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Abstract 
 

 

 

The 2007-2009 financial meltdown reflected the failure of the regulators to 

address financial fragility and it has clearly showed that regulating banks on an 

individual basis was an ineffective approach to prevent financial crises. Before the 

crisis, financial regulation was primarily focused on managing the risk of 

individual banks by requiring them to keep sufficient reserves to safeguard 

themselves from the inherent risk of their own investments. Since they ignored 

the risks that are generated by links between the banks, i.e. interbank borrowing 

and lending, a failure in a small number of banks could spread to other banks, and 

cause the paralysis of the whole banking system. Therefore, there is the need to 

give special emphasis to systemic risk, rather than consider the risk at an 

individual level. From an academic research point of view, the 2007-2009 financial 

crisis renewed the interest in finding new ways of studying financial systems. 

More specifically, since then new modelling frameworks have been proposed that 

incorporate the interconnected nature of the banking system. Network models 

have been used to investigate the stability of the banking system under different 

conditions, e.g. different banks’ size and connectivity. This thesis proposes a new 

dynamic network model based on ordinary differential equations, which 

represents the banking system and seeks to interface the network model 

approach with control engineering. Control theory is an interdisciplinary branch of 

engineering, which is used to study the behaviour of dynamical systems, and how their 

behaviour can be modified by feedback mechanisms to achieve a desirable 

performance. In this work control theory is applied for the first time to analyse a 

model of the banking system and to propose feedback mechanisms, which 

preserve the stability of the system and that can ultimately inform financial 

regulators.  
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Chapter 1  
 
Introduction 

 

 

1.1 Background and motivation 

The financial crisis that occurred in 2007-2009 has driven financial regulators (e.g. 

central banks) and researchers to revisit ways to understand and regulate the banking 

system [1–4]. Traditionally, financial regulation was primarily focused on managing 

the risk of individual banks by requiring them to keep sufficient reserves to safeguard 

themselves from the inherent risk of their own investments. Since the systemic risks 

due to links between the banks (e.g. interbank borrowing and lending) are ignored, a 

failure in a small number of banks can spread to other banks, and cause the paralysis 

of the whole banking system. Thus, it has been understood that to improve financial 

stability through regulation, more attention should be given to systemic risk [5], 

rather than only to individual institutions [6-8]. The necessity for managing systemic 

risk has persuaded financial operators to think about new regulatory approaches that 

recognize the interconnected nature of the banking system. 

The motivation of this thesis is to try to find new ways to model and analysis the 

dynamics of the banking system. The network model proposed in this thesis is based 

on ordinary differential equations and it incorporates the interconnected nature of the 

system; the model also facilitates the application of engineering control theory, which 

can suggest ways to reduce the occurrence of systemic failure. This thesis presents a 

novel and interdisciplinary research at the interface between economics and control 

engineering, which aims to provide tools to better understand the banking system’s 

dynamics and the corresponding systemic risk. 

A network is widely understood as a collection of nodes connected by links. Systems 

taking the form of networks abound in the world, such as the Internet, social networks, 
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and biological networks. Researchers have developed a variety of techniques and 

models to help us understand and predict the behaviour of these systems [9]. Network 

models have been applied in different areas such as the Internet, epidemiology, 

ecosystems and financial markets [10]. The banking system exhibits a high degree of 

interdependence, with connections between different banks stemming from both the 

asset and the liability sides of their balance sheets. As such, the banking system can be 

modelled as a network where nodes are individual banks and edges are the loans 

between any two banks. The 2007-2009 financial crisis has drawn a sharply increase 

in the academic research which has used network models to study financial systems 

and to propose ways to preserve financial stability [11–14]. To the best of our 

knowledge, no research work in the literature has proposed network models of the 

banking system based on ordinary differential equations, and importantly, none of 

them has applied engineering control theory on their models.    

Control theory is an interdisciplinary field of applied mathematics and engineering 

[15], a major application of which is in the engineering discipline known as control 

engineering, which deals with the design of control systems for industry. “Controlling 

a system” means to influence the behaviour of the system in order to achieve a desired 

goal. Feedback is a key concept in control theory, and a feedback process is the one in 

which the state of the system determines the way the control has to be exerted at any 

time. Nowadays, as the understanding of the dynamics of business, social, and political 

systems increases, control engineering is not limited to only engineering discipline but 

is equally applicable to these systems. As the general theory of feedback systems, 

control theory is useful wherever feedback occurs [16]. Therefore, in this thesis, we 

propose to apply control theory to a model of the banking system, with the aim to 

study its stability and try to control it around equilibrium.  

This thesis develops a new dynamical network model, in which the banking system is 

represented as a network where the nodes are individual banks and the links between 

any two banks consist of interbank loans and borrowing. The dynamic structure of the 

model is represented as a set of ordinary differential equations consisting of balance 

sheet dynamics. This dynamic structure not only allows us to analyse systemic risk but 

also to incorporate an analysis of control mechanisms.  
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This thesis also provides details of the implementation of the dynamic network model 

in MATLAB Simulink, which is a powerful tool for simulating and analysing efficiently 

the solutions of complicated systems modelled with differential equations; moreover, 

Simulink is widely used in control theory for simulation and design.  In the simulations 

performed in this thesis, shocks are introduced into the system via deposit 

fluctuations of the banks in the system. In order to study the stability of the banking 

system, the number of survival banks at the end of the simulation period is calculated 

and compared in different scenarios characterised by different values for the rate of 

connectivity, reserve ratio, the amplitude of the shock and the heterogeneity in bank’s 

size. In this work, a measure of contagion is also proposed to study how the failure of 

a bank can affect the failure of other banks under different scenarios; this thesis shows 

interesting nonlinear effects on contagion due to the rate of connectivity and reserve 

ratio. 

This thesis presents also for the first time the application of control mechanisms on 

the model of the banking system. Classical control theory is used to study the stability 

of a system and subsequently an output feedback control is designed to improve the 

stability of the system. In order to achieve this, an equilibrium point analysis is 

performed on the mathematical model representing the system, to gain an insight of 

how different parameter values affect the model’s stability. Proper control 

mechanisms are designed according to the different system dynamics to achieve 

desired objectives. This work proposes feedback mechanisms in which single banks 

sell their assets to avoid failure; the novelty of the proposed approach is to sell assets 

according to rigorous control laws, which allow the bank to regain and maintain a 

stable condition. 

1.2 Contributions 

This thesis contributes to the knowledge and research in both network models and 

control theory applied to the banking system. The novelty of the approach consists in 

developing a model of the banking system based on differential equations and in 

applying control analysis to study its stability.  

The thesis contributes the following three main results: 



4 
 

1. Development of a dynamical network model of the banking system: a new 

dynamic model based on a system of ordinary differential equations is developed to 

describe the banking system as a network where the nodes are the individual banks. 

This model has been used to study how different parameters (e.g. reserve ratio, 

connectivity, bank’s size) affect the stability of the banking system. In particular, this 

work has found interesting nonlinear effects of the reserve ratio and connectivity on 

the spread of failure within the banking system.  

2. Development of Simulink block diagrams of the dynamic network model: the 

proposed dynamical network model is implemented in the simulation environment 

MATLAB Simulink which simulates and analyses dynamical systems. Simulink was 

chosen because of its block structure, which allows adding complexity to the system 

in a visual and modular way; moreover, it facilitates the application of control analysis, 

given that Simulink is the software mostly used by the control theory community. 

3. Application of control theory analysis: Control theory is applied for the first time 

to assess and to preserve the stability of the proposed dynamic model representing 

the banking system. Output feedback control mechanisms are designed in which single 

banks sell their assets to prevent bankruptcy; the novelty of the approach presented 

in this thesis lies in the way banks sell their assets; the sale of assets is prescribed by 

specific control mechanisms, which allow the bank to resume and maintain a stable 

condition. 

 

The work in this thesis has produced the following articles and presentations: 

Papers 

 21st International Conference on Computing in Economics and Finance 

June 20-22, 2015, Taipei, Taiwan 

Paper entitle: A dynamic network model of banking system stability 

 5th International Conference of the Financial Engineering and Banking Society  

June 11- 13, 2015, Nantes, France 

Paper entitle: Study of banking system stability using differential equations 
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This paper received the Best Paper Award, offered by LabEx ReFi - a European 

research facility dedicated to the evaluation of financial policies regulation. More 

than 240 papers were submitted to the conference. 

 Paper entitle: Study of the Banking System’s Stability Using Control Theory  

This paper is in preparation for the Journal of Financial Stability 

Talks/Presentations  

 Presentation at the Research Group Seminar 2013. 

 Poster presented at the Postgraduate Research Festival at the University of Kent 

2013. 

 Presentation at the 3rd School of Engineering and Digital Arts Research 

Conference on January 2014.  

 Presentation at the Research Group Seminar 2014 at University of Kent 

 Presentation at the 4th School of Engineering and Digital Arts Research 

Conference on January 2016.  

Courses Attended 

 2014 Summer Workshop Banking Stability: Lessons from the Global Financial 

Crisis 2 July 2014 in London. 

 

1.3 Organization of the thesis 

The thesis is structured as follows: 

Chapter 2 provides a summary of the existing literature on the study of stability of the 

banking system. An introduction to financial systems is provided and work on how 

financial crises occur and spread within the banking system are reviewed. Next, the 

chapter introduces some network models developed by academic researchers to 

describe the banking system and assess the systemic risk within it. The chapter also 

introduces the control theory as well as the existing work in the literature that applies 

control theory to financial problems.  

Chapter 3 introduces the dynamic network model of the banking system which has 

been developed in this Ph.D. project. The banking system is represented as a network 

where nodes are individual banks and the links between any two banks consist of 
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interbank loans and borrowing; the dynamic nature of the system is prescribed by a 

set of ordinary differential equations representing the balance sheet dynamics of the 

banks. The dynamic model is presented in the chapter step by step, from a one-bank 

model to a two-bank model and finally to a multi-bank model.  

Chapter 4 presents the numerical simulation results of the dynamical network model 

which is introduced in Chapter 3. These results are generated using MATLAB Simulink; 

details of the implementation are provided in the first subsection in this chapter, 

followed by three subsections that show the numerical simulation results of the one-

bank model, the two-bank model and the multi-bank model respectively.  

Chapter 5 presents the details of the application and analysis of control mechanisms 

on the one-bank model. Classical control theory is used to study the stability of the 

dynamic model and subsequently output feedback control is designed to improve the 

stability of the model.  

Chapter 6 summarises the main conclusions and provides the discussion for future 

work.  
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Chapter 2  
 
Literature Review 

 

 

This chapter provides a summary of the existing literature related to this Ph.D. project. 

Due to the interdisciplinarity of the topic, the literature is reviewed from three 

perspectives. Firstly, a general overview of financial crises and contagion is provided. 

Secondly, network models are introduced. Finally, control theory is introduced and 

discussed. This chapter is organised as follows: Section 2.1 presents an introduction 

of financial systems and the contagion that characterised the 2007-2009 financial 

crisis. This section reviews the function of financial systems and the way the financial 

crisis evolved in a systemic risk crisis, which shows how the interconnections within 

financial systems facilitate risk sharing but also are the vehicle for transmission of the 

systemic risk; thus studying the role of the interconnectedness within financial 

systems is therefore becoming more and more important. Section 2.2 reviews the 

literature about network models which focus on studying financial contagion within 

the banking systems and how the network structure of the banking system affects and 

responds to crisis. Section 2.2 shows that the network model can be instrumental in 

capturing and analysing systemic risk. Section 2.3 introduces the concept of feedback 

in control engineering and reviews some of its applications to economic issues, which 

show that the feedback control can be a possible tool to analyse and control the 

stability of the banking system. Finally, Section 2.4 concludes the chapter. 

2.1 Financial systems and contagion 

The following subsection 2.1.1 introduces some general concepts about financial 

systems and then describes, specifically, how the banking system works; this helps in 

building the foundations for developing the structure of the dynamic model proposed 

in this project. Subsection 2.1.2 reports some historical examples of financial crises 
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and the concept of systemic risk to illustrate contagion mechanisms that acted in the 

banking system. Those historical examples provide ideas on how to interrogate the 

proposed model.  

2.1.1 Financial systems 

A financial system can be described as a structural interconnected network of financial 

markets, financial intermediaries and financial instruments [17]. The key role of the 

financial system is to channel the funds from units who have surplus of funds (called 

lender-savers e.g. household) to units who have a shortage of funds (called borrower-

savers e.g. firms and government) [18]. Well-functioning financial systems can 

improve the efficiency of the circulation of funds in the economy and help the economy 

growing sustainably and stably [19, 20].  

Figure 2.1 schematically shows how the funds are channelled. The lender-savers are 

shown at the left of figure 2.1 and the borrower-savers are shown at the right. Funds 

can be transferred through two routes. One is the direct route (the route at the bottom 

of figure 2.1), in which the borrowers borrow funds directly from lenders in financial 

markets by selling lenders financial instruments. Financial instruments (which can 

also be called securities) are monetary contracts between parties that can be traded 

in the financial market [21]. It represents the claims on the borrower’s future income 

or assets. Financial instruments can be treated as assets for the person who buys them, 

but as liabilities for the individual or firm that sells (issues) them [22].For example, if 

a firm need to borrow funds to expand its business, it might borrow the funds from 

 

Figure 2.1 Direct and indirect route of funds flow from lender-savers to borrower-savers 

in a financial system [23]. 
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households by selling them a bond which is a debt security that promises to make non-

contingent payments to the households periodically for a specified period of time; or 

by selling a stock which is a security that entitles the households to a share of the 

company’s profits and assets (and hence is contingent as it depends on the state of the 

world). 

Another route to transfer funds is the indirect route (at the top of figure 2.1) in which 

funds are transferred through financial intermediaries. Financial intermediaries are 

institutions who specialise in the activities of buying and selling financial instruments 

(i.e. bonds and stocks) in order to help individuals and firms to transfer funds. These 

institutions include banks (which is the major component) as well as other institutions 

such as building societies, credit unions, insurance companies and so on; these 

institutions may be named differently in different countries. In the United Kingdom, 

these institutions form the banking system which mainly comprises commercial banks, 

investment banks and building societies. They provide different types of services 

shown as follows.  

A commercial bank attracts deposits by paying the depositors interest and then lends 

those deposits out to individuals and firms with a charge that is greater than the 

interest the bank pays to the depositors. In this way, the bank can not only earn profits 

to support its activities but also, more importantly, facilitate the transfer of resources 

to places where it is needed. An investment bank helps governments or firms raise 

financial capital by issuing securities [23]. First, it advises the firms on which type of 

securities to issue (stocks or bonds); then it helps sell (also called underwrite) the 

securities by purchasing them from the firms at a predetermined price and reselling 

them in the market. The investment bank then bears the risk that they are not able to 

resell the entire issue in which case it will hold the unsold securities by itself. In return 

for managing this risk, the investment company receives an underwriting fee from the 

issuing firms. Investment banks also act as deal makers and earn enormous fees by 

helping firms acquire other firms through mergers or acquisitions. In the UK, banks 

are allowed to engage in both commercial banking and investment banking, and such 

banks are called universal banks1. A building society is a financial institution that was 

                                                             
1  Four big clearing banks (call ‘big four’) currently dominate commercial banking in UK: 
Barclays, Royal Bank of Scotland (RBS), HSBC, and Lloyds. They are essentially universal banks 
as they also help firms to issue securities. 
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originally constrained in their activities to provide residential mortgage loan (which 

will be introduced later) to individuals by acquiring funds primarily through deposits 

[23]. Over time, these restrictions have been loosened so that they expand their 

activities into traditional banking; as a result, the distinction between building 

societies and commercial banks has blurred and building societies are now 

competitors of the universal banks. 

Not only the households and firms lend or borrow funds through financial market, 

financial institutions such as banks also lend or borrow funds in the financial market 

shown in figure 2.1. The market in which banks exchange short-term loans to one 

another is called interbank market [24]. Sometimes a commercial bank cannot meet 

the reserve ratio set by the central bank, while other commercial banks have excess 

cash above the reserve requirement. These banks will lend money in the interbank 

market, receiving interest from the borrowing bank. Most interbank loans have 

maturities of one week or less; the majority being overnight. The rate of interest 

charged on the loans between banks is called interbank rate. The published interbank 

rate in the UK is the LIBOR (London Inter Bank Offered Rate) [25], which is the average 

of interest rates estimated by each of the leading banks in London.  

Given the functions of the financial market and financial intermediates, the banks exist 

because of asymmetric information in financial markets [26]. Banks specialise in 

monitoring and screening the information, which gives them a comparative advantage 

in helping individuals to reduce the transaction costs; this allows small savers and 

borrowers to benefit from the existence of financial markets. Moreover, banks can 

help agents when they need liquidity. As explained by Diamond and Dybvig [27], in 

fact, banks are institutions that facilitate risk sharing, by pooling deposits from a large 

customer base and using these in a diversified portfolio of investment projects. 

Importantly, deposits are liquid, in the sense that they can be easily withdrawn. 

Because consumption needs are uncertain, customers prefer liquid deposits instead of 

directly financing businesses. Business investment projects are illiquid, because they 

cannot be withdrawn at any point without a loss. Banks thus transform illiquid 

investment opportunities into liquid deposits that provide insurance against 

unexpected future events.  

Moreover, risk-transfer between banks also has strong economic motivation since 

banks seek to transfer risk as part of their day-to-day business. For example, two 
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banks might have, respectively, surplus and deficit liquidity; these banks might agree 

an unsecured loan or a repurchase agreement. These interbank activities cause a 

series of bilateral transactions, through which banks are highly interconnected. 

Interbank market facilitates a growing volume of bilateral transactions, as individual 

banks constantly optimise their own risk exposures, but at the same time, it provides 

more channels for default to spread. The next section reviews the contagion of defaults 

in the banking system. 

2.1.2 Financial crisis and contagion 

In normal times, banking systems can help the economic growth by funding 

investment opportunities and to reduce volatility in the financial markets by 

facilitating risk sharing. However, during financial crises, the banking system itself can 

become a vehicle for amplifying and spread financial shocks [28]. The 2007-2009 

financial crisis showed the fragility of the banking system and its origins were many 

and varied; one of the most important was the underestimation of the true aggregate 

risk on banks’ balance sheet positions. In the following subsections, the subprime 

mortgage crisis which contributes to the crisis of 2007-2009 is introduced in more 

detail.  

The subprime mortgage crisis 

The immediate cause of the crisis in 2007-2009 was the large portion of the increased 

mortgage loan defaults which are also referred to as ‘sub-prime’ loans [29]. 

Traditionally, banks provided loans to people for house purchase via mortgages, as 

shown in figure 2.2.  

Mortgage bankMortgage bank Households
(savers)

Households
(savers)

Households
(who obtain a mortgage )

Households
(who obtain a mortgage )

 

Figure 2.2 Funding chain showing the funding flow from the household savers to 

households who obtain a mortgage to buy a house. The arrows indicate the direction of 

payments due. 

Since house prices were increasing before the crisis, such mortgage loans were 

thought to be secured against saleable real-estate and can make good profits for the 

banks. Therefore, these mortgage loans had good liquidity in the mortgage market due 
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to their ‘high safety level’; to make more profit the banks sold these mortgage loans at 

a higher price to other banks and financial institutions through derivatives. Thus many 

derivatives were generated to trade the mortgage loans; one example is the mortgage-

backed security, which is secured by a mortgage or collection of mortgages.  

Figure 2.3 shows one possible funding chain (adapted from Glasserman and Young 

[30]) representing how the mortgage-backed security is generated and traded in the 

financial market.  

Households
(savers)

Households
(savers)

Households
(who obtain a mortgage )

Households
(who obtain a mortgage )

Mortgage-backed
Securities issuers

Mortgage-backed
Securities issuers Securities dealersSecurities dealers Commercial banksCommercial banks

 

Figure 2.3 Funding chain showing the funding flow from the ultimate creditors 

(household savers) to the ultimate debtors (households who obtain a mortgage to buy a 

house). The arrows indicate the direction of payments due, funding flows clockwise 

through the chain. Adapt from Glasserman and Young [30]  and Shin 2010 [31]. 

Starting from the left side of figure 2.3, households that want to buy houses take on 

mortgage debts from banks or financial institutions (called mortgage-backed 

securities issuer). This kind of banks or institutions issue and sell the mortgage-

backed securities to securities dealers (usually these are investment banks) in order 

to get funding for the household. The dealers (investment banks) then pledge the 

securities as collateral to borrow from commercial banks to get funding for the 

mortgage-backed securities issuer. Commercial banks fund themselves by taking 

deposits from household savers. Before the financial crisis, banks generated huge 

profits by selling the mortgage-backed securities at a higher price to the next buyer in 

the chain. Therefore, the banks decided to expand their lending by making easy access 

loans (sub-prime mortgages) for borrowers who have a poor credit record. In this way, 

banks attracted more mortgage loans to issue more mortgage-backed securities. 

However, this lending expansion generated high risk. At each step in the chain, there 

is a potential loss of information about the quality of the underlying debt. Banks 

increase their lending to households with poor credits while the supply of real assets 
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from the household savers remains relatively fixed. From the perspective of an 

individual bank, the risk from the households to default was sold together with the 

mortgage-backed securities to the next bank or financial institution in the chain. As a 

result, the individual bank’s risk correspondingly reduced while the risk to the whole 

banking system remained the same. This is because the total value of assets multiplied, 

whilst the collateral backing these securities remained relatively fixed. This collateral 

scarcity increased the risk of a sudden house price drop and consequent mortgage 

defaults. Ultimately, a large portion of the mortgage loan and mortgage-backed 

securities holders (banks) defaulted because of the poor credit of the borrowers 

(householders).  

As shown in figure 2.3, defaults in mortgage loans can affect commercial banks 

through the chain. Defaults in mortgage loan repayments can cause significant losses 

in the commercial banks’ assets that can drive the banks to fail. The idiosyncratic 

default of a bank on its interbank liabilities can spread and cause losses among other 

banks. The losses in other banks may result in further defaults. Besides the direct loss 

caused by the repayment defaults of the household, the value of the mortgage-backed 

securities decreases and the interbank interest rate increases. These changes in the 

prices affect the banks’ strategy to allocate resources. The banks may change the 

composition of their assets and liabilities in response to economic stress, in order to 

safeguard themselves from the losses due to stress. For example, to secure its own 

assets from loss, banks may cut lending in the interbank market, but this may result in 

further banks’ failure due to lack of funding supply which may further increase funding 

cutting in the interbank market. This is known as liquidity hoarding. Due to liquidity 

hoarding, the bank may face liquidity shortage. To pay its obligations a bank may sell 

its illiquid assets at heavily discounted prices, which is known as fire sales. This causes 

the decrease in asset prices and mark-to-market losses (a loss generated through an 

accounting entry rather than the actual sale of a security) for other banks which hold 

the same assets; the affected banks may face a liquidity shortage due to the mark-to-

market losses and need to sell their illiquid assets to pay their obligations, which cause 

further decrease in asset prices. Finally, a bank may default due to the big loss in its 

assets.  It can be seen that these banks’ behavioural responses might be rational and 

favourable for the individual bank, but together they increase the instability of the 

banking system and therefore they may trigger and amplify systemic crises. The 

banking system as a whole becomes distressed and unable to perform its 
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intermediation and insurance functions. In this scenario, the risk generated in an 

individual bank can be amplified through the connectivity between banks thus to 

become systemic risk. Next section presents relevant literature, which focuses on the 

use of network models to study how the banking system’s stability is affected by the 

structure of its interconnection and the banks’ dynamical behaviours (such as liquidity 

hoarding, fire sale or both2). 

This thesis mainly focuses on the commercial activities of the banks and, specifically, 

on their interbank borrowing and lending.  The dynamic model developed in this Ph.D. 

project describes a banking system rather than the entire financial system; the model 

contains only banks in it and the links between the banks are formed of interbank 

borrowing and lending. The behaviour of depositors is implemented in a simplistic 

manner in our model by using a stochastic signal which represents the amount of 

money deposited into or withdrawn from a bank at a given time. The financial markets, 

as well, are modelled in a simplistic manner by a stochastic signal called investment 

opportunity that provides the amount of money that a bank can invest in a given time 

(see Chapter 3 for details).  

 

2.2 Network models of the banking system  

The complexity and the instability characterising financial systems played a significant 

role in the 2007-2009 financial crisis; the recent focus on macro-prudential 

regulation3 is a direct response to the inherent instability of the complex financial 

systems. New analytical methods for studying the effect of the interconnectedness in 

financial systems have been developed by academics [39]. This thesis is focused 

specifically on network model analysis; existing work using network models to study 

financial systemic risk is quite diverse and also fast-growing [40]. Two seminal papers 

by Allen and Gale [41] and Freixas et al. [42] evaluate the potential for contagion 

following a common or idiosyncratic liquidity or solvency shock, showing that to be 

able to assess systemic stability, it is important to understand the financial systems’ 

structure. This section presents the literature that mainly focuses on studying the 

                                                             
2 The model developed in this Ph.D. project doesn’t consider the case of fire sale, but an 
appropriate redefinition of the equations can be introduced to account for this behaviour. 

3 There is a rich literature about the macro-prudential regulation. See [32-38] for details. 
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systemic risk on the interbank market4. Papers on this topic usually carry out the 

network model analysis using one of the following two distinct approaches; the first 

approach is called static network analysis and the second approach is called dynamic 

network analysis [43]. Static network analysis uses topological indicators to describe 

the network structure (i.e. degree, strength, density); this kind of analysis does not 

include a mechanism by which shocks are transmitted. For this reason, it is referred 

to as static network analysis and papers that used this analysis are introduced in 

subsection 2.2.1. The second approach, introduced in subsection 2.2.2, focuses, instead, 

on modelling how different network structures react to shocks, in order to identify the 

key factors that affect the resilience of the network. This approach usually involves a 

dynamic simulation to model how the default spread in the network, thus it referred 

as dynamic network analysis. 

2.2.1 Static network analysis 

The topology of a network affects its functionality and stability, therefore general-

network-theory methods [44] can be applied to analysis the network representing a 

financial system. The stability of the interbank market is important for the proper 

functioning of modern financial systems and the market structure may play an 

important role in determining the risk of contagion; by studying the network metrics, 

the information about the stability of the network structure can be gained which helps 

analysts to identify central nodes which are more likely to propagate shocks. 

One line of the static network research falls in capturing and analysing the 

interconnectedness in the interbank market based on empirical data. Some common 

network metrics such as degree, strength, density, centrality and clustering can be 

used to analyse the interbank market, which helps to identify the characteristics of the 

interbank markets. The findings show that the network of interbank market has the 

complex characteristics of small-world network and scale-free network5  [45]; this 

means there are often a small number of highly connected large nodes(banks) in the 

                                                             
4 Network models are also widely used to study the different kinds of risks (such as credit risk, 
systemic risk and liquidity risk) on different financial market (such as banking market, 
interbank market and CDS market), see the paper [14] for a review. 
5 A small-world network is a network in which most nodes are not neighbours of one another, 
but the neighbours of any given node are likely to be neighbours of each other and most nodes 
can be reached from every other node by a small number of hops or steps. A scale-free network 
is a network whose degree distribution follows a power law [44]. 
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network (interbank market) that connect to a large number of small nodes with few 

links. Therefore, the networks of the interbank market exhibit a ‘core-periphery’ 

structure for most countries [46-51]6 as well as for global financial networks[52]. The 

‘core-periphery’ structure is defined as a connected network that has two tiers, a core 

and a periphery, the core forming a fully connected clique, whereas peripheral banks 

are only connected to the core. The cores of the networks, composed of the most 

connected banks, are often much more important than nodes in the periphery. Due to 

the difference in the nature of transactions in the banking system, different markets 

can have different topological properties [53]. The topological analysis in [54] shows 

that the structure of the Danish money market is different from the structure of the 

payments network and the banks in the core of the money market are of more equal 

size. Langfield et al. [55] find that the strength of the core-periphery structure varies 

significantly by asset class in the UK interbank market: the observed interbank 

network fits the core-periphery model more strongly for derivatives and marketable 

securities than for unsecured lending and repurchase agreements. 

The other line of the static network analysis focuses on looking into the changes in the 

network topology of the financial system over the last decades [56-59]and also the 

changes due to financial crises, to study the effects of crises on dynamic link formation. 

Some studies focused on one-country cases and they found that the core-periphery 

structure tends to be stable over time but the number of core banks and the aggregate 

level of interbank activity may vary over time. Puhr et al. [58] show that financial 

crises decreased the network density between 2008 and 2010, with central nodes 

becoming more important. While in the studies by Fricke and Lux [59], core banks 

tend to rely on the liquidity of periphery banks during crises, whereas in normal times 

they tend to be net providers of liquidity to the system. Studies on global financial 

system find that structure of global banking networks varies over time. They become 

more connected [52, 60, 61] and respond to economic and financial shocks. Kubelec 

and Sá [52] show that there has been a remarkable increase in interconnectivity over 

the past two decades; financial links have become larger and more frequent and 

countries have become more open. Minoiu and Reyes [62] show that the 2007–2009 

global financial crisis stands out as an unusually large perturbation to the cross-border 

banking network. Connectivity tends to fall during and after systemic banking crises 

                                                             
6 [51] analyses the network structure of CDS market. 
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and sovereign debt crises. Hale [63] also finds that the global financial crisis of 2007–

2009 had a large negative impact on the formation of new relationships in the global 

banking network, especially for large banks, which were previously immune to effects 

of banking crises and recessions. A recent study by Minoiu [64] shows that financial 

interconnectedness has early warning potential, especially for the 2007-2010 wave of 

systemic banking crisis. 

A third line of the research draws in the research work which developed algorisms to 

identify different interbank activities, such as the transactions of interbank loans on 

overnight market [65] or with maturities of up to 1 year [66, 67], the presence of 

intraday lead-lag relationships between financial assets [68], and the presence of 

lending relationships [69] and preferential trading [70] in interbank market. These 

works uncover some characteristics of the interbank network structure which can 

help to give a better understanding of the dynamics of the interbank market.   

The existing static network analysis considers the overall structure of the network. 

The results contribute to the study on systemic risk in the interbank market, which 

also provides a stronger basis for the assessment of contagion risk using dynamical 

simulations [40]. 

2.2.2 Dynamic network analysis 

Computational techniques have been adopted on network analysis to assess the 

possible extent of contagion via interbank liabilities, which refers to the dynamic 

network analysis. This often involves computer simulation that is used to explore the 

resilience of a network in certain stress scenarios. The literature regarding network 

models with dynamic network analysis can be reviewed following three strands. 

1. The first strand of the dynamic network analysis is to evaluate the resilience of the 

network to different shocks based on real interbank data. First, the network 

structure is constructed using the real data from banks’ balance sheet. Then an 

external shock is applied to this constructed network, which propagates through 

the system affecting the balance sheets of individual institutions, thus the 

contagion effects caused by one or more bank bankruptcy can be studied. These 

studies [71-76] generally found that significant contagion effects are potential but 

a substantial weakening of the whole banking sector is unlikely to happen. Due to 
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the difficulty in obtaining the balance sheet data between banks, a maximum 

entropy method has been used in many works [77- 80] to make an estimation of 

bank assets and liabilities positions. However, maximum entropy approach is 

found to overrate the scope for contagion in the work by Mistrulli [81]. Anand et 

al. [82] propose an efficient alternative that combines maximum entropy with a 

minimum-density solution to define a useful range that bounds the cost of 

contagion in the true interbank network when counterparty exposures are 

unknown. 

2. The second strand of the research focuses on modelling and studying the different 

kinds of contagion propagation mechanisms, which usually consists of two steps: 

firstly, develop a mathematical model of the banking system; these dynamic 

models use mathematical equations to describe contagion mechanisms between 

banks. Secondly, parameters values and initial conditions are used to run 

simulations of the model, which are derived from real data collected from the 

banks’ balance sheet or virtual data generated for testing. The data used should 

exhibit scenarios that represent the banking system under stress (such as default 

on liabilities or falls in asset price). Then the behaviour of the networks is 

investigated to understand the different kinds of propagation mechanisms under 

different types of applied shocks. The shock used in the simulations can be a 

systemic shock that affects all the banks in the system or just an idiosyncratic one 

that affects one single bank. Further, the resilience of the network can be 

investigated too. Two types of shock propagation are usually studied: mechanical 

propagation and behavioural dynamics, which are described as follows. 

Mechanical propagation 

As introduced in subsection 2.1.2, with this type of propagation mechanism the 

bank does not take behavioural reactions (e.g. liquidity hoarding and fire sale), 

when there is a shock, instead it changes its balance sheet according to the loss. 

This may affect other banks’ balance sheet if the loss includes liabilities from those 

banks. The default spreads through interbank loans. Studies focusing on this 

propagation mechanism usually run simulations with different network 

structures with different bank sizes, connectivity and concentration, and 

ultimately they study how the network structure affects the system stability. Georg 
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[83] shows that money-centre networks (where a small number of large banks is 

very highly interconnected and a large number of banks is very little 

interconnected) are typically more stable than random networks. Sachs [84], by 

contrast, finds that a money centre model with asset concentration among core 

banks is less stable than a random graph with banks of homogeneous size.  

Robust-yet-fragile characteristic of the banking system has been investigated [12]. 

Battiston et al. [85] study how network density (the number of connecting links) 

relates to systemic risk in a model of the economy as a credit network (in which 

nodes represent agents and links represent credit relationships); they found that 

connections between banks improve risk sharing, but connectivity also leads to 

trend reinforcement. When an economic agent suffers a negative shock, trade 

partners react by making conditions even worse. Studies in the literature found 

that contagion stemming through mechanical propagation has a limited effect [72, 

75], while the effect caused by the banks’ behavioural dynamics (e.g. liquidity 

hoarding and fire sale) is more important than the direct solvency contagion. The 

likelihood of contagion through mechanical propagation is very small due to the 

robust properties of financial networks.  

Behavioural dynamics 

As introduced in subsection 2.1.2, banks will show behavioural dynamics if the 

economy is under stress, which includes liquidity hoarding and fire sales7. The 

following subsection explains these phenomena in more detail. 

Liquidity hoarding: this happens when a shock appears in the banking system and 

the subsequent credit losses in banks may weaken investor confidence, resulting 

in a general reduction in the bank funding supply. Then the banks prefer to hold 

its liquidity rather than invest or lend to other banks, therefore this results in 

liquidity hoarding within the network.  Studies on liquidity hoarding based on 

network models mainly focus on two phenomena, the first one is the general 

reduction in the bank funding supply [86,  87]. The other phenomenon is how 

banks cut lending in the interbank market within the network; banks may 

withdraw lending from a specific infected bank or run on all banks 

                                                             
7 Another behavioural dynamic is reinvestment, which it’s not introduced here. 
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indiscriminately [88] or banks may cut lending according to their own health and 

confidence in the system [89] and withdrawing deposits held at other banks [90]. 

The general conclusion from these studies is that liquidity is very important for 

systemic stability; it can impose a negative externality on the entire financial 

system and amplify other sources of risk. The model in our work assumes that a 

bank lends money depending on its own health and the health of the borrowing 

bank.  

Fire sales: Fire sales happen when banks face liquidity shortage, forcing them to 

sell illiquid assets which ultimately causes the assets’ prices to decrease. Mark-to-

market losses result on other banks which hold the same assets.  Papers are 

written by Plantin et al. [91]and Allen and Carletti [92] discussed the potentially 

destabilizing effects of mark-to-market accounting; these reactions may have 

repercussions on other financial institutions and to some extent exacerbate 

contagion. Fire sales cannot only happen in the course of liquidation or resolution 

after a bank default [69, 87, 89], but also happen as a defensive action in a bid to 

prevent or defer failure. In the model of Gauthier et al. [93], it assumes that the 

bank needs to reduce their size and leverage because a pre-specified minimum 

capital ratio is breached and finds that the effect from the fire sales accelerates 

bank defaults as bank capitalization decreases. 

While the mechanical or behavioural shock propagation often operate 

simultaneously in a real banking system [94], network models studies generally 

find, through simulations, that the behavioural dynamics has a more significant 

effect on the stability of the system than the mechanical propagation mechanism. 

Therefore, Gauthier et al. [86] conclude that comprehensive bank regulation 

should be based on a set of requirements related to capital, liquid asset holdings 

and short-term liabilities.  

3. The third strand of the research is a group of recent and growing work aiming to 

consider uncertainty within the modelling [13], [95-102]. As the behaviour of the 

bank is very complex, the network structure changes with time and these changes 

interact with the behaviour of the banks, which generates the uncertainty in the 

network. Therefore, researchers recently applied game-theoretical tools on the 

network model trying to model how the network structure is affected by the banks’ 

behaviour. 
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Related work 

The model of the banking system proposed in this Ph.D. project belongs to the dynamic 

network analysis which involves simulations. There are three papers which are closely 

related to this Ph.D. project, need to be introduced in details in order to better 

understand the proposed model. Iori et al. [103]8  studied the performance of the 

interbank market in its role as a safety net by simulating interbank lending. The work 

shows that some characteristics, such as size and connectivity, of a market’s 

constituents and the nature of their interconnectedness affect the potential for 

contagion. When banks are homogeneous, interbank lending plays an insurance role 

to stabilize the system, while when the banks are heterogeneous, contagion effects 

may arise and systematically increase with connectivity. It should be stressed here 

that the initial differential equation model developed in our work was inspired by the 

difference equation model developed by Iori et al. 

Work by May, Arinaminpathy [105] and Haldane, May [106] shows an interesting 

perspective to study the banking system which draws analogies with the dynamics of 

ecological food webs and with networks within which infectious diseases spread. In 

these papers, banks are nodes in the network and bank activities have been classified 

into four categories: deposit, external assets, borrowing and lending. The borrowing 

and lending are the links between the banks. This structure was extended and used in 

our work. 

From the existing literature, it can be seen that network models can be a natural way 

to model the complex dynamics by simulating different network structures in different 

degrees of size, connectivity, concentration and so on. Though this can address the 

issue of having uncertainty and the change of connectivity in the system, existing 

network models do not include mechanisms that can control and affect behaviours 

emerging from the dynamics of the units which make the entire systems. In the next 

section, control system engineering will be introduced as a tool to monitor and control 

a dynamical/interconnected system characterised by uncertainty. 

                                                             
8 A previous contribution of this work can be found in [104]. 
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2.3 Control theory and its applications in finance 

Control theory is an interdisciplinary field of applied mathematics and engineering 

that deals with the basic principles underlying the analysis and design of control 

systems. “Controlling a system” means to influence the behaviour of the system in 

order to achieve a desired goal. Control theory deals with the use of a controller to 

achieve this purpose. 

Subsection 2.3.1 first gives a brief introduction to the history and development of the 

control theory, then followed by a detailed introduction of feedback, which is a key 

concept in control theory. Essentially, a feedback process is the one in which the state 

of the system determines the way the control has to be exerted at any time. Control 

theory has its roots in the use of feedback as a means to regulate physical processes 

and mediate the effect of modelling uncertainty and noise [107, 108]. Subsection 2.3.2 

reviews some applications of feedback control in the economic area. 

2.3.1 Development of the control theory and feedback control system 

Development of the control theory 

The development of the control theory can be divided conveniently into four main 

periods shown in figure 2.4 [109, 110]. Control systems of various types date back to 

antiquity, a more formal analysis of the field began with a dynamics analysis of the 

centrifugal governor, conducted by the physicist James Clerk Maxwell in 1868 [111]. 

He described and analysed the phenomenon of self-oscillation, in which lags in the 

system may lead to overcompensation and unstable behaviour. The invention of the 

flyball centrifugal governor enabled effective speed control of the steam turbine and 

thereby shares credit for the industrial revolution. Ever since, control has played a key 

role as an “enabling technology” in applications ranging from autopilots, navigation 

and telecommunications, to manufacturing, and power systems.  

A Physical system can be modelled in the "time domain", where the response of a given 

system is a function of time, the various inputs and the previous system values. As time 

progresses, the state of the system and its response change. However, time-domain 

models for systems are frequently modelled using high-order differential equations 
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which can become impossibly difficult for humans to solve and some of which can even 

become impossible for modern computer systems to solve efficiently. 

Modern control theory (1960)

 State space methods

 Robust control

 Optimal control

 Adaptive control

 Large systems and complex systems

Modern control theory (1960)

 State space methods

 Robust control

 Optimal control

 Adaptive control

 Large systems and complex systems

Intelligent control theory (1970)

 Fuzzy control

 Neural networks 

Intelligent control theory (1970)

 Fuzzy control

 Neural networks 

Present
On-going research field. Recent application of modern 
control theory on non-engineering system such as 
biological, biomedical, economic and socio-economic 
system

Present
On-going research field. Recent application of modern 
control theory on non-engineering system such as 
biological, biomedical, economic and socio-economic 
system

Classical control theory (early 19th century)

 Time domain method

 Complex method (root locus method)

  Frequency domain method

Classical control theory (early 19th century)

 Time domain method

 Complex method (root locus method)

  Frequency domain method

 

Figure 2.4 Flow chart shows the development of the control theory. 

To counteract this problem, classical control theory uses the Laplace transform [112] 

to change an Ordinary Differential Equation (ODE) in the time domain into a regular 

algebraic polynomial in the transform domain. Once a given system has been 

converted into the transform domain where it can be manipulated with greater ease. 

Modern control theory, instead of changing domains to avoid the complexities of time-
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domain ODE mathematics, converts the differential equations into a system of lower-

order time domain equations called state equations, which can then be manipulated 

using techniques from linear algebra. The closing of the 20th century saw a rapid 

development of the mathematics of systems, control and optimization with a focus 

placed on understanding the benefits and limitations of feedback. Intelligent control 

starts around the 1970s due to remarkable developments in computing, 

communications, and sensing technologies. The scope of control theory is rapidly 

evolving to encompass hybrid, hierarchical, data-driven, decision-making networks 

where their connectivity at various scales affects functionality. 

Feedback control system 

A major application of control theory in the engineering discipline is known as control 

engineering, which deals with the design of control systems for industry. It applies 

control theory to design systems with desired performance. Such designed systems 

are called control systems. There are basically two types of control systems: the open 

loop system and the closed loop system. As shown in figure 2.5, system in which the 

output quantity has no effect upon the input to the control process is called an open-

loop control system.  

 

Figure 2.5 A block diagram of an open-loop control system. 

The closed-loop system, also known as a feedback control system, uses the concept of 

an open loop system as its forward path but has one or more feedback loops or paths 

connecting the output and the input. Feedback is the foundation for control system 

analysis and design. A simple feedback control system is shown in figure 2.6. In a 

feedback control system, the usual objective is to control a system, often called the 

plant, so that its output follows a desired signal, called the reference, which may be a 

fixed or changing value. To do this a controller is designed (generating a control input 

on the planet). The difference between the actual and desired output, called the error 

signal, is applied as a feedback to inform the input of the system, to bring the actual 

output closer to the reference. In any real-time control system, there is always some 
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amount of external noise which is called disturbance. With feedback, the controller is 

able to use the output to shape the input of the system. In this way, it reduces the effect 

of the disturbances on the system, which is called disturbance rejection in feedback 

control. 

 

Figure 2.6  A block diagram of a negative feedback control system. It illustrates the 

concept of using a feedback loop to control the behaviour of a system by comparing its 

output with a desired value (called the reference input), and applying the difference as 

an error signal to dynamically change the output so it is closer to the desired behaviour. 

A typical example of a feedback control system is a person steering an automobile (see 

figure 2.7). The driver can control the car to drive on the desired path through the 

steering wheel. The automobile is the plant and the driver is the controller. The driver 

will adjust the error which is the difference between actual course of travel and the 

desired course of travel using the steering wheel.  

 

Figure 2.7 A block diagram of an automobile steering control system. The error is the 

difference between the actual course of travel and the desired course of t ravel. The driver 

adjusts the error by using the steering wheel to control the car so that it travels on the 

desired path. 

It can be seen from the feedback control system that control engineering has the ability 

to deal with uncertainty as the system can reduce the error without the knowledge of 

why the error occurs. For instance, the driver may not know why the car has deviated 

from the desired path but s/he can still bring it back to the desired path. Therefore, 

the initial motivation to design and apply a control approach to model the banking 
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system is to expect the control approach to bring the banking system back to stable 

when the causes of instability in the banking system are unknown. 

2.3.2 Feedback control application in finance  

Nowadays, as the understanding of the dynamics of business, social, and political 

systems increases, control engineering is not limited to engineering discipline but is 

equally applicable to systems above. As the general theory of feedback systems, 

control theory is useful wherever feedback occurs. Many applications have been 

successful in the area such as ecosystems, physiology, climate modelling, and neural 

networks as well as in finance. The existing literature shows that control theory has 

been used to analyse financial problems. 

Wingrove and Davis [113, 114] show some results based on the application of classical 

linear control to the analysis of economic system dynamics. The linear control analysis 

is applied as an aid in understanding the fluctuations of business cycles in the past, 

and to examine monetary policies that might improve stabilization. The results 

confirm that to improve stabilization of the business cycle, a general rule is that any 

movements in the growth of money supply should be countercyclical with respect to 

the growth of real GNP. Novotna [115] studied the finance system with the distributed 

time delay and indicated that the complex dynamic behaviour in such a finance system 

can be controlled under appropriate strength feedback and delay times, as well as that 

the feedbacks either suppress or enhance the dynamic behaviour. Barmish et al. [116] 

provide an overview of basics of simulation and performance evaluation associated 

with stock trading via feedback control methods; from this it shows the feedback 

control has been widely studied in the stock trading strategies.  

It can be seen from the literature that the feedback control applications are mainly 

focused on macro-economic models to study how business cycles affect economic 

stability. In this thesis, feedback control is applied for the first time on a banking 

system model to study its stability as well as design proper controllers to keep the 

bank in a stable state. 
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2.4 Conclusion 

This chapter presents a brief introduction of financial systems and provides an 

extensive literature review of the 2007-2009 financial crisis as well as the network 

models used to study of financial systems. The chapter also introduces control theory 

used in engineering and its application to financial problems. While network models 

have provided useful insight in the understanding of financial crises, they have never 

been combined with control theory to study the stability of the banking system. The 

following chapter, Chapter 3, shows the details of the new dynamic network model of 

the banking system that has been developed in this Ph.D. project; the links with 

existing network models are also highlighted.  Chapter 4 compares the results of the 

proposed model with the findings in the literature. Chapter 5 presents the novel 

combination of the proposed model of the banking system with control theory.  
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Chapter 3  
 
The Dynamic Network Model 

 

 

In this chapter, the dynamic network model developed in this Ph.D. project is 

introduced. The banking system is represented as a network where the nodes are 

individual banks, while the links between any two banks are interbank loans and 

borrowing. The dynamic structure of the model is represented as a set of ordinary 

differential equations consisting of balance sheet dynamics. The choice of differential 

equations not only allows the analysis of systemic risk but also allows applying control 

theory. In this chapter, the dynamic model is introduced step by step, from a one-bank 

model to a two-bank model and finally to a multi-bank model.  

Section 3.1 provides details of how the basic structure of a bank has been designed 

and how the banks are connected; some assumptions are also explained.  In Section 

3.2 the one-bank model and the corresponding differential equations are introduced; 

subsequently, the two-bank model and the multi-bank model are presented. 

Specifically, Section 3.2 explains how the differential equations are used to model the 

banking system have been generated. Section 3.3 concludes the chapter. 

3.1 Description of the banking system model 

This section describes the basic structure of each individual bank as well as how banks 

are connected with each other. As explained in the literature review, the real banking 

system is very complex in nature. Banks perform many activities which cannot all be 

modelled in detail, so some assumptions and simplifications are made in the proposed 

work. The goal is to develop a model which, on one hand, retains the most important 

characteristics of the banking system and, on the other, allows us to develop an 

analysis of its stability which has implications for the real system. In the proposed 

work, the following main banking activities are considered:  
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1) Collection of deposits to accumulate cash, and payment of interests to depositors 

2) Investment of cash to generate profit through receipt of returns 

3) Lending money to other banks, and receipt of interests 

4) Borrowing money from other banks, and payment of interests  

The primary purpose of a bank in performing these activities is to generate profit, to 

maintain (and increase) a positive net worth and cash, so to avoid defaulting and 

failure. A bank needs to keep its cash above a threshold (reserve ratio requirement): 

more specifically, the cash of a bank, at any given time, has to be equal or bigger than 

the total deposits multiplied by a positive factor (<1). This factor is called reserve ratio 

and is usually set by the Central Bank. By preserving this cash, the banks safeguard 

themselves from shocks such as bank runs, debtors’ defaults and investment failures. 

There may be situations in which a given bank may not be able to meet the reserve 

ratio requirement due, for example, to investment failure or cash withdraws by 

depositors. In these cases, the bank has to find cash in the interbank 

borrowing/lending market. In the interbank market, the bank lacking of cash looks for 

opportunities to borrow money from banks with cash above the reserve ratio 

requirement.  

In the proposed model, each bank is characterised by five activities which produce 5 

different variables, as shown in figure 3.1:  accumulation of deposits - variable 𝐷 , 

interbank borrowings – variable 𝐵 , interbank lending – variable 𝐿 , investment - 

variable 𝐼 and accumulation of cash – variable 𝐶, see figure 3.1. The net-worth, 𝑁, is 

given by the formula:  

𝑁 = 𝐼 + 𝐶 + 𝐿 − 𝐷 − 𝐵.  

In this model, the deposit, 𝐷 , represents the funds deposited by creditors, which 

cannot be controlled by the bank. Therefore, 𝐷 is modelled as an exogenous signal. 

When new funds are deposited in a bank, this automatically increases the cash: more 

specifically, any change in the deposit, ∆𝐷, of a bank corresponds to a change in its 

cash, ∆𝐶 = ∆𝐷. Equivalently, when a bank changes its investments, ∆𝐼, its cash will 

change accordingly,  ∆𝐶 = −∆𝐼  . The negative sign represents the fact that an increase 

in the investment corresponds to a reduction of the cash, and vice versa. Similar 

consideration apply for changes in borrowing, ∆𝐵, and lending, ∆𝐿.  
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Figure 3.1 Bank’s components: 𝑁  =net-worth, 𝐷  =deposits, 𝐵  =interbank borrowings,  

𝐿 =interbank loans, 𝐶 =cash and 𝐼 =investment. 

The borrowing and lending activities make the linkages between banks which 

ultimately form the network; in this network, the banks are the nodes and borrowing 

and lending between any two banks (𝐿𝑖𝑗  and 𝐵𝑖𝑗9) are the connections (see figure 3.2). 

These links, which determine the network structure of the system, ‘appear’ within the 

differential equations of the dynamical model. Next section introduces the ordinary 

differential equations developed in our work to implement the network model we 

have just described.     

 

Figure 3.2 Linkages between banks: the network links between banks are made by the 
interbank lending/borrowings.  

                                                             
9 𝐿𝑖𝑗 is the total lending that banki lends to bankj. 𝐵𝑖𝑗  is the total borrowing that banki 

borrows from bankj 
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3.2 Ordinary differential equations of the banking system 

model 

In this section, the development of the ordinary differential equations is introduced in 

three stages. In the first stage, a one-bank model is presented, which is characterised 

by differential equations describing the cash, deposit and investment only. This model 

can be used to elucidate the basic activities within one bank. In the second stage, a 

two-bank model is presented by adding in the differential equations the borrowing 

and lending activities between the two banks. This two-bank model allows studying in 

a simple way the effect of interbank connections on the system. In the last subsection, 

the number of banks in the system is increased to any value larger than 2. In this multi-

bank model, the number of connections between banks can be increased arbitrarily, 

which increases the complexity of the system. In particular, new algorithms need to 

be developed to deal with the more sophisticated way banks exchange cash with each 

other; modifications of the differential equations are introduced to describe the 

borrowing and lending behaviours as well as the corresponding interest payments in 

the multi-bank model.  

The differential equations characterising the banking system model contain the time 

derivatives of the quantities  𝐶, 𝐼, 𝐿  and 𝐵 , which govern the changes of these 

quantities, i.e. ∆𝐶 , ∆𝐼 , ∆𝐿 and ∆𝐵 ,  as function of time. These differential equations 

prescribe the dynamics of the model, and allow us to apply control theory tools in a 

straightforward way, as described in Chapter 5.  

3.2.1   Differential equations for one-bank model 

The one-bank model contains only three quantities: cash, deposit and investment. The 

bank is independent from other banks, and the cash can only be affected by the deposit 

and the investment. The one-bank model allows one to easily appreciate how the 

banking system has been modelled. Moreover, it is easier to investigate the effect of 

the exogenous signal (deposit) on the bank’s cash and investment since there are no 

interbank borrowing and lending effects. Importantly, the one-bank model allows a 

simple and analytical implementation of the stability analysis, which can be used also 

for the more complex multi-bank model. 
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Deposits 

In this one-bank model,  𝐷1 is used to represents the total deposits of the bank1.  𝐷1 is 

assumed to be assigned by an exogenous signal. This means the deposit cannot be 

controlled by the bank and the fluctuations in the deposit introduce shocks in the bank 

by affecting its cash and exposing the bank to the risk of failure. In this thesis, the 

deposit signal is generated numerically. Different kinds of deposit signals have been 

generated for different purposes. For example, constant deposit is used for testing and 

verifying the model. To simulate cases with interesting dynamics,  the deposit signal 

is set as the following random function of time, t , (see also Iori et al. [117]): 

𝐷1 =  |�̅� + �̅�𝜎𝐷𝜀𝑡|     (3.1) 

Equation (3.1) models the case in which fluctuations (shocks) in the deposit are 

caused by random but mutually uncorrelated payments/withdrawals of deposits. �̅� 

represents the average size of the deposits; 𝜎𝐷(> 0) represents the amplitude of the 

shocks, while 𝜀𝑡  is a random variable (𝜀𝑡~𝑁(0,1)). When 𝜀𝑡  is positive an increase 

(payment) in the deposit is made while when 𝜀𝑡 is negative a decrease (withdraw) of 

the deposit is experienced by the bank.  

Investments 

The investment behaviour of the bank is described in equation (3.2) below;  

𝑑𝐼1

𝑑𝑡
= min[(𝐶1 − 𝑟𝐷1 )+, 𝑜𝑝𝑝1] − 𝑤1𝐼1 − 𝑣1𝐼1                                       (3.2) 

𝑜𝑝𝑝1 =  |𝑜𝑝𝑝̅̅ ̅̅ ̅ + 𝑜𝑝𝑝̅̅ ̅̅ ̅ 𝜎𝑜𝑝𝑝𝜂𝑡|                                               (3.3) 

each bank invests at time 𝑡 depending on two factors: one is the availability of cash, 

the other one is the stochastic investment opportunity. In equation (3.2),  
𝑑𝐼1

𝑑𝑡
 is the 

change of the investment of the bank over the time 𝑑𝑡;  𝐶1 is the total cash of the bank, 

𝐷1 is the total deposit of the bank and  𝑟 is the reserve ratio. The reserve ratio is the 

proportion of the total deposit that the bank must have on hand as cash. Therefore, the 

availability of cash is represented by, (𝐶1 − 𝑟𝐷1 )+, where (𝑥)+ stands for max {𝑥, 0}. 

This means the bank can only invest using the cash which is above the value required 

by the reserve ratio, 𝑟𝐷1. If the 𝐶1 < 𝑟𝐷1, (𝐶1 − 𝑟𝐷1 )+ is equal 0, which means that 

there is no available cash for investment. 
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The term 𝑜𝑝𝑝1 in equation (3.2) is the stochastic investment opportunity at time 𝑡; as 

for the deposit, 𝑜𝑝𝑝1 is also an exogenous signal and it is described in equation (3.3). 

𝑜𝑝𝑝1 fluctuates randomly around an average value, 𝑜𝑝𝑝̅̅ ̅̅ ̅, where  𝑜𝑝𝑝̅̅ ̅̅ ̅ = 𝛿�̅� (with 0 <

𝛿 < 1  and  𝜂𝑡~𝑁(0,1)) , which means that the average size of the investment 

opportunity is affected by the size of the bank (see also Iori et al. [117]). Therefore, 

taking these two factors into consideration, (𝐶1 − 𝑟𝐷1 )+ and 𝑜𝑝𝑝1 , the amount of 

resources invested per unit of time is the minimum value of these two terms. This 

means that a bank invests only when it has sufficient cash and investment opportunity. 

Strictly speaking the term, min[(𝐶1 − 𝑟𝐷1 )+, 𝑜𝑝𝑝1] , in equation 3.2 should be 

multiplied by a factor with dimensions, time-1; for simplicity, we assume that this 

factor is equal to one.  

Besides adding new investment, investments made in the previous time mature after 

some time. Moreover, there will be some failed investment that cannot be recovered. 

In equation (3.2), −𝑤1 represents the proportion of total investment, per unit time, 

that has matured. While 𝑣1  represents the proportion of total investment that has 

been lost per unit time. For simplicity  𝑤1 is constant in the proposed model. In future 

work, to account for more realistic scenarios  future work, 𝑤1 can be different for each 

bank and time dependent; 𝑤1 can also be introduced as an exogenous signal based on 

real data. This would add further nonlinearity to the dynamic model. 

Cash  

The changes of the deposit, 
𝑑𝐷1

𝑑𝑡
, and of the investment, 

𝑑𝐼1

𝑑𝑡
 , can affect the change in 

cash, 
𝑑𝐶1

𝑑𝑡
. The differential equation governing the change over time of the cash, 

𝑑𝐶1

𝑑𝑡
, of 

bank1 is given by:  

𝑑𝐶1

𝑑𝑡
=  

𝑑𝐷1

𝑑𝑡
−  

𝑑𝐼1

𝑑𝑡
−  𝑔1𝐷1 +  𝑝1𝐼1 − 𝑣1𝐼1                                     (3.4) 

In equation (3.4),  
𝑑𝐷1

𝑑𝑡
  represents the change of the deposit and it has a positive sign 

because the change of the deposit will affect the cash in the same direction. As more 

deposits are saved into the bank, the cash increases and as deposits are withdrawn 

from the bank, the cash decreases. Similarly, 
𝑑𝐼1

𝑑𝑡
  represents the change of the 

investment. It has a negative sign because any increase in the investment means that 
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the bank uses its cash to make new investments, so the cash decreases. It must be 

stressed that matured investments, instead, increase the cash.  

Besides the change of deposit and investment, the cash of the bank can also be affected 

by paying interest to depositors and getting returns from the investment. In equation 

(3.4),  𝑔1 is the deposit interest.  Therefore, − 𝑔1𝐷1 represents the reduction in cash 

over time due to the payment of interest to depositors. Similarly, 𝑝1is the return rate 

of the investment and  𝑝1𝐼1 is the increase in cash due to the receipt of returns from 

investments. 𝑣1𝐼1 represents the proportion of total investments that has been lost, 

per unit of time, due to defaults. This term also appears in equation (3.2), since the lost 

investment causes reduction in investment, but it doesn’t increase the cash, therefore, 

in equation (3.4), 𝑣1𝐼1 has to be subtracted from the cash so that it does not increase 

the cash.  

The cash needs to be above zero to keep the bank functioning. If the cash of a bank falls 

below zero, that bank is labelled as a failed and all its activities are stopped.  

Net-worth  

Another important variable is the net-worth of the bank, 𝑁1, which is the difference 

between asset and liabilities. The asset is the sum of the cash, 𝐶1, and investment, 𝐼1, 

while the liabilities are the deposit, 𝐷1. Therefore, 𝑁1 is represented by the equation 

(3.5).  

𝑁1 =  𝐶1 + 𝐼1 −  𝐷1                                                                                    (3.5) 

A positive net-worth means that the bank is managing its cash and investment well so 

to make a profit. 

3.2.2   Differential equations for two-bank model 

In this subsection the development of the two-bank model is presented. Compared to 

the one-bank model, two new activities are introduced; interbank borrowing and 

lending. Due to fluctuations in deposits, the cash of any given bank may fall below the 

required amount dictated by the reserve ratio. In this case that bank needs to borrow 

from the other bank. The interbank borrowing and lending activities make the 

interconnection between the two banks and affects the cash of both banks. 
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Deposits 

In the two-bank model, the total deposit is modelled in the same way as in the one-

bank model. As shown in equation (3.6), the total deposit of bank1, 𝐷1, and bank2, 𝐷2, 

at time 𝑡 are all exogenous signals, which fluctuate randomly around the average size 

�̅�. 

𝐷1 =  |�̅� + �̅�𝜎𝐷𝜀𝑡| 

𝐷2 =  |�̅� + �̅�𝜎𝐷𝜀𝑡|                                                       (3.6) 

Interbank borrowing and lending 

The interbank borrowing and lending activities in the two-bank model are 

represented in equation (3.7). 

𝑑𝐵12

𝑑𝑡
=

𝑑𝐿21

𝑑𝑡
= 𝑚𝑖𝑛[ (𝑟𝐷1 − 𝐶1)+,  (𝐶2 − 𝑟𝐷2)+] − 𝛼12𝐵12                     (3.7) 

 

  
𝑑𝐵12

𝑑𝑡
 represents the amount of cash borrowed by bank1  from bank2, over time 𝑑𝑡, 

which is equal to, 
𝑑𝐿21

𝑑𝑡
, the amount of cash lent by bank2 to bank1, over time 𝑑𝑡. It is 

assumed that in this two-bank model, only bank1’s cash falls below the reserve ratio 

requirement and bank2’s cash is above the reserve ratio requirement, so the 

borrowing only happens for bank1 and lending only happens for bank2.  

The right-hand side of equation (3.7) shows how the total borrowing (lending) is 

updated. Bank1 borrows just enough to meet the reserve ratio requirements, which is 

the amount represented by the term, (𝑟𝐷1 − 𝐶1)+, where (𝑥)+ stands for max {𝑥, 0}.  

Bank2 only lends cash that is above its required reserve, which is represented by 

(𝐶2 − 𝑟𝐷2)+. Therefore, the actual borrowing (lending) is the minimum of these two 

factors. Also in this case the term, 𝑚𝑖𝑛[ (𝑟𝐷1 − 𝐶1)+,  (𝐶2 − 𝑟𝐷2)+], in equation 3.7 

should be multiplied by a factor with dimensions, time-1; for simplicity, we assume 

that this factor is equal to one. 
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Bank1 needs to repay its borrowing to bank2 after some time; this repayment 

behaviour is represented by the term, 𝛼12𝐵12, where 𝛼12 is the proportion of the total 

borrowing, 𝐵12, repaid, per unit time, by bank1 to bank2 during the current period of 

time.   

Investments 

The investment in the two-bank model is slightly different from the one-bank 

model.Bank1 is unable to make any investment when its cash falls below the reserve 

ratio requirement; therefore the change of the investment of bank1, 
𝑑𝐼1

𝑑𝑡
, is represented 

as in equation (3.8), where the newly added investment is equal to 0. It is assumed 

that the investment happens after the interbank borrowing and lending. The change 

in the investment for bank2,  is given by the cash above the required reserve, 𝐶2 − 𝑟𝐷2, 

minus the lending to bank1, 
𝑑𝐿21

𝑑𝑡
, (see equation (3.9)).  The investment opportunity is 

the same as in the one-bank model, which is an exogenous signal represented by 

equation (3.10).  

𝑑𝐼1

𝑑𝑡
= 0 − 𝑤1𝐼1 − 𝑣1𝐼1                                                       (3.8) 

𝑑𝐼2

𝑑𝑡
= min [(𝐶2 − 𝑟𝐷2 −

𝐿12

𝑑𝑡
)

+
, 𝑜𝑝𝑝2] − 𝑤2𝐼2 − 𝑣2𝐼2                          (3.9) 

𝑜𝑝𝑝2 =  |𝑜𝑝𝑝̅̅ ̅̅ ̅ + 𝑜𝑝𝑝̅̅ ̅̅ ̅ 𝜎𝑜𝑝𝑝𝜂𝑡|                                         (3.10) 

Cash 

The differential equation governing the change in time of the cash, 
𝑑𝐶1

𝑑𝑡
 and 

𝑑𝐶2

𝑑𝑡
 , of 

bank1 and bank2 is given by:  

𝑑𝐶1

𝑑𝑡
=  

𝑑𝐷1

𝑑𝑡
−  

𝑑𝐼1

𝑑𝑡
−  𝑔1𝐷1 +  𝑝1𝐼1 − 𝑣1𝐼1 +

𝑑𝐵12

𝑑𝑡
− 𝐵12ℎ12                        (3.11) 

𝑑𝐶2

𝑑𝑡
=  

𝑑𝐷2

𝑑𝑡
−  

𝑑𝐼2

𝑑𝑡
−  𝑔2𝐷2 +  𝑝2𝐼2 − 𝑣2𝐼2 −

𝑑𝐿21

𝑑𝑡
+ 𝐿21𝑘21                        (3.12) 

In equations (3.11) and (3.12), the deposit and investment affect the cash in the same 

way as for the one-bank model. Two more terms are added to each equation, which 

represent the effect of the borrowing (lending) on the cash. For bank1, any increase 
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in the change of borrowing, 
𝑑𝐵12

𝑑𝑡
, means that the bank borrows money to increase its 

cash, while any decrease in 
𝑑𝐵12

𝑑𝑡
 means that the bank repays money using its cash. So 

in equation (3.11), 
𝑑𝐵12

𝑑𝑡
  has a positive sign. Similarly, in equation (3.12),  

𝑑𝐿21

𝑑𝑡
 has a 

negative sign because that the lending will decrease bank2’s cash and the repayment 

of the lending increases bank2’s cash. Moreover, bank1 needs to pay the interest to 

bank2 according to the total borrowing, 𝐵12 . In equation (3.11), ℎ12  is the interest 

rate bank1 pays to bank2, while 𝑘21is the interest rate bank2 receives from bank1; 

therefore, ℎ12 = 𝑘21. The interest rate is considered as a constant in the two-bank 

model for simplicity. The interest for borrowing (lending) is paid using the cash, so  

bank1’s cash decreases (represented by the term,  −𝐵12ℎ12)  and bank2’s cash 

increases (represented by the term, 𝐿21𝑘21) due to the payment of interest. 

Net-worth  

Borrowing is part the bank’s liabilities of the bank, while the lending is part of the 

assets. So the net-worth of bank1 and bank2, 𝑁1 and𝑁2, are given by equations (3.13) 

and (3.14), respectively. 

𝑁1 =  𝐶1 +  𝐼1 −  𝐷1 − 𝐵1                                                                           (3.13) 

𝑁2 =  𝐶2 + 𝐼2 + 𝐿2 −  𝐷2                                                                           (3.14) 

 

3.2.3   Differential equations for the multi-bank model 

This subsection presents the development of the multi-bank model has 𝑛 (𝑛 ≥ 2) 

banks. The multi-bank model is more complex than the two-bank model in the 

following reasons: 

banks can be connected in many different patterns, for example, a bank can be 

connected to some banks but not some others or some banks can be connected to more 

banks than others. So a new parameter 𝜎𝑖𝑗 is introduced to represent the connections 

between any two banks 𝑖 and  𝑗 ( , 𝑗 = 1,2, … 𝑛 and 𝑖 ≠ 𝑗). 𝜎𝑖𝑗  can be 0, which means 

that there is no link between the two banks, or 1, which means that the two banks are 

connected. All the values for 𝜎𝑖𝑗  are generated at the beginning of the simulation 

according to the choice of the link rate, 𝑙𝑟, which can take values from 0 to 1. 𝑙𝑟 can be 

seen as the probability that  𝜎𝑖𝑗 = 1. Therefore, 𝑙𝑟  is a variable that represents the 
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degree of connectivity of the system; the closer the link rate is to 1, the more connected 

the system will be.  

The network model representing the banking system is characterised by a given 

pattern of the connections, and the order by which a bank borrows from its links can 

differ. Therefore, an algorithm has been developed to determine the order of the 

interbank borrowing and lending of each bank. The details of this algorithm are 

introduced later in the borrowing and lending subsection. 

As there are more banks in the system, the default of one bank may affect other banks 

as well as the pattern of the connections, so a default liquidation procedure is 

introduced in the system to deal with the remaining assets and liabilities of any failed 

bank. The details of this liquidation procedure are reported later in this section. Also, 

a parameter called 𝑠𝑖 is introduced to represent the ‘mode’ of a banki; when banki is 

still functioning, 𝑠𝑖 = 1, while 𝑠𝑖 = 0 when the banki has failed. 

In this section, the differential equations of the multi-bank model are introduced with 

the characteristics above.  

Deposits 

The deposits of banki, 𝐷𝑖, has the same characteristics as in the previous models. In the 

multi-bank model, two cases are simulated: homogeneous case and heterogeneous 

case. The heterogeneous case is characterised by different average size of the deposits. 

In the homogeneous case, each bank has the same average size, �̅� , as shown in 

equation (3.15): 

𝐷𝑖 =  |�̅� + �̅�𝜎𝐷𝜀𝑡|                                  (3.15) 

While in the heterogeneous case, the average size of the deposit of any banki is 

assigned by sampling from a Gaussian distribution with the mean, µ𝑠, and variance, 

𝜎𝑠
2: 

�̅�𝑖~ |𝑁(µ𝑠, 𝜎𝑠
2)| . 

Therefore, the deposit signal for a banki at time 𝑡 in the heterogeneous case is given 

by: 

𝐷𝑖 =  |�̅�𝑖 + �̅�𝑖𝜎𝐷𝜀𝑡|    (3.16) 
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Interbank borrowing and lending  

Equation (3.17) shows how the total borrowing banki is updated.  

𝑑𝐵𝑖𝑗

𝑑𝑡
= 𝑚𝑖𝑛 [ (𝑟𝐷𝑖 − 𝐶𝑖)+,  (𝐶𝑗 − 𝑟𝐷𝑗)

+
] 𝜎𝑖𝑗 − 𝑠𝑖 𝑠𝑗 𝛼𝑖𝑗𝐵𝑖𝑗                 (3.17) 

The first term in the right-hand-side equation (3.17) is the amount borrowed by banki 

from bankj, over time 𝑑𝑡 .  As in the two-bank model, this amount should be the 

minimum value between the required cash of banki,  (𝑟𝐷𝑖 − 𝐶𝑖)+, and the available 

cash of bankj, (𝐶𝑗 − 𝑟𝐷𝑗)
+

. The difference with the two-bank model is that, this 

minimum value needs to be multiplied by the parameter, 𝜎𝑖𝑗, which represents the 

connection between banki and bankj. This is to ensure that the borrowing only 

happens between the two banks that are connected. If the two banks are not 

connected (𝜎𝑖𝑗 = 0), then there is no borrowing.  

The second term in equation 3.17 is the proportion, 𝛼𝑖𝑗 , of the total borrowing repaid, 

per unit time, by banki to bankj during the current period of time. When a bank fails, it 

cannot repay its borrowing to the other banks and it cannot receive previous lending 

back from other banks. Therefore, to make sure the repayment only works for the 

survival banks, the repayment term, 𝛼𝑖𝑗𝐵𝑖𝑗 , needs to be multiplied by the parameters, 

𝑠𝑖 and 𝑠𝑗 , which represent the mode of the bank. If one of the two banks failed (𝑠𝑖 = 0 

or 𝑠𝑗 = 0), then there is no repayment, (𝑠𝑖 𝑠𝑗 𝛼𝑖𝑗𝐵𝑖𝑗 = 0). 

The total lending banki gives to bankj is updated in a similar way as shown in equation 

(3.18): 

𝑑𝐿𝑖𝑗

𝑑𝑡
= 𝑚𝑖𝑛 [ (𝑟𝐷𝑗 − 𝐶𝑗)

+
,  (𝐶𝑖 − 𝑟𝐷𝑖)+] 𝜎𝑖𝑗 − 𝑠𝑖 𝑠𝑗 𝛼𝑗𝑖𝐿𝑖𝑗                 (3.18) 

 

The total borrowing and lending of banki , 𝐵𝑖  and 𝐿𝑖, are represented in equation (3.19) 

and equation (3.20): 

𝐵𝑖 =  ∑ 𝐵𝑖𝑗𝑗≠𝑖                                                          (3.19) 

𝐿𝑖 =  ∑ 𝐿𝑖𝑗𝑗≠𝑖                                                          (3.20) 

 

Interest rates  
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In the multi-bank model the interest rates for borrowing and lending are not 

constant;ℎ𝑖𝑗 and 𝑘𝑗𝑖, in fact, change with time according to equation (3.21).  

 

ℎ𝑖𝑗 =   𝑘𝑗𝑖 = ℎ0 +
𝑎

𝑒
(𝑦−

𝐵𝑖𝑗
𝐶𝑗

)𝑧
+1

                                                           (3.21) 

In equation (3.21), ℎ0 is the basic interest rate applied for lending and borrowing. This 

can be thought of as the base interest rate determined by an exogenous monetary 

authority.  

The term, 
𝑎

𝑒
(𝑦−

𝐵𝑖𝑗
𝐶𝑗

)𝑧
+1

, is the premium charged depending on the health of both 

borrowing and lending banks, which is measure with  
𝐵𝑖𝑗

𝐶𝑗
 ; 𝐵𝑖𝑗  is the total borrowing of 

banki from bankj and 𝐶𝑗 is the total cash of bankj. The larger ratio, 
𝐵𝑖𝑗

𝐶𝑗
 , the more risk 

the borrowing brings to the lending bank. Figure 3.3 illustrates the behaviour of  ℎ𝑖𝑗  

for different values of  
𝐵𝑖𝑗

𝐶𝑗
. When 

𝐵𝑖𝑗

𝐶𝑗
= 0, the interest rate is close to ℎ0 . When  

𝐵𝑖𝑗

𝐶𝑗
= 𝑦 

, the rate becomes ℎ𝑖𝑗 = ℎ0 +
𝑎

2
. When 

𝐵𝑖𝑗

𝐶𝑗
 →+ infinity, the rate becomes ℎ𝑖𝑗 = ℎ0 + 𝑎, 

which is the maximum value possible. Therefore, as the 
𝐵𝑖𝑗

𝐶𝑗
 gets larger, the lending 

bank faces more risk, thus it needs to charge higher interest rates. 𝑧 represents the 

speed of transition between the states ℎ𝑖𝑗 = ℎ0 +
𝑎

2
 and ℎ𝑖𝑗 = ℎ0 + 𝑎.  The larger the 

values of 𝑧, the faster the interest rate switches. The values of the parameters, 𝑎, 𝑦, 𝑧, 

used in our simulations are reported in the following chapter.   
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Figure 3.3  Behaviour of  ℎ𝑖𝑗  as function of  
𝐵𝑖𝑗

𝐶𝑗
.  

 

Thus, interest rates are endogenous to the fluctuations in balance sheets, although in 

a simple mechanical way; our approach, in fact, abstracts from a more complex 

modelling of asset prices based on optimising decisions and taking risk into account. 

This helps us to keep the model simple in our investigation of the stability of the 

system.  

Interbank borrowing and lending process 

Once the interest rates are set, the interbank borrowing and lending process works as 

follows: the bank with greatest net worth can first choose the bank to borrow money 

from. The borrowing bank will choose the bank with the lowest lending interest rate 

and, if the available borrowing is not enough, it will move to the bank with the second 

lowest lending rate. When the first bank has finished borrowing, the bank with the 

second greatest net worth starts to borrow according to the same rule. Again, this 

sequential form of borrowing and lending is a simplification of the simultaneous 

trading structure in interbank markets, but reflects the fact that certain banks will find 

it easier to finance their liquidity needs in the interbank market than others. A more 

complex structure could be introduced where banks post their financing needs 

simultaneously and are matched according to their financing capacities and prevailing 

market rates. 
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Investments 

As it in the two-bank model, equation (3.22) below describes the investment 

behaviour of banki; each bank makes its investment at time 𝑡  depending on two 

factors: one is the availability of cash above the value required by the reserve ratio 

after interbank lending, (𝐶𝑖 − 𝑟𝐷𝑖 − ∑
𝑑𝐿𝑖𝑗

𝑑𝑡𝑗≠𝑖  )
+

; where (𝑥)+ stands for max {𝑥, 0}.  The 

second factor is the stochastic investment opportunity at time t, 𝑜𝑝𝑝𝑖; this is described 

in equation (3.23) where  𝑜𝑝𝑝̅̅ ̅̅ ̅ = 𝛿�̅� (with 0 < 𝛿 < 1 and  𝜂𝑡~𝑁(0,1)), which means 

that the investment opportunity is affected by the size of the bank. Therefore, taking 

these two factors into consideration, a bank invests only when it has sufficient cash 

and investment opportunity. In equation (3.22), −𝑤𝑖𝐼𝑖  represents the proportion of 

total investment, per unit time, that has matured. And 𝑣𝑖𝐼𝑖 represents the proportion 

of total investment that has been lost, per unit time.  

𝑑𝐼𝑖

𝑑𝑡
= min [(𝐶𝑖 − 𝑟𝐷𝑖 − ∑

𝑑𝐵𝑖𝑗

𝑑𝑡𝑗≠𝑖 )
+

, 𝑜𝑝𝑝𝑖] − 𝑤𝑖𝐼𝑖 − 𝑣𝑖𝐼𝑖                 (3.22) 

𝑜𝑝𝑝𝑖 =  |𝑜𝑝𝑝̅̅ ̅̅ ̅ + 𝑜𝑝𝑝̅̅ ̅̅ ̅ 𝜎𝑜𝑝𝑝𝜂𝑡|                                                      (3.23) 

Cash 

The differential equation governing the change in time of the cash, 
𝑑𝐶𝑖

𝑑𝑡
, of banki is 

reported in equation (3.24).  

𝑑𝐶𝑖

𝑑𝑡
=  

𝑑𝐷𝑖

𝑑𝑡
−  

𝑑𝐼𝑖

𝑑𝑡
−  𝑔𝑖𝐷𝑖 +  𝑝𝑖𝐼𝑖 − 𝑣𝑖𝐼𝑖 + ∑

𝑑𝐵𝑖𝑗

𝑑𝑡𝑗≠𝑖 − ∑ ℎ𝑖𝑗𝐵𝑖𝑗                          𝑗≠𝑖   

− ∑
𝑑𝐵𝑗𝑖

𝑑𝑡𝑗≠𝑖 + ∑ ℎ𝑗𝑖𝐵𝑗𝑖𝑗≠𝑖                                              (3.24) 

In equation (3.24),  
𝑑𝐷𝑖

𝑑𝑡
 represents the change cash due to changes in the deposit, while 

− 𝑔𝑖𝐷𝑖 represents the reduction in cash over time due to the payment of interest to 

depositors. Similarly, − 
𝑑𝐼𝑖

𝑑𝑡
  represents the reduction in cash due to new investments 

and  𝑝𝑖𝐼𝑖 is the increase in cash due to the receipt of interest from investments, while 

−𝑣𝑖𝐼𝑖  represents the proportion of total investments that has been lost, per unit of 

time, due to defaults. ∑
𝑑𝐵𝑖𝑗

𝑑𝑡𝑗≠𝑖  represents the increase in cash accrued from interbank 

borrowing and − ∑ ℎ𝑖𝑗𝐵𝑖𝑗𝑖≠𝑗  is the reduction in cash due to the payment of interests 

to lending banks. − ∑
𝑑𝐵𝑗𝑖

𝑑𝑡𝑗≠𝑖  represents the reduction in cash due to loans to other 
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banks and ∑ ℎ𝑗𝑖𝐵𝑗𝑖𝑗≠𝑖  is the increase of cash due to the receipt of interest from 

borrowing banks. 𝑔𝑖 , 𝑝𝑖 , ℎ𝑖𝑗  and 𝑘𝑖𝑗  represent interest rates. Importantly, when 𝐶𝑖 

becomes non-positive, banki  fails and is removed from the system. 

Net-worth  

The net-worth of banki, 𝑁𝑖 , is the sum of the total cash, investment and lending, minus 

the sum of the total deposit and borrowing, as shown in equation (3.25): 

𝑁𝑖 =  𝐶𝑖 + 𝐿𝑖 + 𝐼𝑖 −  𝐷𝑖 − 𝐵𝑖                                                           (3.25) 

Simulation of the model  

Figure 3.4 shows the flowchart of the model illustrating how the banks’ activities take 

place during each step of the computer simulation. At the beginning of each step, the 

banks’ cash changes due to interest payments to depositors and changes in deposits 

due to stochastic shocks. If the cash of a bank falls below the value required by the 

reserve ratio that bank has to borrow from other banks. After this step, each bank 

repays creditors in cash. Those banks that cannot meet the repayment obligations will 

need to borrow from other banks. Banks that still have extra cash will invest. Those 

banks that are left with negative cash, as they could not borrow enough cash, are 

deemed to be in default; these banks are removed from the system and their remaining 

assets are distributed to depositors and to lending banks. After any default liquidation, 

a new simulation step will start. At the end of the simulation, i.e. after a chosen number 

of steps, the banks that survived are counted and other relevant quantities are 

calculated. 
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Figure 3.4 Flowchart showing activities taking place during one simulation step.  

Units of the variables and parameters used in the simulation  

This subsection reports the units for the values of the variables and parameters of the 

model used in the simulations presented in Chapter 4. Since the interest rates, i.e. 

𝑔 , 𝑝 , 𝑣 , ℎ , 𝑘 , alpha are expressed as daily rates, the time unit used in the simulations 

is day. The values of variables representing money, i.e. 𝐷 , 𝐶  , 𝐼  , 𝐵, 𝐿  and 𝑜𝑝𝑝 , are 

expressed in arbitrary units of money. Table 3.1 reports the units for all the variables 

and parameters used in the simulation. Unless stated otherwise, the units of the values 

of the variables and parameters are not reported in the remaining of the thesis. 

Table 3.1 Units for all the variables and parameters used in the simulation. 

Variable/parameter Unit 

𝐷 arbitrary unit of money 

𝐶 arbitrary unit of money 

𝐼 arbitrary unit of money 

𝐵 arbitrary unit of money 

𝐿 arbitrary unit of money 

𝑜𝑝𝑝 arbitrary unit of money 

𝑔 day-1 

𝑝 day-1 

𝑣 day-1 

ℎ day-1 

Stochastic shock 
in deposits

Payment of 
interests on 

interbank loans

Interbank 
borrowing and 

lending
Investment

Default 
liquidation
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𝑘 day-1 

𝛼 day-1 

𝑎 day-1 

𝑟 pure number (between 0 and 1) 

𝑙𝑟 pure number (between 0 and 1) 

𝑧 pure number 

𝑦 pure number 

 

3.3 Conclusion 

A new dynamic network model of the banking system has been presented in this 

chapter. The dynamic structure of the banking system is modelled using ordinary 

differential equations, which prescribe how bank activities (e.g. cash, investment and 

borrowing) change with time. The proposed model not only allows carrying out 

simulations that describe how banks behave, but also allows incorporating feedback 

mechanisms typical of control theory. Ordinary differential equations are more 

suitable to facilitate the application of control theory tools compared to discrete 

models [112]. In the next chapter, Chapter 4, the differential equations are solved 

using MATLAB Simulink in the form of computer simulations, which show how banks 

receive deposits, invest, exchange money with each other and occasionally fail. In 

Chapter 5, control mechanisms are applied to the model to prevent banks from failing. 
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Chapter 4  
 
Simulation Results of the Dynamic 
Network Model 

 

 

This chapter presents the results of numerical simulations for the dynamic models 

described in Chapter 3. The results are generated using MATLAB Simulink 

implementation of the models; details of the implementation are provided in this 

chapter.  

This chapter is structured as follows: Section 4.1 introduces the software packages 

MATLAB and Simulink. Section 4.2 introduces the implementation of the one-bank 

model in Simulink and its numerical simulations results with different initial 

conditions and parameter values; Section 4.3 shows the implementation and results 

of the two-bank model while Section 4.4 presents the multi-bank model which is made 

of 50 banks. Finally, Section 4.5 concludes the chapter. 

4.1 Introduction of MATLAB and Simulink 

MATLAB (Matrix Laboratory) is a proprietary programming language developed by 

MathWorks, which allows matrix manipulations, plotting of functions and data, 

implementation of algorithms, and interfacing with programs written in other 

languages, including C, C++, C#, Java [118]. Simulink is a commercial tool also 

developed by MathWorks for modelling, simulating and analysing dynamical systems 

[119], which can interface with the rest of the MATLAB environment. Simulink has 

integrated solvers that can numerically approximate the solutions of the differential 

equations which represent dynamical systems; differential equations are expressed 

graphically in Simulink as block diagrams. The reason to choose Simulink for the 

simulations in this Ph.D. project is that it allows to analyse efficiently the solutions of 

complicated systems modelled with differential equations that may be difficult or 
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impossible to deal with analytically; moreover, Simulink is widely used in control 

theory for simulation and design. 

4.1.1 General process of the simulation 

Figure 4.1 is a flowchart showing the general process used to run the simulations. 

Different MATLAB scripts are written to generate the initial conditions (for cash, 

investment, borrowing and lending), exogenous signals (such as deposit,  𝐷 , and 

investment opportunity, 𝑜𝑝𝑝) and parameters values (such as 𝑤, 𝑣, 𝑝 and 𝑔), which 

can be used into the Simulink model. The Simulink implementation solves the 

differential equations presented in Chapter 3 with given initial conditions and 

parameter values (details are explained later in this section), and the results are 

outputted in the MTALAB workspace. Finally, other MATALAB scripts are used to 

process and plot automatically the results generated by Simulink; this facilitates the 

analysis of the results.   

 

Figure 4.1 Flowchart showing the general processes used to run a simulation.  
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4.1.2 Numerical solver of differential equations 

A dynamical system is simulated by computing its states (i.e. the values of the variables 

characterising the system) at successive time steps over a specified time span. This is 

done by numerically solving the differential equations representing the system; the 

calculations of the solutions are performed by a chosen solver in Simulink.  The flow 

chart in figure 4.2 shows the steps used to select a solver. 

 

 

Figure 4.2 Flow chart showing how to choose the solver. Red route indicates the selected 

solver. 

The step size of the time steps used to compute the states of the system can be constant 

or can vary during the simulation; accordingly, fixed-step solvers or variable-step 

solvers can be used respectively [120]. Fixed-step solvers compute the states of the 

system at constant time intervals from the beginning to the end of the simulation. 

Variable-step solvers can reduce the step size to increase accuracy when the states of 

the system change rapidly; when the states of the system change slowly, instead, they 

can decrease the step size to save computational time. From preliminary simulations, 

it has been concluded that using a fixed time step of 0.01 day allows the solution of the 

differential equations in the model with sufficient accuracy; smaller time steps, in fact, 
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produce nearly identical results. The choice of the time step is 0.1 day, which also 

allows running the simulation within practical periods of time (the longest simulation 

took 5 hours of CPU time on a commercial PC). Besides the step size, the solvers are 

also classified as continuous or discrete. As the proposed model of the banking system 

is a continuous system, a continuous solver has been chosen for the simulations. 

Finally, the fixed-step continuous solvers ‘ode1’, which uses Euler's method [121] to 

solve ordinary differential equations, has been chosen as it uses less computational 

time compared to other solvers, while its accuracy is not significantly different from 

other more-time-consuming solvers (as found out from preliminary tests).  

4.2   One-bank model 

In this section, the implementation of the one-bank model is explained in detail and 

the corresponding results are presented. The first subsection explains the Simulink 

block diagram of the one-bank model while the second subsection reports the results 

and related discussion. 

4.2.1   Implementation of the one-bank model in Simulink 

The Simulink block diagram of the one-bank model is shown in figure 4.3. Two 

exogenous signals, total deposit (𝐷1) and the investment opportunity (𝑜𝑝𝑝1), are two 

functions of time and are generated using MATLAB codes; they are imported into the 

Simulink block diagram through the red blocks in figure 4.3. These red blocks import 

the values of the variables from MATLAB workspace where all generated values are 

saved. The light blue blocks output the simulation results that are generated from 

Simulink. Parameters such as 𝑤1, 𝑣1, 𝑝1 and 𝑔1  (proportion of matured investment, 

proportion of failed investment, return rate of investment and the inetrest rate of 

deposits respectevely) are used in the yellow blocks, which can multiply the input (any 

signal imported from the left side of the block) by a constant value (here the values of  

𝑤1, 𝑣1, 𝑝1 and 𝑔1). The differential equations are solved by the integrator in Simulink 

which is the green block in figure 4.3. There are two differential equations in the one-

bank model, one is for cash, equation (3.4), and another one is for investment equation 

(3.2); therefore, there are two green blocks in the Simulink block diagram. Details of 

how the integrator works are explained in the following paragraph. 
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The block named ‘Integrator 1’ in the figure 4.3 integrates the time derivative of the 

investment, which is represented by equation (3.2). The signal imported in the 

integrator is the change of the investment  
𝑑𝐼1

𝑑𝑡
, while the signal exported is the total 

investment 𝐼1 . There are three parts in equation (3.2), −𝑤1𝐼1 , −𝑣1𝐼1 and min[(𝐶1 −

𝑟𝐷1 )+, 𝑜𝑝𝑝1], so the block ‘subtract 1’ in figure 4.3 gathers these three inputs and 

imports them into the integrator. The first two inputs, −𝑤1𝐼1 and −𝑣1𝐼1, are generated 

by using the total investment, which is exported from the ‘Integrator 1’ and are 

multiplied by 𝑤1 and  𝑣1 . The third input,  min[(𝐶1 − 𝑟𝐷1 )+, 𝑜𝑝𝑝1] , is generated as 

follows: first using the total cash (which is exported after the integrator 2) minus the 

product of the two blocks named ‘Deposit 1’ and’ 𝑟’; this results into 𝐶1 − 𝑟𝐷1, which 

is imported into a ‘max’ block to be compared with 0. The ‘max’ block outputs the 

maximum value of these two, i.e. (𝐶1 − 𝑟𝐷1 )+; this signal is then imported into a ‘min’ 

block,  min[(𝐶1 − 𝑟𝐷1 )+, 𝑜𝑝𝑝1], which compares it with 𝑜𝑝𝑝1. Similar implementation 

is done for equation (3.4) for the time derivative of the cash. Five inputs are imported 

into the ‘subtract 2’ block, which correspond to the five terms in equation (3.4), and 

then they are inputted into the ‘Integrator 2’,  

 

Figure 4.3 The Simulink block diagram of the one-bank model. 
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4.2.2   Simulation results of one bank model 

In this section, the results of the one-bank model are presented and analysed, in order 

to show how a single bank is affected by the different parameters of the model. This 

analysis facilitates the understanding of the more complex models where more than 

one bank is present. The simulation results of one-bank model are generated using the 

Simulink block diagram described in the previous section. In the simulations, the unit 

time is one day and the total simulation period is 10 days, which is a sufficient time 

period to show the simple dynamics of the one-bank model. The step size is set to 0.1, 

which means that the bank does all its daily activities in 10 time steps (we run some 

test simulations with smaller time steps and noticed that the results did not change 

significantly). The parameters, 𝑤1, 𝑣1, 𝑝1 and 𝑔1, have the dimension of time-1, so their 

values are expressed as day-1. Results from six different simulations are presented in 

this section to illustrate how the bank’s cash and investment are affected by a shock in 

the deposit under different conditions: 1) all the parameters, 𝑤1, 𝑣1, 𝑝1 and 𝑔1 equal 

to zero,  2) interest rate of the deposit bigger than zero (𝑔1 > 0),  3) the return rate of 

the investment bigger than zero ( 𝑝1 > 0), 4) the proportion of matured and lost 

investment bigger than zero ( 𝑤1 > 0  and 𝑣1 > 0 ) and 5) investment opportunity 

(𝑜𝑝𝑝1) is smaller than available cash, 6) larger shock in the deposit that makes the 

bank to fail. 

Simulation results 1: effect of the shock in deposit 

This first type of simulation is used to show the bank’s behaviour following a negative 

shock in the deposit. The details of initial conditions and parameter settings are shown 

in table 4.1. To study the effect of the deposit only, the parameter values of 

𝑔1 ,  𝑝1 ,  𝑤1 and 𝑣1  are set to 0 to disregard the effect of deposit interest payments, 

investment returns, matured investments and lost investments. The reserve ratio 𝑟 is 

set to 0.2; the effect of different values of the reserve ratio will be analysed with more 

complex models. In table 4.1, the values of cash (𝐶1), deposit (𝐷1), investment (𝐼1) and 

investment opportunity (𝑜𝑝𝑝1) represent money and they are reported in arbitrary 

units. The value of the cash in table 4.1 is set to 0.25 in order to be close to the reserve 

ratio requirement (𝑟𝐷1=0.2×1=0.2). The values in table 4.1 for the investment and the 

investment opportunity are chosen large enough to allow for investment activities.     
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Table 4.1 Initial conditions and parameter values used in simulation 1 . 

Initial conditions Parameter value 

𝐶1 = 0.25  

𝐼1 = 0.75  

𝐷1 = 1,  𝑜𝑝𝑝1 = 1 

𝑔1 = 0 , 𝑝1 = 0  

𝑤1 = 0 ,  𝑣1 = 0 

𝑟 = 0.2  

Figure 4.4 shows the behaviour of the bank’s total deposit (a), total investment (b), 

added investment (c) and cash (d). It can be seen from figure 4.4(a) that at the 

beginning the deposit is set to 1, then the deposit decreases linearly to 0.94 at day 4 as 

the result of the shock, and subsequently it goes back to 1 linearly at day 6. According 

to the behaviour of the deposit, the dynamics of the system can be analysed in the 

following three periods. 

 

Figure 4.4 Dynamics of the bank’s deposit (a), total investment (b), added investment (c), 

cash (blue line in (d)) and the reserve ratio requirement ( grey dash line in (d)), when 

𝑔1 = 0 , 𝑝1 = 0, 𝑤1 = 0 ,  𝑣1 = 0 and 𝑟 = 0.2. 
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Period 1 (day 1- day3): when the deposit is at 1, the cash in figure 4.4(d) (blue line) is 

above the reserve ratio requirement (grey dash line). Therefore, in this period, the 

bank has extra cash to invest. This can be seen both from figure 4.4(b) where the total 

investment increases and from figure 4.4(c) where the added investment is above zero. 

As the bank keeps increasing the investment, the bank’s cash decreases, which causes 

the added investment to decrease and total investment to increase more slowly. 

Period 2 (day 3- day5): when the deposit drops linearly from 1 to 0.94, the cash also 

drops and becomes lower than the reserve ratio requirement (the blue line goes under 

the grey dash line in figure 4.4(d)). During this period, the bank stops investing 

because of the lack of cash. Therefore, the added investment becomes zero (figure 

4.4(c)) and the total investment stays constant (figure 4.4(b)). 

Period 3 (day 5- day10): when the deposit starts to go back to 1, the cash starts to 

increase as well and after some time becomes higher than the reserve ratio 

requirement (at day 6 in figure 4.4 (d) - the blues line goes above the grey dash line). 

The bank starts to invest again at this period, therefore both the added investment in 

figure 4.4(c) and the total investment in figure 4.4(b) start to increase on day 6. 

From the analysis of the three periods, it can be concluded that, the cash changes at 

the same rate as the deposit and that the negative shock in the deposit can force the 

cash to decrease which causes the bank’s added investment to decrease down to zero 

if the shock is large enough.  

Simulation results 2: effect of paying deposit interest 

In this simulation, the same deposit signal as in simulation 1 is used. To study the effect 

of  𝑔1, the interest rate of the deposit, all the initial conditions and other parameters 

values are kept as in table 4.1, but  𝑔1 is set to 0.5/360 - this value may not be realistic 

as 50% annual interest rate would be too high in a real scenario, but it is used for 

testing purpose only to get an observable difference in the results. Figure 4.5 shows 

the dynamics of the bank when 𝑔1 = 0.5/360 (in red dashed lines) compared to the 

dynamics when 𝑔1 = 0 (blue lines). Looking at figure 4.5(d), the payment of interest 

decreases the cash as the red line is always below the blue line. This causes the 

decrease in add investment as it can be seen in figure 4.5 (c) - the red line goes to zero 

after some time, which means that due to the interest payments there is no available 
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cash for investment. Figure 4.5(b) shows that the total investment (red line) doesn’t 

increase after some time because there is no new added investment. 

 

Figure 4.5 Dynamics of bank’s deposit (a), total investment (b), added investment (c) and 

cash (d) for two different cases: 𝑔1 = 0 (blue lines) and 𝑔1 = 0.5/360(red dash dot lines). 

The grey dash line in (d) is the reserve ratio requirement; 𝑝1 = 0, 𝑤1 = 0, 𝑣1 = 0 and 

𝑟 = 0.2.  

Simulation results 3: effect of investment returns 

To study the effect of investment returns, 𝑝1𝐼1, a similar simulation as the previous 

ones is performed, in which the investment return rate is set to a non-zero value (𝑝1 =

0.5/360) while the other values are kept as in table 4.1. In this situation the bank can 

earns returns (as cash) from its investment. Figure 4.6 shows the dynamics of the bank 

with the investment returns (red lines) compared to the dynamics without the returns 

(blue lines). Obviously, the investment returns increase the cash and therefore 

increases the added investment, so in figures 4.6(b), (c) and (d) the red lines are 

always above the blue lines. 
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Figure 4.6  Dynamics of the bank’s deposit (a), total investment (b), added investment 

(c), cash (d) for two different cases: 𝑝1 = 0 (blue lines) and 𝑝1 = 0.5/360 (red dash dot 

lines). The grey dash line in (d) is the reserve ratio requirement ; 𝑔1 = 0, 𝑤1 = 0,  𝑣1 = 0 

and 𝑟 = 0.2. 

Simulation results 4: effect of matured and failed investments 

In this simulation, the effects of matured and failed investments are studied by 

manipulating the values of the parameter 𝑤1 and 𝑣1, which represent the proportion 

of the total investment that matured and failed, respectively. All the other values are 

the same as in table 4.1. Figure 4.7 represents the dynamics of the bank for three 

different cases: the first case is when 𝑤1 = 0 and 𝑣1 = 0, which means there is no 

matured and failed investment - results of this case are shown in blue lines;  the red 

line in figure 4.7 represents the results when 𝑤1 = 1/360  and  𝑣1 = 0 , i.e.  100% 

annual matured investment rate and no failed investment; the green line, instead, 

represents the results when 𝑤1 = 1/360 and 𝑣1 = 0.2/360, i.e. 100% annual matured 

investment rate and 20% failed investment rate.  
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Figures 4.7(d) and (c) show that the red lines are above the blue lines, which means 

that the matured investment increases the cash and then increases the added 

investment, as the bank gets back the investment as cash. Nevertheless, as the matured 

investment is subtracted from the total investment, the total investment decreases 

(see figure 4.7(b)). The green lines overlap the red lines in figure 4.7(c) and (d), which 

means that the failed investment doesn’t affect significantly the added investment and 

cash, in the case analysed here. The only effect failed investment brings is the decrease 

in the total investment, in fact, in figure 4.7(b) the green line is below the red line. This 

is because the failed investment is subtracted from the total investment. Moreover, the 

failed investment doesn’t have a direct relationship with the added investment, so the 

added investment doesn’t change.  

 

Figure 4.7 Dynamics of the bank’s deposit (a), total investment (b), added investment (c), 

cash (d) for three different cases: 𝑤1 = 0 and 𝑣1 = 0  (blue lines), 𝑤1 = 1/360 and 𝑣1 = 0 

(red dash dot lines), 𝑤1 = 1/360 and 𝑣1 = 0.2/360. The grey dash line in (d) is the reserve 

ratio requirement; 𝑔1 = 0, 𝑝1 = 0 and 𝑟 = 0.2 are the same for the three cases. 
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Simulation results 5: effect of investment opportunities 

Besides the deposit, the investment opportunity is another exogenous signal that can 

affect the bank as it represents an upper boundary for the added investment; in fact, 

the added investment is the minimum value of the investment opportunity, 𝑜𝑝𝑝1, and 

the available cash, (𝐶1 − 𝑟𝐷1 )+, see equation (3.2) in Chapter 3. Figure 4.8 shows the 

behaviour of the added investment (blue line) when the investment opportunity (red 

dash line) is set to 0.01 during the first two days and then increases to 0.2; the green 

line represents the amount of available cash (𝐶1 − 𝑟𝐷1 )+.  

 

Figure 4.8 Dynamics of added investment when 𝑔1 = 0, 𝑝1 = 0, 𝑤1 = 0, 𝑣1 = 0, 𝑟 = 0.2 and 

𝑜𝑝𝑝1 follows the curve represented by the red dot line. The green dash line represents 

the amount of available cash, (𝐶1 − 𝑟𝐷1 )+. 

In this simulation, the deposit undergoes a shock as in the previous cases. It can be 

seen that the blue line first follows the red, then follows the green line, then becomes 

zero and finally follows the green line again. This is because during the first two days 

the investment opportunity is smaller than the available cash, so the added investment 

is limited by the investment opportunity. After two days, the opportunity increases 

and exceeds the available cash, so the added investment is limited by the available 

cash. Because of the shock in the deposit, the cash drops below the reserve 
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requirement and the bank is unable to invest, therefore there is a period of time in 

which the added investment is 0. 

Figure 4.9 reports further results of simulation 5, to see the effects of the investment 

opportunity on other activities; more specifically, figure 4.9 compares the case (blue 

lines) in which there is plenty of opportunities (𝑜𝑝𝑝1 = 1) with the case (red lines) in 

which the investment opportunity changes with time, as in figure 4.8. As shown in 

figure 4.9(c), during the first two days the red line (non-constant opportunity) is 

below the blues line ( 𝑜𝑝𝑝1 = 1 ) because the added investment is limited by the 

investment opportunity and fewer investments are made. This causes the total 

investment to increase more slowly and the cash to decrease more slowly for the non-

constant opportunity case, so in figure 4.9(c), the red line is below the blue line while 

in figure 4.9(d) the red line is above the blue line. 

 
Figure 4.9 Dynamics of the bank’s deposit (a), total investment (b), added investment (c), 

cash (d) for two different cases: (1) 𝑜𝑝𝑝1 = 0.01 𝑤ℎ𝑒𝑛 0 ≤ 𝑡 ≤ 2 𝑎𝑛𝑑 𝑜𝑝𝑝1 = 1 𝑤ℎ𝑒𝑛 2 ≤

𝑡 ≤ 10  (blue lines). (2)  𝑜𝑝𝑝1 = 1 𝑤ℎ𝑒𝑛 0 ≤ 𝑡 ≤ 10  (red dash dot lines). The grey dash 

line in (d) is the reserve ratio requirement; 𝑔1 = 0, 𝑝1 = 0, 𝑤1 = 0, 𝑣1 = 0 and 𝑟 = 0.2. 
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Simulation results 6: large shock in the deposit  

This subsection presents the case in which the bank fails; figure 4.10 reports the 

results of the simulation in which a shock in the deposit is large enough to make the 

cash negative and consequently the bank to fail. The deposit in figure 4.10(a) drops at 

day 3 to a level that causes the cash (shown in figure 4.1(d)) to decrease to a negative 

value and as result of this, the bank fails at day 4. This is a situation in which the shock 

in the deposit is too large for the bank to buffer it by itself. In the next sections, we 

introduce cases with more than one bank in the system to see whether borrowing 

between banks can reduce the occurrence of bank failure. Furthermore, in Chapter 5 

we analyse the case in which a control mechanism is developed and implemented in 

the one-bank model to make the bank more resilient to shocks. 

 

Figure 4.10 Dynamics of the bank’s deposit (a), total investment (b), added investment 

(c), cash (blue line in (d)) and the reserve ratio requirement (grey dash line in (d)), when 

𝑔1 = 0 , 𝑝1 = 0, 𝑤1 = 0 ,  𝑣1 = 0 and 𝑟 = 0.2. The deposit undergoes a large shock causing 

the cash to fall below zero and the bank to fail at day 4.  
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4.3 Two-bank model 

In this section the implementation and simulation results of the two-bank model are 

presented in detail. The first subsection explains the Simulink block diagram of the 

two-bank model. The second subsection shows the simulation results to illustrate the 

effect of borrowing on the banks’ behaviour.  

4.3.1   Implementation of the model in Simulink 

Figure 4.11 shows the Simulink block diagram of the two-bank model. The deposit and 

investment opportunity signals for each bank are imported using the same blocks as 

in the one-bank model (red blocks).  

 

Figure 4.11 Two-bank model in Simulink. 
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Differently from the one-bank model, all the calculations are put into a single block 

which is the large block named ‘Two-bank model’; this block allows the user to write 

codes and generate their own functions and is used for simplifying the implementation. 

With the codes defined by the users, the two-bank model block can do all the desired 

calculations without using further blocks (such as ‘subtract’ and ‘min’); it uses all the 

imported information to calculate the derivatives of the cash and investment of each 

bank (the two derivatives are gathered into one vector called ’xdot’ in figure 4.11) and, 

subsequently, it passes them to the integrator. The integrator calculates the values of 

cash and investment and outputs them to the workspace through the light blue block 

named ‘x’ in figure 4.11. 

4.3.2   Simulation Results 

This subsection shows the simulation results of the two-bank model which are 

generated from the Simulink block diagram that is described in figure 4.11; these 

results allow us to analyse how two banks interact with each other through borrowing 

and lending. This analysis facilitates the understanding of the more complex models 

where more than two banks are present. As in the simulations of the one-bank model, 

the unit time is one day and the total simulation period is 10 days. The step size is set 

to 0.1. Since the bank either needs to borrow or to lend money, the borrowing and 

lending cannot happen in one bank at the same time; therefore, it is assumed that 

bank1 acts as the borrowing bank and bank2 acts as the lending bank. Results from two 

different simulations are presented: 1) in the first case we study the effect of 

borrowing on bank 1 which experiences a shock on its deposit; 2) in the second case 

we apply a shock on bank1 and another shock on bank2 to study the indirect effect of 

lending on bank2. 

Simulation results 1: the effect of the borrowing 

In this simulation, the initial conditions and parameter values of the two banks are 

shown in table 4.2. Bank1 experiences a large shock which makes the deposit, 𝐷1, to 

decrease from 1 to 0.76 at day 4. Bank1 needs to borrow money from bank2 which does 

not experience any shock in the deposit (𝐷2 = 1 all the time). Furthermore, bank2 has 

cash above the reserve requirement (𝐶2 = 0.3 >  𝑟𝐷2 = 0.2) that can be lent to bank1. 

To avoid that bank2 uses cash to invest, the investment opportunity in bank2 is set to 

zero (𝑜𝑝𝑝2 = 0). We consider two subcases: in the first one, 𝛼12, the proportion of the 
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total borrowing that is repaid, is set to 0, so that bank 1 doesn’t repay the principal of 

the loans that have been borrowed; in the second subcase 𝛼12 > 0. 

 

Table 4.2 Initial conditions and parameter values used in simulation 6.  

Initial conditions 

𝐶1 = 0.25  

𝐼1 = 0.75  

𝐷1 = 1 when 0 ≤ 𝑡 ≤ 3 

𝐷1 = 0.76 when 4 ≤ 𝑡 ≤ 5 

𝐷1 = 1 when 6 ≤ 𝑡 ≤ 10 

𝑜𝑝𝑝1 = 1 when  0 ≤ 𝑡 ≤ 10 

𝐶2 = 0.3  

𝐼2 = 0.5  

𝐷2 = 1  

when 0 ≤ 𝑡 ≤ 10 

𝑜𝑝𝑝2 = 0 

 when 0 ≤ 𝑡 ≤ 10 

Parameter value 

𝑔1 = 0 , 𝑝1 = 0  

𝑤1 = 0 ,  𝑣1 = 0 

𝑟 = 0.2  

ℎ12 = 0  

𝛼12 = 0  

𝑔2 = 0 , 𝑝2 = 0  

𝑤2 = 0 ,  𝑣2 = 0 

𝑟 = 0.2 

ℎ21 = 0  

𝛼21 = 0 

 

 

Results in figure 4.12 are reported to study the behaviour of equation (3.7) when 

α12 = 0, in which case the added borrowing, 
𝑑𝐵12

𝑑𝑡
 , is only given by the minimum value 

between the cash demand of bank1 and the available cash of bank2. The blue line in 

figure 4.12 shows the money that bank1 borrows from bank2 at each time step. The 

red dash line represents the money bank1 needs to borrow, (𝑟𝐷1 − 𝐶1)+. The green 

dash dot line represents the money bank2 can lend (𝐶2 − 𝑟𝐷2)+. It can be seen the blue 

line follows the red line up to day 4, which means that bank2 can lend all the money 

bank1 needs; then the blue line follows the green up to around day 5, which means that 

bank1 requires more money than bank2 can provide; after around day 5, the blue line 

follows the reed one as bank2 can provide all the money needed by bank1.  
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Figure 4.12 Dynamics of added borrowing of bank1 when  𝑔1 = 𝑔2 = 0  , 𝑝1 = 𝑝2 = 0 ,  

𝑤1 = 𝑤2 = 0 ,  𝑣1 = 𝑣2 = 0, 𝑟 = 0.2 and 𝑜𝑝𝑝1 = 1, 𝑜𝑝𝑝2 = 0. The red dash line represents 

the money bank1 needs to borrow (𝑟𝐷1 − 𝐶1)+. The green dash dot line represents the 

money bank2 can lend (𝐶2 − 𝑟𝐷2)+. The blue line represents the added borrowing. 

 

The results with α12 = 0  are then compared with the results with α12 = 1 . The 

comparison is made in figure 4.13, where the blue lines represent the results with 

α12 = 0, while the red lines represent the results with α12 = 1. From figures 4.13(b1) 

and (c1), it can be seen that the red line is always below the blue line, which means 

that repaying the borrowing causes a decrease of bank1’s investment, because extra 

cash has to be used to make the repayment instead of the investment. In figure 4.13(d1) 

the red line and blue line overlap, which means that the bank1’s cash with or without 

the repayment of the borrowing doesn’t change. In figure 4.13(d2), bank2‘s cash 

increases at around day 5 because bank2 receives borrowing repayments from bank1. 

Since bank2 doesn’t have any investment opportunities, its investment stays at the 

same value (see figures 4.13(b2) and (c2)).  
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Figure 4.13 Dynamics of the two banks without borrowing repayment (blue lines) and 

with borrowing repayment (red lines). (a1) deposit, (b1) total investment, (c1) added 

investment, (d1) cash for bank1 - reserve ratio requirement in grey dash line in (d1). (a2) 

deposit, (b2) total investment, (c2) added investment, (d2) cash for bank1 - reserve ratio 

requirement in grey dash line in (d2). 𝑔1 = 0 , 𝑝1 = 0 , 𝑤1 = 0 , 𝑣1 = 0  , 𝑟 = 0.2  and  

𝑜𝑝𝑝1 = 1. 𝑔2 = 0, 𝑝2 = 0, 𝑤2 = 0 ,  𝑣2 = 0, 𝑟 = 0.2 and 𝑜𝑝𝑝2 = 0.   
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Simulation result 2: indirect effect of the borrowing on the lending bank 

This subsection shows a case in which borrowing has a negative effect on the lending 

bank. In order to let this behaviour to emerge, a shock in the deposit is applied on 

bank1, which is followed by a shock on bank2. Figure 4.14 reports the results of two 

different cases: blues lines represent the results when borrowing between the two 

banks is present (case 1) while red lines represent the results without borrowing (case 

2). The initial conditions and parameter values used in these two simulations are 

shown in table 4.3.  

Table 4.3 Initial conditions and parameter values used in simulation 2 . 

Initial conditions 

𝐶1 = 0.25  

𝐼1 = 0.75  

𝐷1 = 1 when 0 ≤ 𝑡 ≤ 3 

𝐷1 = 0.76 when 3 ≤ 𝑡 ≤ 5 

𝐷1 = 0.75 when 5 ≤ 𝑡 ≤ 8 

𝐷1 = 1 when 8 ≤ 𝑡 ≤ 10 

𝑂𝑝𝑝1 = 1 

𝐶2 = 0.3  

𝐼2 = 0.5  

𝐷2 = 1 when 0 ≤ 𝑡 ≤ 5 

𝐷2 = 0.76 when 5 ≤ 𝑡 ≤ 7 

𝐷2 = 1 when 7 ≤ 𝑡 ≤ 10 

 

𝑂𝑝𝑝2 = 0.01 

Parameter value 

𝑔1 = 0 , 𝑝1 = 0  

𝑤1 = 0 ,  𝑣1 = 0 

𝑟 = 0.2  

ℎ12 = 0.01/360  

𝛼12 = 1 

𝑔2 = 0 , 𝑝2 = 0  

𝑤2 = 0 ,  𝑣2 = 0 

𝑟 = 0.2 

ℎ21 = 0.01/360  

𝛼21 = 1 

 

The deposit signals of both banks are shown in figures 4.14(a1) and (a2). The shock in 

bank1 causes the deposit to decrease to 0.76 at day 4 and then to further decrease to 

0.75 at day 6. At the same time (day 6) a shock in bank2 happens causing bank2’s 

deposit to decrease to 0.76. Bank1’s cash drops below the reserve ratio due to the 

shock (see figure 4.14(d1)); with the borrowing from bank2, bank1‘s cash decreases 

more slowly and it even increases during day 3 to day 5 (blue line), while without the 

borrowing from bank2, bank1 fails at day 4 (red line). Due to the lending to bank1, 

bank2’s cash decreases more quickly during day 3 to day 5 compared to the results 

when no money is lent to bank1 (see figure 4.14(d2) where the blue line is below the  
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Figure 4.14 Dynamics of the two-bank model without borrowing (blue lines) and with 

borrowing (red lines). (a1) deposit, (b1) total investment, (c1) added investment, (d1) 

cash for bank1 - reserve ratio requirement in grey dash line in (d1). (a2) deposit, (b2) 

total investment, (c2) added investment, (d2) cash for bank2 - reserve ratio requirement 

in grey dash line in (d2). 𝑔1 = 0 , 𝑝1 = 0 , 𝑤1 = 0 ,  𝑣1 = 0 , 𝑟 = 0.2  and 𝑜𝑝𝑝1 = 1,  𝑔2 = 0 , 

𝑝2 = 0, 𝑤2 = 0,  𝑣2 = 0, 𝑟 = 0.2 and 𝑜𝑝𝑝2 = 0.1. 
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red line during day 3 to day 5). At day 5 a shock is experienced by bank2. As the cash 

of both banks is below the reserve ratio requirement, there is no borrowing/lending 

between the two banks during the second shock. Bank2 fails during this shock, while 

bank1 survives at the end of the simulation period. The indirect effect of the borrowing 

on the lending bank can be seen in this case: bank2 (lending bank) could survive during 

the second shock if it didn’t lend money to bank1 (see red line in figure 4.14(d2)). The 

borrowing doesn’t cause the bank to fail directly, it only weakens the bank’s ability to 

buffer a possible following shock. However, the borrowing has a positive effect for 

bank1, since it saves the bank from the shock. More complex cases will be studied in 

the multi-bank model in the next section, in which there are 50 banks in the system.   

4.4 Multi-bank model 

This section shows the implementation and the simulation results of the multi-bank 

model which is described in Chapter 3. The first subsection shows the Simulink block 

diagram of the multi-bank model while the second subsection presents the simulation 

results. In the simulations, shocks are introduced into the system via deposit. To study 

the stability of the banking system, the number of survival banks at the end of the 

simulation period are calculated and compared in different scenarios characterised by 

different values of the link rate, reserve ratio, the amplitude of the shock and the 

heterogeneity in bank’s size. Moreover, the contagion effect is characterised and 

studied as a function of link rate, reserve ratio and heterogeneity under different 

amplitudes of the shock. 

4.4.1 Implementation of multi-bank model in Simulink 

The Simulink block diagram of the multi-bank model, shown in figure 4.15, is similar 

to the one used for the two-bank model, but with two main improvements: 

1. The new Simulink block diagram can accommodate any number of banks in the 

system. The input signals (red blocks in figure 4.15) are represented by multi-

column matrixes (rather than just two-column matrixes) that contain the data for 

all banks. For example, the deposit signal in the two-bank Simulink block diagram 

has two columns: time and the values of the bank’s deposit at each time; in the new 

block diagram the deposit signal has one column representing the time and other 

N (number of banks in the system) columns representing the deposit values for 
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the N banks. All the other parameters (such as 𝑤𝑖 , 𝑣𝑖 , 𝑝𝑖  and 𝑔𝑖 ) and initial 

conditions used in Simulink (yellow blocks) are vectors that represent the 

information for all the banks.  

2. A new MATLAB script has been developed to perform the simulations, save and 

plot the results automatically with parameter values and initial conditions 

provided by the user. The script can also repeat the simulation a few times with 

the same parameter settings and calculate the average results automatically.  More 

details about the MATLAB script are included in Appendix 3. 

 

Figure 4.15 Simulink block diagram of the multi-bank model. 
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4.4.2 Simulation results of multi-bank model 

This subsection presents the results of simulations for two different cases: 

homogenous case (all banks have similar deposit size) and heterogeneous case (banks 

have deposit sizes that follow a Gaussian distribution) - see equations (3.15) and (3.16) 

in Chapter 3. In both cases, the following parameters are the same for all the 

simulations that are presented in this subsection: the number of banks in the system 

at the beginning of simulations is 50 - this number of banks is sufficient to provide a 

rich dynamics of the system. The unit time is one day and the total simulation time is 

300 days, which is a period of time long enough to observe the relevant dynamics.  

Homogeneous case simulation results 

This subsection shows the simulation results in the homogenous case, in which banks 

have similar size; the shocks is introduced into the system via deposit fluctuations. The 

values for the parameters in equation (3.15), which provide the deposit signal,  are set 

as follow:  �̅� =1000 (average size of each bank) and 𝜎𝐷= 0.3 or 𝜎𝐷= 0.7 (representing 

low and high amplitude of the shocks), which are similar to the values used in Iori’s 

work [103]. The initial conditions of each bank are set as follows: the cash is set to 

𝐶𝑖 = 200 and the investment is 𝐼𝑖 =800, so to have a net-worth close to zero; both 

borrowing, 𝐵𝑖 , and lending, 𝐿𝑖, are set to 0.  

The values used for the link rate, 𝑙𝑟, are 0, 0.03, 0.15, 0.3, 0.5, 0.75 and 1. The values 

used for the reserve ratio, 𝑟, are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7. Thus, there are 7x7= 

49 different combinations of link rate and reserve ratio, corresponding to 49 different 

scenarios. Each scenario is simulated 20 times – this number of simulations provide 

averages of the results with small standard deviations, for the given random shocks 

used in the simulations. All the results shown in this subsection are the averages of the 

20 simulations.  

Simulation results 1: effect of the reserve ratio on the number of survival banks  

Figure 4.16 shows how the number of survival banks is affected by different reserve 

ratios when the link rate, 𝑙𝑟, is fixed, and 𝜎𝐷= 0.3. Figure 4.16(a) reports the results 

corresponding to 𝑙𝑟= 0; this figure shows that when there is no interbank lending, the 

reserve ratio definitely plays a positive role to preserve the stability of the system. In 

fact, as the reserve ratio increases, more banks survive at the end of the simulation 
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period. It should be noticed that around 6 banks fail very quickly, within 1 or 2 days, 

and then the rate of failure decreases. This can be explained as follows: at the 

beginning of the simulation, all banks have cash equals to 200, investment equals to 

800 and they can get 240 from matured investments every day. Therefore, if they 

experience a shock which is larger than 440 (=200+240), they fail because there is no 

interbank lending (𝑙𝑟= 0). According to equation (3.15), the shock on a bank at time 𝑡 

is given by �̅�𝜎𝐷𝜀𝑡 , where �̅� = 1000 , 𝜎𝐷 = 0.3  and 𝜀𝑡~𝑁(0,1) ; therefore, 

�̅�𝜎𝐷𝜀𝑡  ~𝑁(0, 3002). The probability, 𝑝, that �̅�𝜎𝐷𝜀𝑡 is smaller than -440 (i.e. the shock 

is larger than the sum of cash and matured investment) can be calculated as follows: 

first transform �̅�𝜎𝐷𝜀𝑡  into normal distributed variable, 𝑧 =
�̅�𝜎𝐷𝜀𝑡−0

300
; then, it can get 

that 𝑝(�̅�𝜎𝐷𝜀𝑡 < −440) = 𝑝 (
�̅�𝜎𝐷𝜀𝑡−0

300
<  −

440

300
) = 𝑝(𝑧 < −1.4) = 0.08 . Therefore, 

about 4 banks, (50×0.08) are likely to fail at day 1, which is close to the value in figure 

4.16(a). In the following days, the survival banks have more cash from matured 

investments and from potential positive shocks, so the failure rates decreases.    

The effect of the reserve ratio, however, is different when the link rate increases as 

shown in figures 4.16(b) (c) and (d); the figures show that some banks fail around day 

1 and the number of failed banks is higher if the reserve ratio is higher - the remaining 

banks survive until the end of the simulation. This is because high reserve ratios 

discourage banks from lending, which is a problem when some banks experience 

negative shocks in their deposits. When the reserve ratio is low, for example 𝑟=0.3, 

banks have more available cash for lending; with lending/borrowing, fewer banks fail. 

As reserve ratio increases the banks have less available cash for lending, because they 

need to keep the cash to meet their reserve requirement; therefore, more banks fail 

because they cannot borrow enough money to buffer the shock.  

There two reasons why the number of survival banks stays constant after the first a 

few days: when the reserve requirement is higher than the shock’s standard deviation, 

(300 as �̅�𝜎𝐷𝜀𝑡  ~𝑁(0, 3002)), the banks have enough cash to resist the shocks without 

the help of interbank lending. When the reserve ratio, 𝑟, ranges between 0.1 and 0.3, 

the reserve requirement is lower than the shock’s standard deviation and therefore 

banks survive thanks to the help from other banks’ lending. 
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Figure 4.16  Number of survival banks in the homogeneous case with 𝜎𝐷 = 0.3, 𝜎𝑜𝑝𝑝 = 0.5 

with different reserve ratios, 𝑟 =0.1 (dark blue line), 𝑟 =0.2(light red line), 𝑟 =0.3 (yellow 

line), 𝑟 =0.4 (purple line), 𝑟 =0.5 (green line), 𝑟 =0.6 (light blue line), 𝑟 =0.7 (dark red 

line), and under different link rates, 𝑙𝑟 = 0 (a), 𝑙𝑟 = 0.15 (b), 𝑙𝑟  = 0.5 (c), 

 𝑙𝑟= 1 (d). 

From these results, it can be concluded that it is safe for the isolated bank to keep a 

high reserve ratio to preserve itself from the large shocks, but this is not always 

beneficial for the whole system, in fact, the dark red line (𝑟=0.7) in figure 4.16(a) is 

lower than the corresponding dark red lines in figures 4.16(b), (c) and (d) which have 

higher link rate; this indicates that the effect of the reserve ratio should be analysed 

together with the effect of the link rate. Moreover, the link rate seems to have a more 

powerful effect on the number of survival banks. 
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Simulation results 2: effect of the link rate on the number of survival banks 

Figure 4.17 shows the effect of the link rate on the number of surviving banks, when 

the reserve ratio is fixed. Figures 4.17(a), (b), (c) and (d) show that more banks survive 

as the link rate increases; looking at the dark blue line, (𝑙𝑟 = 0), and the light red line, 

(𝑙𝑟 = 0.03), across the 4 figures, the higher the reserve ratio the more banks survive. 

With higher link rate (from 0.3 to 1) most banks survive and not significant differences 

exist for the different cases. This indicates that, when exceeding a threshold value, the 

increase in the link rate does not help much in improving any further the stability of 

the system. These results show that the banks don’t need to be fully connected to keep 

the system stable, when the shock is not very larger. 

 

Figure 4.17 Number of survival banks in the homogeneous case with 𝜎𝐷 = 0.3, 𝜎𝑜𝑝𝑝 = 0.5, 

with different link rates, 𝑙𝑟  = 0 (dark blue line), 𝑙𝑟  = 0.03 (light red line), 𝑙𝑟  = 0.15 (yellow 

line), 𝑙𝑟  = 0.3 (purple line), 𝑙𝑟  = 0. 5 (green line), 𝑙𝑟  = 0.75 (light blue line), 𝑙𝑟  = 1 (dark 

red line), and under different reserve ratios, 𝑟 =0.1(a), 𝑟 =0.3(b), 𝑟 =0.6 (c), 𝑟 =0.7 (d). 
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Simulation results 3: effect of the shock amplitude on number of survival banks 

This subsection shows the simulation results when shocks have a higher amplitude. 

The amplitude of the shocks, 𝜎𝐷, is increased to 0.7; the results are compared with the 

ones with 𝜎𝐷= 0.3, reported in simulations 1 and 2, to see if the effects of the link rate 

and reserve ratio change when the system is under large shocks. 

Figure 4.18 shows how the number of survival banks is affected by different reserve 

ratios when the link rate, 𝑙𝑟, is fixed. Figure 4.18(a) shows that banks fail more quickly 

(at day 40 all banks fail) than in simulation 1 due to larger shocks. When the link rate 

is fixed, similar effect of the reserve ratio is found as in simulation1. In figure 4.18(a), 

in which 𝑙𝑟  = 0, a higher reserve ratio makes bank survive longer while, when the link  

 

Figure 4.18 Number of survival banks in the homogeneous case with 𝜎𝐷 = 0.7, 𝜎𝑜𝑝𝑝 = 0.5 

with different reserve ratios: 𝑟  = 0.1 (dark blue line), 𝑟  = 0.2(light red line), 𝑟  = 0.3 

(yellow line), 𝑟 = 0.4 (purple line), 𝑟 = 0.5 (green line), 𝑟 = 0.6 (light blue line), 𝑟 = 0.7 

(dark red line) under different link rates, 𝑙𝑟= 0 (a), 𝑙𝑟  = 0.15 (b), 𝑙𝑟  = 0.5 (c), 𝑙𝑟  = 1 (d). 
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rate increases to 0.15, 0.5 and 1 as in figures 4.18(b), (c) and (d), higher reserve ratio 

works in an opposite way, causing more banks to fail because it discourages banks 

from lending. The negative effect of the high reserve ratio is more obvious in figures 

4.18(b), (c) and (d) when compared to figures 4.16(b), (c) and (d). 

Figure 4.19 shows the effect of the link rate on the number of surviving banks, when 

the reserve ratio is fixed. Comparing the results in figure 4.19 with the results from 

simulation 2, the same effect of the link rate is found; as the link rate increases more 

banks survive. In figures 4.19(a) and (b), when the link rate is equal or bigger than 0.3, 

the increase in the link rate does not make a noticeable difference. In figure 4.19(c) 

this happens when the link rate is equal or bigger than 0.5, while in figure 4.19(d) this 

happen when the link rate is equal or bigger than 0.75. This indicates that high reserve  

 

Figure 4.19 Number of survival banks in the homogeneous case with 𝜎𝐷 = 0.7, 𝜎𝑜𝑝𝑝 = 0.5, 

with different link rates, 𝑙𝑟  = 0 (dark blue line), 𝑙𝑟  = 0.03 (light red line), 𝑙𝑟  = 0.15 (yellow 

line), 𝑙𝑟  = 0.3 (purple line), 𝑙𝑟  = 0. 5 (green line), 𝑙𝑟  = 0.75 (light blue line), 𝑙𝑟  = 1 (dark 

red line), and under different reserve ratios, 𝑟 = 0.1 (a), 𝑟 = 0.3 (b), 𝑟 = 0.6 (c), 𝑟 = 0.7 (d). 
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ratios limit banks from lending; it is harder for banks to find available cash to borrow 

as reserve ratio increases, therefore, banks need to be more connected to have more 

chance to borrow and survive. 

Simulation results 4: joint effect of the link rate, reserve ratio and shock 

amplitude on the number of survival banks 

The trends showed in simulation 1, 2 and 3 can be observed in figures 4.20, which 

reports the waterfall plot of the number of surviving banks at day 300 (the end of any 

simulation) as function of both link rate and reserve ratio, when 𝜎𝐷 = 0.3 or 𝜎𝐷 = 0.7. 

Figures 4.20(a) and (c) show the results for lower and higher amplitude of the shock, 

respectively; a larger amplitude of the shock causes more banks to fail, as expected, 

but the link rate has always a positive effect on the system. Reserve ratio acts 

positively when the link rate is low (see figure 4.20(b) for clearer evidence) and acts 

in the opposite way when link rate is high (see figure 4.20(d)).  

 

Figure 4.20 Waterfall plots showing the number of survival banks in the homogeneous 

case at day 300 as function of both link rate and reserve ratio; (a) and ( b)  𝜎𝐷 = 0.3 ; (c) 

and (d) 𝜎𝐷 = 0.7 . 
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Simulation results 5: contagion 

Another interesting aspect of the model is the analysis of contagion of failure due to 

the interbank borrowing and lending. A measure of contagion is defined as follows: 

when a bank fails, the algorithm checks whether that bank has unpaid loans from those 

others that failed earlier. The total of the unpaid loans is judged to be ‘significant’ in 

the case in which the bank would have survived if it did not have those unpaid loans: 

therefore, the total of unpaid loans is considered to be significant if it is bigger than 

the difference between the shock and the bank’s cash. At the end of the simulation, the 

proportion of failed banks with significant unpaid loans, as compared to the total 

number of failed banks, is calculated; the higher this proportion, the higher the 

contagion. Figure 4.21 reports the proportion of failed banks with significant unpaid 

loans as a function of both link rate and reserve ratio when σD = 0.3 (a) and σD = 0.7 

(b). Figure 4.21(a) shows that the ratios are all quiet small (maximum is 0.1, see the 

colour bar) when σD = 0.3, which means the contagion is small when the shock is 

small. This is also because most banks did not fail at the end of the simulation (see 

figure 4.20(a)). When the shocks are larger, contagion increases as in figure 4.21(b); 

up to 60% of the failed banks are affected by contagion. Therefore, the following 

analysis is focused on the high-shock case, to study how the link rate and reserve ratio 

affect contagion. 

 

Figure 4.21  Contagion for the homogeneous case as function of link rate ( 𝑙𝑟  = 0 to 1) and 

reserve ratios (𝑟 = 0.1 to 0.7), when 𝜎𝐷 = 0.3 (a) and  𝜎𝐷 = 0.7 (b). 
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Figure 4.22 is a larger version of figure 4.21(b), and is divided into 4 areas: Area1 (𝑟 

from 0.1 to 0.35 and 𝑙𝑟 from 0 to 0.5), Area2 (𝑟 from 0.35 to 0.7 and 𝑙𝑟 from 0 to 0.5), 

Area3 (𝑟 from 0.35 to 0.7 and 𝑙𝑟 from 0.5 to 1) and Area4 (𝑟 from 0.1 to 0.35 and 𝑙𝑟 

from 0.5 to 1).  

 

Figure 4.22 Contagion for the homogeneous case as function of link rate ( 𝑙𝑟= 0 to 1) and 

reserve ratios(r = 0.1 to 0.7), when 𝜎𝐷 = 0.7 . 

Looking at Area1 and Area2, when link rate is fixed and less than 0.2, an increase in 

the reserve ratio does not change the contagion significantly, as banks are less 

connected and failure has fewer channels to spread; when link rate is fixed and 

between 0.2 and 0.5, an increase in the reserve ratio decreases the contagion, as a high 

reserve ratio discourages the banks from lending to others, thus decreases the 

channels for failure to spread. 

Area4 and Area3 show how contagion is affected by the reserve ratio when the link 

rate is high and fixed; an increase in the reserve ratio has a nonlinear effect on 

contagion, in fact, contagion increases as the reserve ratio increases from 0.1 to 0.35 

(Area4), and it decreases as the reserve ratio increases from 0.35 to 0.7 (Area3). The 
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reason for the decrease in contagion in Area3 is the same as explain in the previous 

paragraph: high reserve ratio discourages the banks from lending to others. To explain 

the increase in contagion in Area4, figure 4.23 is reported, which plots the mean and 

variance of all the unpaid loans as a function of the link rate. The different colour of 

the lines represents the different reserve ratios. It can be seen that when link rate 

ranges from 0.5 to 1, the mean of the unpaid loans increase as 𝑟 increases from 0.1 

(light red line) to 0.3 (yellow line). This indicates that banks borrow more money (the 

mean increases), because they may need to satisfy an increasing reserve requirement. 

Therefore, the unpaid loans may increase in size, resulting in overall increase in 

contagion.  

 

Figure 4.23  Mean and variance of all the unpaid loans as a function of link rate, when 

𝜎𝐷 = 0.7, 𝜎𝑜𝑝𝑝 = 0.5 and for different reserve ratios: 𝑟 = 0.1 (dark blue line), 𝑟 = 0.2 (light 

red line), 𝑟 = 0.3 (yellow line), 𝑟 = 0.4 (purple line), 𝑟 = 0.5 (green line), 𝑟 = 0.6 (light blue 

line), 𝑟 = 0.7 (dark red line). 

Looking at Area1 and Area4 in figure 4.22, it can be seen how contagion is affected by 

the link rate when the reserve ratio is low and fixed. For a fixed value of the reserve 

ratio, the link rate shows a nonlinear effect on contagion; when the link rate increase 

from 0 to 0.5 (Area1), the contagion increases - banks are more connected thus they 

have more channels to spread failure, while when the link rate increases from 0.5 to 1 

(area 2), contagion decreases. This can be explained looking at figure 4.23; for low 

values of 𝑟 (from 0.1 to 0.3, corresponding to light red line, dark blue line and yellow 

line respectively), as 𝑙𝑟 increases from 0.5 to 1, the mean and variance of the unpaid 

loans decrease. This indicates that as link rate increases, the amount of borrowings 

between banks become smaller in size and more uniformly distributed. Therefore, 
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failed banks have smaller loans thus it is unlikely they are significant enough to cause 

the contagion. 

Area2 and Area3 show how contagion is affected by the link rate when reserve ratio is 

high and fixed. The contagion increases as link rate increases from 0 to 0.25 because 

banks are more connected. As link rate increases from 0.25 to 1, the contagion does 

not change much. This is because when reserve ratio is high, an increase in the link 

rate does not increase the borrowing, as banks need to keep cash as reserves. 

Therefore, the channels for spreading failure do not increase significantly. 

Heterogeneous case simulation results 

This section shows the simulation results in the heterogeneous case, in which banks 

vary in size. Deposit data for each bank are generated using equation (3.16), in which 

 �̅�𝑖~ |𝑁(µ𝑠, 𝜎𝑠
2)|, is assigned to the banks by sampling from a Gaussian distribution 

with the mean, µ𝑠, and variance, 𝜎𝑠
2. The values of 𝜎𝑠 , representing the degree of the 

heterogeneity, are set to 100, 200, 300, 400, 500, 600 and 700. The initial conditions 

of banki’s cash (𝐶𝑖), investment (𝐼𝑖), borrowing (𝐵𝑖), lending (𝐿𝑖) and net-worth (𝑁𝑖) 

are 0.2×𝐷𝑖, 0.8×𝐷𝑖, 0, 0 and 0 respectively. The reserve ratio, 𝑟, is set 0.2. This reserve 

ratio does not limit the banks much from lending, so that the effect of the link rate can 

be observed. 

The values of the link rate, 𝑙𝑟, are 0, 0.03, 0.15, 0.3, 0.5, 0.75 and 1 and given the 7 

different values of the degree of the heterogeneity, 𝜎𝑠  , there are 49 different 

combinations in total, corresponding to 49 different scenarios. Each simulation case is 

repeated 20 times, to make sure that the main trends in the results are not significantly 

affected by random noise. All the results shown in this subsection are the averages of 

the 20 times. The simulation results show how the number of survival banks is affected 

by heterogeneity, link rate and the amplitude of the shock. 

Simulations results 6: effect of the heterogeneity on number of survival banks 

Figure 4.24 reports the waterfall plots of the number of surviving banks at day 300 as 

function of both link rate and heterogeneity when σD = 0.3 and σD = 0.7. Looking at 

figure 4.24(a), when the shock amplitude is low, σD = 0.3, the effect of the link rate 

seems not to be significant, in fact, as link rate increases from 0.03 to 1, the lines in the 

figure 4.24(a) stay flat and almost all the banks survive at the end of the simulation. In 
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figure 4.24(c), instead, the effect of heterogeneity seems not be significant, in fact, for 

all different link rate cases, the lines stay flat. It should be pointed out that with 𝑙𝑟 = 0, 

only a few banks survive. Therefore, the following analysis is focused on the case in 

which a high shock amplitude, σD = 0.7, is applied.  

 

Figure 4.24 Waterfall plots showing the number of survival banks in the heterogeneity 

case at day 300, as function of both heterogeneity and link rate, when 𝜎𝐷 = 0.3 (a) and 

(c), and 𝜎𝐷 = 0.7 (b) and (d). 

Figure 4.25 shows the effect of the link rate on the number of surviving banks, when 

the link rate is fixed. Figure 4.25(a) shows that when 𝑙𝑟= 0, there is little difference in 

number of survival banks as the heterogeneity changes. Since banks are isolated and 

are not affected by the interbank borrowing and lending, changes in banks’ size do not 

affect the results. As the link rate increases, banks are connected and start to affect 

each other. Link rate has a positive effect as shown in figure 4.25(b), (c) and (d), in 

which the link rate is equal to 0.15, 0.5 and 1, respectively. This can also be observed 

in figure 4.25(b), in which more banks survive as the link rate increases. However, 

high heterogeneity tends to destabilise the system as shown in figures 4.25(b), (c) and 
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(d); more banks fail when 𝑙𝑟= 0.75 (light blue line) and 𝑙𝑟= 1 (dark red line), compared 

to other lines with lower link rates.  

 

Figure 4.25  Number of survival banks in heterogeneous case with 𝜎𝐷 = 0.7, 𝜎𝑜𝑝𝑝 = 0.5, 

and heterogeneities, 𝜎𝑠 = 100 (dark blue line), 𝜎𝑠 = 200 (light red line), 𝜎𝑠 = 300 (yellow 

line), 𝜎𝑠  = 400 (purple line), 𝜎𝑠  = 500 (green line), 𝜎𝑠  = 600 (light blue line), 𝜎𝑠  = 700 

(dark red line), and under different link rates 𝑙𝑟= 0 (a), 𝑙𝑟= 0.15 (b), 𝑙𝑟= 0.5 (c), 𝑙𝑟=1 (d). 

Simulation results 7: contagion effect on heterogeneous banks 

The same definition is used in this subsection to quantify contagion as in the 

homogeneous case. Figure 4.26 shows the contagion effect as function of the interbank 

link rate and the heterogeneity, when σD = 0.3 (a) and  σD = 0.7 (b). The contagion 

effect is very small when the shock amplitude is low, see figure 4.26(a), compared to 

4.26(b) when shock amplitude is high.  
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Figure 4.26  Contagion in heterogeneous banks as function of interbank link rate ( 𝑙𝑟= 0 

to 1) and heterogeneity (𝜎𝑠 =100 to 700), when 𝜎𝐷 = 0.3 (a) and  𝜎𝐷 = 0.7 (b). 

 

4.5 Conclusions 

This chapter shows the MATLAB Simulink implementation of the dynamic models 

described in Chapter 3 as well as the results of numerical simulations. It is useful to 

highlight how results presented in this chapter compare with results in the literature, 

more specifically results presented by Iori et al. [103]. 

In Iori et al.’s work, it is found that more banks survive when the degree of linkage is 

high. Same conclusion about the link rate can be obtained from the proposed dynamic 

model, which shows that the link rate always contributes positively to the number of 

survival banks. Increasing the reserve ratio has the effect of decreasing the incidence 

of bank failures when the link rate is zero. These findings can be found both in Iori et 

al.’s work and in this work, which indicate that reserve ratio adds stability to the 

individual banks. However, with an interbank market (link rate larger than zero), the 

effect of the reserve ratio is less clear in Iori et al.’s model; increasing the reserve ratio 

initially leads to an increase in the incidence of bank failures, but when reserve ratio 

crosses a critical level, it results in fewer banks’ failures. In this work, no such change 

is found; increasing the reserve ratio always causes more banks to fail. This may be 

because in this work larger shocks have been applied; in fact, the amplitude of the 

shocks, 𝜎𝐷, is set to 0.3 and 0.7, which are larger than the value used in Iori et al.’s work, 

(0.25), thus, the reserve ratio is not sufficient for the individual banks to withstand the 

shock. Therefore, high reserve ratio cannot make more banks survive from the large 
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shock. A further simulation with 𝜎𝐷= 0.25 have been run, and similar results to Iori et 

al.’s ones have been found (see figure A.1 in Appendix 4). 

The methods to qualify the contagion of banks’ failure in Iori et al.’s model are different 

from the method proposed in this chapter, but two same conclusions can be drawn: 

the first one is that increasing the link rate is likely to increase contagion. In Iori et al.’ 

work, the size of the avalanches (i.e. the number of failing banks at one point of time) 

gets larger when link rate gets higher; the results of contagion in this chapter also 

show that the contagion increases as link rate increase. The second conclusion is that 

the heterogeneity can contribute to contagion; in Iori et al.’s work, more contagion is 

found in the heterogeneous case compared to the homogenous case - the same trend 

is found in the proposed model. 

The results presented in this chapter show that increasing the reserve ratio to 

preserve the banking system’s stability may not have always a positive effect. A high 

reserve ratio, in fact, may be advantageous only when the shocks in the deposit is not 

very large and the banks are sparsely connected; when the shocks are large, a high 

reserve ratio may be detrimental to the survival of the banks. Encouraging the 

interbank activities (large link rate), instead, has always a positive effect on the 

number of survival banks in the system. More results of the effect of the reserve ratio 

and the link rate on the interest rate and net-worth of the banks can be found in 

Appendix 4 (figures A.2 and A.3). 

Furthermore, the results presented in this chapter show that both link rate and 

reserve ratio have nonlinear effects on the contagion of banks’ failure. These results 

show the importance of modelling the banking system when simultaneous changes in 

different parameters may have a non-intuitive effect; it is the belief of the authors of 

the proposed work that the findings presented in this chapter can ultimately help 

financial regulators in implementing new policies to preserve the banking system’s 

stability.       

Finally, it is important to stress that there are situations in which some or all banks in 

the system fail; this suggests that the introduction of control mechanisms to prevent 

banks from failing would be desirable. The next chapter shows the application of 

control mechanisms on the one-bank model to study and improve the stability of each 

individual bank.  
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Chapter 5  
 
Control Analysis  

 

 

This chapter presents the application and analysis of control mechanisms on the 

model of the nonlinear banking system introduced in Chapter 3. Classical control 

theory is used to study the stability of the dynamic model and subsequently output 

feedback control is designed to improve the stability of the system. It is well known 

that common analytical techniques in the classical control theory are more powerful 

to linear models rather than nonlinear models. Moreover, a nonlinear system is very 

complex and there is no generic way to deal with a nonlinear control system. 

Therefore, linearization is performed on the original model at first. The designed 

feedback control mechanisms are then applied to both the nonlinear model and 

linearized model for testing and comparison.  

This chapter is organized as follows. Section 5.1 shows the general process of control 

system design which can also be used to design controllers for the banking system. 

Section 5.2 explains some basic methodologies which are used in the analysis 

including introduction of state-space models, linearization around the equilibrium 

point and analysis of the stability, observability and controllability of a system. Section 

5.3 presents an equilibrium point analysis for the one-bank model, while Section 5.4 

shows how to perform linearization around these equilibrium points. Section 5.5 gives 

details of the control design according to the analysis in Sections 5.3 and 5.4 as well as 

presenting some simulation results with the designed controller applied. Section 5.6 

presents the conclusions. 

5.1 Control System Design Process 

The design of a control system is a specific example of engineering design. The aim of 

control design is to obtain the system configuration, set the performance specification, 
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and manipulate the key parameters so that the proposed system performs as desired. 

Though this process is used in the engineering industry, it can be transferred to the 

banking system. Figure 5.1 shows the general process of control system design. It 

consists of seven blocks which are arranged into the three groups explained as follows.  

 

Figure 5.1 Control system design process, adapted from [15]. 

Establishment of goals, variables to be controlled and specifications 

The first step of a control design is to establish the control objectives. For the banking 

system, the general objective is to keep the system stable and ensure that banks do not 

fail. The objectives can vary according to the different problems that the study focuses 

on. For example, in the one-bank model the objective is simply to keep the cash 

positive.  
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Based on the defined overall control objectives, the variables to be controlled and the 

performance specification are decided upon. The variables to be controlled should be 

the variables that can be manipulated. For example, in the banking system, what the 

bank can control are the lending and investment amongst other things, and these can 

be considered as control variables. The bank cannot control its deposit, so this cannot 

be used as control variables. The performance specifications describe how the closed-

loop system should perform. Usually, it requires the closed-loop system to be stable 

and has a desirable response. The desired response should meet the requirements in 

rise time (the time needed by the control system to reach the desired value after a 

perturbation), peak overshoot (the highest value reached by the response before 

reaching the desired value) and settling time (the time system needs to be stable). 

System definition and modelling 

With the given control objectives and specifications, a control configuration (as shown 

in figure 2.6) can be identified. Then a suitable mathematical model should be built for 

the control analysis and design. Part of this modelling has been performed in chapter 

3 where three models of the banking system have been generated. As the chosen 

design techniques can only be applied to a linear model, linearization of the nonlinear 

banking system models is needed. The linearization involves creating a linear 

approximation of a nonlinear system that is valid in a small region around the 

equilibrium point, a steady-state condition in which all model states are constant. A 

linear model can be obtained by linearization. The analysis and designs are done based 

on this linear model.  

Control system design, simulation, and analysis 

Based on the control configuration and the valid linear model, a controller can be 

designed. The most important process in control design is to adjust the parameter 

values of the controller in order to meet the objectives and performance specifications. 

Then the controller is tested and verified in computer simulations using the full model.  

The design can be finalized and can be proceed to document the results if the desired 

performance is achieved. If the performance is not stable, an improved system 

configuration needs to be established. Then the design process will be repeated until 
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the specifications are met, or sometimes the specifications are considered to be too 

demanding and need to be relaxed.  

5.2 Methodologies in control theory 

This section introduces some basic concepts of control theory which form the 

methodology of the control analysis for the banking system. These include how to use 

the state-space form to represent the model, linearize the model around the 

equilibrium point and study the stability, controllability and observability of the linear 

model.  

5.2.1 State-space representation of the model 

In control engineering, a state-space model is a mathematical model of a system 

whereby the input, output and state variables are related by ordinary differential 

equations. The idea of state-space modelling comes from the state-variable method of 

describing differential equations. In this method, the differential equations describing 

a dynamic system are organized as a set of ordinary differential equations in the 

vector-valued state of the system, and the solution is visualized as a trajectory of this 

state vector in space.   

A general state-space model is shown in equation (5.1),  

�̇� = 𝑓1(𝒙, 𝒖, 𝒅, 𝑡) 

𝐲 = ℎ1(𝒙, 𝒖, 𝒅, 𝑡)                                                        (5.1) 

where 𝒙 is a column vector that represents the state variables. It contains 𝑛 elements 

for an 𝑛th-order system. The state variables are the smallest possible subset of system 

variables that can represent the entire state of the system at any given time. The 

minimum number of state variables required to represent a given system, 𝑛, is usually 

equals to the order of the system's defining differential equation. �̇� represents the time 

derivative of each state variable which is also a column vector that has the same size 

as 𝒙. 𝒖 represents the control inputs variable and  𝒅 is the disturbance. Both 𝒖 and 𝒅 

are row vectors. The numbers of elements in 𝒖 and 𝒅 are the numbers of the control 

inputs and disturbances. In the one-bank model the cash 𝐶1 and investment 𝐼1 are the 
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state variables, deposit 𝐷1 and investment opportunities 𝑂𝑝𝑝1are the disturbance and 

output is the cash 𝐶1.  

Figure 5.2 recalls the block diagram shows the feedback control with state-space 

representation. From the figure it can be seen that the disturbance is an exogenous 

signal that the system cannot control. 

 

Figure 5.2 A block diagram of a negative feedback control system represented in a state -

space form. The plant of the system now is described by  �̇� which is the derivative of the 

state variable 𝒙. 𝒚 represents the output of the system. Both �̇� and 𝒚 are functions of the 

state variable 𝒙, control input variable 𝒖, external disturbances 𝒅 and time 𝑡. 

A state-space model is used because it can deal with multi-input and multi-output 

systems, i.e. systems that have more than one control input or more than one sensed 

output. Though in the analysis of the one-bank model, the system is a single-input 

single-output system (SISO), this method still can be used and it can build up a good 

foundation for the future analysis of the two-bank model as well as the multi-bank 

model. Another reason to use the state-space model is that it is particularly well suited 

to the use of computer techniques, which enhance our ability to take the advantage of 

the computational efficiency of MATLAB. 

In equation (5.1), when 𝑓1 and ℎ1 are nonlinear functions of  𝒙 and 𝒖, it can be said that 

the system is nonlinear, while when 𝑓1 and ℎ1 are linear with respect to both 𝒙 and 𝒖, 

the system is linear system. Additionally, if the dynamical system is linear and there is 

no disturbance input, the SISO system can be expressed in matrix form shown as 

follows: 

𝒙(𝒕)̇ = 𝑨𝒙(𝒕) + 𝑩𝒖(𝒕) 

𝒚(𝒕) = 𝑪𝒙(𝒕) + 𝑫𝒖(𝒕)                                                   (5.2) 
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 where 𝑨  ∈ 𝑹𝑛×𝑛 , 𝑩  ∈ 𝑹𝑛×1 , 𝑪  ∈ 𝑹1×𝑛 , and 𝑫  ∈ 𝑹 . Sometimes, real systems are 

described by nonlinear models such as (5.1), and the tools in classic control theory 

usually cannot be employed to design controllers for nonlinear systems. Therefore, 

linearization technique is used to find the corresponding linear models which can 

approximate the original nonlinear system thus it is possible to study the behaviour 

of the nonlinear system with the classic control tools by considering the linearized 

models. 

5.2.2 Equilibrium point and linearization 

Frequently behaviour of the nonlinear model within a certain operating range of an 

equilibrium point can be reasonably approximated by that of a linear model. One 

reason for approximating the nonlinear system by a linear model is that, by doing so, 

one can apply rather simple and systematic linear control design techniques such as 

root locus analysis. The behaviour of the solutions of the linear system are expected 

to be the same as the nonlinear ones, so that a controller designed based on the linear 

model will perform well also on the nonlinear model. However, it needs to be stressed 

that a linearized model is valid only when the system operates in a sufficiently small 

range around an equilibrium point. To take into account the presence of nonlinearities, 

more sophisticated tools are needed which are beyond the scope of simple linear 

analysis.  

Consider a system in state-space representation in (5.1). When 𝒖 is set to be a constant 

value 𝒖∗and there is no disturbance, if �̇� = 𝑓1(𝒙∗, 𝒖∗) = [𝟎 𝟎 … 𝟎]𝑻, then (𝒙∗, 𝒖∗) is said 

to be an equilibrium point of system (5.2). Let 𝒚∗ = ℎ1(𝒙∗, 𝒖∗), which is the output 

value at the equilibrium point. The aim of the linearization is to find a linear system 

when (𝒙, 𝒚) is close to (𝒙∗, 𝒚∗). In order to do that, it is necessary to approximate the 

functions 𝑓1(𝒙, 𝒚) and ℎ1(𝒙, 𝒚) when (𝒙, 𝒚) is close to (𝒙∗, 𝒚∗). 

Since the linearization is done around the equilibrium point, a coordinate 

transformation is defined as follows. Denote Δ𝒙 = 𝒙 − 𝒙∗，Δ𝒖 = 𝒖 − 𝒖∗，and Δ𝒚 =

𝒚 − 𝒚∗ . The new coordinates Δ𝒙, Δ𝒖, and Δ𝒚 represent the variations of 𝒙, 𝒖, and 𝒚 

from their equilibrium values. The linearization of (5.1) at 𝒙∗ is given by  
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Δ�̇� = 𝑨Δ𝒙 + 𝑩Δ𝒖 

Δ𝒚 = 𝑪Δ𝒙 + 𝑫Δ𝒖                                                        (5.3) 

Where                  𝑨 = [
𝜕𝑓1

𝜕x
]

𝒙∗,𝒖∗
 𝑩 = [

𝜕𝑓1

𝜕u
]

𝒙∗,𝒖∗
𝑪 = [

𝜕ℎ1

𝜕x
]

𝒙∗,𝒖∗
  𝑫 = [

𝜕ℎ1

𝜕u
]

𝒙∗,𝒖∗
 

From the above linearization process, the relationship between the linear and 

nonlinear systems are shown as in figure 5.3. If the nonlinear system is linearized at 

the equilibrium point ( 𝒙∗, 𝒖∗, 𝒚∗) , then the dynamics of the linear model can 

approximate the dynamics of nonlinear model when the same inputs and initial 

conditions are applied around this equilibrium point.  

 

Figure 5.3 Block diagrams showing the relationship between linear and nonlinear models. 

Any input 𝑢  applied to linear model represents an input of 𝑢 + 𝑢∗  applied to the 

nonlinear model. Any initial condition 𝑥0  in the linear model is equivalent to initial 

condition of 𝑥0 + 𝑥∗in the nonlinear model. Any output 𝑦 in the linear model is expected 

to be the same as the output in nonlinear model when pluses by 𝑦∗.  

For convenience, the notation Δ𝒙, Δ𝒖 and Δ𝒚 in equation (5.3) is replaced by 𝒙, 𝒖 and 

𝒚  respectively in the rest of this chapter. Therefore, if an input  𝒖 = 1 is applied to the 

linear system, the corresponding input for the nonlinear system should be  𝒖∗ + 1.  An 
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output of 1 in the linear model is corresponding to the output of 𝒚∗ + 1  in the 

nonlinear model.  An initial condition of  𝒙 = 1 in the linear model represents an initial 

condition of 𝒙∗ + 1 in the nonlinear model.  

5.2.3 Stability, observability and controllability of the linear system 

This section shows some analysis done based on the linear model to study the stability, 

observability and controllability of the linear system to facilitate the subsequent 

control design. There are many concepts of stability, and many different definitions 

are possible. Here the eigenvalues of the matrix 𝑨  in the linear model is used to 

investigate the stability of the linear system. Before deciding the control, observability 

and controllability of a system must be considered, since they can tell whether is 

possible to observed or control (stabilize) the system and if the measured output can 

be used to represent the behaviour of the system. 

Stability  

Considering the linear system (5.2), it can be stated that the linear system is  

(a)  stable if all of the eigenvalues of the matrix 𝑨 have negative-real values, i.e. the real 

part of each eigenvalue must be less than zero. Practically speaking, for continuous 

time system, stability requires that the complex eigenvalues reside in the open left half 

of the complex plane. 

(b) marginally stable if at least one eigenvalue has a zero real part and other 

eigenvalues have negative real parts. In the continuous time case, if the eigenvalue 

with a zero real part and a zero imaginary part, the system response neither decays 

nor grows over time, while when imaginary part is not equal to zero, oscillations can 

be expected 

(c)  unstable if any eigenvalues of matrix 𝑨 have a positive real part. 

Controllability and Observability 

Controllability is related to the possibility of steering the states of a system from any 

initial value to any final value by using an appropriate control signal within some finite 
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time window. If a state is not controllable, then there is no signal that will ever be able 

to control the state.  

A system is controllable if and only if the controllability matrix 𝑪 ̅is full rank. 

𝑪 ̅ = [𝑩 𝑨𝑩 𝑨𝟐𝑩 … 𝑨𝒏−𝟏𝑩] 

Observability instead is related to the possibility of observing the state of a system 

through output measurements. If a state is not observable, it can be stable from the 

controller if the unobservable structure is stable. However, if the unobservable 

structure is not stable, the output feedback controller is not able to use it to stabilize 

the system since the controller cannot determine the behaviour of an unobservable 

state.  

A system is observable if and only if the observability matrix 𝑶 ̅̅̅is full rank. 

𝑶 ̅̅̅ = [𝑪 𝑪𝑨 𝑪𝑨𝟐 … 𝑪𝑨𝒏−𝟏] 

It is important and necessary to check the controllability of a system before designing 

the controller.  Since if one of the eigenvalues of the system is neither controllable nor 

observable, then this part of the dynamics will remain untouched in the closed-loop 

system. If such an eigenvalue is not stable, then the dynamics of this eigenvalue that 

present in the closed-loop system will also be unstable. Therefore, for all the states of 

each variable of the system to be controlled, every "bad" state of these variables must 

be controllable and observable to ensure a good behaviour in the closed-loop system.  

In the remaining of the chapter, the control design and the control methodologies are 

applied only on the one-bank model. The control objective of the one-bank model is to 

keep the cash of the bank at a desired positive value. A suitable equilibrium point is 

identified and linearization is done around this equilibrium point. After the stability 

and observability of the linear model are checked, a controller can be designed based 

on linear control theory. The performance is evaluated by testing the controller using 

both linear and nonlinear models. In the following sections these procedures are 

explained in detail.   
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5.3   Equilibrium point analysis of the one-bank model 

The equilibrium analysis for the one-bank model consists, firstly, of finding the 

equilibrium points. More specifically the values of the state variables, 𝐼1, and 𝐶1, which 

render equations (3.2) and (3.4) zero, for given values of the input variables, 𝐷1 and 

𝑜𝑝𝑝1. By setting the derivatives to zero, the equilibrium points can be identified： 

min[(𝐶1
∗ − 𝑟𝐷1

∗ )+, 𝑜𝑝𝑝1
∗] − 𝑤1𝐼1

∗ − 𝑣1𝐼1
∗ = 0                              (5.4) 

−𝑔1𝐷1
∗ +  𝑝1𝐼1

∗ −  𝑣1𝐼1
∗ = 0                                              (5.5) 

where 𝐶1
∗, 𝐼1

∗, 𝐷1
∗ and 𝑜𝑝𝑝1

∗ represent the value of the bank’s cash, investment, deposit 

and investment opportunity at the equilibrium point. 

In this analysis, it is assumed that 𝐷1
∗ and 𝑜𝑝𝑝1

∗, i.e. the disturbance inputs variables, 

are kept constant in a given simulation; the equilibrium points are then found from 

equations (5.4) and (5.5) which can be solved under 3 different cases for the value of 

the cash, 𝐶1
∗, with respect to 𝑟𝐷1

∗ and 𝑜𝑝𝑝1
∗:  

Case 1:  0 ≤ 𝑟𝐷1
∗ ≤ 𝐶1

∗  and 0 ≤ 𝑜𝑝𝑝1
∗ ≤ 𝐶1

∗ − 𝑟𝐷1
∗  (bank’s cash above reserve and 

limited investment opportunity). 

Equations (5.4) and (5.5) become: 

𝑜𝑝𝑝1
∗ − 𝑤1𝐼1

∗ − 𝑣1𝐼1
∗ = 0                                                 (5.6) 

−𝑔1𝐷1
∗ +  𝑝1𝐼1

∗ −  𝑣1𝐼1
∗ = 0                                                (5.7) 

From equation (5.6) it can be derived: 

  𝐼1
∗ =

𝑜𝑝𝑝1
∗

𝑤1+𝑣1
                                                             (5.8) 

From equation (5.7) the value for 𝐼1
∗ can be derived: 

 𝐼1
∗ =

𝑔1𝐷1
∗

𝑝1−𝑣1
                                                            (5.9) 

From (5.8) and (5.9), it can be derived that: 
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𝑜𝑝𝑝1

∗

𝑤1+𝑣1
=

𝑔1𝐷1
∗

𝑝1−𝑣1
                                                    (5.10) 

Moreover, there is an infinite number of equilibria characterised by positive and 

constant values for 𝐶1
∗.  

Case 2:  0 ≤ 𝑟𝐷1
∗ ≤ 𝐶1

∗  and 𝑜𝑝𝑝1
∗ > 𝐶1

∗ − 𝑟𝐷1
∗  (bank’s cash above reserve and 

investment opportunity is larger than available cash). 

Equations (5.4) and (5.5) become: 

𝐶1
∗ − 𝑟𝐷1

∗ − 𝑤1𝐼1
∗ − 𝑣1𝐼1

∗ = 0                                           (5.11) 

−𝑔1𝐷1
∗ +  𝑝1𝐼1

∗ −  𝑣1𝐼1
∗ = 0                                           (5.12) 

From equation (5.11) it can be derived: 

 𝐼1
∗ =

𝐶1−𝑟𝐷1
∗

𝑤1+𝑣1
                                                         (5.13) 

From equation (5.12) it can be obtained: 

𝐼1
∗ =

𝑔1𝐷1
∗

𝑝1−𝑣1
                                                           (5.14) 

Substitute (5.14) into (5.13) and rearrange, the following expression for the cash can 

be derived: 

 𝐶1
∗ = 𝐷1

∗ [
𝑔1(𝑤1+𝑣1)

𝑝1−𝑣1
+ 𝑟]                                          (5.15) 

Case 3: 0 ≤ 𝐶1
∗ ≤ 𝑟𝐷1 (bank’s cash below reserve). 

In this case 𝑜𝑝𝑝1
∗ cannot affect the equilibrium since the cash is below the reserve so 

the bank cannot invest. 

Equations (5.4) and (5.5) become: 

0 − 𝑤1𝐼1
∗ − 𝑣1𝐼1

∗ = 0                                                (5.16) 

−𝑔1𝐷1
∗ +  𝑝1𝐼1

∗ −  𝑣1𝐼1
∗ = 0                                            (5.17) 

From equation (5.16) the following value of the investment can be obtained, 𝐼1
∗ = 0.  
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From equation (5.17) the following value of the deposit can be derived, 𝐷1
∗ = 0.  

As 0 ≤ 𝐶1
∗ ≤ 𝑟𝐷1

∗ and 𝐷1
∗ = 0, so this means that 𝐶1

∗ = 0.  

Table 5.1 reports a summary of the three equilibrium points. Equilibrium point 1 is 

found in case 1, in which the bank is in a condition where it has enough cash but it can 

only add investment determined by investment opportunity availability. In case 2, 

where equilibrium point 2 is found, the bank has again enough cash and will invest as 

much as it can since the investment opportunity is larger than the available cash. In 

cases 1 and 2, non-zero equilibrium states for 𝐶1
∗  and 𝐼1

∗  exist.  In case 3, the bank 

doesn’t have enough cash to invest and the only equilibrium state consists of zero 

values for 𝐶1
∗ and 𝐼1

∗.  

Table 5.1 Summary of the equilibrium points for different cases . 

Equilibrium point 1 Equilibrium point 2 Equilibrium point 3 

With a given 𝐷1
∗ ,  

𝑜𝑝𝑝1
∗ =

𝑔1𝐷1(𝑤1+𝑣1)

𝑝1−𝑣1
   

𝐶1
∗ > 𝐷1

∗  ∗ 𝑟  

𝐼1
∗ =

𝑜𝑝𝑝1
∗

𝑤1+𝑣1
  

With a given 𝐷1
∗ , 

𝑜𝑝𝑝1
∗ > 𝐶1

∗ − 𝑟 ∗ 𝐷1
∗  

𝐶1
∗ = 𝐷1

∗  (
𝑔1(𝑤1+𝑣1)

𝑝1−𝑣1
+ 𝑟)  

𝐼1
∗ =

𝑔1𝐷1
∗

𝑝1−𝑣1
  

𝐷1
∗  = 0,  

𝑜𝑝𝑝1
∗ = 0   

𝐶1
∗ = 0  

𝐼1
∗ = 0  

It is interesting to see from table 5.1 how changes in the parameter values, 𝑔1, 𝑝1, 𝑤1 

and 𝑣1, can affect 𝐶1
∗ and 𝐼1

∗. For example in equation (5.14), the corresponding value 

of 𝐼1
∗  depends on the value of 𝑔1 , 𝑝1  and 𝑣1 . So if 𝑝1  gets larger, then 𝐼1

∗  becomes 

smaller. This means that as the return rate for the investment increases, then less 

investment is required to keep the system in the equilibrium state. While when 𝑣1 

(investment failure rate) and 𝑔1  (deposit interest rate) are large then 𝐼1
∗  becomes 

large, which means a high level of investment is needed to keep the bank in 

equilibrium. Similar effects can be found in equation (5.15), as the proportion of the 

matured investment, 𝑤1, and return rate for the investment, 𝑝1, get higher, less cash is 

needed to keep the system in equilibrium state; 𝑣1 and 𝑔1 have the opposite effect on 

𝐶1
∗. So from the above analysis, parameters that increase the net-worth of the bank, 

such as  𝑝1 , decrease the state variables equilibrium values,  𝐶1
∗  and 𝐼1

∗ , while those 

parameters, such as 𝑣1 and 𝑔1, that decrease the net-worth, increase the equilibrium 
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values, 𝐶1
∗ and 𝐼1

∗. These effects of the parameters can be evidenced by the simulation 

results that are represented in subsection 4.2.2.  

5.4   Model linearization and analysis of the one-bank model 

This section represents how the linearization is performed using MATLAB and 

Simulink. Three linear models are obtained around the three equilibrium points 

(shown in the previous section). Stability analysis is carried out for the three linear 

models separately. 

Linearization using MATLAB and Simulink 

Linearization of the one-bank model is performed around the three equilibrium points 

in table 5.1. The MATLAB command ‘linmond’ is used to do the linearization. This 

command is in a format of ‘[A, B, C,D]=linmod ('SYS',X,U,Y)’, which can obtain the state-

space linear model of the system from the ordinary differential equations described in 

the Simulink block diagram called 'SYS', when the state vector, X, input, U, and output 

Y are specified given the value at the equilibrium point. The Simulink diagram of the 

one-bank model, ‘SYS’, is reported in figure 5.4, which is a slight modification of the 

diagram reported in figure 4.3 to identify the input, U (red blocks) and output, Y (light 

blue block linked to ‘Intergrator2’).  

 

Figure 5.4 The one-bank model in Simulink used for the linearization, named ‘SYS’.  
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Since at this stage there is no controller applied, the linear model only describes the 

dynamics of the open-loop system which doesn’t have the control input variables, 𝑢, 

but only the disturbance inputs, i.e. the deposit and investment opportunity. 

Therefore, in the Simulink model in figure 5.4 the blocks shown in red and the block 

linked with the integrator 2 shown in blue identify the input variables, 𝐷1 and 𝑜𝑝𝑝1, 

and the output variable, 𝐶1, for the linearization command. The state vector, X, in the 

command is given the value of 𝐶1
∗  and 𝐼1

∗  that are calculated by the equilibrium 

equations and the input, U, is given the value of 𝐷1
∗ and 𝑜𝑝𝑝1

∗ that are calculated by the 

equilibrium equations. Then the command will output the 𝑨, 𝑩, 𝑪 and 𝑫 that describe 

the linear model as shown in equations (5.2). 

Three linear models  

Three linear models are derived using the equilibrium points and parameter values 

shown in table 5.2. The three linear models are represented in the following equations, 

where 𝒙 = [
𝐶1

𝐼1
] are the state variables and 𝒅 = [

𝐷1

𝑑𝐷1

𝑜𝑝𝑝1

] is the disturbance. 

Linear model 1  

�̇� = 𝑨𝟏𝒙 + 𝑫𝟏𝒅𝒅                                                         (5.18) 

𝑦 = 𝑪𝟏𝒙                                                                   (5.19) 

where 𝑨𝟏 = [
0 𝑤1 + 𝑝1

0 −𝑤1 − 𝑣1
], 𝑫𝟏𝒅 = [

−𝑔1 1 −1
0 0 1

] , 𝑪𝟏 = [1 0]. 

Linear model 2  

�̇� = 𝑨𝟐𝒙 + 𝑫𝟐𝒅𝒅                                                          (5.20) 

𝑦 = 𝑪𝟐𝒙                                                                   (5.21) 

where 𝑨𝟐 = [
−1 𝑤1 + 𝑝

1

1 −𝑤1 − 𝑣1
],  𝑫𝟐𝒅 = [

𝑟 − 𝑔
1

1 0

−𝑟 0 0
],  𝑪𝟐 = [1 0]. 

Linear model 3  

�̇� = 𝑨𝟑𝒙 + 𝑫𝟑𝒅𝒅                                                           (5.22) 
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𝑦 = 𝑪𝟑𝒙                                                                   (5.23) 

where 𝑨𝟑 = [
0 𝑤1 + 𝑝

1

0 −𝑤1 − 𝑣1
],  𝑫𝟑𝒅 = [

−𝑔
1

1 0

0 0 0
], 𝑪𝟑 = [1 0]. 

The eigenvalues of 𝑨𝟏, 𝑨𝟐 and 𝑨𝟑 are calculated using the parameter values shown in 

table 5.2. Also the ranks of the observability matrix (𝑶 ̅̅̅ = [𝑪 𝑪𝑨]) are calculated to 

check whether the three linear models are observable. From the results shown in table 

5.2 it can be seen that for all the three models the ranks of observability matrix  

( 𝑶 ̅̅̅ = [𝑪 𝑪𝑨] ) are all equal to 2, that is full rank. Therefore, all the states are 

observable across the three models and all the states if available for measurement can 

be used as the feedback in the control design. 

Table 5.2 The three equilibrium points used for linearization and the eigenvalues of the 

A matrix, observability matrix of the three linear models. The parameter values used for 

calculating the eigenvalues are: 𝑔1 = 0.02/360 , 𝑝1 = 0.05/360 , 𝑤1 = 0.05/360 , 

𝑣1 = 0.01/360 and 𝑟 = 0.2. 

Model  Equilibrium point Eigenvalues of matrix 𝑨 Rank[C;CA] 

 

 

1 

 

𝐷1
∗ with a given value 

𝑜𝑝𝑝1
∗ =

𝑔1𝐷1
∗(𝑤1+𝑣1)

𝑝1−𝑣1
   

𝐶1
∗ = 𝐷1

∗ ∗ 𝑟  

𝐼1
∗ =

𝑜𝑝𝑝1
∗

𝑤1+𝑣1
  

𝜆1 =
−(𝑤1+𝑣1)+√(𝑤1+𝑣1)2

2
= 0  

 𝜆2 =
−(𝑤1+𝑣1)−√(𝑤1+𝑣1)2

2
 

      = −0.1667 ∗ 1.0𝑒 − 03  

 

 

2 

 

 

 

2 

 

𝐷1
∗ with a given value 

𝐶1
∗ = 𝐷1 (

𝑔1(𝑤1+𝑣1)

𝑝1−𝑣1
+ 𝑟)  

𝐼1
∗ =

𝑔1𝐷1

𝑝1−𝑣1
 , 

𝑜𝑝𝑝1
∗ =  𝐶1

∗ − 𝑟 ∗ 𝐷1
∗ 

𝑁1 =   𝐶1
∗ + 𝐼1

∗ − 𝐷1
∗ 

𝜆1 =

−(𝑤1+𝑣1+1)−√(𝑤1+𝑣1+1)2−4(𝑣1−𝑝1)

2
  

= −1.0003 

 𝜆2 =

−(𝑤1+𝑣1+1)+√(𝑤1+𝑣1+1)2−4(𝑣1−𝑝1)

2
 

= 0.0001 

 

 

 

2 

 

 

3 

𝐷1
∗ = 0, 

𝑜𝑝𝑝1
∗ = 0   

𝐶1
∗ = 0  

𝐼1
∗ = 0  

𝜆1 =
−(𝑤1+𝑣1)+√(𝑤1+𝑣1)2

2
= 0  

 𝜆2 =
−(𝑤1+𝑣1)−√(𝑤1+𝑣1)2

2
 

      = −0.1667 ∗ 1.0𝑒 − 03  

 

 

2 
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The eigenvalues of 𝑨𝟏 ,  𝑨𝟐  and 𝑨𝟑  allow the analysis of the stability of the linear 

models. In this case, stability means the linear model will stay around the 

corresponding equilibrium point. It must be stressed that all the system’s behaviour 

obtained from the stability analysis applied only in the linear model. In the nonlinear 

model, this behaviour only happens when all the states are close to the equilibrium 

point; if the states value move too far away from the equilibrium, then the current 

linear model is not able to represent nonlinear model behaviour anymore, so all the 

stability analysis based on the currently linear model is no longer applicable. For this 

reason, the dynamics of the non-linear model (original one-bank model) needs to be 

represented by all three linear models.  

Stability analysis of linear model 1 

For linear model 1, one of the eigenvalues of 𝑨𝟏 is zero and the other one is always 

negative (see table 5.2). So linear model 1 is marginally stable, which means when 

there is no disturbance, wherever the initial condition starts, the system will always 

move back to zero (zero in the linear model is equivalent to the equilibrium point in 

the nonlinear model). Linear model 1 represents the dynamic of the non-linear model 

when all state variables satisfy the conditions shown in Section 5.3 case 1. In this 

dynamic, assuming that the initial conditions for cash and investment are 𝐶1
0 and 𝐼1

0, 

with a given value of the deposit 𝐷1
∗, as long as 𝑜𝑝𝑝1

∗ =
𝑔1𝐷1

∗(𝑤1+𝑣1)

𝑝1−𝑣1
 and 𝐶1

0 ≥ 𝐷1
∗ ∗ 𝑟, no 

matter what the value of  𝐼1
0  is at the beginning, the total investment 𝐼1  will always 

come to the value equals to 𝐼1
∗ =

𝑜𝑝𝑝1
∗

𝑤1+𝑣1
.  

Stability analysis of linear model 2 

Linear model 2 represents the dynamic of the nonlinear model when all variables 

satisfy the conditions shown in Section 5.3 case 2. One of the eigenvalues of 𝑨𝟐 is 

positive when 𝑝1 > 𝑣1, while the other eigenvalue is negative (see table 5.2). So linear 

model 2 is unstable and if the initial conditions, 𝐶1
0  and  𝐼1

0 , do not start at the 

equilibrium point in the nonlinear model, the system will not be able to come back to 

the equilibrium point.  

Stability analysis of linear model 3 
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The eigenvalues of  𝑨𝟑 are the same as 𝑨𝟏, so linear model 3 is also marginally stable. 

The difference between linear model 3 and linear model 1 is that the equilibrium 

points are different. Therefore, if the nonlinear system is in the dynamic that 

represented by linear model 3 (when all variables satisfy the conditions shown in 

Section 5.3 case 3), all the states will come to the equilibrium point.  

5.5   Controller design and testing results of the one-bank 

model  

After carrying out the stability analysis of the linear models presented in the previous 

section, this section introduces how to design the controller to reach the control 

objectives. Three different control objectives are set in the subsection 5.5.1 according 

to different dynamics of the model.  Two output feedback controllers are designed in 

subsection 5.5.2 to meet these objectives. The controllers are tested in different 

dynamic characteristics in subsections 5.5.3, 5.5.4 and 5.5.5. In the last subsection, 

simulation results show how the controller switches when the system enters different 

dynamics. 

5.5.1 Possible dynamics and objectives of the control design 

In the control design for the one-bank model, the objectives are established according 

to the level of the cash the bank holds at a given time. Three zones are defined 

according to the level of cash the bank has, as shown in figure 5.5.  

The cash of the bank changes with time and the bank can enter different dynamics that 

are characterised by different linear models; therefore, according to the equilibrium 

and the linearization analysis, different linear models are used to represent the 

dynamics in each zone. 

Regime 1: in this regime, the cash is above the reserve ratio requirement, which 

satisfies the condition shown in Section 5.3 cases 1 and 2, so this dynamic can be 

described by linear models 1 and 2. The bank is considered to stay in a ‘safe zone’ 

under this dynamic in the absence of deposit shocks. Since the bank has extra cash to 

invest in this dynamics, the aim of the control is not merely to keep the cash above 

zero, but also to keep the cash at a steady desired level that allows the bank to generate 

more profit. 
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Regime 2: in this regime, the cash is below reserve ratio requirement but still positive, 

and this satisfies the conditions shown in Section 5.3 case 3. Therefore, this dynamic 

can be described by linear model 3. Under this dynamics, the bank is considered to be 

in a ‘dangerous zone’. Since it cannot meet the reserve ratio requirement. Furthermore, 

because of the lack of cash, it stops adding new investment. Therefore, in this dynamics, 

the aim of the control design is to try to adjust the cash to meet the reserve ratio 

requirement. 

Regime 3:  In this regime, the cash at the bank becomes negative and thus the bank 

stops all activities. This can happen when a shock in the deposit is big enough to make 

the cash negative. It is assumed that the bank faces a serious funding gap and if the 

bank does not take action to get more cash, it will fail. The aim of the control is to try 

to bring the cash from negative to positive within a very short time. 

 

Figure 5.5 Plot shows the different dynamics when 𝐶1 has the different values. 
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The case considered in dynamics 3 can only happen within the one-bank model if the 

shock in the deposit is big enough to make the cash negative. Once the cash becomes 

negative the bank cannot recover back to positive cash unless a controller is 

implemented (i.e. within the equations of the model) to bring the cash back to positive 

and avoid failure. The design and the implementation of the controller will be 

explained in the following sections. 

5.5.2 Design of output feedback controllers 

Before designing the controller, there is the need to establish the control configuration, 

in which the control input variables and method to measure the output are identified. 

It is proposed that the bank manipulates its investment when its cash is lower or 

higher than the equilibrium value to adjust its cash to the equilibrium value. The 

amount of investment to sell or to add depends on the value of the current cash 

compared with the equilibrium value of the cash. In this control design, the cash of the 

bank is chosen to be the measured output and the control input, 𝑢 = 𝛾(𝐶1 − 𝐶∗), is the 

difference between actual, 𝐶1, and equilibrium, 𝐶∗  , cash multiplied with a properly 

selected feedback gain, 𝛾. The control configuration is shown in figure 5.6.  

 

Figure 5.6 The configuration of the feedback control design for the one-bank model. The 

bank manipulates its investment to adjust its cash to the equilibrium value. The error 

signal is the difference between the equilibrium cash value and the actual cash value 

which is obtained through the bank daily settlement.  

The actual cash of the bank, 𝐶1, is measured through the bank daily settlement and 

compared to the equilibrium value of the cash. The bank will then sell or buy assets 

(investment) according to this difference, (𝐶1 − 𝐶∗), to adjust its cash. At the first stage 

the controller brings the cash to the equilibrium value  𝐶∗ and theoretically the, 

controller is able to bring the cash to any expected value, 𝐶re, by adding an extra part 
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in the controller called the reference input. Details are introduced in the later part of 

this section.  

The output feedback control law 𝑢 in the linear model can be designed as shown in 

equation (5.24). 𝑢 represents the amount of the investment sold or bought. The 𝛾 is 

the feedback gain which will be multiplied by the difference between the actual cash 

𝐶1  and equilibrium point 𝐶∗. This difference is the output 𝑦 of linear model, and it is 

also the error signal (𝐶1 − 𝐶∗)  in the nonlinear system.  

𝑢 = 𝛾𝑦                                                                (5.24) 

In equation (5.24) 𝛾 > 0. Depending on the strategy used by the bank to adjust the 

cash, two controllers are developed as shown in the following. 

Controller 1  

This controller always tries to bring the cash to the equilibrium value by selling the 

bank’s investment when its cash is higher than the equilibrium point and adding 

investment while its cash is lower than the equilibrium. The linear system in the state-

space representation now becomes as shown in equation (5.25) where𝑩𝟏 = [
1

−1
].   

When 𝑦 is positive, this means the bank sells the investment, while when 𝑦 is negative 

the bank adds investment.  

�̇� = 𝑨𝒙 + 𝑩𝟏𝑢+𝑫𝒅𝒅 

𝑦 = 𝑪𝒙    

𝑢 = 𝛾𝑦                                                                (5.25) 

The non-linear system of the one-bank model is described by differential equations 

reported in equation (5.26). When 𝛾(𝐶1 − 𝐶∗) is positive, it means the bank sells the 

investment, while when 𝛾(𝐶1 − 𝐶∗)  is negative the bank adds investment. 

𝑑𝐼1

𝑑𝑡
= min[(𝐶1 − 𝑟𝐷1 )+, 𝑜𝑝𝑝1] − 𝑤1𝐼1 − 𝑣1𝐼1 − 𝛾(𝐶1 − 𝐶∗)                              

𝑑𝐶1

𝑑𝑡
=  

𝑑𝐷1

𝑑𝑡
−  

𝑑𝐼1

𝑑𝑡
−  𝑔1𝐷1 +  𝑝1𝐼1 − 𝑣1𝐼1                                   (5.26) 
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Controller 2  

Under this control strategy, the bank sells its investment when its cash is lower than 

the equilibrium point and adds investment while its cash is higher than the 

equilibrium. The linear system in the state-space representation is the same as shown 

in equation (5.27), but now with 𝑩𝟐 = [
−1
1

].   When 𝑦 is positive, this means the bank 

adds the investment while when 𝑦 is negative the bank sells investment.  

�̇� = 𝑨𝒙 + 𝑩𝟐𝑢+𝑫𝒅𝒅 

𝑦 = 𝑪𝒙             

𝑢 = 𝛾𝑦                                                                (5.27) 

The nonlinear system described by differential equations of the one-bank model is 

now shown in equations (5.28) and (5.29). When 𝛾(𝐶1 − 𝐶∗) is positive, it means the 

bank adds the investment while when 𝛾(𝐶1 − 𝐶∗) is negative the bank sells investment. 

𝑑𝐼1

𝑑𝑡
= min[(𝐶1 − 𝑟𝐷1 )+, 𝑜𝑝𝑝1] − 𝑤1𝐼1 − 𝑣1𝐼1 + 𝛾(𝐶1 − 𝐶∗)                   (5.28) 

𝑑𝐶1

𝑑𝑡
=  

𝑑𝐷1

𝑑𝑡
−  

𝑑𝐼1

𝑑𝑡
−  𝑔1𝐷1 +  𝑝1𝐼1 − 𝑣1𝐼1                                (5.29) 

the controllability of the three linear models is checked. The ranks of the 

controllability matrices are shown in table 5.3. All the controllability matrixes have 

full rank, so the linear models are controllable when applied the two distributions. 

Table 5.3 Rank of the controllability matrixes  𝑪 ̅ = [𝑩 𝑨𝑩]   for controller 1 and 

controller 2 applied on linear model 1, 2 and 3. The parameter values used for calculating 

the ranks are:  𝑔1 = 0.02/360 , 𝑝1 = 0.05/360  𝑤1 = 0.05/360  ,  𝑣1 = 0.01/360 and 𝑟 = 0.2. 

 Controller 1 Controller 2 

Linear model 1 Rank([𝑩𝟏 𝑨𝟏𝑩𝟏])=2 Rank([𝑩𝟐 𝑨𝟏𝑩𝟐])=2 

Linear model 2 Rank([𝑩𝟏 𝑨𝟐𝑩𝟏])=2 Rank([𝑩𝟐 𝑨𝟐𝑩𝟐])=2 

Linear model 3 Rank([𝑩𝟏 𝑨𝟑𝑩𝟏])=2 Rank([𝑩𝟐 𝑨𝟑𝑩𝟐])=2 

Root locus analysis to find the value of 𝜸  
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After the controller 𝑢  is set, the next step is to find a proper value of the feedback gain 

𝛾  to make the closed-loop system stable. In control theory, the performance of a 

feedback system can be described in terms of the location of the roots of the 

characteristic equation in the s-plane. A technique called root locus analysis was 

developed by Walter R. Evans [122] for designing and analysing the stability of the 

feedback system. The root locus plot is a graphical method for examining how the 

roots of a system change with variation of a certain system parameter, commonly a 

gain within a feedback system.  

Root locus analysis has been performed on the three linear models (linear model 1, 2 

and 3 got in Section 5.4) with two control distributions (𝑩𝟏 = [
1

−1
] and 𝑩𝟐 = [

−1
1

]) on 

them (so 6 cases in total) to study the trajectories of eigenvalues of the matrix 𝑨 + 𝑩γ 

in the complex s-plane as a function of the feedback gain  𝛾 .  Matlab function ‘rlocus’ 

is used to sketch the root locus plots for the 6 cases. The results are shown in figure 

5.7.   

In each subplot, the green line and blue line represent the two trajectories of the two 

poles. From the figure 5.7 (a1), (a2) and (a3), it can be seen that there is always a 

situation when two poles are both in the left half plane. This means that with the 

control distribution 𝑩𝟏 = [
1

−1
], there always exits a feedback gain 𝛾 that can make the 

eigenvalues of the matrix 𝑨 + 𝑩γ negative, thus can make the system stable. While in 

the figure 5.7 (b1), (b2) and (b3), the green line never comes to left side of the s-plane, 

which means with the control distribution  𝑩𝟐 = [
−1
1

], it cannot find a 𝛾 to make both 

eigenvalues negative. Since there will always be a non-negative eigenvalue which 

makes the system unstable. In the next section, the control term, 𝑩𝟏𝒖 = [
1

−1
] 𝒖,  will 

be added to the three linear models first. 
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Figure 5.7 Plot of root locus of linear models 1, 2 and 3 (1st, 2nd and 3rd rows 

correspondingly) with two distributions 𝑩𝟏 = [
1

−1
]  (1st column) and 𝑩𝟐 = [

−1
1

]  (2nd 

column). 
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The command ‘[R,K] = rlocus (SYS)’ is used to find out the exact value of 𝛾  . This 

command returns the matrix R which includes the roots of the close-loop system SYS, 

and the matrix K  which includes the corresponding gains for each pair of root.  From 

output values of R and K, the suitable feedback gain in K can be found, and the 

corresponding roots in R have negative values in the real axis. Different 𝛾 values are 

selected from K for different models, testing results are shown in the following 

subsections. 

Reference input  

The controller developed in the last section is derived to drive the output in the linear 

model to 0, and to the equilibrium in the nonlinear system. Very often in applications, 

however, it is desired the output to track a reference input, i.e. if 𝑟(𝑡) is the reference 

input, it would like the output 𝑦(𝑡)  →  𝑟(𝑡) as 𝑡 →  ∞. To make the controller that can 

bring the output (cash) to a desired value which is different from the equilibrium, one 

more term is added to the controller as shown in equation (5.30).  𝛾 is the feedback 

gain that can make the close-loop system stable, 𝑟𝑒 is the reference input that applied 

in the linear model. In the nonlinear model, the desired value of the output is expected 

to reach, 𝐶𝑟𝑒
 , equals to the equilibrium, 𝐶∗,plus 𝑟𝑒. 

𝑢1 = 𝛾𝑦 + 𝑁1
̅̅ ̅ 𝑟𝑒                                                        (5.30) 

𝑟𝑒 is multiplied with an element 𝑁1
̅̅ ̅ which can make the derivative of state variable in 

the steady state  𝑥𝑠𝑠̇ = 0 and output variable in steady state 𝑦𝑠𝑠 = 𝑟𝑒 . The following 

shows the procedure to calculate the value of 𝑁1
̅̅ ̅. 

In the steady states, it can be obtained that 

𝑥𝑠𝑠̇ = 0                                                           (5.31) 

𝑦𝑠𝑠 = 𝐶𝑥𝑠𝑠 = 𝑟𝑒                                                  (5.32) 

From equation (5.31), it can be derived: 

                                                                     𝐴𝑥𝑠𝑠 + 𝐵𝑢1 = 0                                                 (5.33) 

Substitute equation (5.30) in equation (5.33): 
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𝐴𝑥𝑠𝑠 + 𝐵𝛾𝑦 + 𝐵𝑁1
̅̅ ̅𝑟𝑒 = 0 

𝐴𝑥𝑠𝑠 + 𝐵𝛾𝐶𝑥 + 𝐵𝑁1
̅̅ ̅𝑟𝑒 = 0 

(𝐴 + 𝐵𝛾𝐶)𝑥𝑠𝑠 + 𝐵𝑁1
̅̅ ̅𝑟𝑒 = 0 

𝑥𝑠𝑠 = −(𝐴 + 𝐵𝛾𝐶)−1𝐵𝑁1
̅̅ ̅𝑟𝑒 

From equation (5.32), it can be derived: 

𝐶𝑥𝑠𝑠 = 𝑟𝑒 

−𝐶(𝐴 + 𝐵𝛾𝐶)−1(𝐵𝑁1
̅̅ ̅𝑟𝑒) = 𝑟𝑒 

−𝐶(𝐴 + 𝐵𝛾𝐶)−1𝐵𝑁1
̅̅ ̅𝑟𝑒 = 𝑟𝑒 

Therefore                                         – 𝐶(𝐴 + 𝐵𝛾𝐶)−1𝐵𝑁1
̅̅ ̅ = 1 

Thus  

 𝑁1
̅̅ ̅ = (– 𝐶(𝐴 + 𝐵𝛾𝐶)−1𝐵)−1                                        (5.34) 

Implementation of the models in Simulink for testing 

Each controller is tested on both the linear and nonlinear models. The implementation 

of the controller in the linear and nonlinear models is shown in figures 5.8 and 5.9. As 

shown in figure 5.8, the linear model is built using a block called ‘State-space’, which 

is a commonly used Simulink block to generate the linear model in a state-space 

format. The elements of matrices 𝑨, 𝑩, 𝑪 , 𝑫 and the initial conditions of the state 

variable are all defined in this block. Since here the closed-loop system is tested, the 

value of the matrix 𝑨 is changed to 𝑨 + 𝑩𝛾𝑪.  The red block imports the input variables 

including the disturbance inputs as well as control inputs. 

 

Figure 5.8 Block diagram of the linear closed-loop system with the applied controller in 

Simulink. 
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Figure 5.9 shows the Simulink diagram when a controller is implemented in the 

nonlinear model. It can be seen that there is one more input named ‘u’ in the main 

function of the one-bank model, which represents the control input. It consists of two 

parts, one is the feedback gain times the difference between the actual and the 

expected cash value, the other one is the control input at the equilibrium point (shown 

as ‘u01’ in the figure). It is the value of ‘U’ used in command ‘[A, B,C,D] = linmod ('SYS', 

X, U)’ when doing the linearization. It means the amount of investment added or sold 

at the equilibrium point.  

 

Figure 5.9 Block diagram of the nonlinear close-loop system with the applied controller 

in Simulink. 

Here it is necessary to recall the relationship between the linear and nonlinear model. 

As introduced in Section 5.2.2, the linear model is based on the equilibrium point 

where linearization is done. To make sure the linear and nonlinear model are tested 

under the same situation, any inputs, and initial conditions that are applied on the 

linear model should be adjusted to reflect the equilibrium values when applied to the 

nonlinear model.  
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5.5.3 Testing results for regime 1 

Ad shown in figure 5.5, the nonlinear model in regime 1 can be described by linear 

model 1 and linear model 2 (depending on the different investment opportunity). This 

section shows the simulation results when controller 1 is applied on linear models 1 

and 2.  

Controller 1 applied to linear model 1 

To find a proper value for the feedback gain γ, the command ’[R,K]  = rlocus(SYS)’ is 

used. The SYS used in the command is the system represented by equation (5.26), in 

which the input distribution  𝑩𝟏 = [
1

−1
] is applied on linear model 1. From the output 

K, , a series of 𝛾 values can be found that can make the close-loop system having two 

negative poles.  

For testing purpose, a  𝛾  value which equals to 3.75 × 105  is selected and the 

controller 1 now becomes: 

 𝑢1 = 3.75 × 105 𝑦 

Figure 5.10 shows the simulation results10 when 𝑢1 is applied to the nonlinear model 

under two situations starting with different initial conditions. In the first situation the 

initial value of cash 𝐶1
0 = 25 and the initial value of investment  𝐼1

0 = 50. While in the 

second situation, 𝐶1
0 = 21 and 𝐼1

0 = 50. With a given value of  𝐷∗ equals to 100, the 

equilibrium point lays at: 

 𝐷∗ = 100 

𝑂𝑝𝑝1
∗ =

g1𝐷∗(𝑤1 + 𝑣1)

𝑝1 − 𝑣1
= 0.0083 

𝐶∗ = 𝐷∗𝑟 + 3 = 23 

𝐼∗ =
𝑂𝑝𝑝1

∗

𝑤1 + 𝑣1
= 50 

                                                             
10 The simulation are carried out in both linear and nonlinear model, since they all get the same 
results, only the results from the nonlinear model will be presented. 
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The controller 𝑢1 aims to bring the cash to the equilibrium point where 𝐶∗ = 23. In 

figure 5.10 (a), it can be seen that the deposit is a constant so that there is no shock.  

 

Figure 5.10 Dynamic behaviour of the bank’s deposit (a), cash(b), total investment(c) 

and add/sold investment (d) with different initial conditions of cash:  𝐶1
0 = 25 (red lines) 

and  𝐶1
0 = 21 (blue lines). The grey dash lines in (b) and (c) represent the equilibrium 

value of the cash and investment accordingly. The positive value in (d) means adding 

new investment while negative value means selling investment. The feedback gain in 

controller applied in this case is 𝛾 = 3.75 × 105. 

In situation 1 (results are shown in red lines) when initial cash 𝐶1
0 = 25, which is 2 

unit above the equilibrium point  𝐶∗ = 23 . To bring the cash down, the bank sells 

investment; as shown in figure 5.10 (d), the red line starts with a negative value and 

finally reaches to zero when the cash comes to the equilibrium value. The total 

investment in figure 5.10 (c) decreases at the beginning, and then starts to increase 

after some time. The reason for this behaviour is explained as follows.  
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According to the differential equations describing the investment behaviour ( 
𝑑𝐼1

𝑑𝑡
 in 

equation (5.26)), the change of the investment, 
𝑑𝐼1

𝑑𝑡
, is affected by four elements: the 

added investment,  min[(𝐶1 − 𝑟𝐷1 )+, 𝑜𝑝𝑝1] , matured investment −𝑤1𝐼1 , failed 

investment , −𝑣1𝐼1,and sold investment −𝛾(𝐶1 − 𝐶∗). The sum of these four elements 

is the change of the investment as shown in figure 5.11 in blue line. It can be seen that 

the change of the investment moves from negative to positive and then to zero, which 

is the reason that the total investment decreases first and then increases. 

The derivative of the cash, as shown in red line in figure 5.11, moves from positive 

value to negative and then to zero. This is why the red line in figure 5.10 (b) first 

increases and then decreases to the equilibrium.  

 

Figure 5.11 The derivatives of the investment (blue line), cash (red line) and net-worth 

(yellow line) in situation 1 when   𝐶1
0 = 25 and  𝐼1

0 = 50. 

According to equation (3.4)11, as the deposit is constant,  
𝑑𝐷1

𝑑𝑡
= 0. Though 

𝑑𝐼1

𝑑𝑡
 changes 

during the test period, it becomes zero finally, thus actually it cannot contribute to the 

                                                             

11 Remind equation (3.4):  
𝑑𝐶1

𝑑𝑡
=  

𝑑𝐷1

𝑑𝑡
−  

𝑑𝐼1

𝑑𝑡
−  𝑔1𝐷1 +  𝑝1𝐼1 − 𝑣1𝐼1 
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change of the cash. The parts that actually contribute to the change of the cash are 

 𝑝1𝐼1 − 𝑣1𝐼1. What the controller 1 aims to do is to affect the cash by manipulating with 

the investment, 𝐼1, so that the value of 𝑝1𝐼1 − 𝑣1𝐼1 changes. In this situation, as  𝑝1 >

𝑣1 , 𝑝1𝐼1 − 𝑣1𝐼1 = (𝑝1 − 𝑣1)𝐼1  is monotonically increasing. When the bank sells 

investment, 𝐼1  decreases thus causing 𝑝1𝐼1 − 𝑣1𝐼1  decreases. This causes 
𝑑𝐶1

𝑑𝑡
 to 

decrease, as shown in figure 5.11 red line; the derivative of the cash keeps dropping 

and after sometime becomes negative. As 
𝑑𝐶1

𝑑𝑡
 becomes negative, the cash 𝐶1 starts to 

decrease. As  𝐶1 gets closer to the equilibrium value, the sold investment becomes less. 

The total investment stops dropping and starts to move back to equilibrium point. As 

𝐼1 increases, 𝑝1𝐼1 − 𝑣1𝐼1 increases causing  
𝑑𝐶1

𝑑𝑡
  to increase and move closer to zero, 

thus 𝐶1 drops slower and finally stays at the equilibrium. 

Since the aim of the controller is to bring 𝐶1 2 units down to the equilibrium and to 

keep the investment at the same level at the equilibrium, the net-worth at the end 

should be 2 units lower than before. According to the equation that represents the net-

worth in equation (3.5)12. 

The derivative of the net-worth should be 

𝑑𝑁1

𝑑𝑡
=

𝑑𝐶1

𝑑𝑡
+  

𝑑𝐼1

𝑑𝑡
−

𝑑𝐷1

𝑑𝑡
                                                   (5.35) 

Substitute the equation (3.4) in (5.35), the expression for the net-worth derivative in 

another version can be get as shown in equation (5.36).  

 
𝑑𝑁1

𝑑𝑡
=

𝑑𝐷1

𝑑𝑡
−  

𝑑𝐼1

𝑑𝑡
−  𝑔1𝐷1 +  𝑝1𝐼1 − 𝑣1𝐼1 +  

𝑑𝐼1

𝑑𝑡
−

𝑑𝐷1

𝑑𝑡
= − 𝑔1𝐷1 +  𝑝1𝐼1 − 𝑣1𝐼1    (5.36) 

This equation shows that the change of the net-worth is only affected by three 

elements: the interest paid to the depositor, the return of the investment and the failed 

investment. Since 𝑔1, 𝑝1, 𝑣1 and  𝐷1are assumed to be constant in the simulation, the 

only part that can affect the net-worth is 𝑝1𝐼1 − 𝑣1𝐼1. Therefore, by manipulating the 

investment, the net-worth can also be affected. 

                                                             

12 Remind equation (3.5) 𝑁1 =  𝐶1 + 𝐼1 − 𝐷1 
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Given an overview of the whole dynamic, the bank sells investment (or invest less) to 

lose some return that could be earned from the investment. In that way, the cash can 

be brought down. However, this is a theoretical situation for testing. In the reality, the 

bank usually will not face such a situation that it wants to bring down its cash. Instead, 

the bank may want to bring their cash to a higher level to safeguard itself from the 

shock, which corresponds to situation 2. With the initial cash 𝐶1
0 = 21, the controller 

tries to bring the cash to the equilibrium point 𝐶∗ = 23. To bring the cash up, the bank 

adds investment (shown in figure 5.10 (d) blue line) in order to earn more return from 

the investment. In this way, the cash increases as shown in figure 5.10(b) blue line. 

Controller 1 applied to linear model 2 

When the input distribution  𝑩𝟏 = [
1

−1
] is applied to linear model 2, the output of the 

command ‘[R,K]  = rlocus (SYS)’ shows that, only one pair of roots in R that have 

negative values in the real axis. The corresponding 𝛾 in K is 1.  

It can be seen that sometimes the choice of 𝛾 can be very limited. An analysis has been 

done to see how the value of the parameters can affect the range of the available 𝛾 

values. It has been found that when the value of the parameter 𝑤1  changes from 

0.05/360 to 0.3, there are more values in K that have the corresponding negative roots 

in R. This indicates that with a larger value of 𝑤1 (which means every day there will be 

 

Figure 5.12 The root locus plots of linear model 1 when applied control feedback  

𝑩𝟏 = [
1

−1
] with different values of parameter 𝑤1 equals to 0.05/360 in (a) and 0.3 in (b). 
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more matured investment), the bank has more flexibility to manage its investment to 

keep its cash at a desired level. The above effect can be verified from figure 5.12, which 

is the plot of root locus when the value of parameter 𝑤1 is different in linear model 2. 

More green trajectory exits at the left side of the s-plane in figure 5.12 (b) when 𝑤1 =

0.3 than in figure 5.12 (a) when 𝑤1 = 0.05/360. Therefore, a larger range of 𝛾 can be 

found when 𝑤1 = 0.3 to keep the roots of the close-loop system negative. 

Figure 5.13 shows the simulation results when 𝑤1 = 0.3. The controller 𝑢1with three 

different feedback gains are tested. In this simulation, the controller follows the form 

𝑢1 = 𝛾𝑦 + 𝑁1
̅̅ ̅ 𝑟𝑒 and aims to bring the cash to a desired value 𝐶𝑟𝑒

. 

The equilibrium point is calculated by the equations shown in table 5.2: 

 𝐷∗ = 100 

𝐶∗ = 𝐷∗ (
𝑔1(𝑤1 + 𝑣1)

𝑝1 − 𝑣1
+ 𝑟) = 35 

𝐼∗ =
𝑔1𝐷∗

𝑝1 − 𝑣1
= 50 

𝑂𝑝𝑝∗ = 𝐶1 − 𝑟 ∗ 𝐷1 + 100 = 105 

The desired value 𝐶𝑟𝑒 is assumed to be 41, which is 6 units higher than the equilibrium 

𝐶∗ = 35. Therefore, 𝑟𝑒 =  𝐶𝑟𝑒 − 𝐶∗ = 6. The value of  𝑁1
̅̅ ̅ is calculated using equation 

(5.34). In figure 5.13 (b), as the 𝛾 increases, the system takes shorter time to reach to 

the desired cash value.  

The controller 1 has the following limitations: it only works when 𝑪𝟏 ≥ 𝒓𝑫𝟏; when the 

disturbance (shock) is too large to drag the cash down below the reserve ratio ( 𝟎 ≤

𝑪𝟏 ≤ 𝒓𝑫𝟏) or to negative (𝑪𝟏 ≤ 𝟎), this controller will not be able to pull the cash back 

to the level that above the reserve ratio, since it only works when system are in regime 

1. Therefore, a cases when 𝑪𝟏 ≤ 𝟎  and 𝟎 ≤ 𝑪𝟏 ≤ 𝒓𝑫𝟏 must be considered in the 

following sections to see if possible controller can be found. 
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Figure 5.13 Dynamic behaviour of the bank’s deposit (a), cash(b), total investment(c) 

and add/sold investment (d) with  initial conditions: 𝐶1
0 = 25 and 𝐼1

0 = 50 with different 

feedback gains equal to 𝛾1 = 1.0313 (blue line),  𝛾2 = 1.1076 (red line) and  𝛾3 = 1.2776 

(yellow line). The positive value in (d) means adding new investment while negative 

value means selling investment. 

5.5.4 Testing results for regime 2  

Controller 1 applied to linear model 3 

As shown in the linearization section, when 𝟎 ≤ 𝑪𝟏 ≤ 𝒓𝑫𝟏 the nonlinear model can be 

linearized to linear model 3.  In linear model 3, the open-loop system is marginally 

stable. Thus with no disturbance, the system always comes back to the equilibrium, 

where 𝐶∗ = 0 and 𝐼∗ = 0. However, this is not a steady state where the bank wants to 

be. Therefore, in this dynamic, the aim of the control is to bring the cash to a desired 

value which is different from the equilibrium. The desired value is chosen to be  𝒓𝑫𝟏, 

since this is the minimum value to meet the reserve ratio requirement. The same 



117 
 

method will be used as introduced in the previous section to find out a 𝛾  for the 

corresponding feedback controller.  

The input distribution  𝑩𝟏 = [
1

−1
] is considered first. Root locus analysis has been 

done when 𝑩𝟏 is applied to linear model 3. As shown in figure 5.7 (a3), there always 

exists a  𝛾  that can make both eigenvalues negative. Thus for testing purpose,  

𝛾=0.2725 is selected. The controller now becomes: 

𝑢1 = 𝛾𝑦 + 𝑁1
̅̅ ̅ 𝑟𝑒 = 0.2725 𝑦 + (−0.27) ×  20 

The results are shown in figure 5.14. The equilibrium point is: 𝐶∗ = 0 and  𝐼 ∗ = 0 , and 

the desired value which controller aims to bring to is 𝐶𝑟𝑒 = 20.  It can be  

 

Figure 5.14 Dynamic behaviour of the bank’s deposit (a), cash(b), total investment(c) 

and add/sold investment (d) with initial conditions of cash: 𝐶1
0 = −2. The positive value 

in (b) means adding new investment while negative value means selling investment. The 

feedback gain in controller applied in this case is 𝛾 = 0.2725.  
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seen from the figure 5.14 (d) that the first term  𝛾𝑦 = −𝛾(𝐶1 − 𝐶∗)  in 𝑢1  is always 

above zero, which means the bank is adding the investment all the time. This causes 

the cash to decrease to a negative value at a very early time as shown in figure 5.14(b). 

Since the model allows bank to failure, the simulation keeps running and after some 

time the cash comes back up above zero and finally reaches the control reference 

value 𝐶𝑟𝑒
= 20.  

Theoretically controller 1 can bring the output to the reference value, but in practice, 

the added investment should be limited by the cash, the bank can only invest when 

cash is positive. However, in this simulation, as there is no such limit, the bank still 

adds investment while there is no available cash. This is the reason that the cash goes 

to negative in the simulation. This means in the real situation, the bank does not have 

enough cash to keep adding the investment which the controller is needed. The results 

of using controller 1 do not have physical meanings in the real banking system. Thus, 

the other input distribution  𝑩𝟐 = [
−1
1

] is considered. 

Controller 2 applied to linear model 3 

Figure 5.7 (b3) shows the root locus of the system, in which the input distribution  

𝑩𝟐 = [
1

−1
] is applied on linear model 3. From the figure, it shows that there always 

exists a positive eigenvalue, as the green trajectory starts at zero and goes to the right 

hand side of the s-plane. This means it is impossible to find out a suitable 𝛾 that can 

make both of the eigenvalues negative. However, it should be noticed that the scale of 

the eigenvalues is very small (at 10−5 ). Moreover, if  taking a further look at the 

outputs from the command ‘[R,K] = rlocus (SYS)’, the roots values in R are all small 

numbers. This indicates that this one-bank system is a very slow system; even it is not 

stable, its states will not go to infinity within a short time. Therefore, the control 

mechanism can be considered to use in the following way: the controller 2 is applied 

when cash is below the expected value (𝐶1 < 𝐶𝑟𝑒
), and once the cash reaches the target 

(𝐶1 = 𝐶𝑟𝑒
= 20), the controller is switched off. Though the system is not at the steady 

state, its cash now meets the reserve requirement and the system is in regime 1. As 

explained in section 5.5.3, in regime 1, the controller 1 can then be applied to bring the 

system to a steady state.  
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For the testing purpose,  γ = 1 is used in controller 2 and the controller now becomes: 

𝑢2 = 𝛾𝑦 + 𝑁1
̅̅ ̅ 𝑟𝑒 = 𝑦 + (−1) ×  20 

The simulation results using controller 2 are shown in figure 5.15 (blue line) 

compared to the simulation results without using the controller (red line). The deposit 

is constant and equals to 100 as shown in figure 5.15 (a). The initial value of the cash 

is 10, which is 10 units below the reserve requirement (reserve ratio is 0.2 so reserve 

requirement is 100×0.2=20).  

 

Figure 5.15 Dynamic behaviour of the bank’s deposit (a), add/sold investment (b), total 

investment(c) and cash (d) with initial conditions: 𝐶1
0 = 10  and 𝐼1

0 = 90  in two cases: 

without controller (red lines) and with controller (blue lines). The positive value in (b) 

means adding new investment while negative value means selling investment. The 

feedback gain in controller applied in this case is 𝛾 = 1. 

The red line shows the dynamic when no controller is applied. It can be seen that the 

bank does not sell any investment (red line in figure 5.15(b) equals to zero). The cash 
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increases slowly as bank receives its matured investment, 𝑤1𝐼1, and the return of the 

investment, 𝑝1𝐼1. As these two parts have very small values, it is difficult to see the 

increase of the cash in the figure 5.15(b). furthermore, it will take a long time for the 

bank to get enough cash to meet the reserve requirement. Letting the cash level stay 

below the reserve requirement is very dangerous for the bank, as the bank has less 

cash to buffer the shock. Therefore, the bank needs to get its cash back to the reserve 

requirement as soon as possible.   

The blue line shows the dynamic when the controller is applied. At the beginning, the 

bank sells 10 units of the investment as shown in figure 5.15 (d) blue line ( the value 

of 𝛾(𝐶1 − 𝐶∗)  equals to 10 at the beginning). By selling the investment, the bank 

transfers its investment to cash. Therefore, the total investment, 𝐼1, in figure 5.15 (c) 

decreases while the cash , 𝐶1, in figure 5.15(b) increases. After a short time the cash 

reaches to the reserve requirement 20 so the controller is switched off. Therefore, no 

more investment is sold in (d) and no more decrease in total investment in (c).  

It is interesting to take a further look into the net-worth, which is shown in figure 5.16. 

the figure shows the values of net-worth under two cases, one with the controller and 

the other one without the controller. In both cases, the net-worth is increasing. The 

net-worth increases more slowly when the controller applied. The speed at which the 

net-worth increases, depends on the value of  
𝑑𝑁1

𝑑𝑡
. The smaller the 

𝑑𝑁1

𝑑𝑡
 is the more 

slowly net-worth increases. According to the equation (5.36), the change of the net-

worth 
𝑑𝑁1

𝑑𝑡
= − 𝑔1𝐷1 +  𝑝1𝐼1 − 𝑣1𝐼1 .  When there is no controller applied, the total 

investment, 𝐼1, is decreasing (Since every day there are some matured investment), 

which causes the 𝑝1𝐼1 − 𝑣1𝐼1  becomes smaller, while the interest paid to the 

depositors, 𝑔1𝐷1 , is the same as before. Therefore, 
𝑑𝑁1

𝑑𝑡
 becomes smaller. When the 

controller is applied, the bank sells investment, which makes the total investment 

decrease more quickly, thus causes 
𝑑𝑁1

𝑑𝑡
  to decrease more quickly. The value of  

𝑑𝑁1

𝑑𝑡
 is 

always smaller in the case with the controller than in the case without the controller. 

This indicates that, when the bank is in the dangerous zone, it has to sell some of the 

investment to get enough reserve to safeguard itself from the shock, however, the bank 

will lose some profit because of selling the investment.  
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Figure 5.16 Dynamic behaviour of the bank’s net-worth when  𝐶1
0 = 10 and 𝐼1

0 = 90 for 

two case: without controller (red lines) and with controller (blue lines).  

5.5.5 Testing results for regime 3 

In regime 3, the bank is in a state that it is about to fail. In this state, the cash is negative 

because of the shock in the deposit is larger than the current cash. If the bank does not 

take any action at the current time step, the bank will fail in the next time step. 

Therefore, there is a need to apply a possible controller to bring the cash back to 

positive. From the analysis in the last section, controller 1 cannot be used, as at this 

state the bank does not have cash to add more investment. However, controller 2 can 

be used, as at this state the bank still has investment to sell.  

In this state the bank does not add new investment and neither pays the interest to 

depositors, since it is lack of cash. However, it can still get the matured investment and 

the return of the investment back. Therefore, the matrix A in the linear model is the 

same as in the linear model 3. When controller 2 is applied, the root locus plot is the 

same as shown in figure 5.7 (b3). Thus in regime 3, it is impossible to find a 𝛾 that can 

make the system stable. As explained in the last section, the scale of the eigenvalues is 

very small (at 10−5) and the roots values in R are all small numbers. So that the system 
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is a very slow system and even it is not stable, its states will not go to infinity in a very 

short time. Therefore, controller 2 can be applied to get the cash back to zero and then 

switched off. Again for testing, a 𝛾 = 4  is used in the controller 2. The simulation 

results are shown in figure 5.17. By selling the investment, the bank brings its cash 

from -2 back to 0 within one-day time. 

 

Figure 5.17 Dynamic behaviour of the bank’s deposit (a), add/sold investment (b), total 

investment(c) and cash (d) with initial conditions: 𝐶1
0 = −2 and 𝐼1

0 = 30 with controller. 

The positive value in (b) means adding new investment while negative value means 

selling investment. The feedback gain in controller applied in this case is 𝛾 = 4.  

5.5.6 A switched control paradigm 

From the previous sections, it can be seen that the proper feedback gain can be 

selected according to the different system dynamics to make the cash to reach a 

desired value. Figures 5.18 and 5.19 show the simulation results in a case that as the 
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cash of the bank changes, the nonlinear system switches between different regimes 

and the controller switches accordingly.  

 

Figure 5.18 Dynamic behaviour in first 100 days of the bank’s deposit (a), add/sold 

investment (b), total investment(c) and cash (d) with initial conditions: 𝐶1
0 = −15 and 

𝐼1
0 = 65 where the controller switches when the system enters different regimes.  

The initial conditions of the simulation are: C1
0 = −15 and 𝐼1

0 = 65. The aim of the 

control is to bring the cash to a desired value 45. The system starts in regime 3 and the 

controller applied is the one introduced in section 5.5.5; the bank’s cash is brought 

from -15 to 0 within a short time as shown in figure 5.18 (d). Then the system moves 

into regime 2, therefore the controller is switched to the one introduced in section 

5.5.4 which is 𝑢2 = 𝛾𝑦 + 𝑁1
̅̅ ̅ 𝑟𝑒 = 𝑦 + (−1) ×  20. By continuing selling investment, the 

bank’s cash is brought to the reserve requirement 20. Then the system moves to 

regime 1, in which the controller introduced in section 5.5.3 can be applied. Figure 
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5.19 shows it takes a long time to finally get the system to a steady state with the 

desired cash value. 

 

Figure 5.19 The dynamic behaviour in 105  days of the bank’s deposit (a), add/sold 

investment (b), total investment(c) and cash (d) with initial conditions: 𝐶1
0 = −15 and 

𝐼1
0 = 65 where the controller switches when the system enter different regimes. 

5.6 Conclusion 

This chapter performs the application of the control theory on the one-bank model. 

The following conclusions can be drawn. 

The equilibrium point analysis has been performed on the one-bank model and three 

equilibrium points are found. The nonlinear model has been linearized around the 

equilibrium points and three linear models are obtained to describe the dynamics of 

the one-bank model. Through the analysis of the eigenvalues of the state matrices in 

the linear models, it can be seen that one equilibrium point is not stable and the other 
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two are marginally stable. Therefore, there is the need to design a controller to keep 

the one-bank model stable. The design of output feedback controllers has been 

proposed in which the proper feedback gain can be selected according to the different 

system dynamics to keep the cash of the bank at a desired value.  

Moreover, the controllers can be switched according to the dynamics of the system. As 

different feedback gains are needed for different system dynamics, therefore, when 

system switches between different dynamics, a single feedback control mechanism 

will not work in all different dynamics. Thus a switched control mechanism is designed, 

which can examine the current system’s dynamic first. Then it can be switched to the 

proper feedback control mechanism for the current dynamic. Furthermore, the 

equilibrium point analysis can give insight from the control perspective of how the 

parameter values 𝑔, 𝑤, 𝑣 and 𝑝 affect the system’s dynamic behaviour, which can be 

evidenced by the simulation results that are represented in subsection 4.4.2. 

Parameters that increase the net-worth of the bank, such as 𝑝1 , decrease the state 

variables equilibrium values, 𝐶1
∗ and 𝐼1

∗, which is beneficial for the bank since it does 

not need to have high cash and investment to stay at the equilibrium point. Those 

parameters, such as  𝑣1  and  𝑔1,  that decrease the net-worth, instead, increase the 

equilibrium values, 𝐶1
∗ and 𝐼1

∗, which is detrimental for the bank.  

The control design and control analysis proposed in this chapter show how a bank can 

sell its assets (investment) to keep itself stable if needed; the proposed analysis show 

the exact amount of assets needed to be sold, according to control laws. This procedure 

can drive the bank back to a steady state after selling the assets properly. The next 

chapter draws conclusions of the whole work presented in this thesis and presents a 

discussion on future research directions.  
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Chapter 6  
 
Conclusions and Future Work 

 

 

This chapter firstly summarises the main results and achievements presented in this 

thesis and then proposes ideas for future work.  

6.1 Summary 

This thesis presents an interdisciplinary research at the interface between economics 

and control engineering which proposes an innovative model and analysis approach 

to study the dynamics of the banking system. The novelty of this Ph.D. project lies in 

the combination of two research methodologies, one from network modelling and the 

other from control theory. The results contribute to new knowledge regarding the 

understanding of the dynamics of the banking system, which can be ultimately used to 

inform financial regulators and operators.  

The following paragraphs in this section summarise all the contributions of the Ph.D. 

project. 

The first contribution of this thesis is the development of a new network model 

describing the banking system. In this dynamic model, the banking system is 

represented as a network where the nodes are individual banks and the links between 

any two banks consist of interbank loans and borrowings. Ordinary differential 

equations are used to describe the dynamic structure of the banking system. To the 

best of our knowledge, it is the first time that ordinary differential equations are used 

to describe the balance sheet dynamics of banks’ activities (e.g. lending, borrowing, 

investment) and the behaviours of other related quantities (e.g. deposits, investment 

opportunities, interest rates). The proposed model has been implemented in a way 

that allows carrying out numerical simulations and accommodating feedback 

mechanisms typical of control theory. 
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The second contribution is the development of Simulink block diagram of the dynamic 

network model. The Simulink implementation facilitates the application of control 

analysis tools, and it allows adding complexity to the system in a visual and modular 

way. MATLAB scripts have been developed to perform the simulations, save and plot 

the results automatically and in a user-friendly manner.  

The third contribution is the insight that the results of numerical simulations provide 

regarding the dynamics of the banking system. On one hand, the simulation results 

confirm findings that have been obtained by network models reported in the 

literature. These findings regard the role played by the reserve ratio and link rate on 

the failure of banks in the system. Specifically, results presented in this thesis show 

that the reserve ratio helps individual banks to survive when there is no interbank 

lending, but when the banks can lend and borrow money from each other, a high 

reserve ratio has a negative effect on the ability of banks to borrow money and 

therefore to survive; the link rate always contributes positively to the survival of 

banks, but there are conditions under which it increases contagion. On the other hand, 

in this thesis, a new approach to quantify contagion of banks’ failure has been 

proposed, and simulation results illustrate quantitatively, for the first time, the 

nonlinear effect of link rate and reserve ratio on contagion. The nonlinear effect of the 

link rate emerges when the reserve ratio is low, namely the increase of the link rate 

increases, at first, contagion and then it decreases contagion after crossing a critical 

level. The nonlinear effect of reserve ratio is shown when the link rate is high, in fact, 

contagion, at first, increases and then decreases as the reserve ratio goes from low to 

high values. It can be suggested that these findings can ultimately help financial 

regulators in implementing new policies to preserve the banking system’s stability.  

The fourth contribution of this thesis is the application of control theory, in fact, it is 

the first time, to the best of our knowledge, that control theory has been applied to 

assess and preserve the stability of a dynamic model representing the banking system. 

The equilibrium point analysis has been implemented on the one-bank model and 

three equilibrium points have been found. The original nonlinear model has been 

linearized around the equilibrium points and three linear models have been obtained. 

The equilibrium-point analysis gives insight from a control perspective of how many 

different dynamics can emerge in the original nonlinear model. The stability of each 

dynamics has been studied by analysing the eigenvalues of the state matrix of the 
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linear models. Output feedback control mechanisms have been designed in which 

single banks sell their assets to prevent bankruptcy. The novelty of the approach lies 

in the way banks sell their assets; the sale of assets is prescribed by specific control 

mechanisms, which allow a bank to resume and maintain a stable condition. Moreover, 

a switched control mechanism has been proposed to preserve the bank from 

bankruptcy. The switched control mechanism can examine the dynamics of the system 

and it can be switched to a specific feedback gain which is suitable to control the 

dynamics so to avoid failure.  

This thesis shows how the proposed network model based on the ordinary differential 

equations can be used to simulate the dynamics of a complex system such as the 

banking system. The implementation of control theory presented in this work shows 

how feedback control can be used to design an appropriate control mechanism to 

stabilise the dynamics of a bank. This thesis represents a first, but yet important, step 

towards the combination of network models of the banking system with control 

theory; it should be now plausible and desirable to apply control theory to better 

understand the stability of financial systems.       

The work proposed in this Ph.D. project has the following limitations:  

1. The lack of real data and information regarding banking activities. The 

proposed work gives a theoretical framework to model the banking system. 

The signals used in the simulation such as the random shocks in the deposit 

and the investment opportunities may not be realistic in their amplitude, 

duration or frequency. Furthermore, information about the realistic timing of 

bank activities such as investment, borrowing and lending would be beneficial 

for the model. The knowledge of realistic data regarding the size of banks and 

the interconnection between them would be very useful as well. 

2. The proposed approach does not model all the real bank’s activities, e.g. 

dividend to shareholders are not considered, and more realistic ways of 

modelling how investments are made and mature would be beneficial.    

3. Another limitation is that the appropriate values for the feedback gains are 

highly dependent on parameter values, such as 𝑔, 𝑤, 𝑣  and 𝑝 , therefore the 

knowledge of realistic values of those parameters may help in choosing the 

feedback gains and arguably design more appropriate control mechanisms. 
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The next section presents some ideas that may tackle some of the limitations 

highlighted above. 

6.2 Future research directions 

1. One direction for future work is to look for and use real data characterising 

banks’ activities for modelling and simulating. The real data could not be used 

in this work because often values reported in the public domain are mainly 

aggregated data [123], which cannot be used for modelling and simulating a 

system based on a network of individual banks. To overcome this problem, one 

solution is to use a maximum entropy method and a minimum-density solution 

to make an estimation of bank assets and liabilities positions. These two 

method can help to fill in blanks of the network structure by using the available 

information on each bank’s total interbank lending. The maximum entropy 

method assumes that banks diversify their exposures by spreading their 

lending and borrowing across all other active banks, while the minimum-

density methods assumes that interbank linkages are costly to add and 

maintain, therefore, it aims to determine a pattern of linkages for allocating 

interbank positions that is efficient in the sense of minimizing these costs. The 

future study can follow the work of Anand et al. [82], in which the maximum 

entropy method are combined with a minimum density method in order to 

define a useful range that bounds the cost of contagion in the true interbank 

network when counterparty exposures are unknown. Another way to solve the 

issue of using real data is to seek the possibility of a joint project with 

researchers of central banks to have the detailed and disaggregated balance 

sheet data of individual banks from the central bank. With these data, 

simulations can be performed by considering a realistic number of banks and 

realistic level of deposit, investment and interbank borrowing of each bank in 

order to better validate the findings of the proposed approach. Moreover, 

another problem of using the aggregated data to validate the proposed model 

is that the data is often monthly or quarterly based, while the proposed model 

is daily based. To overcome this problem statistical methods can be used for 

interpolating data that are not available in a daily frequency. A low-frequency 

series can be considered as a partially observed high-frequency variable. For 

example, in the empirical application, quarterly variables can be treated as 
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monthly series observed only in the third month of each quarter, i.e. with 

missing data in the first and second month of each quarter. Interpolation 

techniques [124 –127] can be applied to obtain expectations for the “missing” 

days conditional on the information in the monthly series.  

2. A more systematic study of the effect of the initial conditions on the behaviour 

of the proposed model should be conducted. For example, initial conditions 

could be chosen so that the interbank borrowing and lending have a value 

different from zero at time zero, as for the real situations. Furthermore, 

different patterns of connections, rather than random, can be used, to see how 

the network structure can affect the system’s dynamic. 

3. The proposed dynamic model can be extended to account for other behaviours 

of banks such as liquidity hoarding and fire sales. To include such behaviours, 

the proposed model can be linked to an agent-based model of the security 

market. An agent based model [128] is a computational model which can be 

used to study financial/economic systems [129] as a whole through simulating 

the actions and interactions of autonomous units, known as agents. Following 

the work by Lux and Marchesi [130], an agent based model of the security 

market can be connected with the proposed model, as shown in figure 6.1.  

 

Figure 6-1 the proposed dynamic model with the agent based model.  

The agent based model of the security market would take the information of 

banks’ sale/acquisition of securities (investment), then the agents-traders in 

the security market would compete with each other to maximise their wealth 

by trading securities. The agents’ behaviour would affect the price of securities, 

and the investment opportunities, 𝑜𝑝𝑝, in the market. The information of the 

security prices and investment opportunities would feedback into the banking 

system and the banks’ investments and sale of securities would be affected by 
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the market’s behaviour. When the market becomes volatile, the agents may 

change their trading strategies, causing the change of the price of securities 

and 𝑜𝑝𝑝 , which will feedback into the proposed model. This loop between 

banks and market could ultimately cause liquidity hoarding and fire sales.  

4. Another extension of the model could be to add a central bank into the network 

as a node that is linked to all the other banks in the system. New differential 

equations can be proposed to model the central bank’s activities. For example, 

the central bank could accumulate deposits from the banks that have extra 

cash and then loan them to the banks that are in need of cash. The central bank 

could change the reserve ratio, 𝑟 , and the basic lending interest rate, ℎ0 , 

according to the current dynamics of the system. This modelling framework 

could be a useful tool test the effects of the implementations of different 

regulatory policies by the central bank. 

5. More advanced control theory tools could be applied to the proposed dynamic 

model in the future. There are many financial problems 13  that have been 

studied using stochastic optimal control [131– 136], which aims to design the 

controllers to complete the desired control task with minimum cost. This could 

be applied as a mechanism used by a bank in the model, acting as a central 

bank, to find the optimal policies to stabilise the system. As the banking system 

is highly nonlinear, the control tools applied should also be able to deal with 

nonlinear systems. Two types of methods of solving nonlinear optimal control 

problems can be found in the literature: the first type contains direct methods, 

converts the problem into a nonlinear programming by using the 

discretization or parameterization techniques [137], while the second one 

contains indirect methods and leads to the Hamilton–Jacobi–Bellman (HJB) 

equation, on the basis of dynamic programming [138, 139], or nonlinear two-

point boundary value problem (TPBVP), on the basis of the PontryaginŠs 

maximum principle [140]. Results in many recent works [141 – 143] show the 

control algorithms are quite efficient and is well suited for solving nonlinear 

optimal control problems, which can be considered to be applied in the future 

work. 

                                                             
13 Problems such as portfolio allocation, quadratic hedging of options and optimal selling of an 
asset. 
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6. In the real world, the network structure of the banking system can change with 

time in an unpredictable way [144]; this can generate uncertainties in the 

number of links between the banks, which should be taken into consideration 

when modelling the system. Other uncertainties can be introduced by the lack 

of precise values of parameters in the model. Moreover, the dynamics of large 

scale interconnected systems (e.g. the banking system) are usually highly 

nonlinear. It is not only the structure of the system which produces complexity 

but also the nonlinearity of the dynamics. The study of a network with a simple 

linear dynamics does not permit the existence of the multiple states observed 

in real networks and does not accommodate global properties of the system. 

Therefore, the nonlinear systems control theory is needed for the study of the 

uncertainty and the nonlinearity of the interconnected banking system. 

Control tools, such as decentralized feedback control and sliding mode control, 

have received much attention in the literature due to their capacity to deal 

with uncertainties, in nonlinear scenarios14. Work by Yan et al. [153 – 157] 

proposed constructive frameworks to implement decentralised output 

feedback control strategies based on sliding mode techniques; this work 

encompasses nonlinear system representations, uncertainty and unknown 

perturbations as well as limited available information in the framework. 

Moreover, it is important to note that delays usually exist in the banking 

system due to information transfer [158]; most recent works in the area of 

control for time-delay interconnected systems in [159 – 164] could be applied 

to deal with the time-delay issues in the banking system. In the work by Yan et 

al. [162], a class of nonlinear interconnected systems with time-varying delays 

is considered, where the time delay appears not only in isolated subsystems, 

but also in the interconnections. A decentralised static output feedback control 

strategy is proposed in Yan et al. [162] to drive the system to exhibit desirable 

dynamics, which could also be applied to the model of the banking system to 

study and control its stability.  This could be an interesting topic for future 

work. 

  

                                                             
14 Works of decentralized output feedback control can be found in [145 – 147] ; works of sliding 
mode control can be found in [148 – 152]. 
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Appendix 1: Script for one-bank 
model simulation 
 

All the codes and scripts for the different models and the application of control 

analysis can be found in:   

https://drive.google.com/open?id=0BzCTFEKfyl8tSzhOckZMNTJCOUE 

The following script assigns the initial conditions, parameter values and other 

information to run the simulations for the one-bank model. 

 

%***************************************************************** 
clear all;close all; 
%Parameter settings of one_bank model simulation 
p1=0/100/360; %investment return rate 
w1=0/100/360; %proportion of the total investment that matured 
v1=0/100/360; %proportion of the total investment that failed 
g1=0/100/360; %deposit interest rate 
r=0.2;        %reserve ratio 

  
t=10;tt=0:1:t;%simulation time 
step=0.1;     %step size 

  
%Generate exogenous signals 
%Deposit signal 
D10=1; 
Deposit1=[tt' [D10*ones(4,1);(D10-0.26)*ones(2,1);D10*ones(t-

5,1)]]; 
%Investment oppotunity signal 
opp10=1; 
Opp1=[tt' opp10*ones(t+1,1)]; 
%Initial conditions 
C10=0.25;     %total cash       
I10=0.75;     %total investment 
x0=[C10;I10]; 
sim('onebank')%run the simulation in the Simulink model 
%***************************************************************** 

 

 

  

https://drive.google.com/open?id=0BzCTFEKfyl8tSzhOckZMNTJCOUE
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Appendix 2: Script and function for 
two-bank model simulation 
 

The following script assigns the initial conditions, parameter values and other 

information to run the simulations for the two-bank model. 

 

%************************************************************ 
clear all;close all; 
%Parameter settings of two_bank model simulation 
p1=0/100/360; %investment return rate of bank1 
p2=0/100/360; %investment return rate of bank2 
w1=0/100/360; %proportion of the total investment that matured of 

bank1 
w2=0/100/360; %proportion of the total investment that matured 
v1=0/100/360; %proportion of the total investment that failed of 

bank1 
v2=0/100/360; %proportion of the total investment that failed 
r=0.2;        %reserve ratio 
g1=0/100/360; %deposit interest rate of bank1 
g2=0/100/360; %deposit interest rate 
alpha1=1;     %proportion of the borrowing bank1 repays to bank2 
alpha2=1;     %proportion of the borrowing bank2 repays to bank1 
h12=1/100/360;%interest rate of borrowing bank1 repays to bank2 

h21=1/100/360;%interest rate of borrowing bank2 repays to bank1 

 
t=10; tt=0:1:t;%simulation time 
step=0.1; %step size 

 
%Generate exogenous signal 
D10=1;D20=1; 
Deposit1=[tt' [D10*ones(4,1);(D10-0.2)*ones(2,1);(D10-

0.21)*ones(3,1);D10*ones(t-8,1)]];% Deposit of bank1 
Deposit2=[tt' [D20*ones(6,1);(D20-0.24)*ones(2,1);D20*ones(t-

7,1)]];% Deposit of bank2 

  
opp10=1;opp20=0.01; 
Opp1=[tt' opp10*ones(t+1,1)];%Investment opportunity of bank1 
Opp2=[tt' opp20*ones(t+1,1)];%Investment opportunity of bank1 

  
C10=0.25;C20=0.3;%Initial cash of bank1 and bank2 
I10=0.75;I20=0.5;%Initial investment of bank1 and bank2 
B10=0;B20=0;     %Initial borrowing of bank1 and bank2 

  
x0=[C10;I10;B10;B20;C20;I20];%summary of initial conditions 
sim('twobank_repay') %run the simulation in the Simulink model 
%***************************************************************** 
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User defined function used in the two-bank model Simulink Block  

function 

[xdot,inadd,infa,inmat,Deposit,boadd,borepay,Cfb,Cfre,CBB]= 

fcn(x,D1,D1dot,D2,D2dot,opp1,opp2,w1,w2,v1,v2,g1,g2,p1,p2,r,alpha1

,alpha2,h12,h21,Csur) 
% in this model input u is the threshold for borrow, lend and 

invest 
C1=x(1); 
I1=x(2); 
B1=x(3); 
B2=x(4); 
C2=x(5); 
I2=x(6); 
Csur1=Csur(1); 
Csur2=Csur(2); 
%repay stage 
if C1>=0 && Csur1>0 && C2>=0 && Csur2>0; 
B1repay=min(max(C1,0),alpha1*B1); 
else  
B1repay=0; 
end 

  
if C2>=0 && Csur2>0 && C1>=0 && Csur1>0; 
B2repay=min(max(C2,0),alpha2*B2); 
else  
B2repay=0; 
end 

  
%borrowing stage 
if Csur1>0 
B1dot=min(max(r*D1-(C1-B1repay+B2repay),0),max(C2+B1repay-B2repay-

r*D2,0))-B1repay; 
else 
    B1dot=0; 
end 
if Csur2>0; 
B2dot=min(max(r*D2-(C2-B2repay+B1repay)-

D2dot,0),max(C1+B2repay+B1repay-r*D1,0))-B2repay; 
else 
    B2dot=0; 
end 
D1=D1*Csur1;D2=D2*Csur2; 
D1dot=D1dot*Csur1;D2dot=D2dot*Csur2; 
I1=I1*Csur1;I2=I2*Csur2; 
B1=B1*Csur1;B2=B2*Csur2; 

  
I1dot=min(max((C1-B1repay+B2repay)+B1dot-D1*r-B2dot,0),opp1)-

w1*I1-v1*I1; 
C1dot=D1dot-I1dot+B1dot-B2dot-g1*D1-v1*I1+p1*I1-h12*B1+h21*B2; 

  
I2dot=min(max((C2-B2repay+B1repay)+B2dot-D2*r-B1dot,0),opp2)-

w2*I2-v2*I2; 
C2dot=D2dot-I2dot-B1dot+B2dot-g2*D2-v2*I2+p2*I2+h12*B1-h21*B2; 

  
xdot=[C1dot;I1dot;B1dot;B2dot;C2dot;I2dot]; 
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inadd=[min(max((C1-B1repay+B2repay)+B1dot-D1*r-

B2dot,0),opp1)*Csur1;min(max((C2-B2repay+B1repay)+B2dot-D2*r-

B1dot,0),opp2)*Csur2]; 
infa=[v1*I1*Csur1;v2*I2*Csur2]; 
inmat=[w1*I1*Csur1;w2*I2*Csur2]; 
Deposit=[D1*Csur1;D2*Csur2]; 
boadd=[min(max(r*D1-(C1-B1repay+B2repay),0),max(C2+B1repay-

B2repay-r*D2,0));min(max(r*D2-(C2-B2repay+B1repay)-

D2dot,0),max(C1+B2repay+B1repay-r*D1,0))]; 
borepay=[B1repay;B2repay]; 
Cfb=[max(r*D1-(C1-B1repay+B2repay),0);max(C2+B1repay-B2repay-

r*D2,0)]; 
Cfre=[max(C1,0);alpha1*B1]; 
CBB=[C1+B1dot-B2dot;C2+B2dot-B1dot]; 
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Appendix 3: Scripts and function for 
multi-bank model simulation 
 

User defined function used in the multi-bank model Simulink Block  

function 

[xdot,BLdot,inadd,infa,inmat,interest,Deposit,B_detail,Bre_detail,

CfCsur]= 

fcn(x,BL,link,D,Ddot,opp,w,v,g,p,r,a,b,c,dBasic,alpha,Csur) 
%function solve the differencial equations 
%input: the total number of the deposit, cash, 

investment,state(survive or failed) 
%borrow(matrix&vector), lend(matrix&vector), investment opp, link 
%w,v,g,p,r,a,b,c,basic interest rate, alpha 

  
%output: the change of the cash,investment,borrow(matrix&vector), 

lend(matrix&vector), 
%link,state(survive or failed) 

  
%split the x to total cash,investment,borrowing,lenidng, net worth 
C=x(1,:);%C is a 1*N 
I=x(2,:);%I is a 1*N 
B=x(3,:); 
Net=x(5,:); 
Bto_detail=BL;% BL is a N*N 
N=length(C);%N is the number of the banks 

  
%Bank experience shock, pay depositor interest, receive investment 

return 
C1= C+Ddot-g.*D+p.*I;%total cash 
%=================================================================

======== 
%interest rate of lending 
frate=zeros(N,N); 
interest=zeros(N,N); 
for j=1:N;%borrowing bank 
    for i=1:N;%lending bank 
        if Csur(1,i)==0 || Csur(1,j)==0 || i==j; 
            frate(i,j)=0; 
            interest(i,j)=dBasic(1,j); 
        else 
            frate(i,j)= a(1,i)*1/((exp((B(1,j)/C1(1,i)-

c(1,i))*b(1,i))+1)); 
            interest(i,j)=frate(i,j)+dBasic(1,i); 
        end 
    end 
end 
%Bank repay their borrowing 
Bre_detail=zeros(N,N); 
Breinterest=zeros(N,N); 
C2=C1; 
for jj=1:N;%borrowing bank 
    for ii=1:N;%lending bank 
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    Bre_detail(ii,jj)=min(max(C2(ii)-

D(ii)*r,0),alpha(ii)*Bto_detail(ii,jj)); 
    %Bto_detail(ii,jj) represent total borrowing bank i borrows 

form bank j 
    Breinterest(ii,jj)=interest(ii,jj).*Bto_detail(ii,jj); 
    C2(ii)=C2(ii)+Bre_detail(ii,jj)+Breinterest(ii,jj);%update 

borrowing bank's cash 
    C2(jj)=C2(jj)-Bre_detail(ii,jj)-Breinterest(ii,jj);%update 

lending bank's cash 
    end 
end 
%=================================================================

======== 

  
%borrowing process 
%calculate the protencial borrowing and lending 
pborrows=max(r.*(D-Ddot)-C2,0);%1*N 
plends=max(C2-r.*(D-Ddot),0);%1*N 
%calculate the lending and borrowing betwwen every two banks 
NN=linspace(1,N,N); 
number=NN';%the index of the banks (N*1) 

  
%prepare the matrixs 
pborrow = [number pborrows' Net'];%borrowing matrix with networth 

information 
plend = [number plends' interest']; %add interest information to 

the leniding matrix  
%find the size for borrow and lend banks 
LL=sortrows(plend,-2); 
BB=sortrows(pborrow,-2); 
nl=length(nonzeros(LL(:,2)));%number of lending banks 
nb=length(nonzeros(BB(:,2)));%unmber of borrowing banks 
Pborrow=sortrows(BB(1:nb,:),-3);%borrowing banks with net-worth 
PPlend=sortrows(LL(1:nl,:),1); %lending banks  
Pborrow2=Pborrow;%borrowing banks with net-worth 
PPlend2=PPlend; %lending banks  

  
%start to calculate 
B_detail=zeros(N,N);%create an empty matrix for borrowing value 
 for j=1:nb;%borrowing bank 
      for i=1:nl;%lending bank 
      PPlend2=sortrows(PPlend2,(2+Pborrow2(j,1)));%lending banks 

with interest rates 
      %calculate the borrowing for each bank 
       if link(Pborrow2(j,1),PPlend2(i,1))==0 %|| 

Pborrow(j,2)>sum(PPlend(:,2)); 
       B_detail(PPlend2(i,1),Pborrow2(j,1))=0; 
       else 
       

B_detail(PPlend2(i,1),Pborrow2(j,1))=min(Pborrow2(j,2),PPlend2(i,2

)); 
       end 
       %after borrowing decide whether the bank is failed 
       if sum(B_detail(:,j))<sum(Pborrow2(j,2))%if bank doesnt get 

enough 
           B_detail(:,j)=zeros(N,1);%then borrowing not happen 
           Bre_detail(:,j)=zeros(N,1);%repayment not happen 
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           Breinterest(:,j)=zeros(N,1); 
           C2(ii)=C(ii);%update borrowing bank's cash 
           C2(jj)=C(jj);%update lending bank's cash 
           PPlend2(i,2)=PPlend(i,2);%lending bank's cash update 
           Pborrow2(j,2)=Pborrow(j,2); 
       else 
           PPlend2(i,2)=PPlend2(i,2)-

B_detail(PPlend2(i,1),Pborrow2(j,1)); 
           Pborrow2(j,2)=Pborrow2(j,2)-

B_detail(PPlend2(i,1),Pborrow2(j,1)); 
       end 
      end 
 end 
%create the LINTEREST,BINTEREST 
Badd_sum=sum(B_detail);%added borrowing details 
Ladd_sum=sum((B_detail')); 
Bre_sum=sum(Bre_detail);%repay borrowing details 
Lre_sum=sum((Bre_detail')); 
Brein_sum=sum(Breinterest);%repya interest 
Lrein_sum=sum((Breinterest')); 
Bdot=Badd_sum-Bre_sum;%change of borrowing details 
Ldot=Ladd_sum-Lre_sum; 
C3=C2+Bdot-Ldot;%updated cash 
%=================================================================

======== 
survive_num=length(find(C3>0)); 
index=zeros(1,N); 
inv_liqui1=0; 
left_invest=I-D; 
for nn=1:N 
    if C3(1,nn)>0  
       index(1,nn)=1; 
       inv_liqui1=inv_liqui1+0; 
    else 
        index(1,nn)=0; 
        inv_liqui1=inv_liqui1+max(left_invest(1,nn),0); 
    end 
end 
%liquidation 
Z=zeros(size(C)); 
D=D.*Csur; 
Ddot=Ddot.*Csur;%set deposit of previous failed banks to zeros 

  
if survive_num~=0 
I=I+index*(inv_liqui1/survive_num);%update investment value 
inv_liqui=index*(inv_liqui1/survive_num); 
else 
inv_liqui=zeros(1,N); 
end 
%calculationg the derevation 
Idot=(min(max(C3-D.*r,Z),opp)-w.*I-v.*I+inv_liqui).*index; 
Cdot=Ddot.*index+(-Idot-g.*D-v.*I+inv_liqui+p.*I+Bdot-Ldot-

Brein_sum+Lrein_sum).*index; 
Ndot=Cdot+Idot+Ldot-Bdot-Ddot; 
xdot=[Cdot;Idot;Bdot;Ldot;Ndot]; 
BLdot=B_detail-Bre_detail;%change of borrowing N*N 
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inadd=(min(max(C-D.*r+Badd_sum-Ladd_sum,Z),opp)-w.*I-v.*I).*index; 
infa=v.*I.*index; 
inmat=w.*I.*index; 
Deposit=index; 
%create the index of survial and failed banks 
CfCsur=C3-Idot-v.*I+inv_liqui; 

 

The codes of running the simulation 

TEST.m 

%This is the file that run the simulation, it includes many sub 

srcipts 
clear all;close all; 
set_testing_parameters;%this is the file in which parameter values 

are set 
main_simulation;%this is the file run and save all the simulations 

reults 
clear all;close all; 
set_testing_parameters; 
take_average;%this is the file calculate the average of 

simulations reults 
plot_results;%this is the file plots all the results 

 

set_testing_parameters.m 

%This is the file that set the simulation time, repeat 

time,testing period, number of banks,link rate 
%values and reserve ratios 
T=10;%the repeated time of the simulation 
%the value of reserve ratio used for testing 
reserve_m_1={'01', '02', '03','04','05','06','07'}; 
reserve_m=[0.1 0.2 0.3 0.4 0.5 0.6 0.7]; 
R_length=length(reserve_m); 
%the values of link rate used for testing 
link_m_1={'0','015','035','05','065','085','1'}; 
link_m=[0 0.15 0.35 0.5 0.65 0.85 1]; 
L_length=length(link_m); 
N=50;%Number of the bank 
t=300;%The simulation time period daily based 
step=0.1;%step size 

 

main_simulation.m 

%This is the file run all the simulations 
for i=1:T;% repeat time 
    T_1=num2str(i); 
    NameT=strcat('time',T_1); 
    mkdir(NameT); 
    Dvan=0.7;%the shock amplitude 
    bankdata;%generate other parameters and intial conditions 
    for j=1:R_length;%different reserve ratio 
        for jj=1:L_length;%different link rate 
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Name=strcat('Multibank_borrow_repay','reserve',reserve_m_1{j},'lin

k',link_m_1{jj}); 
        reserve=reserve_m(:,j); 
        linkrate=link_m(:,jj); 
        createlink;%create the link matrix 
        sim('Multibank_borrow_repay'); 
        ii;%take out the needed results 
        save(Name);%save the results 
        Name_1=strcat(Name,'.mat'); 
        ppr;%summary the results of different links but same 

reserve ratio 
        movefile(Name_1,NameT); 
        end 
        NameRE=strcat('re',reserve_m_1{:,j},'_',T_1); 
        save(NameRE); 
    end 
end 

 

bankdata.m 

%This is the file generate extenal signals,set initial conditions 

and other 
%parameters values. 
tt=linspace(1,t,t); 
%The initial condition for Depsoit, Cash, Investment, Borrowing 

and Lending 
%Homogeneous case 
%Deposit 
Dbar=1000; 
TT=[0;tt']; 
RandD=normrnd(0,1,t+1,N); 
deposit_c=zeros(t,N); 
deposit=Dbar*ones(t,N); 
for jjjj=1:t; 
    for iiii=1:N; 
     deposit_c(jjjj,iiii) = Dvan*Dbar*RandD(jjjj,iiii);%Model B 
     deposit(jjjj,iiii)=deposit(jjjj,iiii)+deposit_c(jjjj,iiii); 
    end  
end 
deposit(deposit<0)=0; 
Deposit=[TT [Dbar*ones(1,N);deposit]]; 
%Investment oppotunity 
rho=0.3; %0<rho<1, maximun propertion of the depsoit 
Ibar = rho*Dbar; 
Ivan = 0.3; 
Rand1=normrnd(0,1,t,N); 
investopp=zeros(t,N); 
for jjjj=1:t; 
   for iiii=1:N; 
investopp(jjjj,iiii) = abs(Ibar +Ivan*Ibar*Rand1(jjjj,iiii)); 
   end 
end 
Investopp=[0 Ibar*ones(1,N);tt' investopp]; 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
w=[TT 0.18*ones(t+1,N)];%proportion of the matured investment 
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dBasic = [TT 1/100/360*ones(t+1,N)];%lending/borrowing interesr 

rate 
p = [TT 5/100/360*ones(t+1,N)];%investment return rate 
v=[TT 1*p(:,2:N+1)-0*p(:,2:N+1)];%investment faluire rate 
g = [TT 2/100/360*ones(t+1,N)];%deposit interest rate 
%Other initial conditions(size 1*N) 
N0=0*ones(1,N);%networth 
I0=800*ones(1,N);%investment 
B0=zeros(1,N);%borrowing 
L0=zeros(1,N);%lending 
D0=Deposit(1,2:N+1);%deposit 
C0=N0-I0+D0;%cash 
x0=[C0;I0;B0;L0;N0]; 
Bd0=zeros(N,N);%borrowing 
Ld0=zeros(N,N);%lending 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%Flucration of the lending interest rate function parameters 
a = [TT 0.5/100/360*ones(t+1,N)]; 
b = [TT -50*ones(t+1,N)]; 
c = [TT 0.3*ones(t+1,N)]; 
%Repay proportion 
alpha=1*ones(1,N); 

 

creatlink.m 

%Define the link matrix 
link=zeros(N,N); x=rand(N,N);  
for iii =1:N; 
    for jjj=iii:N; 
        if x(iii,jjj)<=linkrate && iii~=jjj; 
            link(iii,jjj) = 1; 
        else link(iii,jjj) = 0; 
        end 
        link(jjj,iii)=link(iii,jjj); 
    end 
end 

 

ppr.m 

%This is the file saves all the needed results 
sre0(:,jj)=survivalnumber; 
sree0(:,jj)=failnumber; 
snet_sum0(:,jj)=net_sum; 
snet_ave0(:,jj)=net_ave; 
scash_sum0(:,jj)=cash_sum; 
scash_ave0(:,jj)=cash_ave; 
sinv_sum0(:,jj)=inv_sum; 
sinv_ave0(:,jj)=inv_ave; 
sinvt_sum0(:,jj)=invt_sum; 
sinvt_ave0(:,jj)=invt_ave; 
slend_sum0(:,jj)=lend_sum; 
slend_ave0(:,jj)=lend_ave; 
slendt_sum0(:,jj)=lendt_sum; 
slendt_ave0(:,jj)=lendt_ave; 
sborrow_sum0(:,jj)=borrow_sum; 
sborrow_ave0(:,jj)=borrow_ave; 
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sborrowt_sum0(:,jj)=borrowt_sum; 
sborrowt_ave0(:,jj)=borrowt_ave; 
sdep_sum0(:,jj)=dep_sum; 
sdep_ave0(:,jj)=dep_ave; 
sinterest_ave0(:,jj)=interest_ave1; 
sPLE(1,jj)=ple; 
sPLE1(1,jj)=ple1; 
sELE(1,jj)=ele; 
sPFB(1,jj)=pfb; 
sAVERAGERATIO(1,jj)=averageratio; 
sFIRSTF(1,jj)=firstfailtime; 
sSECONDF(1,jj)=secondfailtime; 

 

ii.m 

%This is the file rearrange and process the results 
tt = length(time); 
INDEX=zeros(tt,N); 
Cash1=zeros(tt,N); 
Networth1=zeros(tt,N); 
Deposittotal1=zeros(tt,N); 
Depositchange1=zeros(tt,N); 
Investtotal1=zeros(tt,N); 
Investadd1=zeros(tt,N); 
Investback1=zeros(tt,N); 
Investfail1=zeros(tt,N); 
Borrowtotal1=zeros(tt,N); 
Lendtotal1=zeros(tt,N); 
Borrowadd1=zeros(tt,N); 
Lendadd1=zeros(tt,N); 
Borrowrepay1=zeros(tt,N); 
Lendrepay1=zeros(tt,N); 
LENDADD=zeros(1,N); 
LENDREPAY=zeros(1,N); 
%Index for the bank 
for i=1:N; 
%Transfer the results to matrix 
for x =1:tt; 
    INDEX(x,i)=index(1,i,x); 
    Cash1(x,i) = Cashtotal1(1,i,x); 
    Networth1(x,i) = Networth(1,i,x); 
    Deposittotal1(x,i)=Deposittotal(1,i,x); 
    Investtotal1(x,i) = Investtotal(1,i,x); 
    Investadd1(x,i) = Investadd(1,i,x); 
    Investback1(x,i) = Investback(1,i,x); 
    Investfail1(x,i) = Investfail(1,i,x); 
    Borrowtotal1(x,i) = Borrowtotal(1,i,x); 
    Lendtotal1(x,i) = Lendtotal(1,i,x); 
    Borrowadd1(x,i) = Borrowadd(1,i,x); 
    Lendadd1(x,i) = Lendadd(1,i,x); 
    Borrowrepay1(x,i) = Borrowrepay(1,i,x); 
    Lendrepay1(x,i) = Lendrepay(1,i,x); 
end 
LENDADD(1,i)=sum(Lendadd1(:,i));LENDREPAY(1,i)=sum(Lendrepay1(:,i)

); 
end 
INDEX1=zeros(t/step,N);%find when is the bank fails 
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for i=1:N; 
    for ji=2:t/step+1; 
        if INDEX(ji,i)-INDEX(ji-1,i)==-1; 
            INDEX1(ji,i)=1; 
        else INDEX1(ji,i)=0; 
        end 
    end 
end 
ind = find(INDEX1==1); 
[Time,INDEX2] = ind2sub(size(INDEX1),ind); 
INDEX3= sortrows([Time INDEX2],1);%find the order that banks 

failed 
A=LENDADD-LENDREPAY; %at final date the unpaid loan 
AA=Lendadd1-Lendrepay1;%upaid loan at each time point 
aaa = AA; 
aaa(aaa<1e-10)=0;%upaid loan at each time point 
INDEX4=aaa; 
INDEX4(aaa>0)=1; 
%==================================================== 
%calculate the percentage that failed banks has upaid loans 
le=zeros(length(Time),1); 
for ji=1:length(Time) 
    if aaa(t,INDEX3(ji,2))>0 
        le(ji,1)=1; 
    else 
        le(ji,1)=0; 
    end 
end 
ple=sum(le)/length(Time); 
ple(isnan(ple))=0;ple(isinf(ple))=0; 
%======================================== 
%calulate the extent of the effect from upaid loans 
%calculate the ratio= unpaidloan/(-cash) to measure contagion 
ratio=aaa./-Cash1; 
loanvscash=ratio(1:t/step,:).*INDEX1(2:t/step+1,:); 
loanvscash(isnan(loanvscash))=0; 
loanvscash1=zeros(t/step,N); 
for i=1:t/step; 
    for ji=1:N; 
if loanvscash(i,ji)<1 
    loanvscash1(i,ji)=0; 
else loanvscash1(i,ji)=1; 
end 
    end  
end 
ple1=sum(sum(loanvscash1))/length(Time); 
ele=sum(sum(loanvscash))/length(Time); 
ele(isnan(ele))=0;ele(isinf(ele))=0; 
%========================================= 
%calculate the ratio betwwen number of failed bank/total number of 

banks 
pfb= length(Time)/N; 
%========================================= 
%try to see the protencial contange 
ratio1=Borrowtotal1./Cash1.*INDEX; 
averageratio=sum(sum(ratio1(1:t,:)))/sum(sum(INDEX(1:t,:))); 
averageratio(isnan(averageratio))=0; 
%========================================= 
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%Networth1=Cash1+Investtotal1+Lendtotal1-Borrowtotal1-

Deposittotal1; 
net=Networth1.*INDEX; 
net_sum=sum(net,2); 
net_ave=net_sum./survivalnumber; 
net_ave(isnan(net_ave))=0; 
net_ave(isinf(net_ave))=0; 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
cash=Cash1.*INDEX; 
cash_sum=sum(cash,2); 
cash_ave=cash_sum./survivalnumber; 
cash_ave(isnan(cash_ave))=0; 
cash_ave(isinf(cash_ave))=0; 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
inv_sum=sum(Investadd1,2); 
inv_ave=inv_sum./survivalnumber; 
inv_ave(isnan(inv_ave))=0; 
inv_ave(isinf(inv_ave))=0; 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Invest=Investtotal1.*INDEX; 
invt_sum=sum(Invest,2); 
invt_ave=invt_sum./survivalnumber; 
invt_ave(isnan(invt_ave))=0; 
invt_ave(isinf(invt_ave))=0; 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
depo=Deposittotal1.*INDEX; 
dep_sum=sum(depo,2); 
dep_ave=dep_sum./survivalnumber; 
dep_ave(isnan(dep_ave))=0; 
dep_ave(isinf(dep_ave))=0; 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
lend_sum=sum(Lendadd1,2); 
lend_ave=lend_sum./survivalnumber; 
lend_ave(isnan(lend_ave))=0; 
lend_ave(isinf(lend_ave))=0; 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
lendt_sum=sum(Lendtotal1,2); 
lendt_ave=lendt_sum./survivalnumber; 
lendt_ave(isnan(lendt_ave))=0; 
lendt_ave(isinf(lendt_ave))=0; 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
borrow_sum=sum(Borrowadd1,2); 
borrow_ave=borrow_sum./survivalnumber; 
borrow_ave(isnan(borrow_ave))=0; 
borrow_ave(isinf(borrow_ave))=0; 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Borrowt=Borrowtotal1.*INDEX; 
borrowt_sum=sum(Borrowt,2); 
borrowt_ave=borrowt_sum./survivalnumber; 
borrowt_ave(isnan(borrowt_ave))=0; 
borrowt_ave(isinf(borrowt_ave))=0; 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
LINK1=zeros(N,N,tt); 
for x=1:tt; 
    for ji=1:N; 
        for i=1:N; 
        if INDEX(x,i)==1 && INDEX(x,ji)==1 && i~=ji; 
            LINK1(i,ji,x)=1; 
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        else LINK1(i,ji,x)=0; 
        end 
        end 
    end 
 end 
interest=INTEREST.*LINK1; 
interestave=sum(sum(interest))./sum(sum(LINK1)); 
interest_ave1=zeros(tt,1); 
for x =1:tt; 
    interest_ave1(x,1) = interestave(1,1,x); 
end 
interest_ave1(isnan(interest_ave1))=0; 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%calculate the number of failed banks at each time step 
failnumber=zeros(t/step,1); 
for i=2:t/step 
    failnumber(i,:)= survivalnumber(i-1,:)-survivalnumber(i,:); 
end 
%calculate the first defalut time 
[row,col] = find(failnumber); 
if numel(row)==0; 
    firstfailtime=t/step; 
    secondfailtime=t/step; 
elseif numel(row)==1; 
    firstfailtime=row(1,1); 
    secondfailtime=t/step; 
else 
    firstfailtime=row(1,1); 
    secondfailtime=row(2,1); 
end 
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Appendix 4: Additional Simulation 
results 
 

This Appendix shows additional simulation results that support the conclusions in 

Chapter 4. 

1. Effect of reserve ratio and link rate on number of survival banks 

Figure A.1 reports how the number of survival banks changes with a low aptitude, 

𝜎𝐷 = 0.25, of  shocks in the deposits.  

 

A. 1 Number of survival banks in the homogeneous case with 𝜎𝐷 = 0.25, 𝜎𝑜𝑝𝑝 = 0.5 with 

different reserve ratios, 𝑟 =0.1 (dark blue line), 𝑟 =0.13(light red line), 𝑟 =0.17 (yellow 

line), 𝑟 =0.2 (purple line), 𝑟 =0.23 (green line), 𝑟 =0.3 (light blue line), 𝑟 =0.4 (dark red 

line), and under different link rates, 𝑙𝑟 =0 (a), 𝑙𝑟 =0.04 (b), 𝑙𝑟  =0.06 (c), 

 𝑙𝑟= 0.08 (d). 
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2. Lending interest rate as a function of link rate and reserve ratio 

Figure A.2 reports how the average lending interest rate of all survival banks is 

affected by different reserve ratios and link rates when 𝜎𝐷= 0.3. Figure A.2(a) reports 

the results corresponding to 𝑙𝑟= 0;  since there is no interbank lending, the average 

interest rate stays at the basic rate level. As the link rate increases to 0.15,0.5 and 1, as 

shown in figure A.2(b), (c) and (d) respectively, the average lending interest rate 

increases due to more borrowing and lending happen between banks. As the reserve 

ratio increases, the average interest rate decreases, which indicates that high reserve 

ratio prevent the banks from lending, thus the banks become less active in the 

interbank market. 

 

A. 2 Average lending interest rate of all survival banks in the homogeneous case with 

𝜎𝐷 = 0.3, 𝜎𝑜𝑝𝑝 = 0.5 with different reserve ratios, 𝑟 =0.1 (dark blue line), 𝑟 =0.2(light red 

line), 𝑟 =0.3 (yellow line), 𝑟 =0.4 (purple line), 𝑟 =0.5 (green line), 𝑟 =0.6 (light blue line), 

𝑟 =0.7 (dark red line), and under different link rates , 𝑙𝑟= 0 (a), 𝑙𝑟= 0.15 (b), 𝑙𝑟  = 0.5 (c), 

 𝑙𝑟= 1 (d). 
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3. Net-worth as a function of link rate and reserve ratio 

Figure A.3 shows how the average lending interest rate of all survival banks is affected 

by different reserve ratios and link rates when 𝜎𝐷 = 0.3. Figure A.3(a) reports the 

results when 𝑙𝑟= 0; this figure shows that when there is no interbank lending, as the 

reserve ratio increases, more net-worth is generated at the end of the simulation 

period. However, when the link rate increases as shown in figures A.3 (b) (c) and (d), 

an increase in the reserve ratio causes a decrease in the total net-worth. This result 

shows similarities in the effect of the reserve ratio and link rate on the average lending 

interest rate as in simulation results 1 in Section 4.4.2.  

 

A. 3 Total net-worth of all banks in the homogeneous case with 𝜎𝐷 = 0.3, 𝜎𝑜𝑝𝑝 = 0.5 

with different reserve ratios, 𝑟 =0.1 (dark blue line), 𝑟 =0.2(light red line), 𝑟 =0.3 

(yellow line), 𝑟 =0.4 (purple line), 𝑟 =0.5 (green line), 𝑟 =0.6 (light blue line), 𝑟 =0.7 

(dark red line), and under different link rates, 𝑙𝑟= 0 (a), 𝑙𝑟= 0.15 (b), 𝑙𝑟  = 0.5 (c), 

 𝑙𝑟= 1 (d). 

 

 


