University of

"1l Kent Academic Repository

Bailey, Christopher and de Lemos, Rogerio (2018) Evaluating Self-Adaptive
Authorisation Infrastructures through Gamification. In: International Conference
on Dependable Systems and Networks Proceedings. Proceedings of the

48th Annual IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN 2018). . IEEE ISBN 978-1-5386-5597-9. E-ISBN 978-1-5386-5596-2

Downloaded from
https://kar.kent.ac.uk/66570/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/DSN.2018.00058

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/66570/
https://doi.org/10.1109/DSN.2018.00058
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Evaluating Self-Adaptive Authorisation

Infrastructures through Gamification
(Regular Paper)

Abstract—Self-adaptive systems are able to modify their be-
haviour and/or structure in response to changes that occur to
the system itself, its environment, or even its goals. In terms of
authorisation infrastructures, self-adaptation has been shown to
provide runtime capabilities for specifying and enforcing access
control policies and subject access privileges, with a goal to
mitigate insider threat. The evaluation of self-adaptive autho-
risation infrastructures, particularly, in the context of insider
threats, is challenging because simulation of malicious behaviour
can only demonstrate a fraction of the types of abuse that
is representative of the real-world. In this paper, we present
an innovative approach based on an ethical game of hacking,
protected by an authorisation infrastructure. A key feature of
the approach is the ability to observe user activity pre- and
post-adaptation when evaluating runtime consequences of self-
adaptation. Our live experiments captured a wide range of
unpredictable changes, including malicious behaviour related
to the exploitation of known vulnerabilities. As an outcome,
we demonstrated the ability of our self-adaptive authorisation
infrastructure to handle malicious behaviour given the existence
of real and intelligent users, in addition to capturing how users
responded to adaptation.

Index Terms—self-adaptive systems, authorisation infrastruc-
tures, insider threats, gamification

I. INTRODUCTION

Self-adaptive systems are able to modify their behaviour
and/or structure in response to changes that occur to the system
itself, its environment, or even its goals [5]. Based on this, a
self-adaptive authorisation infrastructure refers to the run-time
adaptation of access control policies and their enforcement.

An important aspect when evaluating a self-adaptive autho-
risation infrastructure is to demonstrate its ability to mitigate
abuse of access when faced with uncertainty. The simulation of
insider threat scenarios is limited because they would not be
able to portray an accurate perception of reality. Moreover,
when considering self-adaptive authorisation infrastructures
the usage of existing data has little value because of the
dynamic aspects of the infrastructure that continuously adapts
itself in response to changes. In terms of insider threats, it
is necessary to evaluate the consequence of self-adaptation in
terms of how human users respond to automated mitigation.
In light of a feedback loop, users may change their behaviour,
for instance, to mask their malicious activity. Such change
is unpredictable, resultant of intelligent user interaction, and
therefore challenging to simulate.

This paper presents an approach whereby gamification [7]
is used to emulate a real-world environment. Gamification
is the use of online games to solve complex problems and

generate meaningful data as a consequence of human player
participation. It is a crowd sourcing technique to capturing
large volumes of data by using the premise of a game to
motivate human participation. Gamification allows generating
diverse and unpredictable data from real user activity. In
particular, it enables the observation of mitigating cases of
abuse at runtime, and the observation of user activity post
mitigation. As such, the success of mitigation can be validated,
along with evaluating the consequence of self-adaptation by
analysing user response to mitigation.

In this paper, we employ the Self-Adaptive Authorisation
Framework (SAAF) for evaluating the effectiveness of self-
adaptive authorisation infrastructures. The objective of evalu-
ating SAAF in a live deployment is twofold. First, to demon-
strate that the observations and actions performed by SAAF
have a real consequence to human users accessing a resource.
Second, to generate data that portrays the effectiveness of
self-adaptation in mitigating observed attacks, including data
related to the consequences of self-adaptation. To fulfil these
objectives, an experiment was conducted whereby human users
were invited to participate in an ethical game of hacking. Users
were asked to play an online game based on the classic board
game of Snakes and Ladders [20]. For the purpose of the
experiment, the game is used as a platform to enable users
to perform malicious activity. Users are given the freedom to
play the game and to choose to act honestly or dishonestly,
such as exploiting vulnerabilities in the game resource or host
Sserver.

The experiments conducted seek to answer the following
two research questions: are self-adaptive authorisation infras-
tructures capable of mitigating acts of malicious behaviour?
What are the consequences of self-adaptation? To reflect on
this problem statement, we identify three key hypotheses:
Hypothesis 1. Self-adaptive authorisation will mitigate mali-
cious activity, whilst limiting future attacks.

Hypothesis 2. An experienced subject is capable of carrying
out sophisticated and complex attacks.

Hypothesis 3. The behaviour of a malicious subject will
change in response to adaptation, in order to circumvent future
detection and mitigation.

This evaluation is specific to the mitigation of malicious
subject activity related to the abuse of access. However, there
are some limitations associated this exercise. Notably, human
participants are aware of the true nature of the experiment,
and as such, it cannot be said that a participant of the
game is representative of a ‘true’ malicious insider. Basically,

participants are aware that they can be malicious to win the
game, though, the game as a whole is representative of the
actions of a malicious insider.

The contribution of this paper is an approach to evaluating
self-adaptive systems through gamification [7]. A key feature
of the approach is the ability to observe user activity pre- and
post-adaptation, in order to evaluate the runtime consequences
of self-adaptive systems. The effectiveness of Self-Adaptive
Authorisation Framework (SAAF) is evaluated by way of
deploying an online game as a protected resource within an
authorisation infrastructure.

The rest of this paper is structured as follows. In Sec-
tion II, we present some basic concepts related to self-adaptive
authorisation infrastructures and insider threats. Section III
describes the design of an online game in which diverse and
unpredictable behaviour can be observed. Section IV discusses
the deployment of the game in a self-adaptive authorisation
infrastructure. Section V describes the phases and execution
of the experiment within the game environment, and discusses
the results of the experiments. In Section VIII, a summary of
the paper is provided in addition to some insights regarding
future work.

II. BACKGROUND
A. Self-adaptive Authorisation Framework

The goal of Self-adaptive Authorisation Framework (SAAF)
is to make existing authorisation infrastructures self-adaptable,
where an organisation can benefit from the properties of
dynamic access control without the need to adopt new access
control models [1], [2]. SAAF is based on the MAPE-K [11]
feedback loop, which monitors the distributed services of an
authorisation infrastructure to build a modelled state of access
at runtime (i.e., deployed access control rules, assigned subject
privileges, and protected resources). Malicious user behaviour
observed by a SAAF controller is mitigated through the gen-
eration and deployment of access control policies at runtime,
preventing any identified abuse from continuing. Adaptation
at the model layer enables assurances and verification that
abuse can no longer continue. In addition, model transfor-
mation has been shown to generate access control policies
from an abstract model of access. This has the potential to
enable the generation of policies specific to many different
implementations of access control.

Figure 1 presents a conceptual view of SAAF in which
an autonomic controller monitors and adapts multiple sys-
tems within an authorisation infrastructure. This presents a
challenge since no single system provides a complete view
of access in terms of what users own in access rights, what
access control rules exist, and finally, how users are utilising
access rights. In its current form, SAAF ensures that whatever
adaptations take place will not break conformance to the
service’s implemented access control methodology (ABAC),
nor conflict with application domain requirements (e.g., ensure
access to business critical systems). To implement ABAC, we
provide an identity service referred to as LDAP [12], which
is a directory service commonly used to hold information

Autonomic

7b. Adapt identities ___----=+ <
,,,,, Controller “\
P AY
e 7a. Adapt i ?63. Monitory
v policies ¢ | access \
. \ 6a. Monitor
Identity 4. Validate| Authorisation Bresource
Service identity Service { usage
{
1. Get 3. Request 5. Enforce /
identity decision decision /'

.

/
/
-

Resources [~

2. Request access

Fig. 1. SAAF conceptual design

(including user roles) about users within an organisation,
and a standalone service authorisation service, known as
PERMIS [4], used to generate ABAC access control decisions
based on roles owned by users.

B. Insider Threats

Insider threat refers to an organisation’s risk of attack by
their own users or employees. This is particularly relevant to
access control, where the active management of authorisation
has the potential to mitigate and prevent users from abusing
their own access rights to carry out attacks.

A common characteristic of insider threat is that malicious
insiders utilise their knowledge of their organisation’s systems,
and their assigned access rights, to conduct attacks. This places
a malicious insider in a fortuitous position, whereby the insider
(as an authorised user) can cause far greater damage than
an external attacker, simply due to their access rights [3].
Such form of attack is representative of the attacks that many
organisations consider to be most vulnerable from, being the
abuse of privileged access rights by the employees of an
organisation [17]. Unless additional measures are put into
place, malicious insiders can abuse existing security measures,
where current approaches fail to robustly adapt and respond to
the unpredictable nature of users. Whilst there are a number of
novel techniques that enable the detection of insider threat [8],
[16], [21], there is little research that utilises such techniques
within an automated setting.

III. THE GAME OF SNAKES AND LADDERS

Snakes and Ladders is a classic board game which requires
players to roll a dice and move their player from a starting
square to a finishing square. Players can land on certain
squares resulting in them being pushed ahead (i.e., travelling
up ladders), or moved backwards (i.e., falling down snakes).
The first player to land on the finishing square wins the game,
which is purely based on chance.

Considering the objectives of the evaluation, the concept
of Snakes and Ladders was chosen for a variety of reasons.
These include: familiarity and ease of use; the ability to collect
a wide range of data from player interaction; contains a clear
set of rules that honest players are expected to follow, which
can be used to verify the existence of malicious behaviour;
has a set of actions that can be protected by an authorisation
infrastructure (e.g., game start, roll, move, end).

It can be argued that a game of Snakes and Ladders is
not a realistic portrayal of real world resources. However, the
game itself represents many of the processes and concepts
a real resource would exhibit. These include the ability for a
subject to authenticate and gain access to the resource, perform
multiple tasks in light of some goal, and have an impact against
the resource itself.

Whilst Snakes and Ladders presents a narrower scope in
the type of malicious behaviour that can affect the game in
comparison to a real world resource (e.g., a database), the
rules of the game act as requirements of the user. These
requirements provide a base to validate behaviour against.
In addition, the game itself will appeal to a wider audience,
allowing for a range of attack profiles, including, non-technical
opportunist profiles, to technical and informed profiles of
attack.

The rest of this section discusses the design of the Snakes
and Ladders game as a protected resource. In addition, vulner-
abilities are discussed that are purposely left within the game
to enable dishonest play.

A. Game Design

The Snakes and Ladders game is designed in the form of a web
application, hosted on an Apache web server, and accessible
via any modern web browser. Figure 2 portrays the general
activity flow of the web application. To simulate the notion of
an ‘insider’, participants must create an account. Upon signup,
each subject is issued with the same level of access (in the
form of an X.509 certificate) that initially provides the subject
with full access to the game.

e ™
Create subject
account

Needs
account

‘// [loop] while game != finished
game
Has \

Authorise action
Log action
\ J
. T
account \,/

Abnormal end .\<_ ________________________
N\

of game =

~ ™~ Ve ~
Authenticate _>{ Authorise

subject game start |

J

Key: = () — Normal flow
.Start .‘End
) ‘ Activity ‘ - -=> Exception flow

Fig. 2. Activity flow of the game resource

Once a participant has been provided subject status, they
are capable of authenticating, then requesting and playing
instances of the game. Players request access to start a game,
in which a game instance is returned to their client. Game
logic is handled via both client side and server side processes.
The game interface (Figure 3) is dynamically updated in order
to reflect the subject’s actions and state within the game.

Subjects are capable of performing a set of protected actions
within the game resource. These actions are expected to be
governed by an external ABAC authorisation service, which
validates a subject’s level of access in relation to a requested
action. An authorisation policy is expected to define the criteria
of access, and should protect access against the following
actions: start game, roll dice, move player, use ladder, end

Finish

Paramapada Sopaanam (Snakes and Ladders)
Rules
* One dice throw per tum

unt each tum

* only

* it you ust place your
player at the bottom of the snake

* If you land at the base of the ladder, you must place
your pl of the

* The obijectve is o land on the finish square
Game logic
1. Left-Click the dice

2. Left-Click your player
3. Left-Click the square you need to move to

Controls

Stats

TITTITIINT

Dice roll: 5

Player position: 21
Computer position: 54
Turn count: 5

—

Logout

Start

Fig. 3. Screenshot of the implemented Snakes and Ladders game

game, and use bonus (an added feature to the original game,
which moves the player towards the end of the game).

Once access has been authorised for an action, the player
is able to perform the action within the game. The process
of authentication and authorisation is enforced by a policy
enforcement point (PEP) built into the game resource. Each
action the player carries out is then logged (along with
metadata) and interpreted in a backend database, providing
context to any authorisation request.

B. Vulnerabilities

The design of the game facilitates players performing
malicious activities through exploiting known and unknown
vulnerabilities. The game itself is considered a honeypot [21],
where a subject that exploits known vulnerabilities within
the game is likely to garner some malicious intent (i.e., to

® complete the game unfairly). These ‘known’ vulnerabilities

exist at the level of the game resource (i.e., the game’s
interface, the game’s code, and the game sessions), and are
further discussed as follows.

1) Game Interface Vulnerabilities: These symbolise the
simplest form of attack, whereby subjects identify bugs within
the game logic simply through interaction with the game itself.
For example, the dice can be rolled multiple times, or the
player can land on any square within the given dice role range.

2) Code Injection Vulnerabilities : Code injection [10]
depicts a more advanced class of attack, where players must
have an understanding of how a client operates with a server.
Through code injection, the player is capable of modifying
the game logic in order to gain an unfair advantage within the
game.

To enable code injection exploits, participants must play the
game in an environment where they have some access to the
code. As a result, through the use of obfuscated [13] JavaScript
and PHP, a game instance can be delivered to the participant’s
client web browser, whereby parts of the game rely on client-
side execution.

With the appropriate tools a subject is capable of changing
the game logic. For instance, the subject could inject code in

O 0N WN—

order to roll an impossible dice roll value, change the player’s
starting square position on the game board, move to any square
on the game board, or simply trigger the game end conditions.

3) Session Vulnerabilities: Session poisoning involves at-
tacks where a client injects data into a session held by a
server [18]. Such injection will change the client user’s state
between requests to the server, potentially overriding the need
for authentication and authorisation.

As players progress within the game, their activity is held
within a server side session. The session is essential to main-
taining transitions of state between a client’s HTTP requests
to the server, and is required in order to log player activity.
Players can therefore perform session poisoning attacks to
change the state of play.

4) Summary Attack Model: Given the described known
vulnerabilities, abuse of access can be modelled as a high
level attack tree [15]. Listing 1 describes the attack tree of a
player abusing their access rights in order to win a game via
malicious means. This model of attack defines the scope of
malicious behaviour to be mitigated in this evaluation.

Goal: Win a game through exploitation of vulnerabilities
Precondition: Attacker is an insider holding a game account
Attack:
AND:1. Authenticate with identity service
2. Gain authorisation to start game
OR:
1. Exploit glitches within the game’s interface
OR: 1. Roll more than 1 dice roll per turn
2. Ignore snakes
3. Ignore ladders
4. Travel up a snake
5. Land on any square within dice roll range
2. Inject code to change game behaviour
OR: 1. Reduce size of game board
2. Inject invalid dice roll
3. Perform an invalid move
4. Prematurely trigger game end
3. Poison session to falsify game play
OR: 1. Exploit AJAX endpoints
2. Exploit session variables in HTTPS GET requests
OR: 1. Falsify roll action
2. Falsify move action
3. Falsify game end action
Postcondition: Attacker finishes game with unfair advantage

Listing 1. High Level Attack Tree for Snakes and Ladders

It is recognised that attackers can perform other patterns of
attack within the game environment (including the entirety of
the authorisation infrastructure). For example, an attacker does
not need to rely on their access rights alone to attack the game
resource. An attack tree could exist where an attacker bypasses
authentication via performing an SQL injection attack, poten-
tially enabling the attacker to falsify game records (i.e., create
a fictitious game) or delete game records entirely. These types
of attacks, whilst worth investigating in future work, remain
out of scope of this evaluation.

C. Limitations

Several trade-offs were made in order to enable malicious
behaviour within the game. In a real-world environment, devel-
oping a resource that has known vulnerabilities is inherently
insecure. In addition, executing code on the client machine
could be considered rare. However, for the purpose of the

experiment it was necessary to use client side technologies
(i.e., JavaScript) to present an achievable environment for
subject’s to inject code.

Lastly, the fact that subjects are capable of injecting code
in the client means that authorisation could be bypassed.
A subject could manipulate the game logic to bypass the
resource’s policy enforcement point (PEP). As a result, any
games that bypass authorisation are out of scope of the
evaluation.

IV. DEPLOYMENT

The game is deployed into the environment of a ficti-
tious organisation, whereby it is protected by an Attribute-
Based Access Control (ABAC) authorisation infrastructure.
The following describes the configuration of the authorisation
infrastructure, configuration of a SAAF prototype controller,
and data to be logged.

A. Self-Adaptive Authorisation Infrastructure

The infrastructure is comprised of three virtual machines
(VMs), as shown in Figure 4, with each VM is configured to
run Ubuntu v12.04.5 TLS, with 1024MB RAM.

Authorisation Server VM

7a. Subject SAAF Adaptation [|L
\/_adaptation 6 sueat || CONtroller| Log
Effector | [Probe change -
b. Polic 6a. Policy &
BpenLDAP E%AP Zd’u fat/'Zn access change
irecto
y Effector [Probe
Identity Server VM PERMIS Access
4. validation || Standalone | Log
2. Authentication ‘3, Request access
—> Adaptation flow 1 Client . ision
. ilent conneci
Probe

> Authorisation flow

6b. Resource
change

(HTTPS)

Game
Resource

Game
DB

Resource Server VM

Fig. 4. Game experiment authorisation infrastructure

1) Identity Server: The Identity Server VM hosts an openL-
DAP directory, and a bespoke LDAP probe developed for
SAAF. The LDAP directory maintains attribute certificates
of each player account within the game. These represent a
player’s access rights in the form of a set of signed attributes.
The LDAP probe exists to monitor changes within the LDAP
directory. Should a change be identified, the probe notifies the
SAAF controller in order to ensure a synchronised model of
access.

2) Authorisation Server: The Authorisation Server VM
hosts an instance of the PERMIS standalone authorisation ser-
vice [4], a probe and effector to monitor and adapt PERMIS,
and the SAAF controller.

A single PERMIS ABAC authorisation policy exists, which
defines a hierarchy of attributes. Each level of the hierarchy
contains a scope of access, which is relevant to the game.
In practice, given a subject’s set of attributes, the subject is

capable of performing a prescribed set of actions within the
game, in conformance to the PERMIS policy.

The SAAF controller is deployed on this server to observe
and manage access to the game. It observes data pushed from
the resource probe, the LDAP probe, and the PERMIS probe,
in order to model access and subject behaviour at runtime.

3) Resource Server: The Resource Server VM hosts the
web application that contains the Snakes and Ladders game,
an integral policy enforcement point (PEP), a probe, and a
backend database. The resource is served via an Apache web
server over a HTTPS connection to requesting client machines.

The probe is designed to identify malicious play interpreted
within the game’s backend database. The probe itself can be
viewed upon as an external detector that informs the SAAF
controller of malicious activity. It utilises SQL-based trigger
rules to detect log entries that do not conform to the rules of
the Snakes and Ladders game, expanding upon SAAF’s own
detection methods.

B. SAAF Controller Configuration

The SAAF controller is configured to maintain (at runtime)
a synchronised model of access within the authorisation infras-
tructure (Figure 4). The controller is expected to detect and
respond to violations of known malicious behaviour patterns,
with the aid of external detectors deployed within the game
resource.

1) Monitoring: The controller observes environment and
system changes via the three deployed probes. All probes are
configured to ‘push’ the following changes to the controller:

o Subject change: The LDAP probe notifies the creation of
subjects, and any changes to subject access rights;

e Policy change and access change: The PERMIS probe
notifies changes to the PERMIS authorisation policy,
as well as logged requests and decisions in regards to
authorisation;

e Resource change: The resource probe generates signature
based patterns that capture malicious activity within au-
thorised sessions of the game.

Upon receipt of change, the SAAF controller either updates
its model of access (ABAC)) through the use of model
transformation programs [9], or updates its behaviour model
to reflect player authorisation and resource activity.

2) Behaviour Policy: The controller’s behaviour policy is
defined in accordance to known game vulnerabilities. The
trigger rules contained within the policy are characterised
with relation to malicious patterns of access, and malicious
patterns of activity within the game resource:

Access related

e rollMoveViolation - transaction / pattern based rule requiring that
every request to roll should be followed by a request to move, triggering
once a subject breaks this transaction more than 3 times within a short
interval;

e fastRollViolation - pattern based rule that seeks to identify high
frequency roll requests beyond human ability (i.e., scripted activity);

e fastMoveViolation - pattern based rule that seeks to identify high
frequency move requests beyond human ability (i.e., scripted activity);

e fastStartsViolation - pattern based rule that seeks to identify
a subject persistently restarting a game, typical of a subject aborting
games until they receive a beneficial outcome.
Resource related

e illegalMoveViolation - signature based rule that triggers a
violation if the resource probe indicates a player did not land on a
square in accordance to a given dice roll;

e ignSnakeViolation - signature based rule that triggers a violation
if the resource probe indicates a player ignoring the requirement to
travel down a snake;

e upSnakeViolation - signature based rule that triggers a violation
if the resource probe indicates a player travelling up a snake;

e rollInjectionViolation - signature based rule that triggers a
violation if the resource probe indicates a player injecting code into the
game client, in order to roll an unexpected roll value (e.g., roll value
500);

e moveInjectionViolation - signature based rule that triggers a
violation if the resource probe indicates a player injecting code into the
game client, for moving in an unexpected way (e.g., start square 1, end
square 64);

e bypassAuthsViolation - signature based rule that triggers a
violation if a subject attempts to bypass authorisation within the game
resource.

3) Solution Policy: The controller is deployed with a fixed
solution policy, which remains constant throughout the exper-
iment. The tailorable solutions can be categorised by subject
adaptation, and policy adaptation. The available solutions are
summarised below:

e S0: noAdaptation is the default solution for when all other solu-
tions cause greater impact over an observed behaviour;

e S1: warnSubject will notify a subject of their behaviour, typical
for first offences triggering low impact violations (subject change);

e S2: lowerSubjectAccess reduces the level of access a subject
has in conformance to the attribute hierarchy contained within the
authorisation policy (subject change);

e S3: removeAllSubjectAttributes removes all attributes from
a subject, typical for when subjects are persistently abusing access
(subject change);

e S4: removeAttributeAssignment removes trust in an identity
provider in issuing a valid attribute (policy change);

e S5: removeAllAttributeAssignments removes all trust in an
identity provider in issuing valid attributes (policy change);

e S6: deactivatePolicy removes all access to all resources (policy
change).

The solutions warnSubject and lowerSubjectAccess were
introduced given the context of the game resource, and the use
of an attribute hierarchy within the PERMIS policy. Given the
extent of a subject’s activity in violating the behaviour policy,
it is expected that subjects are first warned of their behaviour,
before being subjected to increased punitive measures.

In regards to policy adaptation, it is expected that should the
SAAF controller succeed in mitigating individual malicious
subjects, no policy adaptation should occur. However, policy
actions are configured should subject mitigation fail (e.g.,
effector failure within the identity service).

4) Execution: Once a solution has been selected, the con-
troller mitigates malicious activity via either the generation
and deployment of X.509 certificates or PERMIS authorisation
policies.

e Subject adaptation: X.509 digital certificates are gen-
erated through a process of model transformation and
serialisation to define a subject’s new level of access,
which is then deployed via the LDAP client embedded
in the controller’s executor component;

e Policy adaptation: PERMIS authorisation policies are
generated through model transformation and serialisation
to create a PERMIS policy document, which is then
deployed via a bespoke PERMIS effector.

C. Logs

Considering the deployment of the game and SAAF, data
is logged in regards to the following perspectives.

1) Game: Player activity is logged by the game resource,
which is interpreted within its backend database. All player
activity is linked to a player account (identified by their
distinguished name assigned in the LDAP identity service), an
authorisation request, and the player’s authenticated session.

Player activity provides context to authentication and au-
thorisation requests, and stores the following information:
authentication requests via the resource and their correspond-
ing success; authorisation requests via the resource and their
corresponding success; roll activity (including contextual data,
such as time, rate, roll value); move activity (including start-
ing position, end position, corresponding roll); creation and
completion of game sessions; an audit log of abnormal game
behaviour, created via SQL triggers.

In addition to the database, server logs are also maintained.
Requests sent between clients and the server that hosts the web
application are logged via the Apache server. SQL executed
directly against the database is also logged, via the game’s
database server. These logs are necessary to validate that data
logged within the database has not been tampered with, as well
as enabling the identification of anomalous activity in regards
to client / server requests.

2) Identity Management: The LDAP identity service logs
all activity against the LDAP directory in the form of server
logs. This includes the retrieval of attribute certificates (as
part of PERMIS’s credential validation), changes to attributes
within an LDAP entry (due to adaptation by SAAF or human
administration), the creation of new LDAP entries (when a
participant creates an account), and lastly, subject authentica-
tion.

3) Authorisation: From start to finish of a game instance, a
player is required to request access to perform specific actions.
The PERMIS authorisation service logs all such requests,
along with corresponding decisions based on a player’s distin-
guished name within an identity service. These logs contain
the subject’s distinguished name (DN), the resource they wish
to access, and the actions to be carried out.

4) Adaptation: The SAAF controller maintains two sepa-
rate log files, along with trace logs that capture the state of
access per each adaption made to its access control model.
The first log file contains detailed information per cycle of
the feedback loop, portraying identification of violations, anal-
ysis, planning, and execution. The second log file maintains
information specific to the detection and mitigation of subject
violations.

V. EXPERIMENTS

This section describes the experiments performed within
the game environment, conveying data that demonstrates the

SAAF controller monitoring and responding to malicious
behaviour.

A. Experiment Execution

The experiment is executed over four phases, whereby
human participants attempt to beat the game of Snakes and
Ladders in as few turns as possible. The experiments were
conducted over a period of 7 months, as to obtain a wide range
of data. Over the course of each experiment phase, violations
(known attacks) were detected and mitigated, preventing ma-
licious players from persisting with dishonest play. A small
number of unknown attacks were successful in enabling a
player to beat the game in an unexpected way, resulting in the
player obtaining what should have been an impossible score
(e.g., completing the game in O or 1 turns).

e Control - The game is released to a closed set of
participants to observe honest play, for validation of
detectors. It was conducted over a period of 1 week where
ten players were observed and asked to play a number of
games in conformance to the rules of snakes and ladders.
It was conducted over a period of 1 month. It resulted in
a single player account successfully performing a code
injection attack in which the game’s resource probe could
not detect and notify the SAAF controller;

e Phase 1 - The game is released within the School of
Computing, University of Kent, requesting participants to
play the game honestly or dishonestly. It was conducted
over a period of 1 month. It resulted in a single player
account successfully performing a code injection attack,
in which the game’s resource probe could not detect and
notify the SAAF controller;

o Phase 2 - The game is released externally, advertised
via academic and research community mailing lists, in
addition to external Universities, requesting participants
to play the game honestly or dishonestly. It was conducted
over a period of 5 months. It resulted in a single player
account successfully performing a code injection attack,
which the SAAF controller failed to detect;

o Phase 3 - The game is again released internally within
the School of Computing, University of Kent, requesting
participants to play the game honestly or dishonestly. It
was conducted over a period of 1 month. It resulted in two
player accounts successfully performing a code injection
that was not detected by the game resource probe or by
the SAAF controller.

In each phase, participants were provided the same guidance
in the form of a participant declaration that described the
purpose of the experiment, and a brief overview of how the
game works. At the end of each phase, the SAAF controller
is updated to account for any unknown attacks that have been
successful in beating the SAAF controller. This exemplifies
SAAF’s ability to be extended in order to cope with previously
unknown attacks, as well as promote additional challenges for
participants within future phases.

Each phase is subject to a set of independent, dependent,
and control variables. Independent variables are indicative

of environment change, and driven by human participation.
Dependent variables measure environment change, which refer
to the consequence of human participation. For example,
the performance of SAAF, violations detected, unknown at-
tacks performed, the state of the access control, and game
usage statistics. Control variables denote the configuration
of the authorisation infrastructure and the SAAF controller.
These include the SAAF controller’s perception of behaviour
(behaviour policy), available solutions to the controller, the
availability of probes and effectors, and configuration of the
game environment.

B. Observed Environment Change

The following section discusses two aspects of the observed
environment change, namely game statistics and trends in
player activity.

1) Game Statistics: Over the course of the experiment
phases, 1455 games were played and 366 game accounts were
created (Table I). Out of these 366 game accounts, it was
observed that account creations stemmed from 264 unique
devices (based on a device’s IP address). The number of
devices provide some indication of the number participants.

TABLE I
HIGH LEVEL STATISTICS OF GAME RELATED DATA

Control Pl P2 P3 Total
Game accounts 20 62 195 89 366
Games played 269 168 692 326 1455
Unique devices 10 34 152 68 264
Unique games played 265 118 422 134 939
Unique turns 1482 329 1007 248 3066
Unique game actions 363 130 216 48 757

Of particular importance, was the observation of diverse
player interaction. In this instance, out of the 1455 games
played, 939 games were unique. In addition, out of all of
the games played, 3066 unique game turns were observed,
where a unique turn is a signature of a player’s turn (e.g.,
turn number, roll, and move). The 757 unique game actions
observed indicate that there were a number of illegal actions
performed as a result of anomalous behaviour.

In addition to game data, a number of authentication and
authorisation requests were observed (Table II). The high
number of failed authentications is largely due to a number of
(unsuccessful) attacks against the game’s account login page.

TABLE II
AUTHENTICATION AND AUTHORISATION STATISTICS

Control P1 P2 P3 Total
Authentication requests 34 175 880 616 1705
Granted authentication 31 104 395 177 707
Failed authentication 3 71 485 439 998
Authorisation requests 6174 2430 9446 3485 21535
Granted access 6174 2262 9109 3292 20837
Denied access 0 168 337 193 698

Regarding authorisation, 21,535 requests were observed,
evidential of the extent of player activity. A number of

these authorisation requests were denied, representative of the
SAAF controller modifying subject access rights during game
play. Whilst 20,837 requests were granted by the PERMIS
authorisation service, the actual number of actions performed
within the game are not one-to-one. This is evidence of users
bypassing authorisation within the game resource.

2) Player Behaviour: A high level analysis of player has
identified a number of trends that reflect the controller’s per-
ception of malicious behaviour. However, it also demonstrated
the challenges in defining malicious behaviour. For example,
comparing player activity from the control phase and other
phases demonstrated little correlation in terms of high level
activity (e.g., time to perform actions or finish a game, number
of actions per game, etc.). Only by observing particular
contextual features of player behaviour (such as roll to move
ratio) demonstrated clear differences to malicious and non-
malicious activity. This emphasises the fact that observation
of non-contextual activity (such as rate of access) is limited
in detecting wider scopes of malicious behaviour.

C. Detection and Mitigation

Over the course of experiment phases 1 to 3, 1246 violations
were detected (Table III). Out of the violations detected, 1203
violations triggered a resultant mitigation, whereby a solution
was enacted by the SAAF controller.

TABLE III
VIOLATION STATISTICS

P1 P2 P3 Total
Violations detected 228 738 280 1246
Violations mitigated 219 717 267 1203

Mitigation failures 9 21 13 43

The SAAF controller was shown to respond to 97% to
the violations detected. However, 43 mitigation responses
had failed for a variety of reasons. The majority of these
failures were due to the SAAF controller identifying several
violations in a single adaptation cycle. A limitation in the
SAAF prototype is that it handles multiple violations in an
sequential fashion, meaning that it mitigates the first violation
before mitigating the next. This was the case for 20 of the
failed mitigations. The remaining 23 violations occurred in
phase 2, where the resource probe failed to report the malicious
behaviour due to an error in its configuration.

There were also 50 violations caused by players within
the control phase. These violations were representative of
genuine player mistakes, and were associated with low severity
violations.

1) Violations: Figure 5 conveys the percentage of violation
types that were detected in phases 1 to 3 (see Section IV-B).
Violations rol1Move and i1legalMove represent the most
common violations.

Violations ignSnake and upSnake are not so obvious,
but still require little technical ability to perform. How-
ever, there was a greater percentage of ignSnake viola-
tions which is assumed to be because the violation was

45

40

35

30

25

Percentage

20
15

10

rollMove
fastRoll
fastMove
fastStart
illegalMove
ignSnake
upSnake
rollInjection
moveInjection
bypassAuths

Fig. 5. Percentage of detected violations by type

more obvious to commit (sharing similar characteristics to
illegalMove). In addition, more sophisticated violations,
such as rollInjection and moveInjection were seen
to be rare.

2) Mitigations: Regarding mitigation, it was expected that
the SAAF controller would identify and perform an appro-
priate adaptation in response to a malicious subject’s current
and past behaviour. For example, a subject who persistently
performs low level violations over time would gradually lose
their access, and may be warned about this prospect in the
process. In contrast, a subject who performs a severe violation
(e.g., code injection) would immediately lose their access.

[INot Resolved
[lRenovenl1subject
Attributes

[[Lowersubject
Access

Percentage
«
g

[Ewarnsubject

Wlvone

ignsnake
upsnake

v =
2 =
3]
s
R
= 1
o o
2 &

faststart

Percentage breakdown of mitigation
strategies

illegalMove
rollInjection
moveInjection

bypassAuths

Fig. 6. Breakdown of violations and mitigations

Figure 6 portrays a complete percentage breakdown of
mitigation strategies enacted, and a breakdown of the most
common strategies enacted against a particular type of vi-
olation. The most common violations, such as rollMove,
illegalMove, and ignSnake were typically responded
with solution S0, where the decision to do nothing was chosen.
This is due to the fact that many of these violations were a
malicious subject’s first time offence, and from the controller’s
perspective did not warrant adaptation. Mitigation of such vio-
lations were followed up with enactment of solution S1, where
the decision to warn the subject was made, before lowering
the malicious subject’s level of access. Lastly, the majority

of high severity violations, such as rollInjection and
moveInjection were mitigated via an immediate removal
of access, preventing malicious subjects from completing a
game.

3) Controller Performance: The performance of the con-
troller was observed in each phase, recording the time it took
to decide and act on a detected violation. In addition, snapshots
of the ABAC s access control model were also recorded, as to
correlate size of the access control model with the performance
of adaptation.

Time(ms)

Model size (elements + associations)

300}

Fig. 7. Total mitigation time versus model size

Figure 7 portrays a snapshot of performance time in enact-
ing solution S2 (lower subject access) against the size of the
controller’s ABAC),;. Outliers beyond 200ms were removed,
which were representative of the problems caused by Java
warmup.

Observing the linear interpolation of the results, where
the size of the model is 1000 (including all elements and
associations), performance is shown to be 89ms. In regards to a
model size of 3000, the linear interpolation shows performance
at 103ms. As a result, it can be said that as the size the
controller’s ABAC), increased (due to new game accounts
being created), the time to adapt increased at a linear rate.

VI. EVALUATION

In this section we demonstrate the hypotheses proposed
in Section I by analysing a set of attacks, and discussing
dependent variables relevant to each hypothesis.

A. Hypothesis 1 - Self-adaptation mitigates malicious activity

To demonstrate this hypothesis, the following exemplifies
three different attack profiles that were observed throughout
the experiment phases.

1) Mitigation of persistent weak violations: Single in-
stances of low level violations (i.e., rollMove, illegalMove,
ignSnake) alone do not necessarily warrant adaptation. This
is a result of the SAAF controller tolerating a threshold of
low level violations before adaptation. However, subjects who
persist in committing such violations are faced with adaptation,
as it is considered that repeat violations increase the confidence
in malicious intent. Taking a sample of games with more than
5 violations (characterising a persistent attack profile), 229

games were recorded, whereby all players exhibited low level
violations leading to the eventual loss of access.

Roll request denied ——>
(game cannot continue)

w

Ladder request denied

w

o

S

All access
Lost access removed

to end game \x
to ladders \\\\‘
Warned R
“a s2 S3
S2
) s1 52

] =)
o a

Number of events

Lost access

o]

100

Time (;econds)

® Game actions @Authorisation Requests xAdaptations

Fig. 8. Trace of a persistent weak violation profile against mitigation

Figure 8 portrays the player’s changes, over time, in terms
of requests sent to the authorisation service and corresponding
actions made in the game, as well as adaptation as a result of
the SAAF controller. Here, the player is repeatedly committing
the violation rollMove and ignSnake in order to beat the
game. The time at which these violations occurred and the
SAAF controller’s corresponding mitigation are shown in
Table IV.

TABLE IV
ADAPTATION TRACE OF AN PERSISTENT WEAK ATTACK GAME

Step Game Violation Enacted Solution Time
Time (s) (ms)

1 40 rollMove noAdaptation (S0) 53

2 67 rollMove warnSubject (S1) 51

3 88 ignSnake lowerSubjectAccess (S2) 152

4 92 rollMove lowerSubjectAccess (S2) 105

5 128 ignSnake lowerSubjectAccess (S2) 100

6 140 rollMove removeAllSubjectAttributes (S3) 216

After each violation, the SAAF controller performs a mit-
igative decision. Initially the decision to do nothing (SO0) is
chosen, indicative of low level violations as a first offence.
However, as the player persists in committing low level
violations, the controller opts to first warn the player (S1),
followed by repeatedly lowering the subject’s access (S2).

In terms of evidence of mitigation, at 140 seconds into
the game, after observing 6 low level violations, the SAAF
controller removes all access from the subject (S3).

2) Mitigation of immediate high severity violations: A
more severe attack profile is one that contains single or multi-
ple instances of sophisticated violations (i.e., as a consequence
of code injection). In these instances, the SAAF controller
must mitigate the subject immediately.

Throughout the course of phases 1 to 3, 43 games exhibited
an attack profile of a single sophisticated violation (whereby
the game contained no other violation). This is said to be the
profile of a determined attacker, one who is aiming to beat the
game in a single turn or less, via the smallest set of changes.

5
Roll requests denied /

(game cannot continue)

w

Code injection

(illegal roll value)

Number of changes
n

x
——r g3

All access removed

0 o o o o o 0 o 0

- &] 5 g E]]
Time (seconds)

#Authorisation Requests

o w El

60

® Game actions ¥ Adaptations

Fig. 9. Trace of an immediate high severity violation against mitigation

TABLE V
ADAPTATION TRACE OF AN IMMEDIATE STRONG ATTACK GAME

Step Game Violation Enacted Solution Time
Time (s) (ms)
1 29 rolllnjection removeAllSubjectAttributes (S3) 128

Figure 9 and Table V portray the trace of a game that fits this
attack profile. The player performed three authorised actions
within the game, being a sequence of ‘Start’, ‘Roll’, and ‘Roll’.
In this instance, the second ‘Roll’ action was in actual fact
a code injection attack, where the player had superficially
increased the roll amount to 64 (beyond the legal range of 6).
Consequently the illegal roll was identified by the resource
probe, resulting in the SAAF controller removing all of the
subject’s access (S3), ensuring that future actions of the player
are denied.

An interesting observation of this attack is that, the player
who requested (and obtained) access to perform the roll, per-
formed the action after a long delay (13s). This is unusual as a
normal game exhibits a near immediate change in response to
a granted authorisation request. This suggests the player was
executing the game via a debugging tool, where the client code
could be paused, updated, and executed, post-authorisation.

B. Hypothesis 2 - Experience subject is able to carry sophis-
ticated attacks

A small percentage of violations detected were sophisticated
attacks (Figure 5), such as code injection attacks. It was
hypothesised that experience enables participants to perform
sophisticated attacks within a game.

To demonstrate this, Figure 10 portrays statistics pertaining
to malicious players prior to the point at which an injection
attack was detected and mitigated. Here, the number of games
played versus the number of violations detected are shown as
evidence of player experience. Each data point represents at
least 1 or more players (detected in performing an injection

30

o n
o = o

Number of violations
= o
[
o%ede

<«

& & g g
Number of games played

o = ©

0
72

64

Fig. 10. Violations and games played prior to injection attacks

attack) that have played x amount of games, and committed y
amount of violations.

Only 11 participants (based on devices used) were able to
perform an injection attack within their first couple of games.
Four of these were identified as committing an injection attack
as their first violation, where these participants are assumed
to have prior experience in ethical hacking. By contrast, the
majority of participants had played at least 3 games with 3
violations or more, before committing an injection attack.

As a result, some players were quick to perform a sophis-
ticated attack, whereas many players had gained experienced
via games played, and were identified in performing a number
of simple violations beforehand. In addition, it was observed
that 30 of the participants (based on device) who had been
identified had also created multiple accounts as a direct result
of adaptation (prior to committing an injection attack). In a
real deployment, these participants would have been prevented
in performing such violations by mitigation in response to
previously identified violations.

C. Hypothesis 3 - Subject behaviour changes post adaptation

This hypothesis proposes that a player, aware of adaptation,
will change their behaviour as to avoid detection or mitigation.
To demonstrate this, taking a sample of players (identified by
device), violations are analysed before and after the point at
which it becomes known to the player that adaptation has taken
place. It is considered that a player is aware of adaptation
once they have either been warned of their behaviour (i.e., the
controller enacts solution S1), or have been denied access to
performing an action in a game.

TABLE VI
CHANGES IN PARTICIPANT BEHAVIOUR POST-WARNING

Behaviour changes Participants
Did not repeat previous violation types, but performed new violation types 37
Repeated previous violation types, but performed no new violation types 26
Repeated previous violation types, and performed new violation types 114
Neither repeated or performed new violation types 0

Table VI identifies four types of changes in behaviour
observed after a player’s first warning in regards to their be-

10

haviour. A total of 177 players were identified to have received
a warning about their behaviour. It was identified that the
majority of these players (64%) went on to continue repeating
the same types of violations detected prior to warning, but
also were detected as performing new types of violations
post warning. However, 21% chose not to repeat previous
types of violations, and instead solely performed new types
of violations. Lastly, 17% simply chose to persist in repeating
the same violations they had previously been warned about.

TABLE VII
CHANGES IN PARTICIPANT BEHAVIOUR POST-DENY OF ACCESS

Behaviour changes Participants
Did not repeat previous violation types, but performed new violation types 10
Repeated previous violation types,but performed no new violation types 46
Repeated previous violation types,and performed new violation types 37
Neither repeated or performed new violation types 46

Table VII addresses the same four types of change, albeit
demonstrating change after a player’s first denial of access
(e.g., a roll, move, ladder or bonus square has been denied).
In this case, 139 players were identified as being aware of
having their access denied at some point in their game history.
In contrast to receiving a warning, 33% of players continued
to persist in performing the same violations that had led to
a denial of access, whereas only 6% of players chose not
to repeat previous violations. A significant amount of players
(33%) also chose to either stop playing the game, or halted
their malicious behaviour.

Considering the two perspectives, it can be said that the
majority of participants persisted with the same types of viola-
tions (i.e., behaviour) post knowledge of adaptation. However,
there is evidence to suggest that a small proportion of players
had factored in knowledge of adaptation, prior to performing
future attacks (due to not repeating violations that lead to
adaptation).

seoo0000000O oo

Violations

Ninn(ing numI;er of t:nrns
Fig. 11. Number of detected violations versus number of turns to win a game

Figure 11 portrays the number of violations observed within
malicious games, against the number of turns it took to win
the game. Malicious games that took longer to win (i.e.,
with a high number of turns) contained a greater number of
violations. Whereas, all of the lowest scoring games (i.e., 6

turns of less) had a single violation. In each of these games the
player had sufficient experience in terms of number of games
played, and previous committed violations. This provides some
evidence to suggest that participants tactfully chose when to
commit low level violations in order to gain a better advantage
in the game, which was indicative of the number of low scoring
games with low level violations.

D. Summary

Each hypothesis set out to evaluate an aspect of the success
and limitations of self-adaptive authorisation in mitigating the
abuse of access rights by real and unpredictable users.

Hypothesis 1 identified that the SAAF controller was
capable in mitigating various forms of malicious behaviour,
where users adopted different strategies to beat the game. This
was necessary to demonstrate the robustness of the SAAF
controller in mitigating abuse by opportunistic low severity
attackers, versus determined attackers, in regards to escalating
appropriate solutions. Given the fact that experiments have
provided evidence that malicious subjects were no longer
capable in gaining access, this hypothesis has been confirmed.
However, one exception is that adaptation has only been shown
to succeed when faced with known violations.

Hypothesis 2 analysed player violations over time. This
provided insight into the prominence of high severity viola-
tions within the game. Whilst players were aware they could
carry out malicious activity to beat the game, statistically,
many players opted to attempt simple attacks first before
carrying more complex attacks (e.g., code injection). In a real
deployment, only a small percentage of players would have
been capable of first performing a high severity violation,
where many players would have already lost their access rights
due to prior violations. This indicates that a SAAF deployment
is well suited to handling numerous low level attacks, and
as a consequence, is able to prevent malicious subjects from
gaining enough experience to carry out more complex forms
of attack.

Hypothesis 3 evaluated the consequences of self-adaptation
through observing change in participant behaviour post adap-
tation. An important aspect of this hypothesis was to address
the deterministic nature of the SAAF controller, where users
are capable of exploiting the operation of the SAAF controller
given past experiences of self-adaptation. Whilst many players
were statistically seen to persist with the same behaviour,
despite self-adaptation, some players reacted to adaptation (by
no longer performing a certain type of violation). Moreover,
patterns identified suggested that games completed by players
subject to prior self-adaptation, had tactfully performed viola-
tions to a point where they did not lose complete access.

It is worth noting that the evidence to demonstrate hypoth-
esis 2 and hypothesis 3 is based on patterns observed within
the statistics of the game. These statistics provided evidence
that on the whole, more experienced players carried out
complex violations, and that players changed their behaviour
post adaptation (i.e., in terms of exploiting adaptation, or no
longer persisting with a given type of violation). However,

11

given the limitation that player activity was analysed by
device address, it is not possible to accurately identify the
participants performing violations. Therefore, evidence can
only indicate the plausibility of these two hypotheses. To
concretely justify these hypotheses, a further experiment is
required where specific participant behaviour is assessed under
controlled conditions.

A lesson learned from using gamification to evaluate novel
approach for protecting a system against insider threats is that
gamification was quite effective in identifying vulnerabilities
that other conventional evaluation techniques would not be
able to identify. Evidence of this is that by fixing the identified
vulnerabilities in the earlier phases of evaluation lead to a more
robust SAAF. During the phase 3 of the experiment, the only
attack not identified was when a player accounts were falsified
without any attempt of playing the game. This was done by
manipulating the endpoints of the AJAX routines that handled
logging and policy enforcement for mimicking player activity.

VII. RELATED WORK

Self-protecting systems are a specialisation of self-adaptive
systems with a goal to mitigating malicious behaviour, and
SAAF can be considered a self-protecting system. In the
following, we discuss the few works that have demonstrated
self-protection within the context of mitigating insider attacks.
In particular, we discuss two self-protection approaches based
on the state of access control, and one approach based on the
state system architecture.

One of the approaches to self-protection via access control
is SecuriTAS [19]. SecuriTAS is a tool that enables dynamic
decisions in awarding access, which is based on a perceived
state of the system and its environment. SecuriTAS is similar
to dynamic access control approaches, such as RADac [14],
in that it has a notion of risk (threat) to resources, and
changes in threat leads to a change in access control decisions.
However, it furthers the concepts in RADac to include the
notion of utility. The main difference between SecuriTAS and
SAAF, is that SecuriTAS positions its own bespoke access
control model and authorisation infrastructure that incorpo-
rates self-adaptation by design. SAAF, on the other hand, is a
framework that describes how existing access control models
and authorisation infrastructures can be made self-adaptive,
and as such, configured to actively mitigate insider threat.
With that said, both approaches demonstrate an authorisation
infrastructure’s robustness in mitigating insider attacks, by
ensuring that authorisation remains relevant to system and
environment states (and preventing continuation of attacks by
adaptation of security controls).

In contrast to self-protection via access control,
architectural-based self-protection (ABSP) [22] presents
a general solution to detection and mitigation of security
threats, via runtime structural adaptation. Rather than reason
at the contextual layer of ‘access control’, ABSP utilises an
architectural model of the running system to identify the
extent of impact of identified attacks. Once attacks or security
threats have been assessed, a self-adaptive architectural

manager (Rainbow [6]) is used to perform adaptations to
mitigate the attack. ABSP shares a number of similarities
with intrusion response and prevention systems, particularly
with the scope of adaptations that ABSP can perform
(e.g., structural adaptation against network devices and
connections). However, because ABSP maintains a notion of
‘self’, it is able to reason about the impact of adaptations and
provide assurance over adaptation before adapting its target
system.

VIII. CONCLUSIONS

This paper has demonstrated gamification as a viable ap-
proach for the evaluation of self-adaptive authorisation infras-
tructures. Gamification is a technique in which online games
are deployed to solve complex problems and generate real
meaningful data. It can enable the generation of diverse and
unpredictable malicious behaviour representative of intelligent
user behaviour, pre- and post-adaptation.

Using gamification, the Self-Adaptive Authorisation Frame-
work (SAAF) was shown to be able to mitigate the abuse
of access rights in a diverse and live environment. This
was achieved through the deployment of an online game,
protected by an authorisation infrastructure. A live experiment
captured a wide range of malicious behaviours related to the
exploitation vulnerabilities. This demonstrated SAAF’s ability
to handle malicious behaviour given the existence of real and
intelligent users, in addition to capturing how users responded
to adaptation.

Through the live experiment, this paper has identified some
key outcomes and future challenges applicable to self-adaptive
authorisation. Notably, a small number of unknown attacks
during the live experiment were successful. As a result,
additional detectors had to be manually configured in order
to detect future instances of the attacks. This is representative
of the limitations in the SAAF prototype’s current detection
techniques, and enforces the need for future approaches to
evolve at runtime once an unknown attack has been successful.

In addition, it was observed that malicious subjects may
change their behaviour upon awareness of adaptation. In
some cases, subjects began committing more sophisticated
violations, or chose not to repeat previously detected types of
violations. To compound this, there was evidence to suggest
that subjects were tactfully choosing when to commit low level
violations (to their advantage), as a result of understanding
the deterministic nature of the SAAF controller. This poses
a challenge that future approaches must consider, which is
the fact that self-adaptation could lead to malicious subjects
attempting to subvert detection, commit more damaging forms
of attack, or exploit the very nature of self-adaptation to their
gain, i.e., attacks models need to be reevaluated.

REFERENCES

[1] Self-adaptive federated authorization infrastructures. Journal of Com-
puter and System Sciences, 80(5):935-952, 2014.

12

[2]

[3

—

[4]

[5]

[6

=

[7]

[8]

[9

(10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

C. Bailey, D. W. Chadwick, and R. de Lemos. Self-adaptive authoriza-
tion framework for policy based RBAC/ABAC models. In Proceedings
of the 2011 IEEE Ninth International Conference on Dependable, Au-
tonomic and Secure Computing, DASC ’11, pages 37—44, Washington,
DC, USA, 2011. IEEE Computer Society.

D. Caputo, M. Maloof, and G. Stephens. Detecting insider theft of trade
secrets. IEEE Security and Privacy, 7(6):14-21, Nov. 2009.

D. W. Chadwick, G. Zhao, S. Otenko, R. Laborde, L. Su, and T. A.
Nguyen. PERMIS: A modular authorization infrastructure. Concurr.
Comput. : Pract. Exper., 20(11):1341-1357, Aug. 2008.

R. de Lemos and et al. Software engineering for self-adaptive systems:
A second research roadmap. In R. de Lemos, H. Giese, H. Miiller, and
M. Shaw, editors, Software Engineering for Self-Adaptive Systems II,
volume 7475 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013.

D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste.
Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture. Computer, 37(10):46-54, Oct. 2004.

K. Huotari and J. Hamari. Defining gamification: A service marketing
perspective. In Proceeding of the 16th International Academic MindTrek
Conference, MindTrek ’12, pages 17-22, New York, NY, USA, 2012.
ACM.

IBM. IBM Security Intelligence with Big Data [Online], n.d.
Available from: http://www-03.ibm.com/security/solution/intelligence-
big-data/ [Accessed 20 July 2014].

F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A model
transformation tool. Sci. Comput. Program., 72(1-2):31-39, June 2008.
G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-injection
attacks with instruction-set randomization. In Proceedings of the 10th
ACM Conference on Computer and Communications Security, CCS 03,
pages 272-280, New York, NY, USA, 2003. ACM.

J. O. Kephart and D. M. Chess. The vision of autonomic computing.
Computer, 36(1):41-50, Jan. 2003.

V. Koutsonikola and A. Vakali. LDAP: Framework, practices, and trends.
IEEE Internet Computing, 8(5):66-72, Sept. 2004.

C. Linn and S. Debray. Obfuscation of executable code to improve
resistance to static disassembly. In Proceedings of the 10th ACM
Conference on Computer and Communications Security, CCS ’03, pages
290-299, New York, NY, USA, 2003. ACM.

R. McGraw. Risk-adaptable access control (RADac). Technical report,
National Institute of Standards and Technology (NIST), 2009.

A. P. Moore, R. J. Ellison, and R. C. Linger. Attack modeling for in-
formation security and survivability. Technical Report CMU/SEI-2001-
TN-001, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 2001.

J. R. Nurse, O. Buckley, P. A. Legg, M. Goldsmith, S. Creese, G. R.
Wright, and M. Whitty. Understanding insider threat: A framework
for characterising attacks. In Workshop on Research for Insider Threat
(WRIT) held as part of the IEEE Computer Society Security and Privacy
Workshops (SPWI14), in conjunction with the IEEE Symposium on
Security and Privacy (SP), pages 214-228. 1IEEE, 2014.

J. Oltsik. The 2013 Vormetric insider threat report [Online], 2013.
Available from: http://www.vormetric.com/sites/default/files/vormetric-
insider-threat-report-oct-2013.pdf [Accessed 12 June 2014].

I. Palomo. Serious security hole in Mambo site server version 3.0.X
[Online], 2001. Available from: http://seclists.org/bugtraq/2001/Jul/569
[Accessed 17 June 2014].

L. Pasquale, C. Menghi, M. Salehie, L. Cavallaro, I. Omoronyia, and
B. Nuseibeh. Securitas: A tool for engineering adaptive security. In
Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, FSE *12, pages 19:1-19:4,
New York, NY, USA, 2012. ACM.

D. B. Pritchard. ‘Snakes and Ladders’, The Family Book of Games.
Brockhampton Press, 1st edition, 1994.

L. Spitzner. Honeypots: Catching the insider threat. In Proceedings
of the 19th Annual Computer Security Applications Conference, pages
170-179. IEEE, 2003.

E. Yuan, S. Malek, B. Schmerl, D. Garlan, and J. Gennari. Architecture-
based self-protecting software systems. In Proceedings of the 9th inter-
national ACM Sigsoft conference on Quality of software architectures,
pages 33-42. ACM, 2013.

