing cleavage stage serial splitting in mice 

(Illmensee et al. 2006). However, a form of serial embryo splitting has been 

demonstrated before for bovine blastocysts which were bisectioned two times in short 

succession to produce quarter embryos (Rho et al. 1998). In the present work, it was 

found that triple serial splitting (strategy C) resulted in a marked decrease in the 

blastulation rate of the splits as compared with double serial splitting (strategy B), 

similar to what was described by Illmensee et al. (2006). However, in opposition to what 
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was described by that group, triple embryo splitting in bovine embryos produced an 

increase rather than a loss in the net output of blastocysts and both double and triple 

serial splitting performed to similar levels in this respect. Moreover, whilst Rho et al. 

(1998) demonstrated the feasibility of splitting a blastocyst derived from a previous cut, 

a similar application was unsuccessful in these tests (strategy A). A possible explanation 

could be that the embryos could not tolerate the cut as well after zona removal or this 

could have been caused by the increased difficulty in handling a zona-free blastocyst. 

 

Interestingly, both double and triple serial embryo splitting appeared to have no 

negative effect on blastulation rates as both strategy B and C performed as well as, 

respectively, type 2/8 and 1/8 splits. However, cell counts were reduced in blastocysts 

derived from serially split embryos as compared to single splitting strategies. This finding 

supports the hypothesis that, while not lethal to embryos, serial splitting puts additional 

strain on them. This could be due to the successive manipulations operated on the same 

embryo causing it to spend more time outside of a stable incubator environment (Zhang 

et al. 2010b), or it could be due to the serial splits receiving fewer autocrine and 

paracrine factors which are known to enhance the growth of embryos (Gandolfi 1994) 

due to the repeated cell reduction and frequent forced media refresh after the splitting.   

 

No information exists in the literature about the expected cell count in bovine 

blastocysts derived from serially split embryos. However, the impact of serial embryo 

splitting on the number of cells per blastocyst raises questions about the viability of the 

embryos produced following these strategies, especially in the case of triple serial splits. 

While the developmental potentials of blastocysts with much lower cell counts remains 

unexplored, with reference to the Loskutoffl et al. (1993) paper discussed above, it 

seems likely that the transfer of serially split embryos would establish pregnancies at 

unacceptably low rates.  

 

As a result, the evidence presented suggests that serial embryo splitting performed in 

the way here described does not allow embryos enough time to recover from previous 

splitting events, in contrast with the original hypothesis. On the one hand, triple serial 
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splitting definitively appears to be a non-viable embryo multiplication strategy and 

therefore more ambitious serial splitting strategies are likely to fail as well. On the other 

hand, double serial splitting could be a useful IVP strategy; however, in these tests it still 

underperformed when compared to 2/8 splitting and had the disadvantage of requiring 

additional hands-on time. 

 

4.5.6 Developmental clock in early bovine embryos 

At time-lapse observation, the developmental timing of the intact control embryos 

closely matched that of a previously published study (Holm et al. 1998) for all the 

developmental landmarks reported (first three cleavage events, compaction, and 

blastulation) although the authors provided no information on the timing of blastocyst 

expansion. Interestingly, though, embryos split at the 2-cell stage displayed a significant 

increase in their developmental rate after compaction and, on average, produced 

blastocyst stage embryos 11 hours before the control embryos did. 

 

It is also curious to notice that embryos split at the 8-cell stage compacted later than 

controls but blastulated with similar timing to them. From time-lapse observation, it 

appears that the blastomeres of 8-cell stage splits cultured in a WOW system required 

some extra time to come into contact with each other and to re-form the cell-to-cell 

junctions destroyed after disaggregation before they were able to proceed to 

compaction. Conversely, the blastomeres derived from a 2-cell split tended to stay 

always in contact with each other (they were all derived from cleavage of a single 

blastomere); so that compaction was only slowed down in 8-cell splits. This observation 

is in agreement with previous studies performed on mouse embryos, which showed that 

continuous cell-to-cell interactions are important for the fate specification of 

blastomeres, and that blastomeres likely require re-establishing these interactions after 

splitting (Johnson & Ziomek 1981; Lorthongpanich et al. 2012).  

 

Moreover, 8-cell stage bovine embryo splits showed enough plasticity to be able to 

recover from the cell reductional event and blastulate with the same timing as intact 

control embryos. The finding that disaggregated blastomeres of 8-cell stage embryos 
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reconstructed in an embryo split in a random order were still capable to produce 

blastocysts with morphologically distinct cell populations supports both the inside-out 

(Tarkowski & Wroblewska 1967) and the cell polarity (Johnson & Ziomek 1981) embryo 

development models which postulate that the fate of blastomeres (ICM or TE) is 

determined by position-dependent mechanisms, while being in contrast with the pre-

patterning model (Piotrowska et al. 2001; Piotrowska & Zernicka-Goetz 2001) which 

instead hypothesises that ICM and TE lineages are pre-determined due to the 

asymmetrical distribution of molecular determinants in the oocyte. 

 

Finally, when the timing of developmental events between twin embryo splits was 

considered, the results suggested that the first three cleavage events are under a strict 

temporal control in bovine embryos, a finding that is in agreement with another study 

performed in human embryos (Noli et al. 2015). However, this stringent regulation 

seemed to relax after the third cleavage division, leading to twin embryos to behave in 

unconcordant ways from a temporal standpoint, in similarity to what has been 

previously reported for mouse embryos (Arav et al. 2008). The first blastomere fate 

decision is thought to become established only after the third cleavage event or possibly 

at compaction, when spatially oriented asymmetric cell divisions lead to one daughter 

cell being pushed peripherally (to become TE) and one internally (to become ICM) (Bruce 

& Zernicka-Goetz 2010; Lorthongpanich et al. 2012). The results here presented, then, 

might suggest that the developmental clock has a role in maintaining the whole embryo 

at the same pace until the moment of compaction, after which asymmetry becomes 

necessary to establish different fates in different cells. It might even be possible to 

imagine for early bovine embryos, a hybrid developmental model where the first few 

cleavage events are predetermined to happen at a certain pace (in similarity to the pre-

patterning model) whilst later fate decision events are position-dependent (as per the 

inside-out and the cell polarity models). However, possible mechanisms for this 

interaction remain unknown. 
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4.5.7 Study limitations, reasons for caution 

As discussed in the introduction, without the ability to perform embryo transfers, the 

results presented in this study must be considered preliminary only as embryo splitting 

has been only tested in vitro.  

 

Moreover, it was impossible to obtain separate cell counts for the ICM and the TE of the 

produced blastocysts by CDX-2 immunostaining. While this could mean that, in the 

control embryos tested, CDX-2 was expressed at detectable levels in both TE and ICM 

nuclei; this would be in contradiction with current evidence suggesting that CDX-2 

expression is restricted to the TE in bovine embryos (Ewart et al. 2008). A more plausible 

explanation would be a technical failure due to aspecific antibody binding to the 

intended target. While blastocyst viability could still be estimated by the use of total cell 

counts, it is known that embryo splits with very low cell numbers at compaction might 

develop into trophoblastic vesicles, non-viable structures that mimic the appearance of 

a blastocyst but lack an ICM (Gardner et al. 1973). Although it can be excluded that this 

phenomenon affected all cases in study, since a clear ICM could be often 

morphologically identified even with a simple nuclear stain, it is possible that some of 

these trophoblastic vesicles were erroneously considered blastocysts and included in 

the results presented, especially for embryos with lower splitting ratios. 

 

4.6 Conclusions 

In conclusion, embryo splitting holds promise to dramatically increase the availability of 

blastocysts for transfer, however the limited ability of the embryo to cope with cell 

reductional events makes perpetual splitting impossible and likely limits the application 

of embryo splitting to single splitting strategies and a maximum of four twins. However, 

the data presented strongly suggest that embryo splitting is a suitable technique to 

magnify the number of embryos available from a specific donor, which would be of 

interest to commercial breeders intending to disseminate some specific genetics more 

rapidly. Moreover, the availability of multiple identical twins, which tend to produce, 

overall, a greater number of cells at the blastocyst stage as compared to the intact 

embryo, would simplify PGS by providing multiple samples for genetic screening. Finally, 
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the availability of twins could benefit research by allowing for stringent case-control 

experimental designs. 

 

Interestingly, the inability of embryo splitting to increase indefinitely the possible 

blastocyst yield suggests that this technique has no impact on the embryo’s 

developmental clock. 
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5. Specific aim 3: To apply optical coherence tomography (OCT) 

to investigate embryo structure and viability non-invasively. 

 

5.1 Background 

To investigate the properties of early embryo development and improve selection of 

viable embryos for transfer, time-lapse systems have been introduced. Although 

widespread, the use of these systems has generated controversy in the literature with 

some studies reporting an increased ability to select for viable embryos (Mesequer et 

al. 2012; Campbell et al. 2013), and other studies reporting a limited or a lack of 

correlation between the morphokinetic parameters measured and clinical pregnancy 

outcomes (Racowski et al. 2015; Goodman et al. 2016). Time-lapse systems also require 

a long time to complete a morphokinetic assessment and suffer from a poor depth of 

view. The second problem is made worse in post-compaction embryos like blastocysts 

and in bovine embryos generally due to their unfavourable lipid distribution (Van Soom 

et al. 2003). Moreover, with conventional time-lapse, the embryo cannot easily be 

observed from different angles, the observation is difficult when the embryo presents 

overlapping blastomeres or is highly fragmented (Wong et al. 2010), and the operator 

cannot objectively quantify the percentage of fragmentation, which is known to affect 

embryo viability (Alikani et al. 1999).  

 

Therefore, there is scope for the development of new imaging modalities, which can 

resolve the embryo structure in full depth, provide for a rapid and non-subjective 

assessment of embryo viability, and improve the understanding of embryonic 

development. OCT is a non-invasive optical method developed in the 1990s that has 

historically found application in ophthalmology (Hee et al. 1995). It can create static 

structural images of biological tissues by providing multiple cross-sectional images of a 

sample, enabling 3D modelling and potentially tracking the fate of specific cells in an 

embryo (Zheng et al. 2012). OCT shows a remarkable ability to penetrate biological 

tissues, which is unimpeded by the lipid content of some mammalian embryos (Zheng 
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et al. 2012). Moreover, recent advancements in the OCT field allowed for the display of 

en-face (cross-sectional) images in real time by using a swept source, simplifying sample 

positioning and image acquisition as compared to earlier OCT platforms and rendering 

the technique more similar to standard microscopy from an operator’s point of view 

(Podoleanu & Bradu 2013; Cernat et al. 2017).  

 

Interestingly, OCT can also be used to acquire functional images, one example being 

OCTA which is used to detect flowing blood cells thanks to algorithms like SV analysis 

which can detect and quantify the changes in the pattern of a sample associated with 

movement (Federici et al. 2015; Ruminski et al. 2015; Gorczynska et al. 2016).  

 

OCT has already found some limited application in developmental biology in model 

organisms like Xenopus laevis (Drexler et al. 1999), and Rattus norvegicus (Larina et al. 

2009a). Additionally, in a recent study, high-resolution intracellular imaging on live 

mouse and pig oocytes and embryos has been reported, representing the first 

application of OCT to time-lapse (Karnowski et al. 2017). In this context, the fundamental 

advantages of OCT are its ability to image embryos without fluorescent labels, and its 

use of low power light sources which reduces the chance of damaging the embryo during 

observation as compared to confocal systems (Zheng et al. 2012; Karnowski et al. 2017), 

or even to standard time-lapse systems (Ottosen et al. 2007). However, no study so far 

has applied the motion detection principles of OCTA to early stage embryos.  

 

Here, an experimental SS-OCT microscope capable of real time en-face imaging display 

(Cernat et al. 2017) was used to produce a full depth structural characterization of 

bovine embryos and to measure micron-scale movements within live embryos to obtain 

a quantitative analysis of embryo viability over time and test the hypothesis that kinetic 

differences could be measured between live and dead embryos. 
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5.2 Specific aims 

With reference to the background above, the specific aims of this chapter were: 

 

3a. To test the hypothesis that SS-OCT can be used to obtain static images of bovine 

embryos and reconstruct 3D models. 

 

3b. To test the hypothesis that speckle variance analysis can quantitate micron scale 

movements of blastocyst stage bovine embryos to infer their vital status. 

 

3c. To test the hypothesis that SS-OCT can be used to obtain non-invasive cell counts 

from bovine blastocysts. 

 

3d. To test the hypothesis that SS-OCT observation is not harmful to the embryo. 

 

5.3 Methods 

Bovine embryos were produced in vitro (refer to section 2.2.2). Fixed cleavage stage, 

and both fixed and living day 7 to 8 post-IVF bovine blastocysts were observed by SS-

OCT and their structure and kinetic properties were evaluated (refer to section 2.2.7). 

Structural characterisation by SS-OCT was performed on n=5 cleavage stage embryos 

and n=15 blastocysts. Additionally, n=5 live bovine blastocysts were observed by SS-OCT 

and analysed by SV to obtain kinetic measurements (as per sections 2.2.7.3-4). 

 

5.4 Results 

5.4.1 Specific aim 3a: to test the hypothesis that SS-OCT can be used to obtain 

static images of bovine embryos and reconstruct their 3D models 

Both cleavage stage and blastocyst stage embryos were imaged by an SS-OCT system 

with an approximate resolution of 5 µm axial x 4 µm transverse. From measurements 

on fixed embryos, the diameter of a cell in a blastocyst was estimated to range between 

10 to 40 µm so the resolution available was estimated to be sufficient to resolve single 
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cells within any embryo. The system was able to produce multiple images from different 

transversal layers of the embryo simultaneously. 

 

Figure 5.1 illustrates a single en-face image from the median layer of a 2-cell stage 

embryo. While not many features are evident, the image does display the presence of 

two distinct dark areas, which are indicative of the presence of nuclei. However, nuclei 

were evident in only two of the five cleavage stage embryos investigated in this way.  

 

 

Fig. 5.1 – A 2-cell stage bovine embryo imaged by SS-OCT. While cell boundaries are not 
evident, the embryo clearly shows two dark areas (arrows) which are consistent with the 
presence of nuclei.  

 

Conversely, figure 5.2 shows several cross-sections of a bovine blastocyst captured at 

different depths. In all the blastocysts analysed in this way (n=15) it was possible to 

identify the classic features of this type of embryo, namely an empty cavity, an inner cell 

mass and the trophectoderm ring. Additionally, the image stacks produced by OCT could 

be used to reconstruct 3D models of the imaged embryos. An example of this application 

is resented in figure 5.3.  
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Fig. 5.2 – Bovine blastocysts imaged by SS-OCT. A) Axial view showing a section of the entire 
embryo. The white lines determine the boundaries used for the transversal analysis. B) Selection 
of transversal cross-sections at different depths, allowing distinguishing the size, shape, and 
distribution of the inner cell mass. 

 

 

 

Fig. 5.3 – 3D reconstruction of a bovine blastocyst. A) A selection of en-face images captured at 
different depths in the embryo. B) 3D model of the embryo reconstructed on ImageJ from 
approximately 300 en-face images. For display purposes, images containing cumulus cells or 
reflections from the plastic dish were cropped, artificial colours were applied to the 
trophectoderm (blue) and the inner cell mass (purple), and a window was created to allow the 
visualisation of the inside of the embryo.  
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5.4.2 Specific aim 3b: to test the hypothesis that speckle variance analysis can 

quantitate micron scale movements of blastocyst stage bovine embryos 

to infer their vital status 

Overall, n=5 live bovine embryos were observed short-term (10 minutes) and n=1 

embryo was monitored long-term (18 hours, followed by an additional measurement at 

26 hours). Motion maps were produced by speckle variance analysis on successive 

images at 1 min intervals showing which parts of the image were in motion over the 

interval and at the same time producing information on the intensity of the motion. 

 

Figure 5.4 shows the speckle variance value for the median embryo layer in the five 

embryos monitored short-term (as a measurement of motion within that layer). An 

additional measurement obtained on a dead control embryo is also shown. Notably, the 

maximum value calculated for this control embryo was found to be at least 5 times 

smaller than the maximum value of any live embryo. 

 

Conversely, figure 5.5 shows a more detailed examination of the motion pattern of a 

single embryo where quantity of movement was calculated at different depths 

simultaneously over long-term observation. Only movements exceeding the threshold 

set by the dead control embryo were included in the graph. An alternative 

representation of this information is given in figure 5.6, which shows the percentage of 

en-face images across the whole embryo in which movements could be detected at any 

given time over long-term observation. 

 

A selection of images acquired over long-term observation is also given in figure 5.8 

showing the appearance of the embryo at a fixed depth (fig. 5.7A) and the corresponding 

motion maps (fig. 5.7B). In this analysis, the blastocyst appeared to maintain its normal 

structure over the first 12 hours and started to collapse on itself by the 13th hour. 

Interestingly, the complete collapse of the embryo’s inner cavity was observed between 

15 and 16 hours of culture, a detail that would have been impossible to notice with 

standard microscopy. After this point, however, the embryo failed to re-expand, an 

observation consistent with an embryo approaching the end of its life.   
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Fig. 5.4 – Average speckle variance measured on live bovine blastocysts at an arbitrary fixed 
depth over 10 minutes. Five live embryos were observed and one dead embryo was used as a 
control. Data given as mean ± S.E.M. 

 
 

 

Fig. 5.5 – Total speckle variance (SV) for a single blastocyst at several depths over 26 hours.  
Movement was simultaneously detected by SV at multiple depths within the same embryo. In 
the graph, motion measurements at superficial (25 µm and 300 µm), intermediate (75 µm and 
225 µm) and central layers (150 µm) are displayed. 

 
 

 

Fig. 5.6 – Percentage of cross-sectional (en-face) images displaying speckle variance values 
above threshold at any given time for a single blastocyst. Information from all depths within 
the same embryo was considered to track the decreasing motion of the embryo over time.  
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Fig. 5.7 – Cross-sectional SS-OCT images of a blastocyst over long term observation and 
corresponding motion maps. A) En-face SS-OCT images of the observed embryo over 26 h 
(actively monitored over the first 18 h) at a fixed depth (150 µm from the top embryo surface). 
B) Corresponding motion maps, black represents absence of movement while movement 
intensity is given on a Red/Green scale (red higher). Scale bar = 50 µm. The images were kindly 
provided by Sophie Cajoule (Applied Optics, University of Kent). 
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5.4.3 Specific aim 3c: to test the hypothesis that SS-OCT can be used to obtain 

non-invasive cell counts from bovine blastocysts 

In this experiment, n=3 day 8 bovine blastocysts were imaged by SS-OCT and their cell 

count was non-invasively estimated by using the 3D objects counter feature of the 

software ImageJ (version 1.51n). After that, a control cell count was obtained by a 

standard fix and stain method (refer to section 2.2.4). When compared, the cell counts 

obtained with the two methods did not match. The results are shown in table 5.1, whilst 

figure 5.8 shows an example of this potential application. 

 

 Standard method 3D objects counter Error 

Embryo1 79 87 +10.1 % 

Embryo2 78 65 -16.7 % 

Embryo3 46 92 +100.0 % 

 

Table 5.1 – Cell counts in bovine blastocysts as estimated by standard fluorescence microscopy 
or by ImageJ 3D objects counter following SS-OCT. 

 

 

 

Fig. 5.8 - 3D reconstruction of a day 8 bovine blastocyst for automated cell count. A) 3D model 
of the embyo. TE: trophectoderm, IMC: inner cell mass. B) By using ImageJ, the 3D model was 
analysed and the position of each putative cell was highlighted with a dot of a different colour, 
then a count was produced.  
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5.4.4 Specific aim 3d: to test the hypothesis that SS-OCT observation is not 

harmful to the embryo 

When n=6 live bovine blastocysts were observed by SS-OCT, all of them survived and 

could be cultured successfully for an additional 24 h post-observation. Moreover, n=3 

bovine blastocysts of similar age and morphology were transported and handled in the 

same way as the SS-OCT samples but were never observed by OCT, these samples were 

labelled as “manipulation controls”. Two out of three manipulation controls survived 

and could be cultured successfully for an additional 24 h post-observation.  

 

5.5 Discussion 

Due to the experimental nature of the SS-OCT microscope used for this work, its limited 

availability, and the time required to adapt it for embryo imaging, it was impossible to 

use OCT to study the morphokinetic characteristics of embryo splits in order to study 

their developmental clock,. However, it was possible to explore the use of SS-OCT for 

the imaging of control embryos from both a static and a functional perspective. Some 

considerations on the potentials of OCT for non-invasive imaging are given below. 

 

5.5.1 OCT for static embryo imaging 

The results presented support the hypothesis that SS-OCT is a suitable technique to 

acquire structural images of bovine embryos, especially in the case of blastocysts. In 

cleavage stage embryos, the appearance of nuclei as darker structures is consistent with 

some previous reports (Zheng et al. 2012; Karnowski et al. 2017). However, the 

equipment setup employed did not have enough resolution to resolve the embryo in 

greater detail. On the other hand, as shown in section 5.4.2, SS-OCT could be 

successfully used to identify the gross morphologies within a bovine blastocyst on static 

observation and reconstruct its 3D model. Therefore, in future tests, this methodology 

could be used to obtain precise measurements of the shape and volume of a blastocyst’s 

ICM. These parameters have been shown to correlate well with implantation rates when 

measured by conventional microscopy (Richter et al. 2001). Because SS-OCT has far 

better depth resolution than standard microscopy, it could be used to measure 
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accurately the ICM structure to produce an accurate prediction of embryo implantation 

potentials. In a similar way, SS-OCT could be used to measure non-invasively the volume 

of a blastocyst’s TE to obtain another metric of embryo quality: the TE/ICM ratio (Van 

Som et al. 1997) the assessment of which implies the destruction of the embryo with 

standard methods (Handyside & Hunter 1984; Thouas et al. 2001). 

 

5.5.2 OCT for functional embryo imaging 

To date, a limited number of reports have focused on applying functional OCT imaging 

to study early mammalian embryos (Larina et al. 2009b; Sudheendran et al. 2011; 

Karnowski et al. 2017). However, this is the first time SS-OCT and SV have been applied 

to a mammalian embryo to quantify micron-scale movement. 

 

In agreement with the hypothesis that kinetic differences could be measured between 

live and dead embryos, over short-term observation, all live embryos consistently 

displayed higher SV values when compared with dead controls suggesting that a live 

embryo is likely to possess levels of intracellular activity detectable by OCT. However, 

the interpretation of the SV measurement became more complex over long-term 

observation. When the blastocyst collapsed (refer to figure 5.8A) after 12 hours of 

observation, a movement spike was detected at about 150 µm from the embryo’s 

surface (close to the median point) as evident from figure 5.6. One possible explanation 

for this behavior is that the SV measurement could detect at the same time both genuine 

intracellular movement and the mechanical movement of the blastocyst’s tissues 

caused by the deflation of the blastocoel, and that the summation of these two 

movements caused the SV surge displayed. Indeed, while the embryo could safely be 

declared dead after 18 hours of culture when completely blank motion maps were 

produced, the actual cessation of biochemical activity within the embryo could have 

occurred at an earlier time point between 15 and 18 hours. On the one hand, non-blank 

motion maps were obtained between 17 and 18 hours of culture after the complete 

disappearance of the blastocoel when mechanical motion seemingly ended, suggesting 

that the embryo more likely ceased all biochemical activity around the 18th hour mark. 
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On the other hand, this might not be the only possible interpretation as spontaneous 

decaying processes, not necessarily linked with intra-cellular activity, could have been 

detected instead. Therefore, whilst the decreasing trend in figure 5.7 appears to be an 

effective indicator of embryo motion, it cannot not be used to guess the exact time of 

the embryo’s death at the present state. 

 

Moreover, as portrayed in figure 5.6, the embryo did not behave consistently across its 

depth from a kinetic point of view. This finding is not necessarily surprising since it is 

known that cells or cell groups in a blastocyst can become fragmented or even die (Hardy 

et al. 1989). This is also known to happen in embryos that are cryopreserved. Indeed, 

the cryopreservation of an embryo in liquid nitrogen is a standard procedure, however 

not all embryos survive the freeze thawing process and those that do are likely to suffer 

from various levels of cryodamage (Stinshoff et al. 2011). Cryodamage assessment on a 

per embryo basis is very challenging due to the invasive nature of the tests available. 

Very few papers have used OCT to investigate cryodamage in embryos (Zarnescu et al 

2014; Zarnescu et al 2015) and none of them studied blastocyst stage embryos, which 

are commonly cryopreserved in bovine IVP schemes (Dobrinsky 2002). The SV analysis 

here described could become a useful tool to quantify the level of damage sustained by 

cryopreserved embryos within minutes of thawing and without need for extended 

culture. The results of this assessment would be easy to interpret since they would 

simply take the form of percentages of en-face images in motion. This assessment of the 

percentage of en-face images in active motion could also be expanded to take into 

account that, due to the spherical nature of the embryo, not all the en-face images 

contain the same number of cells so that a proportion of actively moving embryo volume 

could be calculated instead. 

 

5.5.3 OCT for non-invasive cell counts 

Potentially, the ability of SS-OCT to produce 3D models of embryos could be used to 

obtain cell counts, an approach that has been introduced by Zheng et al. (2012) who 

made use of a similar technique to SS-OCT, known as FF-OCT. In comparison to FF-OCT, 

the use of SS-OCT could permit real-time cell counts, thanks to the rapidity of its image 
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display process (Podoleanu & Bradu 2013). However, the limited number of embryos 

processed at present do not allow drawing any final conclusions on the current 

suitability of S-S-OCT to obtain cell counts. 

 

From an anecdotal point of view, though, it is interesting to note that the embryo that 

produced a wildly different count by SS-OCT as compared to the standard method 

(embryo 3, +100.0%) was a collapsed blastocyst, which could suggest a limited ability of 

the method to segment amassed cells. Therefore, through implementing a SS-OCT 

system with a higher transversal resolution it could be possible to produce more refined 

3D reconstructions that include robust non-invasive cell counts. If achieved, the ability 

to identify single cells in a blastocyst coupled with SV analysis would allow detection of 

dead cells instead of optical layers, stepping up the complexity of the analysis. This 

refinement could also lead to an accurate measure of the percentage of fragmentation 

(intended as cellular but immotile material) present in an embryo, a metric closely 

associated with viability, which is commonly only estimated subjectively (Alikani et al. 

1999). 

 

5.5.4 OCT safety 

Although caution should be used because of the very limited sample size, current tests 

seem to suggest that OCT observation is not more damaging to embryos than mounting 

and transport. This finding, however, is not surprising since SS-OCT uses very low power 

light sources to illuminate samples (a 1300 nm infrared beam in this experimental setup) 

and is in agreement with previous similar reports (Zheng et al. 2012; Karnowski et al. 

2017). 

 

5.5.5 Study limitations, reasons for caution 

The bovine embryos imaged by SS-OCT in this study were maintained at room 

temperature for the entire duration of the observation. Therefore, the results presented 

need to be interpreted conservatively from a biological standpoint. OCT systems have 

been adapted for use within incubators before (Larina et al. 2009a), and the SS-OCT 
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equipment reported here could be adapted for such use without major technical 

challenges for future projects (personal communication, Prof. Podoleanu A., School of 

Physical Sciences, University of Kent, Canterbury, UK, May 2017).  

 

Additionally, the most obvious limitation for the results presented in this chapter for SS-

OCT observation is the small sample size achieved. While this was largely due to the 

logistics of the experimental setup, it prevented a robust analysis of the properties of 

early bovine embryos to be delivered. Moreover, a final answer on the ability of SS-OCT 

to assess cell counts non-invasively or indeed on its safety cannot be provided in this 

work. However, the data presented does demonstrate several potential applications of 

SS-OCT to developmental biology and paves the way for exciting future interdisciplinary 

projects. 

 

5.6 Conclusions 

In conclusion, SS-OCT and SV analysis hold promise to become useful tools for the rapid 

identification of embryos with poor viability for example after freeze/thawing, and to 

obtain a number of viability metrics non-invasively. Moreover, the availability of a SS-

OCT system built within an incubator would permit analysis of the developmental clock 

in bovine embryo splits in greater detail than what presented in Chapter 4 thanks to the 

ability to visualize the embryo in three dimensions, unimpeded by lipid content or 

overlapping structures. SS-OCT could become a valuable tool to confirm this finding 

whilst allowing for the viability of the embryo to be preserved so that embryo transfers 

could be performed as well.
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6. Specific Aim 4: To demonstrate the application of 

karyomapping to blastocyst stage bovine embryos and 

characterise the type, level, and origin of chromosomal 

aberrations and rearrangements. 

 

6.1 Background 

Traditional breeding programmes aimed at improving the genetics of cattle focused 

around the selection of sires and dams based on phenotypic records of the individual 

and its relatives, and on progeny phenotyping (Henderson 1984). Later work, however, 

expanded on progeny testing and proposed a selection approach based on the 

assessment of QTLs, sections of DNA associated with variations in phenotypes of 

commercial interest such as milk production (Georges et al. 1995). More recently, the 

availability of a complete genome sequence for Bos taurus (refer to Elsik et al. 2009 for 

the most up to date draft), allowed the discovery of thousands of SNPs associated with 

QTLs which could be used as high-density markers for the production of GEBVs and for 

the selection of livestock based on genomic data, a process termed “genomic selection” 

(Meuwissen et al. 2001). The accuracy of GEBVs has been shown to be as high as 85% 

(Meuwissen et al. 2001), comparing well with, or even exceeding the precision obtained 

with traditional methods (Hayes 2009). It has been estimated therefore, that the 

application of genomic selection could double the rate of genetic gain for a given breed 

(Schaeffer 2006). Indeed, a recent report from Garcia-Ruiz et al. (2016) highlighted that 

genomic selection in Holstein cattle in the US over a time period of 8 years substantially 

decreased generational intervals, while rapidly increasing fertility, lifespan, and udder 

health. 

 

As discussed in the introduction, IVP techniques hold promise to further reduce 

generational intervals and improve the dissemination of valuable genetics. Therefore, 

the ability to combine IVP and genomic selection could potentially lead to further 
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improved rates of genetic gain, through selective transfer of embryos that are proven 

carriers of desirable traits (Humbolt et al. 2010; Ponsart et al. 2014).  

 

On the other hand, studies in several farm animals have suggested that the frequency 

of aneuploidy is increased in IVP embryos as compared to in vivo derived embryos (Viuff 

et al. 1999; Rambags et al. 2005; Coppola et al. 2007; Lechniak et al. 2007; Ullo et al. 

2008; Hornak et al. 2015), and it is well established that aneuploidy is a leading cause of 

IVF failure (Hassold & Hunt 2001) and developmental arrest (Munné et al. 2007; King 

2008). In humans, it has been shown that the majority of IVF embryos are affected by at 

least some degree of chromosomal abnormality (Lathi & Milki 2004; Baart et al. 2007; 

Franasiak et al. 2014). Moreover, in humans, aneuploidy is much more common in 

oocytes than sperm cells (Hassold & Hunt 2001) but similar information is lacking in 

cattle. However, levels of mixoploidy ranging between 25-90% have been discovered in 

bovine embryos (Viuff et al. 1999; Jakobsen et al. 2006; Garcia-Herreros et al. 2010; 

Destouni et al. 2016; Hornak et al. 2016), and an aneuploidy rate of 30% has been 

detected in bovine oocytes (Nicodemo et al. 2010).  

 

A number of preimplantation genetic screening tools have been implemented in an 

attempt to improve embryo selection for patients with recurring IVF failure (Harper 

2017). Among these tools is karyomapping, a screening method based on SNP typing in 

which the genotypes of an individual, its mother, father and a reference (often a sibling) 

are compared to describe the parental origin and haploblock inheritance of each 

chromosome (Handyside et al. 2010). Karyomapping can be used to detect 

simultaneously single gene disorders and chromosomal numerical aberrations, and to 

highlight regions of meiotic recombination in the parental karyotypes (Handyside et al. 

2010; Thornill et al. 2015; Griffin & Gould 2017).  

 

In cattle, the same SNP information used to construct GEBVs could also be used for 

chromosome copy number screening by employing the same karyomapping technique. 

In so doing, the combination of IVP, genomic selection and karyomapping in cattle 

embryos has the power to identify embryos with high expected breeding values, while 
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simultaneously selecting for chromosomally normal embryos in order to maximise 

pregnancy rates. This chapter describes this novel approach for optimising the delivery 

of superior genetics to the cattle breeding industry.  

 

The first aim of this chapter, therefore, was to implement a successful karyomapping 

based PGS protocol for the screening of TE biopsies. The robustness of this analysis was 

investigated by testing the hypotheses that the performance of the biopsies at SNP 

typing as measured by call rates is not affected by the biopsy method, and that the SNP 

and karyomapping data obtained from embryo biopsies matches the information 

obtained from their respective calves borne after embryo transfer. Secondly, 

karyomapping was applied to investigate the type, level and parental origin of 

chromosome number aberrations in bovine IVP embryos and to estimate the 

recombination frequency in parental germlines. 

 

6.2 Specific aims 

With reference to the background above, the specific aims of this chapter were: 

 

4a. To investigate whether SNP typing call rates are affected by the biopsy method or 

the biopsy operator  

 

4b. To test the hypothesis that SNP genotypes and karyomaps obtained from embryo 

biopsy and the corresponding live born calf would be highly concordant 

 

4c. To apply karyomapping to describe the frequency and type of chromosomal 

abnormalities in the trophectoderm of bovine blastocysts on a chromosome by 

chromosome basis 

 

4d. To test the hypothesis that chromosomal aberrations in bovine embryos are more 

often of maternal rather than paternal origin 
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4e. To test the hypothesis that cross-over events happen with equal frequency in the 

maternal and paternal germline in cattle and estimate the average recombination 

distance 

 

6.3 Methods 

N=111 embryo biopsies were obtained either in-house or from Paragon Veterinary 

Group by either a blade assisted or a laser assisted method from n=15 IVF rounds and a 

total of 9 different sires and 11 different dams resulting in at least quadruplicate tests 

for each experiment (refer to section 2.1). The biopsies were processed by WGA (as per 

section 2.2.8.1) before being submitted for SNP typing (refer to section 2.2.8.5). DNA 

samples were also obtained from each of the embryo’s parents (refer to sections 2.2.8.2-

4) and submitted for SNP typing so that karyomaps could be produced and analysed 

(refer to section 2.2.8.6). Finally, DNA samples from calves born after transfer of 

karyotyped embryos were also recovered and used for SNP typing and karyomapping 

analysis.  

 

6.4 Results 

Overall, n=93 embryo biopsies were successfully amplified by WGA, n=89 were 

successfully SNP typed and n=61 fulfilled all the requirements for karyomapping (high 

enough call rate, availability of a sibling). Finally, n=5 calves were born following ET of 

karyotyped embryos. 

 

6.4.1 Specific aim 4a: To investigate whether SNP typing call rates are affected 

by the biopsy method or the biopsy operator  

In order to test whether the biopsy method (blade or laser assisted) or the biopsy 

operator (Kent operator or Paragon Veterinary Group operator) had an impact on the 

quality of the DNA presented for SNP typing, the call rates achieved by biopsies obtained 

with different methods were compared. Those biopsies that were successfully amplified 
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by WGA but failed to produce any result after SNP typing (n=4) were excluded from this 

analysis. 

 

Results showed that the biopsy method had no significant effect on the performance of 

the DNA sample at SNP typing, with blade assisted biopsies scoring an average call rate 

of 88.4 ± 3.0% and laser assisted biopsies of 85.5 ± 4.0% (t-test, t87=0.93, P=0.36). 

Additionally, because only samples producing a call rate ≥80% are considered of 

sufficient quality for karyomapping, the proportion of biopsies satisfying this 

requirement was also compared between the two biopsy methods. There was no 

significant impact on the proportion of samples with a call rate ≥80% between the two 

groups, with blade biopsies being found suitable in 87% of cases (n=26/30) and laser 

biopsies in 79% of cases (n=47/59) (chi-square, χ2
1=0.66, P=0.41). These findings are 

displayed in figure 6.1. 

 

Finally, when the call rates obtained from samples collected by two different operators 

were compared, it was found that samples collected by the Paragon Veterinary Group 

operator had an average call rate of 84.7 ± 1.7% (n=58), while samples collected by the 

Kent operator had a call rate of 89.8 ± 2.5% (n=31) which resulted in no statistical 

difference (t-test, t87=1.72, P=0.09). However, it is worth noting that all the samples that 

completely failed to produce a result at SNP typing and were excluded from analysis 

were all derived from blade-assisted biopsies performed by the Paragon Veterinary 

Group operator. 

 

Therefore, the results presented seem to suggest that TE biopsies will perform similarly 

in terms of suitability for karyomapping analysis, regardless of the method chosen to 

obtain them. Moreover, inter-operator variability appeared limited. 
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Fig. 6.1 – Call rates obtained from blade assisted or laser assisted biopsies. After whole genome 
amplification, the embryo biopsy samples obtained with either method were submitted for 
Single Nucleotide Polymorphism (SNP) typing and the call rates achieved by each group were 
recorded. No statistical differences were evident between the two methods (P>0.05). 

 

6.4.2 Specific aim 4b: to test the hypothesis that SNP genotypes and 

karyomaps obtained from embryo biopsy and the corresponding live 

born calf would be highly concordant 

To date, the birth of five calves has been recorded following 61 embryo transfers; 

however, some pregnancies were still ongoing at the time of writing. A portrait of Cookie 

Four, the first calf born from a karyomapped embryo is shown in figure 6.2, and the 

complete karyomap produced from its embryo biopsy is shown under Appendix II. 

 

To verify whether the SNP typing and karyomaps produced from embryo biopsies were 

a true representation of the embryo’s genotype, the results obtained from the biopsied 

embryos that later resulted in live births were compared against the SNP typing and 

karyomaps obtained from the respective live born calves. 
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As expected, all five embryo biopsies appeared euploid at karyomapping, a result that 

matched the live born calves. Moreover, when the SNP results were compared, it was 

found that the biopsy and the live born were concordant for 98.2 ± 1.4% of SNP loci. 

ADO events (where one sample was homozygous and the other heterozygous) 

represented 1.8 ± 1.4% of loci and complete mismatches (one sample homozygous for 

allele A, the other sample homozygous for allele B) affected between 0% and 0.02% of 

loci. However, it is important to note that for 10.8 ± 4.5% of the SNP loci assessed, no 

call could be generated in either the biopsy, the live born or both and these loci were 

excluded from the analysis. 

 

 

Fig. 6.2 – Birth of the first karyomapped calf in the world. Cookie Four is the daughter of the 
sire Cinderdoor (Semex) and the dam Crossfell Uno Cookie (Paragon Veterinary Group) and was 
born in 2017 in Cumbria following the transfer of a karyomapped embryo. 

 

6.4.3 Specific aim 4c: to apply karyomapping to characterize the frequency and 

type of chromosomal abnormalities in the trophectoderm of bovine 

blastocysts on a chromosome by chromosome basis 

Following karyomapping analysis of trophectoderm biopsies, 68.8% of the embryos 

(n=42/61) appeared euploid while the rest displayed one or more abnormalities, which 

included monosomy, trisomy, triploidy, uniparental disomy and parthenogenetic 

activation. Table 6.1 reports the number of embryos displaying such abnormalities by 

type and, when appropriate, parent of origin, whilst figure 6.3 summarises the number 

of abnormalities discovered per embryo. A trend appeared to be present with embryos 
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displaying either up to three abnormal chromosomes or a large set of abnormalities with 

no in-between clusters. The appearance of these abnormalities on karyomapping 

analysis is also shown in figure 6.4. 

 

 Paternal Maternal 

Euploid 49 46 

Monosomy 3 6 

Trisomy 4 6 

Triploidy - 1 

Parthenogenetic  - 4 

Uniparental disomy 1 
 

Table 6.1 – Types and number of chromosomal aberrations in embryo biopsies (n=61) by 
parent of origin. Numbers are given per parental haplotype. Haplotypes carrying multiple 
abnormalities are considered separately in each row. 

 

 

 

Fig. 6.3 – Number of embryos displaying zero, one or multiple chromosomal abnormalities. 
Interestingly, the affected embryos had either few or many chromosomal errors with no in-
between clusters. 
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Fig. 6.4 – Example karyomaps. A series of karyomaps are presented from both normal and abnormal cases. Gray bands imply absence of information. 
Euploid chromosomes are characterised by few, large alternating blocks of blue/red (for paternal) or green/yellow (for maternal) bands, representing 
alternating haplotypes. Monosomies appear as complete or almost complete lack of information for a full chromosome, while trisomies appear as 
frequent and short blocks of alternating haplotypes. Uniparental disomies appear as a monosomy for one chromosome and a trisomy for its homologue, 
and, finally, parthenogenetic activation events appear similar to a monosomy of paternal origin at all loci. Chr: Chromosome; Ref.: Reference sibling; 
MS: Monosomy; TS: Trisomy; UPD: Uniparental Disomy. These karyomaps were produced by BoVision (version 3).
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Additionally, karyomapping was employed in order to characterise the frequency and 

type of numerical abnormalities on a chromosome by chromosome basis. 

Parthenogenetically activated embryos were excluded from this analysis to avoid 

overrepresenting paternal monosomy events. Moreover, triploidy and uniparental 

disomy were only detected once and therefore could not be investigated further from a 

statistical point of view. 

 

Overall, trisomies were detected with a frequency of 2.10% (n=68/3248 chromosomes) 

while monosomies with a frequency of just 0.31% (n=10/3248 chromosomes) resulting 

in a statistically significant difference between these two groups (chi-square, χ2
1=43.6, 

P=4.0x10-11). Figure 6.5 illustrates the number of monosomies and trisomies detected 

for each autosome and for the maternal X chromosome. While in these tests 

chromosomes 13 and 29 appeared to be affected by numerical abnormalities more 

often than other chromosomes, and chromosomes 20 and 21 were never affected, the 

rarity of these errors resulted in overall non-significant differences among all 

chromosomes (Fisher’s exact test, df=58, P>0.05).  

 

 

Fig. 6.5 – Number of monosomies and trisomies detected per chromosome. The results were 
collected from n=56 embryo karyomaps and a total of 3248 chromosomes. No information on 
the paternal X chromosome was available. 
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6.4.4 Specific aim 4d: to test the hypothesis that chromosomal aberrations in 

bovine embryos are more often of maternal rather than paternal origin 

Since karyomapping is able to detect the parental origin of chromosome abnormalities, 

it was possible to test the hypothesis that numerical aberrations are more commonly 

derived from the maternal germ line. Due to the nature of the sex chromosomes and of 

karyomapping, however, abnormalities of the X chromosome could not be compared 

between sexes. Parthenogenetically activated embryos and triploid embryos were also 

excluded from comparison. 

 

Monosomies were detected with a frequency of 0.24% (n=4/1653) and 0.36% 

(n=6/1653) for chromosomes of paternal and maternal origin, respectively, and no 

statistically significant differences were found between these two groups (chi square, 

χ2
1=0.40, P=0.52). These results are summarised in figure 6.6. 

 

On the other hand, trisomies appeared over represented in the maternally derived 

chromosome population where they were observed with a frequency of 2.60% 

(n=43/1653) as opposed to a frequency of 1.51% (n=25/1653) for the paternally derived 

chromosome population, resulting in a statistically significant difference (chi-square, 

χ2
1=4.7, P=0.03). This analysis is further illustrated in figure 6.7. 

 

 

Fig. 6.6 – Number of monosomies per chromosome by parent of origin. No obvious pattern 
was detected from the analysis of 56 embryos. 
  



G. Silvestri Karyomapping 

 

172 

 

 

 

Fig. 6.7 – Number of trisomies per chromosome by parent of origin. Overall, trisomies appeared 
more common in the maternal chromosome population (chi-square, P<0.05) as detected from 
the analysis of 56 embryos. 

 

6.4.5 Specific aim 4e: to test the hypothesis that crossover events occur with 

equal frequency in the maternal and paternal germline in cattle and 

estimate average recombination distance 

On average, 87.7 crossover events were detected per euploid embryo, of which 44.6 

were of paternal and 43.1 of maternal germline origin. Chromosomes involved in 

trisomies were excluded from this analysis due to the impossibility to obtain a crossover 

count by karyomapping in these cases. While there was no difference in the total 

number of crossover events between the two germ lines overall (t-test, t96=1.06, 

P=0.29), significant differences became apparent at a chromosomal level. For example, 

chromosome 1 displayed more rearrangemnents in the paternal (2.9 ± 0.2 

events/chromosome) rather than in the maternal germline (2.3 ± 0.2 

events/chromosome) (t-test, t102=2.07, P=0.03). A complete breakdown of this analysis 

is presented in figure 6.8. 
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Fig. 6.8 – Average number of crossovers per chromosome and parent of origin. The analysis 
was completed on a total of 56 embryos. For each chromosome pair, a star (*) indicates that a 
significant difference was found between the number of events per parent (paired student t-
test, P<0.05). Data given as mean ± S.E.M. 

 

Assuming that, on average, one crossover event occurs in a chromosome of size 1 

Morgan (M), based on the number of crossover events detected in this set of tests the 

genetic length of the bovine genome was estimated to be 4453 cM (sex averaged length 

across 29 autosomes plus female chromosome X). By dividing the genetic length by the 

physical genome length measured in mega base pairs (Mb), the average genome-wide 

recombination distance per Mb was calculated as 1.67 cM/Mb. 

 

Moreover, from the information presented in figure 6.8 it appeared that chromosome 

size decreases more rapidly than the number of crossovers per chromosome. To 

investigate this hypothesis, a linear regression analysis was performed, as portrayed in 

figure 6.9. It was found that a significant correlation exists between chromosome size 

and average number of recombination events with smaller chromosomes having smaller 

distances between events (linear regression, R2=0.40 F=171.6, P=3.26x10-13). 

Interestingly, the maternal chromosome X appeared as an outlier, showing a much 

greater space between adjacent events than other chromosomes of similar size. 
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Fig. 6.9 – Average number of crossovers as correlated with chromosome size measured in 
mega base pairs (Mb). A moderate but significant association was found suggesting that smaller 
chromosomes allow for less space between crossover events. Chromosome X appeared as an 
outlier due to its reduced recombination frequency. 
 

Finally, the non-recombination rate, indicating the proportion of chromosomes for 

which no crossover event could be detected at karyomapping was investigated by 

chromosome and parent of origin. The non-recombination rate ranged from 0% to 42% 

(average 15.9 ± 2.5%), and a more detailed analysis is presented in figure 6.10.  

 

 

Fig. 6.10 – Non-recombination rate per chromosome and parent of origin. The analysis was 
completed on a total of 61 embryos and error bars are given as confidence intervals for 
proportions. Smaller chromosomes appeared to be more often affected by non-recombination. 
Data given as mean ± C.I. 95% for proportions. 
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6.5 Discussion 

In this chapter, a proof of principle for the application of karyomapping to IVP bovine 

embryos has been presented, which has led to the birth of several healthy calves. The 

routine application of PGS has generated some controversy in the literature after a study 

reported a reduction in live birth rates following transfer of PGS embryos in human IVF 

(Mastenbroek et al. 2007). However, later studies demonstrated a beneficial effect of 

PGS on implantation rates when TE biopsy was applied as opposed to blastomere biopsy 

(Kakkali et al. 2007; Harton et al. 2013; Lee et al. 2014). The data available from the 

human model would suggest that the application of PGS to bovine embryos could lead 

to an improvement in pregnancy rates while at the same time, allowing for genomic 

selection prior to implantation. 

 

6.5.1 Reliability of SNP typing and karyomapping from embryo biopsies and its 

correlation with live borne calves 

The results presented in section 6.4.1 strongly suggest that the methodology used to 

obtain the embryo biopsy had no impact on the overall reliability of the SNP typing. This 

observation is in agreement with a previous report suggesting that TE biopsy is highly 

reproducible across different practitioners (Capalbo et al. 2015).  

 

Call rates between 75 and 95% can be expected for WGA embryo biopsies at SNP typing 

(Natesan et al. 2014a), a result that once again compares well with the results presented 

here. Moreover, a high concordance was found between the results of the embryo 

biopsy and the results obtained from the corresponding calves born after embryo 

transfer (98.2 ± 1.4%), a result that compares well with similar previous investigation for 

SNP typing (Sargolzaei et al. 2012). Finally, comparisons between embryo biopsy and 

live born calves highlighted a total ADO rate of 1.8%; however, this should not represent 

a cause for concern with karyomapping. Because only heterozygous calls are used to 

establish a phase, ADO issues are virtually eliminated (Handyside at al. 2010) whilst 

complete mismatches were shown to be very rare. Overall, the data presented provides 

evidence for the robustness of the assay method employed. 
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6.5.2 Characterisation of chromosomal abnormalities by karyomapping 

In this work, a significantly higher number of trisomies than monosomies were detected. 

In theory, random meiotic segregation errors should cause equal (or at least similar) 

numbers of monosomies and trisomies as a gamete carrying an extra chromosome copy 

will be formed at the same time as a gamete carrying a missing chromosome. Moreover, 

karyomapping is able to detect meiotic but not post-zygotic trisomies, whilst being able 

to detect both meiotic and post-zygotic monosomies (Griffin & Gould 2017). Therefore, 

the results contradicted the expectation that karyomapping would detect similar rates 

of trisomy and monosomy or higher rates of monosomy in bovine embryos. 

 

This might suggest that some of the trisomies recorded were in fact false positives. 

However, to mitigate this risk, three independent operators were required to agree on 

the diagnosis before a trisomy was called. An alternative explanation is that embryos 

carrying meiotic trisomies can tolerate the increased chromosome count for a time and 

reach the blastocyst stage more often than embryos affected by meiotic monosomies, 

so that the population examined in this study (blastocyst stage embryos) was indeed 

partially depleted of monosomies, a hypothesis supported by evidence gathered from 

studies in humans (Clouston et al 1997; Sandalinas et al. 2001; Clouston et al 2002). This 

would imply that the numerical aberration rates presented here are not necessarily 

informative of the original number of monosomy and trisomy events occurring in bovine 

germlines. However, total blastocyst aneuploidy rates appear very similar to the total 

gamete aneuploidy rates in humans (Fragouli & Wells 2011) suggesting that the meiotic 

trisomy rates recorded here could be a good estimate of meiotic trisomy rates in the 

parental germline. 

 

Interestingly, in this data set a case of uniparental disomy was identified, demonstrating 

the applicability of karyomapping for the discovery of this condition in bovine embryos, 

the diagnosis of which normally escapes detection with other methodologies like aCGH 

(Griffin & Gould 2017). However, since uniparental disomy was only discovered once in 

this set, no further conclusions can be drawn. 
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Additionally, in this data set n=4 embryo biopsies showed evidence of parthenogenetic 

activation. Mammalian oocytes are known to have the potential to become activated 

and progress to cleavage divisions and even form a blastocyst without need for a male 

gamete contribution (Presicce & Yang 1994); however, the spontaneous activation of an 

oocyte is a rare occurrence (King et al. 1988). Instead, in this study, parthenogenetically 

activated oocytes were discovered in 4 out of 61 biopsies. It is also interesting to note 

that three of these parthenotes originated from the same IVF cycle, which used semen 

from the same sire. A spike in the calcium concentration in an oocyte is sufficient to 

induce parthenogenetic activation (Fulton & Whittingham 1978). Therefore, it is 

possible that some oocytes become activated after a fertilisation-induced calcium spark, 

but problems with sperm decondensation, perhaps due to a bull-specific factor, 

prevented syngamy and resulted in a parthenogenetically activate oocyte instead, an 

event that has been described before in bovine embryos fertilised by intracytoplasmic 

sperm injection (ICSI) (LI et al. 1999). 

 

6.5.3 Parental effect on chromosome number aberrations 

Aneuploidy is much more common in human oocytes (20% incidence) than in human 

sperm cells (2% incidence) and a strong correlation has been found between maternal 

age and oocyte aneuploidy rate (Hassold & Hunt 2001). Similar aneuploidy rates to 

humans have been discovered in bovine oocytes (30%) (Nicodemo et al. 2010) while 

information is scarce about total aneuploidy levels in bull semen, with one non-

comprehensive study suggesting a small incidence of aneuploidy in bull semen (disomy 

rate of approximately 0.03-0.04% for chromosomes X and 6) (Rybar et al. 2010). 

 

In this data set, no sex-related difference was discovered in the prevalence of 

monosomies, however trisomies were 1.7 times more common in the maternal 

chromosome population, somewhat confirming the original hypothesis. Remarkably, 

karyomapping, thanks to its ability to assign the parental origin of aneuploidy, can be 

used to report on all bull sperm chromosomes at the same time and fill the current gap 

in the literature. A total aneuploidy rate of 1.75% was estimated for bull sperm in this 
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study. However, this is likely to be an underestimation due to embryos derived from 

aneuploid sperm cells failing to reach the blastocyst stage. 

 

6.5.4 Crossover events 

The number of crossovers per meiotic event differs significantly between the two sexes 

in several mammalian species (Barton & Charlesworth 1998; Otto & Lenormand 2002; 

Lynn et al 2005). For example, female mice have higher recombination rates as 

compared to males (Otto & Lenormand 2002) but crossovers are more frequent in rams 

rather than in ewes (Maddox et al. 2001). Previous studies have failed to identify any 

difference in the recombination rate of bulls and cows (Barendse et al 1994; Kappes et 

al. 1997; Ihara et al. 2004). In agreement with these previous findings, the results 

presented here failed to detect a clear sex skew. However, a recent study by Ma et al. 

(2015), which also made use of SNP analysis for haplotyping, discovered an increased 

recombination frequency in bulls and suggested that the difference is most evident at 

sub telomeric regions. In this work, while no difference between the numbers of 

crossover events in the paternal and maternal germlines were found overall, single 

chromosomes appeared more frequently rearranged in one or the other sex. It is 

therefore conceivable that a larger sample size would eventually have led to similar 

conclusions as Ma et al. (2015).  

 

The genetic length of the bovine genome as estimated in this study by karyomapping for 

the 29 autosomes plus the maternal  X (4453 cM), exceeded the estimate of 3097 cM 

previously published by Zi-Quing et al. (2013). However, Zi-Quing et al. did not include 

the X chromosome in their analysis. It also greatly exceeded the distance calculated by 

Ma et al. (2015) of 2435 cM (sex average). In a similar way, the recombination frequency 

estimated here by karyomapping (1.67 cM/Mb) was much greater than the 

recombination frequency previously estimated by other groups, which fell in the range 

0.8 – 1.12 cM/Mb (Ihara et al. 2004; Zi-Quing et al. 2013; Ma et al. 2015). This could be 

explained by a higher number of crossover events detected by karyomapping as 

compared to other methods. It is also possible that the high number of events recorded 

in this study was caused by false positives; however, steps were taken to reduce the 
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number of false positives by requiring crossover events to be supported by at least three 

consecutive informative SNPs (Kong et al 2010; Ma et al. 2015). An alternative 

explanation is that the discrepancy observed with other results published in literature 

was caused by a genuinely higher than average recombination frequency in the 

population studied. In this regard, it is important to highlight that all the embryos 

investigated in these tests were derived from a total of 20 parents, representing a much 

smaller population as compared to previous reports (Kong et al. 2010; Ma et al. 2015). 

 

Interestingly, as shown in figure 6.10, no crossover events could be detected on a 

number of euploid chromosomes. However, it is known that a minimum of one chiasma 

per chromosome is required to form during meiosis in order to maintain the structural 

integrity of the spindle, achieve correct segregation, and avoid aneuploidy (Mather 

1938; Jones 1984). Karyomapping can only detect crossover events that generate 

different haplotypes between the sample and reference however, and therefore a 

shared crossover (an event happening in the exact or very similar location in both 

sample and reference) will remain undetectable. Crossover events are not evenly spaced 

across the genome, but tend to accumulate close to the so-called “recombination hot-

spots” (Kauppi et al. 2004). This observation would suggest that sample and reference 

might regularly display shared crossovers, explaining the non-recombination rates 

presented. Moreover, karyomapping relies on the presence of heterozygous markers to 

track haploblocks; therefore, the presence of shared homozygosity regions between 

parents could have masked some events as well. Therefore, these considerations 

suggest that the genomic distance here calculated by karyomapping could be an 

underestimation due to some crossover events remaining unaccounted for. 

 

Finally, as evidenced by figure 6.9, chromosome X displayed a smaller number of 

crossover events than expected for its size as compared to autosomes. This is in 

agreement with a previous study in humans suggesting a small crossover count for 

chromosome X (Ottolini et al. 2015) and with similar reports in rat and mouse (Jensen-

Seaman et al. 2004). However, as discussed before, the number of crossovers in the X 
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could have been underestimated due to the presence of recombination hot spots 

(Kauppi et al. 2004) or due to homozygosity as discussed above.  

 

Additionally, the trend displayed in figure 6.9 suggests that the average distance 

between crossovers is not consistent across the genome, with smaller chromosomes 

generally allowing less space between events, which would lead, overall, to a higher 

recombination frequency in smaller chromosomes. This is in agreement with previous 

observation that recombination rates across the genome of mammals are not 

homogeneous (Jensen-Seaman et al. 2004). Interestingly, a similar increased 

recombination rate in smaller chromosomes has been detected in birds and is especially 

pronounced in their microchromosomes (Hillier et al. 2004). 

 

6.5.5 Study limitations, reasons for caution 

Intuitively, because chromosome Y is only present in a single copy in the paternal 

genome, it cannot be used for haploblock-based investigations like karyomapping. 

Similarly, because sires only have one copy of the chromosome X, the paternal X 

chromosome will be passed more or less unchanged from father to female offspring, 

once again preventing haploblock analysis, so that a truly complete analysis of the 

bovine genome by karyomapping will remain impossible using this technique. 

Moreover, the relatively small sample size and the comparatively low rate of 

chromosomal number aberration discovered in this study should make us cautious when 

attempting to generalise the findings presented. 

 

Additionally, a degree of subjectivity was required in this study when diagnosing 

trisomies. As described in figure 6.4, trisomies appear as frequent short blocks of 

alternation between haplotypes; however, the identification of this pattern is left to the 

operator’s judgement. While in most cases the trisomic pattern was obvious and three 

independent operators agreed on the diagnosis, in three cases (out of 68) a trisomy 

diagnosis was only agreed upon by two out of three operators. 
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Finally, it is important to consider that, due to the time required for SNP typing, 

blastocyst stage embryos must be cryopreserved whilst a karyomapping analysis is 

completed. The necessity for this extra step adds a cost to the method and embryos run 

the risk of being lost to cryodamage (Stinshoff et al. 2011). 

 

6.6 Conclusions 

The work described in this chapter has demonstrated the usefulness of karyomapping 

for both PGS, genomic selection and for conducting fundamental biology studies on 

bovine embryos.  

 

The birth of the first five karyomapped calves in the world has opened the way to a 

methodology of breeding that combines genomic selection and IVP, which is expected 

to improve rapidly the genetics of cattle. While bovine IVP has historically dominated 

the commercial landscape as compared to other domestic animal species, successful 

breeding strategies are readily exported for use in other species. For example, high-

density SNP chips for the screening of porcine embryos are already commercially 

available; therefore, it is possible to adjust karyomapping for use in pigs as well. 
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7. General Discussion 

 

7.1 Achievement summary 

Overall, this thesis was largely successful in achieving its specific aims, and in particular: 

 

1. The developmental competence of porcine oocytes was examined through a 

series of tests investigating their nuclear maturation, CG migration, GSH content, 

fertilisation and embryo development rates. The results presented suggest that 

the extension of the COC at oocyte collection might be a good predicative 

indicator of the oocyte’s developmental competence. Moreover, the findings 

seem to suggest that current IVM practice is wasteful, through the elimination 

of oocytes with slightly reduced COC investment, which still have remarkable 

developmental potentials. The implementation of the selection criteria 

presented is expected to lead to an increased embryo yield per donor; however, 

due to the limitations described in Chapter 3, further validation work will likely 

be required before robust guidelines can be produced.  

 

2. Several methodologies for both single and serial splitting of bovine embryos 

were compared under the same IVP system by measuring the number of 

blastocysts produced per starting embryo. The viability of the resulting 

blastocysts was also investigated by obtaining cell counts. The evidence collected 

from these investigations supported the hypothesis that single splitting 

strategies are superior to serial splitting strategies in that they produce higher 

numbers of better quality blastocysts. In particular, it was found that the splitting 

of an 8-cell stage embryo in four parts is the strategy most likely to produce the 

greatest output of good quality embryos. The application of embryo splitting 

following the methods described in Chapter 4, therefore, is expected to multiply 

the availability of embryos derived from high merit donors. Moreover, time-

lapse investigation of the embryo splits found evidence of the existence of a 
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developmental clock that tightly regulates early cleavage events, providing 

support for some of the current theories of early embryonic development. 

 

3. A new imaging modality, SS-OCT, was successfully tested for use in early stage 

bovine embryos to obtain both structural (static) and functional (dynamic) 

imaging and investigate the vital status of the sample, although blastocyst stage 

embryos could be described at a finer resolution than cleavage stage embryos. 

Moreover, the evidence collected from functional analysis suggests that SS-OCT 

is able to measure micron-scale movement within living blastocysts and can 

rapidly discriminate between live and deceased embryos, representing a new 

application of this optical methodology. 

 

4. The applicability of karyomapping to bovine embryos was demonstrated by the 

birth of the first five karyomapped cows in the world. The evidence presented in 

Chapter 6 suggests that SNP typing and karyomapping are robust techniques for 

the assessment of genomic information from TE biopsies. At the same time, the 

usefulness of karyomapping for answering fundamental biology questions about 

aneuploidy and recombination frequency was explored. The incidence of 

aneuploidy in bovine blastocysts could be measured and the parental origin of 

the abnormalities tracked. Additionally, the genetic length of the bovine genome 

could be estimated and the recombination frequency measured at a 

chromosomal level.  

 

In summary, the focal point of this work has been improving the yield of competent, 

euploid and high genetic merit IVP embryos available for transfer. Less wasteful 

selection criteria for IVM have been proposed and two novel techniques: SS-OCT and 

karyomapping were implemented in bovine IVP for the first time, establishing proof of 

principles and paving the way for new studies. Moreover, some of the gaps identified in 

the literature about the behaviour of split embryos were addressed. With the above in 

mind, the findings presented have the potential to have a positive impact on current IVP 

practice for both cattle and pigs, and these methods could be extended for use with 
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other farm animals as well. The wider implications of this research are discussed 

hereafter. 

 

7.2 An optimised IVP protocol: the wider scope of the project 

The results presented in this thesis converge together towards the development of a 

single, optimised IVP protocol by suggesting methods to either increase embryo 

production from elite parents or increase the ability to select for the most 

developmentally competent and high genetic merit embryos for transfer. 

 

In particular, as discussed in Chapter 3, by applying adequate criteria for oocyte 

selection before IVM, it would possible to reduce wastage and increase the number of 

cleavage stage embryos produced. On the one hand, similar benefits could be achieved 

by simply deciding to culture the entire COC yield, regardless of morphology, postponing 

selection until after IVF. However, this would likely involve culturing of non-

developmentally competent or even damaged oocytes. Damaged cells in culture might 

die and release factors such as ROS (Golstein & Kroemer 2007), which would have the 

potential to negatively affect the growth of competent oocytes. Moreover, COCs with 

compromised morphology are known to form the majority of the oocyte yield (Lin et al. 

2015), and their inclusion in an IVM/IVF programme would considerably slow down 

operations withouth the prospect for a much increased embryo yield as compared with 

the strategy outlined in the present work. 

 

Having established efficient criteria for the selection of oocytes leading to an optimised 

embryo production, the results presented under Chapter 4 strongly suggest that the 

embryo yield could be further multiplied by the application of embryo splitting, and in 

particular by the splitting of 8-cell stage embryos in four parts. The application of this 

strategy would be particularly desirable when elite parents have been employed for IVP.  

 

Additionally, the combination of embryo splitting and PGS in the form of karyomapping, 

as outlined in Chapter 6, would be especially beneficial: the availability of embryo splits 

would increase the number of samples available for PGS, reducing the chances of a 
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particular genetic background being lost due to an unsuccessful biopsy. Moreover, a 

single karyomapping test would be informative on all twins simultaneously, improving 

the cost-effectiveness of testing while providing information on both the ploidy status 

and the genomic value of each twin set. 

 

Furthermore, the results presented under Chapter 5 suggest that it would be possible 

to adapt a SS-OCT system for use as a time-lapse device. This development would allow 

to track the development of the embryos in culture non-invasively while gathering 

information from multiple optical planes simultaneously, ensuring that only the 

embryos that demonstrate higher developmental potentials are biopsied and screened, 

greatly reducing the economic cost associated with rejecting an aneuploid embryo only 

after karyomapping, by exploiting the known association between morphokinetic 

parameters and ploidy status (Campbel et al. 2013). 

 

7.3 Pathways to impact 

The benefits of genomic selection can more readily be realised through IVP as opposed 

to testing live bornes thanks to the ability to select embryos before the establishing of a 

pregnancy (Saadi et al. 2014), and to the increased selection intensity deriving from the 

immediate removal of suboptimal embryos from the pool (Merton et al. 2013). 

Therefore, the present work has provided additional supporting evidence for the 

usefulness of ARTs and PGS in industrial animal breeding (Humblot et al. 2010), with a 

particular focus on the ability of these techniques to maximise the offspring of superior 

animals (Chapters 3 and 4), and to increase selection intensity (Chapter 6), and the rate 

of genetic gain (Chapters 3-6).  

 

Additionally, the ready availability of IVP embryos simplifies transportation of high 

genetic merit stock whilst minimising animal welfare and biosecurity issues (Pontes et 

al. 2010; Kenyon et al. 2014). It would also allow for the establishment of banks of 

genomically evaluated embryos for future distribution or for conservation purposes. The 

availability of a large number of embryos derived from specific donors could also be used 
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advantageously to widely disseminate specific genetics. Moreover, PGD technology or 

the use of sexed semen (Garner 2006) could be used to alter the natural sex ratio to 

enable the shipment and breeding of predominantly male or female animals according 

to the market need, thus reducing the birth of unwanted animals, which would benefit 

the breeding industry and animal welfare (Johnson et al. 2005). 

 

Furthermore, advancements in farm animal IVP have the potential to provide for 

improvements in human IVF as well, preventing the ethical issues associated with direct 

experimentation in humans (Ménézo & Hérubel 2002; Campbell et al. 2003; Kuwayama 

et al. 2005).  

 

Finally, the methodologies presented would allow for a fundamental insight into the 

process of meiosis. For example, information on the incidence of aneuploidy in farm 

animals is very limited when compared to the information available for the human 

model (Fragouli et al. 2013). Indeed, should karyomapping become a widely-used 

method for PGS in IVP, it would not only permit the transfer of the most chromosomally 

normal embryos, but it would also have the benefit of generating large data sets that 

will help answer (largely unexplored) fundamental questions related to aneuploidy and 

recombination in animal models. 

 

7.4 The need for a careful application of the IVP technologies arising 

from this project: concerns about inbreeding and genetic diversity 

Due to sustained levels of inbreeding, the effective population size of dairy cattle breeds 

(size of an ideal population with identical genetic drift and inbreeding as the population 

in study) has been shown to be very small; for example, intense selection and AI 

practices are thought to have reduced the effective population size of Holstein cattle in 

the USA to just 39 (Weigel 2001; Taberlet et al. 2008). This is a worrying figure 

considering that conservation biologists recommend that the effective population size 

should not fall below 50 to avoid extinction in the short term, and should ideally exceed 
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500 to avoid extinction in the long term (Franklin 1980). Moreover, similar scenarios are 

true for other farm animals such as pigs and sheep (Taberlet et al. 2008). 

 

At a farm level, high rates of inbreeding are known to impair growth, lactation, health, 

fertility, parturition and survival as a consequence of the so-called “inbreeding 

depression” effect (Smith et al. 1998; González-Recio et al. 2007; Leroy 2014; Pryce et 

al. 2014b). Additionally, inbreeding is a cause of concern from a conservationist 

standpoint because it potentially leads to the complete loss of rare breeds and leaves 

traits vulnerable to genetic drift (Roosen et al. 2005) and, therefore, limits the gene pool 

available for selection, should different traits or combinations of traits ever become 

necessary in the future (Notter 1999). Moreover, populations with a limited diversity 

are more susceptible to catastrophic losses caused by highly infectious diseases 

(Spielman et al. 2004), suggesting that high levels of farm animal inbreeding might put 

future food security in jeopardy.  

 

Whilst the availability of large numbers of twins with high genetic merit might well be 

beneficial to increasing production for the breeding industry in the short term, the 

question arises as to whether this would be a sustainable long-term breeding strategy 

due to the potential increase of inbreeding within herds caused by the presence of large 

numbers of closely related, or even identical animals. Moreover, the short generational 

intervals driven by the practices here described (IVP) risk increasing the annual rate of 

inbreeding as well (Lillehammer et al. 2011). Furthermore, the wide application of 

genomic selection could result in the unintended fixation in a population of homozygous 

chromosomal regions flanking the QTLs which are actively selected for (Sonesson & 

Woolliams 2010). Considered together, these observations suggest that the 

implementation of the IVP protocol discussed above could lead to a further reduction in 

the genetic diversity of the current farm animal breeds if applied without appropriate 

strategy planning.  

 

Several methods to control inbreeding have been discussed in the literature. These  

include restriction on family size strategies which advocate inbreeding avoidance by 



G. Silvestri General discussion 

 

188 

 

limiting the number of sires and dams used and preventing crosses between siblings or 

half-siblings (Goddard & Smith 1990), creation of separate sublines with subsequent 

crossing of lines in response to rising inbreeding (Smith & Quinton 1993), and the 

development of specialised and often computer assisted mating allocation strategies to 

control inbreeding and maintain acceptable rates of genetic gain in the short and long 

term (Klieve et al. 1994; Meuwissen & Sonesson 1998; Weigel et al. 2000; Weigel et al. 

2001; Pryce et al. 2012). The implementation of these or similar strategies and a 

continuous monitoring of genetic diversity should form an integral part of any breeding 

programme aiming to apply the methodologies described in the present work. 

 

Interestingly, these same IVP technologies could also be actively used for conservation 

purposes. For example, embryos produced by IVP from oocytes recovered from the 

endangered wild bovid gaur (Bos gaurus) resulted in a live birth when transferred to a 

Holstein cow, demonstrating the applicability of these methods for the preservation of 

a rare cattle species (Johnston et al. 1994). Similar accomplishments were achieved in a 

number of other species (Pope 2000; Ptak et al. 2002; Loskutoff 2003; Amstislavsky et 

al. 2004; Ullah et al. 2006; Andrabi & Maxwell 2007). Moreover, cryopreservation could 

be used to archive gametes or embryos from specific breeds, allowing the resurrection 

of specific traits in case of adverse events (Hiemstra et al. 2006; Santos et al. 2010b). 

 

7.5 Future studies arising from this thesis 

While the evidence presented here has contributed to filling some of the current gaps 

in the literature, the observations made over the course of this thesis have also 

highlighted new, potential avenues worthy of further exploration, for example: 

 

1. Establishing an efficient IVM system is of capital importance for successful 

porcine IVP. Future research could focus on methodologies to preserve the 

developmental potential of the oocytes over long transport. For example, a 

variety of transportation temperatures and media could be tested. Moreover, 

efforts could be made towards the design of optimal and completely defined 

culture media, which would improve reproducibility and biosecurity. It would 
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also be particularly beneficial to focus efforts on peripubertal animals, the use of 

which would further reduce generational intervals. 

 

2. While a number of methodologies for the splitting of bovine embryos have been 

investigated in Chapter 4, not all possible splitting strategies have been tested. 

For example, the splitting of 4-cell stage embryos was not included in this thesis 

and several other serial splitting protocols could be designed in an attempt to 

improve on the results presented. Finally, the ability to perform embryo 

transfers following embryo splitting would greatly increase the confidence in the 

conclusions so far reached by complementing the work carried out in vitro with 

robust field data. Furthermore, similar embryo splitting studies could be 

performed in other important farm animals such as pigs and sheep. 

 

3. We have only just started exploring the potentials of OCT in embryology. As such, 

it would be interesting to observe embryos during their entire development 

through an SS-OCT time-lapse system in an attempt to establish more stringent 

morphokinetic criteria than the ones currently available for the selection of 

developmentally competent embryos. Interestingly, SS-OCT system with a higher 

resolution should become available in the near future, which would be expected 

to allow for a detailed structural characterisation of cleavage stage embryos and 

to produce accurate description of cell counts and ICM parameters within a 

blastocyst in a completely non-invasive way.  Moreover, OCT could be used to 

discriminate immediately between living and deceased embryos following 

cryopreservation to reduce or eliminate the need for extended observation of 

thawed embryos before transfer. Similar systems, if made portable, could greatly 

assist embryo transfer practitioners on site, by confirming that only live thawed 

embryos have been transferred into the intended recipient. 

 

4.  Currently, due to the time constraints imposed by WGA and array analysis, the 

applicability of karyomapping is limited by the need to cryopreserve a blastocyst 

whilst a diagnosis is obtained. In the future, the ability of embryo splits to survive 
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cryopreservation should be investigated to confirm whether these two 

techniques could coexist in their current form. 

 

5. Additionally, other non-invasive methods could be employed for the screening 

of embryo splits. For example, the analysis of spent culture medium as a method 

to predict an embryo’s sex and viability could be employed. Moreover, the ability 

to obtain cell counts non-invasively by OCT, combined with predictions based on 

metabolic profiling through analysis of spent medium would be expected to 

produce highly dependable viability predictions, which would be very valuable in 

clinical programmes aiming for single embryo transfer in human patients. 

 

7.6 Personal perspectives and concluding remarks 

This PhD has been quite a journey, one I am glad I undertook. Over the last three years, 

I had the opportunity to investigate what I found most interesting, to work 

independently, to formulate my own thoughts and hypotheses and to learn a lot. I 

definitively fell like a changed person from when I left Italy to come and study in the UK. 

 

Perhaps, the aspect I cherish the most about my research is that it is very much applied 

to real world needs. The question of how to best to feed humanity in the coming years 

touches everybody and the applied nature of the areas investigated in this work is well 

testified by the ample industry support we received as a research group.  

 

We now live in a world where genetic engineering has been made highly accessible 

thanks to the revolution brought to us by the CRISPR/Cas9 system. As briefly discussed 

in the introduction, genetic engineering technologies could be used to create transgenic 

animals capable of producing important biomolecules in their milk or supplement the 

human diet with specific nutrients, whilst transgenic pigs are promising candidates for 

xenotransplantation. Moreover, whilst commercial interest in nuclear transfer 

technologies seems to be quiescent at present, improvements have been made allowing 

for far greater cloning efficiency than in the early days. The great costs associated with 
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cloning prevent this technique from being commercially viable at present, but it might 

well become accessible in the near future. It is therefore possible that these approaches 

will be integrated in animal production, should they ever be met with public acceptance. 

Importantly, their implementation will require the manipulation of embryos in vitro. 

Given its potential, it is certainly not surprising that IVP is currently such an active field 

of research and there is little doubt it will stay so in the coming years. 
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9. Appendix I – IVP media composition 

9.1. Bovine IVP Media  

9.1.1. IVM medium – modified TCM 199 

Component Quantity Stock concentration Storage 

TCM199 (M4530, Sigma) 4.375 ml 1 x 4 °C up to 4 months 

FBS (10270-098, Gibco) 500 µl 1 x -20°C up to 4 months 

PG600 (Intervet) 125 µl 400 IU/ml PMSG and 
200 IU/ml hCG 

-20°C up to 2 months 

Pen/strep (Gibco) 25 µl 200 x -20°C up to 2 months 

Na-pyruvate 10 µl 100 mM -20°C up to 2 months 

Shelf-life: use on the same day 

 

9.1.2. IVM handling medium – HEPES modified TCM 199  

Component Quantity Stock concentration Storage 

TCM199 HEPES modification 
(M7528, Sigma) 

4.5 ml 1 x 4 °C up to 4 months 

FBS (10270-098, Gibco) 500 µl 1 x -20°C up to 4 months 

Pen/strep (Gibco) 25 µl 200 x -20°C up to 2 months 

Na-pyruvate 10 µl 100 mM -20°C up to 2 months 

Shelf-life: use on the same day 

 

9.1.3. Glucose-free TALP base medium  

Component Quantity Stock concentration Storage 

NaCl 0.3333 g Powder - 

KCl 0.0120 g Powder - 

MgCl2 6(H2O) 0.0050 g Powder - 

NaH2PO4 0.0023 g Powder - 

NaHCO3 0.1050 g Powder - 

CaCl2 2(H2O) 0.0150 g Powder - 

Water (W1503, Sigma) 50 ml - - 

Na-lactate syrup (L4263, 
Sigma) 

90 µl 60% w/v 4 °C up to 6 months 

Shelf-life: 4 °C up to 1 month 
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9.1.4. PHE base solutions 

Component Quantity Diluent 

Penicillamine 0.0030 g 10 ml PBS 

Hypotaurine 0.0110 g 10 ml PBS 

Epinephrine solution 

• Na-lactate syrup (L4263, 
Sigma) 

• Na metabisulfite 

• Epinephrine 

 
132 µl 
 
0.0400 g 
0.0018 g 

40 ml water pH 4.0 
(adjust pH before 
adding epinephrine) 

Shelf-life: use on the same day 

 

9.1.5. PHE stock 

Component Quantity Stock concentration 

Penicillamine solution 2.5 ml See PHE base solutions 

Hypotaurine solution 2.5 ml See PHE base solutions 

Epinephrine solution 2 ml See PHE base solutions 

PBS 4 ml 1 x 

Shelf-life: -20 °C up to 2 months 

 

9.1.6. IVF medium - Glucose-free TALP complete medium 

Component Quantity Stock concentration Storage 

Glucose-free TALP base 
medium 

9.44 ml 1x 4 °C up to 2 months 

BSA (A8806, Sigma) 0.0600 g Powder 4 °C up to 6 months 

Na-pyruvate 10 µl 100 mM -20°C up to 2 months 

Heparin 100 µl 1 mg/ml -20°C up to 2 months 

PHE stock 440 µl See PHE stock -20°C up to 2 months 

Pen/strep (Gibco) 25 µl 200 x -20°C up to 2 months 

Shelf-life: use on the same day 
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9.1.7. Handling medium - HEPES modified, glucose-free TALP 

Component Quantity Stock concentration Storage 

NaCl 0.2910 g Powder - 

KCl 0.0115 g Powder - 

MgCl2 6(H2O) 0.0040 g Powder - 

NaH2PO4 0.0020 g Powder - 

NaHCO3 0.1050 g Powder - 

CaCl2 2(H2O) 0.0150 g Powder - 

Na-lactate syrup (L4263, 
Sigma) 

90 µl 60% w/v 4 °C up to 6 months 

HEPES 0.1190 g Powder - 

Water (W1503, Sigma) 50 ml - - 

Shelf-life: 4 °C up to 1 month 

 

9.1.8. SOFaaci base medium 

Component Quantity Stock concentration Storage 

NaCl 0.3145 g Powder - 

KCl 0.0267 g Powder - 

KH2PO4 0.0081 g Powder - 

MgSO4 0.0091 g Powder - 

CaCl2 2(H2O) 0.0131 g Powder - 

NaHCO3 0.1050 g Powder - 

Trisodium citrate 0.0050 g Powder - 

Myo inositol 0.0250 g Powder - 

Na-lactate syrup (L4263, 
Sigma) 

30 µl 60% w/v 4 °C up to 6 months 

MEM (M7145, Sigma) 0.5 ml 100 x 4 °C up to 4 months 

BME (B6766, Sigma) 1.5 ml 50 x 4 °C up to 4 months 

L-glutamine 50 µl 200 mM -20°C up to 2 months 

Water (W1503, Sigma) 50 ml - - 

Shelf-life: 4 °C up to 1 month 

 

9.1.9. IVC medium - SOFaaci complete medium 

Component Quantity Stock concentration Storage 

SOFaaci base medium 9.73 ml See SOFaaci base 
medium 

4 °C up to 2 months 

BSA (A8806, Sigma) 0.0500 g Powder 4 °C up to 6 months 

FBS, (10270-098, Gibco) 250 µl 1 x -20°C up to 4 months 

Na-pyruvate 20 µl 100 mM -20°C up to 2 months 

Pen/strep (Gibco) 25 µl 200 x -20°C up to 2 months 

Shelf-life: use on the same day 
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9.2. Porcine IVP Media 

9.2.1. Handling medium – TL-HEPES-PVA medium 

Component Quantity Stock concentration Storage 

NaCl 0.3331 g Powder - 

KCl 0.0119 g Powder - 

MgCl2 6(H2O) 0.0051 g Powder - 

NaH2PO4 0.0020 g Powder - 

NaHCO3 0.0084 g Powder - 

CaCl2 2(H2O) 0.0150 g Powder - 

Na-lactate syrup (L4263, 
Sigma) 

90 µl 60% w/v 4 °C up to 6 months 

Na-pyruvate 100 µl 100 mM -20°C up to 2 months 

Glucose 0.0450 g Powder - 

Pen/strep (Gibco) 250 µl 200 x -20°C up to 2 months 

Polyvinyl alcohol 0.0050 g Powder - 

HEPES 0.1190 g Powder - 

Water (W1503, Sigma) 50 ml - - 

Shelf-life: 4 °C up to 1 month 
 

9.2.2. NCSU-23 base medium 

Component Quantity Stock concentration Storage 

NaCl 0.1271 g Powder - 

KCl 0.0071 g Powder - 

KH2PO4 0.0032 g Powder - 

MgSO4 0.0059 g Powder - 

CaCl2 2(H2O) 0.0050 g Powder - 

NaHCO3 0.0421 g Powder - 

Glucose 0.0200 g Powder - 

L-glutamine 0.0029 g Powder -20°C up to 2 months 

Taurine 0.0175 g Powder -20°C up to 2 months 

Hypotaurine 0.0109 g  Powder -20°C up to 2 months 

ITS (I3146, Sigma) 200 µl 100 x 4 °C up to 6 months 

Pen/strep (Gibco) 400 µl 200 x -20°C up to 2 months 

Water (W1503, Sigma) 20 ml - - 

Shelf-life: 4 °C up to 1 month 
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9.2.3. IVM medium – modified NCSU-23 medium 

Component Quantity Stock concentration Storage 

NCSU-23 base medium 8.7 ml See NCSU-23 base 
medium 

4 °C up to 2 months 

Porcine follicular fluid 1 ml 100% -20°C up to 4 months 

MEM (M7145, Sigma) 0.1 ml 100 x 4 °C up to 4 months 

BME (B6766, Sigma) 0.2 ml 50 x 4 °C up to 4 months 

Shelf-life: use on the same day 

 

9.2.4. Sperm wash 

Component Quantity Stock concentration Storage 

NaCl 0.2700 g Powder - 

BSA (A8806, Sigma) 0.0600 g Powder - 

Kanamycin 0.0006 g Powder - 

Water (W1503, Sigma) 30 ml - - 

Shelf-life: 4 °C up to 1 month 
pH: Adjust to pH 7.4 
 
 

9.2.5. IVF medium – mTRIS medium 

Component Quantity Stock concentration Storage 

NaCl 0.3400 g Powder - 

KCl 0.0111 g Powder - 

CaCl2 2(H2o) 0.1210 g Powder - 

TRIS 0.0901 g Powder - 

Glucose 0.0270 g Powder - 

Na-pyruvate 100 µl 100 mM -20°C up to 2 months 

BSA (A8806, Sigma) 0.0010 g Powder 4 °C up to 6 months 

Kanamycin 0.0555 g Powder - 

Water (W1503, Sigma) 50 ml - - 

Shelf-life: 4 °C up to 1 month 
 
 

9.2.6. IVC medium – modified NCSU-23 medium 

Component Quantity Stock concentration Storage 

NCSU-23 base medium 8.7 ml See NCSU-23 base 
medium 

4 °C up to 2 months 

BSA (A8806, Sigma) 0.0160 g Powder 4 °C up to 6 months 

L-Cysteine 33 µl 100 mM -20°C up to 4 months 

MEM (M7145, Sigma) 0.1 ml 100 x 4 °C up to 4 months 

BME (B6766, Sigma) 0.2 ml 50 x 4 °C up to 4 months 

Shelf-life: use on the same day
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10. Appendix II – Full karyomap of Cookie Four embryo biopsy 

 

Sample 
number 

Sample ID 
Call 
Rate 

Proportion of 
heterozygous loci 

1 Sire (Cinderdoor, SEMEX) 98% 39% 

2 
Dam (Crossfell Uno Cookie, 
Paragon Veterinary Group) 

98% 40% 

3 Reference sibling embryo 94% 34% 
4 Cookie Four embryo biopsy 88% 29% 

Table 10.1 – Sample information, Cookie Four karyomap. 

 

Chromosome 1 Chromosome 2 

 

 

  



G. Silvestri             Appendix II: Karyomap 

 

253 

 

Chromosome 3 Chromosome 4 

 
 

 

 

Chromosome 5 

 

 

Chromosome 6 
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Chromosome 7 

 

Chromosome 8 

 

 

 

 

Chromosome 9 

 

 

Chromosome 10 
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Chromosome 11 

 

Chromosome 12 

 

 

 

 

Chromosome 13 

 

 

Chromosome 14 
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Chromosome 15 

 

Chromosome 16 

 
 

 

 

Chromosome 17 

 

 

Chromosome 18 
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Chromosome 19 

 

 

Chromosome 20 

 

 

 

 

Chromosome 21 

 

 

Chromosome 22 
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Chromosome 23 

 

 

Chromosome 24 

  

 

 

Chromosome 25 

 

 

Chromosome 26 
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Chromosome 27 

 

 

Chromosome 28 

 

 

 

 

Chromosome 29 

 

 

Chromosome X 
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Speckle variance OCT for depth resolved 
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Abstract: The morphology of embryos produced by in vitro fertilization (IVF) is commonly 
used to estimate their viability. However, imaging by standard microscopy is subjective and 
unable to assess the embryo on a cellular scale after compaction. Optical coherence 
tomography is an imaging technique that can produce a depth-resolved profile of a sample 
and can be coupled with speckle variance (SV) to detect motion on a micron scale. In this 
study, day 7 post-IVF bovine embryos were observed either short-term (10 minutes) or long-
term (over 18 hours) and analyzed by swept source OCT and SV to resolve their depth profile 
and characterize micron-scale movements potentially associated with viability. The 
percentage of en face images showing movement at any given time was calculated as a 
method to detect the vital status of the embryo. This method could be used to measure the 
levels of damage sustained by an embryo, for example after cryopreservation, in a rapid and 
non-invasive way. 
© 2017 Optical Society of America 

OCIS codes: (110.4500) Optical coherence tomography; (170.1420) Biology; (110.4153) Motion estimation and 
optical flow; (170.3880) Medical and biological imaging; (030.6140) Speckle. 
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1. Introduction 

After fertilization, mammalian zygotes undertake a series of rapid mitotic divisions known as 
cleavage events which bring them from the original 1 cell to 16-32 cells. In cattle, this phase 
has a duration of approximately 4 days, after which the embryo undergoes the process of 
compaction during which it appears as a tight cluster of cells with hardly any distinguishable 
inter-cellular borders. Between day 6 and 7 after fertilization, as the embryo continues to 
grow, a liquid filled cavity develops, termed as blastocoel, whilst the embryo is referred to as 
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the blastocyst. By the time the embryo reaches the blastocyst stage, its cells have formed two 
distinct populations: a thin outer layer known as trophectoderm and a compact cluster known 
as the inner cell mass [1]. A normal bovine blastocyst is presented in Fig. 1. 

 

Fig. 1. A typical bovine blastocyst produced in vitro using the same method described under 
section 2.1. ICM: inner cell mass, TE: trophectoderm, ZP: zona pellucida. The embryo can be 
imagined as a liquid filled sphere. The ICM forms a discrete unit and is attached to the 
sphere’s internal surface, while the surface itself is formed by the thin TE cell layer. 
Additionally, an outer proteic shell, the ZP (arrow), encapsulates the whole embryo. The image 
was acquired by a Nikon Eclipse TE200 inverted modulation contrast microscope at x200 total 
magnification and by using an RI DC2 camera and its dedicated software RI Viewer. 

In order to establish a pregnancy, bovine blastocysts produced by in vitro fertilization 
(IVF) are transferred into recipient animals, but the eligibility for transfer requires assessment 
of the viability of each candidate embryo. Evaluation of the embryo morphology, as a method 
to estimate its viability, has found wide use in human IVF [2] and the principle that the 
transfer of embryos of better morphology leads to higher pregnancy rates has long been 
validated in cattle [3]. One of the most substantial differences between human and bovine 
embryos, however, is that the latter are made opaque by the accumulation of lipid droplets in 
their cytoplasm, which makes the embryo harder to assess though conventional methods [4]. 
Commonly, bovine blastocysts produced by IVF are screened morphologically at x50 to x100 
magnification using a stereomicroscope [5]. Whilst this level of investigation is simple and 
non-invasive, it is also highly subjective, gives little indication of intracellular activity [4], 
and is unable to quantify accurately the percentage of fragmentation (amount of sub-cellular, 
non-viable material) in the embryo which is known to affect its viability [6]. 

To support the morphological assessment of embryos and in an attempt to provide a better 
prediction of viability, time-lapse systems have been introduced [7]. Although widespread, 
the use of these systems has failed to produce obvious benefits due to the lack of a stringent 
correlation between the morphokinetic parameters measured and clinical pregnancy outcomes 
[8]. Time-lapse systems also present the disadvantages of a long time required to complete an 
assessment and of a poor depth of view. The second problem is made worse in post-
compaction embryos like blastocysts and in bovine embryos generally due to their 
unfavourable lipid distribution [4]. An example of these limitations is given in Fig. 2, 
showing that protracted time-lapse observation is likely required to detect any changes in 
embryo morphology while at the same time, information on the different optical planes of the 
embryo is likely lost. 

Therefore, there is scope for the development and application of new imaging modalities 
able to resolve the embryo structure in full depth and provide for a rapid and non-subjective 
assessment of viability. 

Optical Coherence Tomography (OCT) is a non-invasive optical method developed in the 
1990s that has historically found most applications in ophthalmology [9]. It can create 
structural images of biological tissues with high axial and transverse resolution providing 
cross-sectional 2D maps in the (x,z) or (y,z) planes (B-scans) and en face 2D maps in the 
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(x,y) plane (C-scan), where x and y coordinates are measured along the lateral directions of 
the sample and z coordinate is measured along its depth. 

Moreover, recent advancements have also allowed for the acquisition of functional 
images, one example being Optical Coherence Tomography Angiography (OCTA) which is 
used to differentiate moving blood cells from stationary features. The detection is possible 
due to algorithms like Speckle Variance (SV) analysis which can quantify the changes in the 
speckle pattern of a sample associated with movement [10–15]. 

OCT has already found some limited application in developmental biology in model 
organisms like Xenopus laevis [16], and Rattus norvegicus [17]. Recently, high-resolution 
intracellular imaging on live mouse and pig oocytes and embryos has been reported [18]. In 
this context, the fundamental advantages of OCT are its ability to image embryos without 
labels, and its use of low power light sources as compared to confocal systems. The use of 
low power optical beams reduces the chance of damaging the embryo during observation [18, 
19]. However, no study so far has applied the motion detection principles of OCTA to early 
stage embryos, like blastocysts, to assess their viability. 

In this study, an OCT system was used to produce a full depth structural characterization 
of a day 7 post IVF blastocyst and display its 3-D models. Moreover, to test whether kinetic 
differences could be measured between live and dead embryos, micron-scale movements 
were measured with the SV method to enable quantitative analysis of embryo viability over 
time. 

 

Fig. 2. Images of a day 7 bovine blastocyst at different time points after insemination. The 
images were acquired by phase contrast microscopy at x200 magnification using a time-lapse 
system PrimoVision Evo (Vitrolife). Completing a viability assessment is likely to require 
protracted observation as the general morphology of the embryo changes very little over time. 
Scale bar = 50 µm. 

2. Materials and methods 

2.1 Preparation of bovine embryos 

Bovine blastocysts were produced in vitro following a previously described method [20]. 
Briefly, oocytes were collected from abattoir material and in vitro matured, then fertilized 
with frozen/thawed sperm (Semex). The resulting embryos were then cultured in Synthetic 
Ovarian Fluid (SOF) medium droplets until they reached the blastocyst stage 7 days post-IVF. 
Five of the resulting blastocysts were monitored by OCT over short-term observation of 
several minutes whereas one embryo was monitored over long-term observation (exceeding 
18 hours). 

2.2 Set-up 

The OCT system used is schematically presented in Fig. 3. A swept source at 1310 nm center 
wavelength (Axsun Technologies), 100 kHz sweep rate, 12 mm coherence length, 106 nm 
FWHM bandwidth in the range (1256.6 nm–1362.8 nm) [21] is used. The source is connected 
to a 2 × 2 fiber coupler (C1) with an 80:20 ratio which splits 80% of the power towards the 
reference arm and 20% of the reference power towards the sample arm. In the sample arm, 
light is collimated through lens L1 and directed to a pair of galvanometer scanners which, via 
the imaging lens L2, scan the beam laterally in the (x,y) plane. Light from the reference and 
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sample arms are combined in the 50:50 fiber coupler C2. The output ports from C2 are routed 
to a balanced photo-detector (Thorlabs Model PDB460C, DC 200 MHz). A 12-bit waveform 
digitizer (AlazarTech ATS9350 - 500 MS/s) digitizes the output signal which is processed 
using an “in-house” acquisition software written in LabVIEW (National Instruments). This 
software calculates 500 en face images from 500 depths and delivers a real-time compound 
display of two cross section OCT images, 9 en face OCT images and a summed voxel 
projection (SVP) image, all made possible due to the use of Master-Slave interferometry 
protocol [21–23]. The combined rendering of the 12 such images is updated every 0.8 s. The 
depth interval between the 9 selected depth positions is chosen to cover the axial range of the 
full embryo. Images are produced from 200x200 lateral pixels. The axial resolution was 
measured to be approximately 15 µm in air and the transverse resolution approximately 4.2 
µm. 

 

Fig. 3. OCT set-up. SS: swept source; C1, C2: directional optical couplers, PC1, PC2: 
polarization controllers, L1, L2: lenses, TS: x,y,z translation stage to position the sample. 

2.3 Image acquisition and speckle variance (SV) analysis 

The embryos are placed on a Petri dish. Then the dish is adjusted laterally and vertically, 
using the translation stage, TS, by monitoring the SVP image. Initially, the differential 
distance between the 9 en face images in the display is adjusted approximately based on an 
estimated embryo thickness. While monitoring the two cross section OCT images, the 
reference arm length is adjusted in order to position the cross sections of the embryos in their 
central region. 

To characterize the structure and the progressive loss of viability of the embryos, cross 
section images and en face images were acquired over short and long-term observation. For 
short-term observation, 5 embryos were observed for 10 minutes and a full set of data was 
acquired every minute. For long-term observation, the embryo was observed until it ceased all 
motion (18 hours), acquiring a set of data every minute for 10 min followed by 20 min of rest; 
the no-motion measurement was confirmed by another observation performed after a further 8 
hours. The SV analysis was performed as described before [10–14] on successive en face 
images at 1 min intervals. The Speckle Variance for each lateral pixel (j,k) is defined as: 
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In (1), I is the strength of the OCT signal at each pixel, N is the total number of en face 
images considered for the calculation which in our case is N = 2 and the index i is the en face 
image concerned, respectively. The calculation was over j and k, i.e. over 200 by 200 pixels, 
leading to a 2D motion map of similar size. The lateral size of en face images is 230 µm by 
230 µm. The SV values represent the variance calculated over two successive images with a 
time lapse equal to 1 min. The larger the variability, the larger the SV. A SV value equal to 0 
means that images are identical and no motion is detected. To compensate the effects of 
Brownian motion, image sets from a dead embryo were also acquired and used to establish a 
minimum speckle variance value (threshold) for each pixel. In the final display of motion 
maps, all pixel values whose SV was below this threshold were assigned zero values. 
Moreover, to produce a quantitative assessment of motion, a parameter “quantity of 
movement” was calculated as the summation of all pixel values from the motion map. 

3. Results 

Overall, 5 live bovine blastocysts were observed for 10 minutes (short-term observation) and 
1 bovine blastocyst was observed for over 18 hours (long-term observation). During the 
assessment, 12 structural images were displayed in real time in the form of SVP, 2 x cross 
sectional images and 9 x en face images. In Fig. 4, an example of the acquisition display is 
given. 
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Fig. 4. Screen-shot of the “in-house” Master/Slave software used for image guidance. Three 
categories of images are displayed simultaneously and in real time in each raster: 2x cross 
section images, 9x en face images and a SVP. (a) Cross section along the red line (plane (z,y)) 
in the SVP image, (b) (i-ix) en face images, (c) SVP and (d) cross section image along the 
green line (plane (x,z)) in the SVP image. To cover the whole depth of the embryo, 9 en face 
images (i – ix) are shown over a total depth of 225 µm, separated by a depth interval of 25 µm 
(measured in air). All images are represented on a linear scale. Blue arrows indicate the glass 
plate and the orange arrow indicates the embryo shape. The lateral size of images is 230 µm 
and the axial range of the cross sections is 1 mm (measured in air). 

3.1 Blastocyst 3D reconstruction and structural imaging 

En face images were used to create a 3D volume of the embryo as shown in Fig. 5 and could 
be used to identify two separate structural entities forming a blastocyst, namely a ring of outer 
cells (trophectoderm) and a discrete mass of cells in the inside (inner cell mass). The volume 
allowed by the “in-house” acquisition software written in LabVIEW software extends over a 
voxel size of 200x200x500 pixels. 
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Fig. 5. 3D display of a day 7-post in vitro fertilization bovine embryo. En face images at 
different depths from the top embryo surface (a) 25µm, (b) 75µm, (c) 150µm, (d) 225µm and 
(e) 300µm (all measured in air) at the beginning of the experiment, scale bar = 50µm. (f) cross 
section view over 500 µm in depth (measured in air), scale bar = 150 µm x 150 µm. 

By varying the differential distance between the depths, the axial range was adjusted as 
such, that the embryo covers 300 depths. Therefore, the size of the volume displayed in Fig. 5 
is 200x200x300. Moreover, the shape of the inner cell mass could be clearly distinguished in 
the 3D reconstruction potentially providing information on its compactness, size and 
distribution. As described in the introduction (and also in Fig. 2) a blastocyst stage embryo 
does not necessarily display large morphological changes over a time period of a few hours 
when observed by standard microscopy, but it can sometimes display a pulsating behavior 
whereby the embryo collapses on itself and then re-expands to its full size. In this analysis, 
the blastocyst appeared to maintain its normal structure over the first 12 h; however, by the 
13th hour it started to collapse on itself. From this point on, a faint halo of the same size as 
the original embryo could be detected by OCT indicating that the blastocyst’s zona pellucida 
maintained its shape and position while the rest of the embryo collapsed. Interestingly, the 
complete collapse of the blastocyst’s inner cavity was observed between 15 and 16 h of 
culture and this detail would have been impossible to notice with standard microscopy. After 
this point, however, the embryo failed to re-expand, an observation consistent with an embryo 
approaching the end of its life. A selection of images acquired over long-term observation is 
given in Fig. 6(A), showing the first 18 h of culture and an additional image acquired 8 h after 
complete cessation of embryo motion. 

3.2 Micron-scale movement detection by SV and quantity of movement calculation 

The SV algorithm was applied to obtain motion maps at each embryo depth to highlight the 
portions of the embryos in motion during each 1 min interval considered. The analysis could 
also indicate when the embryo ceased all motion (Fig. 6(B)). 

For the 5 embryos selected for the short-term observations, motion maps were calculated 
using en face images from a depth approximately in the middle of each embryo. 

Figure 7 shows the maximum speckle variance registered in such maps. Usefully, the 
maximum value calculated for the dead control embryo was found to be at least 5 times 
smaller than the average maximum value of any live embryo. 

For the next evaluations, a threshold was calculated to differentiate the live embryos from 
the dead one. This was obtained as the maximum SV extracted from the motion maps 
evaluated over the whole embryo volume. 

In Fig. 8, quantity of movement was calculated at 5 different depths (as indicated) in the 
same embryo over long-term observation and it was possible to pinpoint at which depth the 
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embryo maintained movement over time. The calculation included only those pixels out of 
the 200x200, where the SV exceeded the threshold evaluated above. 

 

Fig. 6. En face images (A) of the embryo over 26 h (actively monitored over the first 18 h) and 
their SV en face display/Motion Map (B) at a fixed depth (150 µm from the top embryo 
surface measured in air). Scale bar = 50µm. SV value are displayed Red/Green scale. Red 
represents higher value. 

An alternative representation of this information is given in Fig. 9, showing the 
percentage of en face images from the same embryo in which movement could be detected at 
any given time. The calculation was performed over 300 en face images obtained from 
different depths covering the embryo thickness (i.e. using the same adjustment of axial range 
as in Fig. 5). 
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Fig. 7. Maximum value of the Speckle Variance for different embryos over 10 minutes. 
Embryo 1 – Embryo 5 (E1-E5): Curves representing the quantity of movement for live 
embryos, DE: Curve for dead embryo. 

 

Fig. 8. Quantity of movement (for the embryo 5 in Fig. 6) at superficial (25 µm and 300 µm, 
middle (75 µm and 225 µm) and central depth (150 µm) over long-term observation. 

 

Fig. 9. Percentage of number of en face images displaying SV values above threshold at any 
given time for an embryo (number 5 in Fig. 7) over long-term observation. The downward 
trend is expanded on the right hand to better display the decreasing motion of the embryo over 
time. 
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4. Discussion 

To date, a limited number of reports have focused on applying functional OCT imaging to 
study early mammalian embryos [18, 24, 25]. However, to our best knowledge, this is the first 
time OCT and SV have been applied to a day 7 post-IVF mammalian embryo to resolve its 
3D structure and quantify micron-scale movement. 

As seen in Fig. 5, OCT can be successfully used to identify the key structures within the 
bovine blastocyst. Additionally, motion maps can be produced (Fig. 6(B)) to detect motion in 
the areas of the blastocyst which are populated with cells. 

Over short-term observation, all live embryos consistently displayed higher SV values 
(Fig. 7) when compared with dead controls suggesting that a live embryo is likely to possess 
levels of intracellular activity detectable by OCT. 

However, the interpretation of the motion measurement became more complex during 
long-term observation. As shown in Fig. 6(A), the embryo had collapsed on itself after 12 h 
of culture. This is an expected behavior for a blastocyst approaching the end of its life. As 
shown in Fig. 8, this was associated with a surge in movement around the median portion of 
the embryo at a depth of 150 µm. One possible explanation for this behavior is that the SV 
measurement is sensitive at the same time to both genuine intracellular movement and to 
mechanical movement of the blastocyst’s tissues caused by the deflation of its internal cavity 
and that the summation of these two movements caused the spark detected. Indeed, while the 
embryo could safely be declared dead after 18 h of culture, the actual cessation of 
biochemical activity within it could have happened at an earlier time point between 15 and 18 
hours. On one hand, non-blank motion maps were obtained between 17 and 18 hours of 
culture after the complete disappearance of the embryo’s blastocoel when mechanical motion 
seemingly came to an end, suggesting that the embryo more likely ceased all biochemical 
activity around the 18th hour mark. On the other hand, this might not be the only possible 
interpretation as spontaneous decaying processes, not necessarily linked with intra-cellular 
activity, could have been detected instead. However, these type of movements were not 
present in the dead controls. Therefore, based on the comments above, whilst the decaying 
trend in Fig. 9 expresses the attenuation of motion inside the embryo, it cannot be used to 
predict the exact time of the embryo’s death. 

As portrayed in Fig. 8, the embryo did not behave consistently across its depth from a 
kinetic point of view over long-term functional observation. This finding is not necessarily 
surprising since it is known that cells or cell groups in a blastocyst can become fragmented or 
even die [30]. This is also known to happen in embryos that are cryopreserved. Indeed, the 
cryopreservation of an embryo in liquid nitrogen is a standard procedure, however not all 
embryos survive the freeze thawing process and those that do are likely to suffer from various 
levels of damage [31]. Cryodamage assessment on a per embryo basis is very challenging due 
to the invasive nature of the tests available. Very few papers have used OCT to investigate 
cryodamage in embryos [32, 33] and none of them studied blastocyst stage embryos which 
are widely cryopreserved in both human and animal IVF systems. The SV analysis here 
described could become a useful tool to quantify the level of damage sustained by 
cryopreserved embryos within minutes of thawing and without a need for extended culture. 
The results of this assessment would be easy to interpret since they would simply take the 
form of percentages of en face images in motion, as shown in Fig. 8. 

5. Conclusions 

We anticipate that in future studies, OCT, due to its potential submicron axial resolution, 
could be used to obtain precise measurements of the shape and volume of a blastocyst’s inner 
cell mass, since these parameters have been shown to correlate well with implantation rates 
when measured by conventional microscopy [26]. In a similar way, OCT can be used to 
measure non-invasively the volume of a blastocyst’s trophectoderm to obtain another metric 
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of embryo quality: the trophectoderm/inner cell mass ratio [27], an assessment that currently 
implies the destruction of the embryo with standard methods [28, 29]. 

The assessment of the percentage of en face images in active motion could also be 
expanded to take into account that, due to the spherical nature of the embryo, not all the en 
face images contain the same number of cells so that a proportion of actively moving embryo 
volume could be calculated instead. This refinement can be conducted to accurately measure 
the percentage of fragmentation (intended as non-viable material) present in an embryo, a 
metric closely associated with viability which is currently estimated subjectively [6]. 

In conclusion, OCT and SV analysis hold promise to become useful tools for the rapid 
identification of embryos with poor viability for example after freeze/thawing. The proper 
adjustment of the embryo prior to measurements based on the en face direct view of the 
Master Slave OCT method further facilitates the procedure. 
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