
The Four Rs of Programming Language Design

Dominic Orchard
Computer Laboratory, University of Cambridge, UK

dominic.orchard@cl.cam.ac.uk

Categories and Subject Descriptors D.1.0 [Software]: Program-
ming Techniques—General; I.0 [Computing Methodologies]: GEN-
ERAL

General Terms Design, Languages

Keywords Programming language design, The Four Rs, Domain-
specific languages

“I can learn the poor things reading, writing, and ’rithmetic,
and counting as far as the rule of three, which is just as much
as the likes of them require;” Lawrie Todd: Or the Settlers
in the Woods, Galt (1832) [4].

˜̃˜
Many will be familiar with the old adage that at the core of

any child’s education should be the three Rs: reading, writing,
and ’rithmetic. The phrase, which appeared first in print in 1825
[12] has been appropriated and parodied at length (“read, reason,
recite”, “reduce, reuse, recycle”, etc.). Each permutation has the
same purpose: to express succinctly the core tenets of an approach
or philosophy.

The four Rs of programming language design is another such
parody of this old phrase, providing a rubric, or framework, for
the design and evaluation of effective programming languages and
language features.

Since the very first programming language back in the 1940s
[14] thousands of programming languages have been developed,
representing a broad spectrum of paradigms, perspectives, and
philosophies. And yet, there is no single language which is “all
things to all people”.

The four Rs were born out of trying to answer a number of ques-
tions about the nature of programming languages and programming
language design: what makes a programming language effective or
ineffective? What should be the core aims of a language designer?
How should programming languages and features be compared?
Why is there no single “perfect” language? The four Rs go some-
way towards answering these questions.

Before I reveal the four Rs, let’s first consider some more foun-
dational questions:

Why programming languages? The development of program-
ming languages has greatly aided software engineering. As hard-
ware and software have grown increasingly complex, programming

This is a minor revision of the published paper. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee.
Onward! 2011 October 22–27, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0941-7/11/10. . . $10.00

languages have developed to manage this complexity more effec-
tively, aiding us in expressing ideas and solving increasingly com-
plex problems.

Programming languages provide abstraction, by both hiding de-
tails and allowing components to be reused, allowing programmers
to more effectively manage complexity in software and hardware.
While it is in principle possible for any program to be written in
machine code, it’s hard to imagine some of the larger computer
programs we interact with daily being developed in such a way. By
building layers of abstraction with languages, increasingly complex
systems can be constructed.

What is programming? In essence, programming is a communi-
cation process between one or more programmers and one or more
computer systems. Programming languages are the medium of this
communication.

Programming is not only a communication process, it is also a
translation process. Each participant in the programming process
has an internal language, both programmers and machines. In the
case of a machine, the internal language comprises the instructions
of the underlying hardware. In the case of a programmer, the inter-
nal language is far more nebulous, perhaps comprising natural and
formal languages, along with other incorporeal, abstract thoughts.

In any case, a programming language acts as the intermediate
language of translation between the participants. Programming is
the translation from a programmer’s internal language to a pro-
gramming language, and execution is the translation from the
programming language to the machine’s internal language. Mc-
Cracken, in 1957, captured some of this sentiment, saying “Pro-
gramming [...] is basically a process of translating from the lan-
guage convenient to human beings to the language convenient
to the computer” where the convenient language for humans was
“mathematics or English statements of decisions to be made” [8].
Here we consider the “language convenient to human beings” to be
programming languages, bridging the gap between our ideas and
the underlying, low-level instructions of a computer system.

Sometimes, programming is more exploration than communi-
cation. In which case, a programmer explores and learns about a
problem by translating their internal thoughts into a program and
then re-internalising the result to gain further insight. Again the
process is translational.

It is from this view of programming, as a translation, communi-
cation, and exploration process, that the four Rs are sculpted.

A programming language should improve the
four Rs of programs: reading, writing, running,
and reasoning.

These four tenets are both guidelines for language design and
research, and criteria for judging a language. They are by no means
mutually exclusive, independent, or orthogonal, but are all inter-
related. They are also not designed to subsume or replace the

plethora of excellent books and research papers on the subject of
programming language design.

Reading and writing are complementary, representing effective
translation from a programmer’s internal, mental language to a pro-
gramming language (writing) and vice versa (reading). Running is
the execution process (i.e. “running” a program) which is the ef-
fective translation from a programming language to the internal
language of some hardware system. Reasoning covers several ac-
tivities, such as reasoning about program correctness or resource
usage, but is also an intermediate process, carried out by both pro-
grammers and machines, aiding reading/writing for humans and
running for machines.

There is much that could be said for each of these aspects. In
the following I cover a few key points for each, but the concepts
covered within each are by no means exhaustive and I strongly
encourage the reader to think of their own examples and ideas and
to see how they fit within the rubric of the four Rs.

Writing and reading are inextricably linked, thus most of what I
will say about writing and reading is applicable to the other. I begin
with writing, since this act must precede reading.

Writing

“Don’t you see that the whole aim of Newspeak is to narrow
the range of thought?” [...]

“In Oceania at the present day, Science, in the old sense,
has almost ceased to exist. In Newspeak there is no word for
‘Science.”’ 1984, George Orwell (1941)

˜̃˜
In linguistics, the Sapir-Whorf hypothesis embodies the concept

of linguistic relativity, postulating that there is a relationship be-
tween the characteristics of a language and a person’s understand-
ing of the world. At the limit of this hypothesis is the concept that
“the structure of anyone’s native language strongly influences or
fully determines the world-view he will acquire as he learns the
language.” [1]. The concept is strongly applicable to programming
languages (though many question the extent to which it applies to
natural languages).

Just as Newspeak in Orwell’s 1984 restricts the thoughts of
the citizens of Oceania, so too our programming languages restrict
the kinds of programs we can think about, or at least write down.
Depending on the program, a programming language may facilitate
or hinder the process or writing. Ideally, writing should be as
natural as possible, such that one can easily express their ideas with
greater productivity.

When designing a language we must pay particular attention to
the kinds of programs that will be most natural in the language, and
conversely those that will be least natural. For example, languages
with algebraic data structures and pattern matching – such as ML,
Haskell, Scala – are particularly well suited for writing compilers
and interpreters, due to the ease with which tree data-structures can
be manipulated. However, efficient systems programming can be
difficult in such languages because of the lack of fine-grained mem-
ory management (particularly in Haskell with lazy evaluation).

Another aspect of language to be considered for writability is
how succinct or verbose is the syntax of a language. A verbose lan-
guage might adversely affect productivity by increasing the amount
of time it takes to write a program. Iverson calls this issue economy
within a language, saying, “The utility of a language as a tool of
thought increases with the range of topics it can treat, but decreases
with the amount of vocabulary and the complexity of grammatical
rules which the user must keep in mind.” [6]. A verbose or large
language might significantly impede a programmer’s progress.

However, a language which is overly succinct might be just as
unproductive as a verbose language, if not more. As an extreme

example, consider the SKI calculus which has just three functional
combinators: S, K, and I. The language is extremely laconic, yet
writing anything but a trivial program by hand is extremely tedious
and error-prone.

A useful programming concept, related to that of verbosity-vs-
succinctness, is that of abstraction, or parameterisability. A lan-
guage which provides many opportunities for abstraction can be
much more effective as a tool for managing complexity, through
reuse and detail hiding.

Consider a program that calculates the length of a list. A lan-
guage which lacks the ability to abstract the concept of a list from
its element type might require several instances of the length func-
tion for lists of different types (such as in Pascal). However, a lan-
guage that supports some form of type parameterisation or poly-
morphism may permit just one definition that can be reused for any
list type. Much effort is put into finding new forms of abstraction in
programming which can greatly improve programmer productivity.

How intuitive a language’s syntax is can also have a big effect
on writing. A syntax which is so unintuitive that the programmer
cannot remember how a particular construct in the language oper-
ates, or misunderstands how it operates, poses a big challenge to
productivity in writing, as well as reading.

Reading and writing are complimentary. Again, much of what
is suggested for writing is applicable to reading and vice versa.

Reading

“You get used to it. I don’t even see the code. All I see is
blond, brunette, red-head...” Cypher, The Matrix (1999)

˜̃˜
It is often said that a program is written once, but read a thou-

sand times. Furthermore, a program (or part of a program) is often
written by one person but read by many. Such is the scale of many
modern programming tasks, and development teams, that this situ-
ations is inescapable. Even small-scale projects may be accessed by
a large number of people, particularly in open-source communities.
But how easy is it for us to read a program written by another or
even ourselves? A programmer cannot be productive if they must
be “part historian, part detective, and part clairvoyant” [2] all at
once. Readability of programs is important for productive program-
ming, both individually and in teams. Depending on the program,
the source programming language may facilitate or hinder this pro-
cess of translating a program into one’s own internal language.

Ultimately, a programming language must aid human compre-
hension of a program, such that the programmer has some idea of
what it is that the program expresses or computes.

For Cypher, he became so acquainted with the source language
of The Matrix (the green-scrolling glyphs) that he no longer saw the
code per se, but was able to effortlessly interpret what it represented
(unfortunately with a male chauvinist slant). Ideally, our languages
should be equally transparent, and the task of acquaintance and
fluency short.

Abstraction, discussed for writing, can facilitate reading as it
provides structure to a program such that it is easily navigated and
understood by comprehension of decomposed sub-programs.

How intuitive a language is again affects writing and reading.
To improve readability a language might use illustrative keywords,
non-overloaded syntax, and have high compositionality by provid-
ing context-independent constructions.

As a very simple and obvious example of non-intuitive syntax,
consider an if-then-else construction with the semantics:

Jif e1 then e2 else e3K =

{
Je3K if Je1K
Je2K otherwise

The branching behaviour here is the opposite of the implied be-
haviour of the natural language reading of the construction. The

example is rather obvious and extreme, but demonstrates that syn-
tax can be non-intuitive.

Running Reading and writing concerned the translation of con-
cepts in the mind of a programmer into a programming language,
and vice versa. Running involves the other type of participant in the
programming process: machines. Running thus requires a program
to be translated into the internal language of the machine (perhaps
via some other layers of abstraction e.g. translate a program into
LLVM byte-code which is then translated into x86 assembly code).

Performance and resource usage are common concerns for pro-
grammers. In some cases, minimal resource usage is desirable, but
in other cases predictability is important (e.g. for scheduling and
resource management).

The translation distance between a programming language and
the hardware language measures the disparity between the compu-
tational models of each. A low-level language has a computational
model that is close to the architectural model; a high-level language
has a computational model that is further away from the hardware.

For example, C is considered a low-level language because its
computational model is close to the standard von-Neumann archi-
tectural model. The translation distance is relatively small com-
pared to, say, the translation distance between Prolog and von-
Neumann architectures. Since C is a low-level language (with re-
spect to von-Neumann architectures) it is easier to translate a pro-
gram to the hardware; translation is closer to a one-to-one map-
ping. One consequence of a more direct mapping is that there is
a more predictable cost model for the language, which helps the
programmer to understand the resource costs of their program. An-
other consequence of a more direct mapping is that a certain degree
of performance can be achieved with relatively little effort in the
compilation/interpretation step.

However, as a result of their proximity to a particular architec-
tural model, lower-level languages often suffer from poor portabil-
ity to other architectures and poor scalability, for example, in scal-
ing from one to n processing units. Programs written in a language
which is high-level and hardware agnostic can be easier to port to
different architectures, and to scale to different resources and hard-
ware configurations, because the programs have not yet made any
commitment to any particular, concrete implementation.

Compared to a lower-level language, a higher-level language
will likely offer various language invariants and program proper-
ties can be more useful for providing significant improvements in
the efficiency of a program, even asymptotic changes in complexity.
Infelicities of a language, or the presence of implementational de-
tails, may obscure program properties from the evaluation system,
or even from the programmer. Program properties may be inferred
via analysis, but often these properties are in general undecidable,
requiring some form of safe approximation for the analysis. Ap-
proximations may result in too few optimisation and perhaps an
unpredictable cost model, where the compiler becomes an impene-
trable, petulant, and tempestuous black-box which the programmer
must appease in order for optimisation to be granted.

A well-designed language might instead guarantee certain pro-
gram invariants (for example purity, pointer safety, or no out-of-
bounds access), or encode program properties in a clear way that is
decidably inferred, thus guaranteeing efficient evaluation by apply-
ing certain optimisations. Using program properties and language
invariants to provide more performant programs is an act of reason-
ing by the compiler/interpreter, thus we have begun to stray into the
territory of the final aspect of the four Rs.

Reasoning

“In the long run it is not advisable to write large con-
current programs in machine-oriented language that per-
mit unrestricted use of store locations and their addresses.

There is just no way we will be able to make such pro-
grams reliable (even with the help of complicated hardware
mechanisms).” The Architecture of Concurrent Programs,
Hansen (1977) [5]

˜̃˜
Reasoning incorporates many activities and can be implicit, as

a kind of meta-process, facilitating reading, writing, and running.
The ability of a programmer to reason about a program, to un-
derstand exactly what it does and how it does it, will affect the
readability and writability of the language. The ability of a com-
piler/interpreter to reason about a program will affect the imple-
mentation provided and the kinds of optimisation that can be ap-
plied to improve resource usage.

Reasoning can also be a separate, intentional process, where a
programmer explicitly reasons about the correctness of a program
or about its resource usage.

Reasoning about program correctness has been at the forefront
of computer scientist’s minds ever since the very first programs [7].
There have been numerous costly blunders in the past that have
starkly highlighted the importance of program correctness, particu-
larly for safety critical applications (e.g. medical appliances, trans-
port). Unfortunately, programming languages may obfuscate pro-
gram (in)correctness; consider for example difficulties in reason-
ing about aliasing given a language with first-class pointers and
arbitrary pointer arithmetic. As Hansen points out, these language
features make it even harder to reason about concurrent programs,
which are in high demand given the trend towards increasingly par-
allel architectures.

A well-designed language might prevent programmer’s from
writing programs with certain kinds of bugs. For example, static
typing has been a very successful method of eliminating large
classes of programming errors at compile-time (hence the slogan:
“well-typed programs can’t go wrong” [9]).

In some cases reasoning may be automated, but in others it may
rely on human efforts. In both, the design of the language affects
the amount of reasoning that can be reasonably performed.

As mentioned for running, compiler analysis is a form of rea-
soning on the part of the machine, where a program is reasoned
about in order to decide how to efficiently execute the program. A
language with few useful invariants requires a significant reason-
ing effort on the part of the compiler/interpreter in order to perform
higher-level program transformations and optimisation. Since such
reasoning will likely be undecidable, a decidable approximation is
required, which may complicate the cost model of the language.

Of course, correctness, or having a good mental cost model,
may not be primary concerns for some tasks e.g. rapid prototyping
or educational programming languages. In this case, a language
may be designed with a greater focus on other aspects, perhaps
reading and writing.

An Example Consider a language with static typing and a type
safety property – that a well-typed program will not produce any
run-time type errors. Types are assigned to expressions, either
through a type inference algorithm or explicitly by the program-
mer. A program will fail to compile if the constraints of types are
not met.

Let’s consider static typing in the rubric of the four Rs. Note,
that this is not an argument for or against static typing, but is
instead an evaluation process, considering the trade-offs between
the different core aspects of languages, embodied in the four Rs.
You can likely add your own further arguments to this list.

– Reading – Static type systems may include type declarations or
type signatures which provide a form of documentation, aiding
a reader’s comprehension of a program. The amount of infor-
mation conveyed in a type varies depending on the complexity

of a type system. For example, some advanced type systems can
describe a range of values within a type (see refinement types),
thus providing even more detailed information to the program-
mer. However, as type systems become more complex the type
errors that are produced become increasingly esoteric and hard
to understand.

– Writing – The type of an expression can give a contract or spec-
ification from which to write. In some languages, for exam-
ple Haskell, the type of an expression might uniquely deter-
mine its value (for example, there is only one function of type
∀a.a→ a, the identity function). However, static typing is nec-
essarily an approximate analysis, thus some safe programs are
excluded. As a simple example, consider the following:

if 〈complex-always-true-expression〉 then 0 else "hello"

This program will likely cause a type error under many static
type systems, even though the false-branch is never taken at
run-time.
For rapid prototyping and fast exploration, static typing can be
extremely inconvenient. Many people find it does not provide
enough benefits to make it worthwhile, preferring instead the
ability to write programs quickly without planning the types
and data structures first. Systems such as gradual typing try to
incorporate both the guarantees of static typing, with the ease
of writing provided by dynamic languages.

– Running – Static typing allows run-time type checks to be
removed, and by statically inferring the representation of a
value various other kinds of storage or alignment optimisations
can be applied. Further, as the types of operations are known,
and are strict, the domains and ranges of computations can be
matched, allowing equational rewriting to be safely applied.

– Reasoning – Static typing has proven to be an extremely suc-
cessful form of verification in programming and can eliminate
whole classes of run-time errors. Eliminating these errors, and
restricting the kind of programs that can be written, greatly
improves reasoning abilities for a language, and consequently
greatly improves reading, writing, and running. By restricting
the sets of values that a computation produces, a programmer
has more information about what a program does, as various
cases are statically ruled out.

Trade-offs and Domain-Specific Languages Since the four Rs
are non-orthogonal, a careful balance must be struck, perhaps with
certain inevitable trade-offs. A language design might focus on one,
two, or three of the tenets, but we should be aware of the effect,
positive or negative, on the other aspects.

For example, a high-level language might be easy to read, write,
and reason about the correctness of, but could be difficult to run
efficiently and predictably, thus difficult for the programmer to
develop a good mental cost model for the language.

Additionally, a language might enhance some of the four Rs, but
only for a small subset of programs. As discussed, certain classes
of program are natural to express in a language, but another class
of program might be equally unnatural. Language designers should
be aware of this issue and consider for different classes of program
which of four Rs the language promotes or inhibits.

In some cases it is appropriate to design a language to target a
particular class of programs, providing a domain-specific language
[13]. With a domain-specific language it is often possible to im-
prove all of the four Rs at once, but only for a small class of pro-
grams. The last example here will be of a domain-specific language.

Another Example This example is from my own work on de-
signing a domain-specific language, called Ypnos, for data-parallel
array programming, mainly for scientific computing [10]. It is pri-

marily a pure functional language with respect to input/output side-
effects and state, which is an extremely useful language invariant
for parallel programming. Secondly it has no general-indexing op-
eration on arrays. Instead, relative indexing is provided by a special
form of pattern-matching, called a grid pattern, that describes data
access on arrays without any integer indices. Grid patterns provide
variable bindings to values in an array, where the relative lexical
position of variable binders to a current element binder determines
to which element they are bound.

The following snippet defines and applies a function f in Yp-
nos, which is used to compute the average of an element and its
neighbours:

f | _ t _ | = (t+l+c+r+b)/5.0
| l @c r |
| _ b _ |

arrayB = run f arrayA

The code between f and = is a grid pattern, where five variables, t,
l, r, b, and c are bound. Underscore is a wild-card pattern.

The code is analogous to the following C code:

for (i = 1; i < (n-1); i++) {
for (j = 1; j < (m-1); j++) {

c = A[i][j];
t = A[i][j-1];
b = A[i][j+1];
l = A[i-1][j];
r = A[i+1][j];
B[i][j] = (t+l+c+r+b)/5.0;

}
}

Thus, f in the Ypnos program is a parameter to the higher-order
run combinator, which applies the function at every index within
the array. The @ symbol in the grid pattern denotes which variable
is to be bound to the current element (i.e. the index [i][j] in the
C code). The indices of the other binders are calculated based on
their relative position to the current element. For example, in this
grid pattern, t is one line above the current element and is in the
same column, thus it binds the element at index [i][j-1]; l is on
the same line but in the preceding column, thus it binds the element
at index [i-1][j], and so on.

The only way to write elements to an array is via the run
combinator, and a few other related combinators with a similar
operation, which computes values for an entire array at once.

The language is very restricted, but within this domain it is
powerful and effective as we’ll see by considering it within the
rubric of the four Rs.

– Reading – The grid pattern syntax makes it easy to read and un-
derstand programs which have much array-based data access, as
code is free from indexing expressions which, due to their rel-
ative similarity to each other, can clutter code and confuse the
reader. Ypnos programs are free from a commitment to a partic-
ular implementation, allowing the actual mathematical problem
and solution to be focused on and understood, as opposed to the
implementational details of a particular solution.
One criticism of grid patterns might be that binding each ele-
ment to a variable adds a layer of indirection, as a variable must
be “looked-up” in the grid pattern to ascertain which element it
binds to.

– Writing – The syntax of Ypnos is very small, with just a handful
of combinators, the grid pattern syntax, and another special syn-
tax for specifying boundary conditions. The grid pattern syntax
is easy to write (up to a certain pattern size, perhaps greater than
a 7 × 7 stencil is awkward), and there is less chance for mak-
ing a mistake compared to using integer indexes on arrays. The

language is hardware agnostic, and thus the programmer does
not have to consider architectural or implementational details.

– Running – Due to the lack of side effects, and the lack of
random updates, a parallel execution can be guaranteed. Due to
the very restricted grid pattern syntax, the data access pattern of
a grid can be statically determined, without any analysis other
than parsing. This decidable, static data-access information is
used to enforce the invariant that a well-typed Ypnos program
cannot cause out-of-bounds errors thus run-time bounds checks
can be eliminated [11]. Since parallelisation and bounds-check
elimination is guaranteed by the language invariants, execution
of Ypnos programs is not only efficient, but also predictable.
The static grid pattern information also permits various other
optimisations such as data layout optimisations.

– Reasoning – The lack of side effects, the grid pattern syntax,
and the static type-system, provide the programmer with var-
ious correctness guarantees (including the out-of-bounds free
property mentioned above). It is then easier to reason about the
mathematical numerical correctness of the specific problem at
hand as the language is free from other sources of error that
might affect numerical accuracy.

By its restriction to a particular domain, Ypnos can improve
the four Rs for structured, aggregate, array programming. If a
programmer tries to write a program in Ypnos that is not within the
domain they will quickly find themselves writing ugly code that
is slow to execute. Thus the language gives a guide as to what is
efficient: if it easy to write down, it will be efficiently executed.

More Rs or [A-Z]s? There are surely many other important as-
pects of programming language design which have not been men-
tioned here which you might have in mind. The four Rs are suffi-
ciently broad that other aspects fit within this framework, usually
having an affect on, or relying upon, more than one of the tenets.

For example, refactoring was suggested to me as another pos-
sible R. Refactoring fits within the four Rs, providing a way to im-
prove the readability of a program, and the writability of future pro-
grams through exposing common code. The ability of a language to
be refactored relies on other properties of the language, for exam-
ple, how easy is it reason about the equivalence of two programs?

Learnability – i.e. how easily, or how quickly, a language can
be learnt – is another aspect of programming language design that
has been suggested. Learnability fits into the four Rs as part of
the ability of a programmer to read, write, and reason about their
programs. A language that is hard to learn will be, at least initially,
hard to read, write, and reason about.

I would encourage the reader to think of other useful aspects of
programming languages and see how they fit into the four Rs.

Concluding Remarks

“Everything becomes clearer once you express it in the
proper language.” Schild’s Ladder, Egan (2004) [3]

˜̃˜
Language designers are forever searching for the “proper lan-

guage” for a domain, task, or class of programs, such that every-
thing – such as correctness, optimisations, abstractions, high-level
structures, solutions to a problem, etc. – becomes clearer when the
language is used. The four Rs capture the key aspects of program-
ming language’s affect on programs, in its ability to improve read-
ing, writing, running, and reasoning.

These are four important areas that we need to consider when
designing effective languages. The four Rs are not meant to argue
whether a language is “good” or “bad”, or to unilaterally promote
one over the other. Instead, the four Rs provide a framework for

thinking critically about the effectiveness of languages and lan-
guage features.

Trade-offs between the four Rs have given a broad and beau-
tiful spectrum of programming languages over the last 70 years. I
await further languages with excitement and hope that with better
languages everything might become clearer.

Acknowledgments I’d like to thank William Cook, Richard
Gabriel, David West, and the rest of the participants at the Onward!
2011 Essay workshop for their advice, discussions, and feedback.
Thanks are also due to Ellie Beagley, Robin Message, Alan My-
croft, Tomas Petricek, and James Willmoth for helpful discussions
and comments on a draft of this essay, and to the Cambridge Pro-
gramming Research Group for stimulating discussions.

Any remaining infelicities and errors are entirely my own.

References
[1] BROWN, R. Reference: in memorial tribute to Eric Lenneberg. Cog-

nition 4 (1976), 125–154.
[2] CORBI, T. Program understanding: Challenge for the 1990s. IBM

Systems Journal 28, 2 (1989), 294–306.
[3] EGAN, G. Schild’s Ladder. HarperCollins, 2004.
[4] GALT, J. Lawrie Todd: Or the Settlers in the Woods. Lawrie Todd:

Or the Settlers in the Woods. Richard Bentley, 1832.
[5] HANSEN, P. The architecture of concurrent programs. Prentice-Hall,

Inc., 1977.
[6] IVERSON, K. Notation as a tool of thought. ACM SIGAPL APL Quote

Quad 35, 1-2 (2007), 2–31.
[7] JONES, C. The early search for tractable ways of reasoning about

programs. Annals of the History of Computing, IEEE 25, 2 (2003),
26–49.

[8] MCCRACKEN, D. Digital computer programming. John Wiley &
Sons, 1957.

[9] MILNER, R. A theory of type polymorphism in programming. Journal
of computer and system sciences 17, 3 (1978), 348–375.

[10] ORCHARD, D., BOLINGBROKE, M., AND MYCROFT, A. Ypnos:
Declarative, Parallel Structured Grid Programming. In Proceedings of
the 5th ACM SIGPLAN workshop on Declarative aspects of multicore
programming (2010), ACM, pp. 15–24.

[11] ORCHARD, D., AND MYCROFT, A. Efficient and Correct Stencil
Computation via Pattern Matching and Static Typing. Electronic
Proceedings in Theoretical Computer Science 66 (2011), 68–92.

[12] TIMBS, J. The Mirror of literature, amusement, and instruction, vol. 5.
J. Limbird, 1825.

[13] VAN DEURSEN, A., KLINT, P., AND VISSER, J. Domain-specific
languages: An annotated bibliography. ACM Sigplan Nortices 35, 6
(2000), 26–36.

[14] ZUSE, K. Über den allgemeinen Plankalkül als Mittel zur For-
mulierung schematisch-kombinativer Aufgaben. Archiv der Mathe-
matik 1, 6 (1948), 441–449.

