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Abstract

The work in this thesis considers rational solutions of nonlinear partial differ-

ential equations formed from polynomials. The main work will be on the Boussi-

nesq equation and the Kadomtsev-Petviashvili-I (KP-I) equation, the nonlinear

Schrödinger equation will also be included for completeness.

Rational solutions of the Boussinesq equation model rogue wave behaviour.

These solutions are shown to be highly structured which, it is hypothesised, is

due to the inherent structure and form of integrable differential equations. Rogue

wave solutions have been observed in equations such as the nonlinear Schrödinger

equation, KP equation and the Boussinesq equation, to name but a few. By

examining the form of these solutions and considering the behaviour of the roots,

the aim is to establish the behaviour of this family of solutions. All solutions are

bounded and real.

Additionally, since a generating function for the KP equation solutions already

exists, a characterisation of the solutions will be made along with an attempt at

understanding the current generating function in order to improve its adaptability.

Links between solutions of the three equations will be shown as well as a func-

tion that can solve all three equations subject to certain criteria on the parameters.
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Chapter 1

Introduction

This chapter will begin with some motivation for consideration of rational

solutions and their applications. Real world events will be used to highlight the

importance of the study of these solutions and summarise some current research

in the field.

Moving on to the next section, the three equations that will be considered will

be given. These are the focusing nonlinear Schrödinger (NLS) equation,

iut + uxx + 2|u|2u = 0, (1.1)

the Boussinesq equation,

utt + uxx − (u2)xx − 1
3
uxxxx = 0, (1.2)

and the Kadomstev-Petviashvili-I (KP-I) equation

utx + 6u2
x + 6uuxx + uxxxx + 3σ2uyy = 0. (1.3)

The NLS equation will only be considered briefly through the thesis while the
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main work will be related to the Boussinesq and the KP-I equations.

The symmetry reductions will be briefly discussed and how they relate to these

types of equations as well as detailing why different methods are used to retrieve

solutions. Finally, an outline of the thesis will be provided.

Unless solutions contained within one chapter will be referred to in another,

then there will be no superscript notation used; u will usually denote the solution

of the differential equation and F will usually denote the polynomial that drives

this solution. In the event that solutions are compared they will be referred to as

e.g. uBE to denote which equation they solve.

1.1 Motivation

“Rogue waves” have become of more interest in recent decades as further ex-

perimentation and monitoring has occurred [10, 51, 54]. They have also been

referred to as “freak waves” or “monster waves” to name a few characterisations.

Despite an origination in folklore, it has now been proved [35] that not only do

these waves occur but they do so more frequently than originally imagined. Given

the force and unexpected formation of these waves, they present a significant prob-

lem to the safety of ships and crew should they encounter such a phenomenon.

The waves have also been found to occur in lakes not only in oceans. One piv-

otal hypothesised occurrence is that relating to the sinking of the SS Edmund

Fitzgerald on Lake Superior in America in 1975. A sighting of 3 rogue waves; a

phenomenon known as the “Three Sisters”, was reported during a storm in the

vicinity of the ship. The ship was sunk and the wreckage found had the bow and

stern separated and embedded at the bottom of the lake some 52m away from

each other. The bow upright in the mud and the stern capsized. While it could

not be proven that the rogue waves were the cause of the ship’s destruction the
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theory was supported by a sighting of at least 2 rogue waves by a nearby ship.

Evidence of the waves existence was found in 1995 at an oil rig in the North

Sea. The rig had measuring equipment for the purpose of checking the stability

of the structure itself but it was this equipment that recorded the 26m high wave

despite the local sea state only having waves of up to 12m in height.

Though these waves can have a devastating effect, the formal definition does

not mean that all rogue waves are the largest waves in the water. They are defined

as waves that are twice the height of the mean of the top third highest waves in the

surrounding water. Thus they can occur in calm waters and may be much lower

than those that cause destruction to ships. However they will still be surprising

given the local water behaviour.

This thesis will be concerned with rogue water waves but the waves have also

been discovered in other media, namely optical fibres [29, 30, 43, 57], Bose-Einstein

condensates [13], superfluids [34], the atmosphere [59] and finance [62, 63].

1.2 The Equations

The three equations that will be considered are all nonlinear partial differential

equations (PDEs) known to have soliton solutions. These soliton equations have

been studied for some time and can be shown to have rich structures and significant

behaviours with their solutions. While the equations are all nonlinear, they have

also all been shown to be solvable by the inverse scattering method which is known

to have equations with interesting solutions and a hierarchy.

Not only do these equations permit solitary waves, but rational solutions of

them elicit rogue wave type behaviour. It also transpires that when there are no

parameters, the degree of the polynomial is twice the number of waves that are

present. The situation with parametrised equations varies case by case so these
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will be explored in each individual chapter.

1.2.1 The Focussing NLS Equation

As mentioned, the NLS equation (1.1) is solvable by the inverse scattering

method [65], and has been found to have rogue wave solutions. The solutions

are only in terms of 2 variables which does restrict the analysis of the physical

behaviour to 1-dimension and time. These rational solutions of the NLS can be

described via a Wronskian formation which has still not been characterised for the

Boussinesq rational solutions. This formation for the NLS is detailed in [28]. This

is the equation that is most frequently studied when considering soliton waves and

rogue waves but this thesis will only consider it briefly.

1.2.2 The Boussinesq Equation

The Boussinesq equation (1.2) also gives rise to solutions which result in soliton

waves and its rational solutions appear as rogue waves. It is an equation that is

solvable by the inverse scattering method [2, 3, 5, 26, 65] and at present there is

no generating function for such solutions but the first 6 will be explicitly detailed

in Appendix B.1.

As a PDE, the Boussinesq equation is derived from the Navier-Stokes equa-

tion for an incompressible fluid combined with a continuity equation. Solutions

of the Boussinesq equation model long, shallow water waves; that is where the

wave depth is negligible in comparison to the wavelength. It was discovered in

1872 by Joseph Boussinesq following a physical experiment by John Scott Russell

conducted in a canal.

Historically it was Russell’s chance discovery of the “wave of translation” that

is now referred to as a “soliton wave” while conducting an experiment regarding

canal boats that led to Boussinesq’s derivation of the PDE named after him.
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1.2.3 The KP-I Equation

The KP-I equation (1.3) is the final equation that will be considered. Once

more, it is a nonlinear PDE that is solvable by the inverse scattering method

[31, 47] and thus permits soliton solutions but its rational solutions model rogue

waves.

The equation was discovered by Boris Kadomtsev and Vladimir Petviashvili

in 1970 as a generalisation of the KdV equation

ut + uxxx − 6uux = 0, (1.4)

to two dimensions. It was the first integrable equation in (2 + 1)-dimensions to

be discovered [45] and has important physical applications. These applications

include weakly two-dimensional long waves in shallow water [4, 56], ion-acoustic

waves in plasma [38] and sound waves in ferromagnetic media [60].

1.3 Symmetry Reductions

In order to calculate a symmetry reduction of a PDE with dependant variable

u and independent variables x and t, it is required that the solutions of this PDE

are left invariant under the following transformation

x∗ = x+ εξ(x, t, u) +O(ε2),

t∗ = t+ ετ(x, t, u) +O(ε2),

u∗ = u+ εφ(x, t, u) +O(ε2),

where ξ, τ and φ are called infinitesimals.
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We define the infinitesimal generator as

v ≡ ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ φ(x, t, u)

∂

∂u
. (1.5)

This is equivalent to requiring that the n’th prolongation is 0 when u and u∗

satisfies the PDE and where n is the order of the PDE and the prolongation is

defined as

pr(n)v ≡
∑
i+j≤n
i,j≥0

φ[xitj ] ∂

∂uxitj
+ v, (1.6)

with φ[r] the infinitesimal associated with
∂u∗

∂r∗
. Consider the operator D as dif-

ferentiation but dependant on what it acts on depends on whether we have to use

the chain rule for differentiation given that u is a function of x and t as well.

We define φ[x] as

φ[x] =
Dφ

Dx
− Dξ

Dx

∂u

∂x
− Dτ

Dx

∂u

∂t
. (1.7)

Here, φ[t] is merely the above equation with with Dx replaced by Dt and φ[xx] is

the above equation with φ replaced by φ[x] and the u terms being differentiated

by x again.

All of these calculations can be verified by making the substitutions into the

PDE and simplifying on the basis that u and u∗ solve the PDE.

Once we apply the prolongation to obtain an infinitesimal equation and use

the original PDE to remove the highest derivative then we can generate a system

of equations for ξ, τ and φ by equating any derivatives of u to 0 in the infinitesimal

equation. Solving this system of equations gives the infinitesimals which we use

in the following characteristic equation to obtain the symmetry,

dx

ξ
=

dt

τ
=

du

φ
. (1.8)
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Symmetry reductions can be used to find new solutions of nonlinear PDEs

from previously discovered ones. The pivotal point about the solutions that will

be found throughout this thesis is that they are not solutions that can be obtained

in this way since the highest power of x and t, or indeed, x, t and y in the (2 + 1)

dimensional case, is the same.

It will be shown that the soliton equations being considered in this thesis have

high structure and symmetry. In the case of nonlinear PDEs that are solvable

via inverse scattering, one finds that there are interesting behaviours that are not

found in non-integrable PDEs. This could be a reason as to why the integrable

PDEs have so many symmetries.

1.4 Thesis Outline

Beginning with Chapter 2 and the NLS equation as an introductory equation.

This chapter aims to cover some of the methods that will be expanded to apply to

later equations. Some background and history of the equation will be given along

with some exploration of a parametrised solution which the polynomial complex

roots of can be investigated. Trying to ascertain the effect of the parameters on

the solutions is something that will be completed for later equations as well.

Moving to Chapter 3 and one of the main equations. The Boussinesq equation

will be given along with some history and its bilinear form. There will be an

examination of what the rational solutions may look like. Both the behaviour of

the solutions of the equation and that of the complex roots of the polynomials

that drive the solutions will be explored and similarities identified. Rogue wave

solutions are also defined as the limit of some travelling wave solution. §3.5

is concerned with the physical behaviour of waves. An examination of where

any saddle points occur is conducted along with an attempt to understand what
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behaviours are common, for example is the average height of the waves uniform

thus the more waves there are the higher the central wave must be?

In §3.6 investigation of the behaviour of the roots of the F functions par-

ticularly around the pivotal cases of t close to 0 and plot these alongside their

corresponding functions u. The relationship between the behaviour of the roots

and its effect on the solution u for the known functions F is examined.

In Chapter 4, a more general form of the solutions is considered with the

addition of two parameters, α and β. Once more, the root structure and 3D

graphs are examined to understand the underlying behaviour.

Chapter 6 considers the final equation of KP-I. While a generating function

for KP-I has already been found, the methodology behind why it works seems

lacking. As such, this chapter aims to understand where the functions come from

in order to relate this to a generating function for the Boussinesq equation in the

future. Alongside this, a characterisation of the solutions of KP-I given the change

of a variable is considered.

Chapter 7 then ties together solutions of all three equations as a single function

in terms of parameters. Choices of specific parameters relate to solutions of the

different equations.
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Chapter 2

The Focusing NLS Equation

This chapter will explore the focusing NLS equation

iut + uxx + 2|u|2u = 0, (2.1)

mainly through the work by Dubard and Matveev [28]. The solutions that will

be considered are rational solutions constructed from 3 polynomials F , G and H,

the main one of concern being F whereby

un(x, t) =

{
1− 4

Gn(x, t) + itHn(x, t)

Fn(x, t)

}
exp

(
1
2
it
)
, (2.2)

and Gn(x, t) and Hn(x, t) are polynomials of degree 1
2
(n + 2)(n − 1) in both x2

and t2, and Fn(x, t) is a polynomial of degree 1
2
n(n+ 1) in both x2 and t2 and has

no real zeros.

The work will begin with a brief introduction to the background and derivation

of the equation, along with its bilinear form. After this there will be consider-

ation of the Wronskian form as defined in [28] and an exploration into how this

method produces solutions and whether it will be possible to extrapolate this to

different equations. Within this, there will be an investigation into how the roots
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of the polynomial that relates to the rational solution influences the shape of the

waves and a consideration of some plots in relation to this and the changing of

parameters.

The purpose of this chapter is to bridge the gap between current research in

the field and less investigated equations. There will be a brief discussion at the

end of the chapter as to the possibilities of further research.

2.1 Introduction

The NLS equation (2.1) is a (1 + 1)-dimensional complex equation that is,

historically, the main equation used to model water waves. It has also been

widely used in the modelling of optical fibres. Named after Erwin Schrödinger,

the equation is a nonlinear variation of the Schrödinger equation used in quantum

mechanics.

2.1.1 Background

In 1972, Zakharov and Shabat discovered the inverse scattering method to

solve the equation [65]. Prior to this, it had been used in various studies into

water waves [11, 12].

The NLS equation (2.1) permits “Bright solitons” which decay in the infinite

spatial limit. On the other hand, the de-focusing NLS equation, where the sign

in front of the modulus is changed, has “Dark soliton” solutions. These solutions

do not decay in the same limit.

It was hypothesised in [7] that for solutions of the NLS ψn, there is a relation

that

1

8π

∫ ∞
−∞

∫ ∞
−∞

(|ψn(x, t)|2 − 1)2dtdx = 1
2
n(n+ 1) = Qn, (2.3)

where Qn represents the number of distinct waves. This is an integral relation
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that links the function to the number of waves.

2.1.2 Invariants and Symmetries

Invariants and symmetries of nonlinear PDE’s are often a way to find new

solutions. While the solutions found using the methods in this thesis differ from

those that can be obtained from reductions, the invariants and symmetries will

be given.

2.1.2.1 Invariants

Making the substitutions

u→ αu∗ + β, x→ γx∗ + δ, t→ ξt∗ + ε, (2.4)

in (2.1) results in

iα
ξ
u∗t∗+ α

γ2
u∗x∗x∗+2α3|u∗|2u∗+2α2β(u∗)2 +4α2β|u∗|2 +4αβ2u∗+2αβ2ū∗+2β3 = 0.

(2.5)

It is clear that α 6= 0 to keep terms such as |u∗|2u∗, so this is divided throughout

the whole equation to result in

i
ξ
u∗t∗+

1
γ2
u∗x∗x∗+2α2|u∗|2u∗+2αβ(u∗)2 +4αβ|u∗|2 +4β2u∗+2β2ū∗+2β

3

α
= 0. (2.6)

In order for the substitutions to leave the equation invariant it is required that

ξ = 1, γ2 = 1, α2 = 1, αβ = 0, β2 = 0, 2β
3

α
= 0. (2.7)
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Solving these equations gives the following invariants

u→ ±u∗, (2.8a)

x→ ±x∗ + δ, (2.8b)

t→ t∗ + ε. (2.8c)

As such, all translations in x and t and no possible translations of u that are

invariant. There are also no time scalings that maintain invariance.

2.1.2.2 Symmetries

If the following transformation is made then the calculation of the symmetries

can be considered as easier

u→ i
2

√
2ū (2.9a)

x→ ix̄ (2.9b)

t→ t̄ (2.9c)

Under this transformation the (2.1) becomes

iūt̄ − ūx̄x̄ + |ū|2ū = 0 (2.10)

and the following accelerating wave reductions are found

ū1 = ω1(z) exp(i[Θ(z) + µt̄(x̄− 2
3
µt̄2)]) z = x̄− µt̄2, (2.11a)

ū2 = ω2(z) exp(−i[Θ(z) + µt̄(x̄− 2
3
µt̄2)]) z = x̄− µt̄2, (2.11b)

where both ω(z) and Θ(z) satisfy some specific ordinary differential equations and

µ is a parameter.
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2.2 Bilinear Form

To find the bilinear form for the NLS we make the substitution u = G/F

where G is complex and F is real. Once this has been used in (2.1), the solution

written in terms of the Hirota ‘D’ operator is [44]

F
[
(iDt + D2

x)G · F
]
−G

[
D2
xF · F − 2|G|2

]
= 0, (2.12)

such that this can be written as a system for the NLS as


(iDt + D2

x)G · F = 0,

D2
xF · F = 2|G|2,

(2.13)

where the operators Dx and Dt are given by

Dm
x Dn

t a(x, t) · b(x′, t′) = (∂x − ∂x′)m(∂t − ∂t′)na(x, t)b(x′, t′) |x=x′,t=t′ . (2.14)

The form (2.13) will be used frequently as it is often that polynomials which

solve the bilinear form can be constructed as rational solutions of the equation.

Rational solutions then model rogue waves.

2.3 Lax Pair

The NLS hierarchy that has been worked through yields rational-oscillatory

solutions since they are all multiples of eit/2. Beginning with the Lax pair of the

focusing NLS equation which has been taken from [25] with some alterations; the

matrix σ3 has been multiplied by −1 and the translations u→ u/2 and v → −v/2

have been imposed. For the proceeding equations the notation change from the
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book is u→ u∗ and v → u. Also, c2 = 1 and c3 = 0. The Lax pair is thus

ψ
φ


x

=

−iλ −1
2
u

1
2
u∗ iλ


ψ
φ

 , (2.15)

ψ
φ


t

=

 i(1
4
uu∗ − 2λ2) −(1

2
iux + λu)

−(1
2
iu∗x − λu∗) −i(1

4
uu∗ − 2λ2)


ψ
φ

 (2.16)

where u solves (2.1) and u∗ is the complex conjugate of u.

If λ is left arbitrary and the Lax pair is solved for the simple seed solution

u0 = eit/2, then the solutions ψ0 and φ0 are both multiples of

exp

(√
−4λ4 − λ2x

2λ

)
. (2.17)

From this, it is clear that letting λ = ±i/2 will yield special and simpler solutions

of the equation. For simplicity, λ = i/2 is selected.

Using this value of λ and the simple solution u0 in the Lax pair gives a system

of first order differential equations which need to be solved. Namely,

∂ψ

∂x
− 1

2
ψ = −1

2
exp

(
1

2
it

)
φ, (2.18)

∂φ

∂x
+

1

2
φ =

1

2
exp

(
−1

2
it

)
ψ. (2.19)

By differentiating (2.18) once with respect to x and substituting in (2.19) results

in,

∂2ψ

∂x2
=

1

2

∂ψ

∂x
− 1

4
ψ +

1

4
exp

(
1

2
it

)
φ. (2.20)

Now it is possible to add half (2.18) to (2.20) to give,

∂2ψ

∂x2
= 0 =⇒ ∂ψ

∂x
= f(t) =⇒ ψ = xf(t) + g(t), (2.21)
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with f and g some currently unknown functions. This can then be used to deter-

mine φ from (2.19) in terms of f(t) and g(t). In order to establish what f and g

are it is necessary to use (2.16). One solution is

ψ0 = (x+ 1 + it) exp

(
1

4
it

)
φ0 = (x− 1 + it) exp

(
−1

4
it

)
, (2.22)

where |ψ0|2 + |φ0|2 = 2F1 and F1 is the polynomial solution. Then u0, ψ0, φ0, F0

and F1 are used in the following equation

un+1 =
4ψnφ

∗
nFn

Fn+1

− un, (2.23)

to determine u1 and then substitute this back into the Lax pair to get ψ1, φ1 and

thus F2 so that u2 can be retrieved.

When solving the second order differential equations there are always two

arbitrary integration constants. In the first 3 functions they have been chosen so

that the leading order of the denominator has coefficient 1 and the second constant

can then be calculated via |ψ|2 + |φ|2 where the constant is chosen so that any odd

powers of x and t are removed. This is in order to simplify the solutions found

and keep them of even order.

2.4 Wronksian Form

A method of generating solutions u of (2.1) is detailed. The solutions consid-

ered are quasi-rational solutions, in this case rational solutions in terms of x and

t with some additional parameters, all multiplied by e2it. The solutions are gen-

erated through Wronskians of particular functions with additional specific scalar

multiples.

A Wronskian is a determinant of a square matrix with a given structure. Con-
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sider the Wronskian denoted W of functions f1(x) up to fn(x), then this is

W (f1, ..., fn)(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(x) f2(x) . . . fn(x)

f ′1(x) f ′2(x) . . . f ′n(x)

...
...

. . .
...

f
(n−1)
1 (x) f

(n−1)
2 (x) . . . f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.24)

where superscripts denote differentiation.

The solutions as given in [28] are of the form

u = −q2n(0)B1−2ne2iB2tW2|k=0

W1

. (2.25)

The definitions of which are given below.

Working term by term; q2n(0) is a constant. The function q2n(k) is a polyno-

mial in k of degree 2n and defined as follows

q2n(k) =
n∏
j=1

(
k2 − ω2mj+1 + 1

ω2mj+1 − 1
B2

)
, (2.26)

with

ω = exp

(
iπ

2n+ 1

)
, (2.27)

and the mj’s integers satisfying 0 ≤ mj ≤ 2n− 1 and ml 6= 2n−mj for all l and

j.

Since it is necessary to have 0 ≤ mj ≤ 2n− 1 and ml 6= 2n−mj for all l and

j then there are only 4 cases for n = 3. Always take m1 = 0, since it is possible

to interchange any of the mj’s and trying m1 = 1 has no solutions. When m2 = 1

then m3 = {2, 4}, when m2 = 2 then it must be that m3 = 5 and when m2 = 4 it

must be that m3 = 5. It seems that increasing the mj’s just results in the roots

moving further away from the origin in a vertical direction.
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The element B is a constant such that if x2 + t2 →∞ then |u|2 → B2. Since

the NLS equation is invariant under the transformation v(x, t) → Bv(Bx,B2t)

then we choose B = 1 without loss of generality. After this, (2.25) becomes

u = −q2n(0)e2itW2|k=0

W1

. (2.28)

The term W2 is a Wronksian of size 2n+ 1 such that

W2 = W (f1, ..., f2n, f). (2.29)

If we consider j = 1, ..., n then the functions fj and fn+j are defined as

fj(x, t) = D2j−1
k f(k, x, t)|k=1, (2.30)

fn+j(x, t) = D2j−1
k f(k, x, t)|k=−1, (2.31)

where Dk is an operator of the form

Dk =
k2

k2 + 1

∂

∂k
, (2.32)

such that

D2
k(A) =

k3

(
k

d2A

dk2
+ k3 d2A

dk2
+ 2

dA

dk

)
(k2 + 1)3

. (2.33)

The function f(k, x, t) is then

f(k, x, t) =
exp(kx+ ik2t+ Φ(k))

q2n(k)
, (2.34)

where Φ(k) is a polynomial of degree 2n in k with coefficients that are parameters
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ψ through

Φ(k) = i
2n∑
l=1

ψl(ik)l. (2.35)

Due to the form of f(k, x, t) and its differentials, W2|k=0 is equivalent to only

considering the expansion of the determinant in the last column of which only the

first term is non-zero. The denominator W1 in (2.25) is a Wronskian of size 2n as,

W1 = W (f1, ..., f2n). (2.36)

It is possible to relate the u1 solution of this to that given in Appendix A by

making the following substitutions

ψ1 = 0, ψ2 =

√
3

4
, t→ t

4
, x→ x

2
.

Other cases have not been investigated but it is likely that a similar substitutions

will suffice.

This method works for the NLS equation but given that there are a lot of

questions regarding it, many of which will be discussed in §2.5, it does not seem

realistic to think that this can be adjusted to use for the Boussinesq or KP-I unless

these questions are answered. The use of a dummy variable will be a pivotal

method that will be employed again, however the intricacies of the remainder of

the method are somewhat convoluted.

2.4.1 Root and Solution Behaviour

Having tried to understand the methodology and achieved some progress but

not enough to conclusively explain all the functions used, perhaps there will be

something to discover from considering plots of the solutions. As has been men-

tioned previously, there are parameters introduced by the method which it will
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be interesting to see how these affect the solution. The roots that will be referred

to are the complex zeros of the polynomials F that form the solutions u.

The hope is that these graphs will be a good comparison for Boussinesq and

potentially KP-I, though obviously additional dimensions in KP-I will greatly af-

fect the behaviour, later in the thesis. Given that the solutions will be complex,

it becomes necessary to identify whether taking the real part, the imaginary part,

or the modulus of the solutions will relate best to later equation solutions. Origi-

nally it seemed that taking the imaginary part of u and plotting this related to the

roots the most, however for n = 1 it seems that |u| works best actually showing

a wave unlike either the imaginary or the real part of u. At n = 1, the imaginary

plot shows no wave at t = 0, the real plot only shows a trough at t = 0 and the

modulus shows the wave at t = 0 as expected. These three options are shown in

Figure 2.1.

Figure 2.1: Plot of the imaginary part of u1, the real part and the modulus in
purple, along with the complex roots of F1 in blue.

The graphs in Figure 2.2 are using the form of u3 as detailed in Appendix A.

The movement of these roots is quite interesting where the oval and central

roots morph into a star like formation. This change takes the original 3 wavelets

to then form one wave (as at t = −0.2) before the waves reform in a complex

manner before resulting in the high central wave and then 2 subsequent waves on

either side of it. The solutions have multiple joining and separating behaviours in

a narrow space of time before the final system becomes apparent at t = 0.
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Figure 2.2: |u3| for different values of negative t plotted with the complex roots
of F3.

2.4.2 Altering the Parameters ψi

When n = 1 there are only two parameters with ψ1 and ψ2, these relate to

positive translations on the real and imaginary axis, i.e ψ1 = 10 relates to a

positive shift on the real axis by 10 whereas ψ1 = −10 to a negative shift.

When considering ψ2, taking ψ2 = 10 means that the roots start at roughly

±40i instead of ±20i. This means that at t = 0, since the speed of the roots
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movement does not change, instead of having reached the vicinity of the real axis

and having been repelled away, the roots are still travelling towards it. In this

manner ψ2 seems partially related to the time t rather than a spatial shift.

With ψ3, this moves the roots in a negative shift along the the real axis with

the roots having a greater distance between them as well. There is also a slight

rotation occurring which can be seen in Figure 2.3 for both t = −10 and t = 0.

(a) (b)

Figure 2.3: ψ3 = 0 (red), 5 (blue), −5 (green), 10 (purple) and 20 (black).

Much like with ψ2, ψ4 seems to do more of a time-shift. When ψ4 = 20 the

roots are moving away from the axes on −10 ≤ t ≤ 10 so they have already met

near the real axis at a greater negative time. This can be seen in Figure 2.4.

(a) (b)

Figure 2.4: ψ4 = −5 (green), 0 (red), 5 (blue), 10 (purple) and 20 (black).
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It may be that these parameters represent some movement up the NLS hier-

archy; often it is found that the parameters can relate to new time variables.

2.5 Discussion

It is prudent to note that this chapter is not an in-depth exploration into the

rational solutions of the NLS equation. There has been much work and methods

that have not been mentioned or explored here including [9, 21, 32].

The discovery of the Wronskian form of rational solutions for the NLS equation

enforces the belief that there may be solutions for other soliton equations such

as the Boussinesq equation. While it will be seen later that the structure of the

solutions for the NLS equation differs greatly from that of the Boussinesq and

KP-I equations, it may be possible to adjust the Wronskian form of the NLS in

order to find solutions for these equations. It is worth noting that there are pivotal

differences with these solutions, namely that the bilinear form is derived not by

the second logarithmic derivative in x but by the ratio of a complex and a real

polynomial. Also, the fact that the equation is primarily dealt with as a system

will alter its comparability to the Boussinesq and KP-I which we chose not to

work with in its system form.

In later chapters there will also be comparison of the functions FNLS to the

polynomials that form the rational solutions of the Boussinesq and KP-I equa-

tions. It will be seen that all of these solutions have many similarities and a high

amount of structure. This further supports the possible existence of a Wronskian

generating function for all of these solutions.

There are many questions that can be asked of this style of generating solutions

of the NLS equation. It is not clear as to why q(2n) works and what its relation is

to the equation as a whole. It is possible that it has some relation to the complex
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roots of the polynomials that solve the bilinear form. When working with the

generating function, it has mj = j − 1 but there is no exploration of what would

happen if this was a different function or simply random selection. If it was known

how Dk was found this would surely help in applying a similar method to other

equations. Also a justification for f being of its form and similarly for fj. It would

additionally be interesting to know what impact Φ has on the solutions other than

introducing parameters. Given that it is a function of the dummy variable k, this

is not a trivial matter.

A pivotal question is how the complex roots of the polynomials F inform the

behaviour of the solutions u. This is a query that relates to the whole thesis as

it is a common method for exploring the solution behaviour and yet there is no

concrete understanding of how all the roots affect the solutions. While it has been

mentioned that complex roots nearing the real line create the waves, the impact

that the other roots have is not known.

As mentioned, there are many things that could be extended from this chapter

but it is not the main concern of this thesis.
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Chapter 3

The Boussinesq Equation

In this chapter the Boussinesq equation is considered,

utt + uxx − (u2)xx − 1
3
uxxxx = 0. (3.1)

After introducing the equation and its derivation along with some of its symme-

tries, we discuss the form that will be used in this chapter.

There will be some initial work that assesses the most common type of solutions

that are gained from the Boussinesq equation and how these are formed before

progressing on to a discussion of the family of solutions we seek. These solutions

will be categorised and their physical behaviour explored in a variety of different

methods.

The chapter will finish with some more combinatorial work on the conservation

laws as well as discussing the relation of the Boussinesq equation to other nonlinear

PDE’s.
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3.1 Introduction

The Boussinesq equation is a (1 + 1)-dimensional equation suitable for mod-

elling a variety of waves. It is primarily an equation that models wave propagation

at shallow depth but can be altered to produce stable long wave or stable short

wave solutions dependent on a sign change. Our main focus will be on the stable

long waves and this will be described by the equation we use.

In Chapter 4 it will be shown that parameters can be introduced into (3.1)

under specific conditions which extends the Boussinesq equation to a generalised

form.

3.1.1 Background

Joseph Boussinesq derived the Boussinesq equation [15, 16] in 1871 after the

experiment conducted by John Scott Russell. The well-known experiment was

the first recorded observation of a “wave of translation”, also known as a soliton

or solitary wave, in which the size and shape of a constructed wave travelled

a significant distance down a channel before it began to dissipate. This was a

leading discovery that lead to much research into soliton waves.

This equation can be solved via the inverse scattering method [14, 48] making

it an integrable equation which gives rise to many forms of interesting behaviour.

3.1.2 Derivation

To derive the Boussinesq equation, begin with the Navier-Stokes (N-S) equa-

tions, move to the shallow water wave equations and then arrive at the Boussinesq.

The N-S equations model movement of fluids. They can be concisely sum-

marised as

∂v

∂t
+ (v.∇)v − ν∇2v = −∇ω + g, (3.2)
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with v the flow velocity, ν the kinematic viscosity, ω the thermodynamic work

and g any body forces including gravity. In 3-dimensions these are explicitly

∂v1

∂t
+ v1

∂v1

∂x
+ v2

∂v1

∂y
+ v3

∂v1

∂z
− ν

(
∂2v1

∂x2
+
∂2v1

∂y2
+
∂2v1

∂z2

)
= −∂ω

∂x
+ g1, (3.3a)

∂v2

∂t
+ v1

∂v2

∂x
+ v2

∂v2

∂y
+ v3

∂v2

∂z
− ν

(
∂2v2

∂x2
+
∂2v2

∂y2
+
∂2v2

∂z2

)
= −∂ω

∂y
+ g2, (3.3b)

∂v3

∂t
+ v1

∂v3

∂x
+ v2

∂v3

∂y
+ v3

∂v3

∂z
− ν

(
∂2v3

∂x2
+
∂2v3

∂y2
+
∂2v3

∂z2

)
= −∂ω

∂z
+ g3. (3.3c)

Given that the Boussinesq equation is concerned with 1 directional flow then

the N-S reduces to,

∂v

∂t
+ v

∂v

∂x
− ν ∂

2v

∂x2
= −∂ω

∂x
+ g1, (3.4)

where we have replaced v1 with v as there is no longer any need for subscripts.

Since we are dealing with 1 directional flow then we have no sheer forces

affecting the modelling and as such ν = 0 reducing the equation farther to

∂v

∂t
+ v

∂v

∂x
= −∂ω

∂x
+ g1. (3.5)

For incompressible flow such as the Boussinesq models there is ∇ω ≡ 1
ρ
∇p for

ρ the density of the fluid and p the pressure. Additionally, subject to hydrostatic

pressure p = ρgh with g gravity and h the distance from bed to surface.

The N-S equation now becomes

∂v

∂t
+ v

∂v

∂x
= −g∂h

∂x
+ g1, (3.6)

which is essentially one of the shallow water wave equations in 1 dimension. Ad-
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ditionally there needs to be conservation of mass which can be expressed as

∂h

∂t
+
∂(hu)

∂x
= 0, (3.7)

with h the area of the flow at point x. The combination of these two equations

under additional calculations will result in the Boussinesq equations

∂u0

∂t
= g

∂h

∂x
+
g

2

∂

∂x

(
h2

H
+H2∂

2h

∂x2

)
, (3.8a)

∂h

∂t
= −H∂u0

∂x
−
√
gH

∂

∂x

(
h2

H
− H2

6

∂2h

∂x2

)
, (3.8b)

as given in [16].

From previous work in [16] we know that h = f(x− t
√
gH) and thus

h2

H
− H2

6

∂2h

∂x2
= g(x− t

√
gH), (3.9)

for f and g some undetermined functions. As such we can establish that

∂

∂t

(
h2

H
− H2

6

∂2h

∂x2

)
= −

√
gH

∂

∂x

(
h2

H
− H2

6

∂2h

∂x2

)
. (3.10)

Using this equality and solving (3.8) to eliminate differentials of u0 retrieves

the following, singular equation

∂2h

∂t2
+ gH

∂2h

∂x2
+ gH

∂2

∂x2

(
3

2

h2

H
+
H2

3

∂2h

∂x2

)
. (3.11)

Subject to the translation x→ ix, this can be changed to the same form as written

in [16] as

ηττ − gHηξξ −
3g

2
(η2)ξξ −

gH3

3
ηξξξξ = 0, (3.12)

with η the vertical displacement, ξ the horizontal displacement, H the height of the
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water at rest, τ time and g the gravitational acceleration. These are represented

in Figure 3.1. This equation models long waves in shallow water; this can be

shallow seas, lakes or harbours to name some situations. The fluid is considered

to be incompressible and irrotational. Rotational fluid introduces turbulence and

other mitigating factors that will complicate the equation.

For a full work through of how the equations are derived, please see [16].

Figure 3.1: Representation of some of the variables in (3.12)

This equation can be nondimensionalised by making the following transforma-

tions

ξ = iHx, τ =

√
Ht
√
g
, η = −2

3
Hu, (3.13)

which results in the dimensionless equation (3.1) which we will be working with

in this chapter. It is worth noting that there is another transformation that will

give (3.1) without the need for a complex scaling. This transformation is

ξ = Hx, τ =

√
Ht
√
g
, η = 2

3
H(u− 1). (3.14)

It is possible to change many of the signs in (3.12) through simple scaling and

translation of ξ, τ and η. While doing so will change the boundary conditions

that may be imposed on the equation, it is not a matter that will affect us given

that we only require solutions to decay as (x, t)→∞.

28



The Boussinesq equation in the form (3.1) is used to model incompressible and

irrotational flow of fluid. It can be derived from the coupled shallow water wave

equations, which, despite the name, can still model deep waves. The restrictions

of the shallow water wave equations require that the horizontal dynamics are the

driving force of wave behaviour and the vertical dynamics are negligible. This

explains why the Boussinesq equation can still model waves out at sea or in large

lakes.

3.1.3 Invariants and Symmetries

As seen by the two dimensionless transformations in the §3.1.2, (3.12) is in-

variant under

u→ −u− 2
3
H x→ −ix t→ t, (3.15)

however, the main concern is the invariants of the dimensionless equation.

3.1.3.1 Invariants

Making the substitutions

u→ αu∗ + β, x→ γx∗ + δ, t→ ξt∗ + ε, (3.16)

in (3.1) and recalling that

ut =
∂u

∂u∗
∂u∗

∂t∗
∂t∗

∂t
and ux =

∂u

∂u∗
∂u∗

∂x∗
∂x∗

∂x
, (3.17)

we can establish the following equation

αξ2u∗t∗t∗+αγ
2u∗x∗x∗−2α2γ2(u∗x∗)

2−2(αu∗+β)αγ2u∗x∗x∗− 1
3
αγ4u∗x∗x∗x∗x∗ = 0. (3.18)
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Rearranging the equation and noting that α 6= 0 in order to retain terms like u∗t∗t∗ ,

we simplify this to

ξ2u∗t∗t∗ + (γ2 − 2βγ2)u∗x∗x∗ − αγ2(u∗)2
x∗x∗ − 1

3
γ4u∗x∗x∗x∗x∗ = 0. (3.19)

Similarly ξ 6= 0 so we can divide through by this giving

u∗t∗t∗ +

(
γ2 − 2βγ2

ξ2

)
u∗x∗x∗ −

αγ2

ξ2
(u∗)2

x∗x∗ −
1

3

γ4

ξ2
u∗x∗x∗x∗x∗ = 0. (3.20)

In order for the substitutions to leave the equation invariant, we require

γ2

ξ2
(1− 2β) = 1,

αγ2

ξ2
= 1,

γ4

ξ2
= 1. (3.21)

Consequently we see that γ 6= 0 as well. Solving these equations gives the following

invariants

u→ αu∗ +

(
1− α

2

)
, x→ ±

√
αx∗ + δ, t→ ±αt∗ + ε. (3.22)

This establishes that any translations in x and t will keep the equation invariant

and providing that the scaling in x is the square root of the scaling in t then we

can interchange the sign without affecting the equation. Any scaling in u need be

of the same factor as that of t and the translation in u is directly related to its

scaling.

3.1.3.2 Symmetries

Since calculating the symmetries can be a complicated process we will simplify

(3.1) by making a different change of variables. We can remove the uxx term and
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make all the factors 1 through

u→ 1
2
ū+ 1

2
, x→

√
3x̄, t→ i

√
3t̄. (3.23)

Under this transformation (3.1) becomes

ūt̄t̄ + ūūx̄x̄ + 1
2
(ūx̄)

2 + ūx̄x̄x̄x̄ = 0. (3.24)

Using the method as described in §1.3 we have the following infinitesimals

ξ = αx̄+ β, τ = 2αt̄+ γ, φ = −2αū,

for α, β and γ constants. Then by solving the characteristic equation derived from

these to give the following classical symmetry reductions

ū1 = ω1(z) z = γx̄− βt̄ (3.25)

ū2 =
ω2(z)

t̄+ γ/(2α)
z =

x̄+ β/α

(t̄+ γ/(2α))1/2
. (3.26)

Additionally there are non-classical symmetry reductions [24] of

ū3 = ω1(z)− 4γ2t2 z = x̄+ γt̄2 (3.27)

ū4 = t̄2ω(z)− x̄2

t̄2
z = x̄t̄ (3.28)

ū5 = t̄2ω(z)− (x+ λt̄5)2

t̄2
z = x̄t̄+ 1

6
λt̄6 (3.29)

ū6 = t̄−1ω(z)− 1
4
t̄−2(x̄− 3c1t̄

2)2 z = x̄t̄−1/2 + c1t̄
3/2. (3.30)

The rational solutions that will be discussed in this thesis are not obtainable by

symmetry reductions.

If we make the inverse transformation of (3.23) then we have a classical sym-
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metry for (3.1).

3.2 Bilinear Form

Given that we are considering rational solutions of the Boussinesq equation

that are real and bounded, then we can state that we require our solutions of the

equation u and its derivatives to tend to 0 as (x, t) → ∞. We use this in the

following section to set all integration constants to 0.

By setting u = ωx and substituting into (3.1) it is possible to then integrate

through the whole equation and set the constant to 0. This retrieves a different

formulation of (3.1) into which we can substitute w = 2Fx, where F is a poly-

nomial solution, and integrate once more. Multiplying through by F 2, the final

equation is the Bilinear form of (3.1) and is as follows:

FFtt − F 2
t + FFxx − F 2

x −
1

3
FFxxxx +

4

3
FxFxxx − F 2

xx = 0. (3.31)

It is worth noting that F (x, t) = 0 only when it is the constant 0 function since

we can have no real roots in F if we require bounded solutions in u.

Finding solutions of (3.31) in terms of polynomials is equivalent to finding

rational solutions of (3.1). In §3.6 we will consider the complex roots of these

functions F . The information that the roots provide can give us an indication of

how the solution will behave and expectations of higher order behaviour.

The Boussinesq equation in Hirota bilinear form can also be written as,

(
D2
x + D2

t −
1

3
D4
x

)
F · F = 0. (3.32)
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In [6] the Hirota bilinear form is used with an asymptotic expansion

Fn = 1 + εF
(1)
N + ε2F

(2)
N , (3.33)

to determine special solutions. It is then established that the bilinear form trun-

cates, that is the order 1 terms of ε vanish for any N , when

F
(1)
N =

N∑
i=1

exp(kix− kit3 + η0
i ). (3.34)

This gives some soliton solutions of the equation. Hirota then detailed a gen-

eral formula for Fn which, after taking the long wave limit, can produce rational

solutions which relate to rogue waves. We have employed this method in §3.4.

Initially we shall restrict our consideration of solutions to even power polyno-

mials for F . It is possible afterwards to extend this into a general form. However

doing so either introduces parameters as in §4 or leads to complex solutions, see

Appendix B.2. The six known even power polynomial functions can be found in

Appendix B.1. As can be seen from these, it is not only even power polynomials

but each function Fn is of degree n(n+ 1) as well.

The leading order terms, of combined x and t, of the polynomial have coef-

ficients that are binomial coefficients

(
n(n+ 1)/2

k

)
where n represents how far

up the hierarchy we are and k relates to the half power of t that the coefficient

corresponds to. Hence it is possible to express the leading order terms as a power

of the function (x2 + t2), indeed one could also consider the functions as a power

of (x2 + t2 + 1), i.e. a power of F1 plus lower order terms.

A formula for the other coefficients remains to be found, i.e all the coefficients

of degree less than the degree of the polynomial. Currently it should be noted that

if they are rational coefficients then the denominator is a power of 3; a situation

most likely encountered due to the coefficient of uxxxx in (3.1). A compact form
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of the solution is

Fn = (x2 + t2 + 1)N +
∑

i+j≤2(N−1)
i,j≥1

aijx
itj, (3.35)

where N =
n(n+ 1)

2
and aij are constants to be determined.

3.3 BE Hierarchy

Let us consider the Lax pair of the Boussinesq equation where in all following

calculations ψn is considered to be a function of x and t. The Lax pair provides

much information relating to the equation and has historic applications in gener-

ating functions for a number of integrable equations. Given that the Boussinesq

equation is a fourth order PDE with two time derivatives though, does result in

a more complex Lax pair than, for example, the NLS equation.

The Lax pair of (3.31) is,

∂

∂t
ψn = −i

∂2

∂x2
ψn − iψn

∂

∂x
ωn, (3.36)

∂3

∂x3
ψn = −3

2

(
∂

∂x
ωn −

1

2

)
∂

∂x
ψn −

3

4

(
∂2

∂x2
ωn + i

∂

∂t
ωn

)
ψn + λψn, (3.37)

where
∂

∂x
ωn = un as found in [3, 18, 19, 26, 64]. It can be verified that

∂4

∂t∂x3
ψn =

∂4

∂x3∂t
ψn, (3.38)

when un satisfies (3.1), as required.

Taking u0 = 0; a known solution of (3.1), in (3.37) establishes,

∂3

∂x3
ψ0 −

3

4

∂

∂x
ψ0 = λψ0. (3.39)

Solving this results in an equation in terms of λ gives solutions where the term
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exp(A
√

16λ2 − 1) appears often for A some function. Therefore setting λ = ±1
4

will simplify the function ψ0 significantly. As λ is some parameter we will opt to

take λ = 1
4

for the proceeding calculations and work with a much simpler set of

differential equations that we can solve.

The solution to (3.37) when n = 0 is

ψ0 = G1(t) exp(x) +G2(t) exp
(
−1

2
x
)

+G3(t) exp
(
−1

2
x
)
x. (3.40)

At this point there are two functions of the three that have the same coefficient of

an exponential and two functions that have the same degree of x. An interesting

solution can be found by setting G1(t) = 0 when compared to the NLS hierarchy.

Firstly the solution of the simultaneous differential equations (3.37) and (3.36) is

ψ0(x, t) = {(x+ it)c3 + c2} exp
(
−1

2
x− 1

4
it
)

+ c1 exp(x− it), (3.41)

for c1, c2 and c3 constants. We can identify similarities with this equation and

that of φ0 from NLS hierarchy by taking c1 = 0, c2 = −1 and c3 = 1 with the

additional factor of e−x/2. This gives another comparable relation between the

Boussinesq equation and the NLS when looking for rational solutions.

While it is possible to take a general solution of (3.37) for n = 1 the solu-

tion is much more complex than for n = 0 and so creates troubles for finding a

simultaneous solution for (3.36)

The solution to (3.37) for n = 2 has coefficients of e−x/2 and ex. In order to

simplify, consider taking only the parts of the solution for (3.37) that multiply

e−x/2 and setting the parameter in front of the other exponential to 0. However,

the solution needs to also satisfy (3.36) and ideally the coefficient of the highest

power of x or t we want to set to 1 to give a monic polynomial. This can be

achieved by setting one of the integration constants to 1 so that we arrive at the
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equation,

ψ1 =
exp(−1

2
x− 1

4
it)

t2 + x2 + 1

{
x4 − t4 − 2t2x+ 2x3 − 2t2 + 4x2 − 7 + c4t

+i(2t3x+ 2tx3 + 4tx2 + 10tx+ c4x+ 6t+ c4)
}
. (3.42)

It is useful to consider how else to group these functions. Since c4 is a constant

it could also be imaginary so similarly it is possible to have

ψ1 =
exp(−1

2
x− 1

4
it)

t2 + x2 + 1

{
x4 − t4 − 2t2x+ 2x3 − 2t2 + 4x2 − c̃4x− 7− c̃4

+i(2t3x+ 2tx3 + 4tx2 + 10tx+ 6t+ c̃4t)
}
. (3.43)

When Lax pair work has been completed on the NLS equation to retrieve

solutions ψn and φn, the first integration constant is found by setting the leading

order coefficient of x to 1 as has been done here. The second constant is then

found by considering |ψn|2 + |φn|2 and selecting the constant such that the odd

order terms are 0 as mentioned in Chapter 2. Unfortunately the same method

does not work with the Boussinesq equation.

Since here the terms being considered are those which share the same expo-

nential factor, ψ0 has become,

ψ0 = ((x+ it)c3 + c2) exp

(
−x

2
− it

4

)
, (3.44)

Taking the square of the modulus of (3.44) and setting one constant such that

numerator is a monic polynomial gives,

t2 + x2 + 2c2x+ c2
2

ex
. (3.45)

As can be seen the only option of c2 that will remove any odd order terms is 0 but
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this may not be the best decision since if c2 = 1 then |ψ0|2 = (F1 − 2x)e−x but

if c2 = 0 then |ψ0|2 = (F1 − 1)e−x. It is a matter of selecting either the correct

constant term or the correct coefficient of the odd order x term but it cannot be

both.

We still need to find the recursive function in terms of u, F and ψ in order to

move up the hierarchy. This is not appearing to give an easy to compute solution.

Either the method in terms of the selection of constants needs to be altered in

order to work, or the whole method needs to be adjusted to accommodate the

Boussinesq equation. It is assumed in this that such a method for finding new

solutions is possible, but given the high structure of the polynomial solutions and

the behaviour of other soliton equations this is reasonable to do.

3.4 Limit of Travelling Wave Solution

In a paper by Ablowitz and Satsuma [6], rational solutions of the KdV, KP-I

and the Boussinesq equation were achieved by taking the long wave limit of the

travelling wave solution.

Starting with,

utt + uxx − 2u2
x − 2uuxx −

1

3
uxxxx = 0, (3.46)

we consider u(x, t) = w(z) again with z = x − ct. After this substitution the

equation is transformed into,

c2 d2w

dz2
+

d2w

dz2
− 2

(
dw

dz

)2

− 2w
d2w

dz2
− 1

3

d4w

dz4
= 0. (3.47)

Following the same procedure as that for the KdV we integrate through the

equation in order to simplify it, bearing in mind that we are looking for bounded
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solutions.

c2 dw

dz
+

dw

dz
− 2

(
w

dw

dz

)
− 1

3

d3w

dz3
= a1, (3.48)

but a1 = 0 since we require w and its differentials to tend to 0 as z tends to

infinity.

Integrating again,

c2w + w − w2 − 1

3

d2w

dz2
= a2, (3.49)

but again a2 = 0. We cannot integrate this equation straight away but we can

multiply through by
dw

dz
to give us,

d2w

dz2

dw

dz
= 3c2w

dw

dz
+ 3w

dw

dz
− 3w2 dw

dz
. (3.50)

Integrating gives us,

1

2

(
dw

dz

)2

=
3

2
c2w2 +

3

2
w2 − w3, (3.51)

dw

dz
= ±w

√
3(c2 + 1)− 2w. (3.52)

Separation of variables gives us the following travelling wave solution,

w(z) =
3

2
(c2 + 1) sech2

(√
3

2

√
c2 + 1(a3 + z)

)
, (3.53)

u(x, t) =
3

2
(c2 + 1) sech2

(√
3

2

√
c2 + 1(a3 + x− ct)

)
. (3.54)

Now let η1 =
√

3c2 + 3(x− ct) + a1, with a1 some arbitrary constant, and we

can rewrite u(x, t) as,

u(x, t) =
6(c2 + 1)eη1

(eη1 + 1)2
. (3.55)

In order to replicate the procedure used for the KdV equation we need the
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solution of the bilinear equation such that the second logarithmic derivative of it

gives the above function. It transpires that the same form of function works, at

least for N = 1, that is,

F1(x, t) = 1 + eη1 , (3.56)

Performing a Bäcklund transformation on this should retrieve the two-soliton

solution though one would hope that this follows the same expansion as that of

the KdV.

The current problem which was fixed in the KdV situation and is yet to be

fixed in the Boussinesq is that the arbitrary constant could be selected so that

there was a term of order 1. In the Boussinesq, a series expansion of our solution

u(x, t) already has a term of order 1. Also, we have not determined the value of c

as had been done in the KdV case. Determining the value of c could fix both of

these issues.

It is possible to verify that the constant k can be expressed as k2 = c2 + 1.

Considering (3.56) and setting k2 = c2 + 1 gives

F1(x, t) = 1 + exp
{√

3k(x±
√
k2 − 1t) + a1

}
. (3.57)

Now consider a series expansion of F1(x, t) in terms of k up to order 1 to have

1 + ea1 +O(k). (3.58)

and thus set ea1 = −1. Substituting this into the (3.57) results in

F1(x, t) = 1− exp
{√

3k(x±
√
k2 − 1t)

}
. (3.59)
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Taking a series expansion in terms of k gives,

F1(x, t) =
√

3(it± x)k +O(k2). (3.60)

The second logarithmic derivative of F1(x, t) is then

u(x, t) = − 2

(x± it)2
+O(k). (3.61)

Using the same format as in [6] consider un(x, t) = [2 ln{Fn(x, t)}]xx and take,

Fn(x, t) = exp

(
n∑
i=1

µiηi

)
+

n∑
j=1

(
j−1∑
i=1

ln(Ai,j)µiµj

)
, (3.62)

where

ηi =
√

3ki(x+ εi

√
k2
i − 1t) + di, (3.63)

with εi = ±1 and the µ’s are either 1 or 0.

To calculate A1,2 substitute un(x, t) = 2{ln(Fn(x, t))}xx into the Boussinesq

equation and solve. The values of d1 and d2 are not required in order to solve

this, however it is necessary to solve for both ε1ε2 = 1 and ε1ε2 = −1 since Maple

requires that these be substituted in to simplify the equation.

A1,2 =
3(k1 − k2)2 + (ε1

√
k2

1 − 1− ε2
√
k2

2 − 1)2

3(k1 + k2)2 + (ε1
√
k2

1 − 1− ε2
√
k2

2 − 1)2
. (3.64)

Moving on to n = 3 verifies that A1,3 and A2,3 follow the conjectured format from

[6]. Again let ed0 = α1 and ξ1 =
√

3k1(x+ ε1
√
k2

1 − 1t), thus,

F1 = 1 + α1eξ1 , (3.65)

so O(1) = 1 + α1 resulting in α1 = −1 as before. For the two-soliton solution
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there is

F2 = 1 + α1eξ1 + α2eξ2 + A1,2α1α2eξ1+ξ2 . (3.66)

Where now consider things of order 1 and of order k.

O(1) : 1 + α1 + α2 + α1α2A1,2, (3.67)

O(k) : k1α1 + k2α2 + (k1 + k2)A1,2α1α2. (3.68)

Solving these two equations simultaneously does not give a nice result for α1 and

α2. What [6] seems to have done with their equation is to determine some series

expansion of A1,2 dependant on the choice of what ε1ε2 is equal to and uses this

to find an answer for α1 and α2.

The choice of how to compute the asymptotic expansions was somewhat con-

fusing when dealing with higher order polynomials and as such the method is

not one that can be replicated with a full explanation. Regardless, this type of

generating function is not a closed form as is desired.

3.5 Shape and Structure of the Solutions

In order to better understand these rogue wave solutions, it is worthwhile

considering their physical behaviour. The waves reach maximums at different

values of x, though uniformly for t = 0. This can be seen in Figure 3.2. An

investigation into whether the number of waves affects the height is productive as

well, this would relate to the force involved.

3.5.1 Contour Graphs

Considering contour plots of the solutions u2 up to u5 as shown in Figure 3.3,

it is possible to clearly see height and positional behaviour of the waves. One of
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(a) (b)

Figure 3.2: 3D plots of u3 and u4

the most integral points being that the waves closest to the origin are always the

highest with the paired waves decreasing in height as we move farther away.

(a) (b)

(c) (d)

Figure 3.3: Contour plots of u2, u3, u4 and u5 respectively.

It can also be seen that there are occasionally troughs or peaks that occur in a
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non-standard formation. For instance with u5 there are two waves orthogonal to

the standard peaks but of an almost insignificant height. Altering the number of

contours can greatly alter the graphs shown but it is worth noting that while the

majority of behaviour is fixed in the neighbourhood of t = 0, there are subsequent

excited behaviours in other regions nearby. This behaviour will be of great interest

in Chapter 4.

3.5.2 Position of Maximal Wave Height

Given that un has n peaks located around the origin, the highest peak for odd

n is always at the origin. For u3 the additional peaks are located at approximately

(±2.55, 0). With u5 they are located at approximately (±2.16, 0) and (±4.99, 0).

With every peak there is also a trough to be considered. It seemed that the

troughs of u5 could be related to the peaks of u4 but this is not directly the case.

There is also the additional trough that occurs after the last peak which would

not appear in u4.

For even valued n there is no central peak but u2 has peaks at (±2.89, 0) and

u4 has them at (±1.09, 0) and (±3.77, 0).

In addition to these main waves there are “half-waves” that occur perpendicu-

lar to the main waves. These waves are clearly distinct from the surface yet they

do not reach the height of the full waves. They appear at instances where two

or more full waves share the same vicinity and the combination results in a mass

that rises from the surface but is not distinct from the full waves that create it.

As the two waves nearest the origin join at the edge, these waves form.

Given its formation, u1 has no “half-waves”. They are located at approxi-

mately (±2.08, 0) for u2, (±4.01, 0) for u3, (±1.41, 0) for u4 and (±2.94, 0) for

u5. Analytically there are “half-waves” on the outer perimeters according to the

numerical calculations but this is regarded as numerical error from the code given
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that the heights of these supposed waves are negligible.

3.6 Roots of the Bilinear Form Solutions

After investigation of the roots of F1 to F5 in terms of x, it is possible to vary t

and view the behaviour as time progresses. This analysis has led to an interesting

occurrence that all the roots follow very regimented trajectories. There are two

lines of symmetry for each function, one being the real axis and the other the

imaginary axis. These symmetries are maintained throughout the variation of t.

At large positive or negative t the roots appear in an equilateral triangular form

with the apex on the imaginary axis. This sort of triangular structure has been

noted in the Vorob’ev-Yablonski polynomials, but the roots of (3.1) are rotated

90◦ when compared with the Vorob’ev-Yablonski roots [22]. These polynomials

are rational solutions of the Painlevé II equation. The number of roots on each

side of the triangle Fn is n for the functions. Since (3.31) is invariant under the

transformation x → −x then any complex root that exists in the first quadrant

will have a partner root in the third quadrant. Since we establish the roots x

as functions of t, we only consider real values of t. One can use the complex

conjugate root theorem, with this specification of t and the form of the solutions,

to establish that the roots exist in complex conjugate pairs. The combination of

these two points leads to the two lines of symmetry.

The deformation that occurs around t = 0 is not replicated in the polynomials

of Vorob’ev and Yablonski. As t tends towards 0 the roots deform into an oval

with the height greater than the width. Prior to this there are situations where

two roots share the same vicinity, in these cases they seem to abide by collision

dynamics and repel away from each other. The structure at t = −10 and t = 0

are shown in Figure 3.4(a) and 3.4(b) respectively.
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(a) (b)

Figure 3.4: Complex Roots of F2 (circle), F3 (square) and F4 (diamond).

One can see that the number of ovals of a particular function at t = 0 is exactly

that of the number of triangles at t = ±10.

The roots also form a bowed square structure at certain times t which is shown

in Figure 3.5.

Figure 3.5: Complex Roots of F4 showing a bowed square structure.

This structure seems similar to the structure of the generalised Hermite poly-

nomials [22] with the addition of the roots on the imaginary axis. The generalised

Hermite polynomials are rational solutions of the Painlevé IV equation. Thus the

roots of the polynomials for the Boussinesq equation look like a rotated version

of the Vorob’ev-Yablonski polynomials at large t but then move into something
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like the generalised Hermite polynomials before the state at t = 0 with their oval

structure. This gives a link between the roots of the Boussinesq bilinear form

solutions and the Painlevé equations.

In order to understand the system more we will begin by investigating when

a function’s roots repel with other roots of the same function and then progress

on to see what happens when roots of two different polynomials share the same

point.

An interesting fact to note, if we consider the grouping the even number wave

solutions and the odd number wave solutions separately, is that as the the degree

of the polynomial increases the apex of the root triangle moves closer to 0. Since

the root can never be 0 this could suggest that the functions will be of a finite

number, but it would be natural given other equations with rogue wave solutions

to assume that there are an infinite number.

3.6.1 Shared Roots

It transpires that no function F ever shares roots within the same polynomial,

the roots only coalesce with other functions since it transpires that the multiplicity

of any root is 1. It appears that when roots of the same polynomial come within

a given distance of each other that they seem to repel and alter both their speed

and direction so as not to collide.

The polynomials F1 and F2 have a pair of roots that coalesce above the real

axis at two separate times (this is replicated below the real axis) but none of the

other roots do so. The times at which this happens are t = ±1

3

√
15 + 6

√
19. F1

and F3 have a pair of roots that do so above the real axis but at four separate

times, again replicated below the real axis. F1 and F4 have a pair of roots but

they only share the same point at two times again like with F1 and F2. F1 and F5

have two sets of shared points, the root closest to 0 from F5 coalesces four times
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and the root from F5 that is neither the closest nor the farthest from 0 coalesces

with the F1 root twice.

In terms of when the roots share the same space, the following is observed:

• F2 and F3 only have two points that coalesce at 4 times .

• F2 and F4 have a pair that coalesce 4 times.

• F2 and F5 have a pair of points that coalesce 6 times, however at the first

and last collision they seem to share the same root over a period of time

rather than at a distinct time.

• F3 and F4 have a pair of roots that coalesce 6 times (the roots nearest 0)

and a pair that coalesce twice.

• F3 and F5 have no roots that coalesce.

• F4 and F5 have the roots closest to 0 coalesce 8 times and 4 times for another

pair of roots (farthest root for on imaginary axis for F4 and the middle root

for F5).

At present it is unclear what can be deduced from this but it seems like a pat-

tern is forming whereby we can establish some behaviour common to the different

functions. An in depth numerical analysis has not yet been completed for this.

3.6.2 Colliding Roots and Number of Collision Events

When two roots from the same polynomial come close to each they abide

by some collision dynamics and are propelled away from the interaction with an

increase in the speed of their movement. This speed increase is observed but has

not been numerically verified.

Define a collision event as a situation where two roots come within the neigh-

bourhood of each other and then alter their linear or quadratic trajectory nearing
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and leaving this neighbourhood. Counting the number of these events for each

polynomial, F1 obviously has no collisions or interactions with its two roots. Con-

sidering only negative time t since the positive time will just replicate the same

number of collisions again. Bearing this in mind, consider rotational symmetry

in all the counting so the whole solution will have 4-times the number of collision

listed.

• F2 has only one collision event with roots on the imaginary axis.

• F3 has only one collision event, again with roots only on the imaginary axis.

• F4 has 4 collisions; 3 interactions with roots on the imaginary axis but there

is also an interaction with two roots that do not sit on the axis in each

quadrant.

• F5 behaves in the same way as F4 and again the top row of complex roots do

not add any number of interactions, so it is the F4 structure that determines

the collisions.

There seems to be some pairing occurring with the polynomials such that for

each even n, Fn and Fn+1 have the same number of collisions with their roots.

This may have something to do with whether the function u(x, t) has a central

wave or not which may explain how the collision dynamics of the roots affects the

overall solution.

The reason for these roots seemingly repelling each other has not been ex-

plained. It is known that the solutions have roots of multiplicity 1 and therefore

roots of the same polynomial are not expected to share the same space, how-

ever the fact that they avoid a perimeter around other roots and change their

behaviour is not justified by this fact. This behaviour is most likely a result of

the interesting dynamics that occur in integrable equations.
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3.6.3 Root Trajectories

There seems to be a correlation in the even wave root trajectories and the

odd wave trajectories. The even wave roots have a circular zone about the origin

that they follow the circumference of but never enter. The odd trajectories on

the other hand seem to have an exponential decay around this circular zone. An

interesting fact to note is that the zone for F4 is smaller than that of F2 and

contained completely within it, so we assume that F6 will be smaller still and as

n→∞ in Fn the circle approaches the origin. From previous work we know that

the roots of the polynomials can never be the origin as this would result in u(x, t)

tending to infinity.

The trajectories that each function’s roots take are shown in Figure 3.6. The

coding of these figures is given in Appendix E.2. The blue dots represent the

initial position of the root at t = 0 and the red dots are the points at t = 10. Due

to the symmetry we have only considered positive t as the behaviour is reflected

for negative t. The line connecting the two dots represents the path of the root

and it is graded from blue to red to highlight when the root moves quickly and

when its speed slows.

The behaviour at F2 and F3 is interesting but still fairly simple. The complex

roots do not move in a linear or even quadratic way but can be seen to repel if they

come in the vicinity of a neighbouring root as has been mentioned previously. The

most interesting behaviour is observed for F3 and F5 where the interaction between

the greater number of roots obstructs the paths greatly. Some roots succeed in

maintaining a linear path but this is not the standard behaviour. It is worth

noting that roots never cross or share the same space so when the trajectory lines

cross it indicates that the roots are obtaining that space at two distinct times. The

behaviour relating to the roots moving closer to the origin can also be observed

in these figures. The axes were removed for clarity.
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(a) (b)

(c) (d)

Figure 3.6: Complex Root Trajectories of F2, F3, F4 and F5 respectively where
blue represents t = 0 and red t = −7.

3.6.4 Root and Wave Solution Behaviour

At t = 0 the horizontal line of complex roots that is closest to the real line

determines where the peaks of the waves occur as shown in Figure 3.7. This

behaviour is expected since nearing an asymptote of the equation will result in

peaks with the highest peaks relating to the roots closest to the asymptote. From

the graphs it seems that the roots are central to where the wave maximum is. It

is possible however, that the outer waves instead of being symmetrical may be

tilted slightly towards to origin. This has not been analytically explored however

it would be an interesting extension.

All polynomials except F2 give at least two roots that sit exactly on the imag-
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(a) (b)

Figure 3.7: Complex Roots of F3(x, 0) and F4(x, 0) with their corresponding so-
lutions u(x, 0).

inary line. The closest root for F2 has a real part that diminishes as the accuracy

is increased so it is reasonable to assume that this is a numerical error.

If we first consider only functions with an odd number of waves then the error,

that is the difference between the location of the complex root and the maxima

of u(x, t), increases as the complex roots move further away from the origin. The

same goes for the even number of waves functions. A problem does arise when

considering the combination of the two. As the roots of all polynomials move

further away from the origin the error increase until the farthest two roots, that

from F4 and then from F5 show that the error for F5 is slightly less than that of

F4. This is not as anticipated but may be due to the fact that there are an even

number of waves for F4 and since currently we only have F2 to compare it with

this does not give a lot of data for comparison.

Let us assume that uniformly the error increases as the roots move away from

the origin, this begs the question of what the limit of this error can be as well as

if the roots ever move outside of a waves and instead sit over a minima or a point

where u(x, t) = 0.
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3.7 Discussion

As mentioned in §3.2 the denominator of any rational coefficients is believed

to be a multiple of 3 given the form of the equation and the coefficient of uxxxx, it

will be interesting to see what happens to the solutions if we change the coefficient

of uxxxx via a transformation.

In terms of the behaviour of the waves there is much that can be done. Cur-

rently it has not been ascertained whether the maximum height of the main wave

is related to the number of waves present. It could be that the average height

of the waves is uniform across all functions or that there is some equation which

details the maximum height of the wave given the number of other waves present.

This seems intuitive given that mass is preserved in the solutions.

It has not been investigated whether there are pivotal times at which the waves

merge and separate either. As will be seen in Chapter 7, there are times when

wave separation seems to be at critical times that can be expressed in surd form.

Similarly, as mentioned in §3.6.1 there could be a numerical analysis of com-

plex root crossings and also of how close roots must come together before their

trajectory is altered.

It still remains to find a generating function in a wronskian form for the Boussi-

nesq along with the other analysis listed that could enlighten us as to why the

solutions behave in such a way.
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Chapter 4

Generalised Solutions of the

Boussinesq Equation

This chapter will explore the generalised Boussinesq equation where the pa-

rameters α and β are introduced into the equation. To begin, the full equation

will be given as well as some interesting nonlinear superposition occurrences. The

parameters are introduced as coefficients of some other functions that are required

in order to keep the function solving the Boussinesq bilinear form. The behaviour

of these additional functions will also be considered.

Moving on, there will be an exploration into the physical behaviour that these

parameters influence. This will be completed for both the solutions which give

an even number of waves and those that give an odd number of waves as the

behaviour can be somewhat different. The even or oddness of the function will be

determined at the state α = β = 0. There will also be some work regarding limits

of these parameters and the effect on the solutions along with proofs.

There will be a brief consideration of additional symmetries that relate the

parameters and the variables before moving to conclude the chapter.

Given that the solutions discussed in this chapter are a combination of FBE
n
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then superscript notation will be used where FGBE
n denotes the generalised Boussi-

nesq polynomial solutions.

4.1 The Equation

Interestingly for a nonlinear differential equation, it is possible to find solutions

which are a linear combination of the original functions with specific coefficients

and the addition of two more polynomials Pn and Qn. This work is published in

[23]. These solutions still solve the original equation

utt + uxx − (u2)xx − 1
3
uxxxx = 0, (4.1)

and its bilinear form

B(F, F ) = FFtt − F 2
t + FFxx − F 2

x −
1

3
FFxxxx +

4

3
FxFxxx − F 2

xx = 0. (4.2)

Theorem 4.1. It is possible to construct a solution of the bilinear form (4.2)

comprised of 2 solutions of the bilinear form along with 2 polynomials P and Q.

The following equation gives the construct

FGBE
n (x, t;α, β) =FBE

n (x, t) + 2αtPn−1(x, t) + 2βxQn−1(x, t)

+ (α2 + β2)FBE
n−2(x, t), (4.3)

for n from 2 to 5, FBE
0 = 1, P0 = Q0 = 0, P and Q functions of x and t and with

α and β parameters.

Currently this has only been verified for n from 2 to 5 but the assumption is

that this will be true for all n subject to finding the polynomials Pn and Qn. The

polynomials Pn and Qn can be found in Appendix C.1.
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It is still possible to solve the polynomials and determine their complex roots

but there will now be 3 variables in them. In Chapter 3 the roots were solved for

x in terms of t and with (4.3) there will also be an α and β involved.

Let

Φ±n (x, t) = xPn(x, t)± itQn(x, t), (4.4)

where Pn and Qn are the same polynomials as in (4.3) such that FGBE
n satisfies

(4.2).

Conjecture 4.1. The polynomials Φ±n (x, t) given in (4.4) satisfy the bilinear form

(4.2).

Conjecture 4.1 and Theorem 4.1 combined, result in the following lemma.

Lemma 4.1. Taking Φ±n (x, t) as given in (4.4), then the function FGBE
n (x, t;α, β)

from (4.3) can be written as

FGBE
n (x, t;α, β) =FBE

n (x, t) + (α + iβ)Φ+
n−1(x, t) + (α− iβ)Φ−n−1(x, t) (4.5)

+ (α2 + β2)FBE
n−2(x, t), (4.6)

for n < 6, which is a linear combination of four functions FBE
n ,Φ±n and FBE

n−2

that solve (4.2). The proof is computational by entering these functions into the

bilinear form and showing that the form equates to 0. We conjecture that the same

will happen for the functions of n > 6.

4.2 Methods for Calculating P and Q Functions

Since there are fewer coefficients to calculate in the Pn and Qn functions than

their FBE
n counterparts, perhaps there is a way to utilise this in order reduce

calculation time. If it were possible to establish some equalities between the
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functions FBE
n , FBE

n−2, Pn and Qn then it may be that FBE
n can be calculated quicker

using these equalities than the ansatz in the original (4.2).

Given that the operator B, as given in (4.2) is bilinear, and from [23] we know

that tPn−1 ± ixQn−1 satisfies the bilinear form, we can establish that,

B(tPn, tPn) = B(xQn, xQn), (4.7)

B(xQn, tPn) = −B(tPn, xQn), (4.8)

by equating real and imaginary parts.

Since B(FGBE
n , FGBE

n ) = 0 for all α and β and B(FBE, FBE) = 0 for any FBE

we can also establish that

B(FBE
n , tPn−1) = −B(tPn−1, F

BE
n ), (4.9a)

B(FBE
n−2, tPn−1) = −B(tPn−1, F

BE
n−2), (4.9b)

B(FBE
n , xQn−1) = −B(xQn−1, F

BE
n ), (4.9c)

B(FBE
n−2, xQn−1) = −B(xQn−1, F

BE
n−2), (4.9d)

B(FBE
n , FBE

n−2) + B(FBE
n−2, F

BE
n ) = −4B(tPn−1, tPn−1). (4.9e)

Note that with equations (4.9a) and (4.9b) as well as (4.9c) and (4.9d) that we

can replace FBE
n with FBE

n−2 and the same equality holds, the reason for which is

not trivial. It may be that there is some underlying symmetry here that has not

been evaluated. The equalities from (4.7) and (4.8) are also retrieved once more.

It transpires that the modulus of the sum of the leading order coefficients of

Pn and Qn are always 2
n(n+1)

2 . The functions share some other patterns and can
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be written as,

Pn = (2n+ 1)xn(n+1) +
∑

i+j≤(N−2)
i,j≥0

aijx
2it2j + (−1)ntn(n+1)

Qn = xn(n+1) +
∑

i+j≤(N−2)
i,j≥0

bijx
2it2j + (−1)n(2n+ 1)tn(n+1).

The leading order terms are mirrored between Pn and Qn, that is if the coefficient

of a leading order term say x4t2 of P2 is 5 then the coefficient of t4x2 in Q2 is

(−1)25.

4.3 Behaviour of the New Functions

Since there are now parameters introduced into the solutions there is more

that can be investigated regarding their impact. One such thing to consider is

how the α and β alter the solutions or the solutions’ complex roots. It is necessary

to consider not just one solution but to investigate if their are any differences

between the even and odd solutions regarding this as well. It transpires that it is

possible to also complete some proofs regarding limiting behaviour with α and β

also.

4.3.1 Behaviour of FGBE
2 (x, t, α, β)

The behaviour found in this section will likely be mirrored for many of the even

n generalised functions. There will be additional behaviour from the additional

roots but the behaviour near the origin should be the same or very similar.

As an introductory step, first examine the behaviour of each of these new

parameters individually. Setting β = 0 and varying α for FGBE
2 it is possible to

compare the standard root behaviour to that of the generalized root behaviour
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around t = −10 and t = 0. These values of t were chosen in particular as they

show the most distinct behaviour within the polynomial.

(a) (b)

Figure 4.1: Complex root paths of FGBE
2 (x,−10, α, 0) and FGBE

2 (x, 0, α, 0) respec-
tively. The red lines are for positive α and black is negative.

Firstly we notice that the sign of alpha does not matter when t = β = 0 which

can be verified by looking at the full equation of FGBE
2 where this combination

of values for t and β reduces the equation to F2 + α2. As t → 0 all roots move

towards the real axis at the same speed and so result in the formation seen in

Figure 4.1(b).

In Figure 4.1(a), the triangular formation of the roots is maintained as α goes

from −20, 000 to 20, 000 but the orientation of the triangle changes. It transpires

that this change occurs between α = 19 and α = 20 where the roots have come

steadily closer together until they interact much as they did previously with what

appear to be collision dynamics. Once this collision occurs the roots then expand

out. At some point the roots come close to the real axis but since there can never

be real roots they propel themselves away once more. The second turning point

occurs when 6, 800 ≤ α ≤ 10, 200 where the roots come close to the real axis

then move off. The natural question now is what occurs in the 3D plots around

these values of α. It transpires that some odd behaviour occurs as the roots come

very close to the real axis, the waves seem to oscillate within themselves with a
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greater trough and grow and shrink repeatedly until the roots move away from

the axis once more when the waves stabilise. Looking at the behaviour of the 3D

plot around the α = 20 point suggests that the alteration in the root behaviour

mirrors the change in the waves direction. Initially the waves move away from

each other on the t-axis but after the root collision they seem to move away from

each other on the x-axis.

The behaviour with α = 0 and β varying has a slightly more interesting result

where at t = −10 the roots curve in a clockwise way before tending off in a straight

line. The apex of the original triangular formation will obviously come close to

the real axis and then move off at roughly 90◦ from its original trajectory. This

behaviour is show in Figure 4.2(a). Again as t → 0 the roots move down at the

same speed and result in the structure observed in Figure 4.2(b).

(a) (b)

Figure 4.2: Complex root paths of FGBE
2 (x,−10, 0, β) and FGBE

2 (x, 0, 0, β) respec-
tively. The blue lines are for positive β and green is negative.

It would be reasonable to assume that when both α and β vary the effect is

that of the rotation from α at t = −10 (considering roots defined in terms of

t) and the shift away from the origin from β. When t = 0 all roots are pushed

away from the origin but the trajectory of each would be determined by the size

of β in relation to α as to which line the root is more likely to follow. Under

experimentation it is seen that the roots of a function where both α and β vary
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does not precisely change by the ratio of α and β, when looking at the function

FGBE
n it becomes clear why.

The larger α and β in the FGBE
n function, the more the input from FBE

n−1 will

have an effect.

(a) (b)

Figure 4.3: Complex roots of FGBE
2 and the corresponding solutions u2(x, 0) with

α = t = 0 and β = 10 in Figure 4.3(a) and α = t = β = 0 in Figure 4.3(b).

By comparing Figures 4.3(a) and 4.3(b) we can see that one of the waves

increases in size while the other reduces if we alter β in comparison to when

β = 0. Interestingly this does not result in the net height of both waves being

maintained though, with Figure 4.3(a) still being lower overall than Figure 4.3(b).

This transference of energy may well have gone into the width of the waves as we

see that the lower wave in Figure 4.3(a) is much wider than its counterpart when

β = 0. Waves still appear as a coupling of roots come close to the real axis, as has

been observed before, but when there are 4 roots within the vicinity of a wave,

the width of this wave increases and the symmetry is lost. The highest wave is

retrieved with the two roots that come closest to the real axis where the lowest

waves roots never come as near.

When we vary α instead of β the waves no longer reach their maximum at

t = 0 but instead for positive α the maximum is reached at negative t (a lower

value of t for higher α) and the waves move further away from each other as
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the roots that near the real axis move further apart. This behaviour is shown in

Figure 4.4.

By considering (4.3) with the knowledge that the functions Pn−1 and Qn−1 are

functions of even powers of x and t, one can see that symmetry in the imaginary

axis is maintained when we set β = 0 and vary α since sending x→ −x does not

change the equation. However, since β is multiplied by x, if we set α = 0 and

vary β then the symmetry is lost.

Figure 4.4: Complex roots of FGBE
2 (x,−1.5, 50, 0) with uGBE2 (x,−1.5, 50, 0).

4.3.2 Behaviour of FGBE
3 (x, t, α, β)

As in §4.3.1, this behaviour will likely be extrapolated to the odd n generalised

functions. Once more, additional roots will clearly have additional behaviours but

the behaviour at the origin should be similar if not the same. Figure 4.5 shows

the behaviour of the maximums for both α and β changing. It should be noted

that large values of the parameters are needed in order to see a change in the 3D

graphs.

Now α is fixed as 0 and β varied as well as the converse. The complex roots of

the solution FGBE
3 are shown in Figures 4.6 and 4.7. The symmetries that were

observed in FGBE
2 are no longer present for most of the graphs. Instead the full

61



Figure 4.5: 3D plot of F3
GBE for α = −4000 and β = 1000.

(a) (b)

Figure 4.6: Complex root paths of FGBE
3 (x,−10, α, 0) and FGBE

3 (x, 0, α, 0) respec-
tively. The red lines are for positive α and black is negative.

graphs with both negative and positive values of the parameter have symmetry

but it is not necessarily that the negative value of the parameter is the mirror of

the positive parameter. Indeed, Figure 4.6(a) has some very interesting behaviour.

The information shown in Figure 4.6(b) will not be explored as the varying of the

parameter only takes the roots back on the same root that they travelled when

the sign of |α| is changed.
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(a) (b)

Figure 4.7: Complex root paths of FGBE
3 (x,−10, 0, β) and FGBE

3 (x, 0, 0, β) respec-
tively. The blue lines are for positive β and green is negative.

Very large values of |α| and |β| are used in the figures and it is clear that

there are certain turning points. It may be that these turning points pertain

to a distinct change in the behaviour of the solutions since they are not always

related to the alteration from a positive value of the parameter to a negative one.

Numerically these turning points are as follows. For t = 10 values of α at turning

points are between α = 1185.18 and α = 1185.16 and between α = 1938.81 and

α = 1938.83. For t = 10 values of β at turning points are between β = 834.53

and β = 834.55 which is one of the ellipses, between β = 834.55 and β = 834.53

which is the other of the ellipses, between β = 140079.73 and β = 140079.75 and

between β = 140079.75 and β = 140079.73. As is seen, it is occasionally very

large values of the parameters until these turning points occur.

4.3.3 Limiting Behaviour

One can look at the trajectory graphs and deduce that the difference between

positive and negative β is merely a reflection in the imaginary axis. However, when

considering α this cannot be true else the symmetry would be broken. Indeed

varying α, symmetry is maintained throughout but the roots follow parabolic-like
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paths providing that they are not the roots that reside on the axis. Should the

roots then come close to the imaginary axis they change direction once again at

approximately 90◦ which is the only break of the curve.

As β increases from 0 some of the waves split to increase the total number of

waves for each function. This phenomena is discussed further in §4.3.4. It seems

at first that altering β splits waves apart until there is a central wave and a circular

group of waves. Once this separation and formation period has passed, the waves

that surround the central waves then seem to rotate round as they move farther

away from the origin.

For x = 0 we find that the peak develops as α = t3 and in the limit and

as |α| → ∞ the maximum is 4. For α = 0 there are 3 peaks one of which sits

on t = 0. This develops as β = t3 and in the limit the maximum is 4. These

behaviours can be seen for all functions in the Figures 4.10 and 4.11 respectively.

Figure 4.8 shows graphs of the maximums that occur along x = 0 for α = 0

and t = 0 for β = 0. In Figure 4.8(a) the positive α values occur on the positive

t axis and the negative values on the negative t axis. The opposing occurs for

Figure 4.9(a) where the positive β values occur on the negative t axis and vice

versa for the negative β values. Positive and negative values of α and β have been

plotted in different colour sets for clarity.

The images shown in Figures 4.10 and 4.11 look somewhat simplistic as Maple

did not have a way of creating a heat map. As such, these graphs were created

using a similar code to that found in Appendix E.5.

Lemma 4.2. The functions uGBE2 up to uGBE5 have one maximum that moves

along a line in x when we consider β = 0 and vary α, or t with α = 0 and varying

β. These maximums tend to a limit as α or β respectively tend to ±∞. The limit

is 4.

Proof of uGBE
2 , uGBE

3 , uGBE
4 and uGBE

5 as α→∞.
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(a) (b)

(c) (d)

Figure 4.8: Time evolution plots of the maximums of u2, u3, u4 and u5 for β =
0, x = 0 and α positive for the blue/yellow colour scheme and negative for the
purple/grey colour scheme.

Consider the limit as α→∞ when β = 0 in which a maximum of the functions

uGBE2 , uGBE3 , uGBE4 and uGBE5 all occur on x = 0 for α both positive and negative.

Let x = 0 since the maximums always occur on these, and t = c2α
1/3 + t2, t =

c3α
1/5 + t3, t = c4α

1/7 + t4 and t = c5α
1/9 + t0 respectively for uGBE2 , uGBE3 , uGBE4

and uGBE5 . These powers of α represent how the waves develop in the limit. These

have Taylor series in the limit as

uGBE2 (0, c2α
1/3 + t2, α, 0) ∼ 4

27 c2
4 + 54 c2

(9 c2
6 − 18 c2

3 + 9)α2/3
+O

(
1

α

)
, (4.10a)

uGBE3 (0, c3α
1/5 + t3, α, 0) ∼ 4

6 c3
10 − 18 c3

5 + 1

c3
2 (c3 + 1)2 (c3

4 − c3
3 + c3

2 − c3 + 1)2 α2/5
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(a) (b)

(c) (d)

Figure 4.9: Time evolution plots of the maximums of u2, u3, u4 and u5 for α =
0, t = 0 and β positive for the blue/yellow colour scheme and negative for the
purple/grey colour scheme.

+O
(

1

α3/5

)
, (4.10b)

uGBE4 (0, c4α
1/7 + t4, α, 0) ∼ 4(10 c4

14 + 36 c4
7 + 3)

c4
2 (c4 − 1)2 (c4

6 + c4
5 + c4

4 + c4
3 + c4

2 + c+ 1)2 α2/7

+O
(

1

α3/7

)
, (4.10c)

uGBE5 (0, c5α
1/9 + t5, α, 0) ∼ 12

5 c5
18 − 20 c5

9 + 2

c5
2 (1 + c5)2 (c5

2 − c5 + 1)2 (c5
6 − c5

3 + 1)2 α2/9

+O
(

1

α3/9

)
. (4.10d)

Given that the first term is required to be to independent of α and only real

values of c are considered, try the following substitutions c2 = 1, c3 = −1, c4 = 1

and c5 = −1. For the time being, disregard when ci = 0 as these are the waves
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(a) (b)

(c) (d)

Figure 4.10: Heat map of uGBE2 , uGBE3 , uGBE4 and uGBE5 when x = 0, β = 0 and |α|
is increased.

that move linearly and they will be proven later. These values of the ci’s can also

be verified numerically. Now the series is recalculated.

uGBE2 (0, α1/3 + t2, α, 0) ∼ 4

t22 + 1
+O

(
1

α1/3

)
(4.11)

uGBE3 (0,−α1/5 + t3, α, 0) ∼ 4

t23 + 1
+O

(
1

α1/5

)
(4.12)

uGBE4 (0, α1/7 + t4, α, 0) ∼ 4

t24 + 1
+O

(
1

α1/7

)
(4.13)

uGBE5 (0,−α1/9 + t5, α, 0) ∼ 4

t25 + 1
+O

(
1

α1/9

)
(4.14)

where the leading terms are maximal when ti = 0 and the maximums are 4.

Returning to the linear waves that occur when c3 = c4 = c5 = 0, it transpires

that only uGBE3 gives a maximum of 4 and the others have different heights. This
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(a) (b)

(c) (d)

Figure 4.11: Heat map of u2, u3, u4 and u5 when t = 0, α = 0 and |β| is increased.

is discussed later in §4.5. For uGBE3 there is the series

uGBE3 (0, t3, α, 0) ∼ 4

t23 + 1
+O

(
1

α

)
, (4.15a)

which is maximal for t3 = 0 and the maximum value is 4.

Proof of uGBE
2 , uGBE

3 , uGBE
4 and uGBE

5 as β →∞.

Consider the limit as β →∞ when α = 0 in which a maximum of the functions

uGBE2 , uGBE3 , uGBE4 and uGBE5 all occur on t = 0 for β both positive and negative.

Let t = 0 since the maximums always occur on these, and x = d2β
1/3 +x2, x =

d3β
1/5 +x3, x = d4β

1/7 +x4 and x = d5β
1/9 +x5 respectively for uGBE2 , uGBE3 , uGBE4

and uGBE5 . These powers of β represent how the waves develop in the limit. These
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have Taylor series in the limit as

uGBE2 (d2β
1/3 + x2, 0, 0, β) ∼ − 12d2(d3

2 − 2)

(d2 + 1)2(d2
2 − d2 + 1)2β2/3

+O
(

1

β

)
(4.16a)

uGBE3 (d3β
1/5 + x3, 0, 0, β) ∼ − −4(6d10

3 − 18d5
3 + 1)

d2
3(d3 + 1)2(d4

3 − d3
3 + d2

3 − d3 + 1)2β2/5

+O
(

1

β3/5

)
, (4.16b)

uGBE4 (d4β
1/7 + x4, 0, 0, β) ∼ − 4(10d14

4 − 36d7
4 + 3)

d2
4(d4 + 1)2(d6

4 − d5
4 + d4

4 − d3
4 + d2

4 − d4 + 1)2β2/7

+O
(

1

β3/7

)
, (4.16c)

uGBE5 (d5β
1/9 + x5, 0, 0, β) ∼ − 12(5d18

5 − 20d9
5 + 2)

d2
5(d5 + 1)2(d2

5 − d5 + 1)2(d6
5 − d3

5 + 1)2β2/9

+O
(

1

β3/9

)
. (4.16d)

Given that the first term is required to be to independent of β and only real

values of d are considered, try the following substitution di = −1 for 2 ≤ i ≤ 5.

For the time being, disregard when di = 0 as these are the waves that move

linearly and they will be proven later. These values of the di’s can also be verified

numerically. Now the series is recalculated.

uGBE2 (−β1/3 + x2, 0, 0, β) ∼ −4(x2 − 1)(x2 + 1)

(x2
2 + 1)2

+O
(

1

β1/3

)
(4.17a)

uGBE3 (−β1/5 + x3, 0, 0, β) ∼ −4(x3 − 1)(x3 + 1)

(x2
3 + 1)2

+O
(

1

β1/5

)
(4.17b)

uGBE4 (−β1/7 + x4, 0, 0, β) ∼ −4(x4 − 1)(x4 + 1)

(x2
4 + 1)2

+O
(

1

β1/7

)
(4.17c)

uGBE5 (−β1/9 + x5, 0, 0, β) ∼ −4(x5 − 1)(x5 + 1)

(x2
5 + 1)2

+O
(

1

β1/9

)
(4.17d)

where the leading terms are maximal when xi = 0 and the maximums are 4.

Returning to the linear waves that occur when d3 = d4 = d5 = 0, it transpires

that only uGBE3 gives a maximum of 4 and the others have different heights as
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before. For uGBE3 has the same series when x = d3 as when β 6= 0 and the same

limit of 4 when d3 = 0, which is maximal for t3 = 0 and the maximum value is

4.

It does not seem to be the case that all waves tend to the same limit however.

In Figure 4.9(c), the central two waves have a limit of just under 5 rather than 4.

This would need to be verified to establish whether the limits differ for different

waves.

4.3.4 Maximum Number of Waves in FGBE
n

Unlike in Chapter 3, using the generalised Boussinesq equation and varying α

and β can result in an increase in the number of waves in the solution. This arises

as the “half-waves” combine to make new, full rogue waves.

Assessing all of the functions informs that FGBE
2 can reach 3 waves, FGBE

3 has

6, FGBE
4 has 9 plus two “half waves” and FGBE

5 has 12. In terms of how many

additional waves are attained this means that an order 2 solution gains 1 wave,

order 6 gains 2, order 12 gains 3, order 20 gains 4 and order 30 gains 5 from Fn.

Conjecture 4.2. Varying parameters in FGBE
n can increase the number of waves

that exist for FBE
n up to n− 1 additional waves.

Considering only the peaks of the waves, in all bar the second image of Figure

4.12 with which we shall refer to as the transition phase, all waves appear to sit

on a circle with the origin as their centre. Given the symmetries that are involved

with these solutions, this is not surprising for uGBE2 . Instead let us consider uGBE3 .

As can be seen in Figure 4.13, once more it seems that the waves reside on a

circle as we increase the value of β and a similar behaviour is observed for β = 0

and α varying. These figures also act to detail how the waves separate, and the

appearance is that they separate on the positive x range first until it reaches the
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origin where this wave splits. The wave that originated in negative x maintains

its structure which would explain the n− 1 additional waves as in Conjecture 4.2.

Figure 4.12: Contour plots of uGBE2 with α = 0 and β = 0, 10, 20, 30, 40, 100, 150
and 200 respectively.

Figure 4.13: Contour plots of uGBE3 with α = 0 and β = 0, 50, 200, 300, 400, 600,
1000 and 4000 respectively.
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4.4 Wave Formations

All waves seem to dissipate away from the origin in the (x, t)-plane in a circular

formation. Around the centre the formation is dictated by FBE
n−2 where we take

FBE
0 = 0. It was hoped that calculating uGBE in terms of FBE would allow for

the explicit extraction of FBE
n−2 but this was not resolved.

For uGBE2 and uGBE3 the waves form circularly around the origin (or central

wave located at the origin when there is one) and dissipate out. However, for

uGBE4 and uGBE5 there is no longer a single central wave but the other behaviour is

observed. Indeed for uGBE4 the central formation is two waves and two half-waves,

such as uBE2 is and for uGBE5 the central formation is that of uBE3 . This structure

can be seen in the final graphs of Figures 4.12 and 4.13. Based on the equation

for FGBE
n and its relation to FBE

n−1, it seems that the central formation in uGBEn is

the same as uBEn−1. This satisfies the formation for uGBE3 as well and explains why

uGBE2 has no central pivot since we consider F0 = 1. Despite the fact that FBE
n−2

has a much lower order than Fn this central behaviour is present throughout the

range of α and β.

The central formations do move slightly just not as fast as the outer formations

and they seem to be moving slower as |t| increases. At present there has been no

analytical analysis as to why this occurs, however the same thing seems to happen

in the Schrödinger equation [33].

4.5 Discussion

This chapter has considered a parametrised version of the Boussinesq equation

which allows for a great deal of freedom. The limiting behaviour that has been

completed only provide proofs for waves that reside on certain linear lines rather

than the waves that move outside of this. An open question is to find a proof that
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gives the limits for all waves which may require the expression of α and β in terms

of x and t. This would also solve the explicit scaling and rotation influenced by

increasing |α| or |β|. This should also aid in the proof that the waves reside on a

circle which still remains to be found.

The limits found for negative α and β were not consistent with the hypothesis

as they seemed to tend to 72/11. This could be further researched to see if there

is an error in the methodology or if there is different behaviour occurring in the

negative infinite limit.

The heights of the waves were seen to vary given the alterations of the param-

eters, but it was not identified for which values of the parameters that the heights

were drastically combined. There was also most analysis completed only on the

varying of one parameter with the other fixed at 0 but this greatly reduces the

ability to generalise the behaviour found.

Subsequent to the work on this, FBE
6 was found and so it remains to find

P5 and Q5 in order to establish FGBE
6 . Given the degree of the polynomials

involved this will take a reasonable amount of computing time and memory so

some streamlining of the process would also be beneficial where possible.
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Chapter 5

Conservation Laws for the

Boussinesq Equation

This chapter focusses on the conversation laws and integral relations of the

Boussinesq equation in the form

utt + uxx − 2(ux)
2 − 2uuxx − 1

3
uxxxx = 0. (5.1)

The solutions are rational solutions that decay algebraically as mentioned in Chap-

ter 3, with

un = 2
∂2

∂x2
lnFn, (5.2)

where Fn is given by

Fn(x, t) =

n(n+1)/2∑
m=0

m∑
j=0

aj,mx
2jt2(m−j), (5.3)

for specific constants aj,m.

First the equalities in the bilinear form are investigated, followed by consid-

eration of the conservation laws and the chapter closes with the main work on
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integral relations.

The work in this chapter has been published in [8].

5.1 Equalities of the Bilinear Form

Lemma 5.1. Consider functions F that satisfy the bilinear form

FFtt − F 2
t + FFxx − F 2

x −
1

3
FFxxxx +

4

3
FxFxxx − F 2

xx = 0, (5.4)

then they also satisfy

∫ ∞
−∞

(
Ft
F

)
t

dx =

∫ ∞
−∞

(
F 2
xx

F 2
− FxFxxx

F 2

)
dx. (5.5)

Proof. Consider the Boussinesq bilinear form as in (5.4) and divide through by

F 2 to retrieve

(
Ft
F

)
t

+

(
Fx
F

)
x

− 1

3

Fxxxx
F

+
4

3

FxFxxx
F 2

− F 2
xx

F 2
= 0. (5.6)

Rewriting the left hand side of this as,

(
Ft
F

)
t

+

(
Fx
F

)
x

− 1

3

(
Fxxxx
F
− FxFxxx

F 2

)
+
FxFxxx
F 2

− F 2
xx

F 2
(5.7)

=

(
Ft
F

)
t

+

(
Fx
F

)
x

− 1

3

(
Fxxx
F

)
x

+
FxFxxx
F 2

− F 2
xx

F 2
, (5.8)

to result in

(
Ft
F

)
t

+
FxFxxx
F 2

− F 2
xx

F 2
= −

(
Fx
F

)
x

+
1

3

(
Fxxx
F

)
x

. (5.9)

75



Integrating through with respect to x from −∞ to ∞ gives,

∫ ∞
−∞

((
Ft
F

)
t

+
FxFxxx
F 2

− F 2
xx

F 2

)
dx = −

[
Fx
F

]∞
−∞

+
1

3

[
Fxxx
F

]∞
−∞

. (5.10)

Given that the polynomials F that will be considered are of even power in x

and t then the rational solution un of the form (5.2) has a denominator of higher

order than the numerator and therefore between the limits −∞ and ∞ gives 0.

As such the bilinear form can be simplified further to,

∫ ∞
−∞

(
Ft
F

)
t

dx =

∫ ∞
−∞

(
F 2
xx

F 2
− FxFxxx

F 2

)
dx. (5.11)

However, it is not possible to remove the integral from this equation as the equality

only holds with the limits.

5.2 Conservation Laws

Definition 5.1. A conservation law is comprised of a conserved density T (x, t)

and an associated flux X(x, t) and satisfies the equation,

∂T

∂t
+
∂X

∂x
= 0. (5.12)

Integrating both sides of the (5.12) with respect to t then x gives

∫ ∞
−∞

T (x, t)dx+

∫ ∞
−∞

X(x, t)dt = 0, (5.13)

where the order of integration has been interchanged since it is assumed that the

integrals exist.

More simply ∫ ∞
−∞

T (x, t)dx = −
∫ ∞
−∞

X(x, t)dt. (5.14)
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Consider (5.14) and differentiate with respect to t so that

d

dt

∫ ∞
−∞

Tdx =

∫ ∞
−∞

∂T

∂t
dx (5.15)

= −
∫ ∞
−∞

∂X

∂x
dx (5.16)

= −
[
X
]∞
−∞, (5.17)

by Leibniz’s rule, thus it is required that lim|x|→∞X = 0 so that the integral exists

and is finite. Subsequently

d

dt

∫ ∞
−∞

Tdx = 0, (5.18)

giving that the integral of T with respect to x must be equal to some constant c1.

It follows that the integral of X with respect to t is equal to −c1.

Now consider the integral

∫ ∞
−∞

T (x, t)dx = c1, (5.19)

as the conserved density with x a spatial coordinate and

∫ ∞
−∞

X(x, t)dt = −c1, (5.20)

as the constant of motion with t a time coordinate.

By rewriting the (5.1) as a system it is possible to examine the conserved

quantities. The system is

ut + vx = 0, (5.21a)

vt + 2uux − ux + 1
3
uxxx = 0, (5.21b)
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where

u = 2
∂2

∂x2
lnF, (5.22)

v = −2
∂2

∂x∂t
lnF, (5.23)

i.e vx = −ut.

The first few conserved quantities for the Boussinesq equation [36, pp.19–78]

are as follows

T1 = u, X1 = v, (5.24)

T2 = v, X2 = u2 − u+ 1
3
uxx, (5.25)

T3 = uv, X3 = 2
3
u3 + 1

2
(v2 − u2)− 1

6
u2
x + 1

3
uuxx, (5.26)

T4 = 2
3
u3 + v2 − u2 − 1

3
u2
x, X4 = 2u2v − 2uv + 2

3
vuxx − 2

3
uxvx. (5.27)

Graphs of T2 and X2 for differing values of un can also be seen in Figures 5.1

and 5.2. As expected, there remains a large amount of structure to these waves

and exploration of the behaviour of the Ti and Xi functions is another avenue for

further research.

It is easy to calculate that for the solutions found and detailed in Chapter 3

that the integrals of Ti and Xi for i = 1, .., 4 are all constant and furthermore are

0.

The conserved density T3, is considered as the total energy conservation and

X3 as the power conservation law [37]. Plotting the functions v2 and v3 for one

fixed parameter and one varying, it seems that the waves reside on a circle with

centre (0, 0). In Figure 5.3 these plots are shown with a circle superimposed on

top calculated by using the location of the roots. As can be seen, even when α

and β vary the roots still seem to be positioned on a circle with the origin at its
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(a) (b)

(c) (d)

Figure 5.1: T2 for u2, u3, u4 and u5.

centre. What is also interesting is that in the choices made for α and β, there

is always at least one root (not at the origin) which resides on one of the axes.

Further work would be to determine the angle of rotation and the influence that

α and β have on this.

5.3 Integral Relations

This section will be concerned with proving the following result:

Theorem 5.1. Let un(x, t;α, β) be a rational solution of the Boussinesq equation

(5.1) in the form

un(x, t;α, β) = 2
∂2

∂x2
lnFn(x, t;α, β),

with Fn satisfying the bilinear form (5.4), then
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(a) (b)

(c) (d)

Figure 5.2: X2 for u2, u3, u4 and u5.

1

8π

∫ ∞
−∞

∫ ∞
−∞

u2
n(x, t;α, β)dxdt = 1

2
n(n+ 1), (5.28)

1

8π

∫ ∞
−∞

∫ ∞
−∞

u3
n(x, t;α, β)dxdt = n(n+ 1). (5.29)

Given that n is directly related to the degree of the polynomial Fn then the following

theorem gives a relation between this and the integrals given.

In [7] numerical result were published regarding rogue wave solutions of the

NLS equation that show a similar behaviour. These are mentioned in Chapter 2.

There has not been an analytical proof of this for the NLS equation, unlike what

my collaborators and I have found for the Boussinesq equation[8].
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(a) (b)

(c) (d)

Figure 5.3: v2 and v3 for (α, β) being (0, 104), (0, 107), (104, 0) and (107, 0) respec-
tively and the circular perimeter added.

5.3.1 Integrals of u2n

Lemma 5.2. Let u solve the Boussinesq equation (5.1) and set u = Uxx. Then

Uxx /∈ L1(R2),

Utt /∈ L1(R2),

(Uxx + Utt) ∈ L1(R2),

where L1(R2) is the space of functions where the modulus of the function is Les-

besgue integrable in R2.
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Sketch of Proof. The sketch of this proof is given for u1 and we expect un to

behave in a similar way. The case Uxx is given as the working is almost identical

to that for Utt. Given that u = Uxx then

Uxx = 2
t2 − x2 + 1

(x2 + t2 + 1)2
. (5.30)

For a function to be in L1 means

∫
R2

|Uxx|dxdt <∞, (5.31)

so for Uxx /∈ L1 this means the integral is infinite. Take the modulus of Uxx and

converting to polar coordinates gives,

|Uxx| = 2
|r2 cos(2θ)− 1|

(1 + r2)2
> 2

r2| cos(2θ)|
(1 + r2)2

− 2

(1 + r2)2
, (5.32)

where we have used the triangle inequality.

As such we have

∫
R2

|Uxx|dxdt = 2 lim
R→∞

∫ R

r=0

∫ 2π

θ=0

r3| cos(2θ)|
(1 + r2)2

− r

(1 + r2)2
dθdr. (5.33)

The first term in the integrand is then

lim
R→∞

∫ R

r=0

∫ 2π

θ=0

r3| cos(2θ)|
(1 + r2)2

dθdr = lim
R→∞

(2 ln(1 +R2)− 2R2

1 +R2
=∞. (5.34)

The second term of the integrand is

lim
R→∞

∫ R

r=0

∫ 2π

θ=0

r

(1 + r2)2
dθdr = lim

R→∞

πR2

1 +R2
= π. (5.35)
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As such we have shown that

∫
R2

|Uxx|dxdt→∞ (5.36)

and Uxx is therefore not in L1. Similarly Utt /∈ L1.

Consider

Uxx + Utt =
4

(x2 + t2 + 1)2
=

4

(r2 + 1)2
, (5.37)

when changing the coordinates to polar coordinates. Using (5.36) we can show

that ∫
R2

|Uxx + Utt|dxdt = 4π, (5.38)

and so (Uxx + Utt) ∈ L1.

Proof of (5.28) from Theorem 5.1. One can work directly from the Boussi-

nesq equation,

utt + uxx − (u2)xx − 1
3
uxxxx = 0, (5.39)

so that,

u2 = u+ ∂−2
x utt − 1

3
uxx, (5.40)

assuming |u| → 0 as |x| → ∞.

Now let u = Uxx so that U = 2 lnF to retrieve,

u2 = Uxx + Utt − 1
3
Uxxxx, (5.41)

and

∫ ∞
−∞

u2dx =

∫ ∞
−∞

(Uxx + Utt − 1
3
Uxxxx)dx (5.42)

= [−1
3
Uxxx]

∞
−∞ +

∫ ∞
−∞

(Uxx + Utt)dx. (5.43)
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Given the form of U , it is know that its derivatives will vanish as |x| → ∞ so the

equation simplifies to,

∫ ∞
−∞

u2dx =

∫ ∞
−∞

(Uxx + Utt)dx. (5.44)

Therefore the conservation law is

C̃1 =
1

8π

∫ ∞
−∞

∫ ∞
−∞

(Uxx + Utt)dxdt. (5.45)

Consider now (x, t) ∈ [−R,R]× [−R,R] where R is very large but finite in order

to compute the integrals. By doing this, it is possible to integrate Uxx and Utt

seperately and compute these finite integrals by interchanging the order of inte-

gration, then take the limit as R → ∞. Without changing to a finite integral, it

would seem that the integrands become 0 after integrating once due to the lack of

Lesbegue integrability of Uxx and Utt individually (see Lemma 5.2), however this

is not actually the case.

Now consider Fn in the form

Fn(x, t) = (x2 + t2)n(n+1)/2 +Gn, (5.46)

where Gn is a function of x and t of degree (n + 2)(n − 1) in x and t. As such,

and recalling that Ux = 2Fx/F and Ut = 2Ft/F , the following holds

1

8π

∫ R

−R

∫ R

−R
(Uxx + Utt)dxdt =

1

4π

∫ R

−R

∫ R

−R

((
Fn,x(x, t)

Fn(x, t)

)
x

+

(
Fn,t(x, t)

Fn(x, t)

)
t

)
dxdt

=
1

4π

∫ R

−R

∫ R

−R

(
Fn,x(x, t)

Fn(x, t)

)
x

dxdt

+
1

4π

∫ R

−R

∫ R

−R

(
Fn,t(x, t)

Fn(x, t)

)
t

dtdx

=
1

4π

∫ R

−R

(
Fn,x(R, t)

Fn(R, t)
− Fn,x(−R, t)

Fn(−R, t)

)
dt
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+
1

4π

∫ R

−R

(
Fn,t(x,R)

Fn(x,R)
− Fn,t(x,−R)

Fn(x,−R)

)
dx. (5.47)

Now consider the asymptotics of Fn,x/Fn and Fn,t/Fn in order to simplify the

integral further. Given that

Fn,x = n(n+ 1)x(x2 + t2)n(n+1)/2−1 +Gn,x(x, t),

and similarly for Fn,t then it is possible to use the form of Fn as given in (5.46)

to retrieve

Fn,x(R, t)

Fn(R, t)
=
n(n+ 1)R(R2 + t2)n(n+1)/2−1 +Gn,x(R, t)

(R2 + t2)n(n+1)/2 +Gn(R, t)

=
n(n+ 1)R(R2 + t2)n(n+1)/2−1

(R2 + t2)n(n+1)/2 +Gn(R, t)
+

Gn,x(R, t)

(R2 + t2)n(n+1)/2 +Gn(R, t)

=
n(n+ 1)R

(R2 + t2) +Gn(R, t)(R2 + t2)1−n(n+1)/2

+
Gn,x(R, t)

(R2 + t2)n(n+1)/2 +Gn(R, t)

=
n(n+ 1)R

R2 + t2

(
1

1 +Gn(R, t)(R2 + t2)−n(n+1)/2

)
+
Fn,x(R, t)

Fn(R, t)
+

Gn,x(R, t)

(R2 + t2)n(n+1)/2 +Gn(R, t)

=
n(n+ 1)R

R2 + t2

(
(R2 + t2)n(n+1)/2

(R2 + t2)n(n+1)/2 +Gn(R, t)

)
+

Gn,x(R, t)

(R2 + t2)n(n+1)/2 +Gn(R, t)

=
n(n+ 1)R

R2 + t2

(
(R2 + t2)n(n+1)/2 +Gn(R, t)

(R2 + t2)n(n+1)/2

)−1

+
Fn,x(R, t)

Fn(R, t)

Gn,x(R, t)

(R2 + t2)n(n+1)/2 +Gn(R, t)

Fn,x(R, t)

Fn(R, t)

Fn,x(R, t)

Fn(R, t)

Fn,x(R, t)

Fn(R, t)

=
n(n+ 1)R

R2 + t2

(
1 +

Gn(R, t)

(R2 + t2)n(n+1)/2

)−1

+
Gn,x(R, t)

(R2 + t2)n(n+1)/2 +Gn(R, t)
. (5.48)
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Given that x and t are of the same order, make the transformation t = τR where

τ is of order 1 in the limit as R→∞ which makes t infinite with τ = O(1). This

gives

Fn,x(R, τR)

Fn(R, τR)
=
n(n+ 1)R

R2(1 + τ 2)

(
1 +

Gn(R, τR)

(R2(1 + τ 2))n(n+1)/2

)−1

+
Gn,x(R, τR)

(R2(1 + τ 2))n(n+1)/2 +Gn(R, τR)
.

Given

Gn(R, τR) = O(R(n+2)(n−1)),

Gn,x(R, τR) = O(Rn2+n−3),

then

Gn,x(R, τR)

(R2(1 + τ 2))n(n+1)/2 +Gn(R, τR)
= O(R−3),

Gn(R, τR)

(R2(1 + τ 2))n(n+1)/2
= O(R−2).

As such,

Fn,x(R, τR)

Fn(R, τR)
=
n(n+ 1)R

R2(1 + τ 2)

(
1 +O(R−2)

)
.

Similarly, it can be shown that

Fn,x(−R, t)
Fn(−R, t)

=
Fn,x(−R, τR)

Fn(−R, τR)
= − n(n+ 1)R

R2(1 + τ 2)

(
1 +O(R−2)

)
.
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Now compute

1

4π

∫ R

−R

(
Fn,x(R, t)

Fn(R, t)
− Fn,x(−R, t)

Fn(−R, t)

)
dt =

1

4π

∫ 1

−1

2n(n+ 1)R2

R2(1 + τ 2)
(1 +O(R−2))dτ

=
n(n+ 1)

2π
(1 +O(R−2))

∫ 1

−1

1

1 + τ 2
dτ

1

4π

∫ R

−R

(
Fn,x(R, t)

Fn(R, t)
− Fn,x(−R, t)

Fn(−R, t)

)
dt =

n(n+ 1)

2π
(1 +O(R−2)) [arctan(τ)]1−1

=
n(n+ 1)

2π
(1 +O(R−2))

π

2

=
n(n+ 1)

4
(1 +O(R−2)), (5.49)

using that dt = Rdτ and that the transformation t = Rτ changes the limits from

−R to R when integrating with respect to t, to −1 to 1 when integrating with

respect to τ .

Using (5.48) and interchanging x with t gives

Fn,t(x,R)

Fn(x,R)
=
n(n+ 1)R

x2 +R2

(
1 +

Gn(x,R)

(x2 +R2)n(n+1)/2

)−1

+
Gn,t(x,R)

(x2 +R2)n(n+1)/2 +Gn(x,R)
, (5.50)

and let x = ξR with ξ of order 1 to get

Fn,t(ξR,R)

Fn(ξR,R)
=
n(n+ 1)R

R2(ξ2 + 1)

(
1 +

Gn(ξR,R)

(R2(ξ2 + 1))n(n+1)/2

)−1

+
Gn,t(ξR,R)

(R2(ξ2 + 1))n(n+1)/2 +Gn(ξR,R)

=
n(n+ 1)R

R2(ξ2 + 1)
(1 +O(R−2)).

So
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1

4π

∫ R

−R

(
Fn,t(x,R)

Fn(x,R)
− Fn,t(x,−R)

Fn(x,−R)

)
dx =

1

4π

∫ 1

−1

2n(n+ 1)R2

R2(ξ2 + 1)
(1 +O(R−2))dξ

=
n(n+ 1)

2π
(1 +O(R−2))

∫ 1

−1

1

ξ2 + 1
dξ

=
n(n+ 1)

4
(1 +O(R−2)). (5.51)

Using (5.49) and (5.51) in (5.47) gives

1

8π

∫ R

−R

∫ R

−R
(Uxx + Utt)dxdt =

n(n+ 1)

2
(1 +O(R−2)), (5.52)

which, in the limit R→∞ results in

1

8π

∫ ∞
−∞

∫ ∞
−∞

(Uxx + Utt)dxdt =
n(n+ 1)

2
, (5.53)

as stated in (5.28) from Theorem 5.1.

5.3.2 Integrals of u3n

This proof is more complex than that for u2
n and requires the use of two of the

Boussinesq conservation laws; (5.26) and (5.27).

Proof of (5.29) from Theorem 5.1. Take

u2 = u+ Utt − 1
3
uxx, (5.54)

and multiply through by u to retrieve an expression for u3;

∫ ∞
−∞

∫ ∞
−∞

u3dxdt =

∫ ∞
−∞

∫ ∞
−∞

(u2 + uUtt − 1
3
uuxx)dxdt
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=

∫ ∞
−∞

(∫ ∞
−∞

(u2 + uUtt)dx−
1

3

∫ ∞
−∞

uuxxdx

)
dt

=

∫ ∞
−∞

(∫ ∞
−∞

(u2 + uUtt)dx−
1

3

(
[uux]

∞
−∞ −

∫ ∞
−∞

u2
xdx

))
dt

=

∫ ∞
−∞

∫ ∞
−∞

(
u2 + uUtt +

1

3
u2
x

)
dxdt. (5.55)

It is still not possible to integrate this directly and using the previous expression

for the double integral of u2 here will not help cancel the u2
x or the uUtt that

need to be resolved. Consider (5.26) and (5.27) however, it is possible to get an

expression for u3 in terms of some of these functions.

From (5.20) with c1 = 0 and (5.26) the following holds

∫ ∞
−∞

(2
3
u3 + 1

2
(v2 − u2)− 1

6
u2
x + 1

3
uuxx)dt = 0, (5.56)

which can be integrated with respect to x to give

∫ ∞
−∞

∫ ∞
−∞

(
2
3
u3
)

dtdx =

∫ ∞
−∞

∫ ∞
−∞

(
1
2
(u2 − v2) + 1

6
u2
x − 1

3
uuxx

)
dtdx.

Again change the order of integration and then integrate once with respect to x

to give

∫ ∞
−∞

∫ ∞
−∞

u3dxdt =

∫ ∞
−∞

∫ ∞
−∞

(
3
4
(u2 − v2) + 1

4
u2
x − 1

2
uuxx

)
dxdt

=

∫ ∞
−∞

∫ ∞
−∞

(
3
4
(u2 − v2) + 1

4
u2
x

)
dxdt

− 1
2

(
[uux]

∞
−∞ −

∫ ∞
−∞

∫ ∞
−∞

u2
xdxdt

)
=3

4

∫ ∞
−∞

∫ ∞
−∞

(
u2 − v2 + u2

x

)
dxdt. (5.57)
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Now from (5.19) with c1 = 0 and (5.27) gives

∫ ∞
−∞

2
3
u3 + v2 − u2 − 1

3
u2
xdx = 0, (5.58)

and integrating this with respect to t gives

∫ ∞
−∞

∫ ∞
−∞

u3dxdt = 3
2

∫ ∞
−∞

∫ ∞
−∞

(u2 − v2 + 1
3
u2
x)dxdt. (5.59)

Consider equating (5.57) and (5.59) in order to remove u2
x and then u2 − v2 re-

spectively gives

∫ ∞
−∞

∫ ∞
−∞

u3dxdt = 3

∫ ∞
−∞

∫ ∞
−∞

(u2 − v2)dxdt, (5.60a)∫ ∞
−∞

∫ ∞
−∞

u3dxdt =

∫ ∞
−∞

∫ ∞
−∞

u2
xdxdt. (5.60b)

Returning to (5.55) and using both equations from (5.60) simultaneously results

in

∫ ∞
−∞

∫ ∞
−∞

u3dxdt = 3

∫ ∞
−∞

∫ ∞
−∞

(v2 + uUtt)dxdt, (5.61a)

and∫ ∞
−∞

∫ ∞
−∞

u3dxdt = 3
2

∫ ∞
−∞

∫ ∞
−∞

(u2 + uUtt)dxdt. (5.61b)

Since there is an expression for u2 but not a comparable one for uUtt, it is

necessary to find an equality that removes this from the equation. It transpires

(see Lemma 5.3) that uUtt can be expressed only in terms of v2.

Lemma 5.3. Consider u(x, t) and v(x, t) that are solutions of (5.21) whereby
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u(x, t) = Uxx(x, t) and v(x, t) = −Uxt(x, t) and

lim
|x|→∞

Ux(x, t) = 0, lim
|t|→∞

Ux(x, t) = 0, (5.62)

then ∫ ∞
−∞

∫ ∞
−∞

v2(x, t)dxdt =

∫ ∞
−∞

∫ ∞
−∞

u(x, t)Utt(x, t)dxdt. (5.63)

Proof. Given the form of v2(x, t) it is possible to interchange the order of

integration and state that

∫ ∞
−∞

∫ ∞
−∞

v2(x, t)dxdt =

∫ ∞
−∞

∫ ∞
−∞

U2
xtdtdx

=

∫ ∞
−∞

(
[UxtUx]

∞
−∞ −

∫ ∞
−∞

UxUxttdt

)
dx

= −
∫ ∞
−∞

∫ ∞
−∞

UxUxttdtdx.

Equally one can consider

∫ ∞
−∞

∫ ∞
−∞

u(x, t)Utt(x, t)dxdt =

∫ ∞
−∞

(∫ ∞
−∞

UxxUttdx

)
dt

=

∫ ∞
−∞

(
[UttUx]

∞
−∞ −

∫ ∞
−∞

UxUxttdx

)
dt

= −
∫ ∞
−∞

∫ ∞
−∞

UxUxttdxdt

= −
∫ ∞
−∞

∫ ∞
−∞

UxUxttdtdx

=

∫ ∞
−∞

∫ ∞
−∞

v2(x, t)dxdt.

Using the equality from Lemma 5.3 it is possible to write (5.61) as
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∫ ∞
−∞

∫ ∞
−∞

u3dxdt = 3
2

∫ ∞
−∞

(u2 + v2)dxdt,

and (5.64a)∫ ∞
−∞

∫ ∞
−∞

u3dxdt = 6

∫ ∞
−∞

v2dxdt. (5.64b)

Now substitute in (5.60a) into either of these and deduce that

∫ ∞
−∞

∫ ∞
−∞

u3dxdt = 2

∫ ∞
−∞

∫ ∞
−∞

u2dxdt. (5.65)

Consequently

1

8π

∫ ∞
−∞

∫ ∞
−∞

u3dxdt = n(n+ 1), (5.66)

from (5.28).

Corollary 5.1. Take vn(x, t) as an algebraically decaying solution of (5.21) then

1

8π

∫ ∞
−∞

∫ ∞
−∞

v2dxdt =
n(n+ 1)

6
. (5.67)

Proof. The proof follows from (5.29) and (5.64b).

5.3.3 Integrals of um1

It is possible to explicitly calculate the integrals for u1 since F1 = x2 + t2 + 1.

It transpires that the integral can be expressed as

1

8π

∫ ∞
−∞

um1 dx =
cm

(t2 + 1)m−1/2
. (5.68)
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Choosing just to consider the expressions cm then these appear in sequence as

0,
1

2
,
3

2
,
21

4
,
75

4
,
1095

16
,
4053

16
,
30317

32
,
114291

32
,
3468555

256
,
13225025

256
,
101272611

512
, ...

(5.69)

This can also be written as

(1)

(2)
,
(3)

(2)
,
(3) (7)

((2))2 ,
(3) ((5))2

((2))2 ,
(3) (5) (73)

((2))4 ,
(3) (7) (193)

((2))4 ,
(7) (61) (71)

((2))5 ,

((3))4 (17) (83)

((2))5 ,
((3))3 (5) (25693)

((2))8 ,
((5))2 (11) (48091)

((2))8 ,

(3) (11) (23) (29) (43) (107)

((2))9 , ...

One can see that the pattern on the denominator is highly structured and that

the difference between every other power of 2 is

1, 2, 1, 3, 1, ... (5.70)

This sequence is in fact a(n) [58, A001511] such that

a(2n+ 1) = 1, (5.71)

a(2n) = 1 + a(n), (5.72)

a(0) = 1. (5.73)

Further from this, one can calculate the integral in terms of the power m via the

following theorem.

Theorem 5.2. Taking the first rational solution of the Boussinesq equation as

u1(x, t) = 2
∂2

∂x2
ln(x2 + t2 + 1) =

4(1− x2 + t2)

(1 + x2 + t2)2
, (5.74)
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then

1

8π

∫ ∞
−∞

∫ ∞
−∞

um1 (x, t)dxdt =
m!

(2m− 1)!

bm/2c∑
l=0

(2l)!(2m− 2l − 2)!

22l−2m−3(l!)2(m− 2l)!
, (5.75)

with bxc being the largest integer less than or equal to x and m is an integer greater

than or equal to 2.

Proof. Consider

∫ ∞
−∞

∫ ∞
−∞

um1 dxdt = 22m

∫ ∞
−∞

∫ ∞
−∞

(1− x2 + t2)m

(1 + x2 + t2)2m
, (5.76)

and make a change of variables to polar coordinates of x = r cos(θ) and

t = r sin(θ). This gives

∫ ∞
−∞

∫ ∞
−∞

um1 dxdt = 22m

∫ ∞
0

∫ 2π

0

r
(
1− r2(cos2(θ)− sin2(θ))

)m
(1 + r2)2m

dθdr

= 22m

∫ ∞
0

∫ 2π

0

r (1− r2 cos(2θ))
m

(1 + r2)2m
dθdr

= 22m

∫ ∞
0

r

(1 + r2)2m

(∫ 2π

0

(
1− r2 cos(2θ)

)m
dθ

)
dr∫ ∞

−∞

∫ ∞
−∞

um1 dxdt = 22m

∫ ∞
0

r

(1 + r2)2m

(∫ 2π

0

m∑
k=0

(
m

k

)
(−1)kr2k cosk(2θ)dθ

)
dr

= 22m

∫ ∞
0

r

(1 + r2)2m

(∫ 2π

0

m∑
k=0

(
m

k

)
(−1)kr2k cosk(2θ)dθ

)
dr.

(5.77)

Since this involves integrating powers of cos(2θ) between 0 and 2π, the integral is

0 if the power is odd. If the power is even then

∫ 2π

0

cos2l(2θ)dθ =
π

22l−1

(2l)!

(l!)2
. (5.78)
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In order to accommodate this difference between odd and even powers, let k = 2l

for l an integer in (5.77) to get

22m

∫ ∞
0

r

(1 + r2)2m

∫ 2π

0

bm/2c∑
l=0

(
m

2l

)
(−1)2lr4l cos2l(2θ)dθ

 dr

=22m

∫ ∞
0

r

(1 + r2)2m

∫ 2π

0

bm/2c∑
l=0

(
m

2l

)
r4l cos2l(2θ)dθ

 dr

=22m

∫ ∞
0

r

(1 + r2)2m

bm/2c∑
l=0

(
m

2l

)
r4l

(∫ 2π

0

cos2l(2θ)dθ

) dr

=22m

∫ ∞
0

r

(1 + r2)2m

bm/2c∑
l=0

(
m

2l

)
r4l π

22l−1

(2l)!

(l!)2

 dr

=22m

bm/2c∑
l=0

(
m

2l

)
π

22l−1

(2l)!

(l!)2

∫ ∞
0

r4l+1

(1 + r2)2m
dr


=

bm/2c∑
l=0

m!

(2l)!(m− 2l)!

π

22l−2m−1

(2l)!

(l!)2

∫ ∞
0

r4l+1

(1 + r2)2m
dr

=

bm/2c∑
l=0

m!π

(m− 2l)!22l−2m−1(l!)2

∫ ∞
0

r4l+1

(1 + r2)2m
dr.

Now make a change of variables of ρ = r2 so that

∫ ∞
−∞

∫ ∞
−∞

um1 dxdt =

bm/2c∑
l=0

m!π

(m− 2l)!22l−2m−1(l!)2

1

2

∫ ∞
0

ρ2l

(1 + ρ)2m
dρ

=

bm/2c∑
l=0

m!π

(m− 2l)!22l−2m(l!)2

(2l)!(2m− 2l − 2)!

(2m− 1)!

=
m!π

(2m− 1)!

bm/2c∑
l=0

(2l)!(2m− 2l − 2)!

22l−2m(l!)2(m− 2l)!
,

where it has been used that

∫ ∞
0

ρk

(1 + ρ)2m
dρ =

k!(2m− k − 2)!

(2m− 1)!
. (5.79)
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As such the following equality holds

1

8π

∫ ∞
−∞

∫ ∞
−∞

um1 dxdt =
m!

(2m− 1)!

bm/2c∑
l=0

(2l)!(2m− 2l − 2)!

22l−2m+3(l!)2(m− 2l)!
. (5.80)

Consider now using (5.80) to verify Theorem 5.1 for n = 1. When m = 2,

(5.80) gives

1

8π

∫ ∞
−∞

∫ ∞
−∞

u2
1dxdt =

1

3

1∑
l=0

(2l)!(2− 2l)!

22l−1(l!)2(2− 2l)!
(5.81)

=
1

3

1∑
l=0

(2l)!2

22l(l!)2
(5.82)

=
1

3
(2 + 1) (5.83)

= 1, (5.84)

as expected. When m = 3, (5.80) gives

1

8π

∫ ∞
−∞

∫ ∞
−∞

u3
1dxdt =

6

5!

b3/2c∑
l=0

(2l)!(4− 2l)!

22l−3(l!)2(3− 2l)!
(5.85)

=
1

20

1∑
l=0

(2l)!(4− 2l)!

22l−3(l!)2(3− 2l)!
(5.86)

=
23

20

(
4!

3!
+

2!(2!)

4

)
(5.87)

= 2, (5.88)

again, as expected from Theorem 5.1.
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5.4 Discussion

It may be that there are similar results for higher powers of u, however this

was not supported by any of the numerical work done by Ankiewicz1. The results

that came from this were non-rational, however this could be down to numerical

error given the complexity of the problem at this level. Given the nature of soliton

equations and their inherent properties, it could be hypothesised that there is some

similar equation and this is something that we would consider when furthering the

research. Investigating this will require knowledge of further conservation laws if

the same method was to be utilised.

Given Corollary 5.1 it may also be that there are similar equations relating to

powers of v but this is not something that has been considered in this thesis.

Having such simple solutions for the integrals of u2 and u3 is logical with regard

to the conservation laws being 0 as cancellation of more complex functions would

be much less likely.

As mentioned in §5.2, it would be interesting to see what happens to the roots

of v2 and v3 in terms of their rotation expressed as a function of α and β. From

Figure 5.3 there seems to be some interesting behaviour discovered but there is

certainly more that can be done with this. Firstly solving the rotation problem

when one of the variables is 0 and then extending this to both α and β non-zero.

Similarly it would be interesting to identify at what values of α and β there will

always be one of the roots, not including any at the origin, which lie on an axis.

1Private communication, Oct 2016
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Chapter 6

The KP-I Equation

The Kadomtsev-Petviashvili (KP) equation is a soliton equation but it can

also be shown to have rogue waves solutions. These solutions are bounded for real

x and t and form a hierarchy.

As previously, the chapter will begin with an introduction to the equation and

some history and properties that it contains. There will also be a discussion of

the bilinear form as this is the main equation that will be worked from.

Moving to the generating functions as defined by [1], both functions used in this

paper; the summation generating function and the matrix generating function, will

be detailed with the main work pertaining to the matrix function. The next few

subsections contain work pertaining to the combinatorics of the matrix function

regarding a number of different areas.

There follows a detailed explanation of the physical wave behaviour for the

matrix function solutions. The analysis is separated between the cases when

half the degree is even and when it is odd. The different matrix ranks are also

considered separately. A number of solutions have been considered in order to

give a good range of behaviours.

The limiting behaviour of KP solutions in the 1 × 1 matrix case are then
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discovered and proven with heat maps as in Chapter 3.

The final two sections cover the relation between the Boussinesq and the KP-

I equation and the parametrised KP-I equation whereby an infinite number of

parameters are introduced. These are both only considered briefly prior to the

conclusion.

6.1 Introduction

The KP equation is a 2 + 1-dimensional equation as follows:

utx + 6u2
x + 6uuxx + uxxxx + 3σ2uyy = 0, (6.1)

where σ2 = ±1. The KP-I equation which has rational solutions that have no

singularities for real x, y and t is (6.1) with σ2 = −1. KP-II is when σ2 = 1 in

(6.1), however the rational solutions found for this are singular.

6.1.1 Background

The equation (6.1) was found in 1970 by Boris Kadomtsev and Vladimir Petvi-

ashvili [40]. Originally this was to model ion-acoustic waves as an extension of

the Korteweg-de Vries which includes transverse movement. The applications

were extended to include water waves from the work of Ablowitz and Segur [4].

As with the other equations investigated, (6.1) is solvable by inverse scattering

[2].

6.1.2 Invariants and Symmetries

Unlike in the previous two equations, now there are 3 variables to consider and

as such the invariants and symmetries are slightly more complicated to check.
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6.1.2.1 Invariants

Now the substitution for invariants becomes

u→ αu∗ + β, x→ γx∗ + δ, t→ ξt∗ + ε, y → χy∗ + ω. (6.2)

Substitution of these into (6.1) results in

α
γξ
u∗x∗t∗ + 6α

2

γ2
{(u∗x∗)2 + u∗x∗x∗u

∗}+ 6αβ
γ2

+ α
γ4
u∗x∗x∗x∗x∗ − 3 α

χ2 = 0. (6.3)

This equation can be multiplied by γξ/α since α is non-zero in order to keep

required terms, leaving

u∗x∗t∗ + 6αξ
γ
{(u∗x∗)2 + u∗x∗x∗u

∗}+ 6 ξβ
γ

+ ξ
γ3
u∗x∗x∗x∗x∗ − 3 γξ

χ2 = 0. (6.4)

In order for the equation to remain invariant under the transformation, the fol-

lowing must hold

αξ = γ, ξβ = 0, ξ = γ3, γξ = χ2. (6.5)

This occurs when β = 0, ξ = γ3, α = 1/γ2 and χ = ±γ2.

The invariants of the KP-I equation in terms of the free variables γ, δ, ε and

ω are thus

u→ 1
γ2
u∗, x→ γx∗ + δ, t→ γ3t∗ + ε, y → ±γ2y∗ + ω. (6.6)

These invariants show some relations between the scalings of x, y and t but once

again there are no translations in the dependant variable u that can leave the

equation invariant.
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6.1.2.2 Symmetries

Given that the KP-I equation is a 2+1-dimensional equation, there are 3 main

symmetries.

1. The t-independent symmetries where the equation deforms to that of the

Boussinesq equation with the time parameter being defined by y.

2. The y-independent symmetries where the equation is equivalent to the KdV

equation subject to differentiation.

3. The x-independent symmetries where the equation is of lower order.

The solutions found in this thesis are still different from those that can be obtained

from these symmetries.

6.2 Bilinear Form

Making the substitution u = vxx in (6.1) and integrate twice, setting any

constant of integration to 0, retrieves the potential KP equation,

vxt + 3v2
xx + vxxxx + 3σ2vyy = 0. (6.7)

Letting v = 2 ln(F ) and σ2 = −1 gives the bilinear form,

FFxt − FxFt + FFxxxx − 4FxFxxx + 3F 2
xx − 3FFyy + 3F 2

y = 0. (6.8)

In addition to the bilinear form (6.8), it is also possible to write the KP

equation using Hirota’s bilinear form as,

(DxDt +D4
x − 3D2

y)F · F = 0. (6.9)
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6.3 Generating Rational Solutions

Ablowitz et al detailed a generating function for rational solutions of KPI in

[1]. The simplest solutions are constructed by first considering the equation,

pn = (∂nk eiφ|k=−i)e
−iφ, (6.10)

where, in the paper, it is stated that φ = kx − k2y + 4k3t. It is necessary to

also make the invariant transformation x → −x and t → −t in pn so that our

polynomials generated with this are solutions of the bilinear form of KP. As such

the following will be used, φ = −kx − k2y − 4k3t. Polynomial solutions of the

bilinear form are constructed as

Fn =
2n∑
j=0

1

(2b)j
∂jx|pn|2 (6.11)

and thus rational solutions of KP-I are simply twice the second logarithmic dif-

ferential.

There have only been some similarities between the solutions created via (6.11)

and equations (18a) to (18c) from [1]. Namely (18b) and F2 are exactly the same

and (18a) is equal to F1 after the linear transformation x→ x+ 1
2
. It also transpires

that equation (18c) as stated in the paper is not a solution of the bilinear form.

In order to simplify the problem, the paper discusses using moving frame

coordinates. It is stated that the co-ordinates that are used are x = x′+(a2 + b2)t

and y = y′+12at where a and b are from k = a−ib. The transformation that seems

to have been used, elicited by the behaviour of the graphs, is x = x′+ 12(a2 + b2)t

and y = y′ + 12at, this is also referred to in [61].

Work presented in Pelinovsky’s papers [52] and [53] details a method for gen-

erating rational solutions via a Wronskian whose elements are solutions to the KP
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Lax pair, up to scaling. These rational solutions are for KP-II however and they

result in singularities so cannot be used to model rogue waves.

Using a transformation of u → −1
3
, t → i

√
3x, y = 3t and x = i

√
3x in (6.1)

one can retrieve (3.1). This shows that solutions of the Boussinesq equation exist,

subject to some transformation, as solutions to KP-I. The converse is not true as

one can move from a 2-dimensional equation up to a 3-dimensional equation but

moving in the opposite direction would lose some solutions. With this information,

techniques used to describe rational solutions of KP-I could be employed to find

rational solutions of the Boussinesq equation.

6.3.1 Matrix Formulation

In [1], a matrix generating function was described that broadens the solu-

tion set to include a variety of functions of the same degree. The leading order

behaviour of these polynomials is identical for the same degree but lower order

coefficients change. Once more the form of φ must be altered from the paper to

make the polynomials solutions of the KP bilinear form.

Taking

φ(k) = −kx− k2y − 4k3t, (6.12)

and

ψj = ∂
mj

k eiφ(k)|k=−i, (6.13)

then we can construct a square matrix M which has entries,

Ml,j =

∫ x

−∞
ψlψjdx

′. (6.14)

These functions have been slightly altered form [1] since Φj(k) has been taken to

be 0 for simplicity, it will be reintroduced in §6.8. The polynomial solutions to

103



the bilinear form in terms of the variables mj for j ∈ [1, .., N ] are

F[m1,...,mN ] = −2|M|e2(−iφ(−i)+iφ(i)), (6.15)

where N is the rank of the matrix M.

Note that mj must be used rather than j to retrieve all the solutions in the

hierarchy, for instance in the 2 × 2 case if just j was used instead of mj then

one can get a polynomial of degree 4 with 1 and 2 as the two values but this

restricts from retrieving the degree 6 polynomial by using m1 = 1 and m2 = 3. It

is also not possible to have fractional values of mj since it relates to the number

of differentials taken and thus must be an integer to produce reasonable, bounded

solutions. In order to have the matrix M formed of linearly independent rows, it

is required that mj 6= ml unless j = l. Were the flexibility to have mj 6= j not

allowed then the solution set would be drastically reduced.

When m1 = 1 in the 1×1 case, this retrieves the first solution in the hierarchy,

m1 = 2 the second and so on.

The leading order of the polynomial in the N ×N case, which is the same for

x, y and t is defined as, (
N∑
i=1

2mi

)
−N(N − 1). (6.16)

Due to this structure and the fact that mi 6= mj unless i = j then if the rank

of the matrix is N , it is possible to calculate polynomials of degree greater than,

(N − 1)(N + 2)

2
. (6.17)

It should be noted for each matrix size, the polynomials change even if they

share a degree. The leading order behaviour is the same but anything of a lower

degree has different coefficients.

104



The notation for the following chapter will be u[m1,m2,...,mN ], where the number

of mN ’s will pertain to the rank of the matrix that is being used and the degree

of the polynomial F[m1,m2,...,mN ] used can be calculated from (6.16).

6.3.1.1 Simplification of the Matrix Formulation in the 1× 1 Case

Some interesting simplifications of the matrix method occur when only con-

sidering the 1× 1 case. In this there is

ψ1(m1) =

(
∂

∂k
+ i

∂

∂k
φ(k)

)m1

exp(4t+ iy − x)

∣∣∣∣∣
k=−i

, (6.18)

ψ1(m1) =

(
∂

∂k
− i

∂

∂k
φ(k)

)m1

exp(4t− iy − x)

∣∣∣∣∣
k=i

. (6.19)

As such, this can be factorised as

M1,1 = e8t

x∫
−∞

(
∂

∂k
+ i

∂

∂k
φ(k)

)m1

e−x
′

∣∣∣∣∣
k=−i

(
∂

∂k
− i

∂

∂k
φ(k)

)m1

e−x
′

∣∣∣∣∣
k=i

dx′,

(6.20)

where now the power of some operator is considered. The operator acts on the

function e−x in each case of (6.20). It is worth noting that any derivative of φ(k)

of order 4 or higher will be 0.

6.3.1.2 Combinatorics of the Method

If we consider (∂mk ef(k))e−f(k), for f(k) a polynomial in k, then the pattern of

the results are highly structured. Indeed the first 5 iterations are shown below.

F1, (6.21a)

F 2
1 + F2, (6.21b)

F 3
1 + 3F1F2 + F3, (6.21c)
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F 4
1 + 6F 2

1F2 + 4F1F3 + 3F 2
2 + F4, (6.21d)

F 5
1 + 10F 3

1F2 + 10F 2
1F3 + 15F1F

2
2 + 5F1F4 + 10F2F3 + F5, (6.21e)

where Fn denotes the n’th derivative of f(k). These are complete Bell polyno-

mials. The coefficients are all multinomial coefficients relating to the degree of

differentiation and sometimes divided by some specific factor. For example when

m = 3 we can write this as

1

3!

(
3

1, 1, 1

)
F1 +

(
3

1, 2

)
F1F2 +

(
3

3

)
F3. (6.22)

It is necessary to introduce
1

3!
to the coefficient of F1 since in the multinomial

expression there are 3 repetitions of 1 which introduces 3! repeated terms and

only unique terms are wanted.

If there was a way to express these as sums or products then there is hope for

a mathematical proof as to why the patterns are the way they are.

It is possible to use the Faá di Bruno formula to express ∂mk ef(k), for f(k) a

polynomial in k.

Theorem 6.1 (Faá di Bruno). [39] If g and f are functions with a sufficient

number of derivatives, then

dm

dtm
g(f(t)) =

∑ m!

b1!b2! · · · bm!
g(k)(f(t))

(
f ′(t)

1!

)b1 (f ′′(t)
2!

)b2
· · ·
(
f (m)(t)

m!

)bm
,

(6.23)

where the sum is over all different solutions in non-negative integers b1, · · ·, bm of

b1 + 2b2 + · · ·+mbm = m, and k := b1 + · · ·+ bm.

This in itself is not the easiest formula to work with when we are dealing with

m as an unknown value. However there is an equivalent formula in determinant
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form,

dm

dtm
g(f(t)) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
m−1

0

)
f ′g

(
m−1

1

)
f ′′g

(
m−1

2

)
f ′′′g . . .

(
m−1
m−2

)
f (m−1)g

(
m−1
m−1

)
f (m)g

−1
(
m−2

0

)
f ′g

(
m−2

1

)
f ′′g . . .

(
m−2
m−3

)
f (m−2)g

(
m−2
m−2

)
f (m−1)g

0 −1
(
m−3

0

)
f ′g . . .

(
m−3
m−4

)
f (m−3)g

(
m−3
m−3

)
f (m−2)g

...
...

...
...

...

0 0 0 . . .
(

1
0

)
f ′g

(
1
1

)
f ′′g

0 0 0 . . . −1
(

0
0

)
f ′g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(6.24)

where powers of g after the determinant has been taken, should be considered as

g(k)(f(t)). Ordinarily this is quite an important factor, however, because in our

case we are only using the exponential function as our function g, and the function

appears at least once in every column, we can extract the function from the matrix

and substitute it back in later. In essence, we use the fact that any derivative

of the exponential function is just the function itself to remove the necessity to

distinguish g from g(2). The following definitions and corollaries will be useful to

explore the problem in this form.

Definition 6.1 (Upper Hessenberg Matrix). An Upper Hessenberg matrix is an

upper triangular square matrix with an additional diagonal so that it appears as,



a1,1 a1,2 . . . a1,n−1 a1,n

a2,1 a2,2 . . . a2,n−1 a2,n

0 a3,2 . . . a3,n−1 a3,n

...
. . . . . .

...
...

0 . . . 0 an,n−1 an,n


. (6.25)
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The matrix M is an upper Hessenberg matrix where the entries are defined as

given in (6.14). There has been work conducted that expresses the determinant of

an upper Hessenberg matrix as a recursive formula. One such formulation given in

[17], taking An as the upper Hessenberg matrix, det(A0) = 1 and det(A1) = a1,1,

is

det(An) = an,n · det(An−1) +
n−1∑
r=1

(
(−1)n−ran,r

n−1∏
j=r

aj,j+1 · det(Ar−1)

)
. (6.26)

In our case, g is the exponential and f is the function φ from (6.12). Thus the

matrix that will be used is,

∂m

∂km
exp(iφ(k)) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ′
(
m−1

1

)
φ′′

(
m−1

2

)
φ′′′ . . .

(
m−1
m−2

)
φ(m−1) φ(m)

−1 φ′
(
m−2

1

)
φ′′ . . .

(
m−2
m−3

)
φ(m−2) φ(m−1)

0 −1 φ′ . . .
(
m−3
m−4

)
φ(m−3) φ(m−2)

...
...

...
...

...

0 0 0 . . . φ′ φ′′

0 0 0 . . . −1 φ′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

im exp(iφ).

(6.27)

There is not a trivial simplification of this matrix as the coefficients reduce to

multinomial coefficients, even with the specific construction of −1 on the sub-

diagonal and the exponential being taken out as a factor. Using the recursive

formula (6.26) it may be possible to evaluate what the matrix is really doing.

This will give the entries of ψi and then this needs to be used in M to find the

true workings behind the generating function.
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6.3.1.3 Number of mi Variations by Matrix Rank

Clearly in the 1×1 case there is only 1 option per degree of polynomial for m1.

In the 2× 2 case there are more options. We know that we are considering even

power polynomials of degree 4 and up from (6.17). Let the degree of the polyno-

mial be d, where d = 2z2 and z2 ∈ Z \ {0, 1}. Then the number of combinations

of {m1,m2} is 
z2

2
for z2 even,

z2 − 1

2
else.

(6.28)

In the 3 × 3 case we are considering even power polynomials of degree 6 and

up. Now let the degree d be d = 2z3 and z3 ∈ Z \ {0, 1, 2}. Then the number of

combinations of {m1,m2,m3} is

z3 no. combinations m1 +m2 +m3

3 1 6

4 1 7

5 2 8

6 3 9

7 4 10

8 5 11

9 7 12

10 8 13

11 10 14

12 12 15

13 14 16

14 16 17

15 19 18

16 21 19

Consider a triangular lattice of size z3 + 4. Bearing in mind that we require
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that mi ∈ Z \ {0}, removing the perimeter which will always have at least one

value of mi = 0 and the lines of symmetry which will have some mi = mj for

i 6= j, the number of points left are the number of combinations of m1,m2 and m3

including permutations. We remove all bar one segment from the diagram and

the number of points is the number of combinations not including permutations.

This is illustrated in Figure 6.1.

(a)

(9, 0, 0) (0, 9, 0)

(0, 0, 9)

m1 = m2

m2 = m3m1 = m3

(b)

(8, 0, 0) (0, 8, 0)

(0, 0, 8)

m1 = m2

m2 = m3m1 = m3

Figure 6.1: Lattice representation of the combinations of m1, m2 and m3.

If m1 + m2 + m3 is divisible by 3 then the intersection of the three lines of

symmetry is a solution or node that is excluded. Since m1 + m2 + m3 = z3 + 3,

the number of perimeter nodes that are removed is

3(z3 + 3). (6.29)
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The number of nodes removed from each line of symmetry, not including the end

points is 
z3 + 1

2
for z3 odd,

z3

2
+ 1 else.

(6.30)

There are always 3 lines of symmetry but if z3 is divisible by 3 then the central

intersection is triple counted. If z3 is divisible by 2 then 3 points are double

counted from the symmetry lines and the perimeter.

So the number of points to remove are



3(z3 + 3) + 3
z3 + 1

2
for z3 ∈ [1]6 ∪ [5]6,

3(z3 + 3) + 3
z3 + 1

2
− 2 for z3 ∈ [3]6,

3(z3 + 3) + 3
(z3

2
+ 1
)

for z3 ∈ [2]6 ∪ [4]6,

3(z3 + 3) + 3
(z3

2
+ 1
)
− 2 for z3 ∈ [0]6.



, (6.31)

where [n]k represents n modulo k.

Given that the total number of points in a triangle for a given value of z3 is

z3+1∑
i=1

i =
(z3 + 1)(z3 + 2)

2
, (6.32)

then once permutations have been excluded the number of combinations of
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{m1,m2,m3} is



1

12
(z2

3 − 6z3 − 19) for z3 ∈ [1]6 ∪ [5]6,

1

12
(z2

3 − 6z3 − 15) for z3 ∈ [3]6,

1

12
(z2

3 − 6z3 − 22) for z3 ∈ [2]6 ∪ [4]6,

1

12
(z2

3 − 6z3 − 18) for z3 ∈ [0]6.

(6.33)

These methods have worked fine for small N , however, extending this to even

the 4 × 4 case is problematic. As such there will be an alteration of the method

and partitions of an integer shall be considered.

For the N ×N case we are looking for a counting of partitions of zN + N(N−1)
2

with distinct parts. The partitions need to be unordered, distinct and with a fixed

number of parts. Consider the expression,

P (Z, k) = ∂Zx

(
xk

k∏
i=1

1

1− xi

)∣∣∣∣∣
x=0

, (6.34)

which gives the number of partitions of an integer Z into k parts [20, p.374].

The differentiation and substitution merely extracts the coefficient of xZ from the

original polynomial. Comparing this equation with the 4 × 4 case with distinct

parts and of length k, we conjecture that the equation for the partitions of an

integer Z into k distinct parts is,

Q(Z, k) = ∂Zx

(
x2k+(k

2)
k∏
i=1

1

1− xi

)∣∣∣∣∣
x=0

. (6.35)
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Therefore in the N ×N matrix case the number of combinations of mi is,

Q

(
zN +

N(N − 1)

2
, k

)
= ∂

zN+
N(N−1)

2
x

(
x2k+(k

2)
k∏
i=1

1

1− xi

)∣∣∣∣∣
x=0

, (6.36)

with zN still being half the degree of the polynomial we are calculating. Using

this method, solutions can be retrieved for N = 1, 2 and 3 as well.

This can also be related to Young diagrams.

6.4 Wave Behaviour

In order to classify the different groups of waves, and given that the solutions

created by (6.11) are invariant under permutations of mi, we will always consider

mi < mi+k where k > 0.

6.4.1 Fix m1 = 1 in the 2× 2 Case

It was interesting to investigate whether increasingm2 may increase or decrease

the height of the waves. This would need to be separated in order to compare

even and odd wave cases but is most likely solved by considering an average of the

wave height. Firstly we fix m1 = 1 and vary m2. Another issue however is that

we have to consider positive time for the even m2 case and negative time for the

odd m2 case due to where the waves lie and accurate calculations. With the data

gained from considering F[1,2] against F[1,4] we would hypothesise that increasing

the value of m2 very slightly decreases the average height if we consider the waves

at the same time. Again this needs to be extended to higher order functions to

see if this still holds or if it is an isolated incident. If we consider the odd values

of m2 then it seems that increasing m2 leads to an increase in the main maximum

wave height. However we are considering negative time for these therefore it could
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still tie in that in the positive time case the wave will in fact increase in height as

it seemed to do for the even m2 case.

6.4.1.1 Even m2

When looking at the pattern of the waves for even m2 at negative time, see

Figure 6.2, it firstly appears that the waves travel on a fixed line in X but further

inspection reveals that they are moving incrementally so there is not a fixed X for

the maximums. The pattern is such that there are two waves moving in the −X

region towards Y = 0 and all remaining waves (if there are more) travel along

Y = 0. In terms of these waves moving on Y = 0, the wave farthest back on

−X is the largest with the waves decreasing in height until you reach the one at

the largest value of +X. The smaller waves split into two and the larger waves

merge together and become wider. The two waves that were always travelling

along some line in the −X region merge together and the other waves form an

arc around them.

Additionally, increasing the value of m2 makes the pair of waves move closer

together sooner and shifts the line in X that they travel on so that it is nearer to

0. It also appears that it increases the height of the waves.

Figure 6.2: u[1,m2] for m2 ∈ {4, 6, 8, 10} at t = −1.

As we move to positive time it again looks like the waves move away on fixed

lines in X but again this is not quite the case. With the behaviour occurring

around t = 0, we now have one central wave and an arc of waves around this
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which can be seen in Figure 6.3, so we are dealing with far fewer waves than

originally. The original number of waves is retrieved in positive time though

as the tallest two waves stay combined as do the perpendicular waves and the

remaining waves split into two in the u[1,8] case. This formation can be seen in

Figure 6.4.

Figure 6.3: 3D graph of u[1,5] at t = 0

Starting from the maximum that resides at the highest value of positive X,

the waves gradually split into two until the only waves left are those that sit on

negative X.

6.4.1.2 Odd m2

When we consider odd m2 then the central structure changes as we have an

additional wave. We have what looks like an isosceles triangle around the origin

whose apex lies towards positive X. Nevertheless, for different values of t the
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Figure 6.4: u[1,m2] for m2 ∈ {4, 6, 8, 10} at t = 1.

scaling between the lengths of the sides do change. If we ignore this central

structure then for negative time we still have the largest waves at the most negative

X, decreasing in height until you reach the final wave in the positive X region as

with the even m2 case. However, considering the central 3 waves, these follow the

opposite pattern with the largest wave being the apex in the positive X region

and the shorter waves being the two that sit in the negative X region. The

paired waves are the same height throughout this process. As time progresses

from negative to positive the waves on positive X increase in height as those on

negative X decrease.

Moving back to negative time, there are a pair of waves that move both closer

together and towards the origin in negative X. Increasing the value of m2 also

moves the waves closer to the origin sooner, but the difference is not as pronounced

as that which was observed when m2 is even. It seems that the waves decrease in

height as m2 is increased as well, however, this may be related to things happening

sooner, like there is some sort of a time shift, since the waves alter in height as

time passes.

In terms of merging and separating behaviour, the triangle that occurs near

t = 0 starts in positive X and gains the maximums until it has them all.

Figure 6.5 shows the behaviour around t = 1 where the central triangle can be

clearly seen in each function and Figure 6.6 shows the behaviour at t = −1.
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Figure 6.5: u[1,m2] for m2 ∈ {3, 5, 7, 9} at t = 1.

Figure 6.6: u[1,m2] for m2 ∈ {3, 5, 7, 9} at t = −1.

6.4.2 Fix m2 as Even in the 2× 2 Case

It seems that the value of m1 in the 2×2 case determines the number of ‘pairs’

of waves that sit off Y = 0 for negative time. For positive time the behaviour is

more complex so we shall examine this in the subsections below.

6.4.2.1 Even m1

Considering m2 = 8 and negative time, see Figure 6.7, the sequence of waves

from negative X to positive for u[2,8] is [1, 1, 2, 1, 2, 1, 1]. For u[4,8] the sequence is

[1, 2, 2, 1, 2, 2, 1] and for u[6,8] it is [2, 2, 2, 1, 2, 2, 2]. So for even m1 it seems that

the central wave is 1 and there are m1 number of paired waves that emanate out

from the central wave and as soon as the value of m1 has been reached they revert

to singular waves until the total number of peaks for that solution are reached.

The sequence could be written as

[

m2/2−1︷ ︸︸ ︷
1, .., 1 ,

m1/4︷ ︸︸ ︷
2, .., 2, 1,

m1/4︷ ︸︸ ︷
2, .., 2,

m2/2−1︷ ︸︸ ︷
1, .., 1]. (6.37)
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Figure 6.7: u[m1,8] for m1 ∈ {2, 4, 6} at t = −2.

We explore what happens at m2 = 12 to ascertain if this is the correct pattern,

see Figure 6.8. For u[2,12] the sequence at t = −2 is [1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1] and

for u[4,12] the sequence at t = −2 is [1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1]. It seems that this

latest function does not follow the pattern. Of course, as the functions near

t = 0 the placement of some of the waves seems to change so it could be that

by increasing the modulus of t it may be possible to find a pattern before any

alterations occur. Upon further inspection though, this doesn’t seem to have

changed the sequences already discovered.

Figure 6.8: u[m1,12] for m1 ∈ {2, 4, 6, 8} at t = −2.

A more complex pattern may be occurring though for which more data is

required. As such we consider u[6,12] which has the sequence

[1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1]. For u[8,12] the sequence is [1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1] (as

expected by (6.37)).

If we consider that base behaviour as a line of waves on Y = 0, then for m2

even, the value of m1 pertains to the number of paired waves that sit off this line.
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Considering positive time, unlike as will be seen in the odd m1 case, we now

have an additional wave (since the combination of m1 and m2 gives us an odd

number of waves) at the origin. If we were to exclude this wave then the behaviour

exhibited in the even m1 case is the same as that in the odd m1 case with a

duplicate of waves peeling off the original arc for each increase in m1 by 2.

The structure of the waves at t = 1 for m1 odd is shown in Figure 6.9. Figure

6.10 more explicitly shows how increasing the value of m1 adds waves into the

formation by the addition of red lines to show any altered structure from the

previous function in the sequence.

Figure 6.9: u[m1,10] for m1 ∈ {2, 4, 6, 8} at t = 1.

Figure 6.10: u[m1,10] for m1 ∈ {2, 4, 6, 8} at t = 1 with the pattern identified.

6.4.2.2 Odd m1

The pairs of waves are not as regimented for negative time as may be expected

from this kind of solution. Given the previous behaviour, it would be natural to

expect the paired waves to group together looking at large negative time, i.e to

all be the ones nearest the origin or to be at either end of the X-axis. It seems
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that instead, in the u[3,8] case, there is one duo of waves, followed by a singular

wave, followed by two paired waves and finally another single wave; a sequence of

[1, 2, 1, 2, 2, 1, 1]. Looking on to u[5,8] though and the sequence is [2, 1, 2, 2, 2, 2, 1],

and then at u[7,8] all the waves are in pairs, see Figure 6.11.

Figure 6.11: u[m1,8] for m1 ∈ {3, 5, 7} at t = −2.

If we consider m2 = 12 instead then we have more waves to investigate. For

u[3,12], from negative X to positive and for negative time, see Figure 6.12, we have

3 singular waves, a double wave, a single wave, a double wave, a single wave, a

double wave and 3 single waves. So let us think of this as the following sequence

[1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1]. If we move up to u[5,12] then the sequence becomes

[1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1], so it seems that there are always the same number of

singular waves at the beginning and the end of the sequence. For u[7,12] the

sequence is [1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 1] and u[9,12] [2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2].

Figure 6.12: u[m1,12] for m1 ∈ {3, 5, 7, 9} at t = −2.

When the value of m1 is only 1 less than the value of m2, then all the waves

will be paired up. This can be verified by substituting m2 = m1 + 1 into (6.16)
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and halving the result to find that the number of waves will be twice the value

of m1 and thus the number of paired waves at its maximum must be the value of

m1.

The behaviour for positive time is very different from that for negative time.

When m1 = 1 then there are two waves that differ in behaviour from the others

and sit on Y = 0. The rest of the waves sit in a single arc which intersects the

chord between these two points. When m1 is only 1 less than m2 then there are

two distinct arcs with the waves moving out on almost fixed lines in X. If we

consider m2 = 8 then as we move from u[1,8] through m1 odd to u[7,8] then at each

step another 2 waves peel off the first arc and head into the negative X area. It

also deforms the original arc though so it is no longer a smooth arc but could be

considered an arc in the neighbourhood of that from u[1,8]. This can be seen in

Figure 6.13 with the patterns identified in Figure 6.14

Figure 6.13: u[m1,8] for m1 ∈ {1, 3, 5, 7} at t = 1.

Figure 6.14: u[m1,8] for m1 ∈ {1, 3, 5, 7} at t = 1 with the pattern identified.

As before, if we increase m2 to 12 we can assess whether this pattern is main-

tained. This does occur for m2 = 12 as well but the deformation of the original
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arc is far more pronounced and may contain a pattern of its own. It seems that

perhaps for each level of m2 that we go up another two waves are also peeled onto

the singular wave in positive X and this arc is flatter.

6.4.3 Fix m1 = 1 and m2 = 2 in the 3× 3 Case

Starting with the simplest criteria in the 3×3 case and gradually increase m3.

Even and odd m3 will be dealt with separately in order to ascertain whether there

is a distinct difference between the two cases. Positive time seems to have more

obvious patterns to examine so this will be considered for this section.

The waves in the 3 × 3 case are shifted from their relevant locations in the

2 × 2 case. That is, the range of X is much larger than it was previously and

the graphs need to be adjusted accordingly. The arcs are still present as before

however and much of the movement seems similar.

6.4.3.1 Odd m3

The beginning position, i.e when m3 = 3 is a trio of waves in an arc around the

origin orientated like x2. For each increment in m3 another duo of waves appears

on the Y = 0 for negative time. The arc of waves also move closer to X = 0. It

seems that the apex of the curve comes closer to X = 0 but does not seem to pass

this and move into positive X. This can be seen in Figure 6.15.

Figure 6.15: u[1,2,m3] for m3 ∈ {3, 5, 7, 9} at t = −1.

If instead positive time is considered then the behaviour is as shown in Figure
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6.16. That is, a trio of waves are now on a line seemingly Y = 0 and for each

increment in m3 a duo of waves appears on an arc around the central original

wave.

Figure 6.16: u[1,2,m3] for m3 ∈ {3, 5, 7, 9} at t = 1.

6.4.3.2 Even m3

For even m3, as we increase its value then an additional 2 waves are added to

the arc from the base case when m3 = 4. As mentioned in the previous section,

the behaviour seems very similar to that of the 2 × 2 case excepting that now

there are waves at greater values of X for the same value of time. This is shown

in Figure 6.17.

Figure 6.17: u[1,2,m3] for m3 ∈ {4, 6, 8, 10} at t = 1.

6.4.4 Fix m1 = 1 and m2 = 3 in the 3× 3 Case

It is advisable to explore what happens when m1 and m2 are both odd instead

of just look at one odd and one even. As such the first two variables are fixed as
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odd but as low as possible and m3 is varied in both even and odd cases. Now only

the positive time is considered.

6.4.4.1 Even m3

When m3 is even there are an odd number of waves. The behaviour noted

is that with each increment in m3 the two waves that reside next to each other

in the negative X area of the graph seem to come closer to together. While this

happens, they also move nearer to the origin as their partners in the positive X

area do so as well. Additional waves at each stage are added to the “arc” but its

apex is distorted by the 4 waves aforementioned and thus does not form a clean

parabola. These graphs are given in Figure 6.18.

Figure 6.18: u[1,3,m3] for m3 ∈ {4, 6, 8, 10} at t = 1.

6.4.4.2 Odd m3

When m3 is odd there is a very structured formation that is mentioned further

in §6.4.7.6. This central formation does not seem to change but the increasing of

m3 only serves to add waves onto the parabola that would intersect the triangle

formation between the second and third row. This behaviour is seen in Figure

6.19.
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Figure 6.19: u[1,3,m3] for m3 ∈ {5, 7, 9, 11} at t = 1.

6.4.5 Fix m1 = 2 and m2 = 3 in the 3× 3 Case

In order to establish that m1 = 1 does not restrict the wave behaviour too

much, now select m1 = 2 and m2 = 3 and vary m3 once more. This also ensure

that for m3 even then the case relates to when the sum of mi is odd and for m3 odd

the converse is true. This is expected to be very similar to the behaviour shown

in §6.4.4 however the will be an additional wave now. Positive time is considered

for behaviour, as such all graphs displayed are at t = 1.

6.4.5.1 Even m3

As always, the increasing of m3 adds waves onto the parabola of waves. Unlike

in the case explained in §6.4.4.2, now the parabola intersects the center of the

original formation, but this original formation is a rectangle. Increasing m3 causes

this rectangle to shrink and the central 2 waves from the m3 = 4 case come closer

to the origin. The graphs are shown in Figure 6.20.

Figure 6.20: u[2,3,m3] for m3 ∈ {4, 6, 8, 10} at t = 1.
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6.4.5.2 Odd m3

When m3 is odd the original rectangular structure now has a central wave that

distorts the rectangle somewhat so that its width in the centre is not the same

as that at the edges. If this central wave was to be ignored then the behaviour

is very close to that observed in §6.4.5.1, and this central wave merely moves

incrementally from its original position to form a convex shape at the top of the

parabola. The graphs are shown in Figure 6.21.

Figure 6.21: u[2,3,m3] for m3 ∈ {5, 7, 9, 11} at t = 1.

6.4.6 Fix m1 = 2 and m2 = 4 in the 3× 3 Case

Given the justification of including §6.4.5, this section will be concerned with

the cases where if m3 is even then all the mi’s are even and if m3 is odd then the

sum of the mi is odd. This is the final section in which the behaviour is detailed

and this is only completed for positive time t = 1. A good deal of information has

been found already but it can be extended to both higher rank matrices, larger

values of time and the exploration of negative time to name but a few.

6.4.6.1 Even m3

With the number of waves that are now included, along with the difference

between all the mi’s, the patterns become much more complex. The central

structure has now become a triangle in negative X formed of 3 waves and with its
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apex pointing towards the origin, coupled with another triangle-like object formed

of 4 points with the same orientation of the apex. Additionally, at m3 = 6 there

are two waves which create a cross with the negative X triangle and it is these

waves that are the initial parabola waves. As the value of m3 is increased, the

structure shrinks and at each point 2 waves are added to the parabola. This seems

to be a new form of structure that derivations of are not clear from the previous

cases. The graphs are shown in Figure 6.22.

Figure 6.22: u[2,4,m3] for m3 ∈ {6, 8, 10, 12} at t = 1.

6.4.6.2 Odd m3

In some respects, the behaviour when m3 is odd seems clearer than that when

m3 is even. The structure is a bowed rectangle and with increasing m3 the curve in

the shortest edges becomes more pronounced until it resembles a sharply pointed

bowing. The parabola intersects with the central 2 waves and waves are added in

increasing distance from the previous parabolic waves. The graphs are shown in

Figure 6.23.

Figure 6.23: u[2,4,m3] for m3 ∈ {5, 7, 9, 11} at t = 1.
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6.4.7 Interesting Cases

During the investigation there were certain functions of mi that gave repeated

patterns. Some of those found are considered below. These were observed for

both positive and negative values of t so in each case it will be specified at what

value the behaviour was observed.

6.4.7.1 Fix mi = i

In some respects it is easier to think of the 1× 1 case as a special case. If then

we increase the matrix rank, the behaviour mirrors that of the 1×1 case but with

additional waves. For example, with u[1,2,3], this is the same as u[1] but with two

additional waves. However they are all oriented on Y = 0 as can be seen in first

image of Figure 6.16. Also the behaviour of the waves is exactly that of letting

t→ −t in this special case.

6.4.7.2 Fix m2 = m1 + 2

It seems that when m2 = m1 +2 the pattern mimics the union of some positive

and negative quadratic function, much like y = x2∪−x2. This behaviour has been

checked for all values of m2 up to 12 again and much like when m2 = m1 + 4, as

will be seen later, the oval in the negative X area has a greater area than that in

the positive X area. This behaviour was observed for negative time, see Figure

6.24.

6.4.7.3 Fix m2 = m1 + 3

For m1 +m2 ≤ 9 then the pattern is just a circle or oval, that is for m1 = 1, 2

or 3, where at each increase of the values, additional waves appear. Once values

above this threshold are used then there are an additional two peaks who sit above

the oval in the −X region up to and including m1 + m2 = 19. Therefore there
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(a) (b)

Figure 6.24: u[3,5] and u[8,10] respectively at t = −2.

are 5 different combinations of (m1,m2) as (4, 7), (5, 8), (6, 9), (7, 10) and (8, 11)

that only have 2 additional waves sitting above the oval. Obviously as the value

of m1, and thus m2, is increased, the oval gains additional waves. Considering the

case u[9,12] though, there are now 4 peaks that form a quadratic pattern above the

oval. This could be extended to establish when the 4 peaks adjusts to be 6 peaks

and if there is some integer pattern that can be used to predict when behaviours

change. These behaviours are shown in Figure 6.25.

Figure 6.25: u[1,4], u[4,7], u[8,11] and u[9,12] at t = −2.

6.4.7.4 Fix m2 = m1 + 4

Another point to note is that for u[8,12] and u[4,8] the pattern of the waves

mirrors a figure of 8. Perhaps when m2 = m1 + 4 this pattern is always retrieved.

This has been checked for all values of m2 up to m2 = 12. The figure of eight
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formation is visible in all cases for negative time with the circle located in negative

X space being slightly larger than that in positive X space, see Figure 6.26. When

m2 is odd, and therefore m1 is odd as well, there are an additional two waves in

the negative X circle than the positive X and when m1 and m2 are even there is

an equal number in each.

(a) (b)

Figure 6.26: u[2,6] and u[8,12] respectively at t = −2.

6.4.7.5 u[1,2] and u[1,4]

At first it seemed changing from u[1,2] to u[1,4] was a time shift. This was

observed in the graphs as shown in Figure 6.27. In order to explore analytically,

the coordinates of the maximums were found at a fixed value of Y . Selecting

Y = −2.5, the maximums appear at (X, t) = (−1.49,−1.06) to 2d.p. If u[1,4] is

then considered at the point (X, Y ) = (−1.49,−2.5) to 2d.p. It transpired that

there was no point in time where the maximum occupied this space. As such,

despite seeming evidence of a timeshift this is not true analytically.

It is worth noting that even though the patterns are similar (if not exact), the

peaks appear to be higher in the u[1,4] case. This is probably due to the fact that

the time is nearing 0 and the waves rise near here.
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(a) (b)

Figure 6.27: 3D graphs of u[1,2] and u[1,4] at t = −1.062 to 3d.p

6.4.7.6 Triangular Structure for Odd mi at Positive Time

Consider situations when all mi are odd, the pattern of the waves is mirrored

even as the matrix rank is increased. From Figure 6.5 it is possible to see that the

central structure remains a triangle with base 2 and from Figure 6.19 the same

formation is seen but now the triangle has base 3. One can go further and look

at higher ranked matrices as in Figure 6.28.

Figure 6.28: 3D graphs of u[1], u[1,3], u[1,3,5] and u[1,3,5,7] at t = 1

Conjecture 6.1. If the value of m1 = 1 and |mi+1 − mi| = 2 then at positive

time all waves will be structured in a triangle. The base of the triangle is formed

of the same number of waves as the rank of the matrix and each row above this is

1 less than the row before until you reach the apex which resides in negative X.

It is worth noting that despite the graphs making it look like the base of the

triangles may all sit on the same line in X, this is not the case analytically.
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Figure 6.29: 3D graph of u[6] at t = 1

6.5 Behaviour for Fixed Matrix Rank

It has been mentioned that using the matrix formulation described in §6.3.1

can retrieve more than one polynomial of the same degree dependant on the rank

of the matrix used. The fact that the lower order term coefficients change alters

the formation of the waves, particularly around the origin. Where in the 1 × 1

case the waves would approach each other along Y = 0 and then travel off at

right angles along a given line in X as time moved from negative, through t = 0

to positive time, for a different matrix rank the waves on Y = 0 stay on that

line but the other waves move triangularly towards the origin. The waves then

emanate out in a circular way for increasing positive time.

As such the rank of the matrix will impact the wave behaviour so there is

enough of a change in the lower order coefficients that this behaviour is visible in

the graphs. Such an impact can be seen in Figure 6.30 where there are still only

4 waves in each graph but the formations are very different dependant on matrix
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(a) (b)

(c) (d)

Figure 6.30: u[4], u[1, 4], u[1, 2, 4] and u[1,2,3,4] at t = 1 viewed from above.
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rank.

6.5.1 The Effect of mi on the Wave Formation

When working in the 1×1 case the value of m1 merely determines the number

of peaks for the function. When considering the formation, for negative time

the waves move towards the origin along Y = 0 and then, after a transition in

formation, fan out in along given lines in X but in a parabolic structure with

relation to each other. This behaviour was detailed in Figure 6.29.

The more intriguing behaviour can be seen when we increase the rank of the

matrix. Moving only up to the 2× 2 case we now have m1 and m2 as variables.

(a) (b)

(c) (d)

Figure 6.31: u[1,8], u[2,7], u[3,6] and u[4,5] at t = −2 viewed from above.

If we consider u[1,8], see Figure 6.31, then we have two waves that break for-

134



mation of the other waves. For negative t, instead of moving with the other waves

along Y = 0, two waves are perpendicular to the others and move along X = −1.

For positive t these travel along Y = 0 while the other waves fan out in a parabolic

pattern and travel along designated lines in X.

However, if we consider u[2,7] the same behaviour is not seen. Now, the waves

that are pulled off the Y = 0 for negative time do not move together towards that

line but instead move towards the origin with the other waves. For positive time

they do not seem to stay on a given line in X either but travel linearly away from

the origin in another way. Moving on to u[3,6] though, and once more there are a

pair of waves that for positive time move away from the origin on Y = 0. This

can be seen in Figure 6.32.

(a) (b)

Figure 6.32: u[2,7] and u[3,6] for t = 2.

In the 2× 2 case, if m1 = 1 then you always have a line of waves for negative t

with two waves (the central ones) sat off that line and perpendicular. If m1 +m2

is even then these two waves move towards the origin, if it is odd then they

move towards each other to form on the same line. For positive t there is always

a downward facing arc whose center is around the origin (if not exactly at the

origin). If m1 + m2 is even then there is a singular wave off this arc on negative

X, and if it’s odd then there are a pair of waves who sit on Y = 0, one at positive
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X and one at negative. This could also just be because the nature of m1 + m2

dictates the number of waves.

6.5.2 Effect of Increasing the Rank of the Matrix on the

Solutions Behaviour

Consider an odd number of waves with mi even (using u9 here). It seems that

for the 1 × 1 case all the waves behave in the same way. In the 2 × 2 case for

positive t there are two arcs of waves and for negative t there are m1 number of

pairs of waves that sit slightly off the Y = 0 line but come towards the origin. In

the 3× 3 case consider (m1,m2,m3) = (2, 4, 6) and now there are 2 pairs of waves

off the Y = 0 line, a pair who stay on the Y = 0 line and a trio of waves that

arc along it, the central one being on the Y = 0 line. All waves move towards the

origin - then there is a triangle whose base sits near the X = 0 line which has two

lines of waves on the outer.

In the 5 × 5 case with (m1,m2,m3,m4,m5) = (1, 2, 3, 4, 5) and this reverses

the time behaviour; the arc happens at negative t and the waves all form on a line

for positive t with u5.

6.6 Limit of the Wave Heights

Since establishing the behaviour of the maximums requires them to reside on

some singular line in the (X, Y ) plane for simplicity, in this section only the 1

matrix case has been considered and within that only certain wave heights have

been proven. The waves that move in a parabolic way are harder to determine

and this is still an open problem. Only low values of n in un have been considered

but this method should work for specific waves at higher values of n though the

location of the wave maximums will most likely reside on different values of Y or
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X.

Considering the 1 × 1 case, as this is the easiest to investigate given where

the maximums lie, an interesting situation occurs as t → ±∞ for the maxima of

these functions. The behaviour of the peaks is different for positive and negative

t yet they both seem to tend to a limit. In Figure 6.33 we can see the graphs of

u[2] and u[3] plotted for various values of t. For t positive the peaks always occur

along a given value of X, similarly for negative t they occur at Y = 0. When

working with u[3] there is a slight split as two of the waves repel away along X = 5
6

while the third peak remains stationary at Y = 0. Not all of the maximums are

considered since some of them do not lie on a fixed line throughout time and the

function of such waves movements was could not to be found.

It can also be seen that with positive t the two peaks both increase to attain

a value, whereas when t is negative at least two of the peaks travel in opposing

directions; one decreasing and one increasing, until they reach what appears to

be the same limit.

Once again, the images in Figure 6.34 have been created in Maple whereby

there is no heat map coded into the programme already. These graphs have been

created using a 3D plot and altering the colouring of the graph as can be found

in Appendix E.5.

In Figure 6.34, the maximums of u[2] and u[3] have been plotted against t.

We have taken cuts of the graphs for specific values of X and Y at which it is

known that the maximums remain on as given above. There are always a pair

of maximums that have parabolic development with respect to t except in the

case of u[1] which has a stationary maximum at X = Y = 0. The factor of these

parabolas differs and not all are centred around 0 even though it may look that

way from the graphs. For positive t the parabolas are always symmetric around

the Y = 0 but for negative t they are symmetric around X = −1
2

and X = −2
3
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(a) (b)

(c) (d)

Figure 6.33: Time evolution plots of the maximums of u2 for positive time at
X = 0 (6.33(a)) and negative time (6.33(b)) at Y = 0. Likewise for u3 taken at
X = 5

6
for positive time and Y = 0 for negative time.

for u[2] and u[3] respectively. This behaviour has been referred to in [61] but this

paper was found subsequent to the research.

For u[3] there is also a third maximum that develops linearly in X and remains

stationary on Y = 0. This linear wave does not bisect the parabolic wave in u[3]

but intersects the X axis at a different point which will be shown below.

The graphs used in this section have been produced in Maple via the code

provided in Appendix E.5. They can sometimes look rather simple given that the

coding had to be manually adapted in order to produce a heat graph as shown.

Lemma 6.1. The limit of the height maxima or maximums of u[m1] tend to 16 as

t→ ±∞.
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(a) (b)

(c) (d)

Figure 6.34: Development of the maxima of u[2] for positive (6.34(a)) and negative
(6.34(b)) time. Likewise for u[3]. Negative time is represented by τ .

The behaviour regarding limits of KP being 16 was postulated in [28] but this

discovered subsequent to the investigation. Provided below are proofs of the limits

of the central waves if they exist in the function u[1], u[2] and u[3], and the waves

that reside on a fixed line in X or Y .

Proof of u[1], u[2] and u[3] as t→∞. Firstly let us consider as t → ∞ in

which the maximums of the functions u[1], u[2] and u[3] all occur for fixed X. The

maximums all tend up to a limit in a symmetric fashion around fixed values of
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X as seen in Figures 6.33(a) and 6.33(c). In all cases except for u[1] where the

wave is unaltered by time, the symmetric maximums grow like a quadratic so we

consider the functions for the value of X at which the maximums occur and for

Y = c
√
t + ξ, for c and ξ constants to be determined. Where there is a central

wave this grows linearly in X so we must alter the process slightly for this.

As mentioned, in the case of u[1], there is a a stationary, single peak at X =

Y = 0 and u[1](0, 0, t) = 16.

For the symmetric moving waves in u[2] and u[3] we consider X = 0 with u[2]

and X = 5
6

with u[3] since the maximums always occur on these, and Y = ct1/2 +ξ

which have Taylor series in the limit as

u[2](0, ct
1/2 + ξ, t) ∼ 2(c2 + 6)

t(c2 − 6)2
− 4cξ(c2 + 18)

t3/2(c2 − 6)3
+O(t−2), (6.38)

u[3](
5
6
, ct1/2 + ξ, t) ∼ 3(c4 + 108)

c2t(c2 − 18)2
+

6iξ(c6 + 18c4 + 324c2 − 1944)

c3t3/2(c2 − 18)3
+O(t−2).

(6.39)

These have critical values that relate to maximums at c =
√

6 and c =
√

18

respectively. Substituting these values in and recalculating the series they become

u[2](0,
√

6t+ ξ, t) ∼ 16

16ξ2 + 1
+

8

3

√
6ξ

t1/2(16ξ2 + 1)2
+O(t−1), (6.40)

u[3](
5
6
,
√

18t+ ξ, t) ∼ 16

16ξ2 + 1
+O(t−1/2), (6.41)

where the leading terms are maximal when ξ = 0.

There is another wave in u[3] whose maximum occurs on Y = 0 in the limit

and moves in a straight line. Consider Y = 0 and X = ct+ ξ which has a Taylor

series in the limit as

u[3](ct+ ξ, 0, t) ∼ − 12

c2t2
+

12(2cξ + c+ 144)

c4t3
+O(t−4), (6.42)
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which has a critical value at c = 0. With this substituted in the series becomes

u[3](ξ, 0, t) ∼ −
144(3ξ − 1)(3ξ + 2)

(18ξ2 + 6ξ + 5)2
+O(t−1), (6.43)

which has a maximal point for ξ = −1
6
, and for which the maximum height of the

wave is 16.

Proof of u[1], u[2] and u[3] as τ →∞ with τ = −t.

Since u[1] is independent of time then the same rational as used for t → ∞

holds as to why the limit of the wave height is 16 for τ → ∞. The maximums

now tend to the limit one from above, and one from below when we consider the

symmetric waves around Y = 0 as seen in Figures 6.33(b) and 6.33(d). Once

more, the symmetric waves grow as a quadratic and so we use X = cτ 1/2 + ξ and

the central wave grows linearly.

Firstly consider the symmetric waves, thus Y = 0 and X = cτ 1/2 + ξ which

results in u[2] and u[3] have Taylor series in the limit as

u[2](cτ
1/2 + ξ, 0, τ) ∼ − 8(c2 + 24)

τ(c2 − 24)2
+

8c(c2 + 72)(2ξ + 1)

(c2 − 24)3τ 3/2
+O(τ−2), (6.44)

u[3](cτ
1/2 + ξ, 0, τ) ∼ −12(c4 + 1728)

c2τ(c2 − 72)2
+O(τ−3/2), (6.45)

whose critical values that relate to the maximums are c =
√

24 and c =
√

72

respectively. Substituting these values in and recalculating the series, they become

u[2](
√

24τ + ξ, 0, τ) ∼ − 16ξ(ξ + 1)

(2ξ2 + 2ξ + 1)2
+O(τ−1/2), (6.46)

u[3](
√

72τ + ξ, 0, τ) ∼ −144(6ξ − 1)(6ξ + 5)

(36ξ2 + 24ξ + 13)2
+O(τ−1/2), (6.47)

which have leading terms maximal at ξ = −1
2

and ξ = −1
3

respectively, and the
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maximum height of the wave in both cases is 16.

For the additional wave in u[3] whose maximum occurs on Y = 0 in the limit

and moves in a straight line. Again consider Y = 0 and X = cτ + ξ which has a

Taylor series in the limit as

u[3](cτ + ξ, 0, τ) ∼ − 12

c2τ 2
+

12(2cξ + c− 144)

c4τ 3
+O(τ−4), (6.48)

which has a critical value at c = 0. With this substituted in the series becomes

u[3](ξ, 0, τ) ∼ −144(3ξ + 1)(3ξ + 4)

(18ξ2 + 30ξ + 17)2
+O(τ−1), (6.49)

which has a maximal point for ξ = −5
6
, and for which the maximum height of the

wave is 16.

A list of the values of c was composed in order to see if there was a recognisable

pattern just from this. That would then assist with proofs of later functions. This

work can be found in Appendix D.2.

Interestingly if instead, of making the substitution of t = −τ , you take the

limit as t → −∞ then the Taylor series for positive t and negative t for the

additional wave is exactly the same. However making that slight alteration seems

to change the numbers in ξ and c.

This work was only evaluated for u[1], u[2] and u[3] however it should be pos-

sible to extend this to u[n] subject to different values of X for positive time and

ultimately the hope would be to extend the proofs to any matrix rank solution.

Consideration of u[4] and u[5] was considered however finding out precisely where

the waves would lie, particularly as numerical error was having a greater impact.
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6.7 Relation Between other Nonlinear PDE’s and

the KP-I Equation

In [55] Pelinovskii and Stepanyants consider the KP equation in the form

(Ut + UUx − βUxxx)x = −Uyy, (6.50)

which they then consider steady-state solutions of by assuming U(x, y, t) = U(x+

V t, y) for V > 0, ξ = X
√
V/β, η = Y V/

√
β and µ = −U/V . In order to make

(6.50) equivalent to (6.1), we find β = 1
36

. Further to this, if we let x = ξ/
√

3

and y = η/
√

3 we retrieve a set of solutions that are the same as solutions of

(3.1). This is evidence of the well-known link between the solutions of the KP-I

equation and solutions of the Boussinesq equation. All solutions of the Boussinesq

equation can, by simple scalings, be solutions of the KP-I equation. It is not always

possible to go the other way since there are solutions of KP-I which are not found

as symmetry reductions of the Boussinesq.

Dubard and Matveev [27, 28] derive rational solutions of (6.1) from the gen-

eralised rational solution ψ̂2(x, t;α, β) of the focusing NLS equation

FGNLS
2 (x, t;α, β) =

{
1− 12

Ĝ2(x, t;α, β) + iĤ2(x, t;α, β)

D̂2(x, t;α, β)

}
exp

(
1
2
it
)
, (6.51)

where

Ĝ2(x, t;α, β) = G2(x, t)− 2αt+ 2βx, (6.52a)

Ĥ2(x, t;α, β) = tH2(x, t) + α(x2 − t2 + 1) + 2βxt, (6.52b)

D̂2(x, t;α, β) = D2(x, t) + 2αt(3x2 − t2 − 9)− 2βx(x2 − 3t2 − 3) + α2 + β2,

(6.52c)
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with α and β arbitrary constants, G2, H2 and D2 as given in Appendix A, see also

[41, 42]. Specifically Dubard and Matveev show that

v(ξ, η, τ) = 2
∂2

∂ξ2 ln D̂2(ξ − 3τ, η;α,−48τ)

= 1
2

(
|FGNLS

2 (x, t;α, β)|2 − 1
) ∣∣∣

x=ξ−3τ,t=η,β=−48τ
, (6.53)

is a solution of (6.1). If we define F nls
2 (ξ, η, τ ;α) = D̂2(ξ − 3τ, η;α,−48τ), then

F nls
2 (ξ, τ ;α) = ξ6 − 18τξ5 + 3

(
45τ 2 + η2 + 1

)
ξ4 − 12

(
45τ 2 + 3η2− 5

)
τξ3

+
{

3η4 + 18
(
9τ 2− 1

)
η2 + 1215τ 4− 702τ 2 + 27

}
ξ2

−
{

18τη4 + 36
(
9τ 2 + 5

)
τη2 + 1458τ 5− 2268τ 3 + 450τ

}
ξ

+ η6 + 27
(
τ 2 + 1

)
η4 + 9

(
27τ 4 + 78τ 2 + 11

)
η2 + 729τ 6

−2349τ 4 + 3411τ 2 + 9. (6.54)

The polynomial F nls
2 (ξ, τ ;α) satisfies

(
D4
ξ + DξDτ − 3D2

η

)
F2 · F2 = 0, (6.55)

which is the bilinear form of the (6.1), and so

vnls
2 (ξ, η, τ ;α) = 2

∂2

∂ξ2 lnF nls
2 (ξ, η, τ ;α), (6.56)

is a rational solution of (6.1).

6.8 Generalised KP

It is possible to introduce parameters into the solutions FGKP
[m1,..,mn] from (6.11)

by altering the form of φ1.
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Conjecture 6.2. An infinite number of parameters can be introduced into the

bilinear form solutions from (6.11) by changing φ to,

φN = −kx− k2y − 4k3t+
N+2∑
j=3

(aj + ibj)(ik)j, (6.57)

where (aj, bj) ∈ R2 are parameters. For each N ∈ Z there are solutions to the

bilinear form for FGKP
[m1,..,mn], where n still denotes the rank of the matrix M.

This conjecture was mentioned in [28] in a slightly different form where here

the lowest order terms have been explicitly given and the ψl from the paper has

been written as aj + ibj since it can be complex.

For FGKP
[1] it is always possible to translate out these additional parameters

however at higher orders this is not the case. In fact, the translation required is

always as follows,

x→ x− 1

2

(
∂2
x

(
FGKP

[1]

) ∣∣∣
x=0

+ 24t− 1
)

y → y − 1

8

(
∂2
y

(
FGKP

[1]

) ∣∣∣
y=0

)
.

Interestingly the functions ∂2
x

(
FGKP

[1]

) ∣∣∣
x=0

and ∂2
y

(
FGKP

[1]

) ∣∣∣
y=0

are highly struc-

tured and can be written as,

∂2
x

(
FGKP

[1]

) ∣∣∣
x=0

= 1− 24t+ 2
n∑
j=4

jbj

∂2
y

(
FGKP

[1]

) ∣∣∣
y=0

= 4
n∑
j=4

jaj

which is not intuitive from the equation.
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6.9 Discussion

There are many links between the KP-I equation solutions and other math-

ematical phenomena. For one, it is possible to express (6.21) from §6.3.1.2 as

Young diagrams. It is also possible to express the number of variations of mi not

as partitions of an integer into distinct parts, as was done in §6.3.1.3 but as Young

diagrams. This may reformat the problem in such a way that it is possible to not

only establish what the generating function is doing but also why this generating

function works and what the impact of the values of mi are. In a similar way, it is

possible to think of the ki values of the multinomials given in (6.22) from §6.3.1.2

as all the partitions of the integer n. Essentially, given that the precise reason

as to why this method works has not been found yet, it may be wise to consider

different expressions of the problem since there are links with both partitions and

Young diagrams at least; potentially many other useful expressions as well. If

this does not simplify the problem, then a continuation of the work regarding the

Hessenberg matrices may solve it still.

The categorisation work from §6.4 could also be extended to analysis of much

large mi’s as well as higher ranked matrices. This would then establish another

branch of the categorisation problem. It also remains to conjecture and prove

the behaviour for the 1 × 1, 2 × 2 and 3 × 3 cases such that given m1,m2 and

m3 the behaviour will be easily predicted. Within this, the proof of Conjecture

6.1 remains to be found. Much of the categorisation work focussed on positive

time behaviour as well as this seemed to be the most patterned, thus it would be

interesting to focus on the negative time more and establish the behaviour here. It

would also be worth investigating large values of |t| to ensure that the behaviour

does not alter drastically later.

The limit work shown in §6.6 needs to be extended to higher values of n in

un or to be generalised to all functions. The generalisation would require some
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knowledge of the leading order behaviour and coefficients of these leading order

terms however in order to complete.
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Chapter 7

Relation between KP, Boussinesq

and NLS

It has been shown in previous chapters that there are multiple links between

the NLS, Boussinesq and KP-I solutions. This chapter gives an equation solution

in terms of 3 parameters such that specific selection of the parameters leads to

separate solutions of all 3 of these equations.

7.1 The Equation

If we compare the polynomials FGNLS
2 (ξ, τ ;α, β) and FGBE

2 (ξ, η, τ ;α, β), re-

spectively given by

FGNLS
2 (ξ, t;α, β) =

{
1− 12

Ĝ2(ξ, t;α, β) + iĤ2(ξ, t;α, β)

D̂2(ξ, t;α, β)

}
exp

(
1
2
it
)
, (7.1)

where

Ĝ2(ξ, τ ;α, β) = G2(ξ, τ)− 2ατ + 2βξ, (7.2a)

Ĥ2(ξ, τ ;α, β) = τH2(ξ, τ) + α(ξ2 − τ 2 + 1) + 2βξτ, (7.2b)
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D̂2(ξ, τ ;α, β) = D2(ξ, τ) + 2ατ(3ξ2 − τ 2 − 9)− 2βξ(ξ2 − 3τ 2 − 3) + α2 + β2,

(7.2c)

and

FGBE
n (ξ, τ ;α, β) =FBE

n (ξ, τ) + 2ατPn−1(ξ, τ) + 2βξQn−1(ξ, τ)

+ (α2 + β2)FBE
n−2(ξ, τ), , (7.3)

then we see that they are fundamentally different. As we shall now demonstrate,

they are special cases of a more general polynomial. Consider the polynomial

F2(ξ, η, τ ;µ, α, β), with parameters µ, α and β, given by

F2(ξ, η, τ ;µ, α, β) =ξ6 − 18τξ5 + (3η2 + 135τ 2 − 6µ2 + 9)ξ4

−
{

36η2 + 540τ 2 − 12(6µ2 + 6µ− 7)
}
τξ3

+
{

3η4 + 18(9τ 2 − 2µ+ 1)η2 + 1215τ 4

− 54(6µ2 + 12µ− 5)τ 2 + 9µ(µ+ 2)(µ2 − 2µ+ 2)
}
ξ2

−
{

18η4 + 36(9τ 2 + 5)η2 + 1458τ 4 − 324(2µ2 + 6µ− 1)τ 2

+ 18µ(3µ3 + 12µ2 − 2µ+ 12)
}
τξ + η6

+ (27τ 2 + 6µ2 + 12µ+ 9)η4

+
{

243τ 4 + 54(6µ+ 7)τ 2 + 9(µ4 + 4µ3 + 6µ2 − 4µ+ 4)
}
η2

+ 729τ 6 − 81(µ2 + 24µ− 1)τ 4

+ 9(9µ4 + 72µ3 + 150µ2 + 132µ+ 16)τ 2 + 9(µ2 − 2µ+ 2)2

+ 2α
{

3ηξ2 − 18τηξ − η3 + 3
[
9τ 2 − µ(µ+ 2)

]
η
}

+ 2β
{
ξ3 − 9τξ2 − 6(η2 − 9τ 2 + µ2)ξ + 9τη2 − 27τ 3

+ 3(3µ2 + 12µ+ 4)τ
}

+ α2 + β2. (7.4)
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Then (7.4) has both the polynomials of FGNLS
2 (ξ, η, τ ;α) and FGBE

2 (ξ, η, τ ;α, β)

as special cases, specifically

FGNLS
2 (ξ, η, τ ;α) = F2(ξ, η, τ ; 1, α, 0),

FGBE
2 (ξ, η, τ ;α, β) = F2(ξ, η, τ ;−1

3
, α, β).

Furthermore

u(ξ, η, τ ;µ, α, β) = 2
∂2

∂ξ2 lnF2(ξ, η, τ ;µ, α, β), (7.5)

with F2(ξ, η, τ ;µ, α, β) given by (7.4), is a solution of the KP-I equation

utx + 6u2
x + 6uuxx + uxxxx + 3σ2uyy = 0, (7.6)

which includes as special cases the bilinear solution of the NLS, when µ = 1 and

β = 0, and the bilinear solution of the Boussinesq, when µ = −1
3
, as is easily

shown.

In Figure 7.1, the initial solution u(ξ, η, 0;µ, 0, 0) given by (7.5) is plotted for

various choices of the parameter µ. When µ = 1, then this arises from the solution

(6.56) derived from the focusing NLS equation

iut + uxx + 2|u|2u = 0, (7.8)

whilst when µ = −1
3
, then this arises from the solution derived from the Boussi-

nesq equation (7.3). From Figure 7.1 we can see that for µ < µ∗, the solution

v(ξ, η, 0;µ, 0, 0) has two peaks on the line η = 0, which coalesce when µ = µ∗ to

form one peak at ξ = η = 0. By considering when

∂2

∂ξ2v(ξ, 0, 0;µ, 0, 0)

∣∣∣∣
ξ=0

= −8(3µ4 + 12µ3 + 16µ2 − 6)

(µ2 − 2µ+ 2)2
= 0, (7.9)
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then µ∗ is the real positive root of

3µ4 + 12µ3 + 16µ2 − 6 =3
[
µ2 + 2(1− 1

3

√
6)µ+ 2−

√
6
]

×
[
µ2 + 2(1 + 1

3

√
6)µ+ 2 +

√
6
]

= 0, (7.10)

i.e. µ∗ = −1 + 1
3

√
6 + 1

3

√
−3 + 3

√
6 ≈ 0.5115960325. For µ > µ∗, it can be shown

that

v(0, 0, 0;µ, 0, 0) =
4µ(µ+ 2)

µ2 − 2µ+ 2
, (7.11)

increases until it reaches a maximum height of 4(2 +
√

5) when µ = 1
2
(1 +

√
5),

which is the golden mean!

7.2 Discussion

This work has been very recent and as such, there is much that can be done

to extend it. It would be interesting to see the effect of the parameters on the

wave formations so that it can be characterised as to what they do. It is known

that these will all be solutions of the KP-I solution, but these solutions are not

ones that have been investigated in detail as they differ from the solutions found

in Chapter 6.

Additionally, it would be worth determine whether this equation could solve

other nonlinear PDEs that have not been considered in this thesis. There are often

many links between the integrable nonlinear PDEs so it may be that solutions exist

already for certain parameter choices or that this equation could be extended with

additional parameters in order to accommodate this.

Since only the degree 6 functions have been considered, extending this to

degree 12 and further may help to enlighten some generic form or combination of

the solutions so that they could be generated more readily.
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µ = −1 µ = −2
3

µ = −1
3

µ = 0 µ = 0.5115960325 µ = 0.75

µ = 1 µ = 1
2
(1 +

√
5) µ = 2

µ = 2.5 µ = 3 µ = 4
(7.7)

Figure 7.1: The initial solution v(ξ, η, 0;µ, 0, 0) given by (7.5) is plotted for various
choices of the parameter µ. When µ = −1

3
the initial solution corresponds to that

arising from the Boussinesq equation (7.3) and when µ = 1 to the initial solution
from the focusing NLS equation iut + uxx + 2|u|2u = 0.
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Chapter 8

Conclusion

The aim of this thesis was to explore the rational solutions of 3 nonlinear

PDEs. During this time, multiple queries came up regarding the inherent struc-

ture of such solutions across all of the equations. While it has been known that

solutions of integrable PDEs often exhibit such behaviour, the reasoning behind

this is not always clear. Through the applications of combinatorics, characterisa-

tion and simplifications of these solutions, this thesis has progressed in its under-

standing of why such solutions may act in this way. Additionally, given that there

are often similarities between such equations, an equation has been found which

links solutions of the KP-I equation with both the Boussinesq and the NLS equa-

tions, subject to specific selections of the parameters. As well as this, a theorem

regarding nonlinear superposition of functions that solve the Boussinesq bilinear

form to produce new functions from old was also found. This theorem, that pulls

together 2 known rational solutions of the bilinear form with another function, is

a pivotal find that is unexpected in such nonlinear equations.

Given the high similarities seen between the rational solutions of the NLS

equation and the Boussinesq equation, it would be beneficial to spend more time

trying to develop the generating function that exists for the NLS. While this
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thesis was not aimed at focussing very much on the NLS equation solutions, as

they have been widely researched, the link between the NLS and the Boussinesq

could be extended in further work. The behaviour of the complex roots of the

bilinear solutions has been of much interest, not just for the NLS equation but for

the others in this thesis. It was interesting to see how the behaviour of the roots

differed from the other equation solutions and ultimately it would be beneficial if

their structure could be fully explained as to how they affect the overall solution

of the PDE.

The work on KP-I has been the most extensive given that the generating func-

tion already existed, but there was not much context regarding why the functions

worked. In order to understand the function so that this could hopefully be ap-

plied to other equations, characterisation of solutions was completed. While a

complete characterisation still eludes us, it gave a lot of information as to how

the different parts of the generating function were influencing the solutions. If

this was fully understood, then the ability to adapt it in order to apply it to the

Boussinesq equation would be much easier.

Within this analysis of the generating function, the opportunity to work on

more combinatorics was presented. Subject to this, further links with Young

diagrams, integer partitions and other topics were discovered. Ultimately, the

wealth of structure provided by the integrable nonlinear PDE’s considered have

links with many other areas of mathematics. There was not enough time to extend

this exploration but it may be that in another area is the solution to the generating

function problem. The ability to reformat the problem in a different setting gives

us a further chance of solving it.

The work in this predominantly experimental thesis has widened the under-

standing of some of the rational solutions of the nonlinear PDEs investigated.

It has also lead to a number of queries relating further behaviour or relations
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between these equations and most likely others. Proofs have been completed for

certain limits in functions that, while it has been hinted at in other works, has not

been produced until now. Extension of these proofs is but one of the extensions

that can be worked on in order to further our understanding. The experimental

work has been fundamental in highlighting these questions and others that may

not have been found without it.

There is much that can be done with regard to future work, not only within the

work that has been completed thus far but also in extensions to other nonlinear

PDEs. When working with the Boussinesq equation it was established that the

solutions of the bilinear form for rogue wave solutions are of degree n(n + 1) in

x and t. Moving on to work with the KP-I equation, the fact that this equation

is a (2 + 1) dimensional equation meant that there were many more solutions

of varying degrees that still satisfied the relevant equation. There are equations

such as the Davey-Stewartson equation [49, 50] which is a system of two PDEs

and is an analogue of the NLS equation. This equation is also solvable via inverse

scattering and as such gives another avenue of exploration of the function and

the justification behind the wave behaviour. Additionally it is a generalisation of

the KP-I and NLS equations which further supports the case that, along with its

integrability and the fact that there are some exact solutions, there are likely to

be many more undiscovered solutions in our polynomial form.

Considering the asymptotics of solutions is also something that has been briefly

visited in my PhD but that I wish to extend further, as well as consideration of

perturbations of the solutions and the resulting stability which I have been unable

to explore thus far.

It is of great interest to me to extend the work conducted on the KP-I equation.

Following from this should help the Boussinesq problem more as well as offering

the chance to firmly determine different patterns and groupings of waves derived
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from the KP-I equation. The extension of the characterisation to fully understand

the solutions is the first aim as this will no doubt inform the workings of the

generating function. Additionally, further work on the complex roots and their

influence on the full solution is likely to be best worked with in terms of KP-I

since there are a greater number of waves and roots to consider than that of the

Boussinesq equation at present.
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Appendix A

Focusing NLS Equation

A.1 Polynomial Functions of Degree n(n + 1)

These are some of the polynomial functions of the NLS as defined in [23]. As

mentioned in Chapter 2 these can be related to the method used by Dubard and

Matveev [28] via some simple translations.

F1 =x2 + t2 + 1,

G1 =1,

H1 =1,

F2 =x6 + 3
(
t2 + 1

)
x4 + 3

(
t2 − 3

)2
x2 + t6 + 27 t4 + 99 t2 + 9,

G2 =3x4 + 18
(
t2 + 1

)
x2 + 15 t4 + 54 t2 − 9,

H2 =3x4 +
(
6 t2 − 18

)
x2 + 3 t4 + 6 t2 − 45,

F3 =x12 +
(
6 t2 + 6

)
x10 +

(
15 t4 − 90 t2 + 135

)
x8 +

(
20 t6 − 180 t4 + 540 t2

+2340)x6 +
(
15 t8 + 60 t6 − 1350 t4 + 13500 t2 + 3375

)
x4 +

(
6 t10

+270 t8 + 13500 t6 + 78300 t4 − 36450 t2 + 12150
)
x2 + t12 + 126 t10

+ 3735 t8 + 15300 t6 + 143775 t4 + 93150 t2 + 2025,
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G3 =6x10 +
(
90 t2 + 90

)
x8 +

(
300 t4 − 360 t2 + 1260

)
x6 +

(
420 t6 − 900 t4

+2700 t2 − 2700
)
x4 +

(
270 t8 + 2520 t6 + 40500 t4 − 81000 t2 − 4050

)
x2

+ 66 t10 + 2970 t8 + 13140 t6 − 45900 t4 − 12150 t2 + 4050,

H3 =6x10 +
(
30 t2 − 90

)
x8 +

(
60 t4 − 840 t2 − 900

)
x6 +

(
60 t6 − 1260 t4

−2700 t2 − 8100
)
x4 +

(
30 t8 − 360 t6 + 10260 t4 − 37800 t2 + 28350

)
x2

+ 6 t10 + 150 t8 − 5220 t6 − 57780 t4 − 14850 t2 + 28350.
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Appendix B

Boussinesq Equation Solutions

These are solutions of the bilinear form of the Boussinesq equation (3.31) as

mentioned in Chapter 3. Solutions of the Boussinesq equation (3.1) are found

by taking twice the second logarithmic derivative in x of these. Both the main

solutions of degree n(n+ 1) are given as well as some monic solutions.

B.1 Degree n(n+1) Polynomial Solutions of (3.31)

The solutions below are all of the currently known polynomial solutions of

(3.31) that are of even degree.

F1 =x2 + t2 + 1,

F2 =x6 +

(
3 t2 +

25

3

)
x4 +

(
3 t4 + 30 t2 − 125

9

)
x2 + t6 +

17

3
t4 +

475

9
t2

+
625

9
,

F3 =x12 +

(
6 t2 +

98

3

)
x10 +

(
15 t4 + 230 t2 +

245

3

)
x8+(

20 t6 +
1540

3
t4 +

18620

9
t2 +

75460

81

)
x6+(

15 t8 +
1460

3
t6 +

37450

9
t4 +

24500

3
t2 − 5187875

243

)
x4+
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(
6 t10 + 190 t8 +

35420

9
t6 − 4900

9
t4 +

188650

27
t2 +

159786550

729

)
x2

+ t12 +
58

3
t10 +

1445

3
t8 +

798980

81
t6 +

16391725

243
t4 +

300896750

729
t2

+
878826025

6561
,

F4 =x20 +
(
10 t2 + 90

)
x18 +

(
45 t4 + 1010 t2 + 1845

)
x16+(

120 t6 + 4600 t4 + 30600 t2 + 13000
)
x14+(

210 t8 + 11480 t6 + 151900 t4 + 393400 t2 − 2097550

9

)
x12+(

252 t10 + 17500 t8 + 367640 t6 + 2095800 t4 +
11948300

9
t2+

232696100

27

)
x10 +

(
210 t12 + 16940 t10 + 501550 t8 + 5010600 t6

+
39702250

3
t4 +

180407500

9
t2 − 6596112250

27

)
x8+(

120 t14 + 10360 t12 + 400120 t10 + 5601400 t8 +
141659000

3
t6+

23569000

9
t4 − 19319573000

27
t2 +

86014747000

27

)
x6+(

45 t16 + 3800 t14 + 179900 t12 + 3504200 t10 +
98796250

3
t8+

1675457000

9
t6 − 15031607500

27
t4 +

410944625000

27
t2+

2352823598125

81

)
x4 +

(
10 t18 + 730 t16 + 39400 t14 + 1320200 t12+

74612300

9
t10 +

1165839500

9
t8 +

73409791000

27
t6 +

1122199715000

27
t4

+
10744980496250

81
t2 − 8594611821250

243

)
x2 + t20 + 50 t18 + 2565 t16

+ 122200 t14 +
40078850

9
t12 +

2423740900

27
t10 +

44477105750

27
t8+

177775871000

9
t6 +

4304738108125

81
t4 +

42895279813750

243
t2

+
73054200480625

729
,

F5(x, t) =x30 +

(
15 t2 +

605

3

)
x28 +

(
105 t4 + 3290 t2 + 12705

)
x26+(

455 t6 +
71575

3
t4 +

2265725

9
t2 +

25939375

81

)
x24+
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(
1365 t8 +

309260

3
t6 +

17897950

9
t4 +

26849900

3
t2 +

374564575

243

)
x22+(

3003 t10 + 298375 t8 +
79208990

9
t6 +

725413150

9
t4 +

1327947775

9
t2+

45146222275

729

)
x20 +

(
5005 t12 +

1842610

3
t10 +

74936225

3
t8+

30256387700

81
t6 +

416681967625

243
t4 +

1062878489750

729
t2−

29949453408875

6561

)
x18 +

(
6435 t14 + 929005 t12 +

145887805

3
t10+

9444440425

9
t8 +

716701225625

81
t6 +

4765327769125

243
t4−

16069741485875

729
t2 +

1572487588700875

6561

)
x16 +

(
6435 t16+

1049400 t14 +
201729500

3
t12 +

17384033800

9
t10 +

679848919750

27
t8+

29329239247000

243
t6 +

56763015732500

729
t4 +

877079786275000

729
t2−

145319532381244375

19683

)
x14 +

(
5005 t18 + 888965 t16 +

201107900

3
t14

+
7268596300

3
t12 +

397343633750

9
t10 +

3094794221750

9
t8+

877248309206500

729
t6 +

7522818112617500

2187
t4 − 338877246089256875

6561
t2

−1153508042510140625

177147

)
x12 +

(
3003 t20 +

1682450

3
t18+

144448885

3
t16 +

18942077000

9
t14 + 49769993350 t12+

16141595185100

27
t10 +

2217737551163750

729
t8 +

9963380300797000

729
t6−

1297656625261390625

6561
t4 +

4533029626565151250

19683
t2+

4174111038326870361875

531441

)
x10+

F5(x, t) =

(
1365 t22 + 258335 t20 +

73529225

3
t18 +

11361306425

9
t16+

976840075750

27
t14 +

17752164295250

27
t12 +

3658725849605750

729
t10+

3515840993183750

243
t8 − 195785332934489375

729
t6+

24978207925819946875

6561
t4 +

1159166663661630903125

19683
t2+

161



4904143764303914178125

531441

)
x8 +

(
455 t24 +

251020

3
t22 +

76657070

9
t20

+
41289423700

81
t18 +

1362831787625

81
t16 +

98913216479000

243
t14+

4366923310634500

729
t12 +

14325694558021000

729
t10+

164980602695610625

729
t8 +

38543006652688037500

2187
t6+

12142620899858806568750

59049
t4 +

84368406785489229287500

177147
t2+

1033632925475218502809375

4782969

)
x6 +

(
105 t26 +

53375

3
t24+

16915150

9
t22 +

1171587550

9
t20 +

1229272389625

243
t18+

32275315890125

243
t16 +

2128271542512500

729
t14 +

110365606933697500

2187
t12

+
6125181130562869375

6561
t10 +

184494438219511371875

6561
t8+

18829554428932184918750

59049
t6 +

30319073658670395156250

19683
t4+

767901026020862022953125

531441
t2 − 37763631956445485447328125

14348907

)
x4+(

15 t28 + 2170 t26 +
2043125

9
t24 +

163177700

9
t22 +

8631985775

9
t20+

17793313441750

729
t18 +

584377965527125

729
t16 +

7043820768985000

243
t14+

6235281337588043125

6561
t12 +

437562641832806971250

19683
t10+

F5(x, t) =
5034320101951909278125

19683
t8 +

296816181647178511587500

177147
t6

−305501861525583991296875

531441
t4 +

139014074702059270656250

531441
t2+

634083161524687235258734375

43046721

)
x2 + t30 +

325

3
t28 + 10185 t26+

71587775

81
t24 +

16294723375

243
t22 +

2934806885675

729
t20+

1145785364618125

6561
t18 +

44166106891704875

6561
t16+

4108707388089775625

19683
t14 +

774149365283245634375

177147
t12+

24580063449195140376875

531441
t10 +

266920437967411700828125

531441
t8+

18940589955229082293759375

4782969
t6 +

196432003698991651589796875

14348907
t4+

162



1654599020642266683930859375

43046721
t2+

293277952222570147203765625

43046721
.

F6(x, t) =x42 +

(
21 t2 +

1183

3

)
x40 +

(
210 t4 + 8820 t2 +

508690

9

)
x38 +

(
1330 t6

+
274610

3
t4 +

12788230

9
t2 + 3821090

)
x36 +

(
5985 t8 + 588980 t6+

47375650

3
t4 +

1044234100

9
t2 +

1101580025

9

)
x34 +

(
20349 t10+

2643585 t8 +
315853510

3
t6 +

12869088050

9
t4 +

46713328025

9
t2+

52703389375

27

)
x32 +

(
54264 t12 + 8817424 t10 + 477541960 t8+

90697722080

9
t6 +

2023126141400

27
t4 +

10677484963600

81
t2−

18449248181000

729

)
x30 +

(
116280 t14 + 22709960 t12 +

4730096840

3
t10+

420870165800

9
t8 +

15521441007800

27
t6 +

191853007255000

81
t4+

F6(x, t) =
334252884511000

243
t2 +

6409667048057000

2187

)
x28 +

(
203490 t16+

46295760 t14 + 3947383160 t12 +
1385956450480

9
t10+

24986660017900

9
t8 +

184787782270000

9
t6 +

3522137350459000

81
t4+

7077480053462000

243
t2 − 505994906281114250

2187

)
x26 +

(
293930 t18+

75911290 t16 +
23071430200

3
t14 +

3386918974600

9
t12+

248667948865700

27
t10 +

2844740151662500

27
t8+

114282158050151000

243
t6 +

130857435176195000

243
t4−

1559522065545193750

729
t2 +

654191734797032136250

59049

)
x24+(

352716 t20 +
303397640

3
t18 +

35559121780

3
t16 +

6315930964000

9
t14+

596228929709000

27
t12 +

28864067489238800

81
t10+

23867708727863000

9
t8 +

5204725442990164000

729
t6−
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17188237323291807500

2187
t4 +

2292090862911349045000

19683
t2+

13248866554462384982500

177147

)
x22 +

(
352716 t22 + 110065956 t20+

131342431220

9
t18 +

9144134924540

9
t16 +

355252391817400

9
t14+

68378910769169000

81
t12 +

2260368009271972600

243
t10

+
10863031144502537000

243
t8 +

78544749617454620500

2187
t6+

13808886200832600377500

19683
t4 − 12934524968912559512500

19683
t2

−27771380912032848002412500

531441

)
x20 +

(
293930 t24 +

293991880

3
t22+

129744835220

9
t20 +

10377500348600

9
t18 + 53572820774550 t16+

13065704465198000

9
t14 +

15987203586473119000

729
t12+

368550382777130554000

2187
t10 +

944703419051373231250

2187
t8+

175826232378634712875000

59049
t6 − 3225589197078194008562500

177147
t4−

268742074942348057675625000

531441
t2+

F6(x, t) =
405166270464523737688268750

177147

)
x18 +

(
203490 t26 + 71208410 t24+

34262480980

3
t22 +

9263172082780

9
t20 +

167157956122850

3
t18+

5548040292814250

3
t16 +

977895647675947000

27
t14+

98796645394546099000

243
t12 +

4796486572313698512250

2187
t10+

53949259281978384073750

6561
t8 − 7200766560627468391062500

59049
t6−

387200414435059914676487500

177147
t4+

12236568998998042486493956250

531441
t2+

29612659579871878066788481250

531441

)
x16 +

(
116280 t28 + 41954640 t26+

21654014200

3
t24 +

6487987066400

9
t22 +

400431559820600

9
t20+

15842597995070000

9
t18 +

387881509931377000

9
t16+
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52065471534516440000

81
t14 +

13340946813139820875000

2187
t12+

167695793503252604590000

6561
t10 − 7777719237188857931975000

19683
t8−

650856092767480713813700000

177147
t6+

77258409570335454134298625000

531441
t4+

186832118139539471364515750000

177147
t2+

351544290106713691719606875000

531441

)
x14 +

(
54264 t30 + 19815880 t28+

3599992760 t26 +
3535390934600

9
t24 +

732832492771400

27
t22+

101228428792090600

81
t20 +

27370708689515191000

729
t18+

170942329321206443000

243
t16 +

20207635390942154155000

2187
t14+

54323923384598442575000

729
t12 − 8465225935472171270405000

19683
t10+

442540636937546861889175000

59049
t8+

340325785136120941602970525000

531441
t6+

11214905814539048318037966625000

1594323
t4+

66938714349325879543197840125000

4782969
t2−

496486144351505452388967848125000

43046721

)
x12 +

(
20349 t32 + 7370384 t30

+
4175192840

3
t28 +

1474902065840

9
t26 +

337402973593700

27
t24+

F6(x, t) =
52955521397069200

81
t22 +

5796598700963270200

243
t20+

1231989028743827354000

2187
t18 +

19331925392497315848250

2187
t16

+
710314878146739415550000 t14

6561
+

16604666383183532408755000 t12

19683

+
974142947939609865967550000 t10

19683
+

966898825752124036199915987500 t8

531441

+
38869440974605335709680915850000 t6

1594323
+
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427206289275180085895959109375000 t4

4782969
+

433893468319006960931185268750000 t2

14348907
+

+

(
5985 t34 + 2100945 t32 + 405469960 t30 +

458704157800 t28

9
+

38257142877100 t26

9
+

6655221161886500 t24

27
+

290043365177293000 t22

27
+

79906863097974913000 t20

243
+

13978480184190463191250 t18

2187
+

691787098499321408333750 t16

6561
+

50758125940184481643825000 t14

19683
+

6904073589641700016720175000 t12

59049
+

1780616312066172700422390587500 t10

531441
+

8808754945983221427895759562500 t8

177147
+

425611566376910377760538116875000 t6

1594323
+

2557165215737705195126497118125000 t4

4782969
+

10531277571084636403653654710546875 t2

14348907
−

165303868342551177798903647037109375

43046721

)
x8 +

(
1330 t36 + 440020 t34

+
255465910 t32

3
+

101835163360 t30

9
+

27839829798200 t28

27
+

195173340698000 t26

3
+

793937870170991000 t24

243
+

93497936075368916000 t22

729
+

8067284989927579916500 t20

2187

+
5143752792067415040515000 t18

59049
+

197159570667454811153237500 t16

59049

F6(x, t) = +
24951720128049240589963900000 t14

177147
+

+
98423975708895935375907880250000 t10

1594323
+
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773189313866214932874089777875000 t8

1594323

+
3453926582309903966120517162500000 t6

1594323
+

11062586454298154559045344113281250 t4

43046721
−

1978772470551990441371826321601562500 t2

129140163
+

78069095810431514085934666423925781250

3486784401

)
x6 +

(
210 t38+

189490 t36

3
+

35909650 t34

3
+

14981399650 t32

9
+

4520197971800 t30

27
+

943387657415000 t28

81
+

51651141194611000 t26

81
+

7502510197238875000 t24

243
+

2944961558842115312500 t22

2187
+

1094716544015072936457500 t20

19683
+

415617102221164362356337500 t18

177147

+
16315106728983365315525012500 t16

177147
+

1296580044821647817703096625000 t14

531441
+

69125965676278967562774292625000 t12

1594323
+

2104539412822602705384844784375000 t10

4782969
+

10375151777251207591198832403125000 t8

4782969
+

187177296373564501862593467763281250 t6

43046721
−

374706341725655565812439640105468750 t4

14348907
+

172241821919912622405343318804082031250 t2

1162261467
+

2296165252273808625473936117942089843750

10460353203

)
x4 +

(
21 t40 + 5460 t38

+
8815030 t36

9
+

1264694900 t34

9
+

143286898825 t32

9
+

107472139686800 t30

81
+

19113680572231000 t28

243
+

F6(x, t) =
1166058628437430000 t26

243
+

215100100026447886250 t24

729
+

167



335144166243836015885000 t22

19683
+

5512648963187806922982500 t20

6561
+

16921307853928066209195575000 t18

531441
+

446660208292631474705770456250 t16

531441
+

8643609953303720718742669250000 t14

531441
+

904099325308996484804474463125000 t12

4782969
+

10581733599205122998294829928750000 t10

14348907
+

104683809444938920859761261835546875 t8

14348907
+

11132484872863479901707200292460937500 t6

129140163
+

776455135540184086901836774059238281250 t4

1162261467
+

1381629253286054143789046986192773437500 t2

1162261467
−

6781016875523271611891975656871826171875

31381059609

)
x2 + t42 +

623 t40

3
+

298690 t38

9
+

42592130 t36

9
+

5471772425 t34

9
+

1840236638975 t32

27
+

4646271972911800 t30

729
+

1071194036163601000 t28

2187
+

73077160861345117750 t26

2187
+

116056613186302939036250 t24

59049
+

16622946598174278228002500 t22

177147
+

1792962269833976329636047500 t20

531441
+

47449313453716467895257906250 t18

531441
+

1164298023560767868077336281250 t16

531441
+

8046901402544996907579288625000 t14

177147
+

30627329797561880522657099456875000 t12

43046721
+

999129210258135361146516724558984375 t10

129140163
+

F6(x, t) =
3061537595047126950546786385406640625 t8

43046721
+
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1444919423625289681163097716325894531250 t6

3486784401
+

7168271840945207899663953737380683593750 t4

10460353203
+

40909697806460341913693538410888330078125 t2

31381059609
+

13987620584238380354237422589279541015625

31381059609
.

B.2 Monic Polynomial Solutions of (3.31)

The following solutions and their complex conjugates all satisfy the bilinear

form of the Boussinesq equation (3.31) with ai, bi and ci all constants.

Fmon
1 =x+ it+ a0,

Fmon
2 =

(
x+

b0

2

)2

+

(
t+

b1

2

)2

+ 1,

∼x2 + t2 + 1,

Fmon
3 =x3 + (3it+ c0)x2 +

(
−3t2 + 2itc0 +

c2
0

3
− 1

3

)
x− it3 − c0t

2

+
i(c2

0 + 5)

3
t+ c1,
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Appendix C

Generalised Solutions to the

Boussinesq Equation

The section below gives the polynomial solutions Pn and Qn that are currently

known for the generalised Boussinesq equation (4.3) as mentioned in Chapter 4.

C.1 P and Q Functions of (4.3)

It is possible to see that not only do these equations have a high structure

within themselves but they also have many similarities with the solutions given

in Appendix B.1.

P1 =3x2 − t2 +
5

3
,

Q1 =x2 − 3t2 − 1

3
,

P2 =5x6 +
(
−5 t2 + 35

)
x4 +

(
−9 t4 − 190

3
t2 − 665

9

)
x2 + t6 − 7

3
t4 − 245

9
t2

+
18865

81
,

Q2 =x6 +

(
−9 t2 +

13

3

)
x4 +

(
−5 t4 − 230

3
t2 − 245

9

)
x2 + 5 t6 + 15 t4 +

535

9
t2
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+
12005

81
,

P3 =7x12 +
(
−14 t2 + 210

)
x10 +

(
−63 t4 − 630 t2 +

875

3

)
x8 +

(
−36 t6 − 2044 t4

−16100

3
t2 +

16100

3

)
x6 +

(
25 t8 + 260 t6 − 39550

3
t4 − 91700

3
t2−

1066975

9

)
x4 +

(
18 t10 +

1310

3
t8 +

26140

3
t6 +

146300

3
t4 +

1835050

9
t2+

32655350

27

)
x2 − t12 − 10

3
t10 + 25 t8 − 1900

3
t6 − 1230775

9
t4 − 2070250

3
t2

+
32680375

81
,

Q3 =x12 +

(
−18 t2 +

74

3

)
x10 +

(
−25 t4 − 1870

3
t2 − 275

3

)
x8 +

(
36 t6 − 580 t4−

8860

3
t2 +

4700

3

)
x6 +

(
63 t8 + 1820 t6 − 2450

3
t4 − 37100

3
t2 − 247625

9

)
x4

+

(
14 t10 + 630 t8 +

49700

3
t6 + 48300 t4 +

1877750

9
t2 +

2898350

9

)
x2−

7 t12 − 98 t10 − 5075

3
t8 − 23100 t6 − 2108225

9
t4 − 43900150

27
t2 − 4998175

81
,

P4 =9x20 +
(
−30 t2 + 770

)
x18 +

(
−243 t4 − 3390 t2 + 14245

)
x16 +

(
−360 t6−

24360 t4 − 107800 t2 +
754600

9

)
x14 +

(
130 t8 − 23720 t6 − 2278220

3
t4−

4419800

3
t2 − 51285850

27

)
x12 +

(
780 t10 +

94820

3
t8 − 759640

3
t6−

82510120

9
t4 +

16762900

27
t2 +

5563180700

81

)
x10 +

(
690 t12 + 58700 t10+

3917450

3
t8 +

79849000

9
t6 − 1064659750

27
t4 − 5795597500

27
t2−

1367658734750

729

)
x8 +

(
152 t14 +

65800

3
t12 +

11986520

9
t10+

120221500081
t8 +

8625185800

81
t6 +

69758781400

243
t4 +

1077743975000

243
t2+

55941010279000

2187

)
x6 +

(
−75 t16 − 10360

3
t14 − 66500

9
t12 +

69057800

9
t10+

20996610250

243
t8 +

275830555000

243
t6 +

5620866905500

729
t4−

9843829765000

729
t2 +

404610075244375

2187

)
x4 +

(
−30 t18 − 1790 t16−

803320

9
t14 − 28869400

9
t12 − 1473856300

27
t10 − 629478426500

729
t8−
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11032069279000

729
t6 − 133702667483000

729
t4 − 112127684226250

243
t2−

5297582110686250

19683

)
x2 + t20 +

70

3
t18 +

1855

3
t16 +

1899800

81
t14+

438095350

243
t12 +

88186059500

729
t10 +

14094153477250

6561
t8+

138847640239000

6561
t6 − 823906531765625

19683
t4 − 20487539830546250

177147
t2+

266883842659905625

531441
,

Q4 =x20 +

(
−30 t2 +

230

3

)
x18 +

(
−75 t4 − 2830 t2 +

2695

3

)
x16 +

(
152 t6−

18680

3
t4 − 615640

9
t2 +

237160

81

)
x14 +

(
690 t8 +

63560

3
t6 − 1276100

9
t4−

1832600

3
t2 − 60772250

243

)
x12 +

(
780 t10 + 62860 t8 +

8213240

9
t6−

586600 t4 +
116801300

27
t2 +

8356925500

729

)
x10 +

(
130 t12 +

117700

3
t10+

4962650

3
t8 +

1352661800

81
t6 +

179352250

243
t4 − 117373448500

729
t2−

2249680490750

6561

)
x8 +

(
−360 t14 − 15400 t12 +

1286600

3
t10 +

82943000

9
t8+

8897211400

81
t6 +

65165639000

243
t4 +

3029653781000

729
t2+

31684368485000

6561

)
x6 +

(
−243 t16 − 19560 t14 − 2325260

3
t12 − 29280440

9
t10

−59473750

27
t8 +

61024825400

243
t6 − 320631426500

729
t4 − 37020326189000

729
t2

+
425463980932375

19683

)
x4 +

(
−30 t18 − 2910 t16 − 191800 t14 − 23294600

3
t12

−2501523500

27
t10 − 34775471500

27
t8 − 1233890119000

81
t6−

9121143955000

81
t4 − 114976450146250

243
t2 − 15307611409956250

177147

)
x2 + 9 t20

+ 370 t18 + 15325 t16 +
5192600

9
t14 +

475032950

27
t12 +

35488950700

81
t10+

6433079133250

729
t8 +

234408499325000

2187
t6 +

315145911994375

2187
t4

+
4908421805113750

19683
t2 +

140298620844930625

531441
.
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Appendix D

KP Equation Solutions

This chapter is concerned with the solutions of the KP-I equation as mentioned

in Chapter 6.

D.1 Polynomial Functions as in [1]

These solutions are the non-matrix solutions given in [1] up to 3 with a = 0

and b = 1. It seems that F3 does not solve the KP-I equation.

F1 =x2 − 24xt+ 4 y2 + 144 t2 +
1

4
,

F2 =x4 + (−48 t+ 2)x3 +
(
8 y2 + 864 t2 − 24 t+ 3

)
x2 +

(
(−192 t− 8) y2−

6912 t3 − 288 t2 − 24 t+ 3
)
x+ 16 y4 +

(
1152 t2 − 96 t

)
y2 + 20736 t4

+ 3456 t3 + 432 t2 − 12 t+
3

2
,

F3 =x6 + (−72 t+ 3)x5 +

(
12 y2 + 2160 t2 − 36 t+

15

2

)
x4 +

(
(−576 t− 24) y2

−34560 t3 − 2592 t2 − 24 t+
27

2

)
x3 +

(
48 y4 +

(
10368 t2 + 864 t

)
y2

+311040 t4 + 72576 t3 − 432 t2 + 18 t+
81

4

)
x2 +

(
(−1152 t− 144) y4+

(
−82944 t3 − 10368 t2 − 576 t+ 18

)
y2 − 1492992 t5 − 684288 t4 − 31104 t3
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+2376 t2 − 90 t+
81

4

)
x+ 64 y6 +

(
6912 t2 − 576 t+ 72

)
y4 +

(
248832 t4

+41472 t3 + 27648 t2 + 72 t− 9
)
y2 + 2985984 t6 + 2239488 t5 + 321408 t4

− 54432 t3 + 3060 t2 − 81 t+
171

16
.

D.2 Method for Limit Work

This additional work aimed to find a pattern behind the scaling and translation

that was required for proof of the KP-I limit work in §6.6. This would aid in the

finding of a proof for all waves, not just those on a specific line.

D.2.1 ‘Paired’ Waves at Negative t

Considering only the waves that paired up at negative time and those that

had a solution as X =
√
ct+ ξ, the following was found.

function value of c from
√
ct value of ξ

u[2] 24 −1
2

u[3] 72 −2
3

u[4] 72 + 24
√

6 −1
2
−
√

6
6

u[5] 120 + 24
√

10 −2
3
−
√

10
6

u[1,2] −24 −1

u[1,4] 24 + 24
√

2 −1

u[1,5] 120 −13
10

u[2,3] 24i
√

3 − i
6

√
3− 1

u[2,4] 24 + 24i
√

2 − i
2

√
3− 7

6

The absence of u[1,3] in the table above is due to the fact that there was no solution

for X =
√
ct+ ξ but there was a solution for X = (ct)1/3 + ξ for which the results

are below.
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function value of c from (ct)
1
3 value of ξ

u[1,3] 12 −1

Some of the values of c and ξ are complex as in the case of u[2,3] and u[2,4]. This

may mean that another ansatz needs to be used rather than the square root.

D.2.2 ‘Paired’ Waves at Positive t

Moving to positive time and considering the functions in which there were

paired waves gave the following.

function value of c from
√
ct value of ξ

u[1,2] 24 −1

u[1,4] −24 + 24
√

2 −1

u[1,5] −120 −13
10

Where the solution given for u[1,5] has a square root that is imaginary which again

may require refining of the ansatz.
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Appendix E

Maple Code

This chapter gives some samples of the code used in parts of this thesis. There

are times where the full detail has been given in some commands but that is

optional, for instance regarding the lighting and colour alterations in a plot.

E.1 Calculating FBE

It was necessary to use the packages “linalg” and “CodeTools” in the following

code. For simplicity the alias command was used as well with regard to F to speed

up coding time.

>restart:

>with(linalg):with(CodeTools):alias(F=F(x,t)):

Below is the bilinear form of the Boussinesq equation after substitution of u =

2 [ln(F )]xx, as given in (3.31).

>BLF:=F*diff(F,t$2)-diff(F,t)^2+F*diff(F,x$2)-diff(F,x)^2-

(1/3)*F*diff(F,x$4)+(4/3)*diff(F,x)*diff(F,x$3)-diff(F,x$2)^2:

Now the aim is to construct a polynomial of only even powers of x and t such that

the order of the polynomial is n(n + 1) and all possible elements are included.
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Consider a polynomial defined as

6∑
i=0

6∑
j=0

Ai,jx
itj.

This will have order 12 and will include odd powers of x and t so in order to

remove anything of order greater than 6 and any odd powers, utilise a three level

for loop. Firstly require that i+ j ≤ 6 and if not set the function inside the sums

to be 0. If this condition is met then require that i+ j is even else set the function

to 0. Finally it is required that j (or indeed i) is even so that any odd powers are

removed. Then sum over the 0 to 6 for both indexes and are only left with the

coefficients that are wanted.

>printlevel:=3:

for i from 0 to 6 do

for j from 0 to 6 do

if i+j<=6 then

if type(i+j,even)=true then

if type(j,even)=true then

p[i,j]:=A[i,j]*x^i*t^j

else p[i,j]:=0 end if

else p[i,j]:=0 end if

else p[i,j]:=0

end if end do

enddo:

>f2:=collect(sum(sum(p[k,l],k=0..6),l=0..6),x):

It still remains to calculate what the coefficients need be in order to satisfy the

equation named “BLF”. In order to do this, substitute the polynomial into the

equation and assume that A6,0, which is the coefficient of x6, to be non-zero.
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One could pick either A6,0 or A0,6 to keep something of order 6. Since both x6

and t6 share the same coefficient, it seems that if you set them to 0 and try and

find a solution of the “BLF” then the solution collapses to F1. Similarly with

higher order polynomials, they collapse to the prior solution. Then substitute

these solutions back into the function f2 so that all coefficients are in terms of

A6,0.

>coeffs(collect(expand(subs(F=f2,BLF)),[t,x],‘distributed’),[t,x]):

solve({%},useassumptions) assuming A[6,0]<>0:

F2:=subs(%,f2):

>expand(subs(F=F2,BLF)):

If this is substituted back into “BLF” then the solution is 0. As such, it is possible

to any value of A6,0 here and it will satisfy the equation, however as this is just a

scaling the simplest thing to do is set A6,0 = 1 and have a monic polynomial.

>subs(A[6,0]=1,F2):

This is now the polynomial F2 of degree n(n + 1) where n = 2 that satisfies the

“BLF” equation and is the unique monic polynomial solution.

E.2 Root Trajectory Graphs

For the graphs shown in Figure 3.6 the digits in Maple had to be increased in

order to achieve the correct accuracy. The graphs were formed via the following

code with the polynomial solutions of the Boussinesq bilinear form being read in

from a separate file and Fn being denoted as F [n].

>restart:

>with(plots):Digits:=50:

>currentdir():
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>read"Ffunctionsto5.txt":

>A[3]:=eval(allvalues(RootOf(F[3],x))):

for n from 1 to 12 do

A[3][n]

end do:

>F3roots:=complexplot({A[3]},t=-10..10,style=point,symbol=

solidcircle,color="Purple",symbolsize=5,numpoints=500,

view=[-6..6,-15..15]):

>display([F3roots]):

Using the “RootOf” command to compute the roots of the polynomial F3 in the

form x(t). It is necessary to use “allvalues” to keep all, in this case 12, roots. Once

these roots have been assigned to a name; A[3], then one can create a complex

plot that varies t to create the trajectories. It is equally possible to calculate the

roots as t(x) but this seemed less intuitive.

E.3 KP Limit Work

The maximums are generally found when either X = 0 or Y = 0. The template

below shows how the limits were established when the roots where not so easily

determined, namely for positive time FKP
3 for the paired maximums that move

with time rather than the central maximum. Note that FKP
3 is denoted in the

code as F (3).

>restart:

>with(linalg):

>Digits:=50:

>with(plots):

>with(RootFinding):
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>phi:=k->-k*x-y*k^2-4*k^3*t:

>psi:=m->subs(k=-I,diff(exp(I*phi(k)),k$m)):

>p:=m->simplify(psi(m)*exp(-I*phi(-I))):q:=m->subs(I=-I,p(m)):

>F:=m->sort(collect(simplify(expand(p(m)*q(m))+sum(diff(expand(

p(m)*q(m)),x$j)/(2)^j,j=1..2*m),symbolic),[x,y,t],factor),order=

plex(x,y,t)):

>F(3):sort(collect(expand(subs(x=X+12*t,y=Y,F(3))),[X,Y,t]),order

=plex(X,Y,t)):

>animate(plot3d,[2*diff(ln(F(3)),X$2),X=-10..10,Y=-5..5],t=-10..10,

grid=[10,10],orientation=[90,0,0]):

The animated plot is used to establish an estimate of where the maximums

move along and to verify that it is positive time that is being considered. With

this information it is possible to now use numerical testing to progress with the

problem.

>Spat:=diff(2*diff(ln(F(3)),X$2),X):

>Time:=diff(2*diff(ln(F(3)),X$2),Y):

>Spat1:=subs(t=1,Spat):

Time1:=subs(t=1,Time):

evalf((solve([Spat1,Time1])[2])[1]):

>Spat10:=subs(t=10,Spat):

Time10:=subs(t=10,Time):

evalf((solve([Spat10,Time10])[2])[1]):

>Spat100:=subs(t=100,Spat):

Time100:=subs(t=100,Time):

evalf((solve([Spat100,Time100])[2])[1]):

>Spat1000:=subs(t=1000,Spat):

Time1000:=subs(t=1000,Time):
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evalf((solve([Spat1000,Time1000])[2])[1]):

Select input 2 from the “solve” to select one of the pairs of maximums that do

not sit on Y = 0 and then input 1 of this to give the value of X at this point alone.

From the numerical results above, it seems that the waves are not stationary on

X but that they may tend to a limit. Seen as the concern is with the behaviour

in the limit t→∞ then this can still be used.

If the limit is 0.83̇ as it seems to be from testing then X is tending to 5
6
.

Assuming this, one can substitute this into the equations and see if a reasonable

limit is obtained.

>diff(subs(X=5/6,t=50,u3),X):

>diff(subs(X=5/6,t=500,u3),X):

>diff(subs(X=5/6,t=10000000,u3),X):

>seq(Isolate(numer(factor(diff(subs(X=5/6,t=50,u3),Y))),[Y])[i],

i={1,7}):

>seq(Isolate(numer(factor(diff(subs(X=5/6,t=500,u3),Y))),[Y])[i],

i={1,7}):

>seq(Isolate(numer(factor(diff(subs(X=5/6,t=10000000,u3),Y))),[Y])

[i], i={1,7}):

By running the code one can see that the differences for the solutions of Y at

each time are getting smaller, suggesting that the assumption that X = 5/6 is

correct. It transpires that it is the solutions 1 and 7 from the sequence output

that pertain to the maximums. Since only real solutions are wanted, the command

“Isolate” from “RootFinding” has been used but due to the restrictions when using

this it is necessary to take the numerator of (û3)Y first in order for it to calculate.

Now that this assumption has numerical evidence to support it, consider the

evolution of the waves which is believed to be of a quadratic nature.
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>eq:=factor(subs(Y=0,2*diff(ln(F(3)),X$2))):

subs(X=c*sqrt(t)+xi,%):

series(%,t=-infinity,7):

factor(op(1,%))+factor(op(2,%))+factor(op(3,%));

Since the behaviour is quadratic in t it is necessary to take X = c
√
t+ ξ. This is

different from the notation used in Appendix D.2 as it is often easier for Maple

to compute e.g. c rather than
√
c. Using the ansatz and considering t → −∞

the first few terms are selected. The use of the “op” function was merely due to

the fact that often the series had to be taken to quite a high order in order to

get solutions but it was only necessary to print the first 2 or 3 terms. All terms

where functions of 1/t which is not what is wanted, but letting c =
√
−72 will

alter this behaviour and hopefully give a different asymptotic behaviour so this

substitution is used.

>subs(X=sqrt(-72*t)+xi,eq):

series(%,t=-infinity,7):

factor(op(1,%))+factor(op(2,%));

solve(diff(op(1,%),xi));

As was thought, the new series now has an initial term that is independent of t

but is a function of ξ. The critical point of this function is what is required so

the differential is taken in terms of ξ and then solved to give 3 solutions. Of these

solutions, 2 pertain to the troughs on that same trajectory and the other is the

peak. The solution in this case is ξ = −2/3.

subs(X=sqrt(-72*t)-2/3,eq):

series(%,t=-infinity,7):

factor(op(1,%))+factor(op(2,%));
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This is substituted in and the series taken again with now the result of the first

term, which is the only term independent of t and the only term that will remain

in the limit t → −∞, is 16. A proof that the waves that evolve in pairs on the

path (X + 2/3)2 + 72t = 0 have a limit as t → −∞ of 16. It is also possible to

compute this by letting t = −τ and taking the limit as τ → ∞ which gives the

same result but different values for c and ξ. The same process is used for t→∞

as has been shown for t→ −∞.

There is also the central wave to consider which evolves in a linear way. This

method is shown in the code below.

>eq:=factor(subs(Y=0,2*diff(ln(F(3)),X$2))):

subs(X=c*t+xi,%):

series(%,t=-infinity,20):

factor(op(1,%))+factor(op(2,%))+factor(op(3,%));

Much as before but here the solution for c that will give a term independent of t

in the limit is c = 0.

subs(X=xi,eq):

series(%,t=-infinity,7):

factor(op(1,%))+factor(op(2,%));

solve(diff(op(1,%),xi));

In this case the solution found is ξ = −1/6.

subs(X=-1/6,eq):

series(%,t=-infinity,7):

factor(op(1,%))+factor(op(2,%));

Again the first term is now 16, so the central wave evolves on the line X = −1/6

and has a limit of 16 as t→ −∞.
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E.4 KP Limit Graphs

Having completed the limiting work described in Appendix E.3, it still re-

mains to produce the graphs. The following code describes how these graphs were

formed.

>restart:

>with(linalg):Digits:=20:

with(plots):

>phi:=k->-k*x-y*k^2-4*k^3*t:

>psi:=m->subs(k=-I,diff(exp(I*phi(k)),k$m)):

>p:=m->simplify(psi(m)*exp(-I*phi(-I))):q:=m->subs(I=-I,p(m)):

>F:=m->sort(collect(simplify(expand(p(m)*q(m))+sum(diff(expand(

p(m)*q(m)),x$j)/(2)^j,j=1..2*m),symbolic),[x,y,t],factor),order=

plex(x,y,t)):

>F(3):

newF(3):=sort(collect(expand(subs(x=X+12*t,y=Y,F(3))),[X,Y,t]),

order=plex(X,Y,t));

Beginning by defining the function as usual, this will be a work through of u[3].

Since the waves reside on different lines for positive and negative time, the two

cases will be dealt with separately. The aim is to have multiple lines corresponding

to different values of t plotted on the same axis so it is possible to see if there’s

any evidence that a limit is reached as |t| → ∞. Since the maximums that are

being considered for negative t occur on Y = 0, the following code is used.

>setcolors("Spring"):

>plot({seq(subs(Y=0,t=n,2*diff(ln(newF(3)),X$2)),n=-50..0,1/2)},

X=-30..30);
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This produces the plot as given in Figure 6.33(d). Now consider positive time

whereby the maximums considered occur on X = 5/6.

>plot({seq(subs(X=5/6,t=n,2*diff(ln(newF(3)),X$2)),n=0..10,1/2)},

Y=-15..15);

This code produces the plot as in Figure 6.33(c). The code can also be used

for the Figures 4.8 and 4.9.

E.5 KP Heat Graphs

In this code the KP solutions are generated within the file as described in

§6.3.1. In order to produce the graphs as in Figure 6.34, the solutions are plotted

with time varying. In order to see how the maximums of the graph develop as time

increases, it is easiest to have the maximums appearing in red and the standard

sea state in blue. This is achieved with the “colorscheme” and “densityplot”

commands below.

>restart:

>with(linalg):Digits:=20:with(plots):

>phi:=(-k*x-k^2*y-4*k^3*t):

>psi:=(j,m)->subs(k=-I,diff(exp(I*phi),k$m)):

>psibar:=(j,n)->subs(I=-I,psi(j,n)):

>M:=(i,j,m,n)->simplify(int(psi(i,m)*psibar(j,n),x)):

>A1:=(m)->simplify(det(matrix([[M(1,1,m,m)]])),symbolic):

>factor(diff(ln(A1(3)),x)): denom(%):

f3:=collect(%/coeff(%,x,degree(%,x)),[x,y,t],factor):

>F3:=sort(collect(expand(subs(x=X+12*t,y=Y,f3)),

[X,Y,t]),order=plex(X,Y,t));

>u3:=2*diff(ln(F3),X$2):
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This code uses the 2x2 matrix method for u[3]. It is necessary to differentiate the

determinant of the logarithm of the matrix and take its denominator in order to

retrieve the polynomial. Then this is simplified as ‘f3’ and ‘F3’ represents the

same polynomial but in the moving coordinates.

>X:=5/6:

densityplot(u3,Y=-35..35,t=0..50,colorscheme=["Black","Black",

"Black","DarkBlue","DarkBlue","DarkBlue","Yellow",

"Yellow","Yellow","Red","Red","Red"],style=polygon,

transparency=0.05,axes=boxed,grid=[250,250]);

densityplot((u,gamma)->0.2*u,-2..16,0..2,style=PATCHNOGRID,

colorscheme=["Black","Black","Black","DarkBlue","DarkBlue",

"DarkBlue","Yellow","Yellow","Yellow","Red","Red","Red"],

scaling=constrained,axes=boxed,labels=[u,""],

transparency=0.05,numpoints=5000);

unassign(‘X’):

For u[3], it is known that the maximums reside on X = 5/6 and the code above

uses this to produce the graph. As mentioned in the thesis, since Maple does

not have this code pre-programmed and the idea is to have the peaks appear in

red and the steady sea state appear in blue, the colour scheme has to be selected

quite carefully in the density plot. The second command is a scaled version of the

colour scheme which provides the key for the graph.
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