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On reductions of the Hirota-Miwa equation
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Abstract

The Hirota-Miwa equation (also known as the discrete KP equation, or the oc-
tahedron recurrence), is a bilinear partial difference equation in three independent
variables. It is integrable in the sense that it arises as the compatibility condition
of a linear system (Lax pair). The Hirota-Miwa equation has infinitely many reduc-
tions of plane wave type (including a quadratic exponential gauge transformation),
defined by a triple of integers or half-integers, which produce bilinear ordinary differ-
ence equations of Somos/Gale-Robinson type. Here it is explained how to obtain Lax
pairs and presymplectic structures for these reductions, in order to demonstrate Liou-
ville integrability of some associated maps, certain of which are related to reductions
of discrete Toda and discrete KdV equations.

1 Introduction

The Hirota-Miwa equation, or discrete Kadomtsev–Petviashvili equation (discrete KP), is
the bilinear partial difference equation

T1T−1 = T2T−2 + T3T−3, (1)

which serves as a generating equation for the full KP hierarchy of partial differential equa-
tions [11, 19]. In the above, the tau function T is a function of three independent variables,
T = T (m1, m2, m3), and subscripts denote shifts, i.e. T±i = T |mi→mi±1, for i = 1, 2, 3. The
equation (1) is integrable in the sense that it arises as the compatibility condition of the
following linear system (Lax pair) [16]:

T−1,3Ψ1,2 + TΨ2,3 = T2,3Ψ,
TΨ−1,2 + T−1,3Ψ2,−3 = T−1,2Ψ

(2)

(for a comparison of alternative Lax pairs see [26]). From another viewpoint of discrete
integrability, the equation (1) can be extended to a system with an arbitrary number of
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independent variables, in which case it satisfies the multidimensional consistency prop-
erty, and it can be further extended to a system with self-consistent sources (see [3] and
references).

In this paper we consider reductions of (1) to bilinear ordinary differential equations,
in order to show that they can be interpreted as discrete integrable systems in an appro-
priate sense, namely that Liouville’s theorem for symplectic maps can be applied [17, 24].
Certainly it should be no surprise that reductions of a discrete integrable system to a lower
number of independent variables produce integrable maps. Indeed, from a different point
of view, one can consider the algebraic entropy of such reductions, and show that all one-
dimensional reductions of (1) have quadratic degree growth (Theorem 6.8 in [18]), so their
algebraic entropy is zero. However, in general the connections between algebraic entropy,
Lax integrability and Liouville integrability are rather subtle, and the bilinear ordinary
difference equations that arise as plane wave reductions of (1) are not symplectic as they
stand. In order to interpret them correctly, we make use of the properties of recurrences
derived from cluster algebras [7], which provides an appropriate presymplectic structure
for bilinear difference equations [6] (see also [4, 8, 14] and references), and a further reduc-
tion procedure leads to symplectic maps of a certain kind, referred to in [13] as U-systems.
By applying the reduction process to the linear equations (2), we find a Lax pair for the
corresponding bilinear ordinary difference equations, leading to the construction of con-
served quantities, and then in each case the problem remains to check that this provides a
sufficient number of first integrals in involution for the associated U-system.

General properties of plane wave reductions of the Hirota-Miwa equation are described
in section 2, and one particular example is considered in full detail. This example turns
out to be a member of a two-parameter family of bilinear equations that arise from reduc-
tions of a lattice equation of discrete Toda type, considered in section 3. In section 4 we
consider another two-parameter family, consisting of pairs of bilinear equations related to
discrete KdV reductions, and we consider another example in detail, before making some
conclusions in section 5.

2 Plane wave reductions

The Hirota-Miwa equation (1) admits the plane wave reduction

T (m1, m2, m3) = am1
2

1 am2
2

2 am3
2

3 τm, m = m0 + δ1m1 + δ2m2 + δ3m3, (3)

where m0 is arbitrary and the distinct values of the parameters δ1, δ2, δ3 are all chosen
to be integers or half-integers (the case when any of the δj coincide is not interesting).
The above expression includes a quadratic exponential gauge transformation, which allows
the insertion of coefficients into the right-hand side of the parameter-free equation (1).
By substituting (3) into (1), it follows that τm satisfies the autonomous bilinear ordinary
difference equation

τm+δ1τm−δ1 = ατm+δ2τm−δ2 + βτm+δ3τm−δ3 , (4)
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where the ratios of the arbitrary parameters aj in (3) yield the coefficients

α =
a22
a21

, β =
a23
a21

.

We can shift the last equation by δ1 and rewrite it as

τm+Nτm = ατm+δ1+δ2τm+δ1−δ2 + βτm+δ1+δ3τm+δ1−δ3 , with N = 2δ1, (5)

and without loss of generality we can assume that

δ1 > max(δ2, δ3),

so that the overall order of the recurrence (5) is N .
The iteration of the recurrence (5) is equivalent to iteration of the birational map

ϕ : CN → CN , given by

ϕ(τ0, τ1, . . . , τN−2, τN−1) =

(

τ1, τ2, . . . , τN−1,
ατδ1+δ2τδ1−δ2 + βτδ1+δ3τδ1−δ3

τ0

)

, (6)

which is an example of a cluster map: it arises from a sequence of mutations in a cluster
algebra, constructed from a quiver that is cluster mutation-periodic with period 1, with the
coefficients α, β corresponding to frozen variables [7]. By making gauge transformations
one can also consider the original equation (1) with non-autonomous coefficients, and the
same is true for its reductions (see [18]). In due course we will also find it useful to allow
the coefficients α, β to depend on the index m.

2.1 Reduction of Lax pairs

We can apply the plane wave reduction (3) at the level of the Lax pair. However, before
doing so it is important to note that the compatibility condition of the linear system (2)
is not exactly (1), but rather

R1,−3 = R, R =
T1T−1 − T3T−3

T2T−2

. (7)

In order to get precisely (1), corresponding to R ≡ 1, it is necessary to augment the pair (2)
with a third equation, to get a Lax triad. However, for our purposes it will be convenient
to leave this slight ambiguity.

To make the reduction, we require that the tau function T is given by (3), and take the
wave function Ψ in the form

Ψ(m1, m2, m3) = λm1
1 λm2

2 λm3
3 T (m1, m2, m3)φm, (8)

where λj correspond to spectral parameters, and upon setting

ζ = λ2λ
−1
1 , ξ = (a21λ1λ2)

−1, λ3 = a23λ2

we can derive a corresponding linear system for the reductions (5) of (1).
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Proposition 2.1. The plane wave reduction of the linear system (2) is

Ym φm+δ1+δ2 + βζ φm+δ2+δ3 = ξφm,
φm+δ1−δ2 −Xm φm+δ1−δ3 = ζφm,

(9)

where
Xm =

τm+2δ1−2δ3τm+δ1−δ2

τm+2δ1−δ2−δ3τm+δ1−δ3

, Ym =
τm+2δ1+δ2−δ3τm
τm+δ1+δ2τm+δ1−δ3

.

The compatibility condition of (9) is a Somos-N recurrence with a periodic coefficient,
given by

τm+Nτm = αmτm+δ1+δ2τm+δ1−δ2 + βτm+δ1+δ3τm+δ1−δ3, αm+δ1−δ3 = αm, (10)

with N = 2δ1.

Proof. This follows by substituting (3) and (8) into (2): the first linear equation produces
the top equation in (9), and the second equation in (2) almost immediately yields the
bottom equation in (9) after shifting the indices on each φj to φj+δ1−δ2 , except that we have
also made an overall shift m → m+ δ1− δ3 in the dependent variables which appear in the
combinations Xm, Ym (which we are free to do, since the compatibility of the linear system
gives autonomous relations between these quantities). Now observe that the parameter α
in (5) does not appear anywhere in the linear system (9), and the compatibility condition
of the latter is obtained by substituting (3) into (7), which implies that τm satisfies the
non-autonomous bilinear recurrence (10) with the coefficient αm of period δ1 − δ3.

Each iteration of (10) is equivalent to an iteration of a map ϕm : CN → CN , which
is of the same form as (6), except that the coefficient α is replaced by αm, depending
on m mod δ1 − δ3. The iterates of this map have a matrix Lax representation, and the
dynamics preserves an associated spectral curve.

Corollary 2.2. The scalar Lax pair (9) is equivalent to a matrix linear system of size
K = max(δ1 − δ2, δ1 − δ3), of the form

Lm(ζ)Φm = ξΦm, Φm+1 = Mm(ζ)Φm. (11)

The compatibility condition of the latter system is the discrete Lax equation

Lm+1Mm = MmLm, (12)

which preserves the spectral curve in the (ζ, ξ) plane given by

P(ζ, ξ) ≡ det(Lm(ζ)− ξ1) = 0. (13)

Proof. Upon introducing the vector Φm = (φm, φm+1, . . . , φm+K−1)
T , the top equation in

(9) becomes an eigenvalue equation for a matrix Lm, while the bottom equation can be
rewritten in matrix form with another matrixMm, where Lm, Mm in (11) areK×K matrix
functions of ζ and the dynamical variables. The compatibility condition (12) shows that
this is an isospectral evolution, preserving the coefficients of the polynomial P(ζ, ξ).

4



Example 2.3. Choosing (δ1, δ2, δ3) = (4, 3, 0) in (10) gives rise to the recurrence

τm+8τm = αmτm+7τm+1 + βτ 2m+4, αm+4 = αm. (14)

As we shall see below, the latter recurrence also arises as a reduction of a 5-point lattice
equation of discrete Toda type appearing in [9]. In this case, the scalar linear system (9)
consists of two equations, of orders 7 and 4 respectively, with coefficients

Xm =
τm+8τm+1

τm+5τm+4

, Ym =
τm+11τm
τm+7τm+4

.

After using the equation of fourth order to eliminate higher shifts of φm from the equation
of order 7, this gives the system

φm+4 = 1
Xm

(φm+1 − ζφm) ,

ξφm = ζ
(

β − Ym

Xm+3

)

φm+3 +
Ym

XmXm+3

(

φm+1 − ζφm

)

.

The matrix entries in the Lax pair of Corollary 2.2 can then be written in a fairly compact
form in terms of the quantities Xm+j for 0 ≤ j ≤ 6, Ym+k for 0 ≤ k ≤ 3 and β, ζ , in which
case the compatibility conditions are

XmYm+4 = Xm+7Ym+1, XmYm+4 −Xm+7Ym = βXm+7(Xm −Xm+3). (15)

When these equations are rewritten in terms of the tau function τm, the first of them is
just a tautology, while the second one says that

τm+12τm+4 − βτ 2m+8

τm+11τm+5
=

τm+8τm − βτ 2m+4

τm+7τm+1
,

which is equivalent to (14). We can further use the equation (14) to rewrite the entries of
Lm, Mm in terms of the tau function and αm as well as β, ζ , but rather than doing this
here we follow [25] and introduce the quantity

zm =
τm+5τm
τm+4τm+1

, (16)

so that Xm = zm+1zm+2zm+3, Ym = zmXmXm+3, to find (setting m → 0 for convenience)

L =















−ζz0 z0 0 ζ(β − z0z1z2z3)

ζ2
(

z4 −
β

z1z2z3

)

ζ
(

β
z1z2z3

− z1 − z4

)

z1 0

0 ζ2
(

z5 −
β

z2z3z4

)

ζ
(

β
z2z3z4

− z2 − z5

)

z2

− ζ
z1z2

1
z1z2

ζ2
(

z6 −
β

z3z4z5

)

ζ
(

β
z3z4z5

− z3 − z6

)















,

M =









0 1 0 0
0 0 1 0
0 0 0 1
−ζ

z1z2z3
1

z1z2z3
0 0









, (17)
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with L = L0, M = M0, in which case the second equation in (15) becomes a recurrence of
order 7 for zm, namely

zm+7 − zm = β

(

1

zm+4zm+5zm+6
−

1

zm+1zm+2zm+3

)

. (18)

The corresponding spectral curve (13) is of genus 9, and takes the form

Γ : ξ4 +H1ζξ
3 +H2ζ

2ξ2 + (H3ζ
3 − 1)ξ +H4ζ

7 + βζ4 = 0, (19)

where

H1 =
∑6

k=0 zk − β
∑2

k=0
1

zk+1zk+2zk+3
,

H2 =
∑6

k=0 zkzk+1 + zkzk+2

−β
(

1
z1z3

+ 1
z2z3

+ 1
z2z4

+ 1
z3z4

+ 1
z3z5

+ z0+z1
z3z4z5

+ z0+z6
z2z3z4

+ z5+z6
z1z2z3

)

+β2
(

1
z1z22z

2
3z4

+ 1
z1z2z23z4z5

+ 1
z2z23z

2
4z5

)

,

H3 =
∑6

k=0 zkzk+1zk+2 − β
(

1
z3

+ z0
z3z4

+ z6
z2z3

+ z0z1
z3z4z5

+ z0z6
z2z3z4

+ z5z6
z1z2z3

)

+β2
(

1
z1z2z23z4

+ 1
z2z23z4z5

+ z0
z2z23z

2
4z5

+ z6
z1z22z

2
3z4

)

− β3

z1z22z
3
3z

2
4z5

,

H4 = 1
z3

∏3
k=0

(

zkzk+3 −
β

zk+1zk+2

)

,

(20)

with indices read mod 6 where necessary. These coefficients of the spectral curve provide
4 functionally independent integrals for the map in 7 dimensions defined by (18). We
shall consider the question of Liouville integrability when we return to this example in
subsection 2.3 below.

Remark 2.4. The replacement (δ1, δ2, δ3) → (δ1, δ3, δ2) leads to a recurrence with the
same terms as (10), but with the roles of the coefficients α, β reversed. For instance, in
the previous example, choosing the parameters (δ1, δ2, δ3) = (4, 0, 3) gives δ1 − δ3 = 1, so
with both α and β as constant coefficients, the recurrence is just

τm+8τm = ατm+7τm+1 + βτ 2m+4.

2.2 Somos recurrences and cluster maps

The plane wave reductions of the discrete KP equation (1) are recurrence relations of
Somos type. They are also particular examples of cluster maps, which arise from cluster
mutations of quivers which are periodic with period 1 [7], and this provides an appropriate
presymplectic structure that is preserved by the dynamics.

A general Somos-N recurrence is a quadratic recurrence relation of the form

xm+Nxm =

⌊N
2 ⌋

∑

j=1

aj xm+N−jxm+j , (21)
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where aj are coefficients. The case when there are only two non-zero coefficients aj, ak
on the right-hand side corresponds to the reductions (5) of the discrete KP equation (1),
while the case of three non-zero coefficients aj , ak, aℓ with j + k + ℓ = 0 (modN) arises
from reductions of the discrete BKP equation. These particular cases are also sometimes
referred to as 3-term or 4-term Gale-Robinson recurrences, respectively (where the total
number of terms in the equation is counted), and are the only cases which display the
Laurent phenomenon [5]. In general, if there are more than three terms on the right-hand
side of (21) then the recurrence does not appear to be integrable: the growth of degrees
of the terms, or the growth of logarithmic heights of generic iterates in Q, is exponential.
However, for certain choices of coefficients and initial data such recurrences with more
terms can still be produced by identities for abelian functions [1].

On the other hand, (with the inclusion of coefficients α, β) the reductions (5) of the
discrete KP equation are particular cases of recurrences of the form

xm+Nxm =

N−1
∏

j=1

x
[b1,j+1]+
m+j +

N−1
∏

j=1

x
[−b1,j+1]+
m+j , (22)

which arise from sequences of mutations in a coefficient-free cluster algebra. In the above,
[b]+ = max(b, 0), and the exponents appearing on the right-hand side belong to the first
row of the exchange matrix B = (bij), an N × N skew-symmetric integer matrix which
defines a quiver (directed graph) consisting of N nodes without 1- or 2-cycles: the rule is
that [bij ]+ is the number of arrows from node i to node j. It was shown by Fordy and
Marsh [7] that the quiver has cluster mutation-periodicity with period 1, meaning that a
single mutation of the quiver is equivalent to a cyclic permutation of the nodes, iff the
matrix entries of B satisfy

bj,N = b1,j+1, j = 1, . . . , N − 1,
bj+1,k+1 = bj,k + b1,j+1[−b1,k+1]+ − b1,k+1[−b1,j+1]+, 1 ≤ j, k ≤ N − 1.

(23)

In this case, the above conditions mean that matrix B is completely determined by the
elements of its first row, which are the exponents appearing in (22). The cluster map
defined by (22) is the birational map

ϕ : CN → CN

(x1, . . . , xN−1, xN) 7→
(

x2, . . . , xN , x
−1
1 (

∏

j x
[b1,j+1]+
j+1 +

∏

j x
[−b1,j+1]+
j+1 )

)

.
(24)

Furthermore, the conditions (23) are also necessary and sufficient for the log-canonical
2-form

ω =
∑

i<j

bij
xixj

dxi ∧ dxj , (25)

to be an invariant presymplectic form for the map, i.e. ϕ∗ω = ω [6].
For the conditions (23) to hold, the non-zero entries in the first row of B must be palin-

dromic. Hence, in the case of the discrete KP reductions, with a sum of two quadratic terms
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on the right-hand side, the pattern of non-zero terms is either of the form 1, . . . ,−2, . . . , 1
or 1, . . . ,−1, . . . ,−1, . . . , 1 (up to an overall choice of sign), and the other entries of B are
completely fixed by this pattern.

Example 2.5. Up to sending B → −B, the exchange matrix for the recurrence in Example
2.3 is

B =

























0 1 0 0 −2 0 0 1
−1 0 1 0 2 −2 0 0
0 −1 0 1 0 2 −2 0
0 0 −1 0 1 0 2 −2
2 −2 0 −1 0 1 0 0
0 2 −2 0 −1 0 1 0
0 0 2 −2 0 −1 0 1
−1 0 0 2 0 0 −1 0

























.

2.3 Reduction to symplectic maps

In order to investigate Liouville integrability in the context of cluster maps, it is convenient
to make a reduction to a symplectic map on a space of even dimension r = rankB, that
is the space of leaves of the null foliation for ω. This is achieved by choosing a Z-basis
v1, . . . ,vr for imB ∩ ZN , and then mapping to a corresponding set of Laurent monomials
u = (u1, . . . , ur) in the coordinates x = (xj), via

π : CN → Cr

x 7→ u = (xv1 , . . . ,xvr).
(26)

Theorem 2.6 in [6] says that this produces a symplectic birational map ϕ̂ in the reduced
coordinates u. By a further refinement of this result (Proposition 3.9 in [13]) one can
choose a special Z-basis consisting of palindromic vectors, such that ϕ̂ is equivalent to
iteration of a single recurrence relation called the U-system.

Theorem 2.6. For any cluster map ϕ given by (24) with associated exchange matrix B
satisfying (23), there is a palindromic Z-basis for imB∩ZN (unique up to an overall sign),
such that under the reduction (26), the map ϕ̂ with ϕ̂ ◦ π = π ◦ ϕ is equivalent to the
iteration of the corresponding U-system, of the form

um+rum = F(um+1, . . . , um+r−1), (27)

for a certain rational function F . Moreover, ϕ̂ preserves the symplectic form ω̂ such that
π∗ω̂ = ω, which is log-canonical in the coordinates u = (u1, . . . , ur).

The above theorem immediately applies to the plane wave reductions (5) of discrete KP,
with coordinates xj → τj , and the symplectic structure obtained by reduction is unaltered
even when non-autonomous coefficients are included, in particular when α and/or β are
allowed to be periodic.
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Example 2.7. For the matrix B in Example 2.5, rankB = 6, and the vector v1 =
(1,−2, 1, 0, 0, 0, 0, 0)T , together with v2, . . . ,v6 obtained by shifting the non-zero block
to the right, provides a palindromic basis for imB, so the reduction (26) gives

um =
τmτm+2

τ 2m+1

. (28)

Then the U-system corresponding to (14) is the non-autonomous recurrence

um+6um =
αmum+5u

2
m+4u

3
m+3u

2
m+2um+1 + β

u2
m+5u

3
m+4u

4
m+3u

3
m+2u

2
m+1

, αm+4 = αm. (29)

Upon applying Theorem 2.6, we see that (29) preserves the symplectic form

ω̂ =
∑

i<j

b̂ij
uiuj

dui ∧ duj, B̂ = (b̂ij) =

















0 1 2 3 2 1
−1 0 2 4 4 2
−2 −2 0 3 4 3
−3 −4 −3 0 2 2
−2 −4 −4 −2 0 1
−1 −2 −3 −2 −1 0

















.

Equivalently, each iteration of the corresponding six-dimensional map ϕ̂m, which depends
on m mod 4, preserves the nondegenerate log-canonical Poisson bracket (obtained by in-
verting the matrix B̂) given by

{ui, uj} = cj−iuiuj, 0 ≤ i < j ≤ 5, with c1 = 1, c2 = c5 = 0, c3 = −c4 = −2. (30)

Upon comparing (28) with (16), we obtain the formula

zm = umum+1um+2um+3 (31)

for all m. We can use this to write zj for 0 ≤ j ≤ 2 in terms of a set of initial coordinates
u0, u1, . . . , u5 for the U-system (29). However, for higher shifts of zj we note the identity

zm+3zm = αmum+3 +
β

zm+1zm+2

,

which follows from (31) and (29), so after substituting for z3, z4, z5, z6 in (17) it is clear
that, in addition to uj for 0 ≤ j ≤ 5, the parameters α0, α1, α2, α3 will also appear in
L = L0 and M = M0 (and similarly for Lm,Mm, replacing the index j on each variable in
L,M by m+j). In this way we obtain the Lax representation for the U-system itself, while
from the spectral curve (19), the coefficients H1, H2, H3 in (20) can be pulled back by the
formula (31), to provide 3 independent functions of uj, in involution with respect to the
bracket (30) in 6 dimensions (see [25] for explicit formulae in the case αm = α =const).
Pulling back the fourth coefficient we find

H4 = α0α1α2α3, (32)
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which (like any cyclically symmetric function of α0, α1, α2, α3) is a trivial first integral of
the U-system. (By an abuse of notation, in (32) and elsewhere we use the same symbol to
denote a function and its pullback.) Thus we see that in the autonomous case we have a
6-dimensional symplectic map ϕ̂ given by

ϕ̂(u0, u1, u2, u3, u4, u5) =

(

u1, u2, u3, u4, u5,
β + αu1u

2
2u

3
3u

2
4u5

u0u
2
1u

3
2u

4
3u

3
4u

2
5

)

, (33)

obtained from (29) by fixing αm = α =const, with 3 commuting first integrals, so this is
an integrable system in the Liouville sense. In the non-autonomous case, we have instead
a family of symplectic maps ϕ̂m cycling with m mod 4, but we can interpret the fourfold
composition ϕ̂3◦ ϕ̂2◦ ϕ̂1◦ ϕ̂0 as an autonomous system with the three commuting invariants
H1, H2, H3 described above, so again this is a Liouville integrable system.

These results also lead to an interpretation of the 7-dimensional map defined by (18)
as an integrable system. Indeed, the expression (31) means that the bracket (30) can be
lifted to the coordinates zj , 0 ≤ j ≤ 6, to give a Poisson bracket of rank 6 specified by

{z0, z1} = 0 = {z0, z2}, {z0, z3} = −z0z3 + β(z1z2)
−1, {z0, z4} = z0z4 − β2(z21z

2
2z

2
3)

−1,

{z0, z5} = −β2(z1z
2
2z

2
3z4)

−1 + β3(z21z
3
2z

3
3z

2
4)

−1,
{z0, z6} = −β2(z1z2z

2
3z4z5)

−1 + β3(z21z
2
2z

3
3z

2
4z

2
5)

−1(z1 + z5)− β4(z21z
3
2z

4
3z

3
4z

2
5)

−1;

all other brackets follow by shifting indices. The preceding results imply that, as functions
of zj , the quantities H1, H2, H3 in (20) are in involution with respect to the above bracket,
while from the expression (32) it follows that H4 is a Casimir for this bracket; this can also
be verified directly from (20).

Remark 2.8. In the previous example, the formula (17) is a “big Lax pair” for the system:
the spectral curve Γ in (19) has genus 9, while the Liouville tori (level sets of first integrals)
are only 3-dimensional. One way to understand this is by noting that Γ is invariant under
the action of C3 (the cyclic group of order 3), generated by (ζ, ξ) → (e2πi/3ζ, e2πi/3ξ), so
that Γ is a threefold cover of the curve Γ̃ = Γ/C3, ramified at (0, 0) and (∞,∞), and Γ̃
has genus 3. A more direct way to obtain the curve Γ̃ is to note that the system is one of
a family of reductions of a lattice equation of discrete Toda type, considered in the next
section (see (34) below). This reduction procedure yields 2 × 2 Lax pairs, which will be
described in future work.

3 Reductions of discrete Toda type

In this section we briefly consider the two-parameter family of plane wave reductions of
discrete KP with (δ1, δ2, δ3) = (P, P−Q, 0), for integers P > Q, which includes Example 2.3
when P = 4, Q = 1. These examples arise from travelling wave solutions of the five-point
lattice equation

Vk,l

Vk+1,l

−
Vk−1,l

Vk,l

+ α

(

Vk+1,l−1

Vk,l

−
Vk,l

Vk−1,l+1

)

= 0, (34)
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which for α = pq appears in [9], and can be considered as a discrete time Toda equation
[2]. If we impose the periodicity

Vk+Q,l−P = Vk,l,

which is called the (Q,−P ) periodic reduction of equation (34), then we may write

Vk,l = vm, where m = kP + lQ

is a travelling wave variable, and vm satisfies the ordinary difference equation

vm
vm+P

−
vm−P

vm
+ α

(

vm+P−Q

vm
−

vm
vm+Q−P

)

= 0. (35)

Proposition 3.1. Suppose that

vm =
τm

τm+Q

is a solution of (35). Then τm is a solution of

τm+2P τm = ατm+2P−Qτm+Q + βmτ
2
m+P , βm = βm+Q, (36)

and the converse is also true.

Proof. By setting vm = τm
τm+Q

in (35), up to an overall shift we find that

τm+2P τm − ατm+2P−Qτm+Q

τ 2m+P

=
τm+2P+Qτm+Q − ατm+2P τm+2Q

τ 2m+P+Q

, (37)

and denoting the left-hand side above by βm we see that this quantity is periodic with
period Q, which yields the bilinear equation in (36). Conversely, any solution of (36) with
a Q-periodic coefficient βm provides a solution of (35).

Example 3.2. In the running example above, with (δ1, δ2, δ3) = (4, 3, 0), we have

vm =
τm
τm+1

,

with
um =

τmτm+2

τ 2m+1

=
vm
vm+1

(38)

being a solution of the autonomous version of the U-system (29), where αm = α = const.
After shifting once to eliminate β from the U-system, an equation of order 7 for um arises,
and this is equivalent to a relation of order 8 for vm, namely

vm+4

vm+8

−
vm
vm+4

+ α

(

vm+7

vm+4

−
vm+4

vm+1

)

= 0,

which is the (1,-4) periodic reduction of the the discrete Toda equation (34).

In the general (Q,−P ) periodic reduction of (34), one can consider a Poisson structure
for the variables vm in (35), and a “small” (2 × 2) Lax representation for this reduction
and the associated U-system. We propose to treat these details elsewhere.
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4 Reductions of discrete KdV type

In this section, for a pair of integers L > M , we consider two different plane wave reductions
of discrete KP, corresponding to the choices

(δ1, δ2, δ3) =

(

L+
M

2
,
M

2
, L−

M

2

)

or

(

M +
L

2
,
L

2
,

∣

∣

∣

∣

M −
L

2

∣

∣

∣

∣

)

.

It turns out that these two different reductions are very closely related to each other: they
both correspond to the (L,M) periodic reduction of the lattice KdV equation

Vk+1,l − Vk,l+1 = α

(

1

Vk,l

−
1

Vk+1,l+1

)

. (39)

This connection leads to an alternative 2×2 Lax pair for these discrete KP reductions and
their associated U-systems, as well as linking the Liouville integrability of the latter with
that of the corresponding discrete KdV reduction.

Observe that if the (L,M) reduction is imposed on (39), then we have

Vk+L,l+M = Vk,l =⇒ Vk,l = vm, m = lL− kM,

and we can write the following ordinary difference equation in terms of the travelling wave
variable m:

vm+L+M − vm = α

(

1

vm+L
−

1

vm+M

)

. (40)

Remark 4.1. Up to sending vm → 1/vm and redefining α, the (L,M) reduction and the
(L,−M) reduction of (39) are equivalent. The parameter α can be removed by scaling.

Proposition 4.2. Suppose that

vm =
τmτm+L+M

τm+Mτm+L
(41)

is a solution of (40). Then τm satisfies the following two bilinear equations:

τm+2L+Mτm = βmτm+L+Mτm+L − ατm+2Lτm+M , βm+M = βm; (42)

τm+2M+Lτm = β ′

mτm+L+Mτm+M + ατm+2Mτm+L, β ′

m+L = β ′

m. (43)

Conversely, if τm is a solution of either (42) or (43), then vm given by (41) satisfies (40).

Proof. With (41), (40) is equivalent to either of the two equalities

τm+2L+Mτm + ατm+2Lτm+M

τm+Lτm+L+M

=
τm+2L+2Mτm+M + ατm+2L+Mτm+2M

τm+L+Mτm+L+2M

,

τm+2M+Lτm − ατm+2Mτm+L

τm+Mτm+M+L

=
τm+2M+2Lτm+L − ατm+2M+Lτm+2L

τm+M+Lτm+M+2L

,

from which the result follows.
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Remark 4.3. In Proposition 8 of [12], it was proved that the solutions of (d − 1,−1)
reductions of the lattice KdV equation (39) are Liouville integrable, using the observation
that (with α = −1) these reductions are given in terms of a tau function that satisfies the
bilinear recurrence relation

τm+d+1τm = βmτm+dτm+1 + τm+d−1τm+2,

with the coefficient βm having period d− 1. The above result extends this observation to
the general (L,M) reduction, and shows that in each case there are actually two different
bilinear equations involved.

4.1 2× 2 Lax pairs

Without loss of generality, we can assume from now on that L,M are coprime (since
otherwise the equations split into copies of systems in lower dimension). According to
Proposition 2.2, the reductions (42) and (43) of discrete KP each admit a Lax representa-
tion, with with L×L and min (L, 2M)×min (L, 2M) Lax matrices respectively. However,
in these cases there is also a 2× 2 Lax representation, derived from the Lax representation
of the lattice KdV equation.

The lattice KdV equation (39) admits a zero curvature representation with a 2×2 Lax
pair. Specifically, equation (39) is equivalent to

L(Vk,l+1, Vk+1,l+1, λ)M(Vk,l, λ) = M(Vk+1,l, λ)L(Vk,l, Vk+1,l, λ), (44)

where λ is a spectral parameter and

L(V,W, λ) =

(

V − α
W

λ
1 0

)

, M(V, λ) =

(

V λ
1 α

V

)

. (45)

It is well known that the Lax representation of quadrilateral lattice equations gives rise
to Lax representations of their periodic reductions (see e.g. [15] and references). Hence, a
2×2 Lax representation can be obtained for the (L,M) periodic reduction (40) and conse-
quently for the corresponding discrete KP reductions, as well as their associated U-systems.
First integrals of these systems are derived from the spectrum of their corresponding mon-
odromy matrix.

4.2 Example: a discrete KdV reduction of order 5

The Liouville integrability of (40) in the case L = 4,M = 1 follows from the results of [12],
so here we consider a different example of order 5, namely the case L = 3,M = 2. In the
latter case, the recurrences (42) and (43) become

τm+8τm = −ατm+6τm+2 − βmτm+3τm+5, βm+2 = βm, (46)

τm+7τm = ατm+4τm+3 + β ′

mτm+2τm+5, β ′

m+3 = β ′

m, (47)
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respectively.
In each case, the associated exchange matrix B has rank 4. The corresponding U-

systems are obtained by setting

um =
τmτm+4

τm+1τm+3
, u′

m =
τmτm+3

τm+1τm+2
, (48)

to get

umum+1um+2um+3um+4 = βm − αum+2, (49)

u′

mu
′

m+1(u
′

m+2)
2u′

m+3u
′

m+4 = β ′

mu
′

m+2 + α (50)

respectively. By Theorem [6], the latter are equivalent to iteration of 4-dimensional bira-

tional symplectic maps ϕ̂
(j)
m , j = 1, 2, where

ϕ̂
(1)
0 (u0, u1, u2, u3) =

(

u1, u2, u3,
β0 − αu2

u0u1u2u3

)

,

ϕ̂
(2)
0 (u′

0, u
′

1, u
′

2, u
′

3) =

(

u′

1, u
′

2, u
′

3,
α + β ′

0u
′

2

u′

0u
′

1(u
′

2)
2u′

3

)

,

respectively (we have just written the case m = 0), with the nondegenerate Poisson bracket
being specified by

{uj, uj+1}1 = 0, {uj, uj+2}1 = ujuj+2, {uj, uj+1}1 = −ujuj+3 (51)

for the first one and

{u′

j, u
′

j+1}2 = 0, {u′

j, u
′

j+2}2 = u′

ju
′

j+2, {u′

j, u
′

j+1}2 = −u′

ju
′

j+3 (52)

for the second. Observe that the two brackets (51) and (52) are identical.
On the other hand, from Proposition 4.2, by setting

vj =
τjτj+5

τj+2τj+3
, (53)

the discrete KP reductions (46) and (47) both yield the (3, 2) periodic reduction of the
lattice KdV equation, which is equivalent to the 5-dimensional birational map

(v0, v1, v2, v3, v4) 7→

(

v1, v2, v3, v4, v0 + α
( 1

v3
−

1

v2

)

)

. (54)

Lax representation and first integrals: Corollary 2.2 produces a 3× 3 Lax represen-
tation for both (46) and (47), and for their corresponding U-systems (49) and (50), with
a trigonal spectral curve. However, it is more straightforward to apply the (3,2) periodic
reduction to the discrete KdV Lax pair (44), directly giving a Lax pair for (54) in terms
of the coordinates vj , which can then be rewritten in terms of the uj or u

′

j as desired.
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The monodromy matrix of the (3, 2) KdV periodic reduction, obtained by the staircase
method [15], is

M(v0, v1, v2, v3, v4;λ) = M(v3)L(v1, v3)M(v4)L(v2, v4)L(v0, v2),

where the 2× 2 matrices M and L are given in (45). The map (54) satisfies the equation

M(v0, v1, v2, v3, v4)L = LM(v1, v2, v3, v4, v5),

where

L = L(v0, v2)
−1M(v5)L(v3, v5)L(v1, v3) and v5 = v0 + α

(

1

v3
−

1

v2

)

.

The associated hyperelliptic spectral curve in the (λ, µ) plane is of genus 2, being given by

det(M(λ)− µI) ≡ µ2 − Π(λ)µ− λ3(λ− α)2 = 0,

where the trace of the monodromy matrix M(λ) = M(v0, v1, v2, v3, v4;λ) has the form

Π(λ) = H2λ
2 +H1λ+H0.

From the trace of the monodromy matrix we find three functionally independent first
integrals for the map (54), which are conveniently chosen as

I1 = Π(0) = H0, I2 = H2, I3 = Π(α) = H2α
2 +H1α +H0,

so that they have the explicit form

I1 = −
1

v2
(α− v0v2)(α− v1v3)(α− v2v4),

I2 = v0 + v1 + v2 + v3 + v4 −
α

v2
,

I3 = v2(α + v0v3)(α + v1v4).

In order to obtain the corresponding first integrals in terms of the variables for the two
different U-systems, we compare (48) with (53) to see that we can write the variables for
(54) in two different ways, as

vm = umum+1 = u′

mu
′

m+1u
′

m+2.

Now to pull back I1, I2, I3 to the first U-system, we must iterate the recurrence (49) to get

v0 = u0u1, v1 = u1u2, v2 = u2u3, v3 =
β0 − αu2

u0u1u2
, v4 =

β1 − αu3

u1u2u3
. (55)

In that case, we find that I1, I2 are two independent functions of the uj, while pulling back
the third integral yields

I3 = β0β1, (56)
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which is a trivial first integral for the symplectic map ϕ̂
(1)
m . Similarly, by iterating the

second U-system (49), we obtain

v0 = u′

0u
′

1u
′

2, v1 = u′

1u
′

2u
′

3, v2 =
α + β ′

0u
′

2

u′

0u
′

1u
′

2

, (57)

v3 =
α + β ′

1u
′

3

u′

1u
′

2u
′

3

, v4 =
αβ ′

2 + β ′

0β
′

2u
′

2 + αu′

0u
′

1(u
′

2)
2u′

3

αu′

2u
′

3 + β ′

0(u
′

2)
2u′

3

.

The quantities I2, I3 pull back to two independent functions of the u′

j, while for the first

quantity we find a trivial first integral of the symplectic map ϕ̂
(2)
m , namely

I1 = β ′

0β
′

1β
′

2. (58)

Bi-Hamiltonian structure and Liouville integrability: From (the pullbacks of) the
formulae for I1, I2 one can verify directly that, as functions of uj, they are in involution

with respect to the bracket (51), which implies that the symplectic map ϕ̂
(1)
m is Liouville

integrable. Similarly, one can check that the same conclusion holds for ϕ̂
(2)
m , by using (52)

to verify that {I2, I3}2 = 0. However, there is another way to obtain this result, by lifting
the brackets for both U-systems to obtain two different Poisson structures for (54).

From the first U-system, using the formulae (55) we find that the Poisson bracket { , }1
in (51) pushes forward to a bracket in 5 dimensions (denoted here by the same symbol):

{v0, v1}1 = v0v1, {v0, v2}1 = v0v2,
{v0, v3}1 = −v0v3 − α, {v0, v4}1 = −v0v4.

(59)

The quantities I1, I2, I3 found from the trace of the monodromy matrix are in involution
with respect to the bracket (59). This Poisson bracket has rank 4, with I3 as a Casimir
(this follows from the expression (56): a constant function of the uj must lift to a Casimir).

Similarly, pushing forward the second U-system, using the formulae (57) we find that
the Poisson bracket in (52) lifts to

{v0, v1}2 = v0v1, {v0, v2}2 = v0v2 − α,

{v0, v3}2 = −v0v3, {v0, v4}2 = −v0v4 +
α2

v22
.

(60)

Once again, this is a bracket of rank 4, with I1 as a Casimir (as follows from (58) above).
One can show directly that I2, I3 provide two more independent commuting functions of
vj with respect to the bracket { , }2 given by (60).

It turns out that these two brackets for (54) are compatible, in the sense that their sum
(and hence any linear combination) also satisfies the Jacobi identity, so is also a Poisson
bracket. In fact, we observe that the difference of the Poisson brackets

{., .}3 = {., .}1 − {., .}2 (61)

coincides (under the transformation vi 7→
1
vi

and by inserting the parameter α) with the
one that is derived from the Lagrangian structure of the lattice KdV equation, recently
presented in [22]. Thus we see that the map (54) has a bi-Hamiltonian structure, and the
sequence of first integrals I1, I2, I3 gives a finite Lenard-Magri chain.
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4.3 Comments on the integrability of the general case

In the case M = 1, the Liouville integrability of (L, 1) periodic reductions of discrete KdV
was proved in [12]. However, the Liouville integrability for the case of general (L,M) will be
the subject of a future publication, and we only comment on it briefly here. The Liouville
integrability of the corresponding U-systems follows from the Liouville integrability of the
(L,M) periodic reduction of the lattice KdV equation (and vice-versa). For all (L,M) we
find that the two U-systems are of the same dimension and preserve the same log-canonical
symplectic structure.

For L + M odd, we can always find two compatible Poisson structures { , }1,2 for the
variables vm, whose difference (61) coincides with the bracket obtained from a discrete
Lagrangian in [22]. Here we just state the corresponding theorem.

Theorem 4.4. Let L,M be coprime with L > M > 1 and L +M odd. For 0 ≤ i < j ≤
L+M − 1, the brackets

{vi, vj}1 =

{

cj−ivivj , j − i 6= L

cj−ivivj + cNα, j − i = L
,

{vi, vj}2 =

{

cj−ivivj , j − i 6= kM

cj−ivivj +
cM (−α)k

p(vM+i,v2M+i,...,v(k−1)M+i)
, j − i = kM,

with p(vM , v2M , . . . , v(k−1)M) = 1, for k = 1, p(vM , v2M , . . . , v(k−1)M) =
∏k−1

l=1 v2lM , for
k > 1, and

ck = (−1)h, with h =
k

M
mod (N +M), (62)

for k = 1, . . . , L + M − 1, define two compatible Poisson structures on CL+M of rank
L+M − 1 preserved by the map

(v0, v1, . . . , vL+M−1) 7→

(

v1, v2, . . . , v0 + α
( 1

vL
−

1

vM

)

)

, (63)

corresponding to the (L,M) periodic reduction of the lattice KdV equation.

The proof of this theorem as well as the detailed description of the U-systems in the
general case will be presented elsewhere.

In the case where L + M is even the situation is slightly different. In this case the
U-systems sre L+M − 2 dimensional maps but can be lifted to a space of one dimension
higher. In this (L+M−1)-dimensional space there is an invariant bi-Poisson structure that
ensures Liouville integrability. The integrability of the lifted maps implies the integrability
of the initial U-systems as well as that of the corresponding (L,M) reductions of the
discrete KdV equation.
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5 Conclusions

We have described the general properties of plane wave reductions of the Hirota-Miwa
(discrete KP) equation (1), and have considered two special families of such reductions
that correspond to travelling waves of certain lattice equations, of discrete Toda and dis-
crete KdV type, respectively. Both of these families admit a 2 × 2 Lax representation
that gives rise to hyperelliptic spectral curves, whose coefficients are first integrals of the
corresponding maps. This is in addition to the Lax pairs obtained in Corollary 2.2, which
are generally of larger size.

The plane wave reductions of the discrete KP equation yield finite genus solutions,
and in that case the equation (1) itself corresponds to the Fay trisecant identity for the
theta function of the spectral curve [23]. The Fay identity can also be used to derive
corresponding solutions of continuous soliton equations via a limiting process [20, 21], so
in a sense the discrete Hirota equation (1) is more fundamental than the continuous ones.

It is interesting to note that the discrete Toda and discrete KdV families exhaust all
the discrete KP reductions up to order 7, i.e. all the three-term Somos recurrences up to
Somos-7. If we proceed to higher order discrete KP reductions, then new families appear.
For example, the three-term Somos-8 recurrence

τm+8τm = ατm+7τm+1 + βτm+5τm+3

is neither of Toda nor of KdV type: it belongs to a different family of recurrences associated
with periodic reductions of a Boussinesq type lattice equation. Concerning three-term
Somos-9 and Somos-10 recurrences, all cases except one are included in the Toda, KdV
or Boussinesq families. Further details of the Liouville integrable maps arising from these
and the other families will be the subject of future work.
Acknowledgements: Some of these results first appeared in the PhD thesis [25], which
was supported by EPSRC studentship EP/P50421X/1. ANWH is supported by EPSRC
fellowship EP/M004333/1.
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