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ABSTRACT 

We address the feature selection task in the special context of longitudinal data – where 

variables are repeatedly measured across different time points. When analysing 

longitudinal data, a standard feature selection method would typically ignore the 

temporal nature of the features and treat each feature value at a given time point as a 

separate feature. That is, a standard algorithm would ignore the important difference 

between values of the same feature (measuring the same property of an instance) across 

different time points and values of fundamentally different features (measuring different 

properties of an instance) at the same time point.  

This thesis presents two main contributions. The first one is the creation of the 

longitudinal datasets used in the experiments, including the construction of features 

capturing longitudinal information for predicting age-related diseases. The datasets were 

created from data in the English Longitudinal Study of Ageing (ELSA) database. The 

second contribution consists of proposing four new variants of the Correlation-based 

Feature Selection (CFS) method for selecting features to be used as input by a 

classification algorithm. These CFS variants take into account (in different ways) the 

temporal redundancy associated with variations in the value of a feature across different 

time points.  

The results are summarised from two main perspectives. Firstly, in terms of predictive 

accuracy, one of the proposed CFS variants (called Exh-CFS-Gr – exhaustive 

search-based CFS per group of temporally redundant features) obtained a statistically 

significantly better predictive performance than the performance obtained by standard 

CFS and the baseline approach of no feature selection when using Naïve Bayes as the 

classification algorithm. However, there was no statistically significant difference 

between the predictive accuracies obtained by J48, a decision tree induction algorithm, 

for all different variants of CFS (including standard CFS). Secondly, regarding the 

feature subsets selected by different variants of CFS, the number of features selected by 

Exh-CFS-Gr was substantially greater than that of all other three CFS variants for all 

datasets. This helps explaining why this feature selection method obtained the best 

results in the experiments with Naïve Bayes; i.e., it seems that the other CFS variants 

selected relatively too few features for Naïve Bayes. Additionally, the features 

originally observed in the ELSA database were, in general, selected more often (by all 

variants of CFS) than the constructed features capturing longitudinal information. 
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1 INTRODUCTION 

According to a United Nation’s report on World Population Ageing (2015) (United 

Nations, Department of Economic and Social Affairs and Population Division 2015), 

the number of people worldwide aged 60 or over is estimated to reach 2.1 billion by 

the year 2050. The process of getting older eventually leads to a decline in the 

physical and mental health of people. Also, as people get older they become 

increasingly more likely to develop life-threatening age-related diseases.  

In the last few years, developments in bioinformatics methods for data collection 

have increased the need for computational methods to organise and analyse very 

large and continuously growing amounts of biological data, such as human ageing 

data. The main goal of bioinformatics is to apply existing algorithms, or developing 

new ones, to discover and evaluate several relationships between biological entities 

(Baldi and Brunak 2001; Altman 2001). Previous studies report that machine 

learning, which consists of a collection of automatic and intelligent learning 

techniques, is able to evaluate biological data (Bhaskar, Hoyle and Singh 2006). The 

biology of ageing is one of the most interesting topics in our era, yet it is challenging 

in terms of understanding (Comfort 1964; Hofer and Sliwinski 2001; Lexell, Taylor 

and Sjöström 1988; Adam 2001). Whilst a substantial amount of data on ageing is 

available, discovering interesting knowledge from such data is not trivial, due to the 

complexity of the biological process of ageing. 

In this thesis, our primary goal is not to analyse data directly about human longevity, 

i.e. we do not try to predict the longevity (lifespan) of individuals. Rather, our 
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primary goal is essentially to analyse data about age-related diseases, i.e., we try to 

predict whether an individual will develop some age-related disease in the future, 

based on past biomedical data about that individual. In order to achieve this goal, we 

employed machine learning techniques to identify abnormal behaviours and predict 

life-threatening diseases in older adults, such as heart attack, stroke, high blood 

pressure, dementia, etc. These harmful diseases are also known as age-related 

diseases for which old age is one of the greatest risk factors.  

Therefore, this research was constructed to study biomedical data about human 

ageing, where the data sets were derived from the English Longitudinal Study of 

Ageing (ELSA) (Marmot et al. 2016). The ELSA study is a longitudinal survey of 

ageing and quality of life among older people that explores the dynamic relationships 

between health and functioning, social networks and participation, and economic 

position as people plan for, move into and progress beyond retirement. In this thesis, 

however, we focus only on biomedical data, such as the results of blood tests and 

other data collected by nurses, and the relationship between that data and the 

age-related diseases of patients, as will be described in more detail later.  

In machine learning, a classification algorithm aims to find a predictive relationship 

between features and the class variable. This is done by building a classification 

model from pre-classified instances. Afterwards, this model is used to predict the 

class label of previously unseen instances.  

In classification datasets with a large number of features, feature selection methods 

are often applied in a data pre-processing step (Li et al. 2016; Liu 1998; Wang, 

Wang and Chang 2016) in order to remove irrelevant or redundant features. This can 

lead to higher predictive accuracy and reduce the training time of classification 

algorithms. 

The vast majority of works on the classification task focus on analysing the standard 

type of classification data, where each variable is measured at a single time point, so 

that there is no explicit temporal structure in the data. However, many important data 

sources – particularly in the biomedical domain – contain longitudinal data, where 

the values of a variable are repeatedly measured across several time points  (often 

called waves) (Ribeiro et al. 2017). For instance, many hospital databases contain 
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records with blood test results measured for the same patient across many time 

points. 

In this thesis, we address the feature selection task in the special context of 

longitudinal data. When analysing longitudinal data, a standard feature selection 

method would typically ignore the temporal nature of the features and treat each 

feature value at a given time point as a separate feature. That is, a standard algorithm 

would ignore the important difference between values of the same feature 

(measuring the same property of an instance) across different time points and values 

of fundamentally different features (measuring different properties of an instance) at 

the same time point. 

This thesis presents two main contributions. The first one is the creation of the 

longitudinal datasets used in the experiments, including the construction of features 

capturing longitudinal information for predicting age-related diseases. The datasets 

were created from data in the English Longitudinal Study of Ageing (ELSA) 

database (Marmot et al. 2016). The created datasets contain two types of features, 

namely originally observed features (directly taken from the ELSA database) and the 

aforementioned constructed longitudinal features, where both feature types occur in 

three waves. Besides, each dataset contains a single class variable representing an 

age-related disease, so that multiple datasets were created for different diseases. In 

each dataset, the classification task consists of predicting whether or not an 

individual will develop a given age-related disease in a later wave of the longitudinal 

data in ELSA, based on values of biomedical features describing characteristics of 

the individual in previous waves.  

The second contribution consists of proposing four new variants of the 

Correlation-based Feature Selection (CFS) method. CFS is used in a data 

pre-processing phase for selecting features to be used as input by a conventional 

classification algorithm. These CFS variants take into account (in different ways) the 

temporal redundancy associated with variations in the value of a given feature across 

different waves (time points). In essence, the four proposed CFS variants can be 

categorised into two types of modifications of the standard CFS method, namely two 

of the variants modify the standard CFS’ search method; whilst the other two 

variants modify the standard CFS’ evaluation function. 



Chapter 1: Introduction 

 4 

The remainder of the thesis is organised as follows. Chapter 2 presents the 

background for this research. Chapter 3 presents the main contributions, namely 

dataset creation (including the creation of longitudinal features capturing temporal 

information) and four new variants of CFS. Chapter 4 reports the computational 

results. Chapter 5 presents the conclusions and future research directions. 



Chapter 2: Background 

 5 

2 BACKGROUND 

In this chapter, we review the background on feature selection and classification 

algorithms relevant to the thesis. This chapter is organised as follows. Section 2.1 

introduces concepts and methods for the classification task, focusing on decision tree 

and Naïve Bayes algorithms, which are the types of classification algorithms used in 

the experiments reported in Chapter 4. Section 2.2 discusses feature selection 

methods, including general approaches and types of search methods. This section 

also describes in detail the Correlation-based Feature Selection method, since this 

thesis proposes variants of this method in Chapter 3. Section 2.3 explains the basic 

concepts of the longitudinal classification task. Section 2.4 presents related work on 

feature selection for longitudinal classification. 

2.1 Concepts and Methods for the Classification Task 

A data set is a collection of instances (records). Each instance consists of two parts, a 

set of predictive features and a class. This means that every instance belongs to a 

predefined class. A classification algorithm performs the process of building a 

classification model which allows us to predict the class of an instance, given the 

values of its predictive features. This model is built by using a training set, where the 

classes of the instances are known. After that, the model is used to predict the classes 

of instances in the test set, where the classes are unknown. To summarize, the 

classification process involves the induction of a classification model from the 
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training set and its application to predict the class of instances in the test set (unseen 

during training). 

 

2.1.1 Decision Tree Induction Algorithms 

Decision tree induction algorithms typically build a decision tree in a top-down 

fashion (Quinlan 1993), by using a recursive learning process, as follows. Firstly, the 

algorithm considers all training instances, which are allocated to the root node of the 

decision tree. Then, a feature (f), which best separates the classes based on a given 

feature selection criterion, is selected to label the current (root) node. Next, the set of 

instances (I) in the current node is partitioned into s mutually exclusive subsets of 

instances (I1, …, Ik) according to the values of the selected feature f; where k, the 

number of instance subsets, is determined based on the type of selected feature f, as 

follows. If feature f is nominal (categorical), k is typically the number of values taken 

by the feature, so that an instance subset is created for each of the feature values. If 

feature f is numerical (continuous), typically k is set to 2, so that the algorithm 

creates two instance subsets, one with the instances satisfying the condition f ≤ thr 

and the other with the instances satisfying the condition f > thr, where thr is a 

threshold automatically determined to maximise class separation among the two 

instance subsets.  

In any case, each instance subset (I1,…, Is) is allocated to a newly created child node, 

where the processes of feature selection and partitioning the current set of instances 

into subsets are recursively repeated. If all instances in a newly created child node 

(instance subset) belong to a single class, there is no need to keep partitioning the 

instances in that node, then the algorithm converts the current node into a leaf and 

stops the recursive process in this part of the decision tree. The current node can also 

be converted into a leaf for other reasons, even if it still contains instances of 

different classes – see the discussion on pre-pruning later in this section.  

This process of attribute selection and instance set partitioning is recursively 

repeated for each non-leaf node of the tree, until all those nodes are converted into 

leaf nodes. The goal of this process is to allocate instances of different classes to 

different subsets of instances. 
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One of the well-known decision tree induction algorithms is the J48 algorithm 

available on WEKA data mining tool (Hall et al. 2009), which is an implementation 

of the C4.5 algorithm (Quinlan 1993). J48 was used as one of the classification 

algorithms in this research, as will be discussed later. 

There are several feature selection criteria that can be used in order to select the most 

relevant feature to separate the classes at each node. One of the most commonly used 

criteria is the Information Gain (IG), which is used by several decision tree induction 

algorithms, such as Interactive Dichotomizer 3 (ID3) (Quinlan 1986). In information 

theory, Shannon’s entropy function (also known as entropy) is a method to measure 

uncertainty in the outcome of an experiment. For example, consider a random 

variable X with v possible values. The Shannon entropy function, denoted H(X), is 

defined in equation (2.1): 

 

 𝐻(𝑋) =  − ∑ 𝑝𝑖 𝑙𝑜𝑔2 𝑝𝑖 (2.1) 

 

where pi is the probability that X takes its i-th value, i = 1,…,v. Let 𝐻(𝑋|𝑌 = 𝑦𝑖) be 

the entropy of the variable X conditioned on the variable Y taking a certain value 𝑦𝑖. 

Then H(X|Y) is the weighted average of 𝐻(𝑋|𝑌 = 𝑦𝑖) over all possible values 𝑦𝑖 that 

Y may take, where the weights are the probabilities of the 𝑦𝑖  values. This is the 

entropy of X given Y, defined in equation (2.2), also known as conditional entropy. 

 

 
𝐻(𝑋|𝑌) = ∑ 𝑝(𝑌 = 𝑦𝑖)𝐻(𝑋|𝑌 = 𝑦𝑖)

𝑣

𝑖=1

 (2.2) 

 

The IG criterion is based on the following concept: “Entropy represents the amount 

of uncertainty in the outcome of an experiment, so we want to minimize entropy 

when selecting a feature in a decision tree” (Liu 1998). The IG is defined in equation 

(2.3): 
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 𝐼𝐺(𝐼, 𝑓) = 𝐻(𝐼) − 𝐻(𝐼|𝑓)  (2.3) 

 

where H(I) denotes the amount of information contained in the set of instances I and 

H(I|f) is the reduced amount of information (reduced entropy) after using feature f to 

partition the set I. In addition, Symmetrical Uncertainty (SU) (Hall 2000) 

compensates for information gain's bias toward attributes with more values and 

normalises its value to the range [0; 1]. This is defined as shown in equation (2.4): 

 

 
𝑆𝑈(𝑋, 𝑌) = 2.0 × [

𝐼G(𝑋, 𝑌)

𝐻(𝑌) + 𝐻(𝑋)
] (2.4) 

 

However, many feature selection criteria can be used instead of the IG. The issue of 

which feature selection criterion is the best depends mainly on the data set being 

mined. For example, the drawback of using information gain is a bias favouring the 

choice of features with a lot of values. In an extreme case where a feature has a 

distinct nominal value for each instance, e.g., a patient’s ID number, partitioning the 

set of instances according to the values of this feature would result in a “perfect” 

partition (𝐻(𝐼|𝑓𝐼𝐷) = 0). However, this is an extreme case of overfitting the decision 

tree to the training data, with no generalisation to new test set. Therefore, to reduce 

this bias of the information gain criterion, Information Gain Ratio (IGR), which is a 

modification of the information gain (Quinlan 1993), was invented. In terms of 

implementation, the IGR is used by C4.5, which is an improved version of ID3, and 

J48 algorithm (an alternative implementation of C4.5) available on WEKA data 

mining tool (Hall et al. 2009). The IGR is defined in equation (2.5): 

 

 𝐼𝐺𝑅(𝐼, 𝑓) =
𝐼𝐺(𝐼, 𝑓)

𝑃𝐸(𝐼, 𝑓)
  (2.5) 

 

where PE(I,f) measures entropy produced partitioning the set of instances in the 

current tree node into K partitions, where K is the number of values of nominal 

feature f. Hence, IGR overcomes the drawback of IG criterion. Nevertheless, there is 
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also a potential problem of using IGR since it may overcompensate. This means that 

IGR may choose a feature just because the term PE(I,f) is very low. A standard 

approach to fix this problem is to select the feature f with the highest value of IG(I,f) 

subject to the restriction that f’s IG(I,f) value must be equal to or greater than the 

average value of IG(I,f) for all features being considered. 

Decision Tree Pruning is performed in order to remove irrelevant nodes constructed 

from the training set due to noise or outliers. As a result, the pruned trees are smaller 

and less complex to be interpreted. In general, there are two main tree pruning 

approaches, namely pre-pruning and post-pruning (Frank 2000). The former prunes 

the tree by halting its construction early. As an example of a pre-pruning criterion, 

the current node can be converted into a leaf node if the number of instances in the 

current node is smaller than a certain pre-defined threshold (since in this case there 

would be little statistical support for calculating the IG value of attributes at that 

node). On the other hand, post-pruning removes a sub-tree from a fully-grown tree. 

Taking Reduced Error Pruning (Elomaa and Kääriäinen 2001) as an example of 

post-pruning approaches, such method works by tentatively replacing subtree rooted 

at a given internal (non-leaf) node within the tree with a leaf, assigning all instances 

in that newly created leaf to the most frequent class among those instances. If the 

replacement of this subtree with a leaf does not increase the classification error of the 

tree, then the subtree is permanently removed, i.e. transformed into a leaf node. 

Doing so requires a validation set which can be obtained by holding out a part of the 

training set. After that, the classification error can, for instance, be derived according 

to the number of misclassified instances from the validation set. The process is 

repeated to iterate over all tree nodes until the pruning is no longer helpful.  

There are a number of motivations for decision tree pruning. The first one is 

simplifying the model (the tree). The second one is reducing the risk of “overfitting”, 

which occurs when the unpruned decision tree fits to details of the training set that 

do not generalise well to the test set. On the other hand, if pruning is too aggressive, 

this could lead to “underfitting” of the model to the data. 
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There are a number of advantages of decision tree induction algorithms. The main 

one is comprehensibility (Freitas 2013), since a decision tree is relatively easy to 

interpret (as long as the tree is not too large). In particular, a decision tree is 

represented in a graphical form (a diagram), which is a very user-friendly 

representation, as shown in Figure 2.1. The example decision tree in this figure was 

built, by running J48 algorithm in WEKA (Hall et al. 2009), from the Pima Indians 

Diabetes dataset (from the UCI dataset repository (Bache and Lichman 2013), where 

the class variable indicates whether or not the patient shows signs of diabetes and the 

features describe their general health information such as age, body mass index, 

blood pressure, etc.  

Moreover, decision trees have a hierarchical structure that also facilitates their 

interpretation: in general, the closer a feature is to the root, the more relevant it is. In 

other words, the most relevant features for predicting an instance’s class are 

automatically placed near to the root of the tree, which enables us to easily identify 

important features and helps in analysing the underlying predictive relationships 

between relevant features and the class (Freitas 2013). Taking Figure 2.1 as an 

example, this decision tree illustrates that the feature “plas” (Plasma glucose 

concentration) plays the most important role in the test of predicting whether or not a 

patient has diabetes. By contrast, “black box” classification algorithms such as 

Support Vector Machines (SVMs) are likely to achieve higher predictive accuracies, 

Figure 2.1: an example of a decision tree 
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but they have the considerable drawback of producing non-interpretable 

classification models. The interpretability of the classification model is an important 

issue, especially when our aim is to discover new comprehensible knowledge 

(Cristianini and Shawe-Taylor 2000). Furthermore, a decision tree automatically 

reports feature interactions involving the features selected along each path from the 

root to a leaf.  

Thirdly, decision tree algorithms can effectively cope with both numerical and 

nominal attributes, whilst some classification algorithms like instance-based learning 

(Aha, Kibler and Albert 1991) and Support Vector Machines (Cristianini and 

Shawe-Taylor 2000) do not cope so naturally with nominal attributes – e.g. such 

attributes would normally be converted into numerical attributes when using SVM, 

introducing an arbitrary numerical order among originally unordered nominal values. 

Fourthly, decision tree algorithms’ effectiveness in terms of predictive accuracy is in 

general acceptable, and especially high in some datasets where the values of the class 

variable are assigned to instances by analysing one-feature-at-a-time. For instance, in 

some credit datasets  the class values assigned to the customers seem to be generated 

by a human analyst who manually chooses a sequence of relevant features for 

classifying the customer’s credit risk, and this kind of sequential classification 

matches well the approach of identifying relevant features one-at-a-time when 

building a decision tree (Brazdil and Henery 1994). However, it should be noted that 

decision tree algorithms are not considered the state-of-the-art in terms of predictive 

accuracy in general, and more modern decision tree-based algorithms like random 

forests (Breiman 2001; Touw et al. 2013) tend to obtain higher predictive accuracies 

in general, using the power of an ensemble of decision trees to make more robust 

predictions. On the other hand, the fact that random forests use an ensemble of (with 

a large number of) decision trees makes the model much harder to interpret than a 

single decision tree. 

Last but not least, the computational time spent on building a decision tree classifier 

is relatively fast, since decision-tree induction algorithms use the principle of 

“divide-and-conquer”. In general, the time complexity of building a decision tree is 

𝑂(𝑚 ∙ 𝑛2), where m is the number of instances in the training set and n is the number 

of predictor features. In addition, the time complexity of the classification of testing 
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instances (unseen during training) is O(t∙log s), where t is the number of instances in 

the testing set and s is the size of the decision tree (number of nodes, including 

leaves) (Su and Zhang 2006). 

Despite these advantages, one major drawback of decision tree induction algorithms 

is the fragmentation problem (Freitas 2013; Rokach 2016). Specifically, the use of 

the divide-and-conquer principle means that at the deeper levels of a decision tree, 

the feature selection procedure uses fewer and fewer instances from the training set, 

so the feature selection process is less statistically reliable at deeper nodes of the 

tree. This usually leads to the generation of many locally important yet globally 

insignificant rules, which tends to decrease the predictive accuracy of the decision 

tree.  

Another drawback of the large majority of decision tree algorithms is that they select 

features considering just one feature at a time, a relatively simple approach which 

does not cope well with strong interactions between attributes (e.g. when a good 

class separation requires a linear combination of numerical attributes, rather than a 

single attribute).  

Therefore, the predictive accuracy of decision tree classification models is often 

inferior to other types of classification models such as neural networks and support 

vector machines (SVMs), as well as often inferior to random forests as mentioned 

earlier. 

2.1.2 Naïve Bayes Algorithm 

Naïve Bayes is a classification algorithm based on Bayes’ theorem in the area of 

probabilities (Sulzmann, Fürnkranz and Hüllermeier 2007). Naïve Bayes models are 

simple and fast to build. The basic rationale for Naïve Bayes can be explained as 

follows. In order to classify an unforeseen instance, we look into a data set of 

instances whose classes are known. In the ideal case, suppose that there are a huge 

number of instances (records), so we have sufficient examples for each possible 

combination of values for all predictive features. Hence, a new instance can now be 

classified by choosing the most frequent class for the particular combination of 

feature values occurring in that instance. In practice, however, we are unlikely to 

have many instances for every possible combination of feature values. Therefore, 
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Bayes’ Theorem is employed to build Naïve Bayes classification models based on 

probabilities computed from the training set.  

Specifically, the probability of an instance - or example – (Ej) having a class label 

(Cj) is computed from a training set as given in equation (2.6). 

 

 𝑃(𝐶𝑖|𝐸𝑗) =  
𝑃(𝐸𝑗|𝐶𝑖) × 𝑃(𝐶𝑖)

𝑃(𝐸𝑗)
 (2.6) 

 

If we look at equation (2.6) carefully, in order to classify a given instance Ej, the 

probability of the instance (i.e. the probability of the particular combination of 

feature values observed in the instance), denoted P(Ej), is fixed for all classes, so we 

just have to choose the class Ci with maximum value of 𝑃(𝑬𝒋|𝑪𝒊) ∗ 𝑃(𝑪𝒊) . In 

addition, P(Ci), the prior probability of class (Ci), is estimated as the relative 

frequency of Ci in the entire training set. The challenge is to estimate P(Ej|Ci). The 

most common simplification is to make an assumption of independence among 

predictive features conditioned on the class. In other words, a Naïve Bayes 

classification model assumes that the presence of a particular feature is unrelated to 

the presence of any other feature, given the class. Hence, with this assumption, 

P(Ej|Ci) can be estimated as shown in equation (2.7): 

 

 𝑃(𝐸𝑗|𝐶𝑖)  =  𝑃(𝑓(1)|𝐶𝑖) × 𝑃(𝑓(2)|𝐶𝑖) × … × 𝑃(𝑓(𝑚)|𝐶𝑖)  (2.7) 

 

where m is the number of features and f(1), f(2), … , f(m) denote the values of the 

corresponding features in the instance j. To conclude, the instance Ej is assigned the 

class label Ci with a maximum value of 𝑃(𝐸𝑗|𝐶𝑖) ∗ 𝑃(𝐶𝑖). 

The most serious disadvantage of the Naïve Bayes algorithm is that it assumes each 

feature is independent from all other features given the class variable. This is usually 

an unrealistic assumption and it is often violated in real-world datasets. Another 

limitation is that the predictive accuracy of the models is particularly sensitive to 

redundant features. In particular, if two features are highly correlated (perhaps 

because they measure slightly different aspects of the same property of an instance), 
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this high degree of feature correlation would be ignored by Naïve Bayes, which 

would count those features as providing two different pieces of evidence for the 

classification of an instance over-emphasizing the importance of those features.  

Lastly, to use Naïve Bayes with continuous (real-valued) features, the probability 

density of the feature is sometimes approximated according to a given distribution; 

normally the Gaussian distribution is used (John and Langley 1995). However, using 

the same distribution for all numerical features, again, is unrealistic, so ideally we 

need to choose a distribution which best characterises each feature, but this is a 

complex task that is rarely done in practice. As a reasonable compromise, sometimes 

numerical features are discretized in a pre-processing step before running the Naïve 

Bayes algorithm (García et al. 2013; Liu et al. 2002); but in this case, there is a risk 

that the discretization method will produce discretized intervals that lose some 

important information about the data. 

In spite of having the negative points mentioned above, the Naïve Bayes algorithm is 

a simple and powerful technique with several strengths. The first one is that it can 

handle missing values in a natural way by simply ignoring them. This is because 

features are used separately by the algorithm at both model construction and 

classification stages. Accordingly, if an instance has a missing value for a feature, it 

can be overlooked while constructing the model, and ignored when the probability is 

calculated for predicting the class label.  

In addition, Naïve Bayes can perform well even though the size of training set is 

small. In particular, it only requires sufficient instances to estimate the probabilistic 

relationship of each feature in isolation with the class. Given that interactions 

between features are not taken into account in the classification model, training 

instances of these interactions are not needed for learning, thus, generally Naïve 

Bayes requires less instances for effective training than other algorithms, such as 

logistic regression (Xue and Titterington 2008). Hence, when the size of the training 

set is not large, the risk of overfitting is not large.  

2.1.3 Measuring Predictive Accuracy 

In general, there are two main evaluation criteria to evaluate classification models. 

By far the most used one (which is also used in this thesis) is predictive accuracy, 
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which can be measured by different measures such as precision, recall and 

F-measure (as explained later in this section).  

The second criterion, which is not evaluated in this research, is the comprehensibility 

(or interpretability) of classification models. Note that a model’s comprehensibility 

is arguably fundamentally subjective, at least much more subjective than the 

conventional measures of predictive accuracy. In actual fact, some types of 

classification models do not provide much information about interpretability, such as 

SVM and Random Forest. In particular, the models built by these algorithms are 

normally used as “black box” models. On the other hand, decision trees and Naïve 

Bayes models (the types of models built in this research, as mentioned earlier) are 

easier to be interpreted, as discussed earlier. It should be noted that, although 

comprehensibility is a subjective concept, there are a lot of data mining (or machine 

learning) works that measure a model’s comprehensibility (or more precisely a 

model’s simplicity) in an objective way. For instance, the simplicity of a decision 

tree is often measured by its size, counting the number of parent and leaf nodes. In 

other words, the smaller the size, the simpler the model is. Such model simplicity 

measures have, however, the limitation of ignoring the meaning of the variables in 

the model and their interactions (Freitas 2013).  

With regard to measuring predictive accuracy, if a classification algorithm learns 

from an entire data set, then attempting to maximise the predictive accuracy on the 

same data set is trivial, since the data has already been memorised – i.e. the 

algorithm knows the class for each instance in the dataset. Because of this, in order 

to measure the predictive accuracy, the set of instances in the full data set has to be 

partitioned into two parts, called the training set and the test set, where the former is 

used to build the classification model and the latter is used to measure the predictive 

accuracy. However, measuring predictive accuracy using a single training and test 

set partition is statistically unreliable due to the potential bias of selecting instances 

for the training and test tests. Therefore, the K-fold cross-validation technique is 

often employed to measure predictive accuracy in a way that uses multiple partitions 

of the data into training and test sets, whilst avoiding overlapping test sets (Hall et al. 

2009). The K-fold cross-validation procedure starts by randomly splitting the whole 

data set into K subsets (or folds) of approximately equal size. Afterwards, the 

classification algorithm is run K times, each time with a different subset used as the 
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test set and the other K – 1 subsets used as the training set.  The reported measure of 

predictive accuracy is the mean of the accuracy over the K test sets. In general, K = 

10, as used in this research, is the most popular form of cross-validation, also known 

as 10-fold cross validation (Kohavi 1995). 

Although the K-fold cross-validation technique is a statistically robust approach to 

measure predictive accuracy, in real-world applications we usually need to report a 

single classification model for the user. However, none of the K models is 

considered to be the best model that can be built from the data, because each of those 

models uses only K –1 folds. In general, other things being equal, the more instances 

are used for learning the model, the better the predictive performance of the model. 

In order to build the best classification model to be reported to the user, the entire 

data set must be used in the learning process. Hence, in this thesis we use 10-fold 

cross-validation to estimate predictive accuracy and the full dataset, test data 

included, to build the final models (some of which are interpreted, as discussed in 

Chapter 4). 

 

Table 2.1: The structure of a confusion matrix 

 

True Class 

“+” “-“ 

Predicted 
Class 

“+” TP FP 

“-“ FN TN 

 

So far, we discussed the methodology used for estimating predictive accuracy, and 

now we turn to the discussion of actual measures of predictive accuracy. Consider a 

binary classification problem with two classes, denoted “positive” (“+”) and 

“negative” (“–”) classes. The predictive performance of a classification model can be 

summarized by a confusion matrix, whose structure is shown in Table 2.1. Each cell 

of this matrix show the number of test instances whose actual class is the class given 

in the corresponding column and whose predicted class is the class given in the 

corresponding row heading. The acronyms in the cells are defined as follows: TP = 

number of “true positive” instances, FP = number of “false positive” instances, FN = 
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number of “false negative” instances and TN = number of “true negative” instances. 

Hence, the cells in the main diagonal of the matrix (TP and TN) represent correct 

classifications, whereas the other two cells (FP and FN) represent different types of 

misclassifications. 

The simplest measure, the classification accuracy, is defined as the number of correct 

classifications divided by the total number of classifications, i.e. (TP + TN) / (TP + 

FP + FN + TN). However, this measure is not suitable for evaluating predicting 

accuracy in datasets where the class distribution is very unbalanced. This is because 

it would be very easy to obtain a very high value of classification accuracy by 

always predicting the majority class. For instance, if the relative frequency of the 

majority class in the dataset is very high, like 95%, we could trivially obtain a (very 

high) classification accuracy of 95% by always predicting the majority class for all 

instances, regardless of the attribute values of that instance. However, that trivial 

classification model would be undoubtedly useless. Therefore, there are other 

measures that cope better with class imbalance, such as the precision, recall and 

F-measures (Japkowicz and Shah 2011), discussed next. 

Consider a certain class, say the positive class. The precision measure is the ratio of 

the number of instances which truly belong to the positive class and were classified 

by the algorithm in that class divided by the total number of instances classified by 

the algorithm in the positive class. That is, Precision = TP / (TP + FP). Recall is the 

proportion of positive-class instances that were correctly classified as positive. That 

is, Recall = TP / (TP + FN). Recall is also called the rate of true positives. The 

F‑measure is the harmonic mean of precision and recall, calculated by equation 

(2.8): 

 

 𝐹-𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙) 
 (2.8) 

 

The above definition of precision, recall and F-measure is specific to the positive 

class, but the same measures are also computed for the negative class (or any other 

class, in problems with more than two classes). The final precision, recall and 
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F-measure values computed for a classification model are then an average of the 

corresponding values over all classes.  

Note that this final (averaged across classes) F‑measure is a suitable measure of 

predictive accuracy in classification problems with imbalance class distributions, 

since its maximization requires both classes to be predicted very well, in term of 

both precision and recall.  

2.1.4 The Problem of Imbalanced Class Distribution 

In data mining, when the number of positive class instances is far greater than that of 

negative class instances, it can be considered as a serious problem for a classification 

algorithm (Chawla, Japkowicz and Drive 2004). Such problem is practically 

common in various applications such as medical data, anomaly detection, etc. 

(Longadge, Dongre and Malik 2013). In general, classification algorithms are at their 

top-form when the numbers of instances of each class label are roughly equal 

(García, Sánchez and Mollineda 2012). However, when the number of instances of 

one class label far exceeds the other, a classification algorithm tends to be very 

focused on the majority class, since it can result in a higher predictive accuracy. 

Accordingly, a classification model which learns from such imbalance data is very 

likely to make many mistakes when classifying the minority (negative) class. In 

terms of data mining applications, this is not what we aim to achieve, since it is 

normally more interesting to learn and predict the minority class (Chawla 2009). For 

example, in survey data the number of patients suffering from a certain disease 

(positive class label) is relatively smaller than that of patients not having the disease 

(negative class label). Therefore, encouraging the algorithm to discover the factor(s) 

causing the disease is more interesting and in general more useful than to learn what 

healthy patients have in common. 

Dealing with imbalanced class distribution involves techniques such as improving 

classification algorithms or balancing class labels in the training set in a data 

pre-processing phase, before providing the data as input to the algorithm. The later 

technique is usually preferred as it has wider application and, thus, is the general 

approach followed in this work. The former technique includes algorithmic ensemble 

techniques which modify existing classification algorithms to enrich them in a way 

appropriate for imbalanced class distributions. The main objective of an ensemble 
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technique is to improve the performance of single classifiers (Rokach 2010; Polikar 

and Robi 2006). Particularly, this approach involves constructing several 

classification models from the original data and then aggregate their predictions.  

Unlike algorithm-based approaches, sampling-based approaches (Guo et al. 2008)  

are one of the well-known solutions for coping with the class imbalance problem in a 

pre-processing step. The main process is to resample the dataset, so that the class 

distribution changes toward a balanced one.  

There are two main sampling techniques. The first one is undersampling, which 

randomly removes some instances of the majority class, so this class has less effect 

on the classification algorithm. Furthermore, the classification algorithm’s run time 

and the memory space are improved by reducing the size of the training set. 

Nevertheless, doing so might discard informative instances of the majority class, 

leading to potential loss of useful information. As a consequence, some majority 

(positive) instances could be classified as negative class incorrectly. In other words, 

this issue is known as “underfitting” where the number of instances in the training 

set is insufficient for the algorithm to capture the relationship between features and 

the class.  

The second resampling technique is oversampling, which duplicates some randomly 

sampled minority class instances. Although such technique throws away no 

information, this could lead to the “overfitting” problem due to a few instances being 

repeatedly copied (Liu et al. 2010). As a consequence, the classification algorithm 

captures the noise of the data instead of the underlying trend. 

In addition, another resampling-based approach called Synthetic Minority 

Over-Sampling TEchnique (SMOTE) was introduced to address the problem with 

class imbalance (Chawla et al. 2002). Such technique is simple and similar to the 

oversampling technique, yet it is considered more effective because of the following 

reason. Instead of creating exact copies of minority class instances, SMOTE 

synthetically constructs new minority class instances via an algorithm specifically 

designed for this task. As mentioned above, oversampling leads to the overfitting 

issue caused by many repeated randomly sampled instances. However, if the newly 

added instances are generated by an algorithm rather than being exact copies of some 

original instances, then the problem of overfitting can be prevented. In more details, 
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new synthetic instances are generated in the following way. First of all, for each 

minority class instance (m) an instance (n) from its k nearest neighbours (KNN) is 

picked at random. After that, the SMOTE algorithm constructs a new synthetic 

instance (o) whose features’ values are calculated taking into account the features’ 

values of m and n. Specifically, the value of each feature is calculated according to 

equation (2.9).  

 

 𝑜. 𝑓𝑖 = 𝑚. 𝑓𝑖 + (𝑚. 𝑓𝑖 − 𝑛. 𝑓𝑖)  ×  𝑟𝑎𝑛𝑑(0,1) (2.9) 

 

Essentially, the value assigned to a feature is a coordinate of a randomly sampled 

point along the line segment between m.fi and n.fi. It should be noted that if the 

feature f is categorical, the majority vote is used for the nominal value amongst the 

KNN. With the use of KNN, not only does SMOTE mitigate the problem of 

overfitting caused by random oversampling, but also it results in no loss of 

information. The main disadvantage of SMOTE is that it is time consuming, since 

the KNN needs to be computed when constructing new synthetic instances. In 

addition, there is a risk that some of the new constructed minority class instances 

contain noisy data that could be harmful to the classification process. This is 

because, since the newly constructed instances do not represent data observed in the 

past, it is possible that those instances actually belong to the majority class, rather 

than to the minority class as assumed when they were constructed. 

2.2 Feature Selection 

In the context of the classification task, as a pre-processing step (before applying a 

classification algorithm), feature selection is performed to select a subset of relevant 

features, out of all original features. In general, there are several motivations for 

using such procedure (Li et al. 2016). The main one is to remove irrelevant, noisy, or 

redundant features, which can actually reduce the predictive accuracy of the 

classification model (Liu 1998). Another motivation is that identifying the most 

relevant features is a form of discovered knowledge by itself. In addition, feature 

selection can improve the interpretability of the classification model due to the 

smaller number of features used to build the model. Finally, reducing the number of 
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features can substantially speed up the execution of the classification algorithm, 

hopefully without sacrificing the predictive accuracy.  

Most feature selection methods have two main components. Firstly, a search method 

decides how to generate new subsets of features (candidate solutions) to be 

evaluated. Secondly, an evaluation function assigns a numerical value of quality to 

each candidate feature subset. The next subsection discusses different types of 

feature selection approaches based on different types of evaluation function, whilst 

the following subsection discussed some search methods for feature selection. 

2.2.1 Filter, Wrapper and Embedded Approaches 

There are three types of feature selection approaches, depending on how feature 

subsets (candidate solutions) are evaluated. The first and most popular one is the 

filter approach (Wang, Wang and Chang 2016), which evaluates a feature subset 

without running the target classification algorithm (i.e. the algorithm that will use the 

selected features to build a classification model). Typically, filter approaches use 

statistical tests or related criteria as an evaluation function. An example of a 

commonly used evaluation function is the Information Gain (IG) or Information 

Gain Ratio (IGR), as defined in equations (2.3) and (2.5) respectively, in Section 

2.1.1. These criteria essentially measure the amount of information about the class 

distribution that is gained when the value of a feature is known. Hence, a 

straightforward ranking-based filter method consists of computing one of these 

criteria for each feature and then select the k features with highest values of IG or 

IGR, where k is a user-defined parameter.  

Alternatively, Pearson’s chi-squared (2) can be used as an evaluation criterion to 

rank features in the same way. In particular, this criterion evaluates how likely it is 

that any observed difference between the expected feature value and the observed 

feature value in an instance arose by chance. Its value is defined as shown in 

equation (2.10):  

 

 𝜒2 = ∑ ∑
(𝑁𝑥𝑖𝑦𝑗

− 𝐸𝑥𝑖𝑦𝑗
)

2

𝐸𝑥𝑖𝑦𝑗

𝑤

𝑗=1

𝑣

𝑖=1

 (2.10) 
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where xi and yj are the ith and jth values of feature X, with v values, and class variable 

Y, with w values, respectively. Nxiyj and Exiyj denote, respectively, the observed and 

expected frequency with which the values xi and yj occur together in the same 

instance. Note that the observed frequency is a count computed from the training set, 

and the expected frequency is a count calculated using probability theory, by 

assuming that the class variable Y and the feature X are independent. 

In spite of the fact that such ranking-based filter methods are relatively fast, the 

disadvantages of such univariate methods are non-trivial. For example, they ignore 

feature interactions, since they only measure association between each feature and 

the class variable, not detecting redundancy (strong associations) between features.  

Furthermore, these univariate filter methods, in general, rank the features according 

to their evaluation function, but after the ranking they still need a parameter (k) 

specifying which number of top-positions in the rank will be selected. An example of 

a filter method that avoids these limitations is the Correlation-based Feature 

Selection method, which is the basis for this research, and will be described in detail 

later in this Section. 

In contrast to the filter approach, the wrapper approach and the embedded approach 

require running the target classification algorithm as part of the feature selection 

process. These allow these approaches to select features that are tailored to the target 

classification algorithm; unlike the filter approach, which selects features based on 

their intrinsic predictive power regardless of the target classification algorithm. 

In essence, the wrapper approach evaluates the quality of a candidate feature subset 

by measuring the predictive accuracy (on a subset of the training data) of the 

classification model built with that feature subset. This approach is in general very 

computationally expensive, especially when the dataset has a very large number of 

features, since it requires many runs of a classification algorithm.  

The embedded approach involves building a classification model and carrying out 

feature selection at the same time, rather than performing feature selection in a 

pre-processing step. For example, once a decision tree has been built, the relevant 

features are automatically selected by the algorithm. This approach can also be 

computationally expensive, depending on the type of classification algorithm used.  
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Therefore, in this research we focus on the filter approach, which is more 

computationally efficient (faster) and more scalable to a large number of features. 

2.2.2 Types of Search Methods 

Search methods (also called search strategies) are one of the two main components 

of a feature selection method. They decide how to generate new subsets of features 

(candidate solutions) to be evaluated by an evaluation function. As mentioned in 

(Liu 1998), search methods can be categorised into three broad types. The first one is 

complete search, which guarantees an “optimal” solution according to a predefined 

evaluation function – which does not necessarily guarantee the optimal predictive 

accuracy on the test set, unseen during training. In general, exhaustive search is a 

good example here (Branch and Bound (Narendra and Fukunaga 1977)) is also 

considered as complete search that guarantees an optimal feature subset), since it 

fully explores the search-space, i.e., it evaluates all possible feature subsets and 

selects the best candidate feature subset. In terms of computational efficiency, for a 

given set of m input features, the time complexity of this method is O(2m), so it is 

categorised as an exponential time algorithm. As a consequence, the exhaustive 

search method is computationally feasible only if the number of input features is 

relatively small.  

The second type of search method is heuristic search, which exploits only promising 

parts of the search space (the space of all candidate feature subsets). The quality of a 

candidate feature subset, which is used to decide which parts of the search space are 

explored, is measured according to a given evaluation function (a heuristic function). 

In other words, by sacrificing completeness it increases computational efficiency, 

since typically only a relatively small part of the search space is explored by such 

methods. Hence, heuristic search methods are more practical when the size of data 

set is large. Although this type of search method has no guarantee of finding the 

optimal solution, it attempts to find a near optimal solution within an acceptable 

computational time. Nevertheless, the most serious potential problem of such 

methods is that they can get stuck in a local minimum in the search space. Popular 

heuristic searches methods for feature selection include greedy search (or 

hill-climbing), beam search and best-first search.  
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We first explain greedy search, since it is simple to understand and to implement. In 

general, there are two main types of greedy search methods, namely greedy forward 

search and greedy backward search. The former initialises the set of selected features 

with the empty set and then adds one feature at a time to the current set of selected 

features. The feature added at each iteration is the best one, according to a predefined 

evaluation function. Features are added as long as this improves the value of the 

evaluation function.  

In contrast with this type of method, greedy backward search initializes the set of 

selected features with the full set of features. Next, it removes one feature at a time 

from the current set of selected features (again, based on an evaluation function), as 

long as the value of the evaluation function does not degrade. Note that greedy 

backward search tends to be much slower than greedy forward search, since the 

former has to evaluate much larger feature subsets in the early iterations. Hence, 

greedy forward search methods are used more often than backward search methods 

in practice. 

With regard to best-first search, the set of selected features is initialised with the 

empty set, the same as of the initialisation of greedy forward search. Then the 

method iteratively selects the best current feature subset, among the subsets 

generated so far by the search, and generates all possible new feature subsets by 

expanding the selected feature subset, i.e., adding a single feature to the selected 

subset. The whole process is repeated until a stopping criterion is satisfied, e.g. when 

none of the newly generated feature subsets has an evaluation function value better 

than the value of the most recently selected feature subset. Note that best-first search 

has to keep all unexpanded feature subsets in its memory during the search, since the 

best feature subset has to be selected among all those unexpanded subsets. Although 

a good evaluation function will improve the search’s efficiency, the worst-case time 

complexity is still O(md) where d is the maximum depth of the search.  

Because of this drawback, beam search was introduced by simplifying the best-first 

search method to focus more on exploitation of the best candidate solutions found so 

far, at the expense of performing less exploration of the search space. Instead of 

keeping all unexpanded feature subsets generated so far in the search space, beam 

search trims the possible paths to the best b subsets, where b is a parameter called the 
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beam width. As a result, the worst-case time complexity is reduced to O(bd), where b 

is much smaller than m. To conclude, heuristic search methods can find a reasonably 

good solution for many problems efficiently. Hence, this type of search type is used 

in this work.  

Lastly, nondeterministic search methods can be used to avoid the problem previously 

mentioned for heuristic search, i.e, the problem of getting stuck in a local optimum 

in the search space. An example is the use of genetic algorithms for feature selection 

(de la Iglesia 2013; Goldberg 1989; Yang and Honavar 1998). Note that search 

methods of this type in general return different feature subsets when they are run 

with different values of a randomly-generated seed used to initialize the candidate 

solutions). Hence, they usually need to be run many times with different random 

seeds, and have their results aggregated over those many runs. This increases the 

computational time taken when using such methods. 

Finally, it should be noted that the above types of methods are not mutually 

exclusive. In particular, non-deterministic methods can also be classified as a 

particular case of heuristic methods, since, due to their non-determinism, they do not 

guarantee to obtain the optimal solution.  

2.2.3 Correlation-based Feature Selection (CFS) 

Correlation-based Feature Selection (CFS) is a filter method which evaluates 

candidate feature subsets that can have multiple features, not just individual features 

– as it is the case with many simpler filter methods (Hall 2000). Unlike univariate 

filter methods based on ranking, CFS does not need a parameter for the number of 

selected features, it automatically decides the number of features to be selected. 

Moreover, CFS has the advantage of evaluating a subset of features, considering 

feature interactions, i.e., measuring, in particular, the degree of redundancy among 

features.  

In essence, CFS works based on the following principle: good feature subsets 

contain features highly correlated with the class variable, but uncorrelated with each 

other, i.e., with little or no redundancy among features. To implement this principle, 

the standard CFS method (Hall 2000) tries: (a) to maximize the average correlation 

between each feature in a candidate subset and the class variable; and (b) to 
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minimize the average correlation between each pair of features in a candidate subset. 

These two criteria can be combined into a single evaluation function as defined in 

equation (2.11): 

 

 𝑀𝑒𝑟𝑖𝑡𝑆𝑘
=  

𝑘𝑟𝑐𝑓̅̅ ̅̅

√𝑘 + 𝑘(𝑘 − 1)𝑟𝑓𝑓̅̅ ̅̅
 (2.11) 

 

where 𝑀𝑒𝑟𝑖𝑡𝑆𝑘
is the merit of a feature subset S consisting of k features, 𝑟𝑐𝑓̅̅ ̅̅  is the 

average value of all feature-class correlations (given by equation (2.12)) with 𝑟𝑐𝑓𝑖
 

denoting the degree of correlation between feature i and the class variable, and 𝑟𝑓𝑓̅̅ ̅̅  is 

the average value of all feature-feature correlations (given by equation (2.13)) with 

𝑟𝑓𝑖𝑓𝑗
 denoting the degree of correlation between features i and j. In particular, the 

former represents the degree of relevance while the latter represents the degree of 

redundancy among the features in S. 

 

 𝑟𝑐𝑓̅̅ ̅̅ =
∑ 𝑟𝑐𝑓𝑖

𝑘
𝑖=1

𝑘
 (2.12) 

 

 
𝑟𝑓𝑓̅̅ ̅̅ =

∑ ∑ 𝑟𝑓𝑖𝑓𝑗

𝑖−1
𝑗=1

𝑘
𝑖=1

𝑓𝑝
 (2.13) 

 

In addition, fp is the number of feature pairs in the feature subset S, which is given 

by equation (2.14): 

 

 𝑓𝑝 =
𝑘(𝑘 − 1)

2
 (2.14) 

 

More broadly, the term correlation is not limited to Pearson’s correlation; it can also 

be measured by other measures of association between variables, e.g. an 

information-theoretic measure. Each type of association measures has its own 

advantages and disadvantages depending on the type of a variable pair to measure. 
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For example, when both features are continuous (real valued), Pearson’s correlation 

is normally used to calculate their correlation, as shown in equation (2.15): 

 

 
𝑟𝑥𝑦 =

∑ 𝑥𝑦

𝑛𝜎𝑥𝜎𝑦
 (2.15) 

 

where n is the number of instances in the dataset, σx and σy the standard deviations of 

variables x and y. However, when one feature is continuous and the other is 

categorical (nominal), a weighted Pearson’s correlation is calculated as shown in 

(2.16) (Hall 2000). Specifically, for a categorical feature x and a continuous feature 

Y; if x has v values, then v binary attributes are correlated with Y; and then each of 

the binary features, 𝑋𝑏𝑖 = 1, …, v, takes value 1 in an instance when the ith value of 

X occurs in that instance and 0 otherwise. Each of the calculated correlations is 

weighted by the probability that X takes the ith value in the entire training set, as 

shown in equation (2.16). 

 

 
𝑟𝑥𝑦 = ∑ 𝑝(𝑋 = 𝑥𝑖)𝑟𝑋𝑏𝑖𝑌

𝑣

𝑖=1

 (2.16) 

 

Likewise, when both features involved are categorical, binary features are created for 

both, and all weighted correlations are calculated for all pairs of one binary value of 

x and one binary value of y, as defined in equation (2.17), where v and w are the 

number of values that can be taken by X and Y, respectively.  

 
𝑟𝑋𝑌 = ∑ ∑ 𝑝(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗)𝑟𝑋𝑏𝑖𝑌𝑏𝑗

𝑤

𝑗=1

𝑣

𝑖=1

 (2.17) 

 

By considering these three equations, it can be seen that Pearson’s correlation works 

naturally with a pair of continuous variables, and it measures their linear correlation 

coefficient. Nevertheless, the correlation coefficient is less naturally applicable to 

categorical variables, which have to be transformed to a set of binary variables for 

computing the weighted correlation coefficient. Another point to consider is that the 
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correlation coefficient is a measure of linear correlation, so that it may be zero or 

close to zero when a pair of features is non-linearly dependent. 

Finally, it should be noted that there are non-standard versions of CFS for 

multi-label classification (where an instance can be assigned multiple class labels at 

the same time), as described in (Jungjit et al. 2013; Jungjit and Freitas 2015), but 

multi-label classification is out of the scope of this thesis. 

2.2.4  Minimum-Redundancy-Maximum-Relevance (mRMR) feature 

selection 

The mRMR method for feature selection was originally proposed in (Peng et al. 

2005). In this method, the relevance of a feature set S consisting of k features to the 

class c, denoted Rel(S,c) is defined as the average value of all mutual information 

(MI) values between each individual feature fi in S and the class variable c, as given 

by equation (2.18): 

 

 
𝑅𝑒𝑙(𝑆, 𝑐) =

1

𝑘
∑ 𝑀𝐼(𝑓, 𝑐)

𝑓∈𝑆

 (2.18) 

 

The redundancy of all features in the set S is the average value of all mutual 

information values between features fi and fj for all such pairs of features in S when 

the order of features in the pair is irrelevant, as given by equation (2.19): 

 

 
𝑅𝑒𝑑(𝑆) =

1

𝑓𝑝
∑ 𝑀𝐼(𝑓𝑖 , 𝑓𝑗)

1≤𝑖<𝑗≤𝑘

 (2.19) 

 

where fp is the number of feature pairs in S defined in equation (2.14). To obtain a 

value of MeritS that represents a compromise between relevance and redundancy, 

MeritS is computed by using either of the following two approaches, namely the 

Mutual Information Difference criterion (MID), defined in equation (2.20), or the 

Mutual Information Quotient criterion (MIQ), defined in equation (2.21). 
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 𝑀𝑒𝑟i𝑡𝑆 = 𝑀𝐼𝐷𝑆 = 𝑅𝑒𝑙(𝑆, 𝑐) –  𝑅𝑒𝑑(𝑆) (2.20) 

 

 
𝑀𝑒𝑟𝑖𝑡𝑆 = 𝑀𝐼𝑄𝑆 =

𝑅𝑒𝑙(𝑆, 𝑐)

𝑅𝑒𝑑(𝑆)
 (2.21) 

 

Note that when computing MID, Rel(S,c) and Red(S) should be normalised by 

rescaling each term to have values between 0 and 1. This rescaling is achieved by 

dividing the computed value of Rel(S,c) and Red(S) by the maximum value of 

MI(f,c) and MI(fi,fj), respectively. In addition, when Red(S) is 0, one should compute 

the Merit using MID instead of MIQ, since the latter is undefined in this case. In 

general, MIQ outperformed MID in the experiments reported in (Ding and Peng 

2005)  but those experiments involved only five different datasets, so the results have 

very limited generality. 

 

2.3 Longitudinal Classification 

The vast majority of works on the classification task, including works performing 

feature selection in a pre-processing step, focus on analysing the standard type of 

classification data, where each variable – both features and the class variable – is 

associated with a single time point, so that there is no explicit temporal structure in 

the data. However, many important sources of data – particularly in the biomedical 

domain – contain longitudinal data, where the values of a variable are repeatedly 

measured across different time points, often called waves (Ribeiro et al. 2017). For 

instance, many hospital databases contain records with the results of blood tests 

measured for the same patient across many time points. 

2.3.1 Basic Concepts of Longitudinal Data 

Unlike standard (non-longitudinal) datasets, longitudinal datasets consist of features 

whose values are assigned at multiple time points, for each instance in a dataset. For 

example, a health-survey dataset, where instances represent patients, could contain 

features representing the results of different blood sample tests across several 

successive years. From a machine learning perspective, this type of datasets has 

temporal information about the features: how each feature’s values change across 
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time. In general, conventional classification algorithms do not explicitly exploit this 

temporal information, since they treat all occurrences of a feature in the same way, 

regardless of how recent the feature values are. 

In addition, the different values of a feature across time can exhibit some temporal 

redundancy, in the sense that the value of a feature at a given time point may be 

correlated with values of the same feature in other time points (particularly closer 

time points). This is generally known as autocorrelation in the area of time series. 

Again, this kind of temporal redundancy is not explicitly detected by 

non-longitudinal classification or feature selection algorithms, which would not 

distinguish between measuring the correlation between two values of the same 

feature in two different time points (temporal redundancy) and measuring correlation 

between the values of two very different features in the same time point 

(non-temporal redundancy). By identifying these two types of redundancy, one can 

develop a feature selection algorithm that exploits the difference between them in 

order to try to improve the effectiveness of the feature selection procedure, as will be 

seen later. 

As mentioned earlier, CFS can eliminate redundant and irrelevant features, but 

standard CFS ignores the temporal relation among the features, so that it does not 

explicitly address the above mentioned temporal redundancy as a specific issue in 

longitudinal datasets. In the next Section, we briefly review related work on 

longitudinal feature selection methods, which were explicitly designed for 

longitudinal classification data. First, however, the next two subsections briefly 

discuss basic approaches for longitudinal classification and different types of 

longitudinal classification algorithms. 

2.3.2 Two Basic Approaches to Cope with Longitudinal Classification 

Data 

In general, there are two approaches for longitudinal classification. The first one is 

the problem transformation approach, which transforms a longitudinal dataset into a 

non-longitudinal dataset, before applying a conventional classification algorithm. 

The second approach is the algorithm-adaptation approach, which adapts a 

non-longitudinal classification algorithm for longitudinal datasets. In this paper, we 

focus on the problem transformation approach, which is more generic 
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(algorithm-independent), so that we can apply different classification algorithms and 

analyse different types of classification models. 

2.3.3 Types of Longitudinal Classification Algorithms 

As mentioned in (Jie et al. 2017), classification models built by longitudinal 

classification algorithms can be categorised into four types. The first type is 

Single-time-point Input Single-time-point Output (SISO). Most of the standard 

classification algorithms are in this category (when such algorithms are applied to 

longitudinal data). In other words, temporal information is not taken into account at 

all when predicting the class variable.  

The other three types of algorithms are considered to be true longitudinal 

classification algorithms. The second type is Multiple-time-points Input 

Single-time-point Output (MISO). Examples of algorithms in this category can be 

found in (Minhas et al. 2015; Chen et al. 2015). The third type is Single-time-point 

Input Multiple-time-points Output (SIMO) and the last and most complex type is 

Multiple-time-points Input Multiple-time-points Output (MIMO). Examples of 

algorithms in MIMO can be found in (Adhikari et al. 2015; Cheung et al. 2015). 

In this work, the proposed longitudinal feature selection algorithms – described in 

detail in Sections 3.2, 3.3 and 3.4 – cope with features (input) occurring in multiple 

time points and a class variable (output) occurring in a single time point. Hence, the 

algorithms proposed in this work belong to the MISO category. 

2.4 Related Work on Feature Selection for Longitudinal 

Classification 

Although there is a huge literature on conventional (non-longitudinal) feature 

selection (Li et al. 2016; Liu 1998; Wang, Wang and Chang 2016), there are 

relatively few published studies on longitudinal feature selection for classification 

tasks (Radovic et al. 2017; Lou and Obradovic 2012). In this section, we discuss the 

advantages and disadvantages of the longitudinal feature selection methods most 

related to this work. 

In (Radovic et al. 2017), a longitudinal feature selection method was proposed for 

temporal gene expression data. They used the Minimum Redundancy Maximum 



Chapter 2: Background 

 32 

relevance (mRMR) method, whose evaluation function is conceptually similar to the 

CFS method’s one, being based on maximising the candidate features’ relevance 

with respect to the class variable and minimising redundancy among the candidate 

features. The degree of relevance is represented by the arithmetic mean of the 

F-statistic (Dytham 2011; Tabachnick and Fidell 2013) for that feature over all the 

different time points. One drawback of this method is that the degree of relevance is 

computed separately for each time point, ignoring important differences between a 

feature’s values at different time points – e.g. ignoring that feature values at recent 

time points are intuitively more relevant for class prediction than older feature 

values. Furthermore, using the F-statistic makes the strong assumption that the data 

are normally distributed. In addition, in this feature selection method the degree of 

redundancy among candidate features is measured by a distance derived from 

Dynamic Time Warping (DTW). DTW is also employed in other feature selection 

works, such as (Furlanello, Merler and Jurman 2006). 

Another related work is (Lou and Obradovic 2012) which proposed a margin-based 

feature selection method which transforms a feature space into a weighted feature 

space. A temporal margin is defined based on a measure of distance between two 

time points, and then it selects the features with large weights that maximise each 

temporal margin. Although this method makes no assumption about the data 

distribution, it only considers a feature’s relevance with respect to the class. In other 

words, the redundancy among features is ignored. 
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3 DATASET CREATION AND 

PROPOSED VARIANTS OF 

CORRELATION-BASED 

FEATURE SELECTION 

In this chapter, we introduce the two types of contributions of this thesis. The first 

one is the creation of the longitudinal datasets used in the experiments, including the 

creation of features capturing longitudinal information for predicting age-related 

diseases. The second one is presented in three sections, which describe four proposed 

variants of the Correlation-based Feature Selection (CFS) method.  

This chapter is organised as follows. Section 3.1 gives the details of how 

longitudinal datasets were constructed for predicting age-related diseases. Section 

3.2 presents a variant of the Correlation-based Feature Selection (CFS) method based 

on exhaustive search applied with each small group of features. Section 3.3 presents 

another CFS variant that combines the previous variant with the application of the 

standard CFS method. Section 3.4 presents two other CFS variants that are based on 

assigning different weights to different types of redundancy between features. 

The contents of Sections 3.1 and 3.2 have been partly included in a peer-reviewed 

paper that is currently in press (Pomsuwan and Freitas 2017). 
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3.1 Creation of Longitudinal Datasets for Predicting 

Age-Related Diseases 

The classification datasets created in this work were derived from the English 

Longitudinal Study of Ageing (ELSA) (Marmot et al. 2016) – 

https://www.elsa-project.ac.uk/. The ELSA study is a longitudinal survey of ageing 

and quality of life among older people that explores the dynamic relationships 

between health and functioning, social networks and participation, and economic 

position as people plan for, move into and progress beyond retirement. In this work, 

however, we focus only on the biomedical data in ELSA, such as the results of blood 

tests and other data collected by nurses, and the relationship between that data and 

the health status of patients, as will be described in more detail later.  

The ELSA subjects were recruited from a representative sample of the English 

population, who live in private households, aged 50 and over (Marmot et al. 2016). 

In addition, the data has been collected every two years, where each data collection 

period is known as a ‘wave’, so that we can observe the variation of each feature’s 

values for each individual across those waves. In total, seven waves of data were 

collected and have well-documented data. 

It should be noted that the data in the ELSA database was not collected specifically 

for machine learning purposes. Hence, we had to spend a large amount of time with 

data preparation for the classification task. The first step was to define the instances 

(objects to be classified), the classes and the predictive features used for 

classification. In essence, the instances represent individuals in the ELSA database, 

the class variables represent age-related diseases and the features represent 

biomedical information collected by nurses or other relevant characteristics of an 

individual (age and gender). The next three subsections describe data preparation in 

detail. 

3.1.1 Creating class variables representing age-related diseases 

We aim at building classification models which help us understand what health 

factors play an important role in predicting whether or not a patient will have a 

certain age-related disease in the future. Therefore, we looked into the ELSA core 

data, and then identified 10 age-related diseases, each used as a class variable in this 
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work. These diseases are: angina, arthritis, cataract, dementia, diabetes, high blood 

pressure, heart attack, osteoporosis, Parkinson’s and stroke. Hence, we created 10 

datasets, each one with a different disease as the class variable to be predicted. More 

precisely, in each dataset, the binary class variable indicates the presence or absence 

of the corresponding disease in wave 7 (the most recent wave in ELSA). 

Note, however, that for each disease, there is no variable in the ELSA database that 

directly indicates whether or not an individual has that disease in a given wave. This 

kind of information is rather represented indirectly, by several related variables 

whose values depend on both whether or not the individual (patient) had the target 

disease in the past and whether or not the patient still has the disease or whether the 

disease was first diagnosed in the current wave. Therefore, we needed to create a 

well-defined class variable for each disease separately, combining information from 

the several related variables associated with that disease. In order to create such class 

variables, in general the following rule was used for each disease, combining 

information about that disease’s variables in wave 7: 

 

IF (“whether confirms the disease diagnosis” = “yes”)  

OR (“whether still has the disease” = “yes”)  

OR (“the disease diagnosis newly reported” = “yes”)  

THEN Disease = “yes” 

OTHERWISE Disease = “no”. 

  

In this rule, the terms between double quotes just before each “=” sign in the “IF” 

part of the rule refer to original variables in ELSA’s wave 7 core data. For example, 

if the binary variable indicating whether or not ‘a heart attack diagnosis has been 

confirmed’ is set to yes (the first condition in the IF statement), then the class 

variable Heart-Attack is consistently assigned the value “yes”. Note that, although 

each dataset has a different class variable, all datasets contain instances representing 

the same individuals and the same set of predictive features (as described next). 
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3.1.2 Creating predictive features based mainly on the Nurse data 

In the created datasets, most features were created from raw variables available in 

the Nurse Visit data, part of the previously discussed ELSA database (Marmot et al. 

2016). Those raw variables represent several types of biomedical information 

collected by a nurse, including for instance many types of blood sample tests. In 

addition, the nurse took several physical performance measurements that involved 

asking a patient to move his/her body in different ways. If a particular movement 

could not be done by the participant or he/she felt that it was unsafe to try to do it, 

the attempt was marked as ‘Not attempted’ or ‘Test not completed’. The Nurse 

variables are only available at ELSA waves 2, 4, and 6, so our created datasets 

contain only features for these waves. These features are then used to predict 

age-related diseases (classes) at the later wave 7, whose data were collected about 

two years later than the data in wave 6. 

As mentioned earlier, the raw biomedical variables collected by the nurses were not 

collected specifically for machine learning, and they contain a large amount of 

obviously redundant or irrelevant information. Hence, we have created features for 

classification by extracting and combining information from the raw variables in the 

Nurse data files, as follows. First of all, we kept potentially predictive variables from 

the Nurse data, whilst many other variables which seem intuitively useless for 

predicting age-related diseases were removed because such variables were collected 

mainly to record problems in data collection for other variables. For example, several 

variables capturing information such as the reasons why taking a blood sample test 

was refused by a patient, and information about several types of problems in some 

physical performance measurements, were discarded. 

In addition, many variables in the Nurse data represented clearly redundant 

information, in cases where the same variable (e.g. the result of a blood test) was 

measured in three different times in the same wave, in order to represent the 

variability in test results. This resulted in duplication of variables representing the 

same biomedical property in each wave, and none of those three measures can be 

considered ‘better’ than the other two. Hence, instead of using any of the three 

underlying variables, we created a feature defined as the mean value over those three 

measures, for each individual (instance), for each wave. 
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Another point to consider is the occurrence of different types of missing values in 

many raw variables in the Nurse data, which were originally labelled as different 

negative values, as follows (using as example a blood test result variable): 

• -1 = Not applicable 

• -6 = Period between collection and receipt in the lab > 5 days 

• -8 = Don’t know 

• -9 = Refusal 

• -11 = Blood sample not taken 

Considering all these types of missing values separately would considerably 

complicate the task of the classification algorithms. Hence, to simplify, all these 

different negative values were assumed to have the same meaning of “missing 

value”, so that we treated them in the same way by replacing all of them with the 

special missing value symbol “?” (the symbol used in the data mining tool WEKA 

(Hall et al. 2009)). 

In addition to features created from the raw variables in the Nurse data files, we also 

included in our datasets two features directly extracted from the Core files in ELSA 

which intuitively represent potentially very relevant information for predicting 

age-related diseases, namely the features “w7indager” (age) and “indsex” (gender). 

Finally, an important point is that, when creating the instances used in our datasets, 

only data from “core” members were used, so the ELSA records of their partners 

were ignored. The ELSA variable “idauniq”, which is a unique id for each 

individual, was added to our datasets to match up data about the same core member 

in different dataset files (across different waves). This variable was not used for 

classification purposes, of course, since it has no predictive power. Note that an 

instance was created for an individual only if that individual participated in wave 7, 

so the class variable values are available for all individuals (instances) in all created 

datasets. However, some individuals in our datasets may not have participated in all 

waves used to create features (i.e., waves 2, 4 and 6). If an individual did not 

participate in a given wave, the corresponding features in that wave will have a 
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missing value for that individual, and the feature selection and classification 

algorithms cope with those missing values in their own ways. 

3.1.3 Constructing Longitudinal Features 

Recall that the features created from variables in the Nurse data (the vast majority of 

features in the created datasets) are measured across three different time points 

(waves), namely waves 2, 4 and 6 of the ELSA database. We use the term 

“conceptual feature” to refer to the abstract concept of such a feature regardless of its 

observed value in any given wave. E.g., “chol” (Blood total cholesterol level) is a 

conceptual (abstract) feature which is associated with three actual features, w2chol, 

w4chol and w6chol, which represent the observed value of that variable in waves 2, 

4, and 6. For each such a conceptual feature, we created new features trying to 

capture temporal trends in the variation of that feature’s values across the three 

waves, as follows. 

First of all, we create m groups of temporally related features, one group for each of 

the m conceptual features, each group including all temporal variations of a 

conceptual feature across waves 2, 4 and 6, which are the waves before the wave 

with the class to be predicted (wave 7). This is, each group contains observed 

features that are variations of a conceptual feature across different waves. In the next 

step, these observed features are used to create six different types of Constructed 

Longitudinal Features (CLFs) – explained below. It should be noted that these kinds 

of constructed features only work for continuous (real-valued) observed features. 

Note also that CLFs are created for each group of temporally related features. Hence, 

each such group contains two types of features: the observed features for a given 

conceptual feature and CLFs constructed from those observed features. Next, we 

describe the several types of CLF. 

The first type of CLF is mono_w246, indicating whether the value of a given feature 

monotonically increases or decreases across waves 2, 4 and 6. To illustrate this point, 

let f(2), f(4) and f(6) be the numeric values of feature f in waves 2, 4 and 6. Then, 

f_mono_w246 (mono_w246 for feature f) has the value 1 (monotonic increase) if f(2) 

< f(4) < f(6), the value -1 (monotonic decrease) if f(2) > f(4) > f(6), or value 0 (no 

monotonic property) otherwise.  
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However, a few features have their values observed in only two waves. This means 

that a mono_w246 variable for such features cannot be created using the rule 

mentioned above. Accordingly, for such features we create instead another type of 

CLF, called up_wt1t2, which indicates whether the values of feature f in the two 

time-indices (wave numbers) t1 and t2 go up or not. For instance, f_up_w24 has the 

value 1 if f(2) < f(4), or value 0 otherwise. Note that if the value of feature f is missing 

in any of the waves, either of these CLFs has a missing value (denoted by “?”). We 

create two types of up_wt1t2 features, namely f_up_w24 and f_up_w46 – there was 

no need for a CLF of the type f_up_w26, since no feature in our dataset had values 

only in waves 2 and 6. 

Furthermore, each of the other three proposed types of CLFs represents the 

difference between the values of a pair of features referring to the same conceptual 

feature in two different waves. More precisely, let f_diff_wij denote the difference 

between the values of feature f in the two time-indices (wave numbers) i and j, for 

each of the three pairs of waves where j > i. Then, these CLFs are defined as follows: 

• f_diff_w24 = f(4) – f(2) 

• f_diff_w46 = f(6) – f(4) 

• f_diff_w26 = f(6) – f(2) 

Hence, positive (negative) values of these constructed features denote an increase 

(decrease) in the value of feature f with time, between the two corresponding waves. 
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Table 3.1: All conceptual features used in the created data sets 

 

wave 2 wave 4 wave 6

indsex Sex - Priority: DiSex, DhSex

w6indager Definitive age variable collapsed at 90+ to avoid disclosure P

clotb Blood sample: Whether has clotting disorder P P P

fit Blood sample: Whether ever had a fit P P P

apoe Blood APOE level (mmol/l) P P

hasurg Whether respondent had abdominal or chest surgery in last 3 weeks P P P

eyesurg Whether respondent has had eye surgery in the last 4 weeks P P P

hastro Whether admitted to hospital for heart complaint in last 6 weeks P P P

chestin Whether respondent had any respiratory infection in last 3 weeks P P P

inhaler Whether used an inhaler/puffer in last 24 hours P P P

mmssre Side-by-side stand: Outcome P P P

mmstre Semi-tandem stand: Outcome P P P

mmftre2 (D) Outcome of full tandem stand according to age P P P

mmlore Leg raise (eyes open): Outcome P P P

mmlsre Leg raise (eyes shut): Outcome P P P

mmcrre Chair rise: Single chair rise outcome P P P

mmrroc (D) Chair rise: Outcome of multiple chair rises, split by age P P P

hipval (D) Valid Mean Hip (cm) P P P

whval (D) Valid Mean Waist/Hip ratio P P P

htpf Highest technically satisfactory PF reading (litres per minute) P P P

wbc White blood cell count ( x 10^9 cells/litre) P P P

mch Blood mean corpuscular haemoglobin level (pg/cell) P P P

sysval (D) Valid Mean Systolic BP P P P P

diaval (D) Valid Mean Diastolic BP P P P P

pulval (D) Valid Pulse Pressure P P P P

mapval (D) Valid Mean Arterial Pressure P P P P

cfib Blood fibrinogen level (g/l) P P P P

chol Blood total cholesterol level (mmol/l) P P P P

hdl Blood HDL level (mmol/l) P P P P

trig Blood triglyceride level (mmol/l) P P P P

ldl Blood LDL level (mmol/l) P P P P

fglu Blood glucose level (mmol/L) - fasting samples only P P P P

rtin Blood ferritin level (ng/ml) P P P P

hscrp Blood CRP level (mg/l) P P P P

hgb Blood haemoglobin level (g/dl) P P P P

hba1c Blood glycated haemoglobin level (%) P P P P

htval (D) Valid height (cm) P P P P

wtval (D) Valid weight (Kg) inc. estimated>130kg P P P P

bmival (D) Valid BMI - inc estimated>130kg P P P P

wstval (D) Valid Mean Waist (cm) P P P P

htfvc Highest technically satisfactory FVC reading (litres) P P P P

htfev Highest technically satisfactory FEV reading (litres) P P P P

mmgsd_me
Created variable: grip strength: dominant hand (Kg), mean of 3 

measures (mmgsd1, mmgsd2, mmgsd3)
P P P P

mmgsn_me
Created variable: grip strength: non-dominant hand (Kg), mean of 3 

measures (mmgsn1, mmgsn2, mmgsn3)
P P P P

Numeric
Available inFeature 

(Variable)
Description in the ELSA database, or definition

Not Applicable

Not Applicable
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Table 3.2 : Six types of Constructed Longitudinal Features (CLFs) 

Feature 

(Variable) 
Description in the ELSA database, or definition Numeric 

f_mono_w246 
CLF: whether the value of VAR monotonically increases 

(1), decrease (-1), or otherwise (0) 

f_up_w24 
CLF: whether the value of f increases (1), or not (0), from 

the wave 2 to wave 4 

f_up_w46 
CLF: whether the value of f increases (1), or not (0), from 

the wave 4 to wave 6 

f_diff_w24 CLF: f value in wave 4 - f value in wave 2 

f_diff_w46 CLF: f value in wave 6 - f value in wave 4 

f_diff_w26 CLF: f value in wave 6 - f value in wave 2 

 

Table 3.1 shows the full set of 44 conceptual features used in all the datasets created 

in this work. This table shows, for each conceptual feature, its name and its 

description or definition in the ELSA database (Marmot et al. 2016), the data source 

used to create the features.  

Note that the first two features, namely gender (indsex) and age (w6indager), have 

just one value for each individual. The value of gender is obviously independent of 

the wave numbers, whilst the age value is from wave 6. Although age values are also 

available in waves 2 and 4, such values are not used since they are obviously 

redundant, given the age value at wave 6.  

The other 42 rows in Table 3.1 represent features from the Nurse data in ELSA, 

which in general are longitudinal features, having different values across waves 

(time points) for each individual. 36 of these 42 longitudinal features have values in 

3 waves, whereas the other 6 are only available in some waves – more precisely: one 

feature (apoe) occurs only in wave 2, three features (hipval, whval, htpf) occur only 

in waves 2 and 4, and two features (wbc, mch) occur only in waves 4 and 6.  

Since 5 conceptual features have values in only two waves, each of those 5 

conceptual features generates four features in our datasets, i.e., one feature for each 

of the two waves plus two CLFs (one up_wt1t2 feature and one diff_wt1t2 feature, as 

defined earlier). Furthermore, out of the 36 conceptual features having values in 3 

waves, there are 22 conceptual features whose values are continuous (real-valued). 
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Therefore, each of those 22 conceptual features generates 7 features in our datasets, 

i.e., one feature for each of the three waves plus 4 CLFs (namely mono_w246, 

diff_w24, diff_w46 and diff_w26 CLFs, as defined earlier).  

In addition, Table 3.2 shows the six types of CLFs, as explained earlier in this 

section. To sum up, the total number of features is 219. 

Regarding missing values, a common approach to cope with this problem in standard 

(non-longitudinal) classification is to replace a missing value by a default value, 

typically the mean of the known values of the feature across the dataset, in the case 

of numerical features; or the mode (most frequent value), in the case of nominal 

features. This is a computationally efficient (fast) but naïve approach, which may 

introduce noise in the data. However, in our context of the constructed temporal 

difference features for longitudinal classification, we can exploit additional temporal 

information about feature values when calculating the value that will replace the 

missing value (instead of using a pre-defined default value), as follows. 

 

 
𝑓_𝑑𝑖𝑓𝑓_𝑤𝑖𝑗𝑥   

=
𝑓_𝑑i𝑓𝑓_𝑤𝑘𝑗𝑥  ×  𝑚𝑒𝑎𝑛_𝑓_𝑑𝑖𝑓𝑓_𝑤𝑖𝑗

𝑚𝑒𝑎𝑛_𝑓_𝑑𝑖𝑓𝑓_𝑤𝑘𝑗
 

(3.1) 

 

Let i and j be the indices of two waves associated with a temporal difference feature 

based on a given feature f, denoted by (f_diff_wij). If the value of the base feature f is 

missing for a given individual (instance) x in one of those two waves (say wave i), 

and the value of f is known in the other two waves (j and k), then the missing value 

of the constructed f_diff_wij feature for x will be replaced by a value calculated by 

equation (3.1), where wave index k denotes the “third” wave (i.e. nor wave i nor 

wave j) available in the dataset, so that data from all three waves are used to estimate 

the missing value. In addition, it should be noted that such method only copes with 

the missing values for the constructed features,  i.e., it does not attempt to fill in the 

missing values for the base feature. This latter possibility is left for future research.  

In equation (3.1), mean_f_diff_wij and mean_f_diff_wkj are the mean values of all 

known values of the constructed f_diff features for the corresponding waves. For 
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example, if the value of f is missing in wave 4 for a given individual x, the value of 

the constructed feature f_diff_w24 for x is computed as:  

f_diff_w26x × (mean_f_diff_w24x / mean_f_diff_w26x). 

The motivation for this approach is that it considers not only the known values of f 

for other individuals in wave i, but also the known values of f for both the same 

individual and other individuals in waves j and k. In other words, the ratio 

mean_f_diff_wij to mean_f_diff_wkj acts as a normalization factor, correcting for the 

different scales of f_diff values in different time periods.  

3.1.4 Imbalanced Class Distribution in the Created Datasets 

The pie charts shown in Figure 3.1 provide information about how many patients 

had a certain age-related disease, where each chart represents one disease (a class 

variable) in wave 7, in the created datasets. In this figure, the numbers beside each 

pie represent the number and percentage of instances in each class, for each disease. 

It can be seen that the class distribution is imbalanced for every class variable; and in 

several cases extremely imbalanced. As a consequence, the predictive accuracy of 

classification models learning from imbalanced training sets is normally biased in 

favour of the majority classes (He and Garcia 2009). 

Hence, a class balancing approach was necessarily applied to the datasets before 

running the feature selection and classification algorithms. Specifically, the instances 

of the majority class were reduced by using the undersampling technique (Batista, 

Prati and Monard 2004) in such a way that the class distributions dropped to the 

ratios of 4:1, 2:1 and 1:1. The undersampling approach was performed by randomly 

deleting an instance belonging to the majority class from the current training set until 

the desired ratio was reached. Note that undersampling was applied only to the 

training set (not to the test set), to encourage the construction of models predicting 

the minority class a reasonable number of times, instead of models predicting 

(almost) always the majority class. If undersampling was applied to the test set too, 

the classification problem would be transformed into a much easier one, which 

would be a very different problem from the original real-world one – an undesirable 

situation for our goal of analysing real-world human ageing data. 
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Figure 3.1: the class distribution of each class variable in wave 7 
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3.2 Exhaustive Search Correlation-based Feature Selection 

applied within each Conceptual Feature Group (Exhaustive 

CFS per Group: Exh-CFS-Gr) 

The Exh-CFS-Gr method is based on the idea of first dividing the set of features into 

groups of temporally related features, with one group for each conceptual feature 

(see Section 3.1.3). Each group contains two types of features: (a) all features 

representing different values of a conceptual feature across the different waves (time 

points); (b) Constructed Longitudinal Features (CLFs) for the corresponding 

conceptual feature. For instance, the group of features for the conceptual feature 

“chol” (cholesterol level) contains 7 features: w2chol, w4chol, w6chol, 

chol_mono_w246, chol_diff_w24, chol_diff_w46 and chol_diff_w26; where the first 

3 features are the chol values at waves 2, 4 and 6, and the last 4 features are CLFs. 

Recall that the CFS method (discussed in Section 2.2.3) consists of a search method 

and an evaluation (Merit) function. Here we propose a variation of CFS that involves 

the search method only, whilst using the same Merit function as CFS. 

The basic idea of the proposed variant of CFS is to use exhaustive search to select 

features separately from each group of temporally related features, rather than using 

a heuristic search method applied to the full set of input features as in the original 

CFS. That is, exhaustive search evaluates all possible feature subsets for each group 

of temporally related features, and selects the best candidate feature subset within 

each group based on the CFS Merit function.  

Note that the exhaustive search method is computationally feasible only if the 

number of candidate features is relatively small. This is because, for a given set of m 

candidate features, the number of candidate feature subsets evaluated by this method 

is 2m
 – 1, where the 1 being subtracted refers to the empty feature set, which is 

considered an invalid candidate solution for the feature problem. When using the 

original CFS method, in general m is the number of features in the dataset, which is 

typically too large to allow the use of exhaustive search in real-world applications. 

However, in the proposed CFS variant, the division of the features into groups, as 

explained in the previous Subsection, effectively creates groups that are small 

enough to allow the use of exhaustive search. More precisely, given the previously 

defined groups of temporally related features, the number of features in each group is 
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at most 7 (3 observed features and 4 CLFs), as discussed in detail in the previous 

Subsection. Therefore, in order to address the temporal redundancy problem, 

exhaustive search is applied to each feature group separately.  

Afterwards, the algorithm simply merges all sets of selected features across all 

groups – i.e., it applied the set union operator to all the selected feature subsets. 

Hence, a single feature subset is obtained and output as the result from the feature 

selection process. Note that this merging process ignores the redundancy between 

features in different groups; which is a limitation that will be addressed by another 

variant of CFS proposed in the next Section. 

We call this entire feature selection process (i.e., the selection of features separately 

per group based on exhaustive search, and the final merging of the selected features 

across the groups) the Exhaustive CFS per Group (Exh-CFS-Gr) method. The basic 

idea of the proposed Exh-CFS-Gr method is summarized in graphical form in Figure 

3.2.  

Figure 3.2: The basic idea of the proposed Exh-CFS-Gr method 
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3.3 Exh-CFS-Gr followed by standard CFS 

(Exh-CFS-Gr+CFS) 

The previously proposed Exh-CFS-Gr method only deals with the redundancy issue 

within a conceptual feature group, so it does not detect redundancy between features 

across groups – i.e. redundancy between features derived from different conceptual 

features. In order to avoid this limitation, we propose another variant of CFS that 

performs feature selection in two phases.  

The first performs feature selection within each group of temporally redundancy 

features using exhaustive search and then computes the set union operation of all the 

selected feature subsets, i.e., the first phase simply executes the previously described 

Exh-CFS-Gr method. In the second phase the algorithm simply applies the standard 

CFS method to the merged feature subset output by the first phase, in order to select 

the final set of features across all groups. We call this CFS variant the 

Exh-CFS-Gr+CFS method. 

Note that in the second phase, when standard CFS is applied, the set of input features 

for the second phase is typically much larger than the set of features within each 

group. As a result, the set of input features for the second phase normally is not 

small enough to allow the application of exhaustive search, and indeed this was 

observed in our datasets, where typically many tens of features are the input for the 

second phase. Hence, we use a greedy forward search, rather than exhaustive search, 

to implement the standard CFS in the second phase. In essence, the greedy forward 

search works as follows. First of all, it initialises the set of selected features with the 

empty set. Afterwards, it adds one feature at a time (the best feature, according to 

CFS’ Merit function) to the current set of selected features, as long as this improves 

the Merit value. The whole process of Exh-CFS-Gr+CFS is illustrated in Figure 3.3. 

Note that the only difference between this Figure and the Figure 3.2 (for 

Exh-CFS-Gr) is that Figure 3.3 has one extra operation (the application of standard 

CFS) at the end. 

Note also that Exh-CFS-Gr+CFS tends to select a much smaller subset of features 

than Exh-CFS-Gr, since the former performs an additional feature selection step in 
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the second phase. On the other hand, Exh-CFS-Gr+CFS is of course computationally 

slower than Exh-CFS-Gr, for the same reason of performing an additional feature 

selection step. 

 

 

3.4 Weighted Redundancy CFS (WR-CFS) 

The two variants of CFS proposed in the two previous sections modified only the 

search method of CFS, whilst using the same Merit function used by the standard 

CFS. By contrast, in this subsection we propose two variants of CFS that modify the 

way the Merit function is computed, whilst using the same search method used in the 

standard CFS. 

Figure 3.3: The basic idea of the proposed Exh-CFS-Gr+CFS method 
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Before we describe the proposed variants of the Merit function, let us first recall that 

in the standard CFS the merit of a candidate feature subset S consisting of k features 

is calculated by the following equation (3.2): 

 

 
𝑀𝑒𝑟𝑖𝑡𝑆𝑘

=  
𝑘𝑟𝑐𝑓̅̅ ̅̅

√𝑘 + 𝑘(𝑘 − 1)𝑟𝑓𝑓̅̅ ̅̅
 (3.2) 

 

where 𝒓𝒄𝒇̅̅ ̅̅  denotes the average degree of correlation between a feature f and the class 

variable c (averaged over all features in S); and 𝒓𝒇𝒇̅̅ ̅̅  denotes the average degree of 

correlation between a pair of features (averaged over all feature pairs in S). As 

discussed in Section 2.2.3, these variables represent the average degrees of feature 

relevance (for predicting the class) and redundancy between features, respectively. 

Note that here the term “correlation” is used in a broad sense, since the CFS version 

in WEKA, which was used as the basis for our CFS variants, actually measures the 

correlation between variables using symmetrical uncertainty, rather than Pearson’s 

correlation coefficient. We proceed using the term “r” to denote correlation anyway, 

to be consistent with the literature on CFS. 

The core idea of the two CFS variants proposed in this section is to modify how the 

average degree of redundancy between features in S is computed, recognizing that in 

our context of longitudinal data there are two types of feature redundancy, as 

follows.  

The first redundancy type is the redundancy between the features within the same 

group of temporally related features, here called temporal redundancy for short. 

Recall that all features within a group refer to the same conceptual feature (see 

Section 3.1.3). That is, all features within the same group represent either directly 

observed values of the same conceptual feature at different time points (waves), in 

the case of original features, or values calculated for the same conceptual feature 

considering different ways of representing trends in that feature’s value across 

waves, in the case of the constructed longitudinal features.  

The second redundancy type is the redundancy between features belonging to 

different groups of features. Recall that this redundancy type refers to the 
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redundancy between different conceptual features (unlike the first redundancy type), 

and is the standard type of feature redundancy considered by CFS and other feature 

selection algorithms that detect feature redundancy in standard (non-longitudinal) 

classification datasets. 

Note that standard CFS ignores the differences between these two types of feature 

redundancy; it simply treats all features in the same way, without dividing them into 

temporally related groups, and without considering the temporal nature of the data. 

That is, standard CFS would ignore the fact that different features take values 

measured at or calculated from different time points. 

In the two CFS variants proposed in this Section, we assume that the temporal 

redundancy between a pair of features within the same feature group should be 

penalized more than the standard (non-temporal) redundancy between a pair of 

features across different groups. One motivation for this is the fact that, assuming 

that the classification models or the selected features will be interpreted by users, the 

selection of two or more features within the same group would represent intuitively 

redundant and potentially somewhat confusing information for users. For example, if 

a feature representing the value of a certain type of blood test in wave 6 is selected as 

a relevant feature for predicting a disease, users may think the values of the same 

base feature in wave 2 or 4 should be considered intuitively redundant information. 

By contrast, selecting two different base features, like two different types of blood 

tests, would not so easily be considered as redundant information by users, as long as 

the two tests are measuring quite different biomedical properties (which is in general 

the case in our datasets). 

Therefore, our new redundancy equations assign different weight values to a pair of 

features, depending on whether the two features are in the same group of temporally 

related features or in different groups. We call this a weighted redundancy (WR) 

approach, and we call a variant of CFS using this approach WR-CFS. We propose 

two different versions of this WR approach to define these weights when computing 

the term 𝒓𝒇𝒇̅̅ ̅̅  (the average redundancy over all feature pairs in S), producing two 

variants of WR-CFS, as follows. 
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The first proposed variant of WR-CFS is called Coarse-grained Weighted 

Redundancy CFS (Co-WR-CFS), since it is based on a coarse-grained assignment of 

weights to each type of redundancy, as explained next. The basic idea of 

Co-WR-CFS is to replace the equation used for computing 𝒓𝒇𝒇̅̅ ̅̅   from equation (2.13) 

– the equation used by standard CFS, where fp is the number of feature pairs in S – 

by equation (3.3).  

 

 
𝑟𝑓𝑓̅̅ ̅̅ =

∑ ∑ 𝑟𝑓𝑖𝑓𝑗

𝑖−1
𝑗=1

𝑘
𝑖=1

𝑓𝑝
 (3.3) 

 

 

 
𝑟𝑓𝑓̅̅ ̅̅ = 𝑤𝑤𝑔

∑ 𝑟𝑤𝑔

𝑓𝑝𝑤𝑔
+ 𝑤𝑎𝑔

∑ 𝑟𝑎𝑔

𝑓𝑝𝑎𝑔
 (3.4) 

 

Equation (3.4) splits the computation of the average degree of redundancy into two 

terms, where rwg and rag are the correlations between a pair of features within the 

same group and a pair of features across different groups, respectively, and the 

summation is over all corresponding feature pairs. Analogously, fpwg and fpag denote 

the number of feature pairs within the group and across groups (fp = fpwg + fpag). 

Hence, after calculating the averages value of redundancy for both types of feature 

pairs, we weight each of them based on the pre-defined weight values wwg and wag. 

Note that these weights are assigned in a coarse-grained way of the average degree 

of redundancy computed over the corresponding number of features pairs, which is 

in contrast to the second version of WR-CFS, proposed later. In addition, these 

weight values have two constraints, where wwg + wag = 1.0 for normalisation purpose 

and wwg ≥ wag according to the rationale mentioned above.  

Note also that, when computing equation (3.4), the number of feature pairs within 

the group (fpwg) is in general smaller than the number of feature pairs across the 

groups (fpag). As a result, recalling that wwg ≥ wag, the calculation of the overall 

degree of redundancy by equation (3.4) over-emphasizes the degree of redundancy 

associated with the features in the same group, which tends to be a minority of the 
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feature pairs in S. That is, in general, each pair of features within the group will have 

a greater influence in the value of 𝒓𝒇𝒇̅̅ ̅̅  computed by equation (3.4) than each pair of 

features across groups, simply because there will be typically fewer pairs of the first 

type.  

For instance, suppose that in the candidate feature subset S there is just one feature 

pair within the group, and that pair has a degree of correlation of 1, but there are 15 

feature pairs across groups with an average degree of correlation of 0.1. Consider the 

case where wwg is 0.7 and wag is 0.3. Using equation (3.4) results in: 

Degree of redundancy = 0.7 × 1 + 0.3 × 0.1 = 0.73 

In order to mitigate the risk that WR-CFS over-emphasizes the degree of redundancy 

associated with (usually) a minority of feature pairs, we introduce the second version 

of WR-CFS, called Fine-grained Weighted Redundancy CFS (Fi-WR-CFS). This 

version still uses weights subject to the constraints wwg + wag = 1.0 and wwg ≥ wag, but 

it applies the weights to each pair of features separately, in a fine-grained fashion, 

instead of applying the weights just once to the average values of each type of 

redundancy in a coarse-grained fashion, as in the first version.  

Before specifying the Merit formula for Fi-WR-CFS, first note that equation (3.2) is 

a simplification of the following equation (3.5) (Hall 1999). 

 

 
𝑴𝒆𝒓𝒊𝒕𝑺𝒌

=  
∑ 𝒓𝒄𝒇𝒊

𝒌
𝒊=𝟏

√𝒌 + 𝟐 ∗ ∑ ∑ 𝒓𝒇𝒊𝒇𝒋

𝒊−𝟏
𝒋=𝟏

𝒌
𝒊=𝟏

 
(3.5) 

Hence, in the proposed Fi-WR-CFS, the Merit is computed as shown in equation 

(3.6).  

 

𝑀𝑒𝑟𝑖𝑡𝑆𝑘
=  

∑ 𝑟𝑐𝑓𝑖

𝑘
𝑖=1

√𝑘 + 2 ∗ ∑ ∑ 𝑤𝑓𝑖𝑓𝑗
∗ 𝑟𝑓𝑖𝑓𝑗

𝑖−1
𝑗=1

𝑘
𝑖=1

 
(3.6) 

 

where 𝑤𝑓𝑖𝑓𝑗
= {

𝑤𝑤𝑔 ,  𝑖𝑓 𝑓𝑖 𝑎𝑛𝑑 𝑓𝑗 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑔𝑟𝑜𝑢𝑝

𝑤𝑎𝑔 ,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. Alternatively, this can 

be simplified to equation (3.7), 
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𝑀𝑒𝑟𝑖𝑡𝑆𝑘

=  
∑ 𝑟𝑐𝑓𝑖

𝑘
𝑖=1

√𝑘 + 2 ∗ (𝑤𝑤𝑔 ∗ ∑ 𝑟𝑤𝑔 + 𝑤𝑎𝑔 ∗ ∑ 𝑟𝑎𝑔)
 (3.7) 

 

where the summations in the denominator are over the corresponding feature pairs.  

Note that equation (3.7) in general de-emphasizes the relative importance of 

temporal redundancy (versus standard redundancy) in the computation of the Merit 

function, by comparison with equation (3.4) – used by Co-WR-CFS. 

This is because, although equation (3.7) still uses redundancy weights satisfying the 

constraint wwg ≥ wag (i.e., it assigns a greater weight to temporal redundancy than to 

standard redundancy), in general the value of the summation ∑rag may well be 

greater than the value of the summation ∑rwg, because in general there are more pairs 

of features across groups than pairs of features within the same group, as mentioned 

earlier. Hence, the relative importance of temporal redundancy (versus standard 

redundancy) tends to be smaller in equation (3.7), by comparison with in equation 

(3.4). 

In the discussion so far, we referred to the weights wwg wag in a general way, without 

discussing how to specify their precise values. We now turn to this issue. 

Setting the parameter wwg (or its complement wag) is not trivial. A common approach 

to optimize parameters in classification is to use an internal cross-validation 

procedure (accessing the training set only) to evaluate a set of pre-defined candidate 

parameter values (wwg values in our case), and then choose the parameter value with 

the highest predictive accuracy in that internal cross-validation procedure. However, 

this approach normally assumes the use of a classification algorithm to measure 

predictive accuracy in the internal cross-validation, and in our case CFS is used as a 

filter feature selection method (rather than a wrapper one), without running a 

classification algorithm. Using the Merit function of CFS to evaluate the predictive 

performance of a set of wwg values via internal cross-validation would not be a fair 

approach to compare the performance of different wwg values, since different wwg 

values would effectively implement different evaluation functions. For instance, it is 

possible that a certain feature subset optimizes the Merit function when, say, wwg = 

0.6, whilst another feature subset optimizes the Merit function when, say, wwg = 0.8; 



Chapter 3: Dataset Creation and Proposed Variants of Correlation-based Feature 

Selection 

 54 

and none of those two feature subsets can be considered the “optimal” feature subset 

in general, since both were selected based on a Merit function with just a specific 

value of wwg. 

Hence, to mitigate the problem that the selection of the best feature subset depends 

on the value of wwg, and so to make the feature selection procedure more robust, we 

propose a method that outputs a set of select features that is obtained by merging the 

feature subsets selected by using a set of different wwg values – both when using 

equation (3.4) and when using equation equation (3.7). In particular, we consider the 

feature subsets selected using five different wwg values, namely wwg = 0.5, 0.6, 0.7, 

0.8 and 0.9.  

Different merging approaches are possible. In an extreme case, the most inclusive 

approach would be output the set union of the five selected feature subsets, i.e. to 

output any feature that was included in any of the five selected feature subsets (for 

the above five wwg values). However, this would tend to output several features 

which are not robust (e.g., features selected only for one particular wwg value). 

In the opposite extreme case, the strictest (least inclusive) approach would be to 

output the set intersection of the five feature subsets, i.e., to output only the features 

that were included in all the five selected feature subsets. However, this would tend 

to output a small set of features, not outputting features which are robust in general 

(e.g. features selected for four out of the five wwg values). 

As a compromise between these two extreme approaches, in order to get reasonably 

robust features, we propose to output the features included in at least three of the five 

selected feature subsets. That is, we run both versions of WR-CFS on the training set 

five times, with wwg = 0.5, 0.6, 0.7, 0.8 and 0.9; and then output as the set of selected 

features all features that were selected in at least three of those five runs. Then, the 

classification algorithm is applied to the reduced training set containing only those 

selected features in order to build a classification model, and finally the predictive 

performance of that model is evaluated on the test set. 
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4 COMPUTATIONAL RESULTS 

This chapter provides information about the experimental methodology and analysis 

of the computational results. This chapter is organised as follows. Section 4.1 

explains the experimental methodology used such as cross-validation, the predictive 

accuracy measure and statistical tests used, etc. Section 4.2 reports the computational 

results obtained by J48 and the CFS variants proposed in Chapter 3. Section 4.3 

reports the analogous results obtained by Naïve Bayes. Each of these two sections 

reports the predictive accuracy obtained by the corresponding classification 

algorithm, with and without the proposed CFS variants, as well as the number of 

features selected by each CFS variant. 

A relatively small part of the results reported in this chapter has been included in a 

peer-reviewed paper that is currently in press (Pomsuwan and Freitas 2017). 

4.1 Experimental Methodology 

We report results for 10 base datasets created from the raw data in the ELSA 

database, as described in Chapter 3. Each of these base datasets will be used to 

produce different datasets varying the class distribution, as will be explained later. 

Recall that each dataset has a different age-related disease in wave 7 as the class 

variable to be predicted, whilst all datasets have the same predictive features 

(derived in general from waves 2, 4, and 6).  



Chapter 4: Computational Results 

 56 

Predictive accuracy was measured by the well-known F-measure, the harmonic mean 

between Precision and Recall (Japkowicz and Shah 2011), given by equation (4.1), 

 

 𝐹-𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (4.1) 

 

where Precision is the proportion of instances predicted as positive which are really 

positive and Recall is the proportion of positive instances that were correctly 

predicted as positive. To compute these measures, each class label (presence or 

absence of the disease) was considered in turn as the positive class and the reported 

F-measure is the arithmetic (unweighted) mean of the F-measures for the two class 

labels.   

Each of the proposed variants of the CFS feature selection method was evaluated 

using two classification algorithms, namely Naïve Bayes and the decision tree 

induction algorithm J48 – both reviewed in Chapter 2. 

All experiments were performed using the WEKA data mining tool (Hall et al. 

2009), version:3.8.1 and all reported results were obtained by running a well-known 

10-fold  cross-validation procedure, which works as follows. First, the dataset is 

randomly partitioned into 10 folds with approximately the same number of instances 

in each fold. Then, each feature selection method and each classification algorithm is 

run 10 times, each time using a different fold as the test set and all the other 9 folds 

as the training set. The reported measure of predictive accuracy is then the average 

accuracy across the 10 test sets. 

4.1.1 Statistical Tests 

In this section, all statistical significance tests used to analyse our experimental 

results are described. We focus on pairwise comparisons for classification models 

constructed from features selected by different feature selection approaches. 

4.1.1.1 The Wilcoxon Signed-Ranks Test 

The Wilcoxon signed-ranks test (Wilcoxon 1945) is a non-parametric statistical 

significance test used in this thesis for comparing the predictive accuracies (more 

precisely, F-measure values) of two classification models. The main advantage of 
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this test is its non-parametric nature, making no assumption of normal distribution 

(Japkowicz and Shah 2011), which is a strong assumption made in particular by the 

alternative paired t-test. Another advantage of the Wilcoxon signed-ranks test is its 

robustness against outliers, since it is based on the relative ranks of the predictive 

performances of two models, instead of being based on their raw performance such 

as the raw F-measure values. 

The null-hypothesis for this test is that the medians of two classification models’ 

predictive performances are equal. 

There are several steps involved in the Wilcoxon signed-ranks test (Demšar 2006), 

as follows. To begin, the difference (di) between the predictive accuracy of the two 

classification models is calculated for each i-th dataset, i = 1,…,N, where N is the 

number of datasets. Next, the differences are ranked according to their absolute 

values (rank(di), i = 1,…,N,), ignoring their signs; in the case of a tie, the 

corresponding average rank is assigned. Once the data have been prepared, we start 

to calculate the Wilcoxon signed rank sums. The calculations proceed separately 

according to equation (4.2) and (4.3) for the positive and negative differences of 

accuracy, respectively. That is, R+ denotes the sum of ranks for positive differences 

and R- denotes the sum of ranks of negative differences. It should be noted that the 

differences of 0 have their ranks split evenly among the sums; if there is an odd 

number of them, one is discarded. 

 

 𝑅+ = ∑ 𝑟𝑎𝑛𝑘(𝑑𝑖) +
1

2
∑ 𝑟𝑎𝑛𝑘(𝑑𝑖)

𝑑𝑖=0𝑑𝑖>0

 (4.2) 

 

 𝑅− = ∑ 𝑟a𝑛𝑘(𝑑𝑖) +
1

2
∑ 𝑟𝑎𝑛𝑘(𝑑𝑖)

𝑑𝑖=0𝑑𝑖<0

 (4.3) 

 

Afterwards, the smaller of R+ or R- is used for the test statistic, T. Let T and Tcritical be 

the smaller of the rank sums and the exact critical value respectively. The null 

hypothesis is rejected if T is greater than or equal to Tcritical, accepted otherwise. In 

general, the exact value of Tcritical can be found in a precomputed table (available e.g. 

in (Bruning and Kintz 1987)) for values of N up to 25. For a larger number of 
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datasets, the distribution of the test statistic can be approximated by a normal 

distribution, with the following equation for calculating the z-score: 

 

 𝑧 =
𝑇 −

1
4 𝑁(𝑁 + 1)

√ 1
24 𝑁(𝑁 + 1)(2𝑁 + 1)

 (4.4) 

 

where T is the test statistic and N is the number of datasets. Subsequently, the 

null-hypothesis is rejected if z is smaller than the critical value for z-score.  

4.1.1.2 Friedman’s Test 

The Friedman’s test is a non-parametric test for determining whether or not there are 

significant differences in the performance of multiple classification models across 

multiple datasets (Friedman 1940). Non-parametric means that the test makes no 

assumption about the dataset having a particular distribution, e.g., the normal 

distribution. The null hypothesis for the test is that all the classification models have 

identical predictive accuracy. The alternative hypothesis is that the classification 

models have different predictive accuracies. 

The Friedman’s test has six main steps: the first three are involved in data 

preparation and the rest involve running the test on prepared data. First of all, it 

ranks the predictive accuracy values of the classification models being compared for 

each dataset (row) separately. That is, the model with the highest predictive accuracy 

is assigned a rank of 1. In the case of a tie, the corresponding average rank is 

assigned to the tied models. Afterwards, the ranks are averaged for each 

classification model. The next step is to calculate the Friedman’s test statistic (𝜒𝐹
2) as 

follows: 

 

 𝜒𝐹
2 =  

12𝑁

𝑘(𝑘 + 1)
[∑ 𝑅𝑗

2 −
𝑘(𝑘 + 1)2

4
𝑗

] (4.5) 
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where N is the number of datasets, k is the number of classification models and Rj is 

the average ranks of the models being compared. However, as pointed out in (Iman 

and Davenport 1980), a better statistic can be derived, as shown in equation (4.6), 

 

 
𝐹𝐹 =  

(𝑁 − 1)𝜒𝐹
2

𝑁(𝑘 − 1) − 𝜒𝐹
2 (4.6) 

 

which is distributed according to the F-distribution with (k-1) and (k-1) (N-1) degrees 

of freedom. If the null hypothesis is rejected, it means that there is a significant 

difference in predictive performance among the classification models. In this case, 

we need to apply a post-hoc test to point out which pairs of the models have 

significantly different performances. 

4.1.1.3 The Nemenyi Test 

The Nemenyi test is a post-hoc and non-parametric test for determining whether or 

not there are significant differences in the predictive performance of each pair of 

classification models  across multiple datasets (Nemenyi 1962). Specifically, a 

post-hoc test is applied if and only if a pre-hoc test (like the Friedman’s test) has 

determined a significant difference. Non-parametric means that the test makes no 

assumption about the dataset having a particular distribution, e.g., the normal 

distribution. In addition, the Nemenyi test is a multiple hypothesis test where the 

number of null hypotheses is the same as the number of pairwise comparisons. The 

result of the test is determined by the critical difference (CD), computed as shown in 

equation (4.7), 

 

 
𝐶𝐷 = 𝑞𝛼√

𝑘(𝑘 + 1)

6𝑁
  (4.7) 

 

such that if the average rank difference is greater than CD, the null hypothesis is 

rejected. Note that α is the significance level, and the critical values qα are based on 

the Studentized range statistic divided by √2 . More precisely, given that two 

classification models have average ranks Ri and Rj, the null hypothesis of the test is 
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that their performance is equivalent. In order to reject the null hypothesis, the 

difference between Ri and Rj has to be greater than the CD.  

4.2 Results for the J48 Decision Tree Induction Algorithm 

This section reports the results obtained by the J48 classification algorithm 

(reviewed in Chapter 2) with different variants of the CFS method used for selecting 

features in a data pre-processing phase. All these CFS variants were discussed in 

Chapter 3. This section consists of three subsections. The first one reports results 

comparing the Exhaustive search-based CFS per Group (Exh-CFS-Gr) method and 

its extension, namely Exh-CFS-Gr followed by the use of standard CFS 

(Exh-CFS-Gr+CFS). The second subsection reports results comparing the two 

Weighted-Redundancy CFS variants, namely Coarse-grained Weighted-Redundancy 

CFS (Co-WR-CFS) and Fine-grained Weighted-Redundancy CFS (Fi-WR-CFS). 

Finally, in the third subsection the two best proposed CFS variants (one from each of 

the first two subsections) are compared with two baseline methods, namely the 

standard CFS and no feature selection in a pre-processing phase (i.e. passing all 

features to J48). Furthermore, each analysis includes the variations of class 

distributions, counting wins and losses, and a suitable statistical test. 

In addition, some statistical analysis methods mentioned in Section 4.1.1 were used 

for validation of the published results. In statistical terms, we attempt to reject the 

null hypothesis that the classification models with a given feature selection method 

obtains F-measure values that are the same as the F-measure values obtained with 

another feature selection method. We used the tests with a significance level of α = 

0.05, and N = 35 (35 datasets) in our experiments. 

4.2.1 Results comparing the two proposed CFS variants based on 

exhaustive search 

Table 4.1 reports the F-measure values obtained by J48, after applying the proposed 

Exh-CFS-Gr and Exh-CFS-Gr+CFS methods in a pre-processing phase, broken 

down by each dataset – recall that each dataset involves a combination of a disease 

used as a class variable in wave 7 and a certain class distribution. Note that, for each 

base dataset associated with a given disease (class variable), several datasets where 

created by undersampling the majority class, to reduce class imbalance. These 
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produced datasets with different class distributions – varying from the original (very 

imbalanced) class distribution to the balanced class distribution (with a 1 to 1 ratio 

between the frequencies of both classes). Each cell of the class distribution column 

has values in the format “X to Y”, where X and Y denote the number of instances 

belonging to the negative and positive class labels, respectively. 

Note also that Table 4.1 reports, for each dataset, only the mean F-measure value 

over the two class labels, since this is the measure used in the statistical significance 

analysis, but the detailed values of the precision, recall and F-measure for each class 

label can be found in the Appendix, Section A. The best F-measure value(s) in each 

row of the Table – i.e., for each dataset – among the two CFS variants is shown in 

boldface, and the highest F-measure value(s) for each age-related disease, across all 

class distributions, is highlighted with an underline.  

We also compute the average rank of each of the two CFS variants in the Table, as 

follows. For each dataset, the CFS variant with the higher (lower) F-measure value is 

assigned rank 1 (2), and in case of a tie, each CFS variant is assigned the rank 1.5. 

The average rank of a CFS variant is simply the mean of its rank over the 35 

datasets. Hence, the lower its average rank, the better the CFS variant is. 

With regard to the results across variations of class distributions, in general the more 

balanced the class distribution is, the higher the F-measure values achieved by both 

CFS variants. Specifically, the highest F-measure values were obtained when the 

class distribution was completely balanced (1 to 1 ratio) in 18 out of 20 cases (10 

diseases × 2 CFS variants). The only two exceptions were observed in the results for 

the class Diabetes, where the completely balanced class distribution yielded the 

lowest F-measure value for both Exh-CFS-Gr and Exh-CFS-Gr+CFS.  

In Table 4.1, it can be seen that Exh-CFS-Gr+CFS obtained slightly better 

F-measure values than Exh-CFS-Gr on 15 out of the 35 datasets, with 11 losses and 

9 ties. In addition, the average rank of Exh-CFS-Gr+CFS (1.44) is lower (better) 

than that of Exh-CFS-Gr (1.56). In spite of the greater number of wins, by applying 

the Wilcoxon signed-ranks test the null hypothesis cannot be rejected, with a p-value 

of 0.39. Hence, the statistical evidence is insufficient to claim that Exh-CFS-Gr+CFS 

performs better than Exh-CFS-Gr when J48 is used as the classification algorithm.  



Chapter 4: Computational Results 

 62 

With regard to the size of the selected feature subsets, Table 4.2 reports the average 

number and percentage of features selected by each of the two CFS variants (across 

the 10 cross-validation folds), for each dataset – i.e. each combination of disease and 

class distribution. Note that the number of features selected by Exh-CFS-Gr is 

substantially greater than the number of features selected by Exh-CFS-Gr+CFS for 

all datasets. More precisely, on average across the 35 datasets, Exh-CFS-Gr and 

Exh-CFS-Gr+CFS select 34.51% and 6.46% of the original features, respectively. 

This is because, once Exh-CFS-Gr selects a feature subset, the standard CFS is 

further applied as the second phase of the feature selection process performed by 

Exh-CFS-Gr+CFS method. Naturally, that second phase tends to remove many 

features which were previously selected by Exh-CFS-Gr in the first phase. In 

particular, Exh-CFS-Gr only takes into account the redundancy among the features 

within the same conceptual group, as mentioned in Section 3.2. Therefore, in the 

second phase of Exh-CFS-Gr+CFS, the standard CFS tends to eliminate many 

redundant features across the groups, which results in a clearly smaller feature subset 

than the subset produced by Exh-CFS-Gr alone. 

Although the numbers of features selected by the two CFS variants were very 

different, the predictive accuracy obtained by J48 was statistically equivalent in both 

cases, as discussed above. This can be explained by the fact that J48 performs 

embedded feature selection. Hence, when Exh-CFS-Gr returns a relatively large 

feature subset containing features with redundancy across groups, J48 can use its 

embedded feature selection procedure to focus on the most relevant variables. 

Moreover, a further analysis of the results has been conducted by using the Pearson’s 

linear correlation coefficient (r) to measure the degree of correlation between the 

predictive accuracy and the number of selected features for the two feature selection 

methods compared in this Section, across the 35 datasets. As for Exh-CFS-Gr, the 

value of r is 0.546 which indicates a moderate positive correlation. Therefore, there 

is a broad tendency for high predictive accuracies to be obtained with larger feature 

subset sizes. In contrast, the value of r for Exh-CFS-Gr+CFS is –0.171, which 

technically indicates a weak negative correlation. Hence, the correlation between the 

predictive accuracy and the number of features selected by Exh-CFS-Gr+CFS is 

weak. 
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Table 4.1: F-measure values obtained by J48 after applying the two CFS variants 

based on exhaustive search. 

Disease Class Distribution Exh-CFS-Gr+J48 Exh-CFS-Gr+CFS+J48 

HeartAtt 

7061 to 435 0.485 0.485 

1740 to 435 0.565 0.572 

870 to 435 0.589 0.582 

435 to 435 0.604 0.610 

Angina 

7263 to 233 0.492 0.492 

932 to 233 0.502 0.503 

466 to 233 0.534 0.527 

233 to 233 0.546 0.539 

Stroke 

7094 to 402 0.486 0.486 

1608 to 402 0.554 0.551 

804 to 402 0.594 0.587 

402 to 402 0.604 0.594 

Diabetes 

6552 to 944 0.804 0.799 

3776 to 944 0.800 0.801 

1888 to 944 0.786 0.792 

944 to 944 0.747 0.753 

HBP 
4438 to 3058 0.652 0.655 

3058 to 3058 0.669 0.662 

Dementia 

7360 to 136 0.495 0.495 

544 to 136 0.541 0.557 

272 to 136 0.577 0.584 

136 to 136 0.582 0.592 

Cataract 

5344 to 2150 0.632 0.646 

4300 to 2150 0.651 0.651 

2150 to 2150 0.673 0.670 

Arthritis 
4398 to 3098 0.612 0.612 

3098 to 3098 0.612 0.617 

Osteoporosis 

6796 to 700 0.476 0.476 

2800 to 700 0.555 0.555 

1400 to 700 0.590 0.603 

700 to 700 0.617 0.614 

Parkinsons 

7433 to 63 0.498 0.498 

252 to 63 0.495 0.522 

126 to 63 0.572 0.570 

63 to 63 0.581 0.584 
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Table 4.2: Average numbers and percentages of selected features for the two CFS 

variants based on exhaustive search. 

Disease Class Distribution Exh-CFS-Gr Exh-CFS-Gr+CFS 

HeartAtt 

7061 to 435 80.0 (36.53%) 24.0 (10.96%) 

1740 to 435 76.7 (35.02%) 21.1 (9.63%) 

870 to 435 70.0 (31.96%) 19.7 (9.00%) 

435 to 435 65.7 (30.00%) 19.5 (8.90%) 

Angina 

7263 to 233 75.7 (34.57%) 14.0 (6.39%) 

932 to 233 74.7 (34.11%) 22.7 (10.37%) 

466 to 233 70.3 (32.10%) 23.4 (10.68%) 

233 to 233 68.3 (31.19%) 19.3 (8.81%) 

Stroke 

7094 to 402 77.6 (35.43%) 7.6 (3.47%) 

1608 to 402 75.4 (34.43%) 7.9 (3.61%) 

804 to 402 70.5 (32.19%) 9.0 (4.11%) 

402 to 402 64.6 (29.50%) 12.4 (5.66%) 

Diabetes 

6552 to 944 98.3 (44.89%) 10.1 (4.61%) 

3776 to 944 96.5 (44.06%) 11.7 (5.34%) 

1888 to 944 93.3 (42.60%) 11.4 (5.21%) 

944 to 944 86.3 (39.41%) 11.0 (5.02%) 

HBP 
4438 to 3058 98.2 (44.84%) 25.4 (11.60%) 

3058 to 3058 95.3 (43.52%) 24.3 (11.10%) 

Dementia 

7360 to 136 68.2 (31.14%) 11.8 (5.39%) 

544 to 136 70.7 (32.28%) 14.9 (6.80%) 

272 to 136 71.6 (32.69%) 16.5 (7.53%) 

136 to 136 66.6 (30.41%) 13.4 (6.12%) 

Cataract 

5344 to 2150 73.2 (33.42%) 7.1 (3.24%) 

4300 to 2150 71.9 (32.83%) 6.6 (3.01%) 

2150 to 2150 69.7 (31.83%) 6.3 (2.88%) 

Arthritis 
4398 to 3098 80.2 (36.62%) 15.0 (6.85%) 

3098 to 3098 75.5 (34.47%) 18.2 (8.31%) 

Osteoporosis 

6796 to 700 89.6 (40.91%) 15.6 (7.12%) 

2800 to 700 85.7 (39.13%) 17.5 (7.99%) 

1400 to 700 82.6 (37.72%) 13.9 (6.35%) 

700 to 700 78.7 (35.94%) 13.4 (6.12%) 

Parkinsons 

7433 to 63 55.9 (25.53%) 7.9 (3.61%) 

252 to 63 57.6 (26.30%) 7.5 (3.42%) 

126 to 63 56.1 (25.62%) 8.0 (3.65%) 

63 to 63 54.2 (24.75%) 7.0 (3.20%) 
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4.2.2 Results comparing the two proposed CFS variants based on 

different weights for two types of redundancy 

Table 4.3 reports the F-measure values for the pair of proposed CFS variants based 

on using different weights for the two types of redundany, namely temporal 

redundancy (among features within the same group of temporally redundant 

features) and standard (non-temporal) redundancy (among features in different 

groups), where both CFS variants are run before applying J48 algorithm. Recall that 

these CFS variants are called Coarse-grained Weighted Redundancy (Co-WR-CFS) 

and Fine-Grained Weighted Redundancy (Fi-WR-CFS). The Table reports the results 

for the same 35 datasets used in Table 4.1.  

Similarly to the results reported in Table 4.1, overall the F-measure values in Table 

4.3 increase for both CFS variants when the class distributions are increasingly more 

balanced. The only two exceptions are for the diseases Diabetes and Arthritis.  

Regarding the predictive performance of J48 when using the two CFS variants in a 

pre-processing phase, Co-WR-CFS and Fi-WR-CFS achieved a similar number of 

wins, 13 and 12 respectively, with 10 ties. Furthermore, running the Wilcoxon 

signed-ranks test also suggested an equivalence in performance, where the null 

hypothesis is accepted with the p-value of 0.81. In other words, there is no 

significant difference between Co-WR-CFS and Fi-WR-CFS when they are used 

with the J48 algorithm. 

With regard to the size of the selected feature subsets, Table 4.4 shows the average 

number and percentage of features selected by each of the two CFS variants based on 

weighted redundancy (across the 10 cross-validation folds), for each dataset – i.e., 

each combination of disease and class distribution. The number of features selected 

by Fi-WR-CFS is greater than the number of features selected by Co-WR-CFS in 

general. More precisely, on average across the 35 datasets, Fi-WR-CFS and 

Co-WR-CFS select 9.46% and 5.80% of the original features, respectively. 

Nevertheless, the predictive accuracies obtained by J48 when using these two WR 

CFS variants were statistically equivalent, as discussed above. Again, this can be 

explained by the fact that J48 performs embedded feature selection.  

Moreover, by measuring the Pearson’s linear correlation coefficient between 

predictive accuracy and number of selected features across the 35 datasets, the 
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values of r are –0.189 and 0.002 for Co-WR-CFS and Fi-WR-CFS, respectively. 

Hence, the correlation between the predictive accuracy and the number of selected 

features is weak for Co-WR-CFS and practically none for Fi-WR-CFS. 
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Table 4.3: F-measure values obtained by J48 after applying the two CFS variants 

based on weighted redundancy. 

Disease Class Distribution Co-WR-CFS+J48 Fi-WR-CFS+J48 

HeartAtt 

7061 to 435 0.485 0.485 

1740 to 435 0.560 0.576 

870 to 435 0.593 0.578 

435 to 435 0.603 0.608 

Angina 

7263 to 233 0.492 0.492 

932 to 233 0.508 0.509 

466 to 233 0.539 0.536 

233 to 233 0.546 0.549 

Stroke 

7094 to 402 0.486 0.486 

1608 to 402 0.566 0.556 

804 to 402 0.580 0.581 

402 to 402 0.611 0.607 

Diabetes 

6552 to 944 0.798 0.797 

3776 to 944 0.799 0.797 

1888 to 944 0.793 0.802 

944 to 944 0.738 0.763 

HBP 
4438 to 3058 0.635 0.661 

3058 to 3058 0.653 0.662 

Dementia 

7360 to 136 0.495 0.495 

544 to 136 0.559 0.547 

272 to 136 0.588 0.585 

136 to 136 0.592 0.587 

Cataract 

5344 to 2150 0.651 0.647 

4300 to 2150 0.654 0.657 

2150 to 2150 0.671 0.671 

Arthritis 
4398 to 3098 0.618 0.616 

3098 to 3098 0.614 0.611 

Osteoporosis 

6796 to 700 0.476 0.476 

2800 to 700 0.550 0.555 

1400 to 700 0.590 0.608 

700 to 700 0.613 0.613 

Parkinsons 

7433 to 63 0.498 0.498 

252 to 63 0.521 0.521 

126 to 63 0.570 0.570 

63 to 63 0.583 0.582 
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Table 4.4: Average numbers and percentages of selected features for the two CFS 

variants based on weighted redundancy. 

Disease Class Distribution Co-WR-CFS Fi-WR-CFS 

HeartAtt 

7061 to 435 15.8 (7.21%) 29.3 (13.38%) 

1740 to 435 15.8 (7.21%) 27.3 (12.47%) 

870 to 435 16.4 (7.49%) 26.4 (12.05%) 

435 to 435 16.9 (7.72%) 25.8 (11.78%) 

Angina 

7263 to 233 11.9 (5.43%) 19.5 (8.90%) 

932 to 233 19.1 (8.72%) 31.0 (14.16%) 

466 to 233 18.1 (8.26%) 29.8 (13.61%) 

233 to 233 16.7 (7.63%) 25.8 (11.78%) 

Stroke 

7094 to 402 7.9 (3.61%) 8.3 (3.79%) 

1608 to 402 11.4 (5.21%) 21.1 (9.63%) 

804 to 402 13.5 (6.16%) 23.5 (10.73%) 

402 to 402 14.7 (6.71%) 20.9 (9.54%) 

Diabetes 

6552 to 944 10.5 (4.79%) 15.4 (7.03%) 

3776 to 944 11.4 (5.21%) 19.7 (9.00%) 

1888 to 944 10.7 (4.89%) 23.9 (10.91%) 

944 to 944 9.6 (4.38%) 25.0 (11.42%) 

HBP 
4438 to 3058 16.5 (7.53%) 34.1 (15.57%) 

3058 to 3058 17.7 (8.08%) 31.2 (14.25%) 

Dementia 

7360 to 136 11.5 (5.25%) 17.1 (7.81%) 

544 to 136 16.3 (7.44%) 23.2 (10.59%) 

272 to 136 15.0 (6.85%) 24.7 (11.28%) 

136 to 136 14.1 (6.44%) 21.4 (9.77%) 

Cataract 

5344 to 2150 8.3 (3.79%) 8.4 (3.84%) 

4300 to 2150 7.8 (3.56%) 8.2 (3.74%) 

2150 to 2150 6.9 (3.15%) 8.1 (3.70%) 

Arthritis 
4398 to 3098 13.1 (5.98%) 25.1 (11.46%) 

3098 to 3098 13.3 (6.07%) 24.2 (11.05%) 

Osteoporosis 

6796 to 700 13.1 (5.98%) 26.9 (12.28%) 

2800 to 700 13.4 (6.12%) 24.7 (11.28%) 

1400 to 700 13.2 (6.03%) 22.4 (10.23%) 

700 to 700 12.6 (5.75%) 20.1 (9.18%) 

Parkinsons 

7433 to 63 7.6 (3.47%) 8.6 (3.93%) 

252 to 63 7.8 (3.56%) 7.8 (3.56%) 

126 to 63 8.2 (3.74%) 8.2 (3.74%) 

63 to 63 7.6 (3.47%) 7.7 (3.52%) 
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4.2.3 Results comparing four feature selection approaches using J48 

This section compares the results obtained by the J48 decision tree algorithm when 

using four feature selection approaches: comparing two proposed CFS variants – one 

based on exhaustive search (Exh-CFS-Gr) and the other based on weighted 

redundancy (Co-WR-CFS) – against the standard CFS method and the baseline 

approach of giving all input features to J48 – i.e., no feature selection in a 

pre-processing step. In this section, Exh-CFS-Gr+CFS and Co-WR-CFS were 

chosen as representatives of proposed CFS variants due to their better performance 

shown in Subsections 4.2.1 and 4.2.2 respectively. 

Accordingly, Table 4.5 reports the F-measure values for the above four CFS 

variants. We began by calculating the average rank for each variant, as described 

earlier – recall that the smaller the average rank, the better (higher) the F-measure 

value of a CFS variant across all datasets in general. The best average rank was 

jointly obtained by standard CFS and Exh-CFS-Gr+CFS (average rank 2.41), closely 

followed by Co-MR-CFS (rank 2.49) and no feature selection, i.e. J48 alone (rank 

2.69). 

Next, the Friedman test was used to determine whether or not there is a significant 

difference between the average rank of each CFS variant and their mean rank (2.5). 

The calculated value of FF is 0.45. With four feature selection approaches and 35 

datasets, FF is distributed according to the F distribution with 4 – 1 = 3 and (4-1) x 

(35-1) = 102 degrees of freedom. The critical value of F(3,102) for α = 0.05 is 2.69. 

Since FF (0.45) is smaller than the critical value (2.69), the null-hypothesis cannot be 

rejected. Hence, there is insufficient statistical evidence against the claim that all the 

four feature selection approaches obtained equivalent F-measure values.  

With regard to the size of the selected feature subsets, Table 4.6 shows the average 

number and percentage of features selected by each of the three CFS variants (across 

the 10 cross-validation folds), for each dataset – i.e., each combination of disease 

and class distribution. The number of features selected by standard CFS and that 

selected by Exh-CFS-Gr+CFS are almost the same for all datasets. 

In order to investigate whether there is a correlation between the predictive accuracy 

and the number of features selected by each method, we computed the Pearson’s 

linear correlation coefficient between those two variables across the 35 datasets, for 
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each of the three feature selection methods whose performance is analysed in this 

section. The computed correlation coefficients are –0.127 for standard CFS and –

0.171 for Exh-CFS-Gr+CFS, both indicating a weak negative correlation. Unlike 

these two methods, Co-WR-CFS selected relatively smaller subsets, in general, with 

a correlation coefficient of 0.189, indicating a weak positive correlation.  

Overall, there is very little correlation between the predictive accuracy and the 

number of features selected by each of the three CFS variants, despite the fact that all 

datasets use the same set of original features before applying feature selection. This 

seems to be due to the fact that, although the features are the same, the datasets have 

different diseases used as classes, and this leads to a large variation in the predictive 

relationships between the features and the class variable across datasets. That is, the 

set of features (and its size) which is relevant for predicting the class variable varies 

greatly across datasets, as a result of very different diseases being used as classes. 

Finally, Table 4.7 and Table 4.8 report the relative frequency (%) of selection for 

different feature types for the standard CFS and Exh-CFS-Gr+CFS, respectively. 

The column “General” refers to the age and gender features, the only two features 

not derived from the Nurse data. In each cell, the relative frequency was calculated 

as the frequency of selection summed for all features of the corresponding feature 

type over the maximum possible number of selections, which was the number of 

features in the feature type times 10 (considering the 10 folds of the cross- validation 

procedure).  

Comparing the relative frequencies of the observed features in waves 2, 4, and 6 that 

were selected by the two CFS versions, for both the standard CFS (Table 4.7) and 

Exh-CFS-Gr+CFS (Table 4.8), the relative selection frequency increased 

monotonically with time (i.e. from wave 2 to wave 4 to wave 6) in 24 of the 35 

datasets. The main exceptions were the datasets of Dementia and Parkinson’s for all 

different distributions. This general predominance of selected features from wave 6 

can be explained by the fact that features are selected partly based on their ability to 

predict an age-related disease at wave 7 and intuitively predictions based on features 

in wave 6 (shorter-term predictions) should be easier and more accurate than 

predictions based on features in waves 2 and 4 (longer-term predictions). 
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Regarding the constructed longitudinal features (CLFs), they were rarely selected by 

both standard CFS and Exh-CFS-Gr+CFS, as can be observed in the column “CLF 

Total” of Table 4.7 and Table 4.8. This is particularly the case for the feature types 

diff_w24, mono_w246, up_w24 and up_w26, whose selection frequencies are 

almost always 0% for both CFS variants. However, the features diff_w46 and 

diff_w26 were relatively more successful, and in the Dementia dataset, each of these 

two feature types was selected more often than the original features from wave 6 in 

two of the four datasets for that disease. These results also hold for both CFs 

variants. In the other datasets, however, diff_w46 and diff_w26 features were in 

general selected much less often than the original features from wave 6, the most 

recent wave. 
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Table 4.5: F-measure values obtained by J48 after applying different CFS methods 

Disease 
Class 

Distribution 
J48 

standard_CFS

+J48 

Exh-CFS-Gr+CFS

+J48 

Co-WR-CFS

+J48 

HeartAtt 

7061 to 435 0.485 0.485 0.485 0.485 

1740 to 435 0.568 0.572 0.572 0.560 

870 to 435 0.594 0.579 0.582 0.593 

435 to 435 0.606 0.608 0.610 0.603 

Angina 

7263 to 233 0.492 0.492 0.492 0.492 

932 to 233 0.514 0.503 0.503 0.508 

466 to 233 0.532 0.525 0.527 0.539 

233 to 233 0.545 0.539 0.539 0.546 

Stroke 

7094 to 402 0.486 0.486 0.486 0.486 

1608 to 402 0.552 0.551 0.551 0.566 

804 to 402 0.572 0.586 0.587 0.580 

402 to 402 0.599 0.593 0.594 0.611 

Diabetes 

6552 to 944 0.800 0.799 0.799 0.798 

3776 to 944 0.807 0.799 0.801 0.799 

1888 to 944 0.798 0.801 0.792 0.793 

944 to 944 0.770 0.755 0.753 0.738 

HBP 
4438 to 3058 0.647 0.657 0.655 0.635 

3058 to 3058 0.660 0.661 0.662 0.653 

Dementia 

7360 to 136 0.495 0.495 0.495 0.495 

544 to 136 0.538 0.557 0.557 0.559 

272 to 136 0.584 0.584 0.584 0.588 

136 to 136 0.582 0.592 0.592 0.592 

Cataract 

5344 to 2150 0.631 0.647 0.646 0.651 

4300 to 2150 0.645 0.652 0.651 0.654 

2150 to 2150 0.672 0.670 0.670 0.671 

Arthritis 
4398 to 3098 0.612 0.617 0.612 0.618 

3098 to 3098 0.614 0.615 0.617 0.614 

Osteoporosis 

6796 to 700 0.476 0.476 0.476 0.476 

2800 to 700 0.536 0.555 0.555 0.550 

1400 to 700 0.586 0.603 0.603 0.590 

700 to 700 0.612 0.614 0.614 0.613 

Parkinsons 

7433 to 63 0.498 0.498 0.498 0.498 

252 to 63 0.519 0.522 0.522 0.521 

126 to 63 0.557 0.570 0.570 0.570 

63 to 63 0.589 0.584 0.584 0.583 

 



Chapter 4: Computational Results 

 73 

Table 4.6: Average numbers and percentages of selected features for three CFS 

variants. 

Disease Class Distribution standard_CFS Exh-CFS-Gr+CFS Co-WR-CFS 

HeartAtt 

7061 to 435 24.0 (10.96%) 24.0 (10.96%) 15.8 (7.21%) 

1740 to 435 21.3 (9.73%) 21.1 (9.63%) 15.8 (7.21%) 

870 to 435 20.3 (9.27%) 19.7 (9.00%) 16.4 (7.49%) 

435 to 435 20.2 (9.22%) 19.5 (8.90%) 16.9 (7.72%) 

Angina 

7263 to 233 14.1 (6.44%) 14.0 (6.39%) 11.9 (5.43%) 

932 to 233 22.8 (10.41%) 22.7 (10.37%) 19.1 (8.72%) 

466 to 233 24.0 (10.96%) 23.4 (10.68%) 18.1 (8.26%) 

233 to 233 19.5 (8.90%) 19.3 (8.81%) 16.7 (7.63%) 

Stroke 

7094 to 402 7.9 (3.61%) 7.6 (3.47%) 7.9 (3.61%) 

1608 to 402 8.6 (3.93%) 7.9 (3.61%) 11.4 (5.21%) 

804 to 402 9.4 (4.29%) 9.0 (4.11%) 13.5 (6.16%) 

402 to 402 12.8 (5.84%) 12.4 (5.66%) 14.7 (6.71%) 

Diabetes 

6552 to 944 10.5 (4.79%) 10.1 (4.61%) 10.5 (4.79%) 

3776 to 944 13.2 (6.03%) 11.7 (5.34%) 11.4 (5.21%) 

1888 to 944 13.2 (6.03%) 11.4 (5.21%) 10.7 (4.89%) 

944 to 944 11.7 (5.34%) 11.0 (5.02%) 9.6 (4.38%) 

HBP 
4438 to 3058 26.1 (11.92%) 25.4 (11.60%) 16.5 (7.53%) 

3058 to 3058 24.6 (11.23%) 24.3 (11.10%) 17.7 (8.08%) 

Dementia 

7360 to 136 11.8 (5.39%) 11.8 (5.39%) 11.5 (5.25%) 

544 to 136 15.0 (6.85%) 14.9 (6.80%) 16.3 (7.44%) 

272 to 136 16.5 (7.53%) 16.5 (7.53%) 15.0 (6.85%) 

136 to 136 13.4 (6.12%) 13.4 (6.12%) 14.1 (6.44%) 

Cataract 

5344 to 2150 7.5 (3.42%) 7.1 (3.24%) 8.3 (3.79%) 

4300 to 2150 7.1 (3.24%) 6.6 (3.01%) 7.8 (3.56%) 

2150 to 2150 6.5 (2.97%) 6.3 (2.88%) 6.9 (3.15%) 

Arthritis 
4398 to 3098 16.4 (7.49%) 15.0 (6.85%) 13.1 (5.98%) 

3098 to 3098 19.9 (9.09%) 18.2 (8.31%) 13.3 (6.07%) 

Osteoporosis 

6796 to 700 16.3 (7.44%) 15.6 (7.12%) 13.1 (5.98%) 

2800 to 700 17.5 (7.99%) 17.5 (7.99%) 13.4 (6.12%) 

1400 to 700 14.0 (6.39%) 13.9 (6.35%) 13.2 (6.03%) 

700 to 700 13.4 (6.12%) 13.4 (6.12%) 12.6 (5.75%) 

Parkinsons 

7433 to 63 8.0 (3.65%) 7.9 (3.61%) 7.6 (3.47%) 

252 to 63 7.5 (3.42%) 7.5 (3.42%) 7.8 (3.56%) 

126 to 63 8.0 (3.65%) 8.0 (3.65%) 8.2 (3.74%) 

63 to 63 7.3 (3.33%) 7.0 (3.20%) 7.6 (3.47%) 
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Table 4.8: Relative frequency (%) of selection for different feature types, for 

Exh-CFS-Gr+CFS 
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4.3 Results for the Naïve Bayes Algorithm 

Similar to the previous section, we report the results obtained by Naïve Bayes (NB) 

when using different CFS variants. Again, we used the statistical tests with a 

significance level of α = 0.05, and N = 35 (35 datasets) in our experiments. This 

section is also divided into three subsections, which are analogous to the three 

subsections of the previous section – i.e., each subsection evaluates a different set of 

CFS variants. 

4.3.1 Results comparing the two proposed CFS variants based on 

exhaustive search 

Table 4.9 reports the F-measure values obtained by NB, after applying the two CFS 

variants based on exhaustive search, namely Exh-CFS-Gr and Exh-CFS-Gr+CFS 

methods, breaking down by each disease used as a class variable in wave 7 and by 

different degrees of class distribution.  

Note that Table 4.9 reports, for each dataset, only the mean F-measure value over the 

two class labels, since this is the measure used in the statistical significance analysis, 

but the detailed values of the precision, recall and F-measure for each class label can 

be found in the Appendix, Section B. 

Similarly, to the results reported in the previous section (for J48), the results in Table 

4.9 for Naïve Bayes show that more balanced class distributions, in general, led to 

higher F-measure values – with a few exceptions, namely the HeartAtt and Diabetes 

datasets. Interestingly, for each dataset, the results are consistent across different 

class distributions, i.e., the best CFS variant is the same for all class distributions. In 

addition, Exh-CFS-Gr performed considerably better than Exh-CFS-Gr+CFS, with 

25 wins, 9 losses and just 1 tie. Furthermore, the average rank of Exh-CFS-Gr (1.27) 

is lower (better) than that of Exh-CFS-Gr+CFS (1.73). Moreover, with the use of the 

Wilcoxon signed-ranks test the null hypothesis is rejected with a p-value of 0.05. 

Hence, there is statistically significant evidence supporting the conclusion that 

Exh-CFS-Gr performed better than Exh-CFS-Gr+CFS for the NB classification 

algorithm. 

Regarding the number of features selected by each method, recall that we are using 

CFS variants as filter feature selection methods, independent from the classification 
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algorithm. Hence, the number of features selected by each CFS variant being 

considered here, in the context of the results for Naïve Bayes, is exactly the number 

of features reported in Table 4.2, in the context of the results for J48.  

As shown in Table 4.2 and discussed earlier, the number of features selected by 

Exh-CFS-Gr is substantially greater than that of features selected by 

Exh-CFS-Gr+CFS for all datasets, due to the reason mentioned in Section 4.2.1. 

Hence, the larger feature subsets selected by Exh-CFS-Gr led to an overall better 

predictive accuracy than the feature subsets selected by Exh-CFS-Gr+CFS when 

using Naïve Bayes as the classification algorithm; even though NB is particularly 

sensitive to redundant features, and so it could benefit from the further removal of 

redundant features associated with the application of standard CFS in the second 

phase of Exh-CFS-Gr+CFS. This is because although the standard CFS eliminated 

redundant features across the groups, it seems it has removed relevant features too, 

i.e. its feature selection process was too strong, selecting too few features. Actually, 

in 30 out of the 35 datasets, Exh-CFS-Gr+CFS selected less than 10% of the original 

number of features, which degraded NB’s predictive performance overall. Hence, the 

predictive performance of NB was better when Exh-CFS-Gr was applied. 

Moreover, a further analysis has been conducted by using the Pearson’s linear 

correlation coefficient (r) to measure the correlation between the predictive accuracy 

and the number of selected features across the 35 datasets. As for Exh-CFS-Gr, the 

value of r is 0.780, which indicates a strong positive correlation. Therefore, higher 

predictive accuracies tend to be observed with larger sizes of selected feature 

subsets. In contrast, the value of r for Exh-CFS-Gr+CFS is 0.035 which indicates a 

very weak correlation between the predictive accuracy and the number of features 

selected by Exh-CFS-Gr+CFS. 
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Table 4.9: F-measure values obtained by NB after applying the two CFS variants 

based on exhaustive search. 

Disease Class Distribution Exh-CFS-Gr+NB Exh-CFS-Gr+CFS+NB 

HeartAtt 

7061 to 435 0.616 0.606 

1740 to 435 0.628 0.626 

870 to 435 0.626 0.621 

435 to 435 0.619 0.615 

Angina 

7263 to 233 0.571 0.544 

932 to 233 0.575 0.566 

466 to 233 0.579 0.570 

233 to 233 0.576 0.561 

Stroke 

7094 to 402 0.596 0.541 

1608 to 402 0.603 0.579 

804 to 402 0.608 0.585 

402 to 402 0.610 0.600 

Diabetes 

6552 to 944 0.749 0.791 

3776 to 944 0.741 0.780 

1888 to 944 0.739 0.767 

944 to 944 0.733 0.749 

HBP 
4438 to 3058 0.671 0.689 

3058 to 3058 0.676 0.693 

Dementia 

7360 to 136 0.588 0.563 

544 to 136 0.610 0.587 

272 to 136 0.615 0.598 

136 to 136 0.603 0.589 

Cataract 

5344 to 2150 0.664 0.665 

4300 to 2150 0.663 0.667 

2150 to 2150 0.658 0.676 

Arthritis 
4398 to 3098 0.631 0.631 

3098 to 3098 0.629 0.626 

Osteoporosis 

6796 to 700 0.616 0.574 

2800 to 700 0.618 0.614 

1400 to 700 0.618 0.617 

700 to 700 0.618 0.613 

Parkinsons 

7433 to 63 0.501 0.496 

252 to 63 0.539 0.509 

126 to 63 0.559 0.557 

63 to 63 0.570 0.563 
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4.3.2 Results comparing the two proposed CFS variants based on 

different weights for two types of redundancy 

Table 4.10 reports the F-measure values for the pair of proposed CFS variants based 

on using different weights for two types of redundancy, namely temporal redundancy 

(among the same group of temporally redundant features) and standard 

(non-temporal) redundancy among features in different groups, where both CFS 

variants are run  before applying the NB algorithm. Recall that these CFS variants 

are called Coarse-grained Weighted Redundancy (Co-WR-CFS) and Fine-Grained 

Weighted Redundancy (Fi-WR-CFS). 

Similarly to Table 4.9, Table 4.10 shows that overall the F-measure values increase 

for both CFS variants when the class distributions become increasingly more 

balanced (by undersampling instances of the majority class), with the exception of 

the results for Diabetes.  

Regarding the overall predictive accuracy of the two CFS variants, the Table shows 

that Fi-WR-CFS achieved higher accuracy for 27 out of 35 datasets, with only 3 

losses and 5 ties. After running the Wilcoxon signed-ranks test, it is clear that 

Fi-WR-CFS significantly outperforms Co-WR-CFS, with a p-value < 0.001. 

As shown in Table 4.4 and discussed earlier, in general, the number of features 

selected by Fi-WR-CFS is greater than that of features selected by Co-WR-CFS for 

most of the datasets. Since Fi-WR-CFS significantly outperforms Co-WR-CFS in 

terms of predictive accuracy, the larger feature subset selected by Fi-WR-CFS led to 

the better predictive accuracy, suggesting that Co-WR-CFS performed a feature 

selection process that was too strong, selecting too few features. This could be 

explained by a limitation of Co-WR-CFS, which over-emphasizes the degree of 

temporal redundancy associated with (usually) a minority of feature pairs, as 

discussed earlier. As a consequence, it is plausible that some relevant features were 

also removed by that method. Hence, the performance of NB was better when 

Fi-WR-CFS was applied. 

Moreover, by measuring the Pearson’s linear correlation coefficient, the values of r 

for Co-WR-CFS and Fi-WR-CFS are small (-0.082 and 0.209 respectively). Hence, 

the correlation between the predictive accuracy and the number of selected features 

is weak for both these proposed CFS variants. 
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Table 4.10: F-measure values obtained by NB after applying the two CFS variants 

based on weighted redundancy. 

Disease Class Distribution Co-WR-CFS+NB Fi-WR-CFS+NB 

HeartAtt 

7061 to 435 0.586 0.616 

1740 to 435 0.614 0.627 

870 to 435 0.621 0.622 

435 to 435 0.607 0.617 

Angina 

7263 to 233 0.537 0.539 

932 to 233 0.557 0.566 

466 to 233 0.560 0.578 

233 to 233 0.564 0.567 

Stroke 

7094 to 402 0.552 0.543 

1608 to 402 0.588 0.596 

804 to 402 0.601 0.607 

402 to 402 0.597 0.606 

Diabetes 

6552 to 944 0.788 0.783 

3776 to 944 0.778 0.785 

1888 to 944 0.763 0.766 

944 to 944 0.748 0.753 

HBP 
4438 to 3058 0.670 0.689 

3058 to 3058 0.674 0.693 

Dementia 

7360 to 136 0.565 0.577 

544 to 136 0.591 0.601 

272 to 136 0.598 0.601 

136 to 136 0.591 0.601 

Cataract 

5344 to 2150 0.668 0.671 

4300 to 2150 0.667 0.676 

2150 to 2150 0.676 0.676 

Arthritis 
4398 to 3098 0.624 0.628 

3098 to 3098 0.617 0.624 

Osteoporosis 

6796 to 700 0.597 0.615 

2800 to 700 0.612 0.616 

1400 to 700 0.613 0.612 

700 to 700 0.608 0.611 

Parkinsons 

7433 to 63 0.496 0.496 

252 to 63 0.513 0.513 

126 to 63 0.556 0.556 

63 to 63 0.556 0.556 
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4.3.3 Results comparing four feature selection approaches using NB 

This section compares the results obtained by four feature selection approaches: two 

proposed CFS variants – one based on exhaustive search (Exh-CFS-Gr) and the 

other based on weighted redundancy (WR-CFS) – against the standard CFS method 

and the baseline approach of giving all input features to NB – i.e., no feature 

selection. We began by calculating the average ranks for each variant, as described 

earlier – recall that the smaller the average rank, the better (higher) the F-measure 

value of a CFS variant across all datasets in general. The best average rank was 

obtained by Exh-CFS-Gr (average rank 1.64), followed by Fi-WR-CFS (rank 2.37), 

standard CFS (rank 2.54) and no feature selection, i.e. NB alone (rank 3.44). 

The Friedman test was used to determine whether or not there is a significant 

difference between the average ranks of the four feature selection approaches and 

their mean rank (2.5). The calculated value of FF is 17.29. With four feature 

selection approaches and 35 datasets, FF is distributed according to the F distribution 

with 4 – 1 = 3 and (4-1) x (35-1) = 102 degrees of freedom. The critical value of 

F(3,102) for α = 0.05 is 2.69. Since, FF is greater than the critical value, the null 

hypothesis is rejected. Hence, there is a statistically significant evidence against the 

claim that all the four feature selection approaches are equivalent. 

Therefore, we proceeded with the Nemenyi test, a post-hoc test, for pairwise 

comparisons. Using the critical value of 2.57 for the two-tailed Nemenyi test, the 

critical difference is 0.79. As the differences in the average ranks are greater than the 

critical value, four null-hypotheses can be rejected, as follows.  
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First of all, applying standard CFS improves the predictive accuracy for NB (the 

average rank difference is: 3.44 – 2.54 = 0.90 > 0.79). Next, the accuracy of pure NB 

(without feature selection) is significantly worse than that of NB with both proposed 

methods: Exh-CFS-Gr (3.44 – 1.64 = 1.80 > 0.79) and Fi-WR-CFS (3.44 – 2.37 = 

1.07 > 0.79). Moreover, NB with Exh-CFS-Gr performs significantly better than NB 

with standard CFS (2.54 – 1.64 = 0.90 > 0.79). Lastly, although Exh-CFS-Gr 

outperforms Fi-WR-CFS, their average rank difference in their predictive 

performance is not significant (2.37 – 1.64 = 0.73 < 0.79).  

The critical diagram with the results of the Nemenyi test is shown in Figure 4.1. As 

proposed in (Demšar 2006), this diagram reports the average ranks of the methods on 

the horizontal axis, with the best method (rank 1) at the rightmost position. Below 

the horizontal axis, there is a horizontal line connecting the lines representing two 

methods if the difference of average ranks between those two methods was smaller 

than the critical difference (CD) – whose size is shown at the top of the graph. This 

indicates that there is no significant difference among those two methods. This 

diagram shows that Exh-CFS-Gr’s average rank was significantly better than the 

average rank of two of the three other approaches, the exception was Fi-WR-CFS. 

With regard to the size of the selected feature subsets, Table 4.12 shows the average 

number and percentage of features selected by each of the three CFS variants (across 

the 10 cross-validation folds), for each dataset – i.e., each combination of disease 

and class distribution. The number of features selected by the standard CFS and that 

selected by Fi-WR-CFS are relatively small, compared with that selected by 

Exh-CFS-Gr.  

As mentioned earlier, the results for Exh-CFS-Gr are associated with a strong 

positive linear correlation coefficient between the predictive accuracy and the 

Figure 4.1: The critical diagram for the results of the Nemenyi test 
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number of selected features, with the r value of 0.780. In contrast, Fi-WR-CFS and 

standard CFS produced feature subsets with weak correlations between those two 

variables (0.209 and 0.081 respectively).  

These results are broadly similar (with one exception – see below) to the results 

obtained with J48, where there is little correlation between the predictive accuracy 

and the number of features selected by each CFS variant, in general. The exception is 

that, when using NB, the correlation between predictive accuracy and number of 

selected features was strong for Exh-CFS-Gr. This is consistent with the fact that, 

unlike J48, in general NB’s predictive performance was substantially negatively 

affected by the relatively small numbers of features selected by the other CFS 

variants, in the datasets used in the experiments. 

Last but not least, Table 4.13 reports the relative frequency (%) of selection for 

different feature types for Exh-CFS-Gr. The results in this table can be contrasted 

with the analogous results for the standard CFS reported in Table 4.7. We focus on 

comparing these two methods here because Exh-CFS-Gr obtained overall the best 

results in this Section, whilst the standard CFS is a natural baseline. Recall that in 

both these tables the column “General” refers to the age and gender features, the 

only two features not derived from the Nurse data. In each cell, the relative 

frequency was calculated as the frequency of selection summed for all features of the 

corresponding feature type over the maximum possible number of selections, which 

was the number of features in the feature type times 10 (considering the 10 folds of 

the cross- validation procedure).  

Comparing the relative frequencies of features selected by the two CFS variants in 

the “All Total” column, Exh-CFS-Gr (Table 4.13) selected considerably larger 

feature subsets for all datasets than the standard CFS (Table 4.7).  Intuitively, this 

can be explained by the fact that, although both Exh-CFS-Gr and standard CFS 

evaluate the relevance of each candidate feature with respect to the class variable, 

they use different approaches to evaluate the redundancy among candidate features, 

as follows. Exh-CFS-Gr evaluates redundancy only among a small group of 

temporally related features, which are variations (across time) of feature values 

referring to the same conceptual feature. It does not detect redundancy between 

features in different groups, so there is less opportunity to remove features based on 
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the redundancy criterion. By contrast, the standard CFS, the baseline, can detect 

redundancy between potentially any pair of features (since it does not divide features 

into groups), increasing the opportunity to remove features based on the redundancy 

criterion. 

Note that Exh-CFS-Gr always selects gender and age (100% frequency in the 

column “General” features), for all datasets. This is because we considered age and 

gender as separate conceptual features, so that they belong to different conceptual 

groups, and Exh-CFS-Gr always selects at least one feature from each group. In 

addition, as shown in Table 4.13, the relative selection frequency of original features 

increased monotonically with time (i.e., from wave 2 to wave 4 to wave 6) in 24 of 

the 35 datasets. The main exceptions were the Dementia, Osteoporosis and 

Parkinson’s datasets. 

Regarding the constructed longitudinal features (CLFs), as shown in the column 

“CLF Total” of Table 4.7, standard CFS rarely selected CLFs – their overall relative 

frequency of selection was below 4% in all 35 datasets. In contrast, for Exh-CFS-Gr 

(Table 4.13), the relative selection frequencies of CLFs were considerably higher, 

varying from 8.8% to 26.9% across the datasets. In addition, among the three diff 

feature types, the feature type diff_w24 (the only diff feature type not involving 

wave 6 – the most recent wave) had a selection frequency of 0 in all datasets, for 

both Exh-CFS-Gr and the standard CFS. However, in general diff_w46 and diff_w26 

features were selected substantially more often by Exh-CFS-Gr than by standard 

CFS. 

Regarding the feature type mono_w246, which was designed to capture 

monotonicity patterns in the values of observed features from wave 2 to wave 4 to 

wave 6, note that this feature type was never selected by standard CFS in 33 datasets, 

with a selection frequency below 1% in the other two datasets (for Parkinson’s 

disease) (Table 4.7). By contrast, in the results for Exh-CSF-Gr (Table 4.13), the 

feature type mono_w246 had a dramatically higher selection frequency, above 30% 

in 23 datasets, and above 50% in 9 datasets. Interestingly, in the four Parkinson’s 

datasets, mono_w246 features had a selection frequency above 90%. These 

dramatically increased relatively selection frequencies are partly a result of the fact 
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that in general Exh-CSF-Gr selects many more features than standard CFS, as 

explained earlier.  

A similar result was observed for the feature types up_w24 and up_w46, which were 

only selected by standard CFS in two datasets (both for Parkinson’s) with a relative 

frequency of 3.3%, whilst these two feature types were, in general, selected much 

more often across the datasets by Exh-CFS-Gr. However, the calculated selection 

frequencies for these two feature types are less robust values, since each of them 

includes just two or three CLFs, unlike the much larger numbers of CLFs included in 

the diff feature type. 
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Table 4.11: F-measure values obtained by NB after applying different CFS methods 

Disease 
Class 

Distribution 
NB 

standard_CFS

+NB 

Exh-CFS-Gr

+NB 

Fi-WR-CFS

+NB 

HeartAtt    

7061 to 435 0.610 0.606 0.616 0.616 

1740 to 435 0.612 0.627 0.628 0.627 

870 to 435 0.608 0.622 0.626 0.622 

435 to 435 0.606 0.620 0.619 0.617 

Angina 

7263 to 233 0.563 0.548 0.571 0.539 

932 to 233 0.559 0.566 0.575 0.566 

466 to 233 0.565 0.572 0.579 0.578 

233 to 233 0.559 0.562 0.576 0.567 

Stroke 

7094 to 402 0.596 0.546 0.596 0.543 

1608 to 402 0.592 0.574 0.603 0.596 

804 to 402 0.594 0.587 0.608 0.607 

402 to 402 0.590 0.602 0.610 0.606 

Diabetes 

6552 to 944 0.743 0.790 0.749 0.783 

3776 to 944 0.740 0.786 0.741 0.785 

1888 to 944 0.738 0.774 0.739 0.766 

944 to 944 0.732 0.760 0.733 0.753 

HBP 
4438 to 3058 0.671 0.690 0.671 0.689 

3058 to 3058 0.672 0.693 0.676 0.693 

Dementia 

7360 to 136 0.604 0.563 0.588 0.577 

544 to 136 0.598 0.587 0.610 0.601 

272 to 136 0.596 0.600 0.615 0.601 

136 to 136 0.589 0.589 0.603 0.601 

Cataract 

5344 to 2150 0.649 0.663 0.664 0.671 

4300 to 2150 0.646 0.667 0.663 0.676 

2150 to 2150 0.641 0.677 0.658 0.676 

Arthritis 
4398 to 3098 0.614 0.630 0.631 0.628 

3098 to 3098 0.614 0.625 0.629 0.624 

Osteoporosis 

6796 to 700 0.602 0.575 0.616 0.615 

2800 to 700 0.606 0.614 0.618 0.616 

1400 to 700 0.606 0.617 0.618 0.612 

700 to 700 0.610 0.613 0.618 0.611 

Parkinsons 

7433 to 63 0.530 0.496 0.501 0.496 

252 to 63 0.565 0.509 0.539 0.513 

126 to 63 0.555 0.557 0.559 0.556 

63 to 63 0.553 0.560 0.570 0.556 
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Table 4.12: Average numbers and percentages of selected features for the three CFS 

variants. 

Disease Class Distribution standard_CFS Exh-CFS-Gr Fi-WR-CFS 

HeartAtt 

7061 to 435 24.0 (10.96%) 80.0 (36.53%) 29.3 (13.38%) 

1740 to 435 21.3 (9.73%) 76.7 (35.02%) 27.3 (12.47%) 

870 to 435 20.3 (9.27%) 70.0 (31.96%) 26.4 (12.05%) 

435 to 435 20.2 (9.22%) 65.7 (30.00%) 25.8 (11.78%) 

Angina 

7263 to 233 14.1 (6.44%) 75.7 (34.57%) 19.5 (8.90%) 

932 to 233 22.8 (10.41%) 74.7 (34.11%) 31.0 (14.16%) 

466 to 233 24.0 (10.96%) 70.3 (32.10%) 29.8 (13.61%) 

233 to 233 19.5 (8.90%) 68.3 (31.19%) 25.8 (11.78%) 

Stroke 

7094 to 402 7.9 (3.61%) 77.6 (35.43%) 8.3 (3.79%) 

1608 to 402 8.6 (3.93%) 75.4 (34.43%) 21.1 (9.63%) 

804 to 402 9.4 (4.29%) 70.5 (32.19%) 23.5 (10.73%) 

402 to 402 12.8 (5.84%) 64.6 (29.50%) 20.9 (9.54%) 

Diabetes 

6552 to 944 10.5 (4.79%) 98.3 (44.89%) 15.4 (7.03%) 

3776 to 944 13.2 (6.03%) 96.5 (44.06%) 19.7 (9.00%) 

1888 to 944 13.2 (6.03%) 93.3 (42.60%) 23.9 (10.91%) 

944 to 944 11.7 (5.34%) 86.3 (39.41%) 25.0 (11.42%) 

HBP 
4438 to 3058 26.1 (11.92%) 98.2 (44.84%) 34.1 (15.57%) 

3058 to 3058 24.6 (11.23%) 95.3 (43.52%) 31.2 (14.25%) 

Dementia 

7360 to 136 11.8 (5.39%) 68.2 (31.14%) 17.1 (7.81%) 

544 to 136 15.0 (6.85%) 70.7 (32.28%) 23.2 (10.59%) 

272 to 136 16.5 (7.53%) 71.6 (32.69%) 24.7 (11.28%) 

136 to 136 13.4 (6.12%) 66.6 (30.41%) 21.4 (9.77%) 

Cataract 

5344 to 2150 7.5 (3.42%) 73.2 (33.42%) 8.4 (3.84%) 

4300 to 2150 7.1 (3.24%) 71.9 (32.83%) 8.2 (3.74%) 

2150 to 2150 6.5 (2.97%) 69.7 (31.83%) 8.1 (3.70%) 

Arthritis 
4398 to 3098 16.4 (7.49%) 80.2 (36.62%) 25.1 (11.46%) 

3098 to 3098 19.9 (9.09%) 75.5 (34.47%) 24.2 (11.05%) 

Osteoporosis 

6796 to 700 16.3 (7.44%) 89.6 (40.91%) 26.9 (12.28%) 

2800 to 700 17.5 (7.99%) 85.7 (39.13%) 24.7 (11.28%) 

1400 to 700 14.0 (6.39%) 82.6 (37.72%) 22.4 (10.23%) 

700 to 700 13.4 (6.12%) 78.7 (35.94%) 20.1 (9.18%) 

Parkinsons 

7433 to 63 8.0 (3.65%) 55.9 (25.53%) 8.6 (3.93%) 

252 to 63 7.5 (3.42%) 57.6 (26.30%) 7.8 (3.56%) 

126 to 63 8.0 (3.65%) 56.1 (25.62%) 8.2 (3.74%) 

63 to 63 7.3 (3.33%) 54.2 (24.75%) 7.7 (3.52%) 
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5 CONCLUSION 

5.1 Summary of Contributions 

This thesis has proposed four variants of the CFS (Correlation-based Feature 

Selection) method adapted to cope with longitudinal classification data, where the 

values of a variable are repeatedly measured across different time points (called 

waves). The proposed CFS variants were run in a data pre-processing phase, before 

running the classification algorithm. By doing so, our goal was to keep the 

adaptations related to longitudinal data restricted to the pre-processing phase, which 

has the advantage of enabling any conventional classification algorithm (which 

ignores the temporal nature of longitudinal data) to be applied to the selected 

features. 

This thesis presents two main contributions. The first one is the creation of the 

longitudinal datasets used in the experiments, including the construction of features 

capturing longitudinal information for predicting age-related diseases. The datasets 

were created from data in the English Longitudinal Study of Ageing (ELSA) 

database (Marmot et al. 2016). The created datasets contain two types of features, 

namely originally observed features (directly taken from the ELSA database) and the 

aforementioned constructed longitudinal features, where both feature types occur in 

three waves. In addition, each individual (observed or constructed) feature was 

assigned to a group of temporally related features – each group contains observed 

and constructed features representing variations in the value of a given base feature 

across the three waves. Besides, each dataset contains a single class variable 
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representing an age-related disease, so that multiple datasets were created for 

different diseases.  

More precisely, we first created 10 datasets, each with a different age-related disease 

as the class variable. Next, we created variations of these datasets with different class 

distributions, by performing an undersampling of instances of the majority class, in 

order to cope with the problem of class imbalance. This produced in total 35 

datasets. Note that, although each dataset has a different combination of an 

age-related disease as the class variable and a class distribution (varying the degree 

of undersampling), all datasets contain instances representing the same individuals 

from the ELSA database and the same set of predictive features, representing mainly 

biomedical information about those individuals.  

The second contribution consists of proposing four new variants of the CFS method 

for selecting features to be used as input by a conventional classification algorithm. 

These CFS variants take into account (in different ways) the temporal redundancy 

associated with variations in the value of a given feature across different waves (time 

points). The four proposed CFS variants were categorised into two types of 

modifications of the standard CFS method, namely two of the variants modify the 

standard CFS’ search method; whilst the other two variants modify the standard 

CFS’ evaluation function. 

The former type of CFS variant includes Exh-CFS-Gr (Exhaustive search-based CFS 

per group) and Exh-CFS-Gr+CFS (Exhaustive search-based CFS per group followed 

by standard CFS). The basic idea of both these variants is to use exhaustive search 

(rather than heuristic search as usual) to select features separately from each group of 

temporally related features. The use of exhaustive search was made possible by 

dividing the features into these groups, since within each group the number of 

features is relatively small. Hence, these two CFS variants exhaustively considered 

all combinations of features within each group, minimizing the occurrence of 

temporal redundancy in the feature subset selected from each group. Once this 

feature selection per group has been done, Exh-CFS-Gr simply merges all features 

selected across the groups to compute the set of selected features to be used by a 

classification algorithm. Exh-CFS-Gr+CFS consists of first applying Exh-CFS-Gr 

and then further applying the standard CFS to the merged set of features selected 
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across all groups. Hence, Exh-CFS-Gr+CFS detects not only temporal feature 

redundancy within groups (in its first phase, running Exh-CFS-Gr) but also standard 

(non-temporal) feature redundancy across groups (in its second phase, running 

standard CFS). 

The second type of CFS variant modified the way the merit (evaluation) function is 

computed, whilst using the same search method used in standard CFS. The two 

proposed variants of this modification were called Co-WR-CFS (Coarse-grained 

Weighted-Redundancy CFS) and Fi-WR-CFS (Fine-grained Weighted-Redundancy 

CFS). Essentially, their merit functions were modified such that the degree of 

redundancy among the features were weighted unequally, depending on whether the 

redundancy was between features within the same group of temporally related 

features (i.e. temporal redundancy) or between features belonging to different groups 

(conventional, non-temporal redundancy).  

These two CFS variants differ in how the weights were assigned. In the case of 

Co-WR-CFS, a coarse-grained weighting approach was used, where first the average 

degree of feature redundancy is calculated separately for features within the same 

group and features across different groups (where the average is over all pairs of 

features in each case) and then two different weights are assigned to these two 

average degrees of feature redundancy. By contrast, in the case of Fi-WR-CFS, a 

fine-grained approach was used, where the redundancy between each pair of features 

is directly assigned a weight, depending on whether the pair involves features within 

the same group or in different groups. Note that as explained earlier the 

coarse-grained approach used by Co-WR-CFS can over-emphasize the degree of 

redundancy associated with the features in the same group, which tend to be a 

minority of the feature pairs in a candidate feature subset being evaluated. 

Fi-WR-CFS reduces this risk, but it has the opposite risk of not emphasizing enough 

the importance of temporal redundancy involving features within the same group. 

Experiments were performed comparing the proposed CFS variants with two 

baseline approaches, the standard CFS method and the natural baseline of not 

performing any feature selection in a pre-processing phase, i.e., giving all features to 

the classification algorithm. In addition, the experiments were performed with two 

well-known classification algorithms separately, namely the decision-tree induction 
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algorithm J48 (Quinlan 1993; Hall et al. 2009) and Naïve Bayes (Sulzmann, 

Fürnkranz and Hüllermeier 2007). The results reported in this thesis are summarised 

next from three perspectives, namely the effect of feature selection on the predictive 

accuracy of the two classification algorithms, the effect of different degrees of 

undersampling of majority-class instances on the predictive accuracy of the two 

classification algorithms, and the number and type of features selected by different 

CFS variants. 

First, regarding predictive accuracy, in general there was no statistically significant 

difference between the predictive accuracies obtained by J48 when different variants 

of CFS (including standard CFS) were applied in a data pre-processing step, nor any 

significant difference by comparison with the baseline of no feature selection. This 

can be explained by the fact that J48 preforms embedded feature selection; so that its 

predictive accuracy is in principle less sensitive to irrelevant and redundant features, 

by comparison with Naïve Bayes. Actually, in the case of Naïve Bayes, there was a 

statistically significant difference in the predictive performances of some CFS 

variants. In particular, the best CFS variant for Naïve Bayes, namely Exh-CFS-Gr, 

obtained results significantly better than the results obtained by standard CFS and no 

feature selection, although there was no significant difference between the results of 

Exh-CFS-Gr and the second best CFS variant (Fi-WR-CFS). 

Second, regarding the effect of different degrees of undersampling of majority-class 

instances on the predictive accuracy, recall that experiments were performed with 

increasingly larger amounts of undersampling applied to the training set, up to the 

point where the number of majority-class instances is reduced to be the same as the 

number of minority-class instances – i.e., a maximally balanced class distribution. 

Overall, the results show that the larger the degree of undersampling (i.e. the closer 

to perfectly balanced the class distribution is), the higher the predictive accuracies of 

J48 and Naïve Bayes, although sometimes a higher predictive accuracy was achieved 

with a less balanced class distribution. 

Third, regarding the feature subsets selected by different variants of CFS, the number 

of features selected by Exh-CFS-Gr was substantially greater than that of all other 

CFS variants by for all datasets. This helps to explain why this feature selection 

method obtained the best results in the experiments with Naïve Bayes; i.e., it seems 
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that the other CFS variants selected relatively too few features for Naïve Bayes. 

Regarding the types of features most often selected by the CFS variants, overall, the 

constructed longitudinal features (CLFs) were selected substantially less often than 

the features originally observed in the ELSA database, with a few exceptions. 

Among the different CFS variants, Exh-CFS-Gr selected some CLFs (in particular a 

CLF designed to capture a monotonic increase or decrease in the value of a feature 

across three ELSA waves) much more often than the other CFS variants. However, 

in general Exh-CFS-Gr still selected more originally observed features than CLFs 

(including that monotonic feature type). Among the originally observed features, 

broadly speaking (despite several exceptions) the frequency of selection increased 

from wave 2 to wave 4 to wave 6. This is consistent with the fact that intuitively 

features from wave 6 are more relevant for predicting an age-related disease in wave 

7, given that short-term predictions tend to be more reliable than long-term 

predictions. 

5.2 Future Research Directions 

In this work, we have focused on performing experiments with the created 

longitudinal datasets, which contained both raw (observed) features and CLFs 

(Constructed Longitudinal Features) synthesised from those raw features. In other 

words, our aim was to compare the proposed CFS variants against the standard CFS 

on the created longitudinal datasets. Although our proposed CFS variants achieved 

higher predictive accuracies than the standard CFS in most cases, there were no 

experiments conducted to compare the predictive accuracies obtained using the full 

dataset with both above feature types against the accuracies obtained using only the 

raw (observed) features. In future work, it would be interesting to perform this kind 

of experiment, in order to evaluate the effect of the constructed longitudinal features 

on predictive performance.  

Furthermore, the only approach for coping with an imbalanced class distribution 

used in this work was the undersampling approach, which may have led to loss of 

relevant information (throwing away many instances of the majority class), 

especially in a very imbalanced dataset such as Parkinson’s. This was not a 

significant problem in our experiments, since in general, among dataset variations 

with different degrees of class imbalance, the best results were obtained with a 
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maximally balanced class distribution (i.e., both classes have the same number of 

instances), which corresponds to the highest degree of undersampling in our 

experiments. Nonetheless, it is possible that better results regarding predictive 

accuracy could be obtained by using another approach to cope with imbalanced class 

distributions, such as the SMOTE method (Chawla et al. 2002), and this could be 

investigated in future research. 

In addition, the CLFs were synthesised from continuous (real-valued) features only, 

since the proposed approach to create CLFs does not work with categorical features. 

That is, if a dataset contains only features of categorical type, then there are no CLFs 

to be created. Therefore, it would be interesting to invent a new sort of CLFs which 

are synthesised from categorical longitudinal features and are able to capture their 

temporal information.  

Finally, another area for future work involves modifying an existing classification 

algorithm (or developing a new algorithm) that exploits the temporal information in 

longitudinal features in a way that works well together with the proposed CFS 

variants. Actually, in this work, although the proposed CFS variants take into 

account the temporal information in the longitudinal features in the created datasets, 

the temporal information associated with the set of selected features is ignored by the 

conventional classification algorithms used in our experiments. In future work, 

developing classification algorithms that exploit the temporal information associated 

with the selected features could improve predictive performance. 
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APPENDIX 

The appendix is organized as follows. Section A reports the detailed results of 

predictive accuracy for the J48 decision tree induction algorithm. Section B shows the 

detailed results of predictive accuracy for the Naïve Bayes algorithm. Section C reports 

the most relevant features selected by J48 for each disease class. 

In Sections A and B, by “detailed results of predictive accuracy” it is meant the separate 

values of precision, recall and F-measure for each of the two class labels (presence or 

absence of disease). Each of these sections reports these results in six tables, one for 

each of six different feature selection approaches, namely the baseline approach of not 

performing any feature selection in a pre-processing phase (i.e. giving all features to the 

classification algorithm), standard Correlation-based Feature Selection (CFS), and the 

four CFS variants proposed in this work. Hence, these detailed tables of results 

complement the summarized tables of predictive accuracy results reported in Chapter 4, 

where the analysis of the results was performed in terms of the average F-measure value 

across the two class labels for each dataset. 
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A. DETAILED RESULTS FOR THE J48 ALGORITHM 
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Table A.1: predictive accuracies obtained from J48 without feature selection 

Disease Class Distribution 
Class label = 0 (No) Class label = 1 (Yes) 

Precision Recall F‑measure Precision Recall F‑measure 

HeartAtt 

7061 to 435 0.942 1.000 0.970 0.000 0.000 0.000 

1740 to 435 0.949 0.964 0.956 0.208 0.152 0.175 

870 to 435 0.959 0.870 0.912 0.159 0.398 0.227 

435 to 435 0.971 0.698 0.813 0.120 0.664 0.203 

Angina 

7263 to 233 0.969 1.000 0.984 0.000 0.000 0.000 

932 to 233 0.970 0.985 0.977 0.068 0.034 0.046 

466 to 233 0.972 0.893 0.931 0.058 0.206 0.090 

233 to 233 0.978 0.585 0.732 0.043 0.584 0.080 

Stroke 

7094 to 402 0.946 1.000 0.972 0.000 0.000 0.000 

1608 to 402 0.950 0.973 0.962 0.180 0.104 0.132 

804 to 402 0.958 0.877 0.916 0.131 0.326 0.187 

402 to 402 0.974 0.670 0.794 0.105 0.679 0.181 

Diabetes 

6552 to 944 0.928 0.987 0.957 0.840 0.472 0.605 

3776 to 944 0.937 0.978 0.957 0.781 0.544 0.642 

1888 to 944 0.947 0.953 0.950 0.659 0.632 0.645 

944 to 944 0.962 0.885 0.922 0.487 0.760 0.594 

HBP 
4438 to 3058 0.686 0.815 0.745 0.631 0.459 0.531 

3058 to 3058 0.746 0.643 0.690 0.568 0.682 0.620 

Dementia 

7360 to 136 0.982 1.000 0.991 0.000 0.000 0.000 

544 to 136 0.984 0.974 0.979 0.078 0.118 0.094 

272 to 136 0.989 0.835 0.906 0.052 0.493 0.095 

136 to 136 0.990 0.754 0.856 0.042 0.581 0.078 

Cataract 

5344 to 2150 0.771 0.872 0.818 0.528 0.357 0.426 

4300 to 2150 0.789 0.828 0.808 0.512 0.449 0.479 

2150 to 2150 0.852 0.666 0.748 0.462 0.711 0.560 

Arthritis 
4398 to 3098 0.650 0.832 0.730 0.604 0.362 0.453 

3098 to 3098 0.684 0.666 0.675 0.543 0.564 0.554 

Osteoporosis 

6796 to 700 0.907 1.000 0.951 0.000 0.000 0.000 

2800 to 700 0.910 0.976 0.941 0.202 0.060 0.093 

1400 to 700 0.927 0.871 0.898 0.212 0.337 0.260 

700 to 700 0.959 0.601 0.739 0.162 0.749 0.266 

Parkinsons 

7433 to 63 0.992 1.000 0.996 0.000 0.000 0.000 

252 to 63 0.992 0.941 0.966 0.018 0.127 0.031 

126 to 63 0.994 0.766 0.865 0.017 0.476 0.033 

63 to 63 0.997 0.597 0.747 0.017 0.810 0.033 
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Table A.2: predictive accuracies obtained from J48 with the standard CFS 

Disease Class Distribution 
Class label = 0 (No) Class label = 1 (Yes) 

Precision Recall F‑measure Precision Recall F‑measure 

HeartAtt 

7061 to 435 0.942 1.000 0.970 0.000 0.000 0.000 

1740 to 435 0.949 0.968 0.958 0.223 0.149 0.179 

870 to 435 0.956 0.875 0.914 0.146 0.347 0.205 

435 to 435 0.973 0.689 0.806 0.119 0.685 0.203 

Angina 

7263 to 233 0.969 1.000 0.984 0.000 0.000 0.000 

932 to 233 0.969 0.983 0.976 0.040 0.021 0.028 

466 to 233 0.972 0.881 0.924 0.051 0.197 0.081 

233 to 233 0.976 0.597 0.741 0.042 0.549 0.078 

Stroke 

7094 to 402 0.946 1.000 0.972 0.000 0.000 0.000 

1608 to 402 0.950 0.979 0.964 0.192 0.087 0.120 

804 to 402 0.960 0.889 0.923 0.152 0.351 0.212 

402 to 402 0.970 0.700 0.813 0.105 0.622 0.180 

Diabetes 

6552 to 944 0.928 0.988 0.957 0.845 0.467 0.602 

3776 to 944 0.931 0.983 0.956 0.807 0.495 0.613 

1888 to 944 0.944 0.961 0.953 0.692 0.607 0.647 

944 to 944 0.964 0.857 0.908 0.440 0.776 0.561 

HBP 
4438 to 3058 0.696 0.808 0.748 0.636 0.487 0.552 

3058 to 3058 0.745 0.649 0.694 0.571 0.677 0.620 

Dementia 

7360 to 136 0.982 1.000 0.991 0.000 0.000 0.000 

544 to 136 0.985 0.971 0.978 0.100 0.176 0.128 

272 to 136 0.988 0.880 0.931 0.063 0.434 0.109 

136 to 136 0.991 0.731 0.842 0.043 0.654 0.081 

Cataract 

5344 to 2150 0.785 0.849 0.816 0.530 0.423 0.470 

4300 to 2150 0.791 0.839 0.814 0.529 0.448 0.485 

2150 to 2150 0.857 0.641 0.733 0.451 0.734 0.559 

Arthritis 
4398 to 3098 0.653 0.835 0.733 0.612 0.370 0.461 

3098 to 3098 0.692 0.636 0.663 0.536 0.598 0.565 

Osteoporosis 

6796 to 700 0.907 1.000 0.951 0.000 0.000 0.000 

2800 to 700 0.912 0.972 0.941 0.251 0.090 0.132 

1400 to 700 0.933 0.859 0.895 0.226 0.399 0.288 

700 to 700 0.959 0.611 0.746 0.165 0.744 0.269 

Parkinsons 

7433 to 63 0.992 1.000 0.996 0.000 0.000 0.000 

252 to 63 0.992 0.962 0.977 0.024 0.111 0.040 

126 to 63 0.995 0.764 0.864 0.019 0.540 0.037 

63 to 63 0.997 0.601 0.750 0.016 0.778 0.032 
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Table A.3: predictive accuracies obtained from J48 with Exh-CFS-Gr 

Disease Class Distribution 
Class label = 0 (No) Class label = 1 (Yes) 

Precision Recall F‑measure Precision Recall F‑measure 

HeartAtt 

7061 to 435 0.942 1.000 0.970 0.000 0.000 0.000 

1740 to 435 0.948 0.966 0.957 0.205 0.140 0.166 

870 to 435 0.958 0.864 0.909 0.151 0.391 0.218 

435 to 435 0.970 0.703 0.815 0.119 0.653 0.202 

Angina 

7263 to 233 0.969 1.000 0.984 0.000 0.000 0.000 

932 to 233 0.969 0.989 0.979 0.036 0.013 0.019 

466 to 233 0.973 0.883 0.926 0.058 0.223 0.092 

233 to 233 0.978 0.575 0.724 0.043 0.597 0.080 

Stroke 

7094 to 402 0.946 1.000 0.972 0.000 0.000 0.000 

1608 to 402 0.951 0.972 0.961 0.183 0.109 0.137 

804 to 402 0.962 0.887 0.923 0.159 0.376 0.223 

402 to 402 0.976 0.658 0.786 0.105 0.711 0.184 

Diabetes 

6552 to 944 0.929 0.988 0.958 0.852 0.477 0.611 

3776 to 944 0.934 0.979 0.956 0.780 0.521 0.625 

1888 to 944 0.943 0.953 0.948 0.648 0.602 0.624 

944 to 944 0.960 0.856 0.905 0.431 0.755 0.548 

HBP 
4438 to 3058 0.698 0.784 0.738 0.618 0.507 0.557 

3058 to 3058 0.759 0.639 0.694 0.574 0.705 0.633 

Dementia 

7360 to 136 0.982 1.000 0.991 0.000 0.000 0.000 

544 to 136 0.984 0.974 0.979 0.082 0.125 0.099 

272 to 136 0.988 0.864 0.922 0.055 0.426 0.097 

136 to 136 0.990 0.753 0.855 0.042 0.581 0.078 

Cataract 

5344 to 2150 0.771 0.876 0.820 0.533 0.353 0.424 

4300 to 2150 0.792 0.832 0.812 0.522 0.456 0.487 

2150 to 2150 0.857 0.650 0.739 0.456 0.730 0.561 

Arthritis 
4398 to 3098 0.653 0.819 0.726 0.597 0.381 0.465 

3098 to 3098 0.686 0.645 0.665 0.535 0.581 0.557 

Osteoporosis 

6796 to 700 0.907 1.000 0.951 0.000 0.000 0.000 

2800 to 700 0.912 0.972 0.941 0.252 0.090 0.133 

1400 to 700 0.928 0.877 0.902 0.220 0.337 0.266 

700 to 700 0.960 0.608 0.745 0.166 0.757 0.272 

Parkinsons 

7433 to 63 0.992 1.000 0.996 0.000 0.000 0.000 

252 to 63 0.991 0.988 0.990 0.000 0.000 0.000 

126 to 63 0.995 0.756 0.859 0.019 0.556 0.037 

63 to 63 0.997 0.600 0.749 0.016 0.762 0.031 
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Table A.4: predictive accuracies obtained from J48 with Exh-CFS-Gr+CFS 

Disease Class Distribution 
Class label = 0 (No) Class label = 1 (Yes) 

Precision Recall F‑measure Precision Recall F‑measure 

HeartAtt 

7061 to 435 0.942 1.000 0.970 0.000 0.000 0.000 

1740 to 435 0.949 0.968 0.958 0.223 0.149 0.179 

870 to 435 0.957 0.873 0.913 0.148 0.359 0.210 

435 to 435 0.973 0.689 0.807 0.120 0.690 0.205 

Angina 

7263 to 233 0.969 1.000 0.984 0.000 0.000 0.000 

932 to 233 0.969 0.983 0.976 0.040 0.021 0.028 

466 to 233 0.972 0.883 0.925 0.052 0.202 0.083 

233 to 233 0.976 0.597 0.741 0.042 0.549 0.078 

Stroke 

7094 to 402 0.946 1.000 0.972 0.000 0.000 0.000 

1608 to 402 0.950 0.978 0.964 0.188 0.090 0.121 

804 to 402 0.960 0.893 0.926 0.155 0.346 0.214 

402 to 402 0.970 0.702 0.815 0.106 0.622 0.181 

Diabetes 

6552 to 944 0.928 0.988 0.957 0.846 0.466 0.601 

3776 to 944 0.932 0.983 0.957 0.807 0.502 0.619 

1888 to 944 0.942 0.959 0.951 0.677 0.590 0.630 

944 to 944 0.963 0.857 0.907 0.438 0.771 0.558 

HBP 
4438 to 3058 0.694 0.807 0.747 0.634 0.484 0.549 

3058 to 3058 0.746 0.653 0.696 0.573 0.677 0.621 

Dementia 

7360 to 136 0.982 1.000 0.991 0.000 0.000 0.000 

544 to 136 0.985 0.971 0.978 0.100 0.176 0.128 

272 to 136 0.988 0.880 0.931 0.063 0.434 0.109 

136 to 136 0.991 0.731 0.842 0.043 0.654 0.081 

Cataract 

5344 to 2150 0.785 0.849 0.816 0.529 0.421 0.469 

4300 to 2150 0.790 0.840 0.814 0.528 0.445 0.483 

2150 to 2150 0.856 0.641 0.733 0.451 0.733 0.558 

Arthritis 
4398 to 3098 0.652 0.822 0.727 0.599 0.378 0.463 

3098 to 3098 0.695 0.628 0.660 0.535 0.608 0.569 

Osteoporosis 

6796 to 700 0.907 1.000 0.951 0.000 0.000 0.000 

2800 to 700 0.912 0.972 0.941 0.251 0.090 0.132 

1400 to 700 0.933 0.860 0.895 0.226 0.399 0.289 

700 to 700 0.959 0.611 0.746 0.165 0.744 0.269 

Parkinsons 

7433 to 63 0.992 1.000 0.996 0.000 0.000 0.000 

252 to 63 0.992 0.962 0.977 0.024 0.111 0.040 

126 to 63 0.995 0.764 0.864 0.019 0.540 0.037 

63 to 63 0.997 0.601 0.750 0.016 0.778 0.032 
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Table A.5: predictive accuracies obtained from J48 with Co-WR-CFS 

Disease Class Distribution 
Class label = 0 (No) Class label = 1 (Yes) 

Precision Recall F‑measure Precision Recall F‑measure 

HeartAtt 

7061 to 435 0.942 1.000 0.970 0.000 0.000 0.000 

1740 to 435 0.948 0.967 0.957 0.195 0.131 0.157 

870 to 435 0.959 0.864 0.909 0.154 0.402 0.223 

435 to 435 0.972 0.679 0.799 0.115 0.678 0.197 

Angina 

7263 to 233 0.969 1.000 0.984 0.000 0.000 0.000 

932 to 233 0.969 0.988 0.978 0.053 0.021 0.031 

466 to 233 0.973 0.899 0.934 0.066 0.223 0.102 

233 to 233 0.978 0.582 0.730 0.043 0.592 0.081 

Stroke 

7094 to 402 0.946 1.000 0.972 0.000 0.000 0.000 

1608 to 402 0.951 0.976 0.964 0.220 0.119 0.155 

804 to 402 0.960 0.867 0.911 0.135 0.366 0.197 

402 to 402 0.977 0.664 0.791 0.109 0.729 0.190 

Diabetes 

6552 to 944 0.928 0.988 0.957 0.844 0.465 0.600 

3776 to 944 0.931 0.983 0.956 0.807 0.496 0.614 

1888 to 944 0.942 0.960 0.951 0.681 0.592 0.633 

944 to 944 0.961 0.842 0.897 0.409 0.761 0.532 

HBP 
4438 to 3058 0.683 0.787 0.731 0.603 0.469 0.528 

3058 to 3058 0.745 0.617 0.675 0.555 0.693 0.616 

Dementia 

7360 to 136 0.982 1.000 0.991 0.000 0.000 0.000 

544 to 136 0.985 0.972 0.978 0.106 0.176 0.132 

272 to 136 0.989 0.870 0.926 0.062 0.463 0.109 

136 to 136 0.992 0.708 0.826 0.041 0.676 0.077 

Cataract 

5344 to 2150 0.789 0.844 0.816 0.531 0.440 0.481 

4300 to 2150 0.793 0.836 0.814 0.529 0.459 0.492 

2150 to 2150 0.853 0.655 0.741 0.456 0.720 0.558 

Arthritis 
4398 to 3098 0.653 0.835 0.733 0.613 0.371 0.462 

3098 to 3098 0.694 0.620 0.655 0.531 0.612 0.569 

Osteoporosis 

6796 to 700 0.907 1.000 0.951 0.000 0.000 0.000 

2800 to 700 0.911 0.977 0.943 0.243 0.073 0.112 

1400 to 700 0.929 0.860 0.893 0.211 0.363 0.267 

700 to 700 0.956 0.633 0.762 0.167 0.716 0.271 

Parkinsons 

7433 to 63 0.992 1.000 0.996 0.000 0.000 0.000 

252 to 63 0.992 0.959 0.975 0.022 0.111 0.037 

126 to 63 0.995 0.762 0.863 0.019 0.540 0.036 

63 to 63 0.997 0.598 0.748 0.016 0.778 0.032 
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Table A.6: predictive accuracies obtained from J48 with Fi-WR-CFS 

Disease Class Distribution 
Class label = 0 (No) Class label = 1 (Yes) 

Precision Recall F‑measure Precision Recall F‑measure 

HeartAtt 

7061 to 435 0.942 1.000 0.970 0.000 0.000 0.000 

1740 to 435 0.949 0.964 0.957 0.223 0.168 0.191 

870 to 435 0.956 0.860 0.906 0.138 0.363 0.200 

435 to 435 0.972 0.690 0.807 0.119 0.683 0.203 

Angina 

7263 to 233 0.969 1.000 0.984 0.000 0.000 0.000 

932 to 233 0.969 0.983 0.976 0.053 0.030 0.038 

466 to 233 0.973 0.889 0.929 0.060 0.223 0.095 

233 to 233 0.978 0.592 0.737 0.044 0.592 0.083 

Stroke 

7094 to 402 0.946 1.000 0.972 0.000 0.000 0.000 

1608 to 402 0.951 0.974 0.962 0.191 0.109 0.139 

804 to 402 0.960 0.875 0.916 0.139 0.356 0.200 

402 to 402 0.976 0.662 0.789 0.107 0.716 0.186 

Diabetes 

6552 to 944 0.928 0.987 0.957 0.841 0.465 0.599 

3776 to 944 0.932 0.981 0.956 0.793 0.502 0.615 

1888 to 944 0.946 0.960 0.953 0.689 0.617 0.651 

944 to 944 0.963 0.874 0.916 0.467 0.765 0.580 

HBP 
4438 to 3058 0.699 0.810 0.750 0.642 0.494 0.559 

3058 to 3058 0.746 0.651 0.696 0.573 0.679 0.621 

Dementia 

7360 to 136 0.982 1.000 0.991 0.000 0.000 0.000 

544 to 136 0.984 0.972 0.978 0.087 0.147 0.110 

272 to 136 0.988 0.879 0.930 0.063 0.441 0.110 

136 to 136 0.991 0.723 0.836 0.041 0.640 0.077 

Cataract 

5344 to 2150 0.789 0.836 0.811 0.520 0.443 0.479 

4300 to 2150 0.798 0.824 0.811 0.524 0.481 0.502 

2150 to 2150 0.854 0.653 0.740 0.456 0.723 0.559 

Arthritis 
4398 to 3098 0.657 0.815 0.727 0.600 0.395 0.476 

3098 to 3098 0.690 0.625 0.656 0.530 0.601 0.563 

Osteoporosis 

6796 to 700 0.907 1.000 0.951 0.000 0.000 0.000 

2800 to 700 0.913 0.967 0.939 0.241 0.101 0.143 

1400 to 700 0.935 0.852 0.892 0.228 0.423 0.296 

700 to 700 0.957 0.627 0.758 0.167 0.724 0.271 

Parkinsons 

7433 to 63 0.992 1.000 0.996 0.000 0.000 0.000 

252 to 63 0.992 0.959 0.975 0.022 0.111 0.037 

126 to 63 0.995 0.762 0.863 0.019 0.540 0.036 

63 to 63 0.997 0.592 0.743 0.016 0.778 0.031 
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B. DETAILED RESULTS FOR NAÏVE BAYES ALGORITHM 
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Table B.1: predictive accuracies obtained from NB without feature selection 

Disease Class Distribution 
Class label = 0 (No) Class label = 1 (Yes) 

Precision Recall F‑measure Precision Recall F‑measure 

HeartAtt 

7061 to 435 0.967 0.784 0.866 0.140 0.572 0.225 

1740 to 435 0.967 0.802 0.877 0.147 0.554 0.233 

870 to 435 0.968 0.773 0.860 0.136 0.579 0.220 

435 to 435 0.969 0.745 0.842 0.128 0.609 0.212 

Angina 

7263 to 233 0.977 0.817 0.890 0.066 0.403 0.114 

932 to 233 0.977 0.772 0.863 0.059 0.442 0.103 

466 to 233 0.978 0.776 0.866 0.062 0.459 0.109 

233 to 233 0.978 0.728 0.835 0.055 0.489 0.098 

Stroke 

7094 to 402 0.968 0.776 0.861 0.120 0.540 0.197 

1608 to 402 0.967 0.770 0.857 0.116 0.535 0.191 

804 to 402 0.968 0.749 0.844 0.114 0.570 0.190 

402 to 402 0.968 0.727 0.831 0.107 0.580 0.181 

Diabetes 

6552 to 944 0.957 0.864 0.908 0.435 0.729 0.545 

3776 to 944 0.960 0.848 0.901 0.417 0.752 0.536 

1888 to 944 0.961 0.838 0.896 0.406 0.767 0.531 

944 to 944 0.958 0.840 0.895 0.401 0.745 0.522 

HBP 
4438 to 3058 0.745 0.692 0.717 0.594 0.656 0.623 

3058 to 3058 0.743 0.699 0.720 0.598 0.649 0.622 

Dementia 

7360 to 136 0.991 0.826 0.901 0.060 0.596 0.108 

544 to 136 0.991 0.817 0.896 0.056 0.581 0.101 

272 to 136 0.991 0.785 0.876 0.050 0.610 0.092 

136 to 136 0.991 0.742 0.849 0.043 0.625 0.080 

Cataract 

5344 to 2150 0.831 0.656 0.734 0.439 0.669 0.530 

4300 to 2150 0.833 0.636 0.721 0.430 0.684 0.528 

2150 to 2150 0.825 0.654 0.729 0.432 0.654 0.520 

Arthritis 
4398 to 3098 0.707 0.557 0.623 0.517 0.673 0.585 

3098 to 3098 0.705 0.570 0.630 0.520 0.661 0.582 

Osteoporosis 

6796 to 700 0.950 0.637 0.762 0.161 0.677 0.260 

2800 to 700 0.954 0.619 0.751 0.161 0.710 0.263 

1400 to 700 0.955 0.602 0.739 0.158 0.726 0.260 

700 to 700 0.958 0.596 0.735 0.160 0.747 0.263 

Parkinsons 

7433 to 63 0.993 0.835 0.907 0.014 0.286 0.027 

252 to 63 0.994 0.828 0.904 0.021 0.444 0.041 

126 to 63 0.994 0.784 0.876 0.017 0.444 0.033 

63 to 63 0.994 0.684 0.811 0.014 0.540 0.028 
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Table B.2: predictive accuracies obtained from NB with standard CFS 

Disease Class Distribution 
Class label = 0 (No) Class label = 1 (Yes) 

Precision Recall F‑measure Precision Recall F‑measure 

HeartAtt 

7061 to 435 0.960 0.895 0.926 0.186 0.389 0.252 

1740 to 435 0.967 0.847 0.903 0.178 0.538 0.268 

870 to 435 0.970 0.789 0.870 0.151 0.609 0.242 

435 to 435 0.975 0.712 0.823 0.130 0.699 0.219 

Angina 

7263 to 233 0.971 0.985 0.978 0.152 0.086 0.110 

932 to 233 0.977 0.838 0.902 0.072 0.391 0.121 

466 to 233 0.979 0.776 0.866 0.065 0.489 0.115 

233 to 233 0.979 0.679 0.802 0.052 0.554 0.096 

Stroke 

7094 to 402 0.949 0.988 0.968 0.200 0.055 0.086 

1608 to 402 0.956 0.926 0.941 0.163 0.254 0.199 

804 to 402 0.963 0.830 0.892 0.128 0.440 0.199 

402 to 402 0.972 0.710 0.821 0.112 0.644 0.191 

Diabetes 

6552 to 944 0.938 0.966 0.952 0.704 0.555 0.621 

3776 to 944 0.942 0.956 0.949 0.658 0.590 0.622 

1888 to 944 0.949 0.929 0.939 0.568 0.651 0.607 

944 to 944 0.956 0.892 0.923 0.487 0.714 0.579 

HBP 
4438 to 3058 0.743 0.758 0.751 0.639 0.619 0.629 

3058 to 3058 0.754 0.735 0.745 0.629 0.652 0.641 

Dementia 

7360 to 136 0.985 0.971 0.978 0.108 0.191 0.138 

544 to 136 0.988 0.928 0.957 0.086 0.368 0.139 

272 to 136 0.989 0.895 0.940 0.077 0.478 0.133 

136 to 136 0.990 0.824 0.899 0.053 0.529 0.096 

Cataract 

5344 to 2150 0.815 0.772 0.793 0.499 0.565 0.530 

4300 to 2150 0.822 0.757 0.789 0.496 0.593 0.540 

2150 to 2150 0.846 0.701 0.767 0.479 0.683 0.563 

Arthritis 
4398 to 3098 0.696 0.687 0.691 0.563 0.573 0.568 

3098 to 3098 0.700 0.643 0.670 0.546 0.609 0.576 

Osteoporosis 

6796 to 700 0.926 0.844 0.883 0.187 0.347 0.243 

2800 to 700 0.953 0.671 0.788 0.175 0.676 0.278 

1400 to 700 0.958 0.629 0.760 0.169 0.734 0.275 

700 to 700 0.965 0.542 0.695 0.154 0.811 0.259 

Parkinsons 

7433 to 63 0.992 0.994 0.993 0.000 0.000 0.000 

252 to 63 0.992 0.952 0.972 0.014 0.079 0.024 

126 to 63 0.994 0.851 0.917 0.021 0.381 0.040 

63 to 63 0.995 0.685 0.811 0.015 0.571 0.029 
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Table B.3: predictive accuracies obtained from NB with Exh-CFS-Gr 

Disease Class Distribution 
Class label = 0 (No) Class label = 1 (Yes) 

Precision Recall F‑measure Precision Recall F‑measure 

HeartAtt 

7061 to 435 0.966 0.830 0.893 0.161 0.529 0.246 

1740 to 435 0.971 0.807 0.881 0.161 0.605 0.255 

870 to 435 0.973 0.769 0.859 0.148 0.651 0.241 

435 to 435 0.973 0.727 0.832 0.133 0.678 0.222 

Angina 

7263 to 233 0.977 0.871 0.921 0.083 0.365 0.135 

932 to 233 0.980 0.778 0.867 0.067 0.498 0.118 

466 to 233 0.981 0.750 0.850 0.065 0.545 0.117 

233 to 233 0.982 0.685 0.807 0.058 0.605 0.106 

Stroke 

7094 to 402 0.965 0.829 0.892 0.135 0.470 0.210 

1608 to 402 0.970 0.766 0.856 0.123 0.580 0.203 

804 to 402 0.973 0.731 0.835 0.119 0.642 0.201 

402 to 402 0.975 0.699 0.814 0.114 0.687 0.196 

Diabetes 

6552 to 944 0.954 0.882 0.917 0.463 0.706 0.559 

3776 to 944 0.955 0.869 0.910 0.440 0.714 0.544 

1888 to 944 0.958 0.852 0.902 0.420 0.740 0.536 

944 to 944 0.961 0.831 0.891 0.395 0.765 0.521 

HBP 
4438 to 3058 0.727 0.750 0.738 0.619 0.591 0.605 

3058 to 3058 0.736 0.736 0.736 0.617 0.617 0.617 

Dementia 

7360 to 136 0.988 0.900 0.942 0.072 0.419 0.123 

544 to 136 0.991 0.855 0.918 0.069 0.581 0.123 

272 to 136 0.992 0.820 0.898 0.063 0.654 0.115 

136 to 136 0.992 0.769 0.866 0.050 0.662 0.094 

Cataract 

5344 to 2150 0.831 0.714 0.768 0.474 0.639 0.544 

4300 to 2150 0.833 0.702 0.762 0.467 0.650 0.544 

2150 to 2150 0.839 0.664 0.741 0.450 0.682 0.542 

Arthritis 
4398 to 3098 0.704 0.659 0.681 0.556 0.607 0.580 

3098 to 3098 0.706 0.638 0.670 0.548 0.623 0.583 

Osteoporosis 

6796 to 700 0.952 0.684 0.796 0.179 0.667 0.282 

2800 to 700 0.957 0.646 0.771 0.173 0.719 0.279 

1400 to 700 0.961 0.606 0.743 0.166 0.761 0.273 

700 to 700 0.965 0.570 0.717 0.161 0.800 0.268 

Parkinsons 

7433 to 63 0.992 0.987 0.989 0.010 0.016 0.012 

252 to 63 0.993 0.853 0.918 0.017 0.302 0.032 

126 to 63 0.994 0.771 0.869 0.017 0.476 0.033 

63 to 63 0.995 0.654 0.790 0.016 0.651 0.031 
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Table B.4: predictive accuracies obtained from NB with Exh-CFS-Gr+CFS 

Disease Class Distribution 
Class label = 0 (No) Class label = 1 (Yes) 

Precision Recall F‑measure Precision Recall F‑measure 

HeartAtt 

7061 to 435 0.960 0.895 0.926 0.186 0.389 0.252 

1740 to 435 0.967 0.848 0.904 0.178 0.533 0.267 

870 to 435 0.970 0.789 0.870 0.150 0.605 0.241 

435 to 435 0.973 0.710 0.821 0.127 0.685 0.214 

Angina 

7263 to 233 0.971 0.985 0.978 0.144 0.077 0.101 

932 to 233 0.977 0.838 0.902 0.072 0.391 0.121 

466 to 233 0.979 0.772 0.864 0.064 0.485 0.113 

233 to 233 0.979 0.678 0.801 0.052 0.554 0.096 

Stroke 

7094 to 402 0.948 0.987 0.967 0.182 0.050 0.078 

1608 to 402 0.957 0.928 0.942 0.171 0.261 0.207 

804 to 402 0.963 0.830 0.891 0.127 0.435 0.196 

402 to 402 0.972 0.711 0.821 0.111 0.637 0.189 

Diabetes 

6552 to 944 0.938 0.967 0.952 0.708 0.556 0.623 

3776 to 944 0.940 0.955 0.947 0.647 0.578 0.611 

1888 to 944 0.946 0.928 0.937 0.560 0.636 0.595 

944 to 944 0.955 0.882 0.917 0.463 0.709 0.560 

HBP 
4438 to 3058 0.743 0.758 0.750 0.638 0.619 0.628 

3058 to 3058 0.755 0.734 0.744 0.629 0.654 0.641 

Dementia 

7360 to 136 0.985 0.971 0.978 0.108 0.191 0.138 

544 to 136 0.988 0.928 0.957 0.086 0.368 0.139 

272 to 136 0.989 0.895 0.940 0.076 0.471 0.131 

136 to 136 0.990 0.824 0.899 0.053 0.529 0.096 

Cataract 

5344 to 2150 0.816 0.774 0.795 0.502 0.567 0.533 

4300 to 2150 0.823 0.755 0.788 0.495 0.596 0.541 

2150 to 2150 0.845 0.701 0.766 0.478 0.681 0.562 

Arthritis 
4398 to 3098 0.696 0.688 0.692 0.564 0.574 0.569 

3098 to 3098 0.702 0.642 0.671 0.547 0.612 0.577 

Osteoporosis 

6796 to 700 0.926 0.848 0.885 0.187 0.340 0.241 

2800 to 700 0.953 0.671 0.788 0.175 0.676 0.278 

1400 to 700 0.958 0.631 0.761 0.170 0.733 0.276 

700 to 700 0.965 0.542 0.695 0.154 0.811 0.259 

Parkinsons 

7433 to 63 0.992 0.994 0.993 0.000 0.000 0.000 

252 to 63 0.992 0.952 0.972 0.014 0.079 0.024 

126 to 63 0.994 0.851 0.917 0.021 0.381 0.040 

63 to 63 0.995 0.685 0.811 0.016 0.587 0.030 
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Table B.5: predictive accuracies obtained from NB with Co-WR-CFS 

Disease Class Distribution 
Class label = 0 (No) Class label = 1 (Yes) 

Precision Recall F‑measure Precision Recall F‑measure 

HeartAtt 

7061 to 435 0.954 0.934 0.944 0.197 0.262 0.225 

1740 to 435 0.965 0.847 0.902 0.167 0.497 0.250 

870 to 435 0.970 0.785 0.868 0.149 0.611 0.240 

435 to 435 0.971 0.703 0.816 0.121 0.664 0.205 

Angina 

7263 to 233 0.970 0.989 0.979 0.135 0.056 0.079 

932 to 233 0.976 0.821 0.892 0.063 0.378 0.109 

466 to 233 0.978 0.752 0.850 0.057 0.468 0.102 

233 to 233 0.980 0.648 0.780 0.052 0.597 0.095 

Stroke 

7094 to 402 0.949 0.989 0.968 0.222 0.055 0.088 

1608 to 402 0.961 0.872 0.915 0.145 0.383 0.211 

804 to 402 0.969 0.763 0.854 0.121 0.575 0.200 

402 to 402 0.972 0.690 0.807 0.106 0.647 0.182 

Diabetes 

6552 to 944 0.938 0.966 0.951 0.698 0.554 0.618 

3776 to 944 0.938 0.957 0.948 0.654 0.563 0.605 

1888 to 944 0.942 0.935 0.939 0.572 0.603 0.587 

944 to 944 0.950 0.897 0.922 0.482 0.669 0.561 

HBP 
4438 to 3058 0.732 0.726 0.729 0.607 0.614 0.611 

3058 to 3058 0.744 0.702 0.723 0.600 0.650 0.624 

Dementia 

7360 to 136 0.985 0.970 0.977 0.109 0.199 0.141 

544 to 136 0.989 0.894 0.939 0.072 0.441 0.123 

272 to 136 0.990 0.856 0.918 0.064 0.529 0.113 

136 to 136 0.990 0.779 0.872 0.047 0.596 0.088 

Cataract 

5344 to 2150 0.827 0.743 0.783 0.490 0.613 0.545 

4300 to 2150 0.829 0.733 0.778 0.484 0.623 0.545 

2150 to 2150 0.844 0.705 0.768 0.480 0.677 0.561 

Arthritis 
4398 to 3098 0.695 0.662 0.678 0.550 0.587 0.568 

3098 to 3098 0.703 0.593 0.643 0.527 0.645 0.580 

Osteoporosis 

6796 to 700 0.935 0.806 0.866 0.195 0.457 0.274 

2800 to 700 0.949 0.709 0.811 0.182 0.627 0.282 

1400 to 700 0.958 0.615 0.749 0.165 0.737 0.269 

700 to 700 0.963 0.536 0.689 0.151 0.801 0.254 

Parkinsons 

7433 to 63 0.992 0.994 0.993 0.000 0.000 0.000 

252 to 63 0.992 0.951 0.971 0.016 0.095 0.028 

126 to 63 0.994 0.850 0.917 0.021 0.381 0.040 

63 to 63 0.995 0.683 0.810 0.015 0.556 0.029 
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Table B.6: predictive accuracies obtained from NB with Fi-WR-CFS 

Disease Class Distribution 
Class label = 0 (No) Class label = 1 (Yes) 

Precision Recall F‑measure Precision Recall F‑measure 

HeartAtt 

7061 to 435 0.963 0.879 0.919 0.186 0.448 0.263 

1740 to 435 0.969 0.827 0.893 0.169 0.570 0.261 

870 to 435 0.971 0.775 0.862 0.147 0.628 0.238 

435 to 435 0.974 0.717 0.826 0.130 0.685 0.218 

Angina 

7263 to 233 0.972 0.968 0.970 0.103 0.116 0.109 

932 to 233 0.978 0.802 0.881 0.066 0.433 0.114 

466 to 233 0.981 0.755 0.853 0.066 0.536 0.117 

233 to 233 0.981 0.673 0.798 0.054 0.584 0.099 

Stroke 

7094 to 402 0.949 0.985 0.966 0.182 0.060 0.090 

1608 to 402 0.965 0.830 0.893 0.136 0.470 0.211 

804 to 402 0.972 0.740 0.840 0.120 0.627 0.202 

402 to 402 0.974 0.692 0.809 0.111 0.679 0.191 

Diabetes 

6552 to 944 0.940 0.958 0.949 0.662 0.575 0.616 

3776 to 944 0.949 0.939 0.944 0.605 0.646 0.625 

1888 to 944 0.956 0.899 0.926 0.503 0.713 0.590 

944 to 944 0.958 0.873 0.913 0.455 0.737 0.562 

HBP 
4438 to 3058 0.743 0.756 0.750 0.637 0.620 0.628 

3058 to 3058 0.753 0.738 0.746 0.631 0.649 0.640 

Dementia 

7360 to 136 0.986 0.961 0.974 0.110 0.257 0.154 

544 to 136 0.989 0.893 0.939 0.078 0.485 0.134 

272 to 136 0.990 0.853 0.917 0.064 0.544 0.115 

136 to 136 0.991 0.799 0.885 0.054 0.618 0.099 

Cataract 

5344 to 2150 0.823 0.767 0.794 0.505 0.590 0.544 

4300 to 2150 0.830 0.757 0.792 0.504 0.614 0.553 

2150 to 2150 0.841 0.714 0.772 0.483 0.665 0.560 

Arthritis 
4398 to 3098 0.701 0.657 0.678 0.553 0.602 0.576 

3098 to 3098 0.704 0.625 0.662 0.541 0.626 0.580 

Osteoporosis 

6796 to 700 0.952 0.686 0.797 0.179 0.664 0.282 

2800 to 700 0.957 0.634 0.763 0.169 0.724 0.274 

1400 to 700 0.961 0.584 0.726 0.159 0.767 0.264 

700 to 700 0.965 0.542 0.694 0.154 0.807 0.258 

Parkinsons 

7433 to 63 0.992 0.994 0.993 0.000 0.000 0.000 

252 to 63 0.992 0.951 0.971 0.016 0.095 0.028 

126 to 63 0.994 0.850 0.917 0.021 0.381 0.040 

63 to 63 0.995 0.684 0.810 0.015 0.556 0.029 
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C. THE MOST RELEVANT FEATURES SELECTED BY J48 

FOR EACH DISEASE CLASS 

Table C.1 shows the most relevant feature selected by the decision tree induction 

algorithm J48 for each disease class. Recall that the most relevant feature in a decision 

tree is the root node feature, since this is used to classify all instances. In Table C.1, for 

each disease, the feature shown in the last column is the root node feature in the 

decision tree leading to the highest F-measure value, among all decision trees built by 

J48 for all feature selection approaches and across all class distributions for that disease, 

as reported earlier in Table 4.5. The definition of the features can be found in Table 3.1. 

The second column of Table C.1 reports the feature selection approach that produced 

the corresponding decision tree, where “None” indicates that the “no feature selection” 

approach was used in a data pre-processing phase (i.e. J48 used all features). For 

instance, for the disease Heart Attack, we can observe in Table 4.5 that the highest 

F-measure value (0.61) was obtained by Exh-CFS-Gr+CFS in the class distribution with 

a ratio of 1 to 1 for the two class labels. Hence, the root node feature reported for this 

disease in the last column of Table C.1 is the one in the decision tree built when using 

Exh-CFS-Gr+CFS in a data pre-processing phase and using that class distribution in the 

training set. For the diseases Dementia and Osteoporosis, there are three and two 

(respectively) feature selection approaches which are tied in terms of the highest 

F-measure value. Despite that, there is just one reported feature, since the same feature 

was consistently selected as the root node for all of the tied models. 

Interestingly, for 5 out of the 10 diseases, the most relevant feature overall was 

“w6indager”, which represents the age of the individual (at wave 6). This is not very 

surprising, considering that all 10 diseases used as classes in our experiments are 

age-related diseases. However, considering that there is a large number of biomedical 

variables being used as features, it is perhaps somewhat surprising that age is the most 

relevant feature in half of the datasets. In addition, another simple feature, “w6indsex”, 

representing the gender of the individual, was selected by J48 as the most relevant 

feature for predicting osteoporosis, which is consistent with the fact that osteoporosis is 

known to be more common in females than in males, overall.  
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Regarding the other four diseases, the most relevant features selected by J48 were 

features directly extracted from the Nurse data in ELSA: in two cases a feature from 

wave 6 (the most recent wave), for Diabetes and Arthritis; in one case a feature from 

wave 4, for Angina; and finally in the last case a feature from wave 2, for High Blood 

Pressure. Hence, none of the constructed longitudinal features was selected by J48 as 

the most relevant feature for classification. 

 

Table C.1: Feature selected by J48 for the root node of the decision tree, in the tree with 

highest predictive accuracy for each disease. 

Disease Feature selection approach Root node feature 

Heart attack Exh-CFS-Gr + CFS w6indager 

Angina Co-WR-CFS w4clotb 

Stroke Co-WR-CFS w6indager 

Diabetes None w6hba1c 

High blood pressure Exh-CFS-Gr + CFS w2sysval 

Dementia 
Standard CFS, Exh-CFS-Gr + CFS, 

Co-WR-CFS 
w6indager 

Cataract None w6indager 

Arthritis Co-WR-CFS w6mmgsd_me 

Osteoporosis Standard CFS, Exh-CFS-Gr + CFS indsex 

Parkinson’s disease None w6indager 
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