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Abstract 

Phosphorylation of eukaryotic translation initiation factor 2 (eIF2) is one of the best studied and most 

widely used means for regulating protein synthesis activity in eukaryotic cells. This pathway regulates 

protein synthesis in response to stresses, viral infections, and nutrient depletion, among others. We 15 

present analyses of an ordinary differential equation-based model of this pathway, which aim to identify its 

principal robustness-conferring features. Our analyses indicate that robustness is a distributed property, 

rather than arising from the properties of any one individual pathway species. However, robustness-

conferring properties are unevenly distributed between the different species, and we identify a guanine 

nucleotide dissociation inhibitor (GDI) complex as a species that likely contributes strongly to the 20 

robustness of the pathway. Our analyses make further predictions on the dynamic response to different 

types of kinases that impinge on eIF2. 

  



Introduction 

mRNA translation is an important controller of gene expression levels. Together with transcriptional 25 

regulation, it quantitatively determines protein expression from any given gene (Hershey et al., 2007) ⁠ . 

Translation occurs in distinct stages termed initiation, elongation, termination and recycling. While 

regulation of both initiation and elongation can be used to control gene expression levels (Chu et al., 

2014)⁠ , translation initiation is thought to be the stage predominantly targeted for such control (Gebauer 

and Hentze, 2004)⁠ . 30 

In eukaryotes, translation initiation involves attachment of the small ribosomal subunit to the mRNA 5’-

end, followed by movement along the 5’-UTR or “scanning”. This movement is arrested when a start codon 

is recognized (Hinnebusch, 2014)⁠ , at which point the large ribosomal subunit joins the small subunit and 

the elongation stage begins. 

All events within translation initiation are controlled by translation initiation factors, proteins or protein 35 

complexes that associate with mRNAs and ribosomal subunits (Hinnebusch, 2014) ⁠ . Many initiation 

factors are subject to control via signaling pathways that adapt gene expression to particular internal or 

external states, like growth conditions or developmental programs. 

One of the best studied translational control mechanisms impinges on the eukaryotic initiation factor 2 

(eIF2). eIF2 forms ternary complexes (TCs) which involve its three protein subunits, the initiator tRNA, and 40 

guanine nucleotides. In the GTP-bound form, TCs form 43S-preinitiation complexes with small ribosomal 

subunits and a host of other initiation factors. In 43S complexes, eIF2 structurally supports contacts of the 

initiator tRNA with the ribosomal A-site, as well as having functional roles by communicating to the 

ribosome the presence or absence of a start codon in the A-site. When a start codon in a sufficiently 

favourable sequence context enters the ribosomal A-site during scanning, hydrolysis of the eIF2-bound GTP 45 

to GDP is induced through conformational changes which are relayed from the ribosomal subunit to eIF2, 

and this is instrumental for arresting the scanning process.  

eIF2 eventually leaves the complex in a GDP-bound form, and needs to undergo guanine nucleotide 

exchange from the GDP-to the GTP-bound form before it is competent for the next round of translation 

initiation. In vivo, this exchange reaction requires the presence of a guanine nucleotide exchange factor 50 

(GEF) termed eIF2B (Mohammed-Qureshi et al., 2008; Wortham and Proud, 2015), and is further regulated 

by a guanine nucleotide dissociation inhibitor (GDI) function of eIF5, another 43S complex member 

(Jennings and Pavitt, 2010) ⁠ . 

eIF2 is subject to regulation via phosphorylation at multiple sites, most importantly at serine 51 in its alpha 

subunit (Price et al., 1991)⁠ . Phosphorylation at this residue converts eIF2 from a substrate of eIF2B to its 55 

competitive inhibitor, thereby disrupting the guanosine exchange cycle required to sustain ongoing 

translation (Matts et al., 1983)⁠ . Because eIF2B is usually present in substoichiometric amounts compared 

to eIF2 (Jedlicka and Panniers, 1991; von der Haar and McCarthy, 2002) ⁠ , even partial phosphorylation of 



eIF2 can quantitatively block gene expression.  

Various kinases are known to phosphorylate eIF2 (Donnelly et al., 2013) ⁠ . A highly conserved kinase is 60 

Gcn2 which is activated by uncharged tRNAs (Dong et al., 2000), thereby using products of translational 

activity as an input for its regulation, a classical example of a feedback loop. Gcn2 is unusual in that it is a 

single-substrate kinase, that is to say, Gcn2 has no other known targets besides eIF2. Another eIF2 kinase, 

PERK, is activated by the accumulation of unfolded proteins in the endoplasmic reticulum (ER), similarly 

connecting an output of translational activity to its regulation in a feedback loop. Other types of kinase are 65 

known that regulate eIF2 through regulatory inputs that are not derived from translational activity. Such 

kinases include PKR, which is activated by double-stranded RNA (a hallmark of viral infection), and HRI, 

which links synthesis of globins to the amount of heme present in erythroid precursors (Chen, 2006). 

Between them, the eIF2 kinases are essential for the adaptation to numerous stresses, the execution of 

developmental programs, and the avoidance of disease states. 70 

Due to decades of work, the molecular biology of the regulatory pathways involving eIF2 are now 

understood in good detail. In contrast, the dynamic behaviour of the eIF2-related systems is much less well 

understood. Several groups have begun to use computational and mathematical analyses to study dynamic 

aspects of eIF2-dependent regulation, either in the context of the overall translation initiation pathway 

(Dimelow and Wilkinson, 2009; Spirin, 2009) ⁠  or by focusing specifically on the eIF2-related reactions (El-75 

Haroun et al., 2010; Manchester, 1990; You et al., 2010). The main focus of these studies has been the 

proof of concept that modelling of the complex molecular systems in question is feasible, and to establish 

quantitative relationships between different activities involved in translation initiation and its control. 

These studies have yielded interesting insights into translational regulation by eIF2, but they typically 

address the paucity of experimental information on reaction rates by extensive parameter fitting, and there 80 

is uncertainty over how well fitted parameters relate to real parameters in vivo. 

The number and types of eIF2 kinases differs strongly between organisms, comprising eg only Gcn2 in 

baker’s yeast; Gcn2 and HRI in fission yeast; and Gcn2, PKR, Perk and HRI in human cells (Zhan et al., 2004). 

Moreover, even structurally highly conserved reactions such as the eIF2B-catalysed guanosine exchange 

can occur with rate constants that differ by orders of magnitude in differing organisms (Nika et al., 2000). 85 

Despite these substantial differences, the ways in which eIF2-dependent translational control is used 

appears fundamentally similar in different organisms. In addition to reaction rates, the structure of the 

regulatory pathways in question may therefore be defining pathway features. Accordingly, we focus our 

attention on the pathway structure and its relation to features such as robust regulation, rather than on 

relatively uncertain reaction rates obtained by parameter fitting.  90 

The cellular pathways involving eIF2 can be considered as molecular switches that connect specific inputs 

(eg nutrient levels) to specific translational activity states. Switches of this kind display characteristics like 

robustness (ie to not switch unless there is an appropriate input that requires the switch to operate) and 

sensitivity (ie to reliably switch upon receiving the appropriate stimulus). In the present study, we explicitly 



consider translational control via phosphorylation of eIF2 as a molecular switch, and use tools from the 95 

control engineering domain to study how the molecular architecture of this switch determines its switching 

properties.  

 

Results and Discussion 

Model implementation and parameterisation 100 

As basis for our analyses of eIF2-dependent translational control, we established a mathematical model 

representing all elements required for translational control via eIF2. The model was established de novo 

based on the most recent descriptions of relevant reactions in the literature, as described in the 

introduction section. 

Similar to other published models investigating translational control (Dimelow and Wilkinson, 2009; You et 105 

al., 2010), our model is based on a system of ordinary differential equations. We consider all reactions that 

connect the eIF2:GDP:eIF5 complex which is released from the ribosome following completion of 

translation initiation (Singh et al., 2006) ⁠  with the eIF2:GTP complex, which is the starting point for a new 

round of ternary complex formation and  translation initiation. The corresponding network of reactions 

constitutes the reactions of “core” pathways in figure 1.  In order to not unnecessarily increase the 110 

dimensionality of the model, we represented the many other reactions in the physiological translation 

initiation pathway as a simple sink for eIF2:GTP and eIF5 and a stoichiometric source for eIF2:GDP, without 

further biochemical detail (figure 1). This approach, which distinguishes ours from other published models, 

enables us to use translation as a tunable black box which consumes eIF2:GTP and eIF5 with the correct 

rates, without requiring in depth modelling of the many reactions that connect eIF2:GTP to the formation 115 

of an elongation-competent ribosome. 

Recent findings suggest that the pathways for the regeneration of eIF2:GDP can follow two routes in 

principle, and these are both represented in our model for the first time. eIF2 is released from the 

translation initiation process most likely as an eIF2:GDP:eIF5 complex (Singh et al., 2006) ⁠ . Formation of 

the eIF2:GDP:eIF2B GEF complex can either occur via  release of eIF5 prior to recruitment of eIF2B (termed 120 

route 1 in figure 1 and in the following), or via formation of an intermediate complex comprising both eIF2B 

and eIF5 (route 2). Recent results on the functions of eIF2B as an activator of eIF5 dissociation from 

eIF2:GDP:eIF5 complexes (Jennings et al., 2016, 2013) indicate that route 2 is likely preferred, this is 

discussed in further detail below. 

In addition to the core pathways, our model contains a number of reactions that represent the regulation 125 

of translation via phosphorylation of eIF2. In implementing these reactions, we reduced the complexity of 

the various kinases and phosphatases acting on eIF2 to their fundamental, underpinning principles. We 

introduce a generic kinase (K) that can be activated by binding to a kinase activator (KA), which reflects 

real-world molecules like Gcn2 and tRNA, or PKR and dsRNA. We do not explicitly consider the molecular 

details of the activation mechanisms, such as the autophosphorylation step involved in activation of Gcn2. 130 



The kinase:activator complex is competent  for phosphorylation of eIF2:GDP, which in its phosphorylated 

form interacts with eIF2B to form a catalytically inactive guanine nucleotide exchange complex . We allow 

eIF2 to be dephosphorylated by a generic phosphatase reaction (R11), which in our model operates with a 

constant background rate. 

We model kinase activation in two modes, either in a situation in which KA is injected into the system from 135 

an external source, or where KA is generated as part of the translation reaction (the distinction between 

these scenarios is discussed in more detail below). The latter mode requires the introduction of two 

additional reactions, R12 and R13, into the model although in the majority of our analyses these reactions 

are absent. The full ODE system representing the model (including R12 and R13) is given in supplementary 

file 1. For simulations, this model was run using the modified Rosenbrock solver from Matlab (ode23 140 

(Shampine and Reichelt, 1997)). 

Although we aimed to model the regulation via eIF2 based on generic features conserved throughout 

eukaryotic evolution, we needed to constrain the abundance of molecular species of the model using 

physiologically realistic values. We used biochemical data generated with baker’s yeast for this purpose 

(table 1), as this is the organism with the most comprehensive literature on this topic. To complement the 145 

incomplete parameter set, we used a procedure based on the standard Levenberg-Marquardt (LM) 

parameter fitting algorithm (Moré, 1978) ⁠ . As a constraint for this algorithm, we set a target translation 

rate equivalent to 13,000 proteins per cell per second as previously estimated for a haploid yeast cell (von 

der Haar, 2008).  

The parameter fitting exercise yielded a combination of rate constants that allowed the model to achieve 150 

non-zero steady states when run in the absence of kinase activator (KA). In some cases, data are available 

either for the modelled reactions or for biochemically similar reactions, allowing us to judge physiological 

relevance of the modelled rate constants (table 2). Several of the reactions are very close in our model to 

measured rates, including GDP release from eIF2:eIF2B (R6), eIF2 dephosphorylation (R11) and the removal 

of uncharged tRNA (R13). Other apparent model rates differ somewhat from measured rates (eg complex 155 

formation between eIF2 and eIF2B, R3, or phosphorylation of eIF2, R9), while still being entirely within 

physiologically possible bounds. For the majority of the reactions involved in formation of macromolecular 

complexes, we have no direct experimental comparisons available, although all reported rate constants are 

at least theoretically possible. With all of these comparisons, one must keep in mind that rates which are 

not rate limiting for the flux through model may not actually be constrained, and that in these cases we 160 

would expect a parameter fitting algorithm to return a random rate compatible with the target flux through 

the pathway. Overall, we take the good fit between modelled and measured rate constants as an indication 

that our model recapitulates a number of biological properties of the pathway. 

Biological observations indicate that translation has low response coefficients for changes in the levels of 

eIF2, eIF2B and eIF5 (Firczuk et al., 2013), as well as being generally robust to mutation-induced changes in 165 

rate constants in these reactions (Asano et al., 1999; Richardson et al., 2004). We wished to evaluate in 



how far this robustness was reflected in our model, by evaluating in how far flux through reaction R7/R1 

(which approximates translational activity, figure 1) was robust to perturbations in other model 

parameters. 

The robustness criterion was initially evaluated by randomly varying rate constants within the scheme over 170 

a +/- 50% window, and recording corresponding changes in translational activity. Figure 2 illustrates this for 

both steady-state translation without a kinase-activating stress (figure 2 A) and in the case of a kinase-

activating stress applied at t = 0 s (figure 2B). Steady-state translation under non-stress conditions in our 

model captures the robustness of real-life translation against parameter changes, and translation can be 

maintained in the face of all tested parameter perturbations within +/- 10 % of the target steady state.  175 

Upon activation of the eIF2 kinase, translational activity drops to zero within 4-6 minutes.  eIF2 kinase-

dependent regulation of the system will be explored further below. 

 

Origins of robustness in eIF2-dependent regulation 

In the previous sections we demonstrated that our model shares defining features with physiological 180 

translation systems, including robustness to perturbations. From a biological point of view, such robustness 

is a critical prerequisite for the functioning of molecular circuits that are subject to random internal 

fluctuations, as well as being affected by unpredictable changes in the cellular environment. Robustness is 

also a desirable feature in most technological control systems. This has motivated the development of 

mathematical tools in the engineering domain for investigating robustness-determining features of such 185 

systems. In the following section, we explore the use of such tools for the analysis of robustness in the eIF2-

dependent translational control pathways. 

In our initial analyses, the impact of varying individual rate constants by +/-50% had no major impact on the 

robustness of the system. Although analysing the robustness of the model by varying individual rate 

constants between the limits of +/-50% has biological significance, knowing the extreme limits to which 190 

individual rate constants can vary without impacting the robustness of the system may be useful as well. 

The model of eIF2-dependent regulation is both non-linear and high-dimensional. The analysis of such 

systems may be difficult, and standard tools for analysing robustness in very general classes of non-linear 

systems are not available. For this reason, control analyses frequently start by generating appropriate 

linearized representations to replicate the behaviour of the non-linear model over a given range of the 195 

state-space. 

We used this approach to assess the robustness of the eIF2 reaction network under non-stress conditions, 

by linearizing the model including reactions R1 to R11 (ie without the feedback reactions R12 and R13, 

figure 1) with both the concentration and rate of change of the kinase activator KA set to zero. Details of 

the mathematical procedure are described in the “Model and Methods” section below.  200 

The linearized model was subjected to an analysis approach known as structured singular value (µ) analysis 

(Kim et al., 2006), which evaluates the limits of robustness of a pathway against a single parametric 



perturbation. Within control engineering, robust stability is a measure of how much uncertainty of a 

specific parameter the feedback loop can tolerate before becoming unstable. The structured singular value, 

or µ, is the mathematical tool used to compute this robust stability margin. Figure 3 shows the upper 205 

bound of µ where the inverse of the peak value determines the maximum value of the perturbation in a 

single parameter which has no impact on the robust stability of the system. From figure 3, the maximum 

allowable percentage variation of an individual rate constant k which will not affect the robust stability of 

the model is 7.95×105 %. This high percentage value reinforces the very high robustness of the eIF2 

pathway to perturbations in individual rate constants, and indicates that robustness to a large extent the 210 

result of its structure, rather than of specific sets of rate constants with which the system operates. 

In addition to the µ analysis which characterises the robustness of the overall system, we applied a model 

reduction technique to the linear model, which essentially analyses the effect of the dynamics of individual 

species on the observed input-output behaviour.  In this way, the influence of particular species on the 

output of interest can be quantified. We then compared the behaviour of the full non-linear model to the 215 

behaviour of derived models in which the dynamics of individual species are constrained (the latter are 

termed truncated models).  

Figure 4 displays the results of this analysis via Bode magnitude plots. The salient information on the effect 

of constraining the dynamics of individual species is in the comparison of the lines representing each 

model. Removing the dynamics of a species which does not affect the input-output behaviour of the model 220 

at all would result in perfect tracking of these lines. Deviation demonstrates the degree to which the input-

output behaviour is dependent upon the dynamics which have been removed.  

The results of this analysis are illustrated for three representative species in figure 4. The selection of 

species shown in this figure spans the full range of effects observed also for other species of the model. In 

all cases, removal of individual species resulted in good tracking of the frequency response of the original 225 

and reduced model in some frequency ranges, whereas in other frequency ranges imperfect tracking was 

observed. However, the frequency range over which tracking was observed clearly differed between the 

model species. This indicates that robustness determining features are generally distributed between the 

species of the model, but that the dynamics of some species makes a greater contribution to the 

robustness of the system than others. The greatest contribution in this respect appears to come from the 230 

dynamics of the eIF2:eIF2B:eIF5:GDP species, whereas the smallest contribution is made by the dynamics of 

the eIF2:GDP species. 

To test these findings and explore the usefulness of the analysis based on the linear model, we eliminated 

the dynamics of the core species in turn from the original non-linear model and compared the 

corresponding output with that obtained from the original non-linear model. Note that to determine the 235 

impact of individual species on the general translational rate, the rate of change of the species is set to zero 

and a corresponding steady-state condition is imposed on the dynamics. This reduces the order of the 

model. Eliminating the dynamics of the three core species illustrated in figure 4 from the full, linear model 



has no effect on the ability of the model to reach a steady state. Moreover, the steady state output of the 

reduced models is within less than 0.1% of the steady state of the full, non-reduced model (differing by 240 

0.045%, 0.022% and 0.021% for eIF5:eIF2B:eIF2:GDP, eIF2B:eIF2:GDP, and eIF2:GDP, respectively). As 

predicted from the linear analysis, the nonlinear simulations results demonstrate that removing the 

dynamics of eIF5:elF2B:elF2:GDP produces the most effect on the output behaviour whilst removal of 

elF2:GDP has a least substantial effect, although in all cases the effects on the steady state are small.  

The role of redundant pathways for formation of the guanosine exchange complex 245 

The recent discovery that eIF5 functions as a guanine nucleotide dissociation inhibitor (GDI) as well as a 

GTPase activator protein (GAP) for eIF2, and the ensuing characterisation of an eIF2:GDP:eIF5:eIF2B 

intermediate complex, suggest that there are two independent pathways for formation of the guanosine 

exchange complex eIF2:GDP:eIF2B. Visual inspection of the model structure coupled with observations 

from the control analysis of the model suggests that the system might be operable in principle via each of 250 

the two parallel pathways in isolation, ie either by disallowing formation of the eIF2:GDP:eIF5:eIF2B 

complex via R3 and R4 (figure 1) and only allowing the eIF2:GDP:eIF2B complex to form via R2 and R3, or by 

disallowing R2 and R3, and only allowing formation of the eIF2:GDP:eIF2B complex via R4 and R5.  

To test whether the system could run stably via either of the two branches alone, we compared model runs 

where both the abundance of the species in one of the branches and the rate constants for the respective 255 

reactions were set to zero, with the rest of the model parameterised with identical rate constants as for the 

full model. This is the modelling equivalent of introducing a mutation in a binding site that completely 

abrogates the formation of the respective complex. We observed that a model in which formation of the 

eIF5-containing eIF2:eIF2B complex was disallowed reached a steady state that was only slightly (<5%) 

lower than the steady state of the full model (figure 5A). Similarly, when kinase activator was added, 260 

translational activity decayed to zero with very similar dynamics whether or not reactions R4 and R5 were 

allowed (figure 5B). This behaviour mimics the redundancy that is frequently built in to engineering systems 

to ensure failure in one path does not cause system failure. 

Interestingly, eIF5 mutants with reduced affinity for eIF2 and reduced GDI activity, where the flux of 

molecules should be strongly redirected towards route 1, have been shown to allow growth at almost 265 

normal rates (Jennings 2010). However, the same mutants did not respond normally to Gcn2 activation, 

contrary to our model predictions. The authors of this study postulated that the inability of Gcn2 to 

appropriately regulate translation relied on a fine balance between levels of eIF2 phosphorylation and 

eIF2B availability, which may not be reflected in our model with sufficient accuracy. 

Surprisingly, when reactions R2 and R3 were disallowed, the model could not adopt a steady state. These 270 

observations suggest that of the two pathways connecting eIF2:GDP:eIF5, the one proceeding via the 

eIF2:GDP:eIF5:eIF2B complex is not essential for the principal operability of the pathway. However, as the 

analyses in figure 4 suggest, the dynamics of this pathway do play roles in determining the robustness of 

translational control mechanisms against perturbations.  



 275 

Translational regulation by eIF2 kinases 

The preceding sections considered the influence of various parameters, primarily on the non-stressed 

mode of the model (ie in the absence of kinase activator). We next turned our attention to the situation 

when kinase activators are present. Existing eIF2 kinases operate in two fundamentally different modes: 

their activating signal can either arise from the translational machinery itself, or from pathways 280 

unconnected to translation. Examples for the first case include Gcn2 which is activated when the 

consumption of charged tRNAs by translation exceeds the capacity of the tRNA synthetases to regenerate 

them, and PERK, which is activated when protein synthesis overwhelms the folding capacity of the ER. In 

these cases, regulation of the translational machinery is connected to a translational output in a classic 

feedback loop. Similar feedback loops have previously been analysed in other translational control 285 

pathways (Betney et al., 2012; de Silva et al., 2010), where feedback properties were found to contribute 

strongly to the overall dynamic behaviour of the pathway. Examples for the non-feedback mode include 

PKR, which is activated by viral RNA i.e. not by a product of the translational machinery.  

It should be noted that in our analyses we consider modes of regulation where inactive kinase is activated 

by an activating molecule, which is the case for Gcn2 and PKR. Some eIF2 kinases are regulated in the 290 

opposite fashion, ie they are active in the apo-form but are inhibited by inhibiting molecules (such as heme 

in the case of HRI). Both the addition of an activator or the removal of an inhibitor cause fractional changes 

in the abundance of active kinase, and our analyses can be understood to illustrate either mode of 

regulation. 

Because non-feedback regulation is the simpler case, we start our analyses with this scenario. For this 295 

purpose, we add a species KA (kinase activator) to the model that interacts with the eIF2 kinase with a 

macromolecular equilibrium binding constant of 10 μM to form an active kinase complex, which is then 

competent to phosphorylate eIF2. 

If we allow the model to run at equilibrium and then raise the concentration of KA, we observe that the 

translation rate drops to zero over time. The rate of response is concentration dependent, with a lower 300 

threshold for the response time (arbitrarily defined here as the time after which translation has dropped by 

99%) between two and three minutes (figure 6A). The exact details of the response curve are dependent on 

the exact rate parameters chosen for kinase activation and eIF2 phosphorylation, but the observed 

response time is close to the behaviour observed in yeast and mammalian cells.  

To model feedback regulation by kinases which rely on activation via translation products, we introduced 305 

two new reactions (R12 and R13 in figure 1) into the model which mimic the production of a kinase 

activator like uncharged tRNA by the translational machinery, and the removal of this activator from the 

system (representing eg re-charging of uncharged tRNAs by the tRNA synthetases). The behaviour of the 

system is then principally determined by the ratio of production to removal of the kinase activator: for very 

low ratios, the system operates essentially as it does in the absence of kinase activator (the top line in the 310 



graph in figure 6B represents a system producing kinase activator at 1/1000th of its rate of removal, and 

has a steady state indistinguishable from a model running in the absence of kinase activator). For higher 

ratios, the system very quickly becomes strongly responsive to the production of kinase activator. Under 

the parameter combinations shown in figure 6, this happens even when the rate of production of KA is 

much lower than the rate of removal: this is because under steady state conditions, some free tRNA 315 

accumulates and is stabilised by forming a complex with the kinase even at low KA production and high 

removal rates, and this is sufficient to activate eIF2 phosphorylation. Exactly how responsive the system is 

depends on a number of parameters including the ratio of the rate constants with which the kinase 

activator interacts with the kinase activator removal system and with the kinase (eg, the association rates 

of tRNAs with tRNA synthetases and Gcn2), the stability of the kinase:activator complex, and the ratio of 320 

phosphorylation and dephosphorylation rates for eIF2. One of the consequences of the strong 

responsiveness of our model to production of kinase activator is that there is only a very narrow window of 

parameter combinations in which the system adopts a non-zero steady state: even for low rates of 

production of kinase activator, the system tends towards a zero translation rate, albeit approaching this 

rate over very different time scales depending on the rate with which kinase activator is produced.  325 

The very strong sensitivity to kinase activity in both the fed-back and non fed-back modes may be caused 

by the high molar excess of eIF2 over eIF2B (Singh et al., 2007; von der Haar and McCarthy, 2002), which 

means that eIF2B can be inhibited even when eIF2 is only partially phosphorylated. It is interesting to 

consider in how far these observed features of our model reflect the real world behaviour of eIF2-

dependent translational control. Real-world systems contain a number of control elements that are absent 330 

from our model. For example, Gcn2 itself can be phosphorylated by TORC1, and this phosphorylation 

prevents activation of Gcn2 kinase activity (Cherkasova and Hinnebusch, 2003). TORC1 activity also has a 

stimulating effect on translational activity. In consequence, when high translational activity is required, the 

sensitive system would be prevented from being inappropriately activated eg by low levels of tRNAs. 

Similarly, PKR can be inhibited by trans-acting modulators like p58IPK (Barber et al., 1994), which could 335 

similarly be used to attenuate the response to activation of the kinase. If the strong responsiveness our 

model predicts is indeed a real-world feature of eIF2-mediated translational control, this could explain why 

additional regulators evolved for these kinases, and the combination of strong response and trans-acting 

modulators would ensure both high robustness and high sensitivity of translational control. 

 340 

Conclusions 

Our computational investigation into robustness determining features of translational regulation impinging 

on eIF2 formulates a number of experimentally testable hypotheses. 

The model recapitulates biological control in a number of aspects. The model can reach a steady state 

translational activity at levels very similar to a well-studied in vivo system (yeast), upon activation of the 345 

eIF2 kinase translation ceases on a time-sale of minutes, and both of these properties are robust with 



respect to parameter choices. We find indications of strong robustness using different analysis approaches, 

namely explicit parameter variation and structured singular value analyses.  This finding of strong 

robustness is validated by experimental observations that translation in vivo can operate despite relatively 

severe parameter perturbations resulting eg from mutations in eIF2 and eIF2B (Asano et al., 1999; 350 

Richardson et al., 2004). 

Our further analyses based on model derivatives where dynamics of individual species are constrained 

indicate that this strong robustness results from distributed model features, and cannot be traced to the 

behaviour of a single individual species. However, some species’ dynamics contribute more to the 

robustness of the system than others. A strongly contributing species in this respect is the eIF2:eIF2B:eIF5 355 

complex which, although our analyses predict it to be non-essential for the basic operability of the system 

(figure 5), show the strongest changes in robustness when its dynamics are constrained (figure 4). 

Interestingly, Jennings et al. very recently characterised an eIF2 mutant that prevents eIF5 from functioning 

as a GDI (Jennings et al., 2016)⁠ . This mutant allows normal growth rates, but does not allow robust 

regulation of translational activity under conditions which would normally lead to activation of the Gcn2 360 

kinase. Although this study did not directly evaluate the effect of the eIF2 mutant on the eIF2:eIF2B:eIF5 

complex, these findings are consistent with our predictions that normal formation of this complex is 

important for robust regulation, but not essential for the basic operability of translation. 

One of the outcomes from our study is an indication where models of translational control via eIF2 could be 

improved in future. There is a paucity of rate constants available for formation of the different 365 

macromolecular complexes. This introduces a high degree of freedom into the parameter estimation 

process, which could be reduced if accurate, experimentally measured rates were available. Moreover, new 

aspects of the modelled pathways are still being uncovered, such a the recent discovery of a “fail-safe” 

mechanism by which eIF2 phosphorylation potentiates translational response to eIF2 kinase activation 

(Jennings et al., 2017). Considering these new findings in model-based analyses will require introducing 370 

new reactions and rate-constants, which will only be feasible if the need for parameter fitting can be 

reduced for existing parameters. 

Given the strong sensitivity of our current model to kinase activation, it is likely that additional regulatory 

layers such as the priming of GCN2 by TOR or the regulation of PKR by trans-acting cellular regulators like 

p58IPK could strongly modulate the dynamics with which translation responds to regulatory input. The 375 

inclusion of such regulation in the model would clearly be desirable, although it is likely that this would 

introduce too many degrees of freedom in simple, ODE-based models as the majority of these interactions 

are dynamically almost completely uncharacterised. Qualitative approaches such as Petri-Net based models 

(Chaouiya, 2007) may enable the analysis of such wider regulatory networks without explicitly considering 

rate constants. 380 

 

Methods 



Model simulations 

The full ODE system representing the model (including R12 and R13) is given in supplementary file 1. For 

simulations, this model was run using the modified Rosenbrock solver from Matlab (ode23 (Shampine and 385 

Reichelt, 1997) ⁠ ). 

Levenberg-Marquardt implementation 

The rate constants of the model have been estimated using the Levenberg-Marquardt (LM) algorithm 

(Marquardt, 1963) ⁠ . In order to develop a naturally behaving mathematical model, the rate constants are 

optimised using the LM algorithm integrated with pathway characteristics such as positivity and robustness 390 

analysis. 

Using the LM algorithm alone to parameterise computational models may result in uncertain combinations 

of parameter values, which may not follow experimental observations appropriately. Therefore, to 

overcome the limitation of parameter uncertainty, we integrated the robustness characteristics of the 

general translation rate (Y1) to parameter changes within the LM algorithm. The integrated 395 

parameterisation process used in this work is discussed below. Note that for simplicity the concentration of 

species considered in the eIF2-dependent translational regulation model are denoted by Y (a conversion 

from Y notation to standard molecular biology notation is given in table 3).  

In order to quantify the changes in general translation rate due to variation in the rate constant vector k, 

the following equation is used. 400 

                        (1) 

where,    is an absolute error between in-vitro and in-silico experimental values, Y1D is the in-vitro 

experimental data value of the general translation rate in a yeast cell, Y1(Y(0),k, t) is the in-silico 

experimental value of the general translation rate obtained after solving the ODEs using the modified 

Rosenbrock solver with Y(0) and k initial conditions. After obtaining different combinations of parameter 

values giving     , the value for each combination of k is perturbed  +/-50% from the original value and 405 

the error ξ2 with respect to Y1D is recorded. The average value of normalised absolute error  ξ2 can be 

determined from (2), 

 
X 

 
(2) 

where, T is the evaluation time and Δk is equal to +/-50% of the original k value. The purpose of perturbing 

the rate constants is to analyse the robustness of general translation rate. Hence a lower value of ξ2 defines 410 

high robustness against internal parametric changes.  

Note that, to cope with the limitation that concentration values of most of the species/complexes are 

unknown, we have opted for a random selection approach which adopts a random value of the initial 

concentration that should lie within yeast molecular concentration. Typically, in yeast cells the molecular 

concentrations lie approximately between 10nM-10µM. Hence, the initial concentration of remaining 415 



species/complexes are randomly varied in a bounded limit of [10-3,10] µM in a way that the target 

constraints can be achieved (refer to the subsection on model implementation and parameterisation).  

 

Model linearisation 

In control theory, the non-linear model can be linearised around an equilibrium point to investigate some 420 

of its properties such as robust stability etc. Linearisation simplifies the non-linear interaction of the 

species, so that the individual effect of the rate constants can be investigated. There are some limitations of 

the linear approximation of non-linear systems, that is the linear system is an approximation that is only 

valid across small regions around equilibrium point. Therefore the approximate linear system accurately 

predicts the local behaviour of the non-linear systems instead of global. 425 

A generalised form of the non-linear mathematical model given in supplementary file 1 (excluding R12 and 

R13) can be defined as follows: 

                
(3) 

where, Y is the non-negative concentration of the species, t is the evaluation time and k is a rate constant 

vector. In order to find the equilibrium point of a model or a steady state value of all the species, eq. 3 is to 

be solved by equating it to zero. Note that, substituting f(Y(t); k) to zero implies no change in the state of all 430 

species as time progresses that is all species have attained a steady state. Solving the equation results into 

one of the biologically feasible equilibrium point     displayed in table 3. 

Prior to investigating the role of uncharged tRNA (Y13) on other species, it is beneficial to eliminate the 

dynamics of Y13 from the original non-linear model. The investigation has revealed that Y13 has attained the 

quasi steady state or constant steady state value for varying initial concentrations (Segel and Slemrod, 435 

1989). Hence, substituting       makes no difference in the behaviour of modified non-linear system 

compared to the original non-linear system. Performing this task gives freedom to consider Y13 as an 

applied input u and helps to analyse the direct impact of uncharged tRNA on translation rate. The state 

space model of the modified non-linear model can be defined as follows: 

                         

           
(4) 

where vector                                 
 

, vector                   
  , vector 440 

                ,       and      is the output signal or translation rate. The state space 

representation of an approximate LTI model of a modified non-linear system around the equilibrium point 

can be re-written in the form: 

         

     

(5) 

where A is a constant Jacobian matrix, B and D are the constant input and output vectors respectively given 

as:  445 



                                        

                   

Note that the matrix A of dimensions 13×13 is a function of the equilibrium point and rate constant vector 

k. The Jacobian matrix A represents the behaviour of the overall biological system around an equilibrium 

point (   ). 450 

 

Mu (µ) analysis 

Within control engineering, robust stability is a measure of how much uncertainty of a specific parameter 

the feedback loop can tolerate before becoming unstable. In order to determine the extreme limits to 

which rate constants of the model can vary without impacting the robustness of the system, we conducted 455 

a structured singular value (µ) analysis (Fan et al., 1991; Kim et al., 2006).  

  
 

   
 

                             
 

(6) 

where    represents the maximum singular value, M(s) denotes the transfer function of the system 

and    represents a set of uncertainties Δ. From the above equation it is clear that the principle at 

which µ-analysis works is finding the smallest value of       that can make         singular, and 

when there is no Δ such that                then    .  460 

Note that, µ-analysis is a deterministic measure which computes a level of uncertainty at which the model 

is guaranteed to produce desirable results. One of the advantage of opting µ-analysis is that it provides 

information on robustness of the system when the parameters of the system encounters simultaneous 

perturbation (Kim et al., 2006). This particular scenario resembles the actual behaviour of robust biological 

systems because under environmental disturbances the parameters of the biological systems can fluctuate 465 

simultaneously without impacting the behaviour of the system. So higher value of upper bound of µ-1 is 

desirable for robust biological systems.  

In order to evaluate the parametric perturbation limits of a biological system, the equivalent linearised 

biological system needs to be connected through a feedback control loop to a matrix of uncertain 

parameters Δ. The robustness analysis of a biological system using µ requires the system to be represented 470 

in a stable linear time invariant (LTI) form. 

To analyse the robustness of the system, a parametric uncertainty matrix block Δ is introduced into the LTI 

biological system represented in (5). Note that, the parametric uncertainty matrix block is only consisting of 

diagonal entries of the individual parameters. Thus, obtaining upper bound of µ-analysis it can be 

guaranteed that the system is robust provided that no single parameter differs more than upper bound of 475 

µ-1×100% from its nominal value. Figure 7 represents the biological system M(s) connected through a 

closed feedback loop which can be destabilised from the smallest possible uncertainty Δ. Note that, 

                         and M(s) is the transfer function of the LTI model defined as: 



             
     (7) 

Now, introducing Δ into the system changes the rate constant k to        . The state space 

representation of the perturbed system is as follows: 480 

             

       

 

(8) 

Note that the dimensions of the constant matrices    and    are 13×20 and 20×13 respectively. The 

matrices    and    for the perturbed LTI system are defined below. 

          (9) 

for (i,j) equals (1,11), (2,1), (2,3), (2,7), (3,3), (3,9), (3,10), (3,17), (4,2), (4,5), (5,4), (5,6), (6,4), (6,8), (7,6), 

(7,9), (7,15), (7,18), (8,10), (9,13), (10,12), (10,15), (10,19), (11,17), (11,19), (12,16), and (13,14). 

           (10) 

for (i,j) equals (1,1), (1,20), (2,2), (2,6), (3,2), (3,8), (3,16), (4,3), (4,4), (5,5), (5,7), (5,11), (6,5), (6,9), (6,10), 485 

(7,7), (7,8), (7,14), (8,11), (9,12), (10,13), (10,14), (11,16), (11,18), (12,17), (13,15), and (13,19). The 

remaining elements of           . On the other hand, all the elements of matrix     are zero except: 

          ,               
  

,               
  

,           ,        

   ,             
  

,             
  

,           ,        

     
  

,             
  

,             
  

,             
  

,        

   ,           ,             
  

,             
  

,         

      
  

,             ,                
  

,                
  

,          

    ,                
  

,                
  

,              ,          

   ,             ,             

(11) 

Analysing system (8) using the Matlab µ-analysis tool within the Robust Control Toolbox from Mathworks, 

will give the value at which the rate constant can be perturbed individually without impacting the 

structured robustness of the system.  490 
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Table 1.  Literature values used for model parameterisation. 

 

Parameter Valuea References 

Translation 13,000 proteins 
per second 

 (von der Haar, 2008) 

total cellular 
eIF2 

18 μM (Singh et al., 2007; von der Haar, 2008) 

Total cellular 
eIF2B 

1.8 μM (Singh et al., 2007; von der Haar, 2008) 

Total cellular 
eIF5 

18 μM (Singh et al., 2007) 

Total cellular 
kinase (Gcn2) 

0.09 μM (Singh et al., 2007) 

aWhere appropriate, intracellular concentrations were calculated from molecule numbers based 
on a typical haploid yeast cell volume of 27 μm3 or 2.7x10-14 litres (von der Haar and McCarthy, 

2002)⁠ .  605 



Table 2. Steady state rate constants and comparison to literature values. 

Rate  Value Reaction Reported value 

k1 1.77 s
-1

 (translation) 

A k1 value of 1.78 s
-1

 is equivalent to a flux of 

~13,000 translation events per second in the 

steady state (von der Haar, 2008) 

k2f  7.59 s
-1

 
eIF5 release from 5:2:GDP  No data 

k2r 0.91 M
-1

s
-1

 

k3f 6×10
7
 M

-1
s

-1
 

2B:2:GDP complex formation 
KM of 0.7-1.2x10

-8
 at 0˚C (Nika et al., 2000) vs. 

2.5e
-6

 calc. from (k6+k3r)/k3f k3r 150 s
-1

 

k4f  1.0 M
-1

s
-1

 
5:2:2B:GDP complex formation no data 

k4r 0.72 s
-1

 

k5f 0.36 s
-1

 
eIF5 release from 5:2:2B:GDP no data 

k5r  1.6x10
4
 M

-1
s

-1
 

k6 0.72 s
-1

 GDP release from 2:2B:GDP 0.7-7 sec
-1 (Nika et al., 2000) 

k7  7.4x10
4
 M

-1
s

-1
 (translation) 

A k7 value of 7.3x10
4
 M

-1
 s

-1
 is equivalent to a 

flux of ~13,000 translation events per second in 

the steady state (von der Haar, 2008) 

k8f 1×10
6
 M

-1
s

-1
 

GCN2:tRNA complex formation no data 
k8r  203 s

-1
 

k9af  1×10
9
 M

-1
s

-1
 

phosphorylation reaction 

KM of 10
-5

 to 10
-6

 M for human PKR (Dey et al., 

2005) vs 1.0x10
-4

 M calculated from (k9ar + 

k9b)/k9af 

k9ar  167 s
-1

 

k9b 1×10
5
  s

-1
 

k10f 1×10
2
 M

-1
s

-1
 

2-P:2B:GDP complex formation no data 
k10r 129 s

-1
 

k11 1×10
-4

 s
-1

 phosphatase reaction 
10

-3
 to 10

-5
 sec

-1
 at 1 µM enzyme for human 

PP2Cα (Fjeld and Denu, 1999) 

k12 1×10
-8

 s
-1

 (tRNA release from translation) na 

k13 1x10
-2

 s
-1

 tRNA recharging 
10

-2 
to 10

2
 sec

-1 
at 1-10  µM tRS for various 

yeast enzymes (Chu et al., 2011) 

  



Table 3. Species denominations and equilibrium points for species abundance. 

Y1   translation  4.36×10-7 M 

Y2   eIF5:eIF2:GDP  1.19×10-7 M 

Y3   eIF2B  7.22×10-7 M 

Y4   eIF5:eIF2B:eIF2:GDP  1.78×10-7 M 

Y5   eIF5  1.11×10-5 M 

Y6   eIF2B:eIF2:GDP  1.07×10-6 M 

Y7   eIF2:GDP  3.74×10-7 M 

Y8   eIF2:GTP  9.44×10-6 M 

Y9   GCN2  4.33×10-17 M 

Y10   tRNA:GCN2  2.22×10-18 M 

Y11   eIF2-P  1.61×10-12 M 

Y12   eIF2-P:eIF2B  4.04×10-18 M 

Y13   tRNA  1.04×10-5 M 

Y14   tRNA:GCN2:eIF2  8.23×10-21 M 

  



Figure Legends 610 

Figure 1. Graphical presentation of the eIF2-dependent translational regulation model. The model is 

conceptually divided into a core section which comprises the reactions required for sustaining ongoing 

translation, and regulatory reactions that can be used to exert regulation on the core section. Regulation 

can be exerted either in a fed-back mode through reactions 12 and 13, or in a non-fed-back manner if 

reactions 12 and 13 are removed from the model. Double-headed arrows above the reaction numbers 615 

indicate reactions that are modelled via reversible mass-action kinetics. The species indicated are: 2, eIF2; 

2-P, phosphorylated eIF2; 2B, eIF2B; 5, eIF5; K, kinase; KA, kinase activator. 

 

Figure 2. Principal behaviour and robustness of the model.  A, simulation of the model without kinase 

activator (KA in figure 1). B, simulation with 10 µM KA injected at t = 0 s. Error bars represent the variability 620 

of the model as observed in the parameter variation exercise discussed in the text. 

 

Figure 3. Upper bound of the structured singular value µ. The inverse of the peak value determines the 

maximum value of the perturbation in a single parameter which has no impact on the robust stability of the 

system. 625 

 

Figure 4. Bode diagrams for three representative model species. We observe partial tracking of the 

original and truncated, linearised models for all analysed species across the frequency range. The analysis 

indicates that elF2:GDP can be expected to have the smallest effect on the input output behaviour of 

translational control via elF2. 630 

 

Figure 5. Model performance in the absence of redundant pathways leading to eIF2:eIF2B complex 

formation. When formation of the eIF2:GDP:eIF5:eIF2B intermediate complex is disallowed, the model 

shows a very similar steady-state in the absence of kinase activator (A) as well as a similar response to the 

presence of kinase activator (B). When formation of this complex is the only allowed route leading to the 635 

guanine nucleotide exchange complex (ie when decay of the eIF2:eIF5 complex into free eIF2:GDP and eIF5 

is disallowed), the model does not reach a steady state. 

 

Figure 6. eIF2 kinase-dependent regulation of translation. A, regulation in a non-fed-back model. Upon 

injection of kinase activator (KA) at t=0, translational activity declines with the rate of decline dependent on 640 

the concentration of the activator. The inset graph illustrates the time to reach a 99% reduction in 

translational activity as a function of KA concentration. B, regulation in a fed-back model. The evolution of 

the model starting without kinase activator is shown, as  function of different production/removal ratios for 

KA. 
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Figure 7: M-Δ configuration of eIF2 pathway for µ analysis. 
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Abstract 

Phosphorylation of eukaryotic translation initiation factor 2 (eIF2) is one of the best studied and most 

widely used means for regulating protein synthesis activity in eukaryotic cells. This pathway regulates 

protein synthesis in response to stresses, viral infections, and nutrient depletion, among others. We 15 

present analyses of an ordinary differential equation-based model of this pathway, which aim to identify its 

principal robustness-conferring features. Our analyses indicate that robustness is a distributed property, 

rather than arising from the properties of any one individual pathway species. However, robustness-

conferring properties are unevenly distributed between the different species, and we identify a guanine 

nucleotide dissociation inhibitor (GDI) complex as a species that likely contributes strongly to the 20 

robustness of the pathway. Our analyses make further predictions on the dynamic response to different 

types of kinases that impinge on eIF2. 

  



Introduction 

mRNA translation is an important controller of gene expression levels. Together with transcriptional 25 

regulation, it quantitatively determines protein expression from any given gene (Hershey et al., 2007) ⁠ . 

Translation occurs in distinct stages termed initiation, elongation, termination and recycling. While 

regulation of both initiation and elongation can be used to control gene expression levels (Chu et al., 

2014)⁠ , translation initiation is thought to be the stage predominantly targeted for such control (Gebauer 

and Hentze, 2004)⁠ . 30 

In eukaryotes, translation initiation involves attachment of the small ribosomal subunit to the mRNA 5’-

end, followed by movement along the 5’-UTR or “scanning”. This movement is arrested when a start codon 

is recognized (Hinnebusch, 2014)⁠ , at which point the large ribosomal subunit joins the small subunit and 

the elongation stage begins. 

All events within translation initiation are controlled by translation initiation factors, proteins or protein 35 

complexes that associate with mRNAs and ribosomal subunits (Hinnebusch, 2014) ⁠ . Many initiation 

factors are subject to control via signaling pathways that adapt gene expression to particular internal or 

external states, like growth conditions or developmental programs. 

One of the best studied translational control mechanisms impinges on the eukaryotic initiation factor 2 

(eIF2). eIF2 forms ternary complexes (TCs) which involve its three protein subunits, the initiator tRNA, and 40 

guanine nucleotides. In the GTP-bound form, TCs form 43S-preinitiation complexes with small ribosomal 

subunits and a host of other initiation factors. In 43S complexes, eIF2 structurally supports contacts of the 

initiator tRNA with the ribosomal A-site, as well as having functional roles by communicating to the 

ribosome the presence or absence of a start codon in the A-site. When a start codon in a sufficiently 

favourable sequence context enters the ribosomal A-site during scanning, hydrolysis of the eIF2-bound GTP 45 

to GDP is induced through conformational changes which are relayed from the ribosomal subunit to eIF2, 

and this is instrumental for arresting the scanning process.  

eIF2 eventually leaves the complex in a GDP-bound form, and needs to undergo guanine nucleotide 

exchange from the GDP-to the GTP-bound form before it is competent for the next round of translation 

initiation. In vivo, this exchange reaction requires the presence of a guanine nucleotide exchange factor 50 

(GEF) termed eIF2B (Mohammed-Qureshi et al., 2008; Wortham and Proud, 2015), and is further regulated 

by a guanine nucleotide dissociation inhibitor (GDI) function of eIF5, another 43S complex member 

(Jennings and Pavitt, 2010) ⁠ . 

eIF2 is subject to regulation via phosphorylation at multiple sites, most importantly at serine 51 in its alpha 

subunit (Price et al., 1991)⁠ . Phosphorylation at this residue converts eIF2 from a substrate of eIF2B to its 55 

competitive inhibitor, thereby disrupting the guanosine exchange cycle required to sustain ongoing 

translation (Matts et al., 1983)⁠ . Because eIF2B is usually present in substoichiometric amounts compared 

to eIF2 (Jedlicka and Panniers, 1991; von der Haar and McCarthy, 2002) ⁠ , even partial phosphorylation of 



eIF2 can quantitatively block gene expression.  

Various kinases are known to phosphorylate eIF2 (Donnelly et al., 2013) ⁠ . A highly conserved kinase is 60 

Gcn2 which is activated by uncharged tRNAs (Dong et al., 2000), thereby using products of translational 

activity as an input for its regulation, a classical example of a feedback loop. Gcn2 is unusual in that it is a 

single-substrate kinase, that is to say, Gcn2 has no other known targets besides eIF2. Another eIF2 kinase, 

PERK, is activated by the accumulation of unfolded proteins in the endoplasmic reticulum (ER), similarly 

connecting an output of translational activity to its regulation in a feedback loop. Other types of kinase are 65 

known that regulate eIF2 through regulatory inputs that are not derived from translational activity. Such 

kinases include PKR, which is activated by double-stranded RNA (a hallmark of viral infection), and HRI, 

which links synthesis of globins to the amount of heme present in erythroid precursors (Chen, 2006). 

Between them, the eIF2 kinases are essential for the adaptation to numerous stresses, the execution of 

developmental programs, and the avoidance of disease states. 70 

Due to decades of work, the molecular biology of the regulatory pathways involving eIF2 are now 

understood in good detail. In contrast, the dynamic behaviour of the eIF2-related systems is much less well 

understood. Several groups have begun to use computational and mathematical analyses to study dynamic 

aspects of eIF2-dependent regulation, either in the context of the overall translation initiation pathway 

(Dimelow and Wilkinson, 2009; Spirin, 2009) ⁠  or by focusing specifically on the eIF2-related reactions (El-75 

Haroun et al., 2010; Manchester, 1990; You et al., 2010). The main focus of these studies has been the 

proof of concept that modelling of the complex molecular systems in question is feasible, and to establish 

quantitative relationships between different activities involved in translation initiation and its control. 

These studies have yielded interesting insights into translational regulation by eIF2, but they typically 

address the paucity of experimental information on reaction rates by extensive parameter fitting, and there 80 

is uncertainty over how well fitted parameters relate to real parameters in vivo. 

The number and types of eIF2 kinases differs strongly between organisms, comprising eg only Gcn2 in 

baker’s yeast; Gcn2 and HRI in fission yeast; and Gcn2, PKR, Perk and HRI in human cells (Zhan et al., 2004). 

Moreover, even structurally highly conserved reactions such as the eIF2B-catalysed guanosine exchange 

can occur with rate constants that differ by orders of magnitude in differing organisms (Nika et al., 2000). 85 

Despite these substantial differences, the ways in which eIF2-dependent translational control is used 

appears fundamentally similar in different organisms. In addition to reaction rates, the structure of the 

regulatory pathways in question may therefore be defining pathway features. Accordingly, we focus our 

attention on the pathway structure and its relation to features such as robust regulation, rather than on 

relatively uncertain reaction rates obtained by parameter fitting.  90 

The cellular pathways involving eIF2 can be considered as molecular switches that connect specific inputs 

(eg nutrient levels) to specific translational activity states. Switches of this kind display characteristics like 

robustness (ie to not switch unless there is an appropriate input that requires the switch to operate) and 

sensitivity (ie to reliably switch upon receiving the appropriate stimulus). In the present study, we explicitly 



consider translational control via phosphorylation of eIF2 as a molecular switch, and use tools from the 95 

control engineering domain to study how the molecular architecture of this switch determines its switching 

properties.  

 

Results and Discussion 

Model implementation and parameterisation 100 

As basis for our analyses of eIF2-dependent translational control, we established a mathematical model 

representing all elements required for translational control via eIF2. The model was established de novo 

based on the most recent descriptions of relevant reactions in the literature, as described in the 

introduction section. 

Similar to other published models investigating translational control (Dimelow and Wilkinson, 2009; You et 105 

al., 2010), our model is based on a system of ordinary differential equations. We consider all reactions that 

connect the eIF2:GDP:eIF5 complex which is released from the ribosome following completion of 

translation initiation (Singh et al., 2006) ⁠  with the eIF2:GTP complex, which is the starting point for a new 

round of ternary complex formation and  translation initiation. The corresponding network of reactions 

constitutes the reactions of “core” pathways in figure 1.  In order to not unnecessarily increase the 110 

dimensionality of the model, we represented the many other reactions in the physiological translation 

initiation pathway as a simple sink for eIF2:GTP and eIF5 and a stoichiometric source for eIF2:GDP, without 

further biochemical detail (figure 1). This approach, which distinguishes ours from other published models, 

enables us to use translation as a tunable black box which consumes eIF2:GTP and eIF5 with the correct 

rates, without requiring in depth modelling of the many reactions that connect eIF2:GTP to the formation 115 

of an elongation-competent ribosome. 

Recent findings suggest that the pathways for the regeneration of eIF2:GDP can follow two routes in 

principle, and these are both represented in our model for the first time. eIF2 is released from the 

translation initiation process most likely as an eIF2:GDP:eIF5 complex (Singh et al., 2006) ⁠ . Formation of 

the eIF2:GDP:eIF2B GEF complex can either occur via  release of eIF5 prior to recruitment of eIF2B (termed 120 

route 1 in figure 1 and in the following), or via formation of an intermediate complex comprising both eIF2B 

and eIF5 (route 2). Recent results on the functions of eIF2B as an activator of eIF5 dissociation from 

eIF2:GDP:eIF5 complexes (Jennings et al., 2016, 2013) indicate that route 2 is likely preferred, this is 

discussed in further detail below. 

In addition to the core pathways, our model contains a number of reactions that represent the regulation 125 

of translation via phosphorylation of eIF2. In implementing these reactions, we reduced the complexity of 

the various kinases and phosphatases acting on eIF2 to their fundamental, underpinning principles. We 

introduce a generic kinase (K) that can be activated by binding to a kinase activator (KA), which reflects 

real-world molecules like Gcn2 and tRNA, or PKR and dsRNA. We do not explicitly consider the molecular 

details of the activation mechanisms, such as the autophosphorylation step involved in activation of Gcn2. 130 



The kinase:activator complex is competent  for phosphorylation of eIF2:GDP, which in its phosphorylated 

form interacts with eIF2B to form a catalytically inactive guanine nucleotide exchange complex . We allow 

eIF2 to be dephosphorylated by a generic phosphatase reaction (R11), which in our model operates with a 

constant background rate. 

We model kinase activation in two modes, either in a situation in which KA is injected into the system from 135 

an external source, or where KA is generated as part of the translation reaction (the distinction between 

these scenarios is discussed in more detail below). The latter mode requires the introduction of two 

additional reactions, R12 and R13, into the model although in the majority of our analyses these reactions 

are absent. The full ODE system representing the model (including R12 and R13) is given in supplementary 

file 1. For simulations, this model was run using the modified Rosenbrock solver from Matlab (ode23 140 

(Shampine and Reichelt, 1997)). 

Although we aimed to model the regulation via eIF2 based on generic features conserved throughout 

eukaryotic evolution, we needed to constrain the abundance of molecular species of the model using 

physiologically realistic values. We used biochemical data generated with baker’s yeast for this purpose 

(table 1), as this is the organism with the most comprehensive literature on this topic. To complement the 145 

incomplete parameter set, we used a procedure based on the standard Levenberg-Marquardt (LM) 

parameter fitting algorithm (Moré, 1978) ⁠ . As a constraint for this algorithm, we set a target translation 

rate equivalent to 13,000 proteins per cell per second as previously estimated for a haploid yeast cell (von 

der Haar, 2008).  

The parameter fitting exercise yielded a combination of rate constants that allowed the model to achieve 150 

non-zero steady states when run in the absence of kinase activator (KA). In some cases, data are available 

either for the modelled reactions or for biochemically similar reactions, allowing us to judge physiological 

relevance of the modelled rate constants (table 2). Several of the reactions are very close in our model to 

measured rates, including GDP release from eIF2:eIF2B (R6), eIF2 dephosphorylation (R11) and the removal 

of uncharged tRNA (R13). Other apparent model rates differ somewhat from measured rates (eg complex 155 

formation between eIF2 and eIF2B, R3, or phosphorylation of eIF2, R9), while still being entirely within 

physiologically possible bounds. For the majority of the reactions involved in formation of macromolecular 

complexes, we have no direct experimental comparisons available, although all reported rate constants are 

at least theoretically possible. With all of these comparisons, one must keep in mind that rates which are 

not rate limiting for the flux through model may not actually be constrained, and that in these cases we 160 

would expect a parameter fitting algorithm to return a random rate compatible with the target flux through 

the pathway. Overall, we take the good fit between modelled and measured rate constants as an indication 

that our model recapitulates a number of biological properties of the pathway. 

Biological observations indicate that translation has low response coefficients for changes in the levels of 

eIF2, eIF2B and eIF5 (Firczuk et al., 2013), as well as being generally robust to mutation-induced changes in 165 

rate constants in these reactions (Asano et al., 1999; Richardson et al., 2004). We wished to evaluate in 



how far this robustness was reflected in our model, by evaluating in how far flux through reaction R7/R1 

(which approximates translational activity, figure 1) was robust to perturbations in other model 

parameters. 

The robustness criterion was initially evaluated by randomly varying rate constants within the scheme over 170 

a +/- 50% window, and recording corresponding changes in translational activity. Figure 2 illustrates this for 

both steady-state translation without a kinase-activating stress (figure 2 A) and in the case of a kinase-

activating stress applied at t = 0 s (figure 2B). Steady-state translation under non-stress conditions in our 

model captures the robustness of real-life translation against parameter changes, and translation can be 

maintained in the face of all tested parameter perturbations within +/- 10 % of the target steady state.  175 

Upon activation of the eIF2 kinase, translational activity drops to zero within 4-6 minutes.  eIF2 kinase-

dependent regulation of the system will be explored further below. 

 

Origins of robustness in eIF2-dependent regulation 

In the previous sections we demonstrated that our model shares defining features with physiological 180 

translation systems, including robustness to perturbations. From a biological point of view, such robustness 

is a critical prerequisite for the functioning of molecular circuits that are subject to random internal 

fluctuations, as well as being affected by unpredictable changes in the cellular environment. Robustness is 

also a desirable feature in most technological control systems. This has motivated the development of 

mathematical tools in the engineering domain for investigating robustness-determining features of such 185 

systems. In the following section, we explore the use of such tools for the analysis of robustness in the eIF2-

dependent translational control pathways. 

In our initial analyses, the impact of varying individual rate constants by +/-50% had no major impact on the 

robustness of the system. Although analysing the robustness of the model by varying individual rate 

constants between the limits of +/-50% has biological significance, knowing the extreme limits to which 190 

individual rate constants can vary without impacting the robustness of the system may be useful as well. 

The model of eIF2-dependent regulation is both non-linear and high-dimensional. The analysis of such 

systems may be difficult, and standard tools for analysing robustness in very general classes of non-linear 

systems are not available. For this reason, control analyses frequently start by generating appropriate 

linearized representations to replicate the behaviour of the non-linear model over a given range of the 195 

state-space. 

We used this approach to assess the robustness of the eIF2 reaction network under non-stress conditions, 

by linearizing the model including reactions R1 to R11 (ie without the feedback reactions R12 and R13, 

figure 1) with both the concentration and rate of change of the kinase activator KA set to zero. Details of 

the mathematical procedure are described in the “Model and Methods” section below.  200 

The linearized model was subjected to an analysis approach known as structured singular value (µ) analysis 

(Kim et al., 2006), which evaluates the limits of robustness of a pathway against a single parametric 



perturbation. Within control engineering, robust stability is a measure of how much uncertainty of a 

specific parameter the feedback loop can tolerate before becoming unstable. The structured singular value, 

or µ, is the mathematical tool used to compute this robust stability margin. Figure 3 shows the upper 205 

bound of µ where the inverse of the peak value determines the maximum value of the perturbation in a 

single parameter which has no impact on the robust stability of the system. From figure 3, the maximum 

allowable percentage variation of an individual rate constant k which will not affect the robust stability of 

the model is 7.95×105 %. This high percentage value reinforces the very high robustness of the eIF2 

pathway to perturbations in individual rate constants, and indicates that robustness to a large extent the 210 

result of its structure, rather than of specific sets of rate constants with which the system operates. 

In addition to the µ analysis which characterises the robustness of the overall system, we applied a model 

reduction technique to the linear model, which essentially analyses the effect of the dynamics of individual 

species on the observed input-output behaviour.  In this way, the influence of particular species on the 

output of interest can be quantified. We then compared the behaviour of the full non-linear model to the 215 

behaviour of derived models in which the dynamics of individual species are constrained (the latter are 

termed truncated models).  

Figure 4 displays the results of this analysis via Bode magnitude plots. The salient information on the effect 

of constraining the dynamics of individual species is in the comparison of the lines representing each 

model. Removing the dynamics of a species which does not affect the input-output behaviour of the model 220 

at all would result in perfect tracking of these lines. Deviation demonstrates the degree to which the input-

output behaviour is dependent upon the dynamics which have been removed.  

The results of this analysis are illustrated for three representative species in figure 4. The selection of 

species shown in this figure spans the full range of effects observed also for other species of the model. In 

all cases, removal of individual species resulted in good tracking of the frequency response of the original 225 

and reduced model in some frequency ranges, whereas in other frequency ranges imperfect tracking was 

observed. However, the frequency range over which tracking was observed clearly differed between the 

model species. This indicates that robustness determining features are generally distributed between the 

species of the model, but that the dynamics of some species makes a greater contribution to the 

robustness of the system than others. The greatest contribution in this respect appears to come from the 230 

dynamics of the eIF2:eIF2B:eIF5:GDP species, whereas the smallest contribution is made by the dynamics of 

the eIF2:GDP species. 

To test these findings and explore the usefulness of the analysis based on the linear model, we eliminated 

the dynamics of the core species in turn from the original non-linear model and compared the 

corresponding output with that obtained from the original non-linear model. Note that to determine the 235 

impact of individual species on the general translational rate, the rate of change of the species is set to zero 

and a corresponding steady-state condition is imposed on the dynamics. This reduces the order of the 

model. Eliminating the dynamics of the three core species illustrated in figure 4 from the full, linear model 



has no effect on the ability of the model to reach a steady state. Moreover, the steady state output of the 

reduced models is within less than 0.1% of the steady state of the full, non-reduced model (differing by 240 

0.045%, 0.022% and 0.021% for eIF5:eIF2B:eIF2:GDP, eIF2B:eIF2:GDP, and eIF2:GDP, respectively). As 

predicted from the linear analysis, the nonlinear simulations results demonstrate that removing the 

dynamics of eIF5:elF2B:elF2:GDP produces the most effect on the output behaviour whilst removal of 

elF2:GDP has a least substantial effect, although in all cases the effects on the steady state are small.  

The role of redundant pathways for formation of the guanosine exchange complex 245 

The recent discovery that eIF5 functions as a guanine nucleotide dissociation inhibitor (GDI) as well as a 

GTPase activator protein (GAP) for eIF2, and the ensuing characterisation of an eIF2:GDP:eIF5:eIF2B 

intermediate complex, suggest that there are two independent pathways for formation of the guanosine 

exchange complex eIF2:GDP:eIF2B. Visual inspection of the model structure coupled with observations 

from the control analysis of the model suggests that the system might be operable in principle via each of 250 

the two parallel pathways in isolation, ie either by disallowing formation of the eIF2:GDP:eIF5:eIF2B 

complex via R3 and R4 (figure 1) and only allowing the eIF2:GDP:eIF2B complex to form via R2 and R3, or by 

disallowing R2 and R3, and only allowing formation of the eIF2:GDP:eIF2B complex via R4 and R5.  

To test whether the system could run stably via either of the two branches alone, we compared model runs 

where both the abundance of the species in one of the branches and the rate constants for the respective 255 

reactions were set to zero, with the rest of the model parameterised with identical rate constants as for the 

full model. This is the modelling equivalent of introducing a mutation in a binding site that completely 

abrogates the formation of the respective complex. We observed that a model in which formation of the 

eIF5-containing eIF2:eIF2B complex was disallowed reached a steady state that was only slightly (<5%) 

lower than the steady state of the full model (figure 5A). Similarly, when kinase activator was added, 260 

translational activity decayed to zero with very similar dynamics whether or not reactions R4 and R5 were 

allowed (figure 5B). This behaviour mimics the redundancy that is frequently built in to engineering systems 

to ensure failure in one path does not cause system failure. 

Interestingly, eIF5 mutants with reduced affinity for eIF2 and reduced GDI activity, where the flux of 

molecules should be strongly redirected towards route 1, have been shown to allow growth at almost 265 

normal rates (Jennings 2010). However, the same mutants did not respond normally to Gcn2 activation, 

contrary to our model predictions. The authors of this study postulated that the inability of Gcn2 to 

appropriately regulate translation relied on a fine balance between levels of eIF2 phosphorylation and 

eIF2B availability, which may not be reflected in our model with sufficient accuracy. 

Surprisingly, when reactions R2 and R3 were disallowed, the model could not adopt a steady state. These 270 

observations suggest that of the two pathways connecting eIF2:GDP:eIF5, the one proceeding via the 

eIF2:GDP:eIF5:eIF2B complex is not essential for the principal operability of the pathway. However, as the 

analyses in figure 4 suggest, the dynamics of this pathway do play roles in determining the robustness of 

translational control mechanisms against perturbations.  



 275 

Translational regulation by eIF2 kinases 

The preceding sections considered the influence of various parameters, primarily on the non-stressed 

mode of the model (ie in the absence of kinase activator). We next turned our attention to the situation 

when kinase activators are present. Existing eIF2 kinases operate in two fundamentally different modes: 

their activating signal can either arise from the translational machinery itself, or from pathways 280 

unconnected to translation. Examples for the first case include Gcn2 which is activated when the 

consumption of charged tRNAs by translation exceeds the capacity of the tRNA synthetases to regenerate 

them, and PERK, which is activated when protein synthesis overwhelms the folding capacity of the ER. In 

these cases, regulation of the translational machinery is connected to a translational output in a classic 

feedback loop. Similar feedback loops have previously been analysed in other translational control 285 

pathways (Betney et al., 2012; de Silva et al., 2010), where feedback properties were found to contribute 

strongly to the overall dynamic behaviour of the pathway. Examples for the non-feedback mode include 

PKR, which is activated by viral RNA i.e. not by a product of the translational machinery.  

It should be noted that in our analyses we consider modes of regulation where inactive kinase is activated 

by an activating molecule, which is the case for Gcn2 and PKR. Some eIF2 kinases are regulated in the 290 

opposite fashion, ie they are active in the apo-form but are inhibited by inhibiting molecules (such as heme 

in the case of HRI). Both the addition of an activator or the removal of an inhibitor cause fractional changes 

in the abundance of active kinase, and our analyses can be understood to illustrate either mode of 

regulation. 

Because non-feedback regulation is the simpler case, we start our analyses with this scenario. For this 295 

purpose, we add a species KA (kinase activator) to the model that interacts with the eIF2 kinase with a 

macromolecular equilibrium binding constant of 10 μM to form an active kinase complex, which is then 

competent to phosphorylate eIF2. 

If we allow the model to run at equilibrium and then raise the concentration of KA, we observe that the 

translation rate drops to zero over time. The rate of response is concentration dependent, with a lower 300 

threshold for the response time (arbitrarily defined here as the time after which translation has dropped by 

99%) between two and three minutes (figure 6A). The exact details of the response curve are dependent on 

the exact rate parameters chosen for kinase activation and eIF2 phosphorylation, but the observed 

response time is close to the behaviour observed in yeast and mammalian cells.  

To model feedback regulation by kinases which rely on activation via translation products, we introduced 305 

two new reactions (R12 and R13 in figure 1) into the model which mimic the production of a kinase 

activator like uncharged tRNA by the translational machinery, and the removal of this activator from the 

system (representing eg re-charging of uncharged tRNAs by the tRNA synthetases). The behaviour of the 

system is then principally determined by the ratio of production to removal of the kinase activator: for very 

low ratios, the system operates essentially as it does in the absence of kinase activator (the top line in the 310 



graph in figure 6B represents a system producing kinase activator at 1/1000th of its rate of removal, and 

has a steady state indistinguishable from a model running in the absence of kinase activator). For higher 

ratios, the system very quickly becomes strongly responsive to the production of kinase activator. Under 

the parameter combinations shown in figure 6, this happens even when the rate of production of KA is 

much lower than the rate of removal: this is because under steady state conditions, some free tRNA 315 

accumulates and is stabilised by forming a complex with the kinase even at low KA production and high 

removal rates, and this is sufficient to activate eIF2 phosphorylation. Exactly how responsive the system is 

depends on a number of parameters including the ratio of the rate constants with which the kinase 

activator interacts with the kinase activator removal system and with the kinase (eg, the association rates 

of tRNAs with tRNA synthetases and Gcn2), the stability of the kinase:activator complex, and the ratio of 320 

phosphorylation and dephosphorylation rates for eIF2. One of the consequences of the strong 

responsiveness of our model to production of kinase activator is that there is only a very narrow window of 

parameter combinations in which the system adopts a non-zero steady state: even for low rates of 

production of kinase activator, the system tends towards a zero translation rate, albeit approaching this 

rate over very different time scales depending on the rate with which kinase activator is produced.  325 

The very strong sensitivity to kinase activity in both the fed-back and non fed-back modes may be caused 

by the high molar excess of eIF2 over eIF2B (Singh et al., 2007; von der Haar and McCarthy, 2002), which 

means that eIF2B can be inhibited even when eIF2 is only partially phosphorylated. It is interesting to 

consider in how far these observed features of our model reflect the real world behaviour of eIF2-

dependent translational control. Real-world systems contain a number of control elements that are absent 330 

from our model. For example, Gcn2 itself can be phosphorylated by TORC1, and this phosphorylation 

prevents activation of Gcn2 kinase activity (Cherkasova and Hinnebusch, 2003). TORC1 activity also has a 

stimulating effect on translational activity. In consequence, when high translational activity is required, the 

sensitive system would be prevented from being inappropriately activated eg by low levels of tRNAs. 

Similarly, PKR can be inhibited by trans-acting modulators like p58IPK (Barber et al., 1994), which could 335 

similarly be used to attenuate the response to activation of the kinase. If the strong responsiveness our 

model predicts is indeed a real-world feature of eIF2-mediated translational control, this could explain why 

additional regulators evolved for these kinases, and the combination of strong response and trans-acting 

modulators would ensure both high robustness and high sensitivity of translational control. 

 340 

Conclusions 

Our computational investigation into robustness determining features of translational regulation impinging 

on eIF2 formulates a number of experimentally testable hypotheses. 

The model recapitulates biological control in a number of aspects. The model can reach a steady state 

translational activity at levels very similar to a well-studied in vivo system (yeast), upon activation of the 345 

eIF2 kinase translation ceases on a time-sale of minutes, and both of these properties are robust with 



respect to parameter choices. We find indications of strong robustness using different analysis approaches, 

namely explicit parameter variation and structured singular value analyses.  This finding of strong 

robustness is validated by experimental observations that translation in vivo can operate despite relatively 

severe parameter perturbations resulting eg from mutations in eIF2 and eIF2B (Asano et al., 1999; 350 

Richardson et al., 2004). 

Our further analyses based on model derivatives where dynamics of individual species are constrained 

indicate that this strong robustness results from distributed model features, and cannot be traced to the 

behaviour of a single individual species. However, some species’ dynamics contribute more to the 

robustness of the system than others. A strongly contributing species in this respect is the eIF2:eIF2B:eIF5 355 

complex which, although our analyses predict it to be non-essential for the basic operability of the system 

(figure 5), show the strongest changes in robustness when its dynamics are constrained (figure 4). 

Interestingly, Jennings et al. very recently characterised an eIF2 mutant that prevents eIF5 from functioning 

as a GDI (Jennings et al., 2016)⁠ . This mutant allows normal growth rates, but does not allow robust 

regulation of translational activity under conditions which would normally lead to activation of the Gcn2 360 

kinase. Although this study did not directly evaluate the effect of the eIF2 mutant on the eIF2:eIF2B:eIF5 

complex, these findings are consistent with our predictions that normal formation of this complex is 

important for robust regulation, but not essential for the basic operability of translation. 

One of the outcomes from our study is an indication where models of translational control via eIF2 could be 

improved in future. There is a paucity of rate constants available for formation of the different 365 

macromolecular complexes. This introduces a high degree of freedom into the parameter estimation 

process, which could be reduced if accurate, experimentally measured rates were available. Moreover, new 

aspects of the modelled pathways are still being uncovered, such a the recent discovery of a “fail-safe” 

mechanism by which eIF2 phosphorylation potentiates translational response to eIF2 kinase activation 

(Jennings et al., 2017). Considering these new findings in model-based analyses will require introducing 370 

new reactions and rate-constants, which will only be feasible if the need for parameter fitting can be 

reduced for existing parameters. 

Given the strong sensitivity of our current model to kinase activation, it is likely that additional regulatory 

layers such as the priming of GCN2 by TOR or the regulation of PKR by trans-acting cellular regulators like 

p58IPK could strongly modulate the dynamics with which translation responds to regulatory input. The 375 

inclusion of such regulation in the model would clearly be desirable, although it is likely that this would 

introduce too many degrees of freedom in simple, ODE-based models as the majority of these interactions 

are dynamically almost completely uncharacterised. Qualitative approaches such as Petri-Net based models 

(Chaouiya, 2007) may enable the analysis of such wider regulatory networks without explicitly considering 

rate constants. 380 

 

Methods 



Model simulations 

The full ODE system representing the model (including R12 and R13) is given in supplementary file 1. For 

simulations, this model was run using the modified Rosenbrock solver from Matlab (ode23 (Shampine and 385 

Reichelt, 1997) ⁠ ). 

Levenberg-Marquardt implementation 

The rate constants of the model have been estimated using the Levenberg-Marquardt (LM) algorithm 

(Marquardt, 1963) ⁠ . In order to develop a naturally behaving mathematical model, the rate constants are 

optimised using the LM algorithm integrated with pathway characteristics such as positivity and robustness 390 

analysis. 

Using the LM algorithm alone to parameterise computational models may result in uncertain combinations 

of parameter values, which may not follow experimental observations appropriately. Therefore, to 

overcome the limitation of parameter uncertainty, we integrated the robustness characteristics of the 

general translation rate (Y1) to parameter changes within the LM algorithm. The integrated 395 

parameterisation process used in this work is discussed below. Note that for simplicity the concentration of 

species considered in the eIF2-dependent translational regulation model are denoted by Y (a conversion 

from Y notation to standard molecular biology notation is given in table 3).  

In order to quantify the changes in general translation rate due to variation in the rate constant vector k, 

the following equation is used. 400 

                        (1) 

where,    is an absolute error between in-vitro and in-silico experimental values, Y1D is the in-vitro 

experimental data value of the general translation rate in a yeast cell, Y1(Y(0),k, t) is the in-silico 

experimental value of the general translation rate obtained after solving the ODEs using the modified 

Rosenbrock solver with Y(0) and k initial conditions. After obtaining different combinations of parameter 

values giving     , the value for each combination of k is perturbed  +/-50% from the original value and 405 

the error ξ2 with respect to Y1D is recorded. The average value of normalised absolute error  ξ2 can be 

determined from (2), 

 
X 

 
(2) 

where, T is the evaluation time and Δk is equal to +/-50% of the original k value. The purpose of perturbing 

the rate constants is to analyse the robustness of general translation rate. Hence a lower value of ξ2 defines 410 

high robustness against internal parametric changes.  

Note that, to cope with the limitation that concentration values of most of the species/complexes are 

unknown, we have opted for a random selection approach which adopts a random value of the initial 

concentration that should lie within yeast molecular concentration. Typically, in yeast cells the molecular 

concentrations lie approximately between 10nM-10µM. Hence, the initial concentration of remaining 415 



species/complexes are randomly varied in a bounded limit of [10-3,10] µM in a way that the target 

constraints can be achieved (refer to the subsection on model implementation and parameterisation).  

 

Model linearisation 

In control theory, the non-linear model can be linearised around an equilibrium point to investigate some 420 

of its properties such as robust stability etc. Linearisation simplifies the non-linear interaction of the 

species, so that the individual effect of the rate constants can be investigated. There are some limitations of 

the linear approximation of non-linear systems, that is the linear system is an approximation that is only 

valid across small regions around equilibrium point. Therefore the approximate linear system accurately 

predicts the local behaviour of the non-linear systems instead of global. 425 

A generalised form of the non-linear mathematical model given in supplementary file 1 (excluding R12 and 

R13) can be defined as follows: 

                
(3) 

where, Y is the non-negative concentration of the species, t is the evaluation time and k is a rate constant 

vector. In order to find the equilibrium point of a model or a steady state value of all the species, eq. 3 is to 

be solved by equating it to zero. Note that, substituting f(Y(t); k) to zero implies no change in the state of all 430 

species as time progresses that is all species have attained a steady state. Solving the equation results into 

one of the biologically feasible equilibrium point     displayed in table 3. 

Prior to investigating the role of uncharged tRNA (Y13) on other species, it is beneficial to eliminate the 

dynamics of Y13 from the original non-linear model. The investigation has revealed that Y13 has attained the 

quasi steady state or constant steady state value for varying initial concentrations (Segel and Slemrod, 435 

1989). Hence, substituting       makes no difference in the behaviour of modified non-linear system 

compared to the original non-linear system. Performing this task gives freedom to consider Y13 as an 

applied input u and helps to analyse the direct impact of uncharged tRNA on translation rate. The state 

space model of the modified non-linear model can be defined as follows: 

                         

           
(4) 

where vector                                 
 

, vector                   
  , vector 440 

                ,       and      is the output signal or translation rate. The state space 

representation of an approximate LTI model of a modified non-linear system around the equilibrium point 

can be re-written in the form: 

         

     

(5) 

where A is a constant Jacobian matrix, B and D are the constant input and output vectors respectively given 

as:  445 



                                        

                   

Note that the matrix A of dimensions 13×13 is a function of the equilibrium point and rate constant vector 

k. The Jacobian matrix A represents the behaviour of the overall biological system around an equilibrium 

point (   ). 450 

 

Mu (µ) analysis 

Within control engineering, robust stability is a measure of how much uncertainty of a specific parameter 

the feedback loop can tolerate before becoming unstable. In order to determine the extreme limits to 

which rate constants of the model can vary without impacting the robustness of the system, we conducted 455 

a structured singular value (µ) analysis (Fan et al., 1991; Kim et al., 2006).  

  
 

   
 

                             
 

(6) 

where    represents the maximum singular value, M(s) denotes the transfer function of the system 

and    represents a set of uncertainties Δ. From the above equation it is clear that the principle at 

which µ-analysis works is finding the smallest value of       that can make         singular, and 

when there is no Δ such that                then    .  460 

Note that, µ-analysis is a deterministic measure which computes a level of uncertainty at which the model 

is guaranteed to produce desirable results. One of the advantage of opting µ-analysis is that it provides 

information on robustness of the system when the parameters of the system encounters simultaneous 

perturbation (Kim et al., 2006). This particular scenario resembles the actual behaviour of robust biological 

systems because under environmental disturbances the parameters of the biological systems can fluctuate 465 

simultaneously without impacting the behaviour of the system. So higher value of upper bound of µ-1 is 

desirable for robust biological systems.  

In order to evaluate the parametric perturbation limits of a biological system, the equivalent linearised 

biological system needs to be connected through a feedback control loop to a matrix of uncertain 

parameters Δ. The robustness analysis of a biological system using µ requires the system to be represented 470 

in a stable linear time invariant (LTI) form. 

To analyse the robustness of the system, a parametric uncertainty matrix block Δ is introduced into the LTI 

biological system represented in (5). Note that, the parametric uncertainty matrix block is only consisting of 

diagonal entries of the individual parameters. Thus, obtaining upper bound of µ-analysis it can be 

guaranteed that the system is robust provided that no single parameter differs more than upper bound of 475 

µ-1×100% from its nominal value. Figure 7 represents the biological system M(s) connected through a 

closed feedback loop which can be destabilised from the smallest possible uncertainty Δ. Note that, 

                         and M(s) is the transfer function of the LTI model defined as: 



             
     (7) 

Now, introducing Δ into the system changes the rate constant k to        . The state space 

representation of the perturbed system is as follows: 480 

             

       

 

(8) 

Note that the dimensions of the constant matrices    and    are 13×20 and 20×13 respectively. The 

matrices    and    for the perturbed LTI system are defined below. 

          (9) 

for (i,j) equals (1,11), (2,1), (2,3), (2,7), (3,3), (3,9), (3,10), (3,17), (4,2), (4,5), (5,4), (5,6), (6,4), (6,8), (7,6), 

(7,9), (7,15), (7,18), (8,10), (9,13), (10,12), (10,15), (10,19), (11,17), (11,19), (12,16), and (13,14). 

           (10) 

for (i,j) equals (1,1), (1,20), (2,2), (2,6), (3,2), (3,8), (3,16), (4,3), (4,4), (5,5), (5,7), (5,11), (6,5), (6,9), (6,10), 485 

(7,7), (7,8), (7,14), (8,11), (9,12), (10,13), (10,14), (11,16), (11,18), (12,17), (13,15), and (13,19). The 

remaining elements of           . On the other hand, all the elements of matrix     are zero except: 

          ,               
  

,               
  

,           ,        

   ,             
  

,             
  

,           ,        

     
  

,             
  

,             
  

,             
  

,        

   ,           ,             
  

,             
  

,         

      
  

,             ,                
  

,                
  

,          

    ,                
  

,                
  

,              ,          

   ,             ,             

(11) 

Analysing system (8) using the Matlab µ-analysis tool within the Robust Control Toolbox from Mathworks, 

will give the value at which the rate constant can be perturbed individually without impacting the 

structured robustness of the system.  490 
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Table 1.  Literature values used for model parameterisation. 

 

Parameter Valuea References 

Translation 13,000 proteins 
per second 

 (von der Haar, 2008) 

total cellular 
eIF2 

18 μM (Singh et al., 2007; von der Haar, 2008) 

Total cellular 
eIF2B 

1.8 μM (Singh et al., 2007; von der Haar, 2008) 

Total cellular 
eIF5 

18 μM (Singh et al., 2007) 

Total cellular 
kinase (Gcn2) 

0.09 μM (Singh et al., 2007) 

aWhere appropriate, intracellular concentrations were calculated from molecule numbers based 
on a typical haploid yeast cell volume of 27 μm3 or 2.7x10-14 litres (von der Haar and McCarthy, 

2002)⁠ .  605 



Table 2. Steady state rate constants and comparison to literature values. 

Rate  Value Reaction Reported value 

k1 1.77 s
-1

 (translation) 

A k1 value of 1.78 s
-1

 is equivalent to a flux of 

~13,000 translation events per second in the 

steady state (von der Haar, 2008) 

k2f  7.59 s
-1

 
eIF5 release from 5:2:GDP  No data 

k2r 0.91 M
-1

s
-1

 

k3f 6×10
7
 M

-1
s

-1
 

2B:2:GDP complex formation 
KM of 0.7-1.2x10

-8
 at 0˚C (Nika et al., 2000) vs. 

2.5e
-6

 calc. from (k6+k3r)/k3f k3r 150 s
-1

 

k4f  1.0 M
-1

s
-1

 
5:2:2B:GDP complex formation no data 

k4r 0.72 s
-1

 

k5f 0.36 s
-1

 
eIF5 release from 5:2:2B:GDP no data 

k5r  1.6x10
4
 M

-1
s

-1
 

k6 0.72 s
-1

 GDP release from 2:2B:GDP 0.7-7 sec
-1 (Nika et al., 2000) 

k7  7.4x10
4
 M

-1
s

-1
 (translation) 

A k7 value of 7.3x10
4
 M

-1
 s

-1
 is equivalent to a 

flux of ~13,000 translation events per second in 

the steady state (von der Haar, 2008) 

k8f 1×10
6
 M

-1
s

-1
 

GCN2:tRNA complex formation no data 
k8r  203 s

-1
 

k9af  1×10
9
 M

-1
s

-1
 

phosphorylation reaction 

KM of 10
-5

 to 10
-6

 M for human PKR (Dey et al., 

2005) vs 1.0x10
-4

 M calculated from (k9ar + 

k9b)/k9af 

k9ar  167 s
-1

 

k9b 1×10
5
  s

-1
 

k10f 1×10
2
 M

-1
s

-1
 

2-P:2B:GDP complex formation no data 
k10r 129 s

-1
 

k11 1×10
-4

 s
-1

 phosphatase reaction 
10

-3
 to 10

-5
 sec

-1
 at 1 µM enzyme for human 

PP2Cα (Fjeld and Denu, 1999) 

k12 1×10
-8

 s
-1

 (tRNA release from translation) na 

k13 1x10
-2

 s
-1

 tRNA recharging 
10

-2 
to 10

2
 sec

-1 
at 1-10  µM tRS for various 

yeast enzymes (Chu et al., 2011) 

  



Table 3. Species denominations and equilibrium points for species abundance. 

Y1   translation  4.36×10-7 M 

Y2   eIF5:eIF2:GDP  1.19×10-7 M 

Y3   eIF2B  7.22×10-7 M 

Y4   eIF5:eIF2B:eIF2:GDP  1.78×10-7 M 

Y5   eIF5  1.11×10-5 M 

Y6   eIF2B:eIF2:GDP  1.07×10-6 M 

Y7   eIF2:GDP  3.74×10-7 M 

Y8   eIF2:GTP  9.44×10-6 M 

Y9   GCN2  4.33×10-17 M 

Y10   tRNA:GCN2  2.22×10-18 M 

Y11   eIF2-P  1.61×10-12 M 

Y12   eIF2-P:eIF2B  4.04×10-18 M 

Y13   tRNA  1.04×10-5 M 

Y14   tRNA:GCN2:eIF2  8.23×10-21 M 

  



Figure Legends 610 

Figure 1. Graphical presentation of the eIF2-dependent translational regulation model. The model is 

conceptually divided into a core section which comprises the reactions required for sustaining ongoing 

translation, and regulatory reactions that can be used to exert regulation on the core section. Regulation 

can be exerted either in a fed-back mode through reactions 12 and 13, or in a non-fed-back manner if 

reactions 12 and 13 are removed from the model. Double-headed arrows above the reaction numbers 615 

indicate reactions that are modelled via reversible mass-action kinetics. The species indicated are: 2, eIF2; 

2-P, phosphorylated eIF2; 2B, eIF2B; 5, eIF5; K, kinase; KA, kinase activator. 

 

Figure 2. Principal behaviour and robustness of the model.  A, simulation of the model without kinase 

activator (KA in figure 1). B, simulation with 10 µM KA injected at t = 0 s. Error bars represent the variability 620 

of the model as observed in the parameter variation exercise discussed in the text. 

 

Figure 3. Upper bound of the structured singular value µ. The inverse of the peak value determines the 

maximum value of the perturbation in a single parameter which has no impact on the robust stability of the 

system. 625 

 

Figure 4. Bode diagrams for three representative model species. We observe partial tracking of the 

original and truncated, linearised models for all analysed species across the frequency range. The analysis 

indicates that elF2:GDP can be expected to have the smallest effect on the input output behaviour of 

translational control via elF2. 630 

 

Figure 5. Model performance in the absence of redundant pathways leading to eIF2:eIF2B complex 

formation. When formation of the eIF2:GDP:eIF5:eIF2B intermediate complex is disallowed, the model 

shows a very similar steady-state in the absence of kinase activator (A) as well as a similar response to the 

presence of kinase activator (B). When formation of this complex is the only allowed route leading to the 635 

guanine nucleotide exchange complex (ie when decay of the eIF2:eIF5 complex into free eIF2:GDP and eIF5 

is disallowed), the model does not reach a steady state. 

 

Figure 6. eIF2 kinase-dependent regulation of translation. A, regulation in a non-fed-back model. Upon 

injection of kinase activator (KA) at t=0, translational activity declines with the rate of decline dependent on 640 

the concentration of the activator. The inset graph illustrates the time to reach a 99% reduction in 

translational activity as a function of KA concentration. B, regulation in a fed-back model. The evolution of 

the model starting without kinase activator is shown, as  function of different production/removal ratios for 

KA. 



 645 

Figure 7: M-Δ configuration of eIF2 pathway for µ analysis. 

 

 



Highlights for Review 

 

-Mathematical tools from the control engineering domain were applied to analysing a mathematical 

model of the integrated stress response pathway, a translational control pathway universally 

conserved in eukaryotes 

-Structured singular value analyses predict that switching properties of this pathway are 

exceptionally robust to intrinsic and extrinsic perturbations, recapitulating experimental 

observations 

-Using model reduction techniques, it is shown that the dynamics of different model species make 

different contributions to robustness. The strongest contribution comes from a recently discovered 

supercomplex formed by the translation factors eIF2, eIF5 and eIF2B 

-Pathways derived from the core integrated stress response are exist as feedback-controlled and 

non-feedback-controlled variants. We make predictions about different types of response elicited by 

these two variants. 

 

*Highlights (for review)
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