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Abstract: In this paper, a class of nonlinear interconnected systems with uncertain time varying
parameters is considered, in which both the interconnections and the isolated subsystems are
nonlinear. The difference between the unknown time varying parameter and its corresponding
nominal value is assumed to be bounded where the nominal value is not required to be known. A
dynamical system is proposed and then, the error systems between the original interconnected
system and the designed dynamical systems are analysed based on the Lyapunov direct method.
A set of conditions is developed such that the augmented systems formed by the error dynamical
systems and the designed adaptive laws, are globally uniformly bounded. Specifically, the
estimation errors are asymptotically convergent to zero using LaSalle-Yoshizawa Theorem.
Case study on a coupled inverted pendulum system is presented to demonstrate the developed
methodology, and simulation shows that the proposed approach is effective and practicable.

Keywords: Nonlinear Interconnected Systems, Adaptive Observers, Time Varying Parameters,
Lyapunov Direct Method.

1. INTRODUCTION

The development of advanced technologies has produced
corresponding growth in the scale of engineering systems,
and thus the scale of many practical systems becomes
large in order to satisfy the increasing requirement for
system performance. Such systems are called large scale
systems and usually can be modelled by sets of lower-order
ordinary differential equations which are linked through
interconnections (Yan & Xie (2003), Bakule (2008), Mah-
moud (2011) and Yan et al. (2013). Interconnected systems
widely exists in the real world, for example, coupled in-
verted pendulums, energy systems and biological systems
etc (see e.g. Bakule (2008) and Mahmoud (2011)). Study
on interconnected systems has received great attention and
many results have been obtained (see e.g. Bakule (2008)
and Mahmoud (2011), Yan et al (2017)). Much of the
existing work assumes that all system states are available
in control design. However, for a practical system, only
a subset of system states is usually available. In order to
implement state feedback control schemes, one of possible
choices is to design an observer to estimate system states,
and then use the estimated states to form the feedback
control loop.

Observer design has been studied for many years, and
the early work can be dated back to the well known
Luenberger observer. The majority of the early work about

observer design is mainly for linear systems and the robust
problem against various uncertainties was not considered.
However, due to the mechanical wearing and modelling
errors, many practical control systems involve unknown
parameters. Recently, much literature has devoted to de-
sign an adaptive observer for nonlinear systems and many
different methods have been developed in order to obtain
high estimation performance in the presence of parametric
uncertainty and/or unstructural uncertaity. Boizot et al
(2010) developed an adaptive observer by using extended
Kalman filter to reduce the effect of perturbations. How-
ever, in terms of the parameter estimation for nonlinear
systems, it is usually very difficult to analysis the stability
of the extended Kalman filter. Sliding mode techniques
have been applied in Efimov et al (2016) to enhance the
performance of the adaptive observer proposed by Yan &
Edwards (2008a). It should be noted that unknown param-
eters considered in these papers are constant. An adaptive
redesign of reduced order nonlinear observers are presented
in Stamnes et al (2011) where the solution of a partial
differential equation is required, which may not be possible
in most of cases. An adaptive observer is designed for
a class of MIMO uniformly observable nonlinear systems
with linear and nonlinear parametrizations in Farza et al
(2009) and the exponential converges of the error dynamics
for both types of parametrization is guaranteed under
the persistent excitation condition. Tyukin et al (2013)



considered the problem of asymptotic reconstruction of the
state and parameter. However, in both Farza et al (2009)
and Tyukin et al (2013), it is required that the unknown
parameters are constant. The literature in Yang & Liu
(2016) proposed an adaptive state estimator for a class of
multi-input and multi-output non-linear systems with un-
certainties in the state and the output equations, in which
the systems considered are not interconnected systems.
The work in Pu et al (2015) proposed an adaptive observer
which expands the extended state observer to nonlinear
disturbed systems. However, the adaptive extended state
observer is linear and requires that the error dynamics can
be transformed into a canonical form.

The observer design for interconnected systems has been
widely studied. A sliding mode observer has been pre-
sented in Yan & Edwards (2008b) for decentralised fault
detection but the parameter uncertainty is not consid-
ered. Chen et al (2016) tried to overcome the limitation
of the strict-feedback form and designed an observer to
estimate the system state variables which is used to imple-
ment an adaptive neural network output-feedback control
scheme. An adaptive interconnected observer is proposed
for sensorless control of a synchronous motor in Hamida
et al (2013), where the system considered includes only
two subsystems and the parameters may vary but with
known bounds. It should be noted that all the observers
mentioned above are mainly used to implement a special
control task. Therefore, strong limitation is unavoidably
imposed on the considered interconnected systems such
that the designed observer can perform an exact function
to complete the task. Moreover, in most of the existing
work, it is required that either the unknown parameters are
constant (see e.g Efimov et al (2016)) or the nominal values
of the unknown parameters are known (Pourgholi & Majd
(2012)). The corresponding observation results for large
scale nonlinear interconnected systems are very limited,
particularly when uncertain parameters are involved.

In this paper, a class of nonlinear interconnected systems
with uncertain time varying parameters are considered, in
which both the isolated subsystems and the interconnec-
tions are nonlinear. Under the condition that the difference
between the unknown time varying parameters and the
corresponding uncertain nominal values are bounded by
constants, adaptive updating laws are proposed to esti-
mate the parameters. The persistent of excitation con-
dition is not required. A set of sufficient conditions are
proposed such that the error dynamics formed by the
system states and the designed observers are asymptoti-
cally stable while the adaptive laws are uniformly bounded
using LaSalle-Yoshizawa Theorem. The results obtained
are applied to a coupled inverted pendulum systems, and
simulation results are presented to demonstrate the ef-
fectiveness and feasibility of the developed results. The
main contribution includes: (i) Both the interconnections
and isolated subsystems take nonlinear forms. (ii) The
unknown parameters considered in the system are time
varying and the corresponding nominal values are not
required to be known. (iii) The asymptotic convergence
of the observation error between the considered systems
states and the designed observers is guaranteed while the
estimate errors of the time varying parameters are uni-
formly bounded.

2. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider a nonlinear interconnected system composed of
N subsystems as follows

ẋi =Aixi + fi(xi, ui) +Biθi(t)ξi(t) +

N∑
j=1

j 6=i

Hij(xj) (1)

yi =Cixi (2)

where xi ∈ Rni , ui ∈ U ∈ Rmi (U is the admissible control
set) and yi ∈ R are the state variables, inputs and outputs
of the i-th subsystem respectively. The functions fi(·) are
known continuous, the scalars θi(t) ∈ R are unknown time
varying parameter and ξi(t) ∈ R are known regressor
signals. The matrices Ai ∈ Rni×ni , Bi ∈ Rni×mi and
Ci ∈ R1×ni are constants, and Ci are full column rank.

The terms
∑N

j=1

j 6=i
Hij(xj) are the known interconnections

for i = 1, · · · , N .

Assumption 1. The pairs (Ai, Ci) are observable for
i = 1, · · · , N .

From Assumption 1, there exist matrices Li such that
Ai − LiCi are Hurwitz stable. This implies that, for any
positive-definite matrices Qi ∈ Rni×ni , the Lyapunov
equations

(Ai − LiCi)
TPi + Pi(Ai − LiCi) = −Qi (3)

have unique positive-definite solutions Pi ∈ Rni×ni .

Assumption 2. There exist matrices Fi ∈ Rmi×1 such
that solutions Pi to the Lyapunov equations (3) satisfy
the constraints

BT
i Pi = FiCi, i = 1, · · · , N (4)

Assumption 3. The uncertain time varying parameters
θi(t) satisfy

|θi(t)− θ0i | ≤ ε0i (5)

where θ0i are unknown constant, and ε0i are known
constant for i = 1, · · · , N .

Remark 1. Assumption 3 is to specify a class of uncertain-
ties tolerated in the observer design. The unknown con-
stants θ0i given in (5) are called the nominal value of the
uncertain time varying parameters θi(t) throughout this
paper. Different from the existing work, it is not required
that θ0i in (5) are known but the bounds on the difference
between the unknown time varying parameters θi(t) and
their nominal values θ0i are assumed to be known.

For further analysis, the terms Biθi(t)ξi(t) in system (1)
are rewritten as

Biθi(t)ξi(t) = Bi[θ0i + εi(t)]ξi(t) (6)

where the scalers εi(t) = θi(t)− θ0i .
Assumption 4. The nonlinear terms fi(xi, ui) and
Hij(xj) satisfy the Lipschitz condition.

Assumption 4 implies that there exist nonnegative con-
stants `fi and `Hij

such that



‖fi(x̂i, ui)− fi(xi, ui)‖ ≤ `fi(ui)‖x̂i − xi‖ (7)

‖Hij(x̂j)−Hij(xj)‖ ≤ `Hij‖x̂j − xj‖ (8)

for i = 1, 2, · · · , N and i 6= j.

The Assumption 4 is used to guarantee the asymptotic
convergence of the observation error.

3. MAIN RESULTS

From (6), system (1) can be rewritten as

ẋi =Aixi + fi(xi, ui) +Bi[θ0i + εi(t)]ξi(t)

+

N∑
j=1

j 6=i

Hij(xj) (9)

yi =Cixi (10)

For system (9)-(10), construct dynamical systems

˙̂xi =Aix̂i + fi(x̂i, ui) + Li(yi − ŷi)
+Bi[θ̂i(t)− ε̂i(t)]ξi(t)− 2P−1i (FiCi)

T |ξi(t)| ε0i

×ψi(ŷi, yi) +

N∑
j=1

j 6=i

Hij(x̂j) (11)

ŷi =Cix̂i (12)

where

ψi(ŷi, yi) =
{ Fi(ŷi − yi)
‖Fi(ŷi − yi)‖

, Fi(ŷi − yi) 6= 0

0, Fi(ŷi − yi) = 0
(13)

for i = 1, 2, · · · , N , and θ̂i(t) and ε̂i(t) are given by the
adaptive laws as follows

˙̂
θi(t) =−2δi(Fi(ŷi − yi))T ξi(t) (14)

˙̂εi(t) = 2(Fi(ŷi − yi))T ξi(t) (15)

where δi are positive constants for i = 1, 2, · · · , N . Let

θ̃i(t) = θ̂i(t)− θ0i (16)

ε̃i(t) = ε̂i(t)− ε0i (17)

where the unknown constants θ0i and the known constants
ε0i satisfy the inequality in Assumption 3.

Let exi = x̂i − xi. Then, from systems (9)-(10) and (11)-
(12), the error dynamical systems can be described by

ėxi
= (Ai − LiCi)exi

+ [fi(x̂i, ui)− fi(xi, ui)]

+

N∑
j=1

j 6=i

[Hij(x̂j)−Hij(xj)] +Biθ̃i(t)ξi(t)

−Biε̂i(t)ξi(t)−Biεi(t)ξi(t)

−2P−1i (FiCi)
T |ξi(t)|ε0iψi(ŷi, yi) (18)

where θ̃i(t) is defined in (16).

Theorem 1. Under Assumptions 1−4, the error dynami-
cal systems (18) with adaptive laws (14) - (15) are globally

uniformly bounded if the matrix WT + W is positive
definite, where the matrix W = [wij ]N×N and its entries
wij are defined by

wij =

{
λmin(Qi)− 2`fi‖Pi‖, i = j

−2‖Pi‖`Hij
, i 6= j

(19)

where Pi, and Qi satisfy Lyapunov equation in (3). Fur-
ther, the errors exi

given in (18) satisfy

lim
t→∞
‖exi(t)‖ = 0, i = 1, 2, . . . , N (20)

Proof. For system (14)-(15) and (18), consider the candi-
date Lyapunov function

V =

N∑
i=1

eTxi
Piexi

+
1

2

N∑
i=1

(
1

δi
θ̃2i (t) + ε̃2i (t)) (21)

where δi is a positive constants for i = 1, 2, · · · , N . Then,
from (18)

V̇ =

N∑
i=1

(ėTxi
Piexi

+ eTxi
Piėxi

) +

N∑
i=1

(
1

δi
θ̃i(t)

˙̃
θi(t)

+ε̃i(t)) ˙̃εi(t))

=

N∑
i=1

{
eTxi

[(Ai − LiCi)
TPi + Pi(Ai − LiCi)]exi

+2eTxi
Pi[fi(x̂i, ui)− fi(xi, ui)]

+2eTxi
Pi

N∑
j=1

j 6=i

[Hij(x̂j)−Hij(xj)]

+2eTxi
PiBiθ̃i(t)ξi(t)− 2eTxi

PiBiεi(t)ξi(t)

−2eTxi
PiBiε̂i(t)ξi(t) +

1

δi
θ̃i(t)

˙̃
θi(t)

+ε̃i(t) ˙̃εi(t)− 4eTxi
PiP

−1
i (FiCi)

T |ξi(t)|

×ε0iψi(ŷi, yi)
}

(22)

By using condition (4) and Ciexi
= ŷi − yi,

eTxi
PiBi = ((PiBi)

T exi
)T = (BT

i Piexi
)T

= (FiCiexi
)T = (Fi(ŷi − yi))T (23)

From (22) and (23)

V̇ =

N∑
i=1

{
eTxi

[(Ai − LiCi)
TPi + Pi(Ai − LiCi)]exi

+2eTxi
Pi[fi(x̂i, ui)− fi(xi, ui)]

+2eTxi
Pi

N∑
j=1

j 6=i

[Hij(x̂j)−Hij(xj)]

+[2(Fi(ŷi − yi))T ξi(t) +
1

δi

˙̃
θi(t)]θ̃i(t)

−2(Fi(ŷi − yi))T εi(t)ξi(t)
−2(Fi(ŷi − yi))T ε̂i(t)ξi(t)

+ε̃i(t) ˙̃εi(t)− 4(Fi(ŷi − yi))T |ξi(t)|ε0iψi(ŷi, yi)
}
(24)



From (16), it can be seen that
˙̃
θi(t) =

˙̂
θi(t) and by

substituting (13) and (14) into (24) gives

V̇ =

N∑
i=1

{
eTxi

[(Ai − LiCi)
TPi + Pi(Ai − LiCi)]exi

+2eTxi
Pi[fi(x̂i, ui)− fi(xi, ui)]

+2eTxi
Pi

N∑
j=1

j 6=i

[Hij(x̂j)−Hij(xj)]

−2(Fi(ŷi − yi))T εi(t)ξi(t)
−2(Fi(ŷi − yi))T ε̂i(t)ξi(t)

+ε̃i(t)) ˙̃εi(t)− 4‖Fi(ŷi − yi)‖ |ξi(t)|ε0i
}

From (17), it can be seen that ˙̃εi(t) = ˙̂εi(t).

V̇ =

N∑
i=1

{
eTxi

[(Ai − LiCi)
TPi + Pi(Ai − LiCi)]exi

+2eTxi
Pi[fi(x̂i, ui)− fi(xi, ui)]

+2eTxi
Pi

N∑
j=1

j 6=i

[Hij(x̂j)−Hij(xj)]

−2(Fi(ŷi − yi))T εi(t)ξi(t)
−[2(Fi(ŷi − yi))T ξi(t)− ˙̃εi(t)]ε̂i(t)− ε0i ˙̃εi(t)

−4‖Fi(ŷi − yi)‖ |ξi(t)|ε0i
}

(25)

Substituting (15) into (25) gives

V̇ ≤
N∑
i=1

{
− eTxi

Qiexi
+ 2‖exi

‖‖Pi‖[fi(x̂i, ui)− fi(xi, ui)]

+2‖exi
‖‖Pi‖

N∑
j=1

j 6=i

[Hij(x̂j)−Hij(xj)]

−2(Fi(ŷi − yi))T ξi(t)[εi(t) + ε0i ]

−4‖Fi(ŷi − yi)‖ |ξi(t)|ε0i
}

≤
N∑
i=1

{−eTxi
Qiexi + 2‖exi‖‖Pi‖[`fi‖x̂i − xi‖]

+2‖exi‖‖Pi‖
N∑
j=1

j 6=i

[`Hij‖x̂j − xj‖]}

≤−
N∑
i=1

{λmin(Qi)− 2‖Pi‖`fi‖exi‖2

−
N∑
j=1

j 6=i

[2‖Pi‖`Hij ]‖exi‖‖exj‖
}

(26)

Then, from the definition of the matrix W in (19) and the
inequality above, it follows that

V̇ ≤ −1

2
XT [WT +W ]X

where X = [‖ẽx1
‖, ‖ẽx2

‖, · · · , ‖ẽxN
‖]T .

From LaSalle-Yoshizawa Theorem in (Krstic et al (1995))
all the solutions of (18) are globally uniformly bounded
and satisfy

lim
t→∞

XT [WT +W ]X = 0 (27)

Hence, the conclusion follows from WT +W > 0. 4.

Remark 2. Theorem 1 shows that the estimated states
x̂i given in the observer (11) converge to the system states
xi in (1) asymptotically. In addition, it shows that the
augmented systems formed by (18) and the adaptive laws
(14)-(15) are uniformly bounded.

4. CASE STUDY: A COUPLED INVERTED
PENDULUM

Consider the system formed by two inverted pendulums
connected by a spring as given in Figure 1. Let ϕ1 =
x11, ϕ2 = x21, ϕ̇1 = x12, and ϕ̇2 = x22 (see e.g. Chen & Li
(2008)). The coupled inverted pendulums can be modelled
as

Fig. 1. Coupled inverted pendulums

ẋ1 =

[
0 1
0 0

] [
x11
x12

]
+

 0

(
m1gr

J1
− kr2

4J1
) sin(x11) +

1

J1
u1


+

[
0
kr

2J1

]
(l − b) +

 0
kr2

4J1
sin(x21)

 (28)

y1 = [ 1 1 ]

[
x11
x12

]
(29)

ẋ2 =

[
0 1
0 0

] [
x21
x22

]
+

 0

(
m2gr

J2
− kr2

4J2
) sin(x21) +

1

J2
u2


+

[
0
kr

2J2

]
(l − b) +

 0
kr2

4J2
sin(x11)


︸ ︷︷ ︸

H21(x1)

+ (30)

y2 = [ 1 1 ]

[
x21
x22

]
(31)



The end masses of pendulums are m1 = 1.5 kg and m2 = 1
kg, the moments of inertia are J1 = 5 kg and J2 = 4
kg, the constant of connecting spring is k = 100 N/m,
the pendulum height is r = 0.3 m, and the gravitational
acceleration is g = 9.81 m/s2. In order to illustrate the
developed theoretical results, it is assumed that (l − b) =
θi(t) is an unknown time varying parameter for i = 1, 2
where l is the natural length of spring and b is the distance
between the two pendulum hinges.

In order to avoid system states going to infinity, and for
simulation purposes, the following feedback transforma-
tion is introduced

ui =−kixi + vi, i = 1, 2 (32)

k1 = [ 10 15 ] and k2 = [ 8 12 ]

Then, the system (28)-(31) can be rewritten as

ẋ1 =

[
0 1
−2 −3

]
︸ ︷︷ ︸

A1

[
x11
x12

]
+

[
0

0.4329 sin(x11) +
1

5
v1

]
︸ ︷︷ ︸

f1(x1,u1)

+

[
0
3

]
︸︷︷︸
B1

(l − b) +

[
0

0.45 sin(x21)

]
︸ ︷︷ ︸

H12(x2)

(33)

y1 = [ 1 1 ]︸ ︷︷ ︸
C1

[
x11
x12

]
(34)

ẋ2 =

[
0 1
−2 −3

]
︸ ︷︷ ︸

A2

[
x21
x22

]
+

[
0

0.17325 sin(x21) +
1

4
v2

]
︸ ︷︷ ︸

f2(x2,u2)

+

[
0

3.75

]
︸ ︷︷ ︸

B2

(l − b) +

[
0

0.5625 sin(x11)

]
︸ ︷︷ ︸

H21(x1)

(35)

y2 = [ 1 1 ]︸ ︷︷ ︸
C2

[
x21
x22

]
(36)

Choose Li = [0 0], and Qi = 4I for i = 1, 2. It follows
that the Lyapunov equations (3) have unique solutions:

Pi =

[
5 1
1 1

]
, i = 1, 2 (37)

satisfying the condition (4) with F1 = 3 and F2 = 3.75.
For simplicity, it is assumed that ξi(t) = 1, ε0i = 1 and
δi = 100 for i = 1, 2.

By direct computation, it follows that the matrix WT +W
is positive definite. Thus, all the conditions of Theorem 1
are satisfied. This implies that the dynamical system

˙̂x1 =

[
0 1
−2 −3

] [
x̂11
x̂12

]
+

[
0

0.4329 sin(x̂11) +
1

5
v1

]

+

[
0
3

]
(θ̂1(t)− ε̂1(t))

−
[

0
0.4

]
(ŷ1 − y1)

‖ŷ1 − y1‖
+

[
0

0.45 sin(x̂21)

]
(38)
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Fig. 2. The time response of the 1st subsystem states x1 =
col (x11, x12) and their estimation x̂1 = col (x̂11, x̂12).

˙̂
θ1(t) =−200(3(ŷ1 − y1))T (39)

˙̂ε1(t) = 2(3(ŷ1 − y1))T (40)

ŷ1 = [ 1 1 ]

[
x̂11
x̂12

]
(41)

˙̂x2 =

[
0 1
−2 −3

] [
x̂21
x̂22

]
+

[
0

0.17325 sin(x̂21) +
1

4
v2

]

+

[
0

3.75

]
(θ̂2(t)− ε̂2(t))

−
[

0
0.5

]
(ŷ2 − y2)

‖ŷ2 − y2‖
+

[
0

0.5625 sin(x̂11)

]
(42)

˙̂
θ2(t) =−200(3.75(ŷ2 − y2))T (43)

˙̂ε2(t) = 2(3.75(ŷ2 − y2))T (44)

ŷ2 = [ 1 1 ]

[
x̂21
x̂22

]
(45)

is a robust observer of the system (33)-(36).

For simulation purpose, θ0i and θi(t) are chosen as 0 and
0.1 sin t respectively for i = 1, 2. Simulation in Figures 2
and 3 shows that the developed results are effective.

5. CONCLUSION

In this paper, an adaptive observer design for a class
of nonlinear large scale interconnected systems with un-
known time varying parameters has been proposed. It
is assumed that the unknown parameters vary within
a specific range. A set of sufficient conditions has been
developed such that the error system with adaptive laws
is globally uniformly bounded. Case study on a coupled
inverted pendulum system shows the practicability of the
developed observer scheme for nonlinear interconnected
systems.
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