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ABSTRACT 30 

 31 

Objectives: Internal bone structure, both cortical and trabecular bone, remodels in response to loading 32 

and may provide important information regarding behaviour. The foot is well suited to analysis of internal 33 

bone structure because it experiences the initial substrate reaction forces, due to its proximity to the 34 

substrate. Moreover, as humans and apes differ in loading of the foot, this region is relevant to questions 35 

concerning arboreal locomotion and bipedality in the hominoid fossil record. 36 

Materials and methods: We apply a whole-bone/epiphysis approach to analyse trabecular and cortical 37 

bone in the distal tibia and talus of Pan troglodytes and Homo sapiens. We quantify bone volume fraction 38 

(BV/TV), degree of anisotropy (DA), trabecular thickness (Tb.Th), bone surface to volume ratio 39 

(BS/BV), cortical thickness, and investigate the distribution of BV/TV and cortical thickness throughout 40 

the bone/epiphysis. 41 

Results: We find that Pan has a greater BV/TV, a lower BS/BV and thicker cortices than Homo in both 42 

the talus and distal tibia. The trabecular structure of the talus is more divergent than the tibia, having 43 

thicker, less uniformly aligned trabeculae in Pan compared to Homo. Differences in dorsiflexion at the 44 

talocrural joint and in degree of mobility at the talonavicular joint are reflected in the distribution of 45 

cortical and trabecular bone. 46 

Discussion: Overall, quantified trabecular parameters represent overall differences in bone strength 47 

between the two species, however, DA may be directly related to joint loading. Cortical and trabecular 48 

bone distributions correlate with habitual joint positions adopted by each species, and thus have potential 49 

for interpreting joint position in fossil hominoids.  50 

 51 

 52 

 53 
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1. INTRODUCTION 54 

Aspects of the external bony morphology of the talus and distal tibia reflect kinematic differences 55 

between how terrestrial bipedal humans and arboreal, quadrupedal African apes load their foot and ankle 56 

during locomotion (e.g. Lewis, 1980a,b,c; Stern and Susman, 1983; Latimer et al., 1987; DeSilva, 2009; 57 

Barak et al., 2013b). These morphological differences can be related to fundamental differences in foot 58 

posture: the degree of dorsiflexion at the ankle, use of the foot in an inverted position, the general 59 

conformation of the leg, and the presence of medial and longitudinal arches of the foot. For example, 60 

compared with African apes, humans have been described as having a less mediolaterally expanded 61 

anterior distal articular surface of the tibia (Latimer et al., 1987; DeSilva, 2009), an angle close to 90 62 

degrees between the long axis and distal articular surface of the tibia (Latimer et al., 1987; DeSilva, 63 

2009), a more symmetric talar trochlea (Latimer et al., 1987; DeSilva, 2009), a relatively stiff mid-foot 64 

without a mid-tarsal break (Elftman and Manter, 1935; DeSilva, 2010), and a complex of features, 65 

including the medial longitudinal arch, metatarsophalangeal joints and various soft tissues, which 66 

contribute to the windlass mechanism (Griffin et al., 2015) that improves locomotor efficiency (Ker et al., 67 

1987). 68 

In part due to the mosaic nature of fossil hominin morphology, but also due to reliance on fragmentary or 69 

isolated postcranial elements, palaeoanthropologists often differ in their interpretations of the functional 70 

significance of various morphological features. It remains unclear, based on the morphology of the ankle, 71 

whether early hominins continued to engage in a significant amount of arboreal behaviour and whether 72 

hominin species used kinematically similar or distinct forms of bipedalism, perhaps unlike the modern 73 

human bipedal gait (e.g. Day and Wood, 1968; Lisowski et al., 1974; Lisowski et al., 1976; Oxnard and 74 

Lisowski, 1980; Stern and Susman, 1983; Latimer et al., 1987; Clarke and Tobias, 1995; Harcourt-Smith 75 

and Aiello, 2004; DeSilva, 2009; DeSilva and Throckmorton, 2010; Zipfel et al., 2011; Haile-Selassie et 76 

al., 2012; DeSilva et al., 2013; Harcourt-Smith et al., 2015; Prang, 2015, 2016). Functional interpretation 77 

of the external skeletal morphology of the foot is further complicated by the role of soft tissues in limiting 78 
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or enabling adoption of different foot postures (Venkataraman, 2013a,b) and by the substantial individual 79 

variability in the flexibility of the modern human foot (Bates et al., 2013; DeSilva et al., 2015). As the 80 

foot comprises a complex system of bones, tendons, ligaments and muscles, there are potentially many 81 

different ways for it to adapt to different functions, other than by modification of external bone shape 82 

(Crompton, 2015). Even modern humans are able to access numerous resources efficiently from the 83 

arboreal environment (Kraft et al., 2014), without any apparent external morphological signal on the talus 84 

and distal tibia (Venkataraman et al., 2013a).  85 

Analysis of internal bone structure, both cortical and trabecular bone, of the talocrural and talonavicular 86 

joint has potential to provide further insight into interpreting use of the foot in the past. While external 87 

articular morphology indicates the joint positions a species was able to adopt, the internal bone structure 88 

can provide information about how a joint was actually loaded (Ruff and Runestad, 1992; Kivell, 2016). 89 

This is because both trabecular and cortical bone structure can adapt to loading during an individual's 90 

lifetime (e.g. Lanyon, 1974; Robling et al., 2002; Pontzer et al., 2006; Ruff et al., 2006; Barak et al., 91 

2011; Kivell, 2016), by remodelling in response to strain (Ehrlich and Lanyon, 2002). Structural 92 

adaptations can occur at the level of individual trabeculae (Schulte et al., 2013; Cresswell et al., 2015). As 93 

these individual trabeculae appear able to adapt to accommodate regional strains, it is likely that regional 94 

architectural parameters can provide information about how different areas of a joint are loaded. For 95 

example, trabecular and cortical bone distribution close to the articular surface, radiodensity patterns, and 96 

indicators of bone remodelling, correspond with predicted locations of peak loading associated with 97 

specific joint positions (Patel and Carlson, 2007; Polk et al., 2008, 2010; Mazurier et al., 2010; Zeininger 98 

et al., 2011; Carlson et al., 2013; Tsegai et al., 2013; Skinner et al., 2015).  99 

Experimentally changing the loading regime of a joint or limb by, for example, changing the angle of the 100 

joint during loading or subjecting a limb to an unnatural load, leads to predictable alterations in both 101 

cortical and trabecular bone (Robling et al., 2002; Pontzer et al., 2006; Barak et al., 2011; Cresswell et al., 102 

2015). It is often difficult to relate bone structure, especially that of trabecular bone, directly to the 103 
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biomechanical environment, i.e. to connect specific architectural variables to joint function and loading 104 

regime. Factors other than behaviour have the potential to influence, or even be the main factor 105 

determining, bone form (Bertram and Swartz, 1991; Lovejoy et al., 2003; Ruff et al., 2006; Kivell, 2016). 106 

There is still much that we do not fully understand about bone functional adaptation, including the genetic 107 

and systemic factors that shape trabecular and cortical structure (Lieberman, 1996; Carlson et al., 2008; 108 

Havill et al., 2010; Wallace et al., 2010; Paternoster et al., 2013; Wallace et al., 2013; Tsegai et al., 109 

2016a). These include the way in which bone remodels depending upon the duration, frequency, or 110 

magnitude of the external load (e.g. Frost, 1987; Rubin and Lanyon, 1985; Skerry and Lanyon, 1995), or 111 

how these factors might vary depending on species (e.g. Turner, 2001), anatomical region (e.g. Morgan 112 

and Keaveny, 2001), age (e.g. Pearson and Lieberman, 2004) or body mass (e.g. Biewener, 1990; Doube 113 

et al., 2011). Moreover, cortical and trabecular bone may respond differently to strain or even interact to 114 

compensate for each other (Carlson and Judex, 2007). It is likely that these factors vary between even 115 

closely related species/subspecies. For example, some of the genetic differences between modern humans 116 

and Neanderthals relate to bone growth (Green et al., 2010), and changes in indirect measures of hormone 117 

levels occur at different developmental stages in humans, chimpanzees and bonobos (e.g. TT3: Behringer 118 

et al., 2014a; testosterone: Behringer et al., 2014b). All of these factors can confound our functional 119 

interpretations of variation in bone structure. However, there is a wealth of comparative, computational 120 

and in vivo research that makes clear that variation in cortical and trabecular structure reflects, at least to 121 

some degree, variation in external loading (Ruff et al., 2006; Kivell, 2016). 122 

The hominoid foot and ankle, specifically the talocrural and talonavicular joints, are well suited to 123 

analysis of internal bone structure due to differences in foot postures adopted by modern humans and 124 

extant apes, the specific structure of the joint, and the close association of the foot with the substrate. 125 

Several studies have investigated the kinematics of the foot, during both quadrupedal and bipedal 126 

locomotion, in humans and chimpanzees (e.g. Sockol et al., 2007; Pontzer et al., 2009; Pontzer et al., 127 

2014; O’Neill et al., 2015; Holowka et al., 2017). As modern human bipeds and chimpanzee 128 
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climbers/knuckle-walkers adopt divergent foot postures (DeSilva, 2009), the loading environment within 129 

the foot and at the ankle is likely to differ between these groups. In Pan troglodytes, the ankle is loaded in 130 

dorsiflexion during both vertical climbing and during quadrupedal knuckle-walking (Sockol et al., 2007; 131 

DeSilva, 2009; Pontzer et al., 2009; Barak et al., 2013b; Pontzer et al., 2014), whereas the human ankle 132 

adopts a more neutral posture during bipedalism (Barak et al., 2013b). The chimpanzee ankle is also 133 

inverted during climbing (Lewis 1980a; Latimer et al., 1987; DeSilva, 2009). Loading at the talonavicular 134 

joint is characterised by greater mobility in Pan compared to Homo, either related to dorsiflexion (i.e. the 135 

midtarsal break) or to rotation (Elftman and Manter, 1935; DeSilva, 2010; Thompson et al., 2014; but see 136 

Holowka et al., 2017). The high joint congruity between the distal tibia and the trochlea surface of the 137 

talus (Latimer et al., 1987) indicates that the bone structure is likely to be directly related to joint use, and 138 

not to other factors such as the action of muscles, as in other regions (e.g. the humeral head), where the 139 

bony articulation itself does not maintain joint integrity. In the absence of muscle/tendon attachments on 140 

the talus itself, and thus of tensile forces caused by muscle contractions, this region also offers an 141 

opportunity to analyse the effects of locomotor forces alone on trabecular bone structure (DeSilva and 142 

Devlin, 2012). Further, as the foot is in direct contact with the substrate, it directly experiences the initial 143 

forces of locomotion, unlike more proximally located joints. The same is true for the hand, where clear 144 

trabecular signals of the direction of loading are present (Tsegai et al., 2013; Skinner et al., 2015).  145 

Previous analyses have assessed the functional significance of trabecular and cortical bone structure of the 146 

ankle in humans (talus: Takechi et al., 1982; Sinha, 1985; Pal and Routal, 1998; Ebraheim et al., 1999; 147 

Schiff et al., 2007; Athavale et al., 2008; Nowakowski et al., 2013; talus and distal tibia: Hvid et al., 148 

1985), and several studies have adopted a comparative approach across different taxa (talus: Su, 2011; 149 

DeSilva and Devlin, 2012; Hérbert et al., 2012; Su et al., 2013; Su and Carlson, 2017; tibia: Su, 2011; 150 

Barak et al., 2013b; Carlson et al., 2016). DeSilva and Devlin (2012) found interspecific differences in 151 

regional patterning of trabecular structure across four quadrants of the talar body, but were unable to 152 

attribute these differences to locomotor mode and a biomechanical explanation remains unclear. Analysis 153 
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of more localised subregions, sampling bone directly adjacent to the articular surface, has shown regional 154 

patterning of degree of anisotropy (DA), elongation and primary trabecular orientation, which is distinct 155 

in modern humans when compared with extant apes, with fossil hominins displaying some ape-like and 156 

some human-like features (Su, 2011; Su et al., 2013; Su andCarlson, 2017). At the distal tibia, the 157 

orientation of trabecular bone in humans and chimpanzees corresponds with measurements of 158 

dorsiflexion at the ankle (Barak et al., 2013b). Previous studies have assessed cortical thickness and 159 

radiodensity patterns of the articular surfaces of the primate talus and distal tibia (talus: Su, 2011; tibia: 160 

Su, 2011; Carlson et al., 2016), and behavioural correlates have been identified from bone profiles and 161 

radiodensity patterns at articular surfaces of other primate and mammalian taxa and epiphyses (Patel and 162 

Carlson, 2007; Mazurier et al., 2010; Carlson et al., 2013). However, to our knowledge no previous study 163 

has comparatively analysed cortical thickness maps in both the talus and distal tibia of humans and 164 

chimpanzees.  165 

Previous studies quantifying trabecular bone structure and/or bone strength characteristics at the ankle 166 

relied on analyses of multiple volumes of interest (Su, 2011; DeSilva and Devlin, 2012; Su et al., 2013) or 167 

on destructive methods (Sinha, 1985; Athavale et al., 2008). Interspecific analyses are often complicated 168 

by the difficulty in identifying biologically homologous regions, and differences in VOI size and location 169 

have a substantial impact on trabecular bone analysis, especially when comparing among species that 170 

vary greatly in size and in morphologically complex bones (Maga et al., 2006; Kivell et al., 2011; 171 

Lazenby et al., 2011). Moreover, trabecular bone close to the articular surface, which can be difficult to 172 

sample using VOI-based methods that require manual discrimination between cortical and trabecular 173 

bone, is more likely to be of biomechanical relevance as it experiences the initial joint reaction forces, and 174 

bone closer to the articular surface differs from that in the center of the epiphysis (Singh, 1978). Analyses 175 

of bone strength at the articular surface have not investigated the cortical and trabecular structure 176 

independently, but have instead used methods which quantify cortical bone and some of the underlying 177 

trabeculae (Patel and Carlson, 2007; Mazurier et al., 2010). In this study, we address some of these 178 
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challenges by using two methodologies that allow independent quantification of the trabecular and the 179 

cortical structure. The trabecular bone analysis applied here enables quantification of trabecular structure 180 

throughout the bone or in a pre-defined region of the epiphysis, however, statistical comparisons cannot 181 

be conducted between groups. For cortical bone, we use a method that is able to compare cortical 182 

thickness across the bone/epiphysis between groups, but does not allow quantification of trabecular 183 

structure further than around 5mm beneath the cortex. By combining these complementary 184 

methodologies, we are able to analyse patterns of both cortical and trabecular bone in the human and 185 

chimpanzee talus and distal tibia. As a result, we are able to generate a fine scale, nuanced analysis 186 

through the visualisation of regional patterning of both cortical and trabecular bone, which may provide 187 

detailed information about joint loading. 188 

In this study, we measure trabecular and cortical bone of the talus and distal tibia in Pan troglodytes verus 189 

and Homo sapiens. We test the following predictions in how trabecular bone structure and distribution, 190 

and cortical thickness and distribution differ between Pan and Homo. First, as both the talocrural and 191 

talonavicular joint are used in a greater range of positions in Pan, and both joints are less mobile in 192 

Homo, we predict a higher DA in humans in both the talus and tibia (Barak et al., 2013b; Su, 2011; Su et 193 

al., 2013; Thompson et al., 2014; Su and Carlson, 2017; but see Holowka et al., 2017). Second, following 194 

the findings of previous trabecular studies that sedentary modern humans have a generally low BV/TV 195 

and cortical thickness (Ruff et al., 1993; Lieberman, 1996; Ruff, 2005; Chirchir et al., 2015; Ryan and 196 

Shaw, 2015; Scherf et al., 2015; Chirchir et al., 2017), we predict an overall lower BV/TV and thinner 197 

cortex in Homo. Third, we hypothesise that the regional distribution of both cortical and trabecular bone 198 

will reflect differences in habitual peak loading of the talocrural and talonavicular joints. More 199 

specifically, that at the talocrural joint Pan will show a pattern of BV/TV and cortical thickness that 200 

reflects use of the foot in dorsiflexion and inversion, and at the talonavicular joint a greater degree of 201 

mobility. In Homo, the trabecular bone distribution and cortical thickness will reflect less mobility, and a 202 

more neutral ankle position.  203 
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2. MATERIALS AND METHODS 204 

2.1 Sample 205 

This study analysed trabecular and cortical bone morphology of the tibia and talus of two species with 206 

divergent modes of locomotion: Pan troglodytes verus and Homo sapiens. The sample, detailed in Table 207 

1, included fifteen wild P. t. verus individuals (tibiae: N = 10; tali: N = 13; of which N = 8 were paired) 208 

whose skeletal remains were collected from the Taï National Park, Cote d’Ivoire, and ten H. sapiens 209 

individuals (tibia: N = 8; tali: N = 9; of which N = 7 were paired) from an 18
th
 - 19

th 
century cemetery in 210 

Inden, Germany. Adult specimens were used, based on fusion of the epiphyses throughout the skeleton 211 

and no external signs of pathology or senescence related changes were present. The right side was chosen 212 

where both talus and tibia were available and free from damage, otherwise the left side was used.  213 

2.2 Computed tomography 214 

High resolution micro-computed tomography (CT) scans were collected with a BIR ACTIS 225/300 CT 215 

scanner for the tibiae and with a SkyScan1173 CT scanner for the tali, using an acceleration voltage of 216 

130kV and 100μA and either a 0.5mm brass or 1mm aluminium filter, at the Department of Human 217 

Evolution, Max Planck Institute for Evolutionary Anthropology (Leipzig, Germany). Isotropic acquisition 218 

voxel sizes were 25-36 microns for the tibia and talus of Homo and 19-30 microns for the tibia and talus 219 

of Pan. Each scan was reconstructed as a 2048 x 2048 16-bit TIFF image stack from 2500 projections 220 

with three-frame averaging.  Following reconstruction, all specimens were reoriented into standardised 221 

positions using AVIZO 6.3® (Visualization Sciences Group, SAS) and segmented using a Ray Casting 222 

Algorithm (Scherf and Tilgner, 2009). 223 

Prior to segmentation, all Pan specimens were resampled to 35 microns and all Homo specimens to 40 224 

microns, due to processing constraints. The relative resolutions, a measure of how adequately the average 225 

trabecular strut is represented (i.e. mean trabecular thickness [mm] / resolution [mm]), are shown in Table 226 

1. The average for the entire sample of 7.57 (range: 5.46 – 11.59) is consistent with previous studies of 227 
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trabecular bone structure (Sode et al., 2008; Kivell et al., 2011; Tsegai et al., 2013), and is appropriate for 228 

microstructural analysis.  229 

2.3 Analysis of trabecular bone microstructure 230 

To quantify trabecular bone, each material in the scan (Fig. 1a), i.e. cortical bone, trabecular bone, air and 231 

the internal bone cavity, were segmented automatically using an in house script in medtool v3.9 (www.dr-232 

pahr.at), following Gross et al. (2014). Morphological filters were used to separate these regions, and the 233 

kernel size used was adjusted for each individual according to its measured trabecular thickness, enabling 234 

an accurate, subject-specific segmentation. This resulted in three data sets that were used in subsequent 235 

processing steps: (1) the trabecular bone (Fig. 1b), (2) the inner region of the bone and, (3) the inner mask 236 

(Fig. 1c), which contains the internal region of the bone where internal bone cavity and trabecular bone 237 

are represented by different grey values and the cortex has been removed. This automated segmentation 238 

was problematic in two locations in the talus, at the inferior talar neck and at the subtalar joint surfaces, 239 

due to their complex morphology. Thus the results from these regions are treated with caution. The 240 

proximal boundary of the distal tibia was defined as the point at which curvature of the shaft begins in 241 

both medial and anterior views, which is at the proximal extent of the fibular notch, and is an equivalent 242 

location across the sample. 243 

From the trabecular only mask (Fig. 1b), trabecular thickness (Tb.Th), bone surface area (BS), and bone 244 

volume (BV) were quantified using the BoneJ plugin (version 1.3.12; Doube et al., 2010) for ImageJ 245 

v1.46r (Schneider et al., 2012). Bone surface to volume ratio (BS/BV) was subsequently calculated. 246 

The inner region of the bone was used to create a 3D tetrahedral mesh with a mesh size of 1mm, using 247 

CGAL 4.4 (CGAL, Computational Geometry, http://www.cgal.org). The inner mask (Fig. 1c) was used to 248 

calculate BV/TV throughout the bone to generate 3D colour maps of bone distribution, and to calculate 249 

the overall bone volume fraction (BV/TV) and degree of anisotropy (DA) using medtool v3.9. A 250 

rectangular background grid, with a grid size of 2.5mm, was applied and a spherical VOI with a diameter 251 

http://www.dr-pahr.at/
http://www.dr-pahr.at/
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of 5mm was used to measure BV/TV at each node of the grid. A sphere size of 5mm is appropriate as 252 

enough trabecular struts are sampled to adequately quantify trabecular parameters (Gross et al., 2014). To 253 

create a 3D colour map of bone distribution, the BV/TV values at each node were interpolated to assign 254 

each element in the 3D mesh of the trabecular region a BV/TV value (Fig. 1d). The colour maps were 255 

visualized in Paraview v4.0.1 (Ahrens et al., 2005). The overall BV/TV value was calculated as the mean 256 

of the values for each element in the 3D mesh, and thus is the average for the whole bone/epiphysis. The 257 

mean intercept method (Whitehouse, 1974; Odgaard, 1997) was used to calculate the mean fabric tensor, 258 

the arithmetic mean of all second order fabric tensors normalised using the determinants. The extracted 259 

eigenvalues and eigenvectors were then used to calculate the DA (DA = 1 – [smallest eigenvalue/largest 260 

eigenvalue]), whereby a DA of 1 indicates complete anisotropy and a DA of 0 complete isotropy. 261 

2.4 Analysis of cortical bone microstructure 262 

To compare cortical thickness between Pan and Homo in the talus and distal tibia, cortical bone thickness 263 

maps were generated for each specimen (following Treece et al., 2010; Treece et al., 2012; Tsegai et al., 264 

2016b). This was accomplished via semi-automatic segmentation of the cortical surface, from the 265 

unsegmented CT data (Fig. 1e-f) in Stradwin v5.1a (Treece, Gee, Cambridge; 266 

http://mi.eng.cam.ac.uk/~rwp/stradwin). Following definition of the surface, around 15,000 independent 267 

measurements of cortical thickness were calculated throughout the bone (Fig. 1f) and mapped onto a 268 

subject specific surface (Fig. 1g). Subsequently, each surface was registered to a canonical surface using 269 

wxRegSurf v13 (Fig. 1h). The canonical surface used was an average of the entire sample, each species 270 

was averaged separately and then the average of the two resulting surfaces was used, to prevent the 271 

difference in sample size affecting the average morphology. After registration to the canonical surface, 272 

mean thickness maps were generated for each species.  273 

2.5 Statistical analysis 274 

For trabecular bone analysis, all statistical tests were performed using R v3.0.3 (R Core Team, 2016) and 275 

ggplot2 was used for generating plots (Wickham, 2009). Shapiro-Wilk test for normality showed that the 276 
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data were not normally distributed and thus non-parametric tests were used. Mann-Whitney U tests were 277 

used to test for statistical differences in trabecular bone parameters between Homo and Pan. A principal 278 

component analysis was conducted to determine which parameters contributed to interspecific differences 279 

in the talus and in the tibia. All variables were included in the principal component analysis: Tb.Th, 280 

BV/TV, DA, BS/BV, and cortical thickness. As there are large differences in the variances of these 281 

variables, prior to analysis the data was centered and scaled to unit variance. Principal components were 282 

subsequently derived by singular value decomposition of the resulting data matrix. Spearman’s 283 

correlation test and RMA regression were used to test for correlation between trabecular parameters and 284 

cortical thickness in the talus and distal tibia. To test the relationship between size and trabecular bone 285 

parameters, OLS log10 regressions and Pearson’s correlation tests were conducted for each trabecular 286 

parameter against the size of the epiphysis/bone for each taxon. The size of each bone was represented as 287 

the geometric mean of several measurements, both of overall bone size and of the size of the articular 288 

surfaces. For the talus, these measurements were the anteroposterior length, mediolateral width and 289 

dorsoplantar height of the talus, the anteroposterior length and mediolateral width of the talar trochlea, 290 

and the dorsoplantar height and mediolateral width of the talar head. For the tibia, a geometric mean was 291 

derived from the maximum anteroposterior length and maximum mediolateral width of the distal tibia, the 292 

anteroposterior length and mediolateral width of the distal articular surface, the anteroposterior length, 293 

mediolateral width and proximodistal height of the medial malleolus. Pearson’s correlation test was used 294 

to compare trabecular parameters between paired tibia and tali in each taxon. Statistical parametric 295 

mapping was used to identify regional cortical thickness differences between the two species (Friston et 296 

al., 1995), using the SurfStat package (Worsley et al., 2009), by fitting a general linear model (GLM) to 297 

the data. This model determined whether cortical thickness differences could be explained by species 298 

(covariates of interest) or other factors (confounding covariates). As there is risk of systematic 299 

misregistration due to shape differences, non-rigid shape coefficients were included as confounds in the 300 

GLM (Gee and Treece, 2014; Gee et al., 2015). Bone size, however, was strongly correlated with species 301 

and therefore not included as a confound in the GLM. Statistical parametric maps were generated using F 302 
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statistics and the corresponding p-values were corrected for multiple comparisons using random field 303 

theory to control for the chance of false positives. Relative cortical thickness was calculated for each 304 

specimen, by subtracting the individual mean value from each individual thickness measurement and 305 

dividing by the standard deviation. In this way, relative patterns of cortical thickness could be analysed, 306 

despite considerable interspecific differences in absolute cortical thickness. For all statistical tests, a p 307 

value of <0.05 was considered significant. 308 

3 RESULTS 309 

3.1 Trabecular and cortical architecture of the talus and tibia 310 

Means and standard deviations of measured trabecular and cortical parameters and Mann-Whitney U test 311 

results are shown in Table 2, and extracted regions of trabecular bone, visualizing structural differences, 312 

are shown in Figure 2. Mann-Whitney U test results (Table 2) find that the trabecular structure of Pan 313 

differs from that of Homo in having a significantly greater BV/TV and lower BS/BV in both the talus and 314 

the tibia. The trabecular structure is more divergent in the talus than in the tibia: with the talus of Pan 315 

having significantly thicker, less uniformly-oriented trabeculae (i.e. lower DA). The cortex of Pan is 316 

significantly thicker in both the talus and the tibia compared to Homo. 317 

Correlations between parameters in the talus and tibia of each taxon are reported in Table 3. Significant 318 

correlations between variables differ both between taxa and between skeletal regions. As such, all 319 

parameters were included in the analysis, although correlations between parameters may lead to 320 

overemphasis of the contribution of these variables. Table 4 shows the results of the principal component 321 

(PC) analysis, and Figure 3 shows the plot of PC1 against PC2 for both the talus and tibia. Together, PC1 322 

and PC2 explain 92.90% and 90.85% of the variance for the talus and tibia, respectively and in both 323 

analyses, Homo and Pan are clearly separated. All four trabecular parameters and cortical thickness 324 

contribute equally to PC1 in the talus, distinguishing Pan, with greater BV/TV, Tb.Th and cortical 325 

thickness, but lower DA and BS/BV, from Homo. PC2 is driven by Tb.Th and BS/BV, but only separates 326 

out particular individuals within each taxon. In the tibia, separation along PC1 is largely determined by 327 
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BV/TV, BS/BV and cortical thickness. Along PC2, most Pan individuals are distinguished from Homo in 328 

having lower Tb.Th and higher DA.  329 

3.2 Allometry 330 

The results of the log10 OLS regressions of each parameter against the geometric mean, a proxy for bone 331 

size, are shown for Pan and Homo in Table 5 and Figures 4 and 5. There were no significant correlations 332 

between any trabecular parameter and bone size. However, the relationship between size and trabecular 333 

and cortical structure does differ between species and between the talus and tibia (Figs. 4-5). 334 

3.3 Correlation between the talus and tibia 335 

Paired tali and tibiae were used to compare trabecular and cortical bone parameters between the talus and 336 

tibia in seven Homo and eight Pan specimens (Table 6 and Fig. 6). Within Pan, all parameters other than 337 

DA are strongly correlated across the joint (i.e. r > 0.70), whereas in Homo, only Tb.Th and BS/BV are 338 

strongly and significantly correlated.  339 

3.4 Distribution of trabecular bone in the talus and distal tibia 340 

Figure 7 shows BV/TV colour maps for the talus of one representative individual of Homo and Pan. 341 

Images of the full sample are included in the Supporting Information.  342 

On the dorsal surface of the talus (Fig. 7 a and f), all Pan specimens share a region of high BV/TV on the 343 

lateral edge of the trochlea. In some individuals this extends posteriorly along the edge, and in others it is 344 

more anteriorly confined. Some, but not all, specimens have an additional region of higher BV/TV on the 345 

medial trochlea, which is not consistent in its location or antero-posterior extent (see Supporting 346 

Information). In Homo, there is no consistent pattern of trabecular bone distribution on the dorsal surface 347 

of the trochlea as this region is highly variable across the sample. All individuals of both Pan and Homo 348 

have a region of high BV/TV on the dorsal surface of the talar neck, although this is much more 349 

pronounced in Pan. In a transverse plane, where the superior portion of the talus has been removed (Fig. 7 350 

b and g), there is a region of high BV/TV at the neck in Pan, although, as mentioned above, the inferior 351 
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region of the neck must be interpreted with a certain degree of caution due to problems segmenting 352 

trabeculae from cortex. In Homo, there is no localised region of high BV/TV in the neck, but instead an 353 

anteroposterior trajectory of bone running through the head and neck, which is absent in Pan. The region 354 

of high BV/TV at the articular surface of the talar head (i.e. at the talonavicular joint), is more localized in 355 

Homo than in Pan. This is clearly seen in anterior view (Fig. 7 c and h), where Homo has a point of high 356 

BV/TV located dorsally on the head, in contrast to Pan, where there is a band running mediolaterally 357 

across the head. In the coronal (Fig. 7 d and i) and sagittal (Fig. 7 e and k) planes of Homo, the centre of 358 

the talar body contains a relatively higher BV/TV than in Pan. Also, in the sagittal plane (Fig. 7 e and k) 359 

there is a distinct trajectory of high BV/TV running antero-posteriorly through the talar head of Homo that 360 

is not found in Pan. Instead, the Pan neck has a region of high BV/TV on the dorsal surface. Comparison 361 

of the individual BV/TV scales shows that Pan has a higher BV/TV than Homo in both its minimum and 362 

maximum values. 363 

Colour maps of the BV/TV distribution in the distal tibia of Homo and Pan are shown in Figure 8 and 364 

results for the entire sample are included in the Supporting Information. On the distal articular surface of 365 

the tibia (Fig. 8a and e), some specimens of Homo have a high concentration of BV/TV confined to the 366 

medial side of the articular surface and in other individuals it is centrally located. This is in contrast to 367 

Pan, where there are consistently three regions of higher BV/TV: anterolateral, anteromedial and 368 

posterocentral. When viewed in the mid-sagittal plane of the distal tibia (Fig. 8 b and f), the anteromedial 369 

and posterior concentrations of bone are visible in Pan, in contrast to the more central and continuous 370 

area of high BV/TV in Homo. On the anterior edge of the distal tibia (Fig. 8 c and g), Pan has a high 371 

concentration of bone extending across the edge that is absent in Homo. In the mid-coronal plane (Fig. 8 d 372 

and h), Pan contains a relatively greater BV/TV in the centre of the medial malleolus, compared to Homo. 373 

Unlike the talus, the range of BV/TV is more similar between the two species (Fig 7 and Fig 8, scale 374 

bars).  375 

3.5 Distribution of cortical bone in the talus and distal tibia 376 
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Mean relative cortical thickness maps for the talus and distal tibia of Pan and Homo, along with regions 377 

of significant differences, are shown in Figures 9 and 10. In contrast to the trabecular bone maps, these 378 

figures do not show the cortical thickness in just one individual, but rather the mean of all individuals by 379 

taxon. As Pan has a greater cortical thickness in both the talus and the distal tibia, results are presented 380 

for relative cortical thickness values, equalized by subtracting the mean value from each cortical thickness 381 

value and dividing by the standard deviation for every individual in the sample.  382 

Visual comparison between the relative cortical thickness maps of the talus in Homo (Fig. 9a) and Pan 383 

(Fig. 9b), show that the regions of thickest cortical bone differ between the two species. On the talar head, 384 

Homo has a dorsally located region of highest relative thickness, whereas in Pan the region of high 385 

thickness runs mediolaterally along the dorsal half of the articular surface. At the trochlea, Pan has a 386 

higher cortical thickness on the lateral edge, whereas in Homo it is the centromedial region that has the 387 

highest mean thickness. Pan and Homo share thick cortical bone around the region of the talar neck, 388 

however, in Pan this extends around the entire dorsal region of the neck, whereas in Homo it is confined 389 

to the dorso-lateral side. In Homo the centre of the posterior subtalar articular surface has the thickest 390 

cortical bone, whereas in Pan the cortical bone is thickest  anterolaterally on this articular surface. 391 

Differences between Pan and Homo are shown in Figure 9c, and regions where these differences reach 392 

significance are shown in Figure 9d. There are several regions with significant differences located at the 393 

articular surfaces of the talus. Pan has relatively thinner bone compared to Homo on the anterior surface 394 

of the talar head, on the anteromedial region of the talar trochlea and on the dorsal edge of the talar head, 395 

and relatively thicker bone compared to Homo in a band anterolaterally on the posterior subtalar articular 396 

surface.  397 

Cortical thickness maps, showing relative cortical thickness are shown for Homo and Pan in Figure 10a 398 

and b, respectively. In distal view, Homo has thickest cortical bone the along the medial edge of the distal 399 

articular surface and the distal end of the medial malleolus. Both taxa share regions of thicker cortical 400 

bone on the distal end of the medial malleolus and the medial edge of the distal articular surface. This 401 
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region on the medial articular surface is relatively thicker anteriorly in Pan, whereas in Homo this feature 402 

extends along the medial border of the articular surface. Pan has two additional regions of thicker cortical 403 

bone on the anterolateral and posterocentral regions of the distal articular surface. Comparisons of relative 404 

cortical thickness values between Homo and Pan are shown in Figure 10c and regions with significant 405 

differences are shown in Figure 10d. At the distal articular surfaces, Pan has significantly thicker cortex 406 

at the anteromedial corner, extending along the anteromedial edge of the medial malleolus. There is 407 

significantly thicker cortical bone on the distal surface of the medial malleolus in Pan compared to Homo.  408 

4 DISCUSSION 409 

We analysed the internal bone structure of the talus and distal tibia in bipedal Homo and arboreal, 410 

quadrupedal Pan. We find that trabecular and cortical bone, both the measured parameters and the 411 

regional distribution of bone, differed, often significantly, between the two taxa in ways that are 412 

potentially related to variation in joint position and load distribution during locomotion. In addition to 413 

these differences, we find further support for previously proposed systemically weaker trabecular and 414 

cortical bone in recent humans (Ruff et al., 1993; Lieberman, 1996; Ruff, 2005; Chirchir et al., 2015; 415 

Ryan and Shaw, 2015; Scherf et al., 2015; Chichir et al., 2017). 416 

4.1 Identifying functional signals in internal bone structure 417 

The relationship between bone form and mechanical loading is complex. It may be influenced by 418 

numerous factors that affect bone growth and structure, which are likely to differ systematically between 419 

species and, as such, bone structure should be considered within the broader context of what is already 420 

known about the bone architecture of each species. In both the talus and distal tibia of Homo, we find 421 

support for our prediction that bone is relatively weak, having a lower BV/TV, a higher BS/BV and 422 

thinner cortices, compared with the more robust Pan. BV/TV is the strongest predictor of trabecular bone 423 

stiffness, or Young’s modulus; it alone explains 87-89% of variance in stiffness (Stauber et al., 2006; 424 

Maquer et al., 2015). Cortical bone thickness is also related to bone strength, as thin cortices are 425 

associated with increased fracture risk (Augat and Schorlemmer, 2006). The difference in trabecular 426 
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BV/TV and cortical thickness between Pan and Homo is consistent with previous findings for the talus 427 

and distal tibia (talus: Su, 2011; DeSilva and Devlin, 2012; Su and Carlson, 2017; tibia: Su, 2011; Barak 428 

et al., 2013b), and with the trabecular morphology of other anatomical regions (e.g. third metacarpal: 429 

Tsegai et al., 2013; calcaneus: Maga et al., 2006; Zeininger et al., 2016; first and second metatarsal: 430 

Griffin et al., 2010; systemic: Chirchir et al., 2015). As the biomechanical environment of different joints 431 

in the human and chimpanzee are likely to vary given their divergent modes of locomotion, this consistent 432 

difference across several anatomical sites may be part of a systemic pattern (i.e. in all regions of the 433 

skeleton) and not due to specific locomotor, or other, behaviour. This gracility of the modern human 434 

skeleton may be associated with increased sedentism following the adoption of agriculture, as early 435 

hominins and recent hunter gatherers/foragers have a more robust skeleton (Ruff et al., 1993; Lieberman, 436 

1996; Ruff, 2005; Chirchir et al., 2015; Ryan and Shaw, 2015; Scherf et al., 2015). Analysis of the 437 

relationship between these structural parameters and size are limited by small sample sizes.  438 

There are aspects of bone structure that appear likely to reflect joint function and thus can be of use for 439 

reconstructing behaviour in the fossil record. Here, we find support for our prediction that the human talus 440 

has a significantly higher DA than in Pan. However, contrary to our predictions, we find no significant 441 

difference for the distal tibia. During human bipedalism the mid-foot forms a relatively rigid lever during 442 

push off (Morris, 1977), compared with the flexibility of the chimpanzee mid-foot (Elftman and Manter, 443 

1935; Susman, 1983; Thompson et al., 2014; but see Holowka et al., 2017). There is also less mobility at 444 

the ankle of Homo than in Pan (Latimer et al., 1987). The less aligned trabeculae of the Pan talus are 445 

consistent with being more able to withstand forces from multiple directions associated with a wider 446 

range of joint positions, whereas the more highly aligned trabecular structure of the Homo talus appears to 447 

reflect more stereotypical loading (Su, 2011; DeSilva and Devlin, 2012; Su et al., 2013; Su and Carlson, 448 

2017). In contrast to previous studies (Su, 2011; Barak et al., 2013b), we do not find a higher DA in the 449 

distal tibia of Homo, but rather higher (although not significantly so) mean DA in Pan.  However, Su 450 

(2011) found that trabeculae in Homo were significantly more uniformly aligned in the talus compared 451 
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with the tibia, suggesting that more similar DA values in the Homo and Pan distal tibia are not 452 

unexpected. 453 

DA may hold a functional signal for different types of behaviour that engender more or less stereotypical 454 

loads at a joint. Regional differences in DA have been useful in distinguishing between primate locomotor 455 

groups, with the structure of the proximal femur being consistent with inferred differences in loading in 456 

leaping and slow climbing strepsirrhines (Ryan and Ketcham, 2002a,b; MacLatchy and Muller, 2002; 457 

Ketcham and Ryan, 2004). The trabecular structure of the human foot is generally more highly aligned 458 

than other apes (first and second metatarsal: Griffin et al., 2010; calcaneus: Maga et al., 2006; Zeininger 459 

et al., 2016; but see Kuo et al., 2013; talus: Su, 2011; Su et al., 2013; Su and Carlson, 2017). It seems 460 

unlikely that this would relate to differences in activity level between the taxa,  and there are no consistent 461 

differences in DA in the proximal femur (Ryan and Shaw, 2015) or humerus (Scherf et al., 2015) between 462 

human populations with different activity levels (i.e. engaging in the same behaviours but at different 463 

frequencies). Adult trabecular structure could reflect individual or interspecific differences in loading 464 

during puberty, at a time when bone is more responsive to strain (e.g. Pettersson et al. 2010; for cortical 465 

bone see Pearson and Lieberman, 2004). However, homologous regions of trabecular bone in adolescent 466 

and adult humans have not been sampled, as many studies exploring ontogeny have investigated changes 467 

in structure between non-adult groups (Ryan and Krovitz, 2006; Ryan et al., 2007; Gosman and Ketcham, 468 

2009; Raichlen et al., 2015). DA in the proximal tibial metaphysis and in the ilium continue to change 469 

between adolescence and adulthood (Gosman & Ketcham, 2009; Abel & Macho, 2011). Moreover, 470 

chimpanzees reach adult-like locomotor behaviour by adolescence (Doran, 1992; Sarringhaus et al., 471 

2014), while humans reach this point during early childhood (e.g. Sutherland et al., 1980; Beck et al., 472 

1981; Raichlen et al., 2015). Trabecular orientation in the talus also shows plasticity later in life, as 473 

degeneration of articular cartilage, i.e. changes at the joint surface that affect loading, is associated with 474 

differences in trabecular orientation in humans (Schiff et al., 2007). This indicates that DA in adult 475 

humans and chimpanzees is likely to reflect adult behaviour patterns, as loading from locomotion has 476 
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remained generally consistent during much of the later growth period. Together these results suggest that 477 

the high degree of trabecular alignment throughout several elements of the human foot may be a 478 

behavioural signal related to the stereotypical loading of terrestrial bipedality. We suggest that, using our 479 

methodology, DA may provide functional information about loading in the talus, but not the tibia.  480 

4.2 The relationship between joint position and bone distribution 481 

We predicted that differences in the cortical and trabecular bone distribution maps would reflect variation 482 

in dorsiflexion and inversion of the talocrural joint and the degree of mobility at the talonavicular joint. 483 

The colour maps of cortical and trabecular bone support some, but not all, of these predictions. These 484 

results are based on mean cortical thickness distribution maps and significant differences, and on BV/TV 485 

distribution maps for each individual. Generation of mean morphometric maps for BV/TV was not 486 

conducted due to the complexity of registering 3D meshes while ensuring homology.  487 

4.2.1 Dorsiflexion 488 

Dorsiflexion at the ankle is characteristic of both climbing and knuckle-walking in chimpanzees 489 

compared to the more neutral ankle posture adopted by humans during bipedalism. We find no clear 490 

signal of dorsiflexion in trabecular and cortical bone of the talar trochlea, but are able to identify 491 

differences in internal bone structure of the distal tibia that we propose are related to degree of 492 

dorsiflexion. In chimpanzees, during knuckle-walking the angle between the long axis of the tibia and the 493 

foot is 75.2 degrees, compared with 85.6 degrees in normal human bipedalism (Barak et al., 2013b). 494 

During vertical climbing the degree of dorsiflexion is much greater, with an angle between the long axis 495 

of the tibia and the foot of 44.5 degrees (DeSilva, 2009). The external morphology of the talar trochlea 496 

and the distal articular surface of the tibia is associated with this difference in loading of the ankle 497 

(DeSilva, 2009; but see Venkataraman et al., 2013a). It might be expected that the distribution of 498 

trabecular bone and cortical bone in the talar trochlea of Pan would be more anteriorly distributed, 499 

reflecting this difference in joint angle. However, we find no clear signal across the study sample in either 500 

the trabecular or cortical bone distribution maps. This is consistent with previous studies that did not 501 



  21 
 

   
 

identify differences in BV/TV across quadrants of the talar body (DeSilva and Devlin, 2012), or higher 502 

BV/TV and cortical thickness in the anterior talar trochlea (Su, 2011; Su and Carlson, 2017).  503 

In contrast to the talus, we did find that the trabecular and cortical bone structure of the distal tibia  504 

reflected the differences in joint position between Homo and Pan.  Pan shows two regions of higher 505 

BV/TV and thicker cortical bone, located at the anterior portion of the distal articular surface of the tibia, 506 

one lateral and one medial. In addition, the anterior edge of the distal articular surface has a higher 507 

BV/TV, which extends up anteriorly through the epiphysis. This is in contrast to Homo, where BV/TV 508 

maps show a more central concentration of trabecular bone. In Homo, the cortex is thickest on the medial 509 

edge of the articular surface, adjacent to the medial malleolus. In several (but not all) individuals in the 510 

study sample (see Supporting Information), this medial region also has a high BV/TV. Although direct 511 

comparison between results from different subregions is complex, some of these findings are supported 512 

by the results of Su (2011). Fewer significant differences in BV/TV and cortical thickness are found 513 

across the Homo tibia compared to Pan, and Pan has generally higher BV/TV anteriorly and posteriorly. 514 

This is not the case for cortical thickness, where both Homo and Pan have thicker bone on the antero- and 515 

postero- medial regions, and in Pan, the posterocentral region of the articular surface (Su, 2011). Perhaps 516 

also relevant to the degree of flexion at the ankle, there is a region of high BV/TV and cortical thickness 517 

posterocentrally on the distal articular surface in Pan, with the region of high BV/TV extending into the 518 

bone. This could indicate increased loading during plantarflexion in Pan compared to Homo, however, 519 

this is not supported by kinematic data. Previous findings in the distal tibia of Pan also found that the 520 

posterior region has a higher BV/TV than the central region, and thicker cortical bone was found in the 521 

posterocentral region (Su, 2011; Su and Carlson, 2017). 522 

In the absence of detailed kinematic data on joint contact areas, in particular for Pan (for humans see Wan 523 

et al., 2006; Bae et al., 2015), our understanding of the differences in the loading of the trochlea in these 524 

two species is limited. Moreover, we must make assumptions about which aspects of a species’ 525 

locomotor, or other, behaviour contribute most to the remodelling of bone. Previous studies in humans 526 
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have identified areas of contact and distribution of pressure on the talus using a finite element simulation 527 

of the human foot during walking (Bae et al., 2015) and on both the talar trochlear and distal articular 528 

surface of the tibia under pressure using dual orthogonal fluoroscopy (Wan et al., 2006; Caputo et al., 529 

2009; Bischof et al., 2010). During human bipedalism, ground reaction forces (GRF) peak at two phases, 530 

first after heelstrike and before midstance, and second at toe off (Bae et al., 2015; Alexander, 2004), with 531 

contact pressure and strain increasing throughout the stride, peaking at toe off (Bae et al., 2015). After 532 

heelstrike, during the first peak in GRF, there is contact between the cartilage of the talus and tibia on the 533 

latero-central trochlea (Wan et al., 2006; Bae et al., 2015). During stride, the area of contact moves 534 

anteriorly (Wan et al., 2006; Bae et al., 2015) and the point of highest pressure moves anterocentrally 535 

until toe off, when both the contact area and point of highest pressure are located on the anterior of the 536 

trochlea, just lateral to the midline (Bae et al., 2015). At the distal tibia, contact is located antero-537 

posteriorly at heel strike, moving anteriorly across the medio-lateral extent of the articular surface at mid-538 

stance, and at heel strike in the anterolateral half of the distal articular surface of the tibia (Wan et al., 539 

2006). Although some of the human sample in this study have a region of high BV/TV on the anterior 540 

talus, just lateral to the midline, near the location of highest pressure (Bae et al., 2015), this is not always 541 

the region of highest BV/TV, and does vary within the sample. There is also no direct correspondence 542 

between regions of contact and areas with thicker cortices. There are several potential explanations for 543 

why the trabecular and cortical bone structure of the talar trochlea does not, as expected, reflect 544 

differences in dorsiflexion at the ankle. Firstly, experimental measures of cartilage contact and pressure 545 

may not necessarily correspond to the regions experiencing the greatest forces during life. Secondly, 546 

modern humans differ greatly in their gait. For example, there is inter-individual variation in the presence 547 

of a mid-tarsal break, and intra-individual variation between strides (Bates et al., 2013; DeSilva et al., 548 

2015). There is also variability in foot strike patterns, with individuals making initial contact with the 549 

fore-foot, midfoot or heel, that could also contribute to variability in loading of the trochlea (e.g. during 550 

running: Lieberman et al., 2010; Hatala et al., 2013). Thirdly, differences in the external morphology of 551 

the talus may accommodate the different distribution of forces, i.e. different shaped tali absorb loads 552 
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differently, thus cortical thickness and trabecular architecture do not directly reflect differences in joint 553 

position.  554 

Due to interest in adaptations of the human skeleton to bipedal locomotion, many biomechanical analyses 555 

of Pan have focused on bipedal walking (e.g. Susman, 1983; Thorpe et al., 2004; Wang et al., 2014; 556 

O’Neill et al., 2015), although several studies have investigated kinematics of knuckle-walking in 557 

bonobos (e.g. Vereecke et al., 2003; D’Août et al., 2004; Schoonaert et al., 2016). Although no in vivo 558 

measurements of joint movement or cartilage contact are available for Pan, there is evidence of force 559 

transmission due to contact between the anterior edge of the distal tibia and the neck of the talus. This can 560 

be observed when manipulating dry, associated tibia and tali, where in an extreme position of dorsiflexion 561 

the ankle joint retains congruity while there is contact between the talar neck and the anterior border of 562 

the tibia in African apes, but not in Homo (Latimer et al., 1987). Modern humans who regularly adopt 563 

crouched positions develop squatting faces on the talus and tibia (Boulle, 2001). The BV/TV distribution 564 

may reflect this and indicate high loads transmitted through this region. On the medial and lateral side of 565 

the talar neck and on the anteroinferior border of the tibia, Pan has regions of high BV/TV, which are 566 

absent in Homo. This may reflect habitual loading of these regions in an ankle dorsiflexed to such a 567 

degree that force transmission occurs between the antero-inferior edge of the distal tibia and the talar 568 

neck.  569 

4.2.2 Talonavicular mobility  570 

We find a clear signal of differences in joint mobility at the talonavicular joint in the trabecular and 571 

cortical bone structure. Two features in which human bipedalism is distinct from ape quadrupedalism are, 572 

firstly, weight transfer from the lateral to medial side of the foot during midstance; and secondly, in 573 

having a rigid mid-foot, so that the foot acts as a lever during toe off (Elftman and Manter, 1935). The 574 

medial side of the midtarsal joint (the talonavicular joint) is more mobile than the lateral side 575 

(calcaneocuboid and cuboid-MT5 joints), during stance phase the talus rotates, along with the leg and 576 

calcaneus, creating a close packed talonavicular joint (Elftman, 1960; Siegler et al., 1988; Scott and 577 



  24 
 

   
 

Winter, 1991). Although investigations of mid-foot mobility in Pan have largely focused on the mid-578 

tarsal break at the lateral side (DeSilva, 2010), there is greater movement at the talonavicular joint which, 579 

during passive dorsiflexion of the foot, is characterised by rotation in the coronal plane (Thompson et al., 580 

2014). Furthermore, there is greater inter-individual and intra-individual variability in mobility of the 581 

human lateral midfoot than was previously assumed (Elftman and Manter, 1935; Bates et al., 2013).  582 

During bipedalism, humans have greater midfoot mobility during push off, which is characterised by 583 

plantarflexion and adduction, whereas chimpanzees have higher dorsiflexion at the midfoot (mid-tarsal 584 

break) during the single limb support period (Holowka et al., 2017). Contrary to expectations, the human 585 

midfoot was found to be overall more mobile than that of chimpanzees (Holowka et al., 2017), however, 586 

precise kinematics of the talonavicular joint remain unknown.  587 

There are clear differences between the study taxa in the trabecular bone distribution at the talar head, 588 

where Pan has a band of high BV/TV running mediolaterally across the talar head, and in Homo there is a 589 

localised point of high BV/TV. In cortical thickness, Pan has relatively thinner cortices at the talar head, 590 

which is significantly thinner in the central region. Previous studies have measured both trabecular bone 591 

in the medial and lateral sides of the head (DeSilva and Devlin, 2012) and trabecular bone adjacent to the 592 

neck of the talus (i.e. on the anteromedial region of the talar trochlea). When comparing the medial and 593 

lateral side of the head of the talus in humans to other species, DeSilva and Devlin (2012) found no 594 

significant difference in DA, although the trabeculae were significantly thicker in the lateral head and 595 

significantly more connected in the medial head of humans compared to other species (DeSilva and 596 

Devlin, 2012). In the anteromedial trochlea, humans have a unique orientation of trabeculae compared to 597 

other great apes, in having trabeculae with a primarily anteroinferior orientation, i.e. parallel to the talar 598 

neck; a pattern shared with an early Pleistocene biped, KNM-ER 1464 (Su, 2011; Su et al., 2013; Su and 599 

Carlson, 2017). This distinct orientation of trabeculae in bipedal species noted by Su et al. (2013) may 600 

correspond to the trajectory of bone that we show here, travelling through the talar head into the trochlea. 601 
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The trabecular and cortical distribution of the talar head reveals a clear difference in bone structure, 602 

perhaps related to differences in midfoot mobility between the study species. 603 

4.2.3 Inversion 604 

As well as dorsiflexion, inversion of the foot is characteristic of arboreal behaviour in Pan, including 605 

vertical climbing (DeSilva, 2009). Species that engage in more arboreal locomotion have a less 606 

symmetrical trochlea surface, where the lateral trochlea ridge is higher than the medial. This asymmetry 607 

increases the difference in the radius of curvature of the medial and lateral side, thereby increasing the 608 

arcuate path of the tibia over the talus (Latimer et al., 1987), a difference that has even been identified 609 

between more arboreal western and more terrestrial eastern gorillas (Dunn et al., 2014). Of potential 610 

interest with regard to identifying signals of inversion, is the high BV/TV on the anterolateral lip of the 611 

trochlea of the talus that is consistent throughout the sample of Pan. This region also has a slightly thicker 612 

cortex in Pan than in Homo, with Pan having relatively thinner cortical bone than Homo on the 613 

anteromedial region of the trochlea. This is consistent with previous findings of high BV/TV, but not 614 

thicker cortices, on the anterolateral two thirds of the trochlea in Pan (Su, 2011; Su and Carlson, 2017). 615 

This may reflect increased shearing stresses associated with adoption of inverted foot postures, which are 616 

also mitigated by having a higher lateral ridge of the talus. More detailed understanding of the kinematics 617 

of climbing and knuckle-walking, along with modelling of the forces experienced by the talus, may 618 

improve interpretation of this signal. 619 

5 CONCLUSION 620 

Identifying those features of internal bone structure that are directly related to joint loading is often 621 

problematic. Here, we find that average architectural variables (BV/TV, BS/BV and cortical thickness) 622 

that relate to overall bone strength differ between Pan and Homo. These may be part of a systemic pattern 623 

unrelated to joint function, but rather due to other factors such as overall activity levels, and therefore 624 

may not be relevant for reconstructing loading of individual joints. However, the degree to which 625 
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trabeculae are uniformly oriented (DA) in the talus does correspond to variation in joint loading due to 626 

different locomotor behaviours, clearly differentiating between the more stereotypical loading regime of 627 

bipedalism in Homo and the greater range of motion and joint loading typical of arboreal behaviours in 628 

Pan. In contrast to these architectural variables quantified throughout the epiphysis/bone, more precise 629 

information about locomotor behaviour can be obtained from patterns of trabecular and cortical bone 630 

distribution. The trabecular and cortical bone distribution of the distal tibia and talus reflect differences in 631 

dorsiflexion at the ankle and range of motion at the talonavicular joint in humans and chimpanzees. Thus, 632 

the distribution of both trabecular and cortical bone in the talus and distal tibia holds potential for 633 

interpreting loading regimes and reconstructing loaded joint positions in fossil specimens.  634 
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Table 1. Study sample 

 

1 
 Anthropological Collection of Institute of Zoology and Anthropology, University of Göttingen 

2
 Max Planck Institute for Evolutionary Anthropology 

3
 Sex specific mean body mass (F-M). Body masses from Smith and Jungers (1997) 

4
 Relative resolution = mean trabecular thickness (mm)/resolution(mm) 

 

 

  

Taxon 
Body mass 

(kg)
3
 

Locomotor behaviour Tibia Talus Paired 

Scan 

resolution 

(µm) 

Relative 

resolutio

n
4
 

Homo sapiens
1
 62.1-72.1 Biped 8 9 7 40 

5.72-

9.06 

Pan troglodytes verus
2
 41.6-46.3 Arboreal/knuckle-walker 10 13 8 35 

5.46-

11.59 



Table 2. Mean and standard deviation of trabecular and cortical parameters in the talus and distal 

tibia of Homo and Pan. Results of Mann-Whitney U test between taxa are shown, with significant 

differences in bold. 

Element Taxon Tb.Th (mm) BV.TV (%) DA 
BS/BV(mm

-

1
) 

Cortical 

thickness 

(mm) 

Talus Homo 0.26 (0.03) 24.77 (2.17) 0.14 (0.07) 0.32 (0.05) 0.45 (0.06) 

 Pan 0.31 (0.04) 34.65 (2.63) 0.02 (0.02) 0.19 (0.02) 0.88 (0.19) 

 Significance <0.01 <0.01 <0.01 <0.01 <0.01 

Tibia Homo 0.25 (0.04) 19.92 (2.87) 0.29 (0.10) 0.45 (0.08) 0.63 (0.07) 

 Pan 0.23 (0.02) 24.17 (3.43) 0.32 (0.06) 0.31 (0.06) 1.13 (0.19) 

 Significance 0.17 0.02 0.51 <0.01 <0.01 

 

 

 

 

 

  



Table 3. Results of Spearman’s correlation test to test relationship between trabecular parameters 

within Homo and Pan in the talus and distal tibia. 

 

Element Taxon Parameter Tb.Th BV/TV BS/BV DA 

Talus Homo BV/TV 0.42 -   

  BS/BV -0.18 -0.92** -  

  DA -0.82** -0.45 0.28 - 

  CTh 0.57 0.50 -0.30 -0.72* 

 Pan BV/TV 0.59* -   

  BS/BV -0.10 -0.80** -  

  DA -0.98** -0.66** 0.16 - 

  CTh 0.84** 0.63* -0.24 -0.80** 

Tibia Homo BV/TV 0.71 -   

  BS/BV -0.83** -0.90** -  

  DA -0.74* -0.50 0.69 - 

  CTh 0.31 0.07 -0.07 -0.02 

 Pan BV/TV 0.75* -   

  BS/BV -0.67* -0.95** -  

  DA -0.71* -0.62 0.41 - 

  CTh 0.82** 0.65* -0.66* -0.44 

P-values indicated as p < 0.05 * and p < 0.01 ** 

 

  



Table 4. Results of principal component analyses showing percentage variance and loading for each 

principal component. The analysis was conducted separately for the talus and tibia, including 

Tb.Th, BV/TV, DA, BS/BV, and cortical thickness. 

 

Element Parameter PC1 PC2 PC3 PC4 PC5 

Talus % variance 82.64 10.27 4.35 2.43 0.31 

 (cumulative) (82.64) (92.90) (97.26) (99.69) (100.00) 

 Tb.Th 0.41 0.70 0.30 0.50 -0.08 

 BV/TV 0.48 -0.28 0.09 0.08 0.82 

 DA -0.44 -0.21 0.85 0.16 0.07 

 BS/BV -0.43 0.62 -0.05 -0.40 0.51 

 Cortical thickness 0.46 0.05 0.41 -0.75 -0.22 

Tibia % variance 56.45 34.41 5.41 2.88 0.86 

 (cumulative) (56.45) (90.85) (96.26) (99.14) (100.00) 

 Tb.Th 0.27 -0.65 0.03 -0.71 -0.06 

 BV/TV 0.57 0.13 0.42 0.06 0.69 

 DA -0.30 0.62 0.29 -0.67 0.02 

 BS/BV -0.55 -0.22 -0.36 -0.09 0.72 

 Cortical thickness 0.46 0.37 -0.78 -0.20 0.05 

High loadings (i.e. greater than 0.40) are shown in bold 

 

 

  



Table 5. The relationship between bone structure and bone size in Homo and Pan. Results of OLS 

regression and Pearson’s correlation for each trabecular parameter and cortical thickness against 

the geometric mean of several measurements, used as a proxy for bone size. 

 

Taxon Element Parameter Pearson’s r Slope 
Lower 

95% CI 

Upper 

95% CI 
P-value R

2
 

Homo Talus Tb.Th -0.40 -0.51 -1.58 0.57 0.30 0.15 

  BV/TV -0.48 -0.52 -1.37 0.34 0.20 0.23 

  DA 0.10 2.01 -4.28 8.29 0.48 0.08 

  BS/BV 0.33 0.59 -1.23 2.41 0.47 0.08 

  CTh 0.12 0.23 -1.23 1.70 0.72 0.02 

 Tibia Tb.Th 0.27 0.53 -1.47 2.53 0.54 0.07 

  BV/TV 0.55 1.11 -0.57 2.80 0.16 0.30 

  DA 0.09 -0.05 -6.71 6.61 0.99 0.00 

  BS/BV -0.51 -1.35 -3.56 0.87 0.19 0.27 

  CTh 0.25 0.38 -1.19 1.95 0.57 0.06 

Pan Talus Tb.Th 0.29 0.55 -0.79  1.89 0.39 0.07 

  BV/TV -0.05 -0.06 -0.88  0.76 0.87 0.00 

  DA -0.11 -2.97 -11.57 5.62 0.46 0.05 

  BS/BV 0.12 0.25 -1.15 1.65 0.70 0.01 

  CTh 0.19 0.60 -1.55 2.75 0.55 0.03 

 Tibia Tb.Th 0.37 0.74 -0.64 2.11 0.25 0.16 

  BV/TV 0.05 0.16 -1.70 2.03 0.84 0.01 

  DA -0.35 -1.22 -3.98 1.54 0.34 0.11 

  BS/BV -0.04 -0.04 -3.36 3.27 0.98 0.00 

  CTh 0.28 0.80 -1.32 2.93 0.41 0.09 

 

 

 

 

  



Table 6. Results of Pearson’s correlation test to test relationship of each trabecular parameter and 

cortical thickness between the talus and distal tibia in Homo and Pan. 

 

Taxa Parameter  Pearson’s r P-value 

Homo Tb.Th 0.83 0.02 

 BV/TV 0.72 0.07 

 DA 0.55 0.20 

 BS/BV 0.83 0.02 

 Cortical thickness 0.43 0.33 

Pan Tb.Th 0.86 0.01 

 BV/TV 0.80 0.02 

 DA 0.56 0.15 

 BS/BV 0.81 0.02 

 Cortical thickness 0.92 <0.01 

Significant correlations are shown in bold (p < 0.05) 
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Fig 1. Processing steps for trabecular and cortical bone analysis for a Pan distal tibia. a) 1 

Segmented microCT scan. b) Segmented trabecular bone. c) Inner mask, where trabecular bone 2 

and internal region of the bone are assigned different grey values, and the cortical bone has been 3 

removed. A background grid and sampling sphere are applied to calculate trabecular structure 4 

throughout the bone. d) Tetrahedral mesh with colour scalars representing trabecular bone 5 

volume fraction. e) Unsegmented voxel data. f) Process of measurement of cortical thickness. g) 6 

Cortical thickness values mapped to a subject-specific surface. h) Each subject-specific surface 7 

(green) is registered to a canonical surface (red) for interspecific comparisons.  8 
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Fig 2. Extracted cubes of trabecular bone from approximately the same location in the talus and 11 

distal tibia of Homo and Pan. 12 
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Fig 3. PC1 and PC2 for trabecular and cortical structure of the talus and distal tibia of Pan (blue) 15 

and Homo (red). 16 
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Fig 4. Relationship between talus size and trabecular and cortical parameters in Pan (blue) and 19 

Homo (red). The log10 OLS regression lines are shown independently for Pan (blue) and Homo 20 

(red).  21 
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  23 
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Fig 5. Relationship between tibia size and trabecular and cortical parameters in Pan (blue) and 24 

Homo (red). The log10 OLS regression lines are shown independently for Pan (blue) and Homo 25 

(red). 26 
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Fig 6. Comparison of trabecular and cortical structure between the talus and tibia in Pan (blue) 29 

and Homo (red). The log10 RMA regression lines are shown independently for Pan (blue) and 30 

Homo (red). 31 
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Fig 7. Morphometric maps of BV/TV in the talus  in one individual of Homo (a-e) and Pan (f-j) 34 

in (from top to bottom) dorsal view, mid-transverse plane, anterior view, coronal plane (in the 35 

centre of the trochlea), and sagittal plane (in the centre of the trochlea). Each specimen is scaled 36 

to its own data range, as shown in the scale bars. Black arrows indicate regions described in the 37 

text.  38 
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Fig 8. Morphometric maps of BV/TV in the tibia in one individual of Homo (a-e) and Pan (f-j) 41 

in (from top to bottom) distal view, mid-sagittal plane of distal tibia, anterior view and mid-42 

coronal plane of distal tibia. Each specimen is scaled to its own data range, as shown in the scale 43 

bars. Black arrows indicate regions described in the text. 44 
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Fig 9. Morphometric maps of mean relative cortical thickness on the canonical talus in Homo (a) 47 

and Pan (b) in (from left to right) anterior, dorsal and plantar views. Red indicates thick regions 48 

and blue indicates thin regions. (c) Differences between the species are shown as the difference 49 

in Pan compared to Homo with positive values (red) indicating thicker bone and negative values 50 

(blue) indicating thinner bone. (d) Regions of significant differences between the species at 51 

vertices and clusters (red-yellow) and at clusters (blue) of the surface mesh. 52 
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Fig 10. Morphometric maps of mean relative cortical thickness on the canonical tibia in (a) 54 

Homo and (b) Pan in (from left to right) lateral, distal and anterior views. Red indicates thick 55 

regions and blue indicates thin regions. (c) Differences between the species are shown as the 56 

difference in Pan compared to Homo with positive values (red) indicating thicker bone and 57 

negative values (blue) indicating thinner bone. (d) Regions of significant differences between the 58 

species at vertices and clusters (red-yellow) and at clusters (blue) of the surface mesh.  59 
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