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Summary. Batch marking provides an important and efficient way to estimate the survival probabilities and population
sizes of wild animals. It is particularly useful when dealing with animals that are difficult to mark individually. For the
first time, we provide the likelihood for extended batch-marking experiments. It is often the case that samples contain
individuals that remain unmarked, due to time and other constraints, and this information has not previously been analyzed.
We provide ways of modeling such information, including an open N-mixture approach. We demonstrate that models for both
marked and unmarked individuals are hidden Markov models; this provides a unified approach, and is the key to developing
methods for fast likelihood computation and maximization. Likelihoods for marked and unmarked individuals can easily be
combined using integrated population modeling. This allows the simultaneous estimation of population size and immigration,
in addition to survival, as well as efficient estimation of standard errors and methods of model selection and evaluation,
using standard likelihood techniques. Alternative methods for estimating population size are presented and compared. An
illustration is provided by a weather-loach data set, previously analyzed by means of a complex procedure of constructing a
pseudo likelihood, the formation of estimating equations, the use of sandwich estimates of variance, and piecemeal estimation
of population size. Simulation provides general validation of the hidden Markov model methods developed and demonstrates
their excellent performance and efficiency. This is especially notable due to the large numbers of hidden states that may be
typically required

Key words: Batch marking; Integrated population modeling; Mark-recapture; Open N-mixture models; Viterbi algorithm;
Weather-loach.

1. Introduction
The standard protocol for capture–recapture studies of ani-
mals is to use individually numbered tags so that the
capture history can be constructed, determining whether an
individual was captured at each sampling occasion. Many
sophisticated models have been built for this type of data
(McCrea and Morgan, 2014). However, it may not be feasible
to use individually numbered tags for some species because
the small size of the animal makes it difficult to use a unique
tag, or for reasons of cost and convenience. In these cases,
batch marks can be used instead.

In extended batch marking, individuals are captured at
several sampling occasions. Some of the unmarked individ-
uals are given a common batch-mark, with different marks
applied at different sampling occasions; without loss of gen-
erality, we shall talk in terms of different colored tags. At
each subsequent capture occasion, marked individuals are
counted and their tag colors are noted. A random sample

of unmarked individuals are given a new colored mark and
then all marked animals are released. Some unmarked indi-
viduals do not receive tags, and these animals may or may
not be released; in the case of the weather-loach data that we
analyze in this article, the unmarked individuals that are not
tagged were not released.

There are many examples of batch marking in the lit-
erature, involving, for example, species of fish, insects, and
amphibians. A wide variety of batch marks are available that
are often species dependent, including tattoo, brand, fin-clip,
o-rings, dyes, polymer, antibiotic, and radioisotope marks as
possible fisheries batch marks, and dust, paint, dye, painted
labels, self-marking baits, wire tags, genetic markers, and
mutilation for marking insects.

Closed population models have been developed for
extended batch-mark studies, aiming at estimating popu-
lation size. For two-sample studies the Petersen estimator
can be used to estimate population size and the Schnabel
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estimator (under model Mt in Otis et al., 1978) is used
with more than two sample occasions (Pine et al., 2003).
Individual fish can be marked and released upriver, then
caught downriver to enumerate salmon runs; these studies
can be analyzed using a ratio estimator developed by Laplace
(Rawson, 2009). For open populations, Skalski et al. (2009)
review marking methods for small fish and analysis meth-
ods to estimate survival in both batch and uniquely tagged
individuals. However, models for open populations and the
use of standard likelihood methods are difficult because of
the need to account for potential, non-identifiable, multiple
detections of the same individuals over the different sampling
occasions.

An important advance was made by Huggins et al.
(2010), hereafter denoted HWK, who provide methods for
an extended batch mark study. Conditional on the number
of individuals released at each sample time, they developed
a pseudo likelihood for the recaptured individuals. They
then derived estimating equations to estimate survival and
capture probabilities, with error estimation obtained from
a sandwich estimator. They show how population size can
be derived using a Horvitz–Thompson-like estimator also
accompanied by a large-sample sandwich variance estima-
tor. HWK do not model individuals that were captured but
not marked; however, they did include these when estimat-
ing population size. During a week-long industrial modeling
camp, Dang et al. (2009) derived a likelihood for unmarked
individuals, but ignored the dependencies between the num-
bers of individuals captured at successive times. Cowen et al.
(2014) developed a likelihood approach for the marked data,
and compared the efficiency of the extended batch-mark
study, analyzed using both likelihood and pseudo-likelihood,
with a traditional capture–recapture study (using the Jolly–
Seber model). Although the analysis only involved marked

individuals, direct computation of the likelihood was a
formidable computational exercise.

In this article, we present hidden Markov models (HMMs)
for the extended batch-mark survey incorporating both
marked and unmarked individuals captured and released at
each sampling occasion. We illustrate our methods using data
on the oriental weather-loach, Misgurnus anguillicaudatu,
studied by HWK.

The article is structured as follows: the data motivating the
work are described and presented in Section 2; Section 3 lists
the notation used, including model specification, and explains
the relevance of HMMs; Section 4 presents the two likeli-
hood components, corresponding to marked and unmarked
individuals. It is explained how the component likelihoods
are efficiently computed using the methodology of HMMs. A
framework for model selection and evaluation is provided in
Section 5 and alternative procedures for estimating popula-
tion size are presented in Section 6. The results are given in
Section 7 and the article ends with discussion and avenues for
future research in Section 8.

2. Sampling Design and Data

Data from marked individuals can be summarized in a sim-
ilar way to the m-arrays used in band-recovery experiments
(Brownie et al., 1985), but individuals can be captured on
multiple occasions, and significantly the use of multinomial
distributions is no longer appropriate.

The weather-loach study is described in detail by HWK.
Here, different colored batch tags were given to a random
sample of unmarked individuals at each occasion. The data
are provided in Table 1 for this 11-sample occasion study. We
do not use the information on the numbers lost (�t), but it is
presented to illuminate the data as a whole. The analysis of

Table 1
Weather-loach batch mark data array taken from HWK. The number unmarked is the number of individuals caught without a

mark, before marking takes place. Thus, trivially this number is 306 at the first sampling occasion. Of this number, 280
individuals are given a batch mark, and 32 of them are recaptured at sample occasion 2, 22 at occasion 3, etc. In order to

understand the table structure, note, for example, that at sample occasion 4, 207 = 23 + 17 + 20 + 147, etc. To illustrate the
notation, T = 11, G = 10, S2 = 219, R2 = 139, u2 = 187, r23 = 28, r24 = 17, etc. At each sample occasion a number of the fish
sampled are not marked, and they are not returned to the water, becoming lost to the study. Thus, for example, at recapture

occasion 2, 48 = 187 − 139, etc.

Recapture occasion
Sample Number Number
occasion (g) sampled(Sg) marked (Rg) 2 3 4 5 6 7 8 9 10 11

1 306 280 32 22 23 8 3 1 2 1 1 0
2 219 139 28 17 3 2 0 2 1 2 0
3 189 115 20 6 3 1 3 2 1 0
4 207 126 5 0 3 2 2 0 1
5 111 80 12 3 1 1 2 1
6 96 65 2 4 8 5 2
7 30 14 2 1 1 0
8 68 50 4 5 1
9 83 54 9 1
10 81 55 6
11 50 0

Number unmarked (ut) 187 139 147 89 76 20 52 63 55 38
Number lost (�t) 48 24 21 9 11 6 2 9 0 38
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marked individuals is conditional upon the numbers of marked
individuals released, and the analysis of unmarked individuals
is based upon the numbers of unmarked individuals sampled,
and so the lost individuals do not bias the analyses. Note that
the number of sampling occasions (T = 11) and the number
of individuals marked at the first occasion (R1 = 280) are suf-
ficiently large for direct computation of the likelihood, as in
Cowen et al. (2014), to be computationally prohibitive, as
discussed below.

3. Notation and Model Development

3.1. Models and Assumptions

We allow for immigration and emigration/death between sam-
ple times, but all emigration is assumed permanent. Other
assumptions are similar to those of typical capture–recapture
experiments namely: all individuals have the same probabil-
ity of survival between sample times, all individuals have the
same probability of capture at a sample time, tags are not lost,
the color of the tags is identifiable, sampling is instantaneous,
and individuals are independent with respect to capture and
survival.

As ages of individuals are unknown in the case study, we
only consider possible time-dependence in model parameters.
We specify models using a standard notation so that the
four models for marked individuals are (φ, p), (φt, p), (φ, pt),
and (φt, pt), where φ and p denote, respectively, survival
and recapture probabilities, which may be constant or time
dependent. The (φt, pt) model is the batch-marking version of
the Cormack–Jolly–Seber model, see Buckland and Morgan
(2016) and McCrea and Morgan (2014, p. 70). There are also
no covariates in the case study, but if relevant time-varying
covariates are available then these might be accommodated
by appropriate logistic regressions.

Hidden Markov models (HMMs) are a particular type of
state-space model where the state space is discrete. Mark-
recapture clearly fits under the HMM framework; see King
(2012). Here, a capture–recapture observation is generated
by a distribution that is dependent on the state of an unob-
served Markov process (Zucchini et al., 2016). For typical
capture–recapture models there are two hidden states for
each animal, and the true sequences of states are often
only partially observed; when an animal is captured then
it is known to be alive, whereas when it is not then its
true state may be unknown. This is explained in detail in
Laake (2013). A more complex example is provided by Chap-
ter 24 of Zucchini et al. (2016), in which there are three
hidden states at each time, according to whether individ-
uals are alive, have died since the previous sampling time,
or have died prior to that. In that application observed
capture histories are then described in terms of survival,
recapture, and recovery probabilities. For the extended batch-
marking experiment, the hidden states are at the batch, rather
than the individual level, and the true sequence of states
is entirely unobserved. This gives rise to a large number of
states.

3.2. Primary Notation

The following notation is used in specifying the
likelihoods:

Constants and Statistics

T the number of capture–recapture occasions.
G the number of batch-marked release groups; G ≤ T .
Sg the number of individuals sampled at sampling occasion

g; g = 1, 2, . . . , G.
Rg the number of individuals marked and released at sam-

pling occasion g from batch group g; g = 1, 2, . . . , G. We
condition on the {Rg} when we form the likelihood for
marked individuals.

rgt the number of individuals from batch group g

recaptured at recapture occasion t; g = 1, 2, . . . , G,

t = g + 1, . . . , T .
ut the number of individuals captured at sampling occa-

sion t that were not marked; t = 1, . . . , T .
�t the number of individuals lost at sampling occasion t;

t = 2, . . . , T . �t = ut − Rt .

Latent Variables

Xgt the number of individuals present at occasion t from
marked group g; g = 1, 2, . . . , G, t = g + 1, . . . , T .

dgt the number of individuals from marked group g that
die at sampling occasion t.

Parameters

�gt the (Rg + 1) × (Rg + 1) state transition probability
matrix of the Markov chain for the marked individu-
als of group g, describing transitions between sample
occasions t and t + 1.

�u
t the (Umax + 1) × (Umax + 1) state transition probabil-

ity matrix of the Markov chain for the unmarked
individuals describing transitions between sample
occasions t and t + 1.

Pgt(m) the (Rg + 1) × (Rg + 1) diagonal matrix con-
taining the state-dependent probabilities of
observing m recaptures at occasion t for group
g. Thus, Pgt(m) = diag(q0(m), . . . , qRg

(m)), where
qi(m)=P(rgt = m|Xgt = i).

Pu
t (m) the (Umax + 1) × (Umax + 1) diagonal matrix con-

taining the state-dependent probabilities of
observing m unmarked individuals at occasion
t. Thus, Pu

t (m) = diag(qu
0(m), . . . , qu

Umax
(m)), where

qu
i (m)=P(ut = m|Ut = i).

δg the initial distribution of the Markov chain for
marked group g.

δu the initial distribution of the Markov chain for the
unmarked population.

φt the probability of surviving and remaining in the
population between occasions t and t + 1, given an
individual was alive and in the population at occasion
t. We use φ to indicate the set of survival parameters
in a model.

pt the probability of capture at occasion t. We use p

to indicate the full set of recapture probabilities in a
model, and p2:T when p1 is omitted.

λ the initial mean abundance (at occasion 1) for the
unmarked population.
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η the recruitment rate into the unmarked population.
Note that we shall consider constant and density-
dependent versions of recruitment.

Ut the total number of unmarked individuals in the
population available for capture at occasion t. We
may use U to denote the full set of the numbers
of unmarked individuals in the population at times
t = 1, . . . , T. In the Student model of Section 4.2.1,
these numbers are parameters which are estimated
directly from the likelihood, whereas in the open
N-mixture model the U are obtained as derived
variables, which are functions of the other model
parameters.

Umax the maximum number of unmarked individuals avail-
able for capture on any occasion.

Nt the total population size at time t.

4. Likelihood Constructions

As we can see from Table 1, in examples of extended
batch-mark studies, not all individuals that are captured
are marked. This may occur for reasons such as han-
dling time constraints where animals must be released
after being contained for a set period of time, or practi-
cal constraints, such as having a limited number of marks
available. We shall provide the likelihood for marked indi-
viduals for extended batch-marking experiments. We shall
also incorporate information on unmarked individuals into
the likelihood by developing separate models for such indi-
viduals. This was not done by HWK or Cowen et al. (2014);
it will allow us to include additional information on the
capture probabilities in the analysis and also to estimate
simultaneously the numbers of unmarked individuals in the
population.

4.1. Likelihood for Marked Individuals

HWK regarded the likelihood for marked individuals
as “intractable,” and suggested that a possible EM
approach would be “complicated and computationally inten-
sive.” Instead, they present the pseudo likelihood shown
below,

L̃m(φ, p2:T ; {rgt}{Rg}) ∝
G∏

g=1

T∏
t=g+1

Qgt(φ, p)rgt {1 − Qgt(φ, p)}Rg−rgt ,

where Qgt(φ, p) = pt

(∏t−1

i=g
φi

)
denotes the probability that an

individual released from group g is recaptured at occasion
t. In fact, we can obtain an expression for the likeli-
hood for the data from marked individuals by conditioning
upon the unknown numbers of dead individuals, {dgt}, to
obtain

Lm(φ, p2:T ; {rgt}{Rg}) =
G∏

g=1

∑
dgg

. . .
∑
dg,T−1

T∏
t=g+1

P(rgt |dgg, . . . , dg,T−1, Rg)

× P(dgg, . . . , dg,T−1|Rg). (1)

Evaluating the conditional probabilities in equation (1) then
results in the explicit expression for the likelihood,

Lm(φ, p2:T ; {rgt}{Rg}) =
G∏

g=1

∑
dgg

. . .

∑
d

g,T−1

{
T∏

t=g+1

(
Rg −

∑t−1

m=g
dgm

rgt

)

×

(
pt

t∏
m=g

φm

)rgt
(

1 − pt

t∏
m=g

φm

)Rg−
∑t−1

m=g

dgm−rgt

⎫⎪⎬
⎪⎭

× Rg!

dgg! . . . dg,T−1!(Rg −
∑T−1

m=g
dgm)!

π
dgg

gg

. . . π
d

g,T−1
g,T−1(1 − πgg − . . . − πg,T−1)

(Rg−�T−1
m=g dgm), (2)

where πgk = (1 − φk)
∏k−1

j=1
φj, and by convention,

∏0

j=1
= 1.

Direct computation of the likelihood Lm can be slow, due
to the evaluation of the multiple summations involved, which
is O((R1 + 1)T ), equating to O(28111) for the case study. Con-
sequently, we have only been able to maximize the likelihood
in this form for the weather-loach data from the first 7 sam-
ples only. However, the results provide a useful check of the
HMM computations which follow.

The model for each release group is a HMM, with the
{dgt} being the hidden information, described by the con-
ditional multinomial distributions in equation (1). It is the
fact that the {dgt} are unknown/hidden that results in the
expensive summations in equation (2). We can therefore make
use of the efficiency of the standard forward probability
approach for HMMs to compute the likelihood, in addition
to other benefits; see Zucchini et al. (2016, p. 37). There-
fore, the HMM likelihood component for release group g of
the marked individuals, Lm,g, can be written in the usual
way as a product of the initial distribution vector δg, the
appropriate transition probability matrices {�gt}, and the
state-dependent probability matrices {Pgt} for each sample
occasion t. Thus, from Zucchini et al. (2016, p. 37) we can
write,

Lm,g = δgPg,g+1(rg,g+1)�g,g+1Pg,g+2(rg,g+2)�g,g+2 . . . �g,T−1PgT (rgT )1′,

where 1 denotes the unit row vector,

Pgt(rgt) =

⎡
⎢⎢⎢⎢⎢⎢⎣

P(rgt |Xgt = 0)

P(rgt |Xgt = 1) 0
0 . . .

P(rgt |Xgt = Rg)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

with P(rgt |Xgt = i) = 0 for i < rgt , and otherwise we have
the binomial forms: P(rgt |Xgt = i) = (

i

rgt

)
p

rgt

t (1 − pt)
i−rgt , for

i ≥ rgt .
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For each sample time t, the state transition probability
matrix �gt has elements P(Xg,t+1 = j|Xgt = i), and has the
form,

�gt=

i = 0

1

2

...

Rg

j = 0 1 2 Rg⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0

(1 − φt) φt 0 . . . 0

(1 − φt)
2 2φt(1 − φt) φ2

t . . . 0

...

(1 − φt)
Rg Rgφt(1 − φt)

Rg−1
(

Rg

2

)
φ2

t (1 − φt)
Rg−2 . . . φ

Rg

t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(Rg+1)×(Rg+1)

.

Each row of �gt corresponds to a binomial distribution, and
the rows sum to unity, as required. As the number of animals
alive at t = 0 for group g is known to be Rg for each g, the
initial state distribution for group g is given by

δg = [P(Xg0 = 0), P(Xg0 = 1), P(Xg0 = 2), . . . , P(Xg0 = Rg)]

= (0, 0, . . . , 0, 1).

If we assume independence between release groups, the
likelihood for the marked individuals is then given as

Lm(φ, p2:T ; {rgt}, {Rg}) =
G∏

g=1

Lm,g. (3)

This is exactly the same expression as equation (2), but in a
different formulation for efficient computation.

4.2. Likelihood for Unmarked Individuals

4.2.1. Student approach. Dang et al. (2009) employed a
product-binomial likelihood,

Lu(p, U; {ut}) =
T∏

t=1

(
Ut

ut

)
(pt)

ut (1 − pt)
Ut−ut . (4)

This likelihood has the same structural form as the first
part of the Jolly–Seber likelihood, (McCrea and Morgan,
2014, p. 150), and we shall refer to the underlying model
as the Student model. The model includes U, the elements
of which denote the numbers of unmarked individuals in the
population at the different times, as a set of parameters to be
estimated. By itself of course this likelihood is over parame-
terized, as there are two unknowns for each degree of freedom.
There are various ways of dealing with this, and a referee has
suggested using Bayesian modeling with a joint regulariza-
tion prior on the {Ut} with a positive correlation structure
to constrain the {Ut}, for example, a random walk of order
2 or a Gaussian Markov random field; see Schmidt et al.
(2015). Here, we combine the likelihood with the likelihood
for the marked individuals. The likelihoods for the marked

and unmarked individuals can be multiplied to get the overall
joint likelihood, as there are no individuals in common:

Lj(φ, p, U; {rgt}, {Rg}, {ut}) = Lm(φ, p2:T ; {rgt}, {Rg})
×Lu(p, U; {ut}). (5)

This is an illustration of integrated population model-
ing; see Besbeas et al. (2002). It is possible to maximize
Lj(φ, p, U; {rgt}, {Rg}, {ut}), after some minor adjustments
described later. However, if the {Ut} have no structure such a
model is still too general, and in particular there is no involve-
ment of φ in Lu(p, U; {ut}). An alternative structural approach
is described below.

4.2.2. Open N-mixture approach. Here, we introduce
structure, by relating the {Ut} over time in a stochastic
manner, using an open N-mixture model for the unmarked
individuals. This model adopts a first-order Markov depen-
dence; see Dail and Madsen (2011). The likelihood for the
unmarked individuals is then given by

Lu(φ, p, λ, η; {ut}) =
∞∑

U1=u1

· · ·
∞∑

UT =uT

T∏
t=1

Bin(ut ;Ut, pt)

×P(U1)

T∏
t=2

P(Ut |Ut−1), (6)

where P(U1) is the probability function for U1 and P(Ut |Ut−1)
is the probability of Ut conditional upon the value of Ut−1.
The total number of unmarked individuals in the popula-
tion at time t is unknown, and following Dail and Madsen
(2011), after experimentation we assume this to be less than
some large number, Umax, for all t. Thus, Umax can be taken
as the upper limit of all of the summations in equation (6).
For related discussion, see Dennis et al. (2015). One might
similarly introduce an appropriate Umin term, which could be
beneficial in some cases. We can see how the binomial expres-
sion of the Student model, in equation (4), is the basis for the
binomial term in equation (6), although the interpretation
of {Ut} is different between the two models. Once again we
have a HMM, due to the Markov structure, and the compu-
tationally expensive summations in the likelihood expression
can be seen to be a consequence of the unknown numbers of
uncaptured individuals at each occasion; cf equation (1).

In order to obtain P(Ut |Ut−1), we write Ut = At + Ct

where At is the number of individuals that have survived
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from occasion t − 1 to t, and Ct is the number of indi-
viduals recruited into the population at occasion t. We
model At |Ut−1 ∼ Binomial(Ut−1 − St−1, φt−1) and Ct |Ut−1 ∼
Poisson(Ut−1η), although other distributions are possible, for
example to account for overdispersion. The conditional dis-
tribution of Ct provides a form of density dependence of
recruitment, and an alternative is simply to use Poisson(η);
we have used both in the case study of the next section. The
initial number of unmarked individuals in the population is
modeled as U1 ∼ Poisson(λ), and P(Ut |Ut−1) is given by the
convolution sum,

P(Ut = j|Ut−1 = i) =
min(i−St−1,j)∑

c=0

Bin(c; i − St−1, φt−1)

×Pois(j − c;Ut−1η), for i ≥ St−1, (7)

and zero otherwise, where Bin(x; n, p) and Pois(x;μ) denote
the probability functions of the binomial and Poisson distribu-
tions, respectively. In view of the typically very large number
of terms in the summations of equation (7) the Fast Fourier
Transform was used to evaluate the summations efficiently.

As the open N-mixture model is also a HMM, we can write
the likelihood of equation (6) in the form,

Lu(φ, p, λ, η; {ut}) = δuPu
1(u1)�

u
1P

u
2(u2)�

u
2 . . . �u

T−1P
u
T (uT )1′

(8)
where

Pu
t (ut) =

⎡
⎢⎢⎢⎢⎢⎢⎣

P(ut |Ut = 0)

P(ut |Ut = 1) 0
0 . . .

P(ut |Ut = Umax)

⎤
⎥⎥⎥⎥⎥⎥⎦

and P(ut |Ut = i) = 0 for i < ut , and otherwise we have the
binomial forms: P(ut |Ut = i) = (

i

ut

)
p

ut
t (1 − pt)

i−ut , for i ≥ ut .
This is clearly the same approach as that adopted in
Section 4.1.

The state transition probability matrix for the unmarked
population �u

t , describing both the survival and immigration
of individuals, has elements given by equation (7), and the
initial state distribution, δu, is Poisson(λ), as stated above.

The joint likelihood in this case has the form,

Lj(φ, p, λ, η; {rgt}, {Rg}, {ut}) = Lm(φ, p2:T ; {rgt}, {Rg})
×Lu(φ, p, λ, η; {ut}). (9)

We thank a referee for pointing out similar work in Schmidt
et al. (2015). In that article data are collected on known-fate
individuals which are radio marked, and also unmarked indi-
viduals. Integrated modeling is employed: an open N-mixture
model is used to model the information on unmarked indi-
viduals, and that likelihood component is also formed using
a HMM.

5. Estimation, Model Selection, and
Goodness-of-Fit

Hidden Markov modeling is challenging in the work of this
article in view of the very large numbers of states that might
be involved. We discuss this issue in Section 7.2. However,
the computer programs written were effective and efficient.
Parameters are estimated using numerical maximum likeli-
hood methods, and we use the observed information matrix
and the bootstrap to provide estimates of uncertainty. Con-
founded parameters (e.g., the product φT−1pT ) can be dealt
with by introducing single parameters denoting such a prod-
uct. To obtain estimated standard errors in general, we need
to be able to deal with the Hessian being singular due to
boundary estimates (e.g., φ̂7 = 1). We obtain the singular-
value decomposition (SVD) of the Hessian, H , which in
standard notation can be written as H = WDV T ; see Searle
(1982, p. 316). We then determine which values of the diago-
nal matrix D are close to zero, and remove the corresponding
rows and columns of the SVD, resulting in H∗. We then
obtain standard errors from the inverse of H∗ using H∗−1 =
V ∗D∗−1W∗T (Searle 1982, p. 318), and set standard errors
equal to zero for the estimates corresponding to the deleted
rows.

Model selection can be achieved using standard likelihood
methods, see Besbeas et al. (2015), and we illustrate the model
selection process for the case study using the Akaike informa-
tion criterion (AIC) in Section 7. The only model fitted by
HWK, to data on marked individuals, was that where survival
probability varies by time and capture probability is constant,
(φt, p), which they justify in terms of how the sampling was
carried out.

To study goodness-of-fit for marked individuals, observed
and expected cell counts of the marked individuals can be
compared straightforwardly, where expected cell counts are
calculated as E(rgt) = RgQgt(φ, p), as done by HWK, who
showed that for the weather-loach data the Pearson goodness-
of-fit statistic for model (φt, p) has the value X2 = 21.62,

which is insignificant (p-value > 10%) when referred to χ2

tables on 16 degrees of freedom, after appropriate pooling
of cells. For the model for unmarked individuals, we plot
normal pseudo-residual segments. These arise as we are deal-
ing with discrete random variables, so that the standard
pseudo residuals, which are points defined for continuous
random variables, are replaced by intervals (Zucchini et al.,
2016, p. 101). Ordinary normal pseudo residuals (Zucchini
et al., 2016, p. 102) could also be used for the model for
marked individuals, but cohort lengths are typically short,
and so instead we plot observed versus expected values in that
case.

6. Estimating Population Size

Population size was estimated by HWK using a Horvitz–
Thompson-like approach, resulting in

N̂t = St

p̂
, (10)

where p̂ was estimated from the data on marked individu-
als. However, when we also model the number of unmarked
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individuals, we can form alternative estimates of population
size. This is because we can estimate the numbers of both
marked and unmarked individuals in different ways. For the
open N-mixture model the estimated expected numbers of
unmarked individuals are derived variables, functions of the
estimated model parameters, and given by recursion; see Dail
and Madsen (2011, p. 4). For instance, for the case of constant
survival and density-dependent recruitment, we have

Ê(Ut) = λ̂(φ̂ + η̂)t−1. (11)

We shall refer back to this equation later in the article. We
could use the multivariate delta method to estimate the vari-
ances of the estimated expectations in equation (11), but in
the following we shall instead use the bootstrap. An alter-
native approach for estimating the numbers of unmarked
individuals arises because of the HMM nature of the model
for unmarked individuals, and results from application of the
Viterbi algorithm, a dynamic programming algorithm which
produces the most likely set of {Ût}; see Zucchini et al. (2016,
p. 89). In the following, we shall refer to {Ût}, but when
the Dail/Madsen approach is used, rather than the Viterbi
algorithm, this is to be interpreted as {Ê(Ut)}.

In addition, whichever estimate of unmarked individuals
is used, by adopting a Horvitz–Thompson-like approach, the
number of individuals alive at occasion t can be obtained
from,

N̂1 = Û1,

N̂t = Ût +
∑t−1

g=1
rgt

p̂t

, for t > 1. (12)

Cf equation (10). Alternatively, we can estimate the num-
bers of marked individuals alive directly from the numbers of
individuals marked in appropriate samples:

Ñ1 = Û1

Ñt = Ût +
t−1∑
i=1

Ri

t−1∏
�=i

φ̂�, for t > 1. (13)

We shall consider the relative merits of alternative methods
for estimating population sizes in the analyses of the next sec-
tion. However, we note here that our experience has been that
the expression of equation (13) results in smaller standard
errors than those of equation (12), and we only illustrate the
former in the case study which follows. A further approach,
suggested by a referee, would result from posterior sampling
of numbers of marked and unmarked individuals following
a Bayesian analysis, such as that outlined in Schmidt et al.
(2015).

7. Case Study

We use the data of Table 1 to illustrate the methods of the
article.

7.1. Analysis of Marked Data

To compare the HMM likelihood method with the pseudo-
likelihood (PL) method of HWK we present in Table 2
parameter estimates for the model (φt, p) for data on marked
individuals only, the sole case for which results were presented
by HWK. We found that parameter estimates were in good
agreement between the two methods for this case study; how-
ever, standard errors for the likelihood method were usually
smaller, as independently suggested by the simulation study
of Cowen et al. (2014). We note that our estimates of error
for PL differ substantially from what HWK reported, partly
due to errors both in their R code for obtaining standard
error estimates and in the delta method that HWK used, and
partly due to the likelihood method being more efficient. Note
also that the sandwich standard errors are harder to compute
than those resulting from inverting a Hessian in the normal
way. This is due to the need to construct manually a model-
dependent derivative matrix. Additionally, although most of
the HMM standard errors are smaller than those from the
PL approach, we have found the difference to be far greater,
with HMM resulting in smaller errors, when smaller data sets
are analyzed, as found, for example, in Haynes and Robinson
(2011).

Several models were fitted using the HMM and their AIC
values were compared (Table 3a). Interestingly, we found
model (φt, p) to be the best fitting model, the only model fit-
ted by HWK, and the model (φ, pt) performs well. Note that
model (φt, pt) is parameter redundant, as only the product
φT−1pT can be estimated, rather than either of the component
terms.

Table 2
Parameter estimates and estimated standard errors (given below in parentheses) produced by the pseudo-likelihood method

(PL) and the likelihood method (HMM) for model (φt, p) for the marked weather-loach data. In the PL case we also give, in
square parentheses, the incorrect standard errors from HWK.

Parameter estimates

Method φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10 p

PL 0.59 0.84 0.92 0.27 0.53 0.48 1.00 0.75 0.79 0.36 0.18
(0.09) (0.12) (0.14) (0.07) (0.13) (0.10) (0.00) (0.16) (0.17) (0.12) (0.02)
[0.18] [0.34] [0.51] [0.15] [0.26] [0.21] [0.05] [0.36] [0.41] [0.25] [0.06]

HMM 0.59 0.86 0.90 0.26 0.56 0.47 1.00 0.75 0.81 0.35 0.18
(0.09) (0.12) (0.13 ) (0.05) (0.11) (0.09) (0.00) (0.15) (0.18) (0.11) (0.02)
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Table 3
Model-selection results for the weather-loach data:(a) for
marked data only. (b) for marked and unmarked data

combined, using first the Student approach and then the open
N-mixture approach (with Umax = 1800 and w = 20). Here, κ

denotes the number of estimable model parameters.

(a)

Model −log(Lm) κ AIC 
AIC

(φt, pt) 91.03 19 220.03 6.5
(φt, p) 95.78 11 213.55 0.0
(φ, pt) 97.29 11 216.58 3.0
(φ, p) 124.98 2 253.97 40.4

(b)
Student approach

Model −log(Lj) κ AIC 
AIC

(φ, p, Ut) 158.11 13 342.22 46.62
(φ, pt, Ut) 126.83 22 297.66 2.06
(φt, p, Ut) 129.01 22 302.03 6.43
(φt, pt, Ut) 117.85 30 295.60 0.00

Open N-mixture approach; density-dependent model

Model −log(Lj) κ AIC 
AIC

(φ, p, λ, η) 202.90 4 413.80 110.92
(φ, pt, λ, η) 140.18 14 308.36 5.48
(φt, p, λ, η) 150.56 13 327.12 24.24
(φt, pt, λ, η) 128.44 23 302.88 0.00

7.2. Combining Marked and Unmarked Data

A complication with the analysis of the unmarked data is
that a large value of Umax was required. We experimented
with several values and found Umax = 1800 to work well for
these data. However, this requires operations with matrices
of dimension 1801 × 1801 for the computation of Lu, which
is memory (RAM) intensive for a personal computer. To deal
with this, we allocate the states to bins of equal size w: we
let ζ1, ζ2, . . . , ζn be a partition of the state space such that
each ζi is of length w; the midpoint of the interval is taken
to represent the state; see Zucchini et al. (2016, p. 158). For
this case study, we experimented with values of w = 4, 10, 20,
and 50, and found that taking w = 20 appeared to be satisfac-
tory, though there was little difference between taking w = 4
and w = 20. This resulted in 90 hidden states, whereas, for
example, taking w = 4 increased the number of states to 450.
Binning in this way introduces an element of approximation
to the formation of the likelihood component for unmarked
individuals, the approximation increasing with w. For illus-
tration, we present results for the density-dependent model
for new individuals, as in equation (7), as these resulted in
slightly better AIC values than the alternative, of constant
augmentation. However, which alternative is more realistic
might also depend on which agrees better with the biology of
the study.

When the unmarked individuals are incorporated into the
likelihood, model selection may be done in the same way

as before, using AIC; see Table 3b. Here, we find that
model (φt, pt) fits the data best in both the Student and
N-mixture approaches. However, uncritical use of AIC can
result in overly complex models, and the models (φ, pt, Ut)
and (φ, pt, λ, η) perform well in terms of AIC. Therefore, we
shall use these for ease of illustration. We see in particular
that models with constant recapture probability are not sup-
ported, in contrast to the findings of Table 3a, and the belief
of HWK that this would be an acceptable assumption for the
weather-loach data, due to the use of constant-effort electro-
fishing. Table 4 presents parameter estimates and estimated
standard errors for the models (φ, pt, Ut) and (φ, pt, λ, η). We
note that the average of the estimates of recapture probabil-
ity from the N-mixture model is 0.19, in comparison with the
value of 0.18 in Table 2, and conversely, from Table 2 the
average estimate of φ is given by 0.65, in comparison with
the value of 0.63 from Table 4. Standard errors are presented
from using an estimated Hessian in the usual way, and are
very similar to those obtained from a parametric bootstrap
approach (not shown). The estimates of U from the Viterbi
analysis of the N-mixture model are rounded due to the bin-
ning of states. They are in agreement with the predictions
from equation (11), as they should be. As observed earlier,
the Student estimates of U differ in interpretation compared
with those obtained from the N-mixture model. The differ-
ences are generally small in comparison with the standard
errors. The Student models generally are hard to fit, being
subject to confounding, boundary estimates and convergence
to local optima. For example, it is not possible to estimate p1

and U1 separately, nor φ10 and p11 in the (φt, pt, Ut) model,
which can only be estimated as a product, as observed also
by HWK. However, they are estimable separately for model
(φt, pt, λ, η). We note in Table 4 the much smaller standard
errors for the components of {U} from using the N-mixture
approach, compared with the Student model, as expected, due
to the chaining of the components of U in the open N-mixture
model; standard errors are formed by using a parametric boot-
strap, based on simulating HMMs. We can see that what is
driving the need for the recapture probabilities to change with
time is the estimate for the 7th sample occasion. It is inter-
esting to note from Table 4 that the Dail/Madsen estimates
of error are slightly larger than those from the Viterbi algo-
rithm. In addition the Viterbi approach is more general. The
very good agreement between the Viterbi and Dail/Madsen
estimates, obtained by quite different methods, provides a
validation for the methods used.

We show in Table 5 how we can estimate {Nt}, in this
case making use of the Viterbi estimates of the numbers of
unmarked individuals for illustration. We see that the stan-
dard errors for Nt and the population size estimates using “HT
with p-vals,” resulting from using the Horvitz–Thompson-like
approach of equation (10) with estimated time-varying recap-
ture probabilities, are similar in size, and generally different
from those resulting from HWK. A remarkable feature of
Table 5 is the very close agreements of both the estimates
of Nt and their corresponding estimated standard errors,
whether one forms the estimates by evaluating the marked
and unmarked components of Nt separately, as in this article,
or simply uses a HT approach. We note also the curious fea-
ture that the estimated standard errors are close to the sums
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Table 4
Combining both marked and unmarked data: parameter estimates and estimated standard errors (below in parentheses) for

the weather-loach data, produced by the Student approach, for model (φ, pt, Ut), and the N-mixture approach for model
(φ, pt, λ, η) (with Nmax = 1800 and w = 20): V indicates Viterbi and D indicates Dail/Madsen; † indicates that p1 was fixed

to 1. Standard errors marked with a ∗ are obtained using a Hessian, while without result from 100 bootstraps.

φ p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 λ η

Student 0.62 † 0.18 0.25 0.31 0.11 0.12 0.07 0.16 0.21 0.28 0.13
(SE)∗ (0.03) (0.03) (0.04) (0.04) (0.03) (0.03) (0.02) (0.04) (0.05) (0.06) (0.04)
N-mixture 0.63 0.32 0.22 0.21 0.25 0.15 0.15 0.05 0.15 0.20 0.22 0.15 944.8 0.24
(SE)∗ (0.03) (0.05) (0.03) (0.02) (0.03) (0.02) (0.02) (0.01) (0.03) (0.04) (0.05) (0.04) (133.0) (0.03)

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11

Student 306 1012 545 477 797 652 297 332 297 194 289
(SE)∗ (182) (89) (76) (197) (173) (118) (102) (83) (49) (99)
N-mixture (V) 950 830 710 610 530 470 410 350 310 270 230
(SE) (143) (108) (82) (68) (61) (58) (57) (57) (56) (56) (55)
N-mixture (D) 945 821 713 619 538 467 406 352 306 266 231
(SE) (143) (109) (85) (71) (63) (59) (58) (57) (57) (56) (55)

Table 5
Components of estimated population sizes. The Viterbi values are taken from Table 4. The estimated marked values are the
result of using the last term of the expression of equation (13). HWK gives the estimates of {Nt} from HWK, using equation
(10), while HT with p-vals is the same structure, but when there are time-varying probabilities of detection, {pt}, estimated

from marked and unmarked data. The estimates of {Nt} are obtained from equation (13), using the values of Ût obtained from
the Viterbi algorithm. All standard errors are estimated in this table from the (parametric) bootstrap.

Sample occasion (t) 1 2 3 4 5 6 7 8 9 10 11

Ût (Viterbi) 950 830 710 610 530 470 410 350 310 270 230
(SE) (143) (108) (82) (68) (61) (58) (57) (57) (56) (56) (55)

Estimated marked 177 200 199 206 181 155 107 99 97 96
(SE) (7) (12) (15) (17) (18) (17) (15) (13) (12) (11)

N̂t 950 1007 910 809 736 651 565 457 409 367 326
(SE) (143) (110) (88) (77) (73) (72) (70) (67) (65) (64) (63)

N̂t :HT with p-vals 945 997 914 821 745 650 565 463 408 365 330
(SE) (143) (111) (91) (80) (75) (73) (71) (69) (67) (65) (63)

N̂t :HWK 1689 1209 1043 1143 613 530 166 375 458 447 276
(SE) (233) (171) (150) (163) (94) (84) (35) (63) (74) (73) (50)

of the estimated standard errors for the marked/unmarked
components. Consequently, the corresponding variances are
all slightly greater than what would be obtained by treat-
ing the components of the sum as independent, suggesting
that the components are slightly positively correlated. A fur-
ther interesting aspect of Table 5 is the difference in using
equation (10) depending on whether the recapture probabil-
ity is time varying or not. The big difference occurs at the
7th sampling occasion. HWK comment that, “The estimated
population size of the weather-loach was low on the 7th occa-
sion, which happened to be in the winter period. However, as
spring came, the numbers of weather-loach increased. These
estimates indicate that the population is quite seasonal and
can be low at some times of the year.” However, when the
capture probabilities are allowed to vary with time then the
estimates of population size suggest a declining population
over time.

Figure 1 illustrates goodness-of-fit plots for model
(φ, pt, λ, η), with w = 20 and density dependence, separately
for each likelihood component, as recommended by Besbeas
and Morgan (2014). Overall there does not appear to be a seri-
ous lack of fit for the models fitted. The patterns in Figure 1a
are a simple consequence of the repeated values of observed
counts.

We note finally that the expected number of new unmarked
individuals entering the population at occasion t can be
derived using

B̂t = Ût+1 − (Ût φ̂t), (14)

as in the Jolly–Seber model; see McCrea and Morgan (2014, p.
150). We would expect B̂t ≈ E[Ct |Ut−1], where B̂t is estimated
in equation (14), and this relationship is found to hold.
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Figure 1. Goodness-of-fit plots for the weather-loach data, for model (φ, pt, λ, η): (a) we plot the difference, observed minus
expected recapture counts for the marked individuals, divided by the square root of the expected counts, against the logarithm
of the expected counts, and (b) the QQ plot for the normal pseudo-residual segments of the unmarked counts.

8. Discussion

Batch marking is fundamentally important in ecology, pro-
viding an important tool for studying population dynamics.
However, there is a pressing need for effective new methods of
analysis. We have developed a comprehensive model for the
extended batch-marking experiment, using an efficient hid-
den Markov formulation that supersedes previous analyses.
The approach incorporates information on unmarked individ-
uals, leading to increased precision of parameter estimates,
and improved model-selection. It has been interesting to see,
in the case study, that the selected model changes as a result
of the joint analysis. In addition one can devise and com-
pare different models for the unmarked individuals, and useful
descriptions of the population result. For instance, we have
examined whether constraining the population sizes for the
unmarked individuals in the Student model to be constant
over time results in a realistic model for the weather-loach
data, and it was not found to be competitive. An added advan-
tage of using HMMs is the ability to examine pseudo residuals
to check goodness-of-fit. In addition the Viterbi algorithm
provides a convenient, general method for estimating num-
bers of unmarked individuals, which can be bootstrapped to
provide estimates of standard errors. As the model is fitted
using standard likelihood optimization methods, it is possible

to easily undertake model selection and compute estimates of
parameter uncertainty.

The models presented provide a flexible platform for addi-
tional development, depending on what data are available. For
instance, one can incorporate suitable covariates, which would
reduce the number of parameters to be estimated and poten-
tially increase biological understanding. Extensions to cope
with age and size information, as discussed by HWK, would
also be straightforward. Further, we know from discussions
with batch marking users that tag loss can be non-negligible,
though apparently this was not an issue with the weather-
loach study. For some study designs, it might be possible to
implement double marks on individuals and implement meth-
ods similar to Cowen and Schwarz (2006). Alternatively, one
might be able to obtain auxiliary information on tag-loss rates
through a holding study and adjust parameter estimates using
methods of Seber and Felton (1981).

9. Supplementary Materials

Matlab code for the analyses of the article is available with
this article at the Biometrics website on Wiley Online Library.
It is written for use in the Parallel Computing toolbox, but is
readily translated into R if necessary.
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