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Abstract. Over the years, Critical Infrastructures (CI) have revealed themselves 

to be extremely disaster-prone, be the disasters nature-based or man-made. This 

paper focuses on a specific category of CI: Critical Information Infrastructures 

(CII), which are commonly deemed to include communication and information 

networks. The majority of all the other CI (e.g. electricity, fuel and water sup-

ply, transport systems, etc.) are crucially dependent on CII. Therefore, problems 

associated with CII that disrupt the services they are able to provide (whether to 

a single end-user or to another CI) are of increasing interest. This paper dis-

cusses some recent developments in optimization models regarding CII’s ability 

to withstand disruptive events within three main spheres: network survivability 

assessment, network resource allocation strategy and survivable design. 

Keywords: Critical Information Infrastructures (CII) ∙ Survivability ∙ Resource 

Allocation Strategy ∙ Survivable Network Design 

1 Introduction 

Infrastructures considered critical (CI) are those physical and information-based facil-

ities, networks and assets which if damaged would have serious impacts on the well-

being of citizens, proper functioning of governments and industries or result in other 

adverse effects [20]. The nature of these infrastructures, along with the potential 

threats arising from disasters, whether nature-based or man-made, has prompted what 

is referred to as Critical Infrastructure Protection (CIP). 

This paper focuses on a specific category of CI, namely the Critical Information In-

frastructures (CII), and reviews recent developments in the optimization field aimed 

at addressing Critical Information Infrastructure Protection (CIIP) issues. 

CII are described as those systems, belonging to the Information and Communica-

tion Technology, which are critical - not just for their own sakes, but for other CI that 

rely on them (e.g., transportation) [36]. Examples of CII are the public telephone net-

work, Internet, terrestrial and satellite wireless networks and so on and so forth [25].  

CIIP is defined as those plans and strategies developed by network operators, in-

frastructure owners and others, aimed at keeping the service level of CII above a pre-

determined threshold, despite the occurrence of disruptive events of various natures 

[35]. It is clear that CII are key elements in production and service systems. Even a 
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local failure at the single CII level (e.g. shut down servers, interrupted cable connec-

tions, etc.) may prompt far-reaching adverse effects on the CI relying on it. Bigger 

disruptions may have even more catastrophic cascading consequences. For example, 

the 2001 World Trade Center attacks crippled communications by destroying tele-

phone and Internet lines, electric circuits and cellular towers ([10], [18]). This caused 

a cascade of disruptions at all levels, from fuel shortages, to transportation and finan-

cial services interruptions.  

The disruptive events that can affect CII are primarily identified as physical attacks 

or cyber-attacks. This paper focuses on the former. Three main issues emerge. First, 

what are the most critical elements of the system that, if disrupted, would interrupt or 

significantly degrade the system’s normal functioning? Second, how can such an 

interruption be prevented or mitigated by resource allocation plans, aimed either at 

hardening system elements or at recovering service? Third, is it possible and worth-

while to design and establish infrastructures that are intrinsically able to resist service 

failure when a disruptive event occurs?  

The main optimization models developed to address these issues can be catego-

rized as follows:  

1. Survivability-oriented interdiction models, aimed at identifying interdiction scenar-

ios of CII and quantifying the consequences deriving from potential losses of sys-

tem critical components in terms of ability to provide service;  

2. Resource allocation strategy models, aimed at optimizing the allocation of re-

sources (i.e., budget) among the components of already existent systems in order to 

either protect them or to re-establish service level; and  

3. Survivable design models, aimed at planning new CII which are able to meet sur-

vivability criteria when disruptive events occur. 

In this paper, we provide a description of the seminal models in each category and 

suggest how these models can be taken as the starting point for further development 

in the CIIP field.  

The remainder of this paper is organized as follows. Survivability-oriented inter-

diction, resource allocation strategy and survivable design models are described in 

Sections 2, 3 and 4, respectively. In Section 5, further research suggestions in model-

ing CIIP problems are discussed. Section 6 offers concluding remarks. 

2 Identifying Critical Network Components: Survivability-

Oriented Interdiction Models 

The identification of critical components in network-based systems can be traced back 

to a few decades ago in the context of transportation infrastructures for military pur-

poses [38]. More recently, [4] introduced optimization models for identifying critical 

facilities in service and supply systems.  

Interdiction models, as referred to in the literature, identify network components 

which are the most critical, i.e. the ones that, if disrupted, inflict the most serious 

damage to the system. The importance of these kinds of models is easily understanda-



ble: they not only shed light on a system’s major vulnerabilities, but also help form 

the basis for developing protection and/or recovery plans.  

Interdiction models are driven by specified criteria (also called impact metrics). 

When dealing with CII, such as communication and information networks, the two 

important criteria are network reliability and network survivability. In [31], network 

reliability is defined as the probability measure that a network functions according to 

a predefined specification; whereas, network survivability is defined as the ability of a 

network to maintain its communication capabilities in the face of equipment failure. 

Moreover, according to [31], it is possible to subdivide network survivability into two 

categories: physical survivability and logical survivability. A network is physically 

survivable if after the physical failure of some nodes or arcs, a path connecting all the 

nodes still exists. Logical survivability is about survivability at higher levels of the 

OSI model and assumes that the underlying physical network is survivable.   

Our interest is in evaluating how disruptive events impact a network’s physical 

survivability by identifying its critical components, which can be nodes and/or arcs. 

In the case of communication and information networks, nodes can be switches, mul-

tiplexers, cross-connects, routers; arcs represent connections among them [31, 32]. 

Murray [18] identifies four metrics to evaluate network physical survivability: 

maximal flow ([38]), shortest path ([7]), connectivity ([14], [31]), and system flow 

([17], [19]). Here we provide an example of an optimization model designed to ascer-

tain the survivability of system flow. This model is a variation of the model intro-

duced in [19] and later extended and streamlined in [17]. It identifies the r most vital 

components of a network, i.e. those components which, if disrupted, maximize the 

amount of flow that can no longer be routed over the network. In the specific case of 

CII, the flow represents data and information. In the following, we will refer to this 

model as the Survivability Interdiction model (SIM).   

Given a network 𝐺(𝑁, 𝐴), where 𝑁 is the set of nodes and 𝐴 is the set of arcs, let 𝛺 

be the set of origin nodes, indexed by o; H the set of elements (nodes/arcs) that can be 

disrupted, indexed by h; 𝛥 the set of destination nodes, indexed by d, 𝑃 the set of 

paths, indexed by p; 𝑁𝑜𝑑 the set of paths enabling flow between an origin-destination 

pair o-d; 𝛷𝑝 the set of components belonging to path 𝑝; 𝑓𝑜𝑑 the flow routed between 

an o-d pair; and 𝑟 the number of components to be disabled. The decision variables 

are: 𝑆ℎ equal to 1 if component h is disrupted, 0 otherwise; and 𝑋𝑜𝑑 equal to 1 if flow 

cannot be routed between a pair o-d, 0 otherwise. The mathematical formulation is: 

 

𝑚𝑎𝑥 𝑧 =  ∑ ∑ 𝑓𝑜𝑑𝑋𝑜𝑑𝑑∈𝛥𝑜∈𝛺    (1) 

s.t.   

∑ 𝑆ℎ ≥ℎ∈𝜙𝑝
𝑋𝑜𝑑  ∀ 𝑜 ∈ 𝛺, 𝑑 ∈ 𝛥, 𝑝 ∈ 𝑁𝑜𝑑 (2) 

∑ 𝑆ℎℎ∈𝐻 = 𝑟                                                                              (3) 

𝑆ℎ ∈ {0,1}  ∀ h ∈ 𝐻 (4) 

𝑋𝑜𝑑 ∈ {0,1} ∀ 𝑜 ∈ 𝛺, 𝑑 ∈ 𝛥 (5) 

 

The objective function (1) maximizes the total flow disrupted (or interdicted). Con-

straints (2) state that the flow between an o-d pair can be considered lost (X𝑜𝑑 = 1), 
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only if every path connecting nodes o and d is affected by the disruption (i.e., at least 

one of its arc is disrupted). Constraint (3) is a typical cardinality constraint which 

stipulates that exactly 𝑟 arcs are to be disrupted. Finally, constraints (4) and (5) repre-

sent the binary restrictions on the interdiction and flow variables, respectively. 

The original SIM in [19] only considers arc disruption. It was later modified to 

address node disruption in [17]. This work also presents a variant of SIM which iden-

tifies lower bounds to the flow loss caused by the disruption of 𝑟 nodes, thus allowing 

the assessment of both best-case and worst-case scenario losses. This kind of analysis 

is useful to build the so-called reliability envelope, a diagram originally developed in 

[22] to depict possible outcomes for the failure of communication systems. SIM was 

applied to the Abilene network, an Internet-2 backbone with 11 routers and 14 linkag-

es connecting US institutions. The analysis shows that the worst-case interdiction of 

one node (Washington, D.C.) can cause a data flow decrease of over 37%; a two-node 

interdiction scenario (Washington, D.C. and Indianapolis) a decrease of over 73%. 

One arguable aspect of existing interdiction models such as SIM is that the num-

ber of components to be disrupted is fixed to a specific and known value 𝑟. This as-

sumption is made to capture the possible extents of disruptive events: large values of 

𝑟 mimic large disruptions involving the simultaneous loss of several components, 

while small values are used to model minor disruptions [15]. In practice, it is difficult 

to anticipate the extent of a disruption and therefore select a suitable 𝑟 value. In addi-

tion, the critical components identified for a small 𝑟 value are not necessarily a subset 

of the critical components identified for larger values. Consequently, these models are 

usually run for several values of 𝑟 so as to identify the most vital components across 

disruption scenarios of different magnitude [17].  

Another aspect worth mentioning is that the use of cardinality constraints like (3) 

is useful for identifying worst-case scenario losses caused by natural disasters. How-

ever, in case of malicious attacks, models must capture the fact that different amount 

and type of resources (e.g., human, financial etc.) may be needed in a concerted attack 

to fully disable network components and cause maximum damage [28]. From an at-

tacker’s perspective, in fact, resources may vary significantly according to the target. 

This is particularly true within the context of physical survivability as opposed to 

logical survivability. For example, a physical attack on a relatively small number of 

major switching centers for long-distance telecommunications may require considera-

bly more resources than launching a logic denial-of-service attack on the Internet. 

However, the former type of attack may cause much longer lasting damage [13].  

This aspect can be captured by either replacing (3) with a budget constraint (see 

[1] and [15] in the context of distribution systems) or by developing models that di-

rectly minimize the attacker expenditure to achieve a given level of disruption.  Ex-

amples of the latter can be found in [14]. This work presents some mixed integer pro-

gramming models which minimize the cost incurred by an attacker to disconnect the 

network according to different survivability metrics (e.g., degree of disconnectivity). 

These attacker models are then used to assess the robustness of two protection re-

source allocation strategies: a uniform allocation (the defense budget is distributed 

equally among the nodes) and a degree-based allocation (the budget is distributed 



among the nodes proportionally to their degree of connectivity). As it will be dis-

cussed in the next section, this approach, where protection decisions are not tackled 

explicitly within a mathematical model but are only assessed and/or developed on the 

basis of the results of an interdiction model, often leads to a suboptimal allocation of 

protective resources. 

Another aspect that interdiction models must capture is the fact that the outcome of 

an attack is highly uncertain.  When dealing with malicious disruptions, this is a cru-

cial issue as attackers, such as terrorists or hackers, aim at allocating their offensive 

resources so as to maximize their probability of success. Clearly, there is a correlation 

between the amount of offensive resources invested and the probability of success of 

an attack: the more the former, the higher the latter. Church and Scaparra [5] intro-

duce an interdiction model for distribution systems where an interdiction is successful 

with a given probability and the objective is to maximize the expected disruption of 

an attack on 𝑟 facilities. Losada et al. [15] further extend this model by assuming that 

the probability of success of an interdiction attempt is dependent on the magni-

tude/intensity of the disruption. Similar extensions could be developed for SIM to 

assess the survivability of physical networks to attacks with uncertain outcomes. 

3 Enhancing Critical Network Survivability: Resource 

Allocation Strategy Models 

Optimization approaches can be used to improve CII survivability by optimizing 

investments in protection measures and in service recovery plans.    

CII protection measures may be divided into three different categories: technical 

(e.g. security administration), management (e.g. security awareness, technical train-

ing) and operational (e.g. physical security) (see [37]).  Our interest lies in the last 

category. Examples of physical security measures include: alarms, motion detectors, 

biometric scanners, badge swipes, access codes, and human and electronic surveil-

lance, e.g. Perimeter Intruder Detection Systems (PIDS) and Closed Circuit Televi-

sion (CCTV) [20]. In a broader sense, protection strategies may include increasing 

redundancy and diversity [34]. Redundancy consists in creating one or more copies of 

the same network element/content and is key to tackle random uncorrelated failures. 

Diversity aims at avoiding components of a system to undergo the same kind of fail-

ure and is used to tackle correlated failures.  

Service recovery is intimately connected with the concept of survivability since it 

involves bringing the infrastructure to the level of service it was able to provide be-

fore a disruption and, normally, as timely as possible. In this perspective, optimization 

approaches provide a useful tool to identify the optimal trade-off between the level of 

service to restore and the amount of resources to invest over a certain time horizon.  

3.1 Optimization Models for Protecting CII Physical Components  

Although interdiction models like SIM are instrumental for the identification of the 

most critical CII components, protection resource allocation approaches which solely 
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rely on this information to prioritize protection investments often result in suboptimal 

defensive strategies ([2], [6]). This is due to the fact that when a component (e.g., the 

most critical) is protected, the criticality of the other components may change. Protec-

tions and interdictions decisions must therefore be addressed in an integrated way.  

This is typically done by using bi-level optimization programs [8]. These programs 

are hierarchical optimization models which emulate the game between two players, 

referred to as leader and follower. In the CIIP context, the leader is the network opera-

tor or infrastructure owner, who decides which system components to protect; the 

follower represents a saboteur (hacker or terrorist) who tries to inflict maximum dam-

age to the system by disabling some of its components. The defender decisions are 

modeled in the upper level program, whereas the inner-level program models the 

attacker decisions and, therefore, computes worst-case scenario losses in response to 

the protection strategy identified in the upper level.  

Below we present a bi-level program for CIIP, which embeds SIM in the inner-

level. We refer to it as the Survivability Protection Problem (SPP). In addition to the 

parameters and variables defined in Section 2, SPP uses the following notation: 𝐵 is 

the total budget available for protection; 𝑐ℎ is the unit cost for protecting component 

h; 𝑍ℎ is a decision variable equal to 1 if component h is protected, 0 otherwise.  

SPP can be formulated as follows: 

 

𝑚𝑖𝑛 𝐻(𝑧)  (6) 

s.t.   

∑ 𝑐ℎ𝑍ℎ ≤ 𝐵ℎ∈𝐻    (7) 

𝑍ℎ ∈ {0,1}  ∀ h ∈ 𝐻   (8) 

𝐻(𝑧) =  𝑚𝑎𝑥 ∑ ∑ 𝑓𝑜𝑑𝑋𝑜𝑑𝑑∈𝛥𝑜∈𝛺    (9) 

s.t.   

     (2) - (5)   

𝑆ℎ ≤ 1 − 𝑍ℎ   ∀ h ∈ 𝐻 (10) 

 

The upper level model identifies which network components to protect given limited 

budgetary resources (7) so as to minimize a function, 𝐻(𝑧), which represents the 

highest flow loss (6) resulting from the interdiction of 𝑟 components. The inner-level 

model is the SIM with the additional set of constraints (10) which guarantee that if a 

component is protected, it cannot be attacked. 

Protection models like SPP can be extended in a number of ways. For example, 

protection investments over time could be considered, given that funds for enhancing 

CI security usually become available at different times. An example of bi-level pro-

tection models that considers dynamic investments can be found in [33] within the 

context of transportation infrastructure. Probabilistic extensions of SPP should also be 

considered, where the protection of an element does not completely prevent its inter-

diction, but may reduce its probability of failure. Other issues that should be captured 

are the uncertainty in the number of simultaneous losses of components (see for ex-

ample [11]), and the correlation among components failures [12].  

Obviously, there are other approaches other than bi-level programming which can 

be used to optimize protection strategies. For example, Viduto et al. [37] combine a 



risk assessment procedure for the identification of system risks with a multi-objective 

optimization model for the selection of protection countermeasures. To mitigate 

cyber-threats, Sawik [27] uses mixed integer models in conjunction with a conditional 

value-at-risk approach to identify optimal protection countermeasure portfolios under 

different risk preferences of the decision maker (risk-adverse vs. risk neutral).   

3.2 Optimization Models for CII Service Restoration 

An interesting model for the optimization of recovery investments is the Networked 

Infrastructure Restoration Model (NIRM) introduced in [16]. NIRM is a multi-

objective optimization model for the evaluation of tradeoffs between flow restoration 

and system costs over time. 

NIRM uses the following additional notation: 𝛤𝑛 is the set of inoperable nodes, 𝛤𝑙  

the set of inoperable arcs, 𝛷𝑝
𝑛 the set of disrupted nodes along path 𝑝, 𝛷𝑝

𝑙  the set of 

disrupted arcs along path 𝑝, 𝑇 the set of planning periods; 𝑓𝑜𝑑 is the flow routed be-

tween the pair o-d; 𝑐𝑝𝑡 the cost of traversing path 𝑝 during planning period 𝑡; 𝜆𝑖  and  

𝜆𝑗 the costs of restoring operation at node 𝑖 and arc 𝑗, respectively; 𝐻𝑡
𝑛 and 𝐻𝑡

𝑙  the 

budget for node and arc restoration during planning period t; 𝛽𝑡 the weight for im-

portance of repair in time 𝑡; 𝐶𝑜𝑑𝑡 is a large quantity representing the cost of a disrupt-

ed pair o-d during planning period 𝑡. The decision variables are: 𝑌𝑝𝑡, equal to 1 if path 

𝑝 is available in time 𝑡, 0 otherwise; 𝑉𝑖𝑡
𝑛 (𝑉𝑗𝑡

𝑙 , ) equal to 1 if node 𝑖 (arc j) is restored in 

time 𝑡, 0 otherwise; and 𝑊𝑜𝑑𝑡, equal to 1 if connectivity does not exist between a pair 

o-d in time 𝑡, 0 otherwise. The formulation is the following: 

 

𝑚𝑎𝑥 ∑ ∑ ∑ ∑ 𝛽𝑡𝑓𝑜𝑑𝑌𝑝𝑡𝑡∈𝑇𝑝∈𝑁𝑜𝑑𝑑∈𝛥𝑜∈𝛺   (11) 

𝑚𝑖𝑛 ∑ ∑ ∑ 𝐶𝑜𝑑𝑡𝑊𝑜𝑑𝑡𝑡∈𝑇𝑑∈𝛥 +𝑜∈𝛺 ∑ ∑ ∑ ∑ 𝑐𝑝𝑡𝑌𝑝𝑡𝑡∈𝑇𝑝∈𝑁𝑜𝑑𝑑∈𝛥𝑜∈𝛺   (12) 

s.t.   

∑ 𝜆𝑖𝑉𝑖𝑡
𝑛

𝑖∈𝛤𝑛 ≤  𝐻𝑡
𝑛   ∀ 𝑡 ∈ 𝑇 (13) 

∑ 𝜆𝑗𝑉𝑗𝑡
𝑙

𝑗∈𝛤𝑙 ≤  𝐻𝑡
𝑙   ∀ 𝑡 ∈ 𝑇 (14) 

∑ 𝑉𝑖𝑡
𝑛

𝑡∈𝑇 ≤  1  ∀ 𝑖 ∈ 𝛤𝑛 (15) 

∑ 𝑉𝑗𝑡
𝑙

𝑡∈𝑇 ≤  1  ∀ 𝑗 ∈ 𝛤𝑙  (16) 

𝑌𝑝𝑡 − ∑ 𝑉𝑖𝑡̂
𝑛

𝑡̂≤𝑡 ≤ 0       ∀ 𝑝 ∈ 𝑃, 𝑖 ∈ 𝛷𝑝
𝑛, 𝑡 ∈ 𝑇 (17) 

𝑌𝑝𝑡 − ∑ 𝑉𝑗𝑡̂
𝑙

𝑡̂≤𝑡 ≤ 0                      ∀ 𝑝 ∈ 𝑃, 𝑗 ∈ 𝛷𝑝
𝑙 , 𝑡 ∈ 𝑇 (18) 

∑ 𝑌𝑝𝑡 + 𝑊𝑜𝑑𝑡𝑝∈𝑁𝑜𝑑
= 1  ∀ 𝑜 ∈ 𝛺, 𝑑 ∈ 𝛥, 𝑡 ∈ 𝑇 (19) 

𝑌𝑝𝑡 ∈ {0,1} ∀ 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇 (20) 

𝑉𝑖𝑡
𝑛 ∈ {0,1} ∀ 𝑖 ∈ 𝛤𝑛 , 𝑡 ∈ 𝑇 (21) 

𝑉𝑗𝑡
𝑙 ∈ {0,1} ∀ 𝑗 ∈ 𝛤𝑙 , 𝑡 ∈ 𝑇 (22) 

𝑊𝑜𝑑𝑡 = {0,1} ∀ 𝑜 ∈ 𝛺, 𝑑 ∈ 𝛥, 𝑡 ∈ 𝑇 (23) 

 

The objective function (11) maximizes system flow or connectivity while objective 

(12) minimizes system cost and it is made up of two components, disruption and path 

usage. Constraints (13) and (14) are budget constraints on node and arc recovery in 

each planning period 𝑡. Constraints (15) and (16) restrict node and arc repair to a sin-
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gle time period. Constraints (17) and (18) state that a path 𝑝 is available in period 𝑡 

only if each of its disrupted component (node 𝑖 or arc 𝑗 respectively) is repaired in 

period 𝑡 or in any of the preceding time periods. Constraints (19) track o-d pairs that 

are not connected in each time period and force the selection of at most one path be-

tween each o-d pair in each time period. Finally, constraints (20)-(23) represent the 

binary restrictions on the decision variables.  

NIRM was applied to support recovery planning after a simulated High Altitude 

Electromagnetic Pulse attack on a sample telecommunications backbone network with 

46 routers and 94 high-capacity backbones. Different restoration schedules over 6 

repair periods were generated and analyzed so as to highlight the tradeoffs between 

flow restoration and system costs. 

A limitation of NIRM is that the repair action is assumed to be instantaneous. 

Nurre et al. [21] consider the duration for component repair in an integrated restora-

tion planning optimization model which identifies the network components to be in-

stalled/repaired after a disruption and schedules them to available work groups. The 

objective is to maximize the cumulative amount of flow that can be routed across the 

network over a finite planning horizon. An interesting addition to the restoration 

modeling literature is the model in [29] which considers the important issue of restor-

ing multiple interdependent infrastructure systems (e.g., power, telecommunication, 

water). This work also presents tools to quantify the improvement in restoration effec-

tiveness resulting from information sharing and coordination among infrastructures. 

4 Planning Survivable Networks: Design Models  

Given the crucial importance of CII to the vast majority of economic activities and 

services, telecommunication and information systems are designed in such a way that 

they are intrinsically survivable, i.e. they satisfy some more or less stringent connec-

tivity criteria. The design of survivable network is a well-studied problem in the op-

timization field. For an early survey, the interested reader can refer to [31]. A com-

prehensive review of survivable network design models would be outside the scope of 

this paper. To provide a complete treatment of survivability related optimization prob-

lems, we only briefly discuss the Survivable Network Design (SND) model found in 

[32], one of the earliest and most studied models. 

Given an undirected graph 𝐺(𝑁, 𝐸), where 𝑁 is the set of nodes and 𝐸 is the set of 

undirected edges (𝑖, 𝑗), each pair of communicating nodes is identified as a commodi-

ty 𝑘 (being 𝐾 the set of the commodities), whose origin and destination are labeled as 

𝑂(𝑘) and 𝐷(𝑘) respectively. Let 𝑐𝑖𝑗  be the design cost of edge (𝑖, 𝑗), and 𝑞 the num-

ber of node disjoint paths required for all the commodities (so the system will be able 

to face 𝑞 − 1 failures at most). The decision variables are: 𝑈𝑖𝑗  equal to 1 if edge (𝑖, 𝑗) 

is included in the design, 0 otherwise; and 𝑋𝑖𝑗
𝑘  equal to 1 if commodity 𝑘 uses edge 

(𝑖, 𝑗), 0 otherwise. The formulation is the following: 

 

𝑚𝑖𝑛 𝑧 =  ∑ 𝑐𝑖𝑗𝑈𝑖𝑗(𝑖,𝑗)∈𝐸    (24) 

s.t.   



∑ 𝑋𝑖𝑗
𝑘

𝑗∈𝑁 − ∑ 𝑋𝑗𝑖
𝑘

𝑗∈𝑁 = {
𝑄 𝑖𝑓 𝑖 ≡ 𝑂(𝑘)

−𝑄 𝑖𝑓 𝑖 ≡ 𝐷(𝑘)
0 otherwise     

  
 

∀ 𝑘 ∈ 𝐾 

 

(25) 

𝑋𝑖𝑗
𝑘 ≤ 𝑈𝑖𝑗  ∀ 𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐸 (26) 

𝑋𝑗𝑖
𝑘 ≤ 𝑈𝑖𝑗  ∀ 𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐸 (27) 

∑ 𝑋𝑖𝑗
𝑘

𝑖∈𝑁 ≤ 1  ∀ 𝑘 ∈ 𝐾, 𝑗 ∈ 𝑁 ∧ 𝑗 ≠ 𝐷(𝑘) (28) 

𝑋𝑖𝑗
𝑘 , 𝑋𝑗𝑖

𝑘 = {0,1} ∀ 𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝑁 (29) 

𝑈𝑖𝑗 = {0,1} ∀ 𝑖, 𝑗 ∈ 𝑁 (30) 

 

The objective function (24) minimizes the cost of the topological network design. 

Constraints (25) guarantee network flow conservation. Constraints (26) and (27) stip-

ulate that flow can traverse an edge only if the edge is included in the design. The 

combined use of constraints (25), (26) and (27) enforce the edge-disjoint paths over 

the network. Constraints (28) guarantee that at most one unit of flow can traverse a 

node that is neither a commodity origin nor destination, thus ensuring the correct 

number of node-disjoint paths in the network. Finally, constraints (29) and (30) repre-

sent the binary restrictions on the variables. 

Many other survivable network design models can be found in the literature which 

differ in terms of underlying network (wired vs. wireless), network topology (e.g., 

ring, mesh, star, line, tree, etc.), connectivity requirements (e.g., edge and/or vertex-

connectivity), path-length restrictions (e.g., hop limits [24]), cost minimization [23], 

and dedicated settings (e.g., path protection, link and path restoration [24]) .  

Note that recent survivability design models embed interdiction models to ascertain 

components criticality ([3], [30]). Such models are able to identify cost-effective CII 

configurations which are inherently survivable without the need to specify the number 

of disjoint paths required between each pair of communicating nodes, like in SND. 

5 Future research suggestions 

The research on CIIP issues aimed at hedging against potential physical attacks is still 

evolving. The demand for such work has been prompted by disasters of diverse na-

ture, with 9/11 being a seminal one.  

The survivability optimization models discussed in this paper are basic models that 

can be extended in a number of ways. For example, interdiction and protection mod-

els could be extended to tackle both physical and logical survivability issues by incor-

porating routing and link capacity assignment decisions. In addition, most of the op-

timization models developed so far are deterministic. However, failures and disrup-

tions are random events, often difficult to predict. The probabilistic behaviour of 

complex CII under disruptions would be better modelled by using stochastic models, 

including uncertain parameters (e.g., uncertainty on arc / node availability, extent of a 

disruption, stochastic repair times, etc.). Alternatively, the uncertainty characterizing 

disruptions could be captured in scenario-based models which incorporate robustness 
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measures for the identification of solutions which perform well across different dis-

ruption scenarios [26].   

Future models could even combine the optimization of protection and restoration 

strategies in a unified framework so as to distribute resources efficiently across the 

different stages of the disaster management cycle (protection plans belong to the pre-

disaster stage while recovery plans refer to the post-disaster stage). Other resource 

allocation models could consider identifying tradeoff investments in physical protec-

tion and cyber-security to mitigate the impact of both physical and logical attacks. 

Models which address design and restoration issues conjunctively, such as the one in 

[23], also deserve further investigation.  

The models discussed in this paper have been solved by using a variety of optimi-

zation algorithms, including exact methods (e.g., decomposition) and heuristics (e.g. 

evolutionary algorithms). The development of more complex models, such as stochas-

tic, bi-level and multi-objective models, would necessarily require additional research 

into the development of more sophisticated solution techniques, possibly integrating 

exact and heuristic methodologies.  

Eventually, the ultimate challenge when developing optimization approaches for 

increasing CII survivability is to consider the interdependency among multiple CI and 

the potential cascading failures across different lifeline systems. As noted in [29], 

information sharing and coordination among infrastructures significantly improve the 

effectiveness of survivability strategies, as opposed to decentralized decision making. 

However, existing models that address network interdependencies are either overly 

simplistic or too theoretical [9]. This area certainly warrants further research. 

6 Conclusions 

This paper reviewed the research activities conducted over recent years in the field of 

CIIP aimed at mitigating the effects of physical attacks against CII components. This 

paper has investigated three main research areas: survivability assessment models, 

resource allocation strategy models (aimed at either protection or recovery plans), and 

survivable design models. 

Each model category has been designed to identify different crucial aspects: (a) 

under what circumstances is the infrastructure still able to provide its service; (b) how 

should resources be allocated in order to protect the infrastructure physical compo-

nents or to restore its level of service; (c) how should a new infrastructure be designed 

in order to be naturally survivable.   

The optimization models hereby discussed are valuable decision-making tools in 

tackling CII survivability issues but future work is undoubtedly needed. The reason 

lies in the intrinsic nature of CII: they are large-scale, heterogeneous, distributed sys-

tems whose complexity is continuously evolving in a risky environment. As such, 

modeling their dynamics and interdependency with other lifeline systems requires 

developing cutting-edge methodologies, which integrate methods from different dis-

ciplines (e.g., optimization, simulation, risk analysis, complex network theory and 

statistics) in a unified framework.  
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