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The Multiple Trip Vehicle Routing Problem with Backhauls: Formulation and a Two-Level 

Variable Neighbourhood Search 

Naveed Wassan, N.A. Wassan, G. Nagy and S. Salhi 

Centre for Logistics & Heuristics Optimisation, Kent Business School, University of Kent, 

Canterbury, UK 

 

 

Abstract:  

In this paper a new VRP variant the Multiple Trip Vehicle Routing Problem with Backhauls 

(MT-VRPB) is investigated. The classical MT-VRP model is extended by including the 

backhauling aspect.  An ILP formulation of the MT-VRPB is first presented and CPLEX results 

for small and medium size instances are reported. For large instances of the MT-VRPB a 

Two-Level VNS algorithm is developed. To gain a continuous balanced intensification and 

diversification during the search process VNS is embedded with the sequential VND and a 

multi-layer local search approach. The algorithm is tested on a set of new MT-VRPB data 

instances which we generated. Interesting computational results are presented. The Two-

Level VNS produced excellent results when tested on the special variant of the VRPB. 

Keywords: Routing, Multiple trips, Backhauling, VNS, Meta-heuristics   

1. Introduction 

We introduce a new vehicle routing problem (VRP) variant called the Multiple Trip Vehicle 

Routing Problem with Backhauls (MT-VRPB). The MT-VRPB combines the characteristics of 

the classical versions of two VRP problems studied in the literature, i.e., the MT-VRP in 

which a vehicle may perform several routes (trips) within a given time period; and the 

vehicle routing problem with backhauls (VRPB) in which a vehicle may pick up goods to bring 

back to the depot once the deliveries are made. Therefore in the MT-VRPB a vehicle may 

not only perform more than one trip in a given planning period but it can also collect goods 

in each trip. Since the MT-VRP and the VRPB have been studied independently in the 

literature, we first provide a brief description of these two routing problems. 
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MT-VRP: The MT-VRP model is an extension of the classical VRP in which a vehicle may 

perform several routes (trips) within a given time period. Along with the typical VRP 

constraints an additional aspect is included in the model which involves the assignment of 

the optimised set of routes to the available fleet (Taillard et al., 1996).  

VRPB: The VRPB is also an extension to the classical VRP that involves two types of 

customers, deliveries (linehauls) and pickups (backhauls). Typical additional constraints 

include: (i) each vehicle must perform all the deliveries before making any pickups; (ii) 

routes with only backhauls are disallowed, but routes with only linehauls can be performed 

(Goetschalckx and Jacobs-Blecha, 1989). 

Both the MT-VRP and the VRPB are considered to be more valuable than the classical VRP in 

terms of cost savings and placing fewer numbers of vehicles on the roads. These features 

are very important from both the managerial and the ecological perspectives. By combining 

the aspects of the above two models into a new model, the MT-VRPB, we achieve a more 

realistic model. To our knowledge, this is the first time this variant is being studied in the 

literature. However, there is one study that deals with time windows MT-VRPB-TW by Ong 

and Suprayogi (2011) where an ant colony optimization algorithm is implemented. Below 

we present a detailed description of our MT-VRPB model.  

MT-VRPB: The MT-VRPB can be described as a VRP problem with the additional possibilities 

of having vehicles involved in backhauling and multiple trips in a single planning period. The 

objective is to minimise the total cost by reducing the total distance travelled and the 

number of vehicles used. 

Problem characteristics: 

ͻ A given set of customers is divided into two subsets, i.e., delivery (linehaul) and 

pickup (backhaul). 

ͻ A homogenous fleet of vehicles. 

ͻ A vehicle may perform more than one trip in a single planning period. 

ͻ All delivery customers are served before any pickup ones. 

ͻ Vehicles are not allowed to service only backhauls on any route; however linehaul 

only routes are allowed. 



3 

 

ͻ Vehicle capacity constraints are imposed. 

ͻ Note - The route length constraint is not imposed in this study, however the model is 

flexible to add this constraint if needed. 

Figure 1 presents a graphical example of the proposed MT-VRPB with three homogeneous 

types of vehicles and a planning period T; Vehicle 1 performs two trips whereas vehicles 2 & 

3 perform one trip each. 

 

 

 

 

 

 

 

Figure 1: An example of the MT-VRPB. 

The rest of the paper is structured as follows. Section 2 presents the literature review 

followed by a formulation of the MT-VRPB in Section 3.  Section 4 explains the proposed 

algorithm. The computational results, including the generation of the newly created MT-

VRPB data set, are presented in Section 5. Finally, a summary of the conclusions is provided 

in Section 6. 

2. Literature review 

Since there is no literature available on the MT-VRPB, we provide brief reviews for the two 

related routing problems namely the MT-VRP and the VRPB. 

2.1  MT-VRP  

The multi-trip vehicle routing was first studied in Salhi (1987) where multiple trips were 

conducted in the context of vehicle fleet mix. Limited to double trips, a matching algorithm 

is proposed to assign routes to vehicles within a refinement process. Taillard et al. (1996) 

introduced the MT-VRP model based on the classical VRP and proposed a three-phase 

 E.g; T (time) = 480 minutes (8 hours) Planni ng period time for each vehicle  

Distance = Time 
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heuristic algorithm. In the first phase, tabu search is used to generate a population of routes 

satisfying the capacity constraint; a set of different VRP solutions is then obtained in phase 

two. Routes are then assigned to the vehicles by solving the bin-packing problem (BPP) in 

the last phase. Moreover, a set of classical MT-VRP instances are generated in their study 

which are widely used in the literature as benchmarks. Brandao and Mercer (1997) studied a 

real world application of MT-VRP with time windows and heterogeneous fleet, and used a 

tabu search algorithm to solve the problem. The methodology developed in this study is 

adapted in Brandao and Mercer (1998) where classical MT-VRP instances were solved and 

compared. Petch and Salhi (2004) developed a multi-phase constructive heuristic algorithm 

with an objective of minimizing the overtime used in multi-trips. The algorithm obtained an 

MT-VRP solution by solving BPP which is improved further using the 2-Opt and 3-Opt 

exchange heuristic procedures. Salhi and Petch (2007) revisited their previous study 

described above by using a genetic algorithm which proved to be faster. Olivera and Viera 

(2007) studied this problem and proposed an adaptive memory programming (AMP) 

approach with tabu search. A set of elite routes is selected randomly from the memory and 

packed into vehicles solving the BPP while applying some local search refinements based on 

reducing the driver overtime. The AMP algorithm found feasible packing of bins (without 

overtime) for most of the classical benchmark instances as compared to the previous 

studies. Alonso, Alvarez, and Beasley (2008) studied a variant of multi-trip called site-

dependent periodic MT-VRP using a tabu search algorithm. In this situation, given a planning 

horizon of t days, each customer gets served up to t times. Macedo et al. (2011) introduced 

the time windows aspect into this problem and solved the resulting model to 

optimality. Mingozzi, Roberti, and Toth (2013) developed an exact method based on two 

set-partitioning formulations to tackle the MT-VRP. A subset of 52 instances, ranging in size 

from 50 to 120 customers is tested and 42 are solved to optimality. For the rest, upper 

bounds are provided. Azi et al. (2014) recently proposed an adaptive large neighbourhood 

search algorithm that makes use of the ruin-and-recreate principle for the MT-VRP with the 

presence of service time at each node. Cattaruzza et al. (2014a) proposed a hybrid genetic 

algorithm for the MT-VRP that uses some adaptations from the literature. A new local 

search operator called the combined local search (CLS) is introduced that combines the 

standard VRP moves and performs the reassignments of trips to vehicles by using a 

swapping procedure leading to good quality results.  Cattaruzza et al. (2014b) then 
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extended the previous model to include time windows using an iterated local search 

methodology to solve the problem. 

It is worth noting that the early studies on the MT-VRP concentrated mostly on the 

modelling side of the problem and the later ones on the design of powerful methods. By 

extending the MT-VRP model we aim to break this gap in the literature and open a new 

research avenue. 

Finally, we note that the MT-VRP may form part of more complex logistics problems. Of 

particular note is the location-routing-scheduling problem, also known as the location-

routing problem with multiple trips. This was introduced by Lin et al (2002), and solved 

using simulated annealing. Lin and Kwok (2006) extended this model to cater for multiple 

objectives. Recently, Macedo et al. (2015) developed a variable neighbourhood search 

algorithm for this problem.  

2.2  VRPB  

The VRPB has also attracted a good attention in the literature. Among exact approaches, 

Yano et al. (1987) developed a branch-and-bound framework based on the set covering 

approach for trucks in a retail chain industry. Toth and Vigo (1997) proposed a consolidated 

framework with both symmetric and asymmetric cost matrices. Their branch-and-bound 

algorithm obtains Lagrangian lower bound strengthened by adding valid inequalities in a 

cutting-plane fashion embedded in an integer linear programming model. Mingozzi et al. 

(1999) proposed a new set-partitioning based (0-1) integer programming model. This 

algorithm obtains a lower bound by blending various heuristic methods for solving the LP-

relaxation of the dual problem. 

The heuristics literature on the VRPB started in the early 80s but it was formally tackled by 

Goetschalckx and Jacobs-Blecha (1989) who developed a two-phase heuristic approach to 

solve a series of test instances which they generated. In their two-phase method, a space-

filling approach is first used to generate an initial solution for the linehaul and the backhaul 

customers. The solutions are then merged in the second phase to obtain a combined LH-BH 

solution. Jacobs-Blecha and Goetschalckx (1993) developed a generalized assignment 

heuristic and produced a mathematical formulation of the problem. Toth and Vigo (1999) 
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put forward a "cluster-first and route-second" algorithm for the VRPB. This algorithm 

exploits the information associated with the lower bound acquired from a Lagrangian 

relaxation using a new clustering method. The authors also introduced a VRPB data set 

based on the original VRP instances which is now commonly used for benchmarking.  

The meta-heuristics are considered to be more robust methodologies to solve the VRPs. The 

first meta-heuristic approach to solve the VRPB was developed by Osman and Wassan 

(2002) who used a reactive tabu search for the VRPB. Brandao (2006) produced a multi-

phase tabu search algorithm whereas Ropke and Pisinger (2006) presented a unified 

approach based on the concept of the large neighbourhood search for the VRPB. Further, 

Wassan (2007) developed a hybrid model in which reactive tabu search is blended with 

adaptive memory programming. Gajpal and Abad (2009) proposed a multi ant colony 

system in which two types of ants are exercised whereas Zachariadis and Kiranoudis (2012) 

used a local search heuristic that explores rich solution neighbourhoods and makes use of 

local search moves stored in Fibonacci Heaps. Recently, Cuervo et al. (2014) introduced an 

iterated local search algorithm in which an oscillating local search heuristic is used. The 

above methodologies have their pros and cons but appear to produce high quality results. 

For recent developments on the VRPB the reader may refer to Salhi et al. (2014). 

3. MT-VRPB Formulation 

The MT-VRP is modelled as an integer linear program. The following formulation is similar to 

the two-indexed commodity flow formulation of Nagy, Wassan and Salhi (2013). However, 

the MT-VRPB formulation is a three-index commodity flow formulation. In three-index 

formulations, variables ݔ௜௝௞ specify whether arc ሺ݅ǡ ݆ሻ is traversed by a particular vehicle ݇ or 

not. 

The following notations are used throughout: 

Sets 

{0} the depot (single depot) 

L  the set of linehaul customers 

B  the set of backhaul customers ܭ the set of vehicles (bins) 



7 

 

Input Variables 

݀௜௝ the distance between locations ݅ and ݆ (݅ א ሼͲሽ ׫ ܮ ׫ ǡܤ ݆ א ሼͲሽ ׫ ܮ ׫ ݅  ௜ the demand of customer ݅ (such thatݍ (ܤ א ݅ for a delivery demand and ܮ א  ܤ

for a pickup demand) ܥ vehicle capacity ܶ  Planning period (maximum driving time) 

Decision Variables  

௜௝௞ = ൜ ͳǡݔ if vehicle ݇ travels from location ݅ directly to location ݆Ǣ             Ͳǡ otherwise                                                                                                    ܴ௜௝  is the amount of delivery or pickup on board on arc ݆݅ 

 

Minimise Z = σ    σ    σ    ݀௞א௄ ௜௝ ஻׫௅׫ሼ଴ሽא஻௜׫௅׫ሼ଴ሽא௜௝௞௝ݔ     (1) 

Subject to σ σ ௄א௝௜௞௞ݔ ൌ ͳ௝אሼ଴ሽ׫௅׫஻                                       ݅ א ܮ ׫  (2)  ܤ

  σ σ ௄א௜௝௞௞ݔ ൌ ͳ௝אሼ଴ሽ׫௅׫஻                                                    ݅ א ܮ ׫  (3)  ܤ

  σ ஻׫௅׫ሼ଴ሽא௝௜௞௝ݔ ൌ σ ஻׫௅׫ሼ଴ሽא௜௝௞௝ݔ                          ݅ א ܮ ׫ ǡܤ ݇ ׊ א  (4) ܭ

  σ ܴ௜௝ െ ௅׫ሼ଴ሽא௝௜ݍ ൌ  σ ௝ܴ௜௜אሼ଴ሽ׫௅׫஻                       ݆ א  (5)   ܮ

  σ ܴ௜௝ ൅ ஻׫௅א௝௜ݍ ൌ  σ ௝ܴ௜௜אሼ଴ሽ׫஻                             ݆ א  (6)   ܤ

  ܴ௜௝  ൑ σ ܥ ௄א௜௝௞௞ݔ                                 ݅ א ܮ ׫ ǡܤ ݆ א ܮ ׫ ݇ ׊ Ǣܤ א  (7) ܭ

  σ σ ݀௜௝௝אሼ଴ሽ׫௅׫஻௜אሼ଴ሽ׫௅׫஻ ௜௝௞ݔ ൑ ݇  ׊                          ܶ א  (8)   ܭ

  ܴ௜௝ ൌ Ͳ                                                                   ݅ א ݆   ǡܮ א ܤ ׫  ሼͲሽ  (9) 

௜௝௞ݔ   ൌ Ͳ                                                              ݅ א ǡܤ ݆ א ǡ ܮ א ݇ ଴௝௞ݔ (10)              ܭ  ൌ Ͳ                                                                    ݆ א ǡ ܤ א ݇  (11)             ܭ 

  ܴ௜௝ ൒ Ͳ                                                     ݅ א ሼͲሽ ׫ ܮ ׫ ǡܤ ݆ א ܮ ׫  (12)             ܤ

௜௝௞ݔ   א ሼͲǡͳሽ                                            ݅ א ሼͲሽ ׫ ܮ ׫ ǡܤ ݆ א ሼͲሽ ׫ ܮ ׫ א ݇ܤ ܭ          (13) 
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Equation (1) illustrates the objective function representing the total distance travelled. 

Constraints (2) and (3) ensure that every customer is served exactly once (every customer 

has an incoming arc and every customer has an outgoing arc). Constraint (4) states that the 

number of times vehicle ݇ enters into customer ݅ is the same as the number of times it 

leaves customer ݅. The vehicle load variation on a route is ensured by Constraints (5) and (6) 

for linehaul and backhaul customers, respectively. Inequalities (7) and (8) impose the 

maximum vehicle capacity constraint and the maximum working period constraints in which 

a vehicle is allowed to serve the routes, respectively. Constraints (9) forbid any load carried 

from a linehaul customer to either a backhaul customer or to the depot. Constraints (10) 

and (11) impose a restriction that a vehicle cannot travel from a backhaul to a linehaul 

customer and it cannot travel directly from the depot to a backhaul customer, respectively 

"(One may debate whether these constraints are really required in practice; we chose to 

include them to be in line with the subject literature). Inequality (12) sets ܴ௜௝ as a non-

negative variable. Finally, (13) refer to the binary decision variable ݔ௜௝௞.   

The above formulation may be modified as the MT-VRP by simply setting the number of 

backhaul customers equal to zero using equation (14). 

B = (14)                                                                                                                                      ׎ 

Moreover, the formulation can be extended to cater for the conditions where the number 

of available vehicles is no more than (or equals to), a given number ܭ. This can be achieved 

by adding the following constraints (15) in the model. σ ௜௝௞ݔ ൑ ஻׫௅א௝ܭ                                    ݅ א ሼͲሽǢ ሺ݅ ׊    א ܮ ׫  ሻ                (15)ܤ

The MT-VRPB formulation can also be reduced to the VRPB (classical vehicle routing 

problem with backhauls) by adding the following constraint (16) in the model.  σ ௜௝௞ݔ ൑ ͳ௝א௅׫஻                                    ݅ א ሼͲሽǢ   ׊ ሺ݇ א  ሻ                                 (16)ܭ

Constraints (16) impose restrictions on every vehicle to be used once and therefore block 

the use of multiple-trips of vehicles.  
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4. Two-Level VNS Methodology 

The steps of our Two-Level VNS methodology are presented as follows. 

4.1 Initial solution 

The Sweep method of Gillett and Miller (1974) is considered to be an efficient construction 

method for the VRPs. We have adapted a sweep-first-assignment-second based approach to 

generate an MT-VRPB initial solution. Initially two sets of open-ended routes are 

constructed by sweeping through LH and BH nodes separately. A distance/cost matrix for 

the assignment problem is created by including the distances between the end nodes of the 

open-ended routes. A dummy route containing the depot is also added to the matrix where 

a number of LH and BH routes are not equal. To produce combined LH-BH routes, the 

optimal matching is then obtained by solving an assignment problem using ILOG CPLEX 12.5 

optimiser coded with C++ within Microsoft Visual Studio Environment.  

An Illustrative example 

An illustrative example of the problem instance eil21_50 is shown in Figure 2. This instance 

has 21 customers consisting of 11 linehauls and 10 backhauls. A matrix containing the actual 

distances is shown in Figure 3. The optimal assignment matching result for the example 

problem is illustrated in Figure 4. 

 

 

                  LH open-ended routes                            BH open-ended routes            

 
                         7                10               11               9                   19             18           21               20    

  L1                                                                                                                                            B1   

 
                      8                 5                 4              3                 1                17          12           16          14         15        13 

  L2                                                                                                                                            B2     

 
                                        2                                     6                        

  L3                                                                                                    dummy                          B3     

 

    

              Depot                 Linehaul Customers                Backhaul Customers 

 

Figure 2: LH and BH open-ended routes (Problem instance eil22_50 of data set-2) 
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Figure 3: Distance matrix of end nodes 

 

                LH open-ended routes                           BH open-ended routes            

 
                         7               10               11                9                   19             18          21               20    

  L1                                                                                                                                             B1   

 
                      8               5               4              3              1                       17         1 2           16           14         15        13 

  L2                                                                                                                                             B2     

  
                                        2                                    6                        

  L3                                                                                                                                             B3      

 

    

              Depot                Linehaul Customers                 Backhaul Customers 

 

Figure 4: Combined LH+BH routes (problem instance no: eil22_50) 

 

4.2 Two-Level VNS 

The Variable Neighbourhood Search (VNS) approach (Mladenovic and Hansen, 1997) is 

based on the idea of a systematic change of neighbourhoods within a local search method. 

The concept of VNS is simple but has proved elegant and powerful in solving a variety of 

Combinatorial Optimization problems. Our Two-Level VNS is motivated by the enhanced 

features used in the recent paper on VNS by Mladenovic, Todosijevic and Urosevic (2014). 

The details of our VNS implementation are as follows.  

The basic VNS concept is enriched by embedding a Sequential VND along with two shaking 

steps and a set of neighbourhood schemes to achieve a vigorous diversification during the 

search process. Moreover, a series of local search routines at two levels of the skeleton of 

the VNS are used to intensify the search. The merit of the two-level strategy is that it 

                             B1      B2     B3      

      L1   17 69       22 

     L2   72 9         49  

     L3   70 30       42     
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ensures a speedy and continuous balanced intensification and diversification by employing 

two shaking steps. The Pseudo code is presented in Figure 5. 

4.2.1 An overview of the algorithm 

The algorithm comprises of two levels, i.e., outer and inner. We have employed several 

neighbourhood structures along with associated local search refinements routines at both 

levels of the algorithm. For the outer-level we define ௞ܰை ሺ݇ ൌ ͳǡ ǥ ǡ ݇௠௔௫ሻ as a subset of 

neighbourhoods and ܵܮ௞ை ሺ݇ ൌ ͳǡ ǥ ǡ ݇௠௔௫ሻ as a subset of local search refinement routines; 

and at the inner-level ௟ܰூ  ሺ݈ ൌ ͳǡ ǥ ǡ ݈௠௔௫ሻ as a full set of neighbourhoods and ܮ ௟ܵூ ሺ݈ ൌ ͳǡ ǥ ǡ ݈௠௔௫ሻ as a full set of local search refinement routines. The neighbourhoods and 

the local search refinement routines are explained in subsections 4.2.2 and 4.2.3, 

respectively. Note that, the superscripts ͞O͟ ĂŶĚ ͞I͟ refer to the neighbourhoods and local 

search refinement routines used at the outer and the inner levels, respectively. Moreover, a 

3-dimentional data structure ܵ௣ is used to store the initial solution ݔ as well as many other 

improved solutions during the search process. 

At each cycle of the search process, the outer level of the algorithm generates randomly a 

transitory solution ݔԢ from ௞ܰைሺݔሻ. A subset ܵܮ௞ை of local search routines is utilised to 

improve the ݔԢ. The resulting best solution ݔԢ௕௘௦௧ is then recorded and transferred to the 

inner level of the algorithm where a Sequential Variable Neighbourhood Descent (SeqVND) 

is used. At the inner level full sets of the neighbourhoods and local search refinement 

routines are utilised and embedded systematically within a multi-layer local search 

optimiser framework.  

Again a transitory solution ݔԢԢ is generated randomly from ௟ܰூሺݔԢ௕௘௦௧ሻ at the inner-level 

transferred to ܮ ௟ܵூ (the multi-layer local search optimiser framework) for improvement. If 

the solution obtained by the multi-layer local search approach, ݔԢԢ௕௘௦௧, is better than the 

incumbent best solution ݔԢ௕௘௦௧, then it is updated as ݔԢ௕௘௦௧ ൌ  ԢԢ௕௘௦௧ and the process cyclesݔ

back to the same neighbourhood ௟ܰூ. Moreover, if ݔԢԢ௕௘௦௧ is found to be the same or worse 

compared to ݔԢ௕௘௦௧, then a new  ݔԢԢ is generated using the next neighbourhood ௟ܰାଵூ ሺݔԢ௕௘௦௧ሻ 

and the multi-level optimiser is then applied  in the same manner. The process continues 
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with the inner-level till ௟ܰ೘ೌೣூ  is reached. At this stage, the search process shifts back to the 

outer-level. 

Function Two-Level VNS (ݔǡ ௞ܰ೘ೌೣை ǡ ௟ܰ೘ೌೣூ ǡ   (௠௔௫ݎ݁ݐ݅

    Let: ܵ௣ = be a solution pool data structure 

    ܵ௣ ՚    ݔ

՚ ݎ݁ݐ݅     ͳ 

    while ݅ݎ݁ݐ ൑ ௠௔௫ݎ݁ݐ݅   do 

            ***start outer level*** 

            Let: ܵܮ௞ை ൌ ൏ ܴଷǡ ܴସǡ ܴହ ൐                [Subset of local search routines] 

            Let: ௞ܰை ൌ ൏ ସܰǡ ହܰǡ ଺ܰ ൐                 [Subset of neighbourhood structures] 

            ݇ ՚ ͳ                           

            while ݇ ൑ ݇௠௔௫   do 

                    Select ݔԢ א ௞ܰைሺݔሻ at random;                  [shake outer level]  

Ԣ௕௘௦௧ݔ                     ՚ ܵܮ௞ைሺݔᇱሻ; 

***start inner level*** 

                            Let: ܮ ௟ܵூ ൌ ൏ ሼܴଵƬ ܴ଺ሽǡ ሼܴଶƬ ܴ଺ሽǡ ሼܴଷƬ ܴ଺ሽǡ ሼܴସƬ ܴ଺ሽǡ ሼܴହƬ ܴ଺ሽ ൐ 

                      Let: ௞ܰூ ൌ ൏ ଵܰǡ ǥ ǡ ଺ܰ ൐                                          [Full set of neighbourhood structures] 

                            ݈ ՚ ͳ 

                            while ݈ ൑ ݈௠௔௫   do 

                                   Select ݔԢԢ א ௟ܰூሺݔԢ௕௘௦௧ሻ at random;  [shake inner level] 

ԢԢ௕௘௦௧ݔ                                    ՚  ܮ ௟ܵூ ሺݔᇱᇱሻ;                                [Multi-Layer local search framework] 

                                   If ݂ሺݔԢԢ௕௘௦௧ሻ ൏ ݂ሺݔԢ௕௘௦௧ሻ then 

Ԣ௕௘௦௧ݔ                                    ՚ ԢԢ௕௘௦௧Ǣݔ ݈ ՚ ͳǢ 
                                   Else ݈ ՚ ݈ ൅ ͳǢ  

                           end while 

                           return ݔԢ௕௘௦௧ Ǣ   

                                         ***end inner level*** 

                    If ݂ሺݔԢ௕௘௦௧ሻ ൏ ݂ሺݔሻ then 

ݔ                     ՚ Ԣ௕௘௦௧Ǣݔ  ܵ௣ ՚ Ǣݔ  ݇ ՚ ͳǢ 
                    Else ݇ ՚ ݇ ൅ ͳǢ  

             end while 

        return ݔǢ 
             ***end outer level*** 

    end while 

 

Figure 5: Pseudo code for the Two-Level VNS  
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If ݔԢ௕௘௦௧ is found to be better than the incumbent ݔ then it is updated as ݔ ൌ  Ԣ௕௘௦௧ and theݔ 

improved solution is stored ܵ௣ ൌ  hence, the process of generating a transitional solution ;ݔ

restarts from the same neighbourhood ௞ܰை. But if ݔԢ௕௘௦௧ is found to be the same or worse 

than the incumbent ݔ, a new transitory ݔԢ is generated using the next neighbourhood 

in ௞ܰାଵை ሺݔሻ. Hence, the outer-level is also iterated till ௞ܰ೘ೌೣூ  is reached. The process 

terminates when the maximum number of iterations ݅ݎ݁ݐ௠௔௫ is met. 

The Bin Packing Problem (BPP) is then solved for a pool of solutions stored in ܵ௣ obtained by 

the Two-Level VNS using CPLEX optimiser. Note that in the cases where a solution could not 

ďĞ ƉĂĐŬĞĚ ĚƵĞ ƚŽ ƚŚĞ ƚŝŐŚƚ ďŝŶ ĐĂƉĂĐŝƚǇ ;ǁŚŝĐŚ ĞƋƵĂƚĞƐ ƚŽ ͞ŵĂǆŝŵƵŵ ĚƌŝǀŝŶŐ ƚŝŵĞ͟Ϳ ǁĞ ƵƐĞ 

the Bisection Method (Petch and Salhi, 2004) to increase the bin capacity (i.e., allowing 

overtime) and the packed solution is reported with the corresponding overtime. 

4.2.2 Neighbourhoods 

The neighbourhood generation is a fundamental part in heuristic search design in general 

and in the VRPs in particular. Six neighbourhood schemes (N1͕͙͕ N6) are used in this study. 

These are briefly described as follows. 1-insertion intra-route (N1) relocates a customer at a 

non-adjacent arc within the same route; 1-insertion inter-route (N2) relocates a customer 

from one route to another; 1-1 swap (N3) exchanges two customers each taken from two 

separate routes; 2-0 shift (N4) relocates two consecutive customers form one route to 

another; 2-2 swap (N5) exchanges two pairs of consecutive customers taken from two 

separate routes; 2-1 swap (N6) exchanges a consecutive pair of customers from one route 

with a single customer from another route.  

The moves in all the neighbourhood schemes are conducted according to backhauling 

constraints conventions described in Section 1.  

4.2.3 Multi-Layer local search optimiser framework 

The multi-layer local search optimiser is a combination of local search refinement routines 

that are employed within a local search framework as described in Subsection 4.2.1. The 

notion of manipulating the power of several neighbourhood structures as local searches 

within a local search framework was originally developed by Salhi and Sari (1997) and 

recently been implemented in Imran, Salhi and Wassan (2009) successfully. We have 
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adapted this idea for our Two-Level VNS algorithm and used six neighbourhoods of 

Subsection 4.2.2 as local search refinement routines (R1,͙ ͕ R6). The order of the local search 

routines in the multi-layer framework shown in Figure 6 was found empirically. 

The multi-layer framework search process starts with a transitory solution ݔԢԢ as explained in 

Subsection 4.2.1. Each local search routine is then executed in the order given in Figure 6 till 

a local optimum is reached whereas the post-optimiser routine 1-insertion intra-route is 

then activated.  

 

Figure 6: The multi-layer local search optimiser framework flow chart 

 

5 Computational experience 

The Two-Level VNS algorithm and the initial solution generation procedures are 

implemented in C++ programming within the Microsoft Visual Studio Environment. The 

experiments were executed on a PC with Intel(R) Core(TM) i7-2600 processor, CPU speed 

3.40 GHz. The IBM ILOG CPLEX 12.5 is used to check the validity of our MT-VRPB 

formulation. 
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Initial Solution: The sweep-first-assignment-second approach is implemented, in which 

assignment part is solved by calling CPLEX optimiser within the Visual Studio Environment to 

find the optimal matching of LH-BH routes. 

5.1. Data sets:  

The computational experiments are reported for three data sets. Two of these (VRPB data 

set-2 and set-3, see Toth and Vigo (1996, 1999) and Goetschalckx and Jacobs-Blecha (1989) 

for details) are available in the literature, and the MT-VRPB set-1 is generated in this study. 

Table 1: Details of the data set-1. 

Problem 

number 

Problem Name n L B C v z* 

1 eil22_50 21 11 10 6000 1,͙͕ϯ 371 

2 eil22_66 21 14 7 6000 ϭ͕͙͕ϯ 366 

3 eil22_80 21 17 4 6000 ϭ͕͙͕ϯ 375 

4 eil23_50 22 11 11 4500 ϭ͕͙͕ϯ 677 

5 eil23_66 22 15 7 4500 ϭ͕͙͕ϯ 640 

6 eil23_80 22 18 4 4500 ϭ͕͙͕Ϯ 623 

7 eil30_50 29 15 14 4500 ϭ͕͙͕Ϯ 501 

8 eil30_66 29 20 9 4500 ϭ͕͙͕ϯ 537 

9 eil30_80 29 24 5 4500 ϭ͕͙͕ϯ 514 

10 eil33_50 32 16 16 8000 ϭ͕͙͕ϯ 738 

11 eil33_66 32 22 10 8000 ϭ͕͙͕ϯ 750 

12 eil33_80 32 26 6 8000 ϭ͕͙͕ϯ 736 

13 eil51_50 50 25 25 160 ϭ͕͙͕ϯ 559 

14 eil51_66 50 34 16 160 ϭ͕͙͕ϰ 548 

15 eil51_80 50 40 10 160 ϭ͕͙͕ϰ 565 

16 eilA76_50 75 37 38 140 ϭ͕͙͕ϲ 738 

17 eilA76_66 75 50 25 140 ϭ͕͙͕ϳ 768 

18 eilA76_80 75 60 15 140 ϭ͕͙͕ϴ 781 

19 eilA101_50 100 50 50 200 ϭ͕͙͕ϱ 827 

20 eilA101_66 100 67 33 200 ϭ͕͙͕ϲ 846 

21 eilA101_80 100 80 20 200 ϭ͕͙͕ϳ 859 
 

    n: number of customers; C: vehicle capacity; v: number of bins 

   z*: free fleet VRPB solution 

 

To test our model we have generated a set of new MT-VRPB instances, set-1, from 21 

instances of set-2 using the original VRPB and MT-VRP conventions established in Toth and 

Vigo (1996, 1999) and in Taillard et al. (1997), respectively. We have generated 168 problem 

instances by using different values of  ݒ (where  ݒ ŝƐ ƚŚĞ ŶƵŵďĞƌ ŽĨ ďŝŶƐ͕ ;ŝ͘Ğ͕͘ ϭ͕͙͕ ϰͿ͕ 

starting with an integer between one and the maximum number of bins) and ܶ (where ܶ is a 
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maximum driving time for each bin). Two values of ܶare used, ଵܶ and ଶܶ for each value of ݒ, 

where ଵܶ and ଶܶ are calculated as follows: 

ଵܶ ൌ ሾͳǤͲͷ כݖȀݒሿ                 ଶܶ ൌ ሾͳǤͳ כݖȀݒሿ 

The resulting values of both ଵܶ and ଶܶ are rounded up to the nearest integer, where כݖ 

represents the VRPB solution obtained by our Two-Level VNS algorithm using a free vehicle 

fleet.  

Several MT-VRPB instances are generated from each VRPB problem using ଵܶ and ଶܶ with the 

linehaul percentage of 50, 66, and 80%, respectively. Further details of the new MT-VRPB 

data set-1 containing solutions (z*) and free fleet (v) found by Two-Level VNS algorithm are 

provided in Table 1. All data sets can be downloaded from the CLHO website (CLHO, 2015). 

 

5.2. Results and analysis: 

Our sweep-first-assignment-second approach is very fast in producing an initial feasible 

solution, spending less than a second on average. 

The optimal solutions and upper/lower bounds for the MT-VRPB are reported in Table 3 and 

Table 4 for ଵܶ and ଶܶ, respectively. For each instance the CPLEX time was fixed to 2 hours. A 

reasonable number of optimal solutions are found for both ଵܶand ଶܶ groups of instances, 

ranging in size between 21 and 50 customers along with an instance of size 100 of ଶܶ. 

Within the allocated time, CPLEX found 60 optimal solutions (i.e., ଵܶ= 24, ଶܶ= 36) out of all 

the 168 instances. The instances for which CPLEX could not find the solutions or reported as 

infeasible is due to either the bin(s) given time restriction and/or the instances are too large 

in size. We report upper bound and lower bound for those instances. CPLEX reported 

infeasibility in four cases where the number of bins increases and hence the given time 

decreases for each bin. 

    Insert Table 3 and Table 4 here 

Table 5 and Table 6 report the detailed solutions of the Two-Level VNS algorithm along with 

the CPLEX results for the data set-1 ( ଵܶand ଶܶ). The algorithm is run for 200 iterations and, 

due to the random element, best solution is reported out of 5 runs. For ଵܶthe algorithm 
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found a number of good quality (no overtime used) solutions (45 out of 84) and for the rest 

39, it took less than 30 units of overtime in most cases. For ଶܶ, 54 solutions are found 

without overtime and the rest (apart from a few) the algorithm did not exceed 30 units of 

overtime. Nonetheless, the algorithm is able to solve all the instances including 51 optimal 

solutions at a very low computational cost requiring on average 18 seconds per instance. 

   Insert Table 5 and Table 6 here 

Table 7: The summary comparison of the Two-Level VNS and CPLEX (data set-1: ଵܶ & ଶܶ)  

   

 ଵܶ  ଶܶ 

   

CPLEX Two-Level VNS CPLEX Two-Level VNS 

# of solutions found (out of 84) 24 84 36 84 

# of optimal solutions found (out 

of 84) 24 21 36 30 

Max overtime - 58 - 52 

Min overtime - 2 - 1 

Average overtime - 10.24 - 5.33 

Average CPU time (s) 5165 18 4248 17 

 

It can be observed (see Table 5 and Table 6) that good quality solutions are found when the 

bin capacity is relatively larger and the number of bins is smaller. It can also be seen that 

with the increase in the number of bins, the likelihoods of overtime being used also 

increases. A further analysis of the results is provided in Table 7. 

Special case ʹ the VRPB: The Two-Level VNS algorithm is also tested on the VRPB where the 

best known results are reported. The VRPB data set-2 and set-3 are tested for a fixed 

number of iterations (400) which was deemed acceptable in terms of the solution quality 

and the affordable time. The algorithm produced very competitive results for both data 

sets. The detailed results are provided in Appendix (see Table 8 and Table 9 for data set-2 

and set-3, respectively). The algorithm performed extremely well when compared to the 

best known solution from the literature, with an overall average relative percentage 

deviation of 0.00 and 0.06 for set-2 and set-3, respectively. In addition, all the best known 

solutions for set-2 and 51 out of 62 in set-3 are found to be the best known. 
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6. Conclusion 

This study introduces a new VRP variant called the Multiple Trip Vehicle Routing Problem 

with Backhauls (MT-VRPB). An ILP mathematical formulation of the problem is produced 

and a new MT-VRPB data set is generated. The formulation is tested using CPLEX, and found 

optimal solutions for small and medium size data instances. To solve the larger instances of 

the problem a Two-Level VNS algorithm is developed that uses skeletons of the classical VNS 

and VND methodologies. A number of neighbourhoods and local searches are employed in a 

way to achieve diversification at the outer level (basic VNS) of the algorithm and 

intensification at the inner-level (VND with multi-layer local search framework). The 

algorithm found promising solutions when compared with the solutions found by CPLEX. 

Moreover, the algorithm is also tested on two classical VRPB instances data sets from the 

literature and found competitive results.  It can therefore be said that this study also 

demonstrates the excellence and the power of VNS yet again in terms of its simplicity, 

flexibility, efficacy and speed. 
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Glossary: 

ଵܶ: Total driving time (type one) for each bin in an instance. 

ଶܶ: Total driving time (type two) for each bin in an instance. 

v: Total number of bins in each instance. 

No. of Routes in each Bin: Number of routes served by each bin. 

x: Infeasible.  

NF: Not found. 

Overtime: Overtime (equivalent to per unit distance travelled by a vehicle) allocated to 

bin(s) where needed to feasibly pack routes within bin(s). 

Cost with overtime: Total solution cost including Overtime units. 

Time(s): CPU time in seconds taken to solve each instance. 

n: Total number of customers. 

RPD: Relative Percentage Deviation = [(VNS Sol. - best known)/ best known * 100]. 
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Table 3: Detailed CPLEX results for the data set-1 (ࢀ૚) 

Name  ଵܶ 
v Optimal 

Sol. 

No. 

Routes 

No. of Routes in 

each Bin 

Actual 

Time (s) 

UB LB 

eil22_50 390 1 371 3 b1(3) 1.04 371.0000 367.5294 

195 2 378 3 b1(1), b2(2) 1.17 378.0000 368.0119 

130 3 x x x x x x 

eil22_66 385 1 366 3 b1(3) 1.01 366.0000 364.9640 

193 2 382 4 b1(2), b2(2) 3.02 382.0000 366.0000 

129 3 x x x x x x 

eil22_80 394 1 375 3 b1(3) 1.94 375.0000 362.1650 

197 2 378 4 b1(2), b2(2) 2.39 378.0000 364.9665 

132 3 381 3 b1(1), b2(1), b3(1) 27.13 381.0000 369.0667 

eil23_50 711 1 677 3 b1(3) 0.33 677.0000 677.0000 

355 2 698 3 b1(2), b2(1) 2.36 698.0000 671.8600 

237 3 x x x x x x 

eil23_66 672 1 640 3 b1(1) 1.22 640.0000 633.1636 

336 2 640 3 b1(2), b2(1) 1.4 640.0000 635.5000 

224 3 x x x x x x 

eil23_80 654 1 623 2 b1(2) 1.44 623.0000 618.0870 

327 2 634 2 b1(1), b2(2) 1.59 634.0000 613.3380 

eil30_50 526 1 501 2 b1(2) 0.44 501.0000 500.3902 

264 2 x x   x x x 

eil30_66 564 1 537 3 b1(3) 2.68 537.0000 511.3725 

282 2 552 3 b1(1), b2(2) 6116 552.0000 537.0000 

188 3 NF NF NF 7200 NF 533.7612 

eil30_80 540 1 514 3 b1(3) 11.95 514.0000 474.9762 

270 2 NF NF NF 7200 NF 459.3289 

180 3 NF NF NF 7200 NF 460.3190 

eil33_50 775 1 738 3 b1(3) 0.51 738.0000 738.0000 

388 2 NF NF NF 7200 NF 738.3900 

258 3 NF NF NF 7200 NF 740.7581 

eil33_66 788 1 750 3 b1(3) 2.23 750.0000 732.7999 

394 2 772 3 b1(2), b2(1) 1219.03 772.0000 757.8079 

263 3 NF NF NF 7200 NF 746.4629 

eil33_80 773 1 736 3 b1(3) 121.27 736.0000 733.8901 

387 2 NF NF NF 7200 NF 720.3275 

258 3 NF NF NF 7200 NF 690.0837 

eil51_50 587 1 559 3 b1(3) 9.84 559.0000 552.1063 

294 2 NF NF NF 7200 NF 550.1111 

196 3 NF NF NF 7200 NF 553.0000 

eil51_66 576 1 548 4 b1(4) 22.23 548.0000 537.7475 

288 2 NF NF NF 7200 NF 546.1393 

192 3 NF NF NF 7200 NF 542.1467 

144 4 NF NF NF 7200 NF 522.9460 
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eil51_80 594 1 565 4 b1(4) 4552.8 565.0000 553.1885 

297 2 NF NF NF 7200 NF 555.5726 

198 3 NF NF NF 7200 NF 556.1191 

149 4 NF NF NF 7200 NF 556.1018 

eilA76_50 775 1 NF NF NF 7200 NF 708.2119 

388 2 NF NF NF 7200 NF 721.9806 

259 3 NF NF NF 7200 NF 721.8691 

194 4 NF NF NF 7202 NF 711.64.91 

155 5 NF NF NF 7200 NF 705.6147 

130 6 NF NF NF 7200 NF 708.1701 

eilA76_66 807 1 NF NF NF 7200 NF 738.1007 

404 2 NF NF NF 7200 NF 737.9937 

269 3 NF NF NF 7200 NF 734.0403 

202 4 NF NF NF 7200 NF 739.9000 

162 5 NF NF NF 7200 NF 733.5028 

135 6 NF NF NF 7200 NF 739.4740 

116 7 NF NF NF 7200 NF 737.0274 

eilA76_80 821 1 NF NF NF 7200 NF 739.7246 

411 2 NF NF NF 7200 NF 726.3083 

274 3 NF NF NF 7200 NF 733.6667 

206 4 NF NF NF 7200 NF 733.5946 

165 5 NF NF NF 7200 NF 732.5992 

137 6 NF NF NF 7200 NF 724.3518 

118 7 NF NF NF 7200 NF 723.4398 

103 8 NF NF NF 7200 NF 718.6787 

eilA101_50 869 1 NF NF NF 7200 NF 799.5710 

435 2 NF NF NF 7200 NF 804.1183 

290 3 NF NF NF 7200 NF 802.2318 

218 4 NF NF NF 7200 NF 807.1541 

174 5 NF NF NF 7200 NF 767.5958 

eilA101_66 889 1 NF NF NF 7200 NF 829.5004 

445 2 NF NF NF 7200 NF 837.3865 

297 3 NF NF NF 7200 NF 826.1638 

223 4 NF NF NF 7200 NF 815.4809 

178 5 NF NF NF 7200 NF 832.78.09 

149 6 NF NF NF 7200 NF 816.1044 

eilA101_80 902 1 NF NF NF 7200 NF 827.3494 

451 2 NF NF NF 7200 NF 797.3486 

301 3 NF NF NF 7200 NF 790.1850 

226 4 NF NF NF 7200 NF 820.9844 

181 5 NF NF NF 7200 NF 821.9659 

151 6 NF NF NF 7200 NF 799.1573 

129 7 NF NF NF 7200 NF 825.4779 
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Table 4: Detailed CPLEX results for the Data set-1 (ࢀ૛) 

Name ଶܶ 
v Optimal 

Sol. 

No. 

Routes 

No. of Routes in each 

Bin 

Actual 

Time (s) 

UB LB 

eil22_50 408 1 371 3 b1 (3) 0.89 371.0000 370.6087 

204 2 375 3 b1(2), b2(1) 1.67 375.0000 374.0333 

137 3 378 3 b1(1), b2(1), b3(1) 1.22 378.0000 364.4367 

eil22_66 403 1 366 3 b1(3) 1.3 366.0000 364.7095 

201 2 382 4 b1(2), b2(2) 1.67 382.0000 366.0000 

134 3 366 3 b1(1), b2(1), b3(1) 0.59 366.0000 366.0000 

eil22_80 413 1 375 3 b1(3) 2.72 375.0000 358.9261 

206 2 378 4 b1(2), b2(2) 8.5 378.0000 362.2288 

138 3 381 3 b1(1), b2(1), b3(1) 24.21 381.0000 364.9274 

eil23_50 745 1 677 3 b1(3) 0.33 677.0000 677.0000 

372 2 689 3 b1(2), b2(1) 1.98 689.0000 680.0000 

248 3 716 3 b1(1), b2(1), b3(1) 2.46 716.0000 682.1268 

eil23_66 704 1 640 3 b1(3) 0.75 640.0000 640.0000 

352 2 640 3 b1(1), b2(2) 1.23 640.0000 631.5000 

235 3 NF NF NF 7200 NF 662.4548 

eil23_80 685 1 623 2 b1(2) 0.91 623.0000 617.8667 

343 2 631 2 b1(1), b2(1) 1.4 631.0000 614.5388 

eil30_50 551 1 501 2 b1(2) 0.44 501.0000 500.3902 

276 2 501 2 b1(1), b2(1) 0.73 501.0000 501.0000 

eil30_66 591 1 537 3 b1(3) 3.09 537.0000 510.3183 

296 2 552 3 b1(1), b2(2) 3451.24 552.0000 538.0355 

197 3 538 3 b1(1), b2(1), b3(1) 1.56 538.0000 534.6250 

eil30_80 565 1 514 3 b1(3) 10.58 514.0000 482.8207 

283 2 535 3 b1(2), b2(1) 5519.11 535.0000 468.6333 

188 3 518 3 b1(1), b2(1), b3(1) 1426.17 518.0000 500.1891 

eil33_50 812 1 738 3 b1(1) 0.44 738.0000 738.0000 

406 2 741 3 b1(2), b2(1) 2.26 741.0000 736.2820 

271 3 NF NF NF 7200 803.0000 658.5384 

eil33_66 825 1 750 3 b1(3) 11.7 750.0000 734.5884 

413 2 767 3 b1(2), b2(1) 109.26 767.0000 764.4997 

275 3 NF NF NF 7200 NF 746.9500 

eil33_80 810 1 736 3 b1(3) 136.31 736.0000 716.7393 

405 2 NF NF NF 7200 NF 723.4224 

270 3 NF NF NF 7200 NF 696.3739 

eil51_50 615 1 559 3 b1(3) 11.23 559.0000 553.6224 

308 2 560 4 b1(2), b2(2) 67.17 560.0000 550.4380 

205 3 564 4 b1(2), b2(1), b3(1) 67.49 573.0000 559.6480 

eil51_66 603 1 548 4 b1(4) 11.87 548.0000 541.1877 

302 2 548 4 b1(2), b2(2) 55.52 548.0000 546.9363 

201 3 NF NF NF 7200 NF 521.0965 

151 4 NF NF NF 7200 NF 539.9353 
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eil51_80 622 1 565 4 b1(4) 78.13 565.0000 562.5255 

311 2 NF NF NF 7200 NF 554.3046 

208 3 NF NF NF 7200 NF 553.8339 

156 4 NF NF NF 7200 NF 554.7640 

eilA76_50 812 1 NF NF NF 7200 NF 710.0593 

406 2 NF NF NF 7200 NF 722.0668 

271 3 NF NF NF 7201 NF 720.4398 

203 4 NF NF NF 7202 NF 705.7348 

163 5 NF NF NF 7200 NF 706.7157 

136 6 NF NF NF 7200 NF 719.6408 

eilA76_66 845 1 NF NF NF 7200 NF 734.9762 

423 2 NF NF NF 7200 NF 741.8414 

282 3 NF NF NF 7200 NF 734.1823 

212 4 NF NF NF 7200 NF 742.2662 

169 5 NF NF NF 7200 NF 738.0464 

141 6 NF NF NF 7200 NF 736.3244 

121 7 NF NF NF 7200 NF 733.6417 

eilA76_80 860 1 NF NF NF 7200 NF 741.6530 

430 2 NF NF NF 7200 NF 732.6903 

287 3 NF NF NF 7200 NF 733.3761 

215 4 NF NF NF 7200 NF 733.4002 

172 5 NF NF NF 7200 NF 730.9763 

144 6 NF NF NF 7200 NF 731.1909 

123 7 NF NF NF 7200 NF 722.2782 

108 8 NF NF NF 7200 NF 733.8520 

eilA101_50 910 1 NF NF NF 7200 NF 801.4182 

455 2 NF NF NF 7200 NF 813.7763 

304 3 NF NF NF 7200 NF 808.5073 

228 4 NF NF NF 7200 NF 803.0867 

182 5 NF NF NF 7200 NF 781.9759 

eilA101_66 931 1 846 6 b1(6) 268.45 846.0000 840.8321 

466 2 NF NF NF 7200 NF 822.6394 

311 3 NF NF NF 7200 NF 831.4000 

233 4 NF NF NF 7200 NF 825.1924 

187 5 NF NF NF 7200 NF 814.6440 

156 6 NF NF NF 7200 NF 835.2673 

eilA101_80 945 1 NF NF NF 7200 NF 828.6658 

473 2 NF NF NF 7200 NF 808.3282 

315 3 NF NF NF 7200 NF 819.9952 

237 4 NF NF NF 7200 NF 803.4907 

189 5 NF NF NF 7200 NF 817.7601 

158 6 NF NF NF 7200 NF 812.1149 

135 7 NF NF NF 7200 NF 816.7851 
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Table 5: Detailed comparison of the Two-Level VNS with CPLEX for the Data set-1 (ࢀ૚) 

Name ଵܶ 
v CPLEX Two-Level VNS 

Optimal 

Sol. 

No. 

Routes 

Actual 

Time (s) 

Cost Overtime Cost with 

overtime 

No. 

Routes 

Time 

(s) 

eil22_50 390 1 371 3 1.04 371 0 371 3 2 

195 2 378 3 1.17 378 0 378 3 3 

130 3 x x x 380 10 390 4 3 

eil22_66 385 1 366 3 1.01 366 0 366 3 5 

193 2 382 4 3.02 386 10 396 4 4 

129 3 x x x 366 4 370 3 3 

eil22_80 394 1 375 3 1.94 375 0 375 3 4 

197 2 378 4 2.39 378 0 378 4 5 

132 3 381 3 27.13 381 0 381 3 3 

eil23_50 711 1 677 3 0.33 677 0 677 3 3 

355 2 698 3 2.36 677 34 711 3 2 

237 3 x x x 712 13 725 3 5 

eil23_66 672 1 640 3 1.22 640 0 640 3 4 

336 2 640 3 1.4 640 0 640 3 4 

224 3 x x x 655 47 702 3 3 

eil23_80 654 1 623 2 1.44 623 0 623 2 4 

327 2 634 2 1.59 634 0 634 2 4 

eil30_50 526 1 501 2 0.44 501 0 501 2 4 

264 2 x x x 501 6 507 2 3 

eil30_66 564 1 537 3 2.68 537 0 537 3 6 

282 2 552 3 6116 544 21 565 3 6 

188 3 NF NF 7200 539 2 541 3 5 

eil30_80 540 1 514 3 11.95 514 0 514 3 6 

270 2 NF NF 7200 517 23 540 3 7 

180 3 NF NF 7200 518 0 518 3 6 

eil33_50 775 1 738 3 0.51 738 0 738 3 5 

388 2 NF NF 7200 738 28 766 3 6 

258 3 NF NF 7200 764 58 822 3 4 

eil33_66 788 1 750 3 2.23 750 0 750 3 9 

394 2 772 3 1219 772 0 772 3 8 

263 3 NF NF 7200 752 40 792 3 5 

eil33_80 773 1 736 3 121.3 736 0 736 3 6 

387 2 NF NF 7200 756 0 756 3 9 

258 3 NF NF 7200 736 30 766 3 5 

eil51_50 587 1 559 3 9.84 559 0 559 3 9 

294 2 NF NF 7200 570 9 579 3 11 

196 3 NF NF 7200 568 6 574 3 10 

eil51_66 576 1 548 4 22.23 548 0 548 4 10 

288 2 NF NF 7200 552 0 552 4 11 

192 3 NF NF 7200 552 25 577 4 11 
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144 4 NF NF 7200 563 20 583 4 10 

eil51_80 594 1 565 4 4553 565 0 565 4 13 

297 2 NF NF 7200 565 0 565 4 12 

198 3 NF NF 7200 580 23 603 5 11 

149 4 NF NF 7200 581 11 592 5 11 

eilA76_50 775 1 NF NF 7200 838 0 838 6 21 

388 2 NF NF 7200 738 0 738 6 23 

259 3 NF NF 7200 741 0 741 6 22 

194 4 NF NF 7202 738 49 787 6 23 

155 5 NF NF 7200 747 36 783 6 22 

130 6 NF NF 7200 748 31 779 6 22 

eilA76_66 807 1 NF NF 7200 768 0 768 7 23 

404 2 NF NF 7200 768 0 768 7 21 

269 3 NF NF 7200 772 0 772 7 23 

202 4 NF NF 7200 784 0 784 8 21 

162 5 NF NF 7200 781 36 817 8 23 

135 6 NF NF 7200 783 5 788 8 23 

116 7 NF NF 7200 771 22 793 8 22 

eilA76_80 821 1 NF NF 7200 781 0 781 8 23 

411 2 NF NF 7200 781 0 781 8 23 

274 3 NF NF 7200 784 0 784 8 22 

206 4 NF NF 7200 787 0 787 8 23 

165 5 NF NF 7200 785 3 788 8 23 

137 6 NF NF 7200 800 7 807 9 24 

118 7 NF NF 7200 792 24 816 8 23 

103 8 NF NF 7200 796 38 834 8 23 

eilA101_50 869 1 NF NF 7200 827 0 827 5 39 

435 2 NF NF 7200 835 0 835 5 42 

290 3 NF NF 7200 847 2 849 5 42 

218 4 NF NF 7200 849 6 855 5 42 

174 5 NF NF 7200 833 30 863 5 41 

eilA101_66 889 1 NF NF 7200 846 0 846 6 43 

445 2 NF NF 7200 846 0 846 6 41 

297 3 NF NF 7200 846 0 846 6 42 

223 4 NF NF 7200 866 0 866 6 43 

178 5 NF NF 7200 846 28 874 6 43 

149 6 NF NF 7200 874 32 906 7 42 

eilA101_80 902 1 NF NF 7200 859 0 859 7 42 

451 2 NF NF 7200 859 0 859 7 45 

301 3 NF NF 7200 859 0 859 7 45 

226 4 NF NF 7200 770 5 775 7 42 

181 5 NF NF 7200 869 17 886 7 43 

151 6 NF NF 7200 863 23 886 7 42 

129 7 NF NF 7200 859 46 905 7 44 
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Table 6: Detailed comparison of the Two-Level VNS with CPLEX for the Data set-1 (ࢀ૛) 

Name ଶܶ 
v CPLEX Two-Level VNS 

Optimal 

Sol. 

No. 

Routes 

Actual 

Time (s) 

Cost Overtime Cost with 

overtime 

No. 

Routes 

Time 

(s) 

eil22_50 408 1 371 3 0.89 371 0 371 3 3 

204 2 375 3 1.67 375 0 375 3 4 

137 3 378 3 1.22 380 2 382 3 3 

eil22_66 403 1 366 3 1.3 366 0 366 3 2 

201 2 382 4 1.67 382 3 385 4 3 

134 3 366 3 0.59 366 1 367 3 2 

eil22_80 413 1 375 3 2.72 375 0 375 3 3 

206 2 378 4 8.5 378 0 378 4 3 

138 3 381 3 24.21 381 0 381 3 4 

eil23_50 745 1 677 3 0.33 677 0 677 3 4 

372 2 689 3 1.98 677 17 694 3 5 

248 3 716 3 2.46 716 0 716 3 4 

eil23_66 704 1 640 3 0.75 640 0 640 3 4 

352 2 640 3 1.23 640 0 640 3 4 

235 3 NF NF 7200 667 4 671 3 5 

eil23_80 685 1 623 2 0.91 623 0 623 2 4 

343 2 631 2 1.4 631 0 631 2 4 

eil30_50 551 1 501 2 0.44 501 0 501 2 4 

276 2 501 2 0.73 501 0 501 2 3 

eil30_66 591 1 537 3 3.09 537 0 537 3 6 

296 2 552 3 3451.2 544 8 552 3 7 

197 3 538 3 1.56 538 0 538 3 5 

eil30_80 565 1 514 3 10.58 514 0 514 3 6 

283 2 535 3 5519.1 535 0 535 3 7 

188 3 518 3 1426.2 518 0 518 3 5 

eil33_50 812 1 738 3 0.44 738 0 738 3 4 

406 2 741 3 2.26 738 10 748 3 8 

271 3 NF NF 7200 764 35 799 3 4 

eil33_66 825 1 750 3 11.7 750 0 750 3 5 

413 2 767 3 109.26 767 0 767 3 9 

275 3 NF NF 7200 754 21 775 3 5 

eil33_80 810 1 736 3 136.31 736 0 736 3 8 

405 2 NF NF 7200 756 0 756 3 6 

270 3 NF NF 7200 736 18 754 3 6 

eil51_50 615 1 559 3 11.23 559 0 559 3 10 

308 2 560 4 67.17 560 0 560 4 9 

205 3 564 4 67.49 568 0 568 3 11 

eil51_66 603 1 548 4 11.87 548 0 548 4 10 

302 2 548 4 55.52 548 0 548 4 11 

201 3 NF NF 7200 558 4 562 4 10 
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151 4 NF NF 7200 563 7 570 4 11 

eil51_80 622 1 565 4 78.13 565 0 565 4 11 

311 2 NF NF 7200 565 0 565 4 10 

208 3 NF NF 7200 587 0 587 4 10 

156 4 NF NF 7200 579 0 579 5 10 

eilA76_50 812 1 NF NF 7200 838 0 838 6 21 

406 2 NF NF 7200 838 0 838 6 22 

271 3 NF NF 7201 838 0 838 6 22 

203 4 NF NF 7202 738 29 767 6 22 

163 5 NF NF 7200 747 28 775 6 24 

136 6 NF NF 7200 747 15 762 6 21 

eilA76_66 845 1 NF NF 7200 768 0 768 7 22 

423 2 NF NF 7200 768 0 768 7 21 

282 3 NF NF 7200 772 0 772 7 22 

212 4 NF NF 7200 769 0 769 7 22 

169 5 NF NF 7200 777 13 790 8 23 

141 6 NF NF 7200 778 5 783 8 22 

121 7 NF NF 7200 771 6 777 8 22 

eilA76_80 860 1 NF NF 7200 781 0 781 8 23 

430 2 NF NF 7200 781 0 781 8 22 

287 3 NF NF 7200 783 0 783 8 23 

215 4 NF NF 7200 783 0 783 8 22 

172 5 NF NF 7200 783 0 783 8 22 

144 6 NF NF 7200 786 10 796 8 23 

123 7 NF NF 7200 792 13 805 8 23 

108 8 NF NF 7200 795 46 841 8 22 

eilA101_50 910 1 NF NF 7200 827 0 827 5 41 

455 2 NF NF 7200 827 0 827 5 41 

304 3 NF NF 7200 840 3 843 5 43 

228 4 NF NF 7200 838 9 847 5 42 

182 5 NF NF 7200 838 13 851 5 42 

eilA101_66 931 1 846 6 268.45 846 0 846 6 43 

466 2 NF NF 7200 846 0 846 6 42 

311 3 NF NF 7200 846 0 846 6 43 

233 4 NF NF 7200 853 10 863 6 42 

187 5 NF NF 7200 848 14 862 6 43 

156 6 NF NF 7200 852 52 904 6 44 

eilA101_80 945 1 NF NF 7200 859 0 859 7 42 

473 2 NF NF 7200 859 0 859 7 43 

315 3 NF NF 7200 859 0 859 7 46 

237 4 NF NF 7200 859 0 859 7 43 

189 5 NF NF 7200 863 15 878 7 44 

158 6 NF NF 7200 870 13 883 7 45 

135 7 NF NF 7200 859 24 883 7 42 
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Appendix 

Table 8: Detailed results of the VRPB (data set-2) 

Name n L B V VCap Best Known Two-Level 

VNS 

RPD 

      

  

 eil22_50 21 11 10 3 6000 371 371 0.00 

eil22_66 21 14 7 3 6000 366 366 0.00 

eil22_80 21 17 4 3 6000 375 375 0.00 

         eil23_50 22 11 11 2 4500 682 682 0.00 

eil23_66 22 15 7 2 4500 649 649 0.00 

eil23_80 22 18 4 2 4500 623 623 0.00 

         eil30_50 29 15 14 2 4500 501 501 0.00 

eil30_66 29 20 9 3 4500 537 537 0.00 

eil30_80 29 24 5 3 4500 514 514 0.00 

         eil33_50 32 16 16 3 8000 738 738 0.00 

eil33_66 32 22 10 3 8000 750 750 0.00 

eil33_80 32 26 6 3 8000 736 736 0.00 

         eil51_50 50 25 25 3 160 559 559 0.00 

eil51_66 50 34 16 4 160 548 548 0.00 

eil51_80 50 40 10 4 160 565 565 0.00 

         eilA76_50 75 37 38 6 140 739 739 0.00 

eilA76_60 75 50 25 7 140 768 768 0.00 

eilA76_80 75 60 15 8 140 781 781 0.00 

         eilB76_50 75 37 38 8 100 801 801 0.00 

eilB76_66 75 50 25 10 100 873 873 0.00 

eilB76_80 75 60 15 12 100 919 919 0.00 

         eilC76_50 75 37 38 5 180 713 713 0.00 

eilC76_66 75 50 25 6 180 734 734 0.00 

eilC76_80 75 60 15 7 180 733 733 0.00 

         eilD76_50 75 37 38 4 220 690 690 0.00 

eilD76_66 75 50 25 5 220 715 715 0.00 

eilD76_80 75 60 15 6 220 694 694 0.00 

         eilA101_50 100 50 50 4 200 831 831 0.00 

eilA101_66 100 67 33 6 200 846 846 0.00 

eilA101_80 100 80 20 6 200 856 856 0.00 

         eilB101_50 100 50 50 7 112 923 923 0.00 

eilB101_66 100 67 33 9 112 983 983 0.00 

eilB101_80 100 80 20 11 112 1008 1008 0.00 

Name = instance name; n = number of total customers in each instance; L = number of linehaul customers; B = number of 

backhaul customers; V = fixed fleet; VCap = vehicle capacity; Best Known = best VRPB solution found in literature to date; 

Two-Level VNS = solution found by proposed algorithm; RPD = relative percentage deviation. 
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Table 9: Detailed results of the VRPB (Data set-3) 

Name n L B VCap V Best known 

Solution 

Two-level VNS 

Solution 

RPD 

A1 25 20 5 1550 8 229885.65 229885.65 0.00 

A2 25 20 5 2550 5 180119.21 180119.21 0.00 

A3 25 20 5 4050 4 163405.38 163405.38 0.00 

A4 25 20 5 4050 3 155796.41 155796.41 0.00 

B1 30 20 10 1600 7 239080.16 239080.16 0.00 

B2 30 20 10 2600 5 198047.77 198047.77 0.00 

B3 30 20 10 4000 3 169372.29 169372.29 0.00 

C1 40 20 20 1800 7 250556.77 250556.77 0.00 

C2 40 20 20 2600 5 215020.23 215020.23 0.00 

C3 40 20 20 4150 5 199345.96 199345.96 0.00 

C4 40 20 20 4150 4 195366.63 195366.63 0.00 

D1 38 30 8 1700 12 322530.13 322530.13 0.00 

D2 38 30 8 1700 11 316708.86 316708.86 0.00 

D3 38 30 8 2750 7 239478.63 239478.63 0.00 

D4 38 30 8 4075 5 205831.94 205831.94 0.00 

E1 45 30 15 2650 7 238879.58 238879.58 0.00 

E2 45 30 15 4300 4 212263.11 212263.11 0.00 

E3 45 30 15 5225 4 206659.17 206659.17 0.00 

F1 60 30 30 3000 6 263173.96 263173.96 0.00 

F2 60 30 30 3000 7 265214.16 265214.16 0.00 

F3 60 30 30 4400 5 241120.78 241120.78 0.00 

F4 60 30 30 5500 4 233861.85 233861.85 0.00 

G1 57 45 12 2700 10 306305.40 306305.40 0.00 

G2 57 45 12 4300 6 245440.99 245440.99 0.00 

G3 57 45 12 5300 5 229507.48 229507.48 0.00 

G4 57 45 12 5300 6 232521.25 232521.25 0.00 

G5 57 45 12 6400 5 221730.35 221730.35 0.00 

G6 57 45 12 8000 4 213457.45 213457.45 0.00 

H1 68 45 23 4000 6 268933.06 268933.06 0.00 

H2 68 45 23 5100 5 253365.50 253365.50 0.00 

H3 68 45 23 6100 4 247449.04 247449.04 0.00 

H4 68 45 23 6100 5 250220.77 250220.77 0.00 

H5 68 45 23 7100 4 246121.31 246121.31 0.00 

H6 68 45 23 7100 5 249135.32 249135.32 0.00 

I1 90 45 45 3000 10 350245.28 350245.28 0.00 

I2 90 45 45 4000 7 309943.84 309943.84 0.00 

I3 90 45 45 5700 5 294507.38 294507.38 0.00 

I4 90 45 45 5700 6 295988.45 295988.45 0.00 

I5 90 45 45 5700 7 301236.01 301236.01 0.00 

J1 94 75 19 4400 10 335006.68 335006.68 0.00 

J2 94 75 19 5600 8 310417.21 310417.21 0.00 

J3 94 75 19 8200 6 279219.21 279219.21 0.00 

J4 94 75 19 6600 7 296533.16 296533.16 0.00 

K1 113 75 38 4100 10 394071.17 394375.63 0.08 

K2 113 75 38 5200 8 362130.00 362130.00 0.00 

K3 113 75 38 5200 9 365694.08 365694.08 0.00 

K4 113 75 38 6200 7 348949.39 348949.39 0.00 

L1 150 75 75 4400 10 417896.72 417943.82 0.01 

L2 150 75 75 5000 8 401228.80 401228.80 0.00 

L3 150 75 75 5000 9 402677.72 403639.75 0.24 

L4 150 75 75 6000 7 384636.33 384636.33 0.00 

L5 150 75 75 6000 8 387564.55 387564.55 0.00 

M1 125 100 25 5200 11 398593.19 398869.79 0.07 

M2 125 100 25 5200 10 396916.97 397786.41 0.22 

M3 125 100 25 6200 9 375695.42 377315.94 0.43 

M4 125 100 25 8000 7 348140.16 348140.16 0.00 

N1 150 100 50 5700 11 408100.62 408100.62 0.00 

N2 150 100 50 5700 10 408065.44 408111.91 0.01 

N3 150 100 50 6600 9 394337.86 397621.99 0.83 

N4 150 100 50 6600 10 394788.36 398330.35 0.90 

N5 150 100 50 8500 7 373476.30 373723.37 0.07 

N6 150 100 50 8500 8 373758.65 376200.31 0.65 

 


