Ypnos: Declarative, Parallel Structured Grid Programming

Dominic A. Orchard

Computer Laboratory, University of
Cambridge, Cambridge, UK

dominic.orchard@cl.cam.ac.uk

Abstract

A fully automatic, compiler-driven approach to parallatisn can
result in unpredictable time and space costs for compilele.con
the other hand, a fully manual approach to parallelisatizm loe
long, tedious, prone to errors, hard to debug, and oftertaatbre-
specific. We present a declarative domain-specific languédge
nos, for expressing structured grid computations whicloerages
manual specification of causally sequential operationghart al-
lows a simple, predictable, static analysis to generatemiged,
parallel implementations. We introduce the language aodige
some discussion on the theoretical aspects of the langesgens
tics, particularly the structuring of computations arouhd cate-
gory theoretic notion of aomonad

Categoriesand Subject Descriptors D [3]: 2—Applicative (func-
tional) languages, Concurrent, distributed, and parédleguages,
Specialised application languages; BJ:[3—Concurrent pro-
gramming structures

General Terms Design, Languages, Theory

1. Introduction

Structured grids or meshesare a key computational pattern in
parallel programming [2]. In structured grid computaticastencil
function or kernel is applied to each element in an array-like
structure (which we call @rid) representing a discretised real-
world space. A stencil function computes a new element value
from the current element value and neighbouring cells. Gl
many iterations of a stencil function are performed, praciya
time series of data, until some convergence condition ishred
Structured grid programs are highly data-parallel due ratéd
dependencies between applications of a stencil function.

Many applications employ a structured grid model of computa
tion, particularly highly graphical programs and applieas in sci-
entific computing. Typical applications compute approxioms to
systems of differential equations using finite differencetmods to
simulate the behaviour of natural phenomena such as fluithmot
stress, heat, or other dynamic systems.

Given the complexity of modern software and ever chang-
ing (parallel) hardwaredomain-specific language®SLs) offer
problem or implementation specific expressivity and opgation
which cannot be achieved with more general-purpose largguag

This is a minor revision of the work to appear at DAMP’10. Tisithe author’s version
of the work. It is posted here by permission of ACM for your gmmral use. Not for
redistribution. The definitive version will appear at DAMP.

DAMP’10, January 19, 2010, Madrid, Spain.
Copyright© 2010 ACM 978-1-60558-859-9/10/01. .. $10.00

Max Bolingbroke

Computer Laboratory, University of
Cambridge, Cambridge, UK

maximilian.bolingbroke@cl.cam.ac.uk

Alan Mycroft

Computer Laboratory, University of
Cambridge, Cambridge, UK

am@cl.cam.ac.uk

Embedding DSLs within general-purpose languages provaes
inexpensive technique for implementing new languages,las e
ments of of the host language, such as syntax, semanticsmmand
plementation, can be reused [27].

This paper introduces a domain-specific declarative, fanat
language, Ypnos, for expressing structured grid comprtatiand
compiling such programs to parallel implementations. Y
currently implemented as aambedded domain-specific language
(EDSL) in the Haskell programming language and consists of a
novel syntactic extension for expressing data accessrpstta
central grid data structure, and a library of primitive gugms.

Underlying Ypnos is the category theoretic notion abanonad
(the formal dual of a monad), which characterises strudtgréd
computations and gives a framework for organising such com-
putations. In its implementation, Ypnos is parameterisgdab
comonadic data structure, from which its primitive opeyasi are
derived. Different instances of the comonadic structurevipe
different back-ends to the language.

Compared to current approaches to parallel structuredpgoid
gramming, Ypnos has the following advantages:

e Ypnos is a pure, functional, declarative language, thusathe
sence of side effects prevents the programmer writing jprogr
which are incorrect when parallelised.

e Ypnos does not require manual expression of parallelisatio
distribution, or communication like some techniques sush a
using C with MPI for parallelisation [26]. ParallelisationY p-
nos is handled by its primitive operations, thus the detonp
of a problem is not obscured by implementation details.

e Ypnos does not require complex, and in general undecidable,
dependency analyses, such as the polyhedral analysiso[1], t
facilitate automatic parallelisation due to its novel ayguh to
data access pattern expression and its strongly-typedtpes

e Ypnos has a predictable cost model as its compilation does no
require aggressive analyses and transformations. Rather,
allelisation and optimisation are available through gotged
program properties and primitive operations.

e Ypnos is not tied to a particular hardware implementation,
unlike more low-level GPU frameworks such as CUDA [11],
OpenCL [22], and Cg [19].

e Due to its restrictions, Ypnos is more simple to program with
for non-programming experts than many existing approaches

In this introduction we characterise the computationatguat
of structured grids, introduce its parallelisation, anstcdiss issues
with current solutions for parallelising structured gricbplems.
Section 2 introduces the core elements of the Ypnos language
including thesingle, independent writgsroperty of Ypnos pro-
grams. Section 3 gives further Ypnos primitives, followed &
discussion of the optimisation and parallelism providedvipnos

primitives. Small examples are given throughout, with sdore

ther examples in Section 5. Section 6 gives some informaiion

the proof-of-concept implementation, followed by a disias of

the comonadic structure of Ypnos and its back-end in Setion
An in-depth knowledge of Haskell is not required.

1.1 Structured Grid Computations

The crux of the structured grid model of computation is theliap-

tion of a stencil function to all elements of an array-likealstruc-
ture. A stencil function computes a new value for a grid eleime
based on the current value and the values of a fixed set of neigh
bouring elementdrigure 1 gives an example of a C-style program
with a 5-point stencil access pattern (as illustratedrigure 2),
computing the mean of an element’s neighbours.

while (condition) {
for (int i=0;i<N;i++){
for (int j=0;j<M;j++){
Atemp[il[j]1 = (A[i][jI+A[i+1]1[j1+A[i-11[j1+
A[il[j-11+A[i1[j+11)/5.0; } }
swap (Atemp, A); }

Figure 1. An example stencil computation in an imperative C-like
language, computing the mean of surrounding elementsay arr

Note that results are written to a temporary artesemp, such
that computation proceeds without interference betweemlyne
computed values and the values of the previous iteratioterAf
each iteratiom and Atemp are swapped (perhaps by exchanging
pointers), so that the next iteration reads from the arragtemrto
in the previous iteration, and vice-versa.

1.1.1 Parallelisation

Structured grid programs have been parallelised for decade
symmetric-multiprocessor systems (SMPs), clusters, aod n
multi-core systems by the domain decomposition technidjpaie
titioning grids into subgrids, which are distributed to pessing el-
ements for independent parallel computation. The size térecs
function’s data access pattern is usually small relativeemverall
size of a grid thus dependencies between subgrids are minima
On a distributed memory architecture, each subgrid resides

(Issue 1) Manual parallelisation is difficult to expressicgmprone,
and hard to debug.

A common manual parallelisation approach to structured jgro-
gramming uses C or FORTRAN with the Message Passing In-
terface (MPI) [26]. Partitioning, distribution, and comnication
must be programmed by hand, often resulting in mixing of algo
rithmic parts of a program with parallelisation code. Thenoel
approach becomes increasingly difficult with higher-disienal
grids, increasing numbers of grids, and more algorithmages,
sometimes taking many days or weeks of programming [21].

(Issue 2) Imperative programming languages have a highrpiate
for producing incorrect parallel programs.

Imperative programming languages are popular and atieaets
they typically offer very good sequential performance arurex
dictable cost model for execution. However unrestrictdd siffects
can result in programs which, when parallelised, are irgarr

(Issue 3) Some approaches are too hardware specific.

Frameworks such as CUDA [11], OpenCL [22], and Cg [19] ex-
press stencil computations akadersfor execution on GPUs.
Manual partitioning and distribution is generally not nesay as
shaders are automatically scheduled on GPU cores with shunk
of an input data stream. These frameworks are specific to GPU
implementation thus cannot be executed on non-GPU hardware
Another example, OpenMP, is specific to shared-memory yste
[7]. A complete rewrite is required for execution on otherveare.

(Issue 4) Automatic parallelisation in general-purposedaages
is usually undecidable & can lead to unpredictable compiede.

Automatic parallelisation requires sufficient informattito be com-
municated to the compiler about the structure and depereenc
of a program. The compiler must ascertain whether a program
fits a specified model of computation before it can parabelise
program. Automatic parallelisation of a structured griddgram
requires sufficient information about which arrays havencte

like functions applied, data access patterns, how much dayn

the local memory of a processor. Where data dependencies liecommunication is required between processors, and hoerélift

outside a subgrid, data from neighbouring subgrids is capd
at the boundaries and updated after each iteration by pmteress
communication (illustrated ifrigure 2). For multiple iterations,
data persists in local memory until the full data set is rezpli

With a shared memory model, a grid is partitioned by defining
subsets of the iteration space for each processor. Valuebea
accessed from the shared memory in other iteration spacesewh
dependencies exist between subcomputations.

i i+l i i+l i i+l

! <
[and
o o
Proc 1 N A7 Proc 2

(a) Before decomposition (b) After decomposition

Figure 2. 2D domain decomposition with a 5-point stencil

1.2 Problems with Current Approaches

We motivate our language design by looking at a number oessu
with current methods of parallel structured grid programgni

stages of a computation interact.

A fully automatic approach to parallelisation, even if sessful,
can lead to discontinuous compiler behaviour i.e. a smalhghk in
a program can result in a significant change in the topologhef
computation and its efficiency because a small change caleren
an analysis or transformation intractable. This unpredhitity can
lead to much frustration for the programmer who must fathom h
to appease the compiler.

(Issue 5) Random-access operations on arrays and arbitirary
dexing renders analysis and automatic compilation difficul

There is much work on loop dependency analysis, encomgassin
array access, for loop restructuring optimisations andlfgicom-
pilation. Given unrestricted pointer operations, aligsiand arbi-
trary array indexing, it is in general undecidable to infea& de-
pendency information for all programs. Therefore, manylyeses
require that programs adhere to a number of constraint$, asic
affineindices (indices computed from just scalar multiplicatain
indices and addition of constants).

For example, a polyhedral analysis models the iterationespa
of nested loop structures as geometric objects. A polyhedvdel
is built from static control partsof a program which adhere to a

number of restrictions: constant loop step size, affine lnmymnds,
if-statement predicates based on affine expressions, #ffiliees,
and use of functions that do not communicate using side tsffec
[1]. Many scientific computing applications do however ani
to these analysis requirements [5], although the probleéniissue
4) apply, and can be especially frustrating for novice progrens.

2. Ypnos

Ypnos is a declarative, functionallomain-specific languagéor
structured grid programming. Currently, Ypnos is impleteen
as anembeddeddomain-specific language (EDSL) in the pure,
functional programming language Haskell, benefiting frotiste
ing language syntax, semantics, abstractions, implerientand
libraries. Ypnos extends Haskell with some its own syntard a
benefits Haskell by providing an EDSL for parallel structuggid
programming. Other host-language embeddings may be din,
we find Haskell the most convenient for our purposes.

The restricted, domain-specific nature of Ypnos means ds pr
grams fit the structured grid model of computation. Additilhy)
syntactic extensions provide decidable compile-time rimfation
about a program’s data access and dependencies. Thus, YpeE®s
not require complex analyses and transformations to ifyetite
structured grid pattern in a program and to paralleliseXézetion
(addressingssue 4and5). Ypnos does not require manual parti-
tioning and communication code because its restrictedatipers
and constructions handle parallelism (addres$isge). Further-
more, the Ypnos EDSL is parameterisable by different bak-e
implementations, permitting execution on different arettures
and platforms (addressingsue 3) We use Haskell’s strong typing
to reject programs not matching the correct computatioatiem,
and to enforce absence of side effects beyond those pednitte
the back-end of Ypnos, which can hinder parallelisatiordfesis-
ing Issue 2.

This introduction to Ypnos commences with the centald
data structure.

2.1 Grids

The Grid data structure represents a finitedimensional discrete
space of values, and is parameterised ldynaensionand element
type The dimension defines the numberagsbelonging to a grid,
giving distinct identifiers to each. For example, a two-disienal

grid of floating point values of dimensiali x Y has type:

Grid (X x Y) Float

akin to a C array typ&loat [] []. We use identifiers(, Y, andZ

to denote particular dimensiong;m to range over all dimension
identifiers, andD to range over all dimension terms. A dimension
term is a type-level construction that is formed from a nurrdde
dimension identifiers and a tensor product operatiore:

D:=dim|D x D

Unlike C, Ypnos has an infinite number of two-dimensionatigri
types for some element typebecause dimension identifiers are
not equal e.gX x D # Y x D. The tensor product operation is
however associative and commutative, hedeex Do = Do x D1
andD; x (DQ X D3) = (Dl X DQ) X Ds.

The primitive functiongrid, constructs grids from a vector of
finite dimension sizes and a list of elements, e.g.

grid (X =2,Y =2) [1,2,3,4]

In the type of a function, the dimension parameter of a grid
type may be universally quantified. In the primitive operyasi, D
denotes a universally quantified dimension term.

2.2 Stencil Functions

Programs in Ypnos are written mostly in terms of user-defgted-
cil functions. Consider the example C programFigure 1. This
program can be abstracted on its stencil function, paraisitg
the computation by a stencil functian

atemplil [3] = £(A, (1,));

£ has the following type, wher&rray a is an array of element type
a and (nt, Int) is a two-dimensional index:

(Array a x (Int x Int)) — a
In Ypnos, stencil functions have type:
Grid Da — b

In the type off, (Int, Int), is the index for the current position
at which the stencil function is being applied. In Ypnos, therent
index of application is hidden inside tli&id structure, which we
call thecursor or focal pointof the stencil. Instead of using array
indexing operations, values are accessed from the grid asiovel
pattern matching construction callegad pattern

2.3 Grid Patterns

A grid pattern consists of a number of sub-patterns which are
matched to the elements of a grid based on their lexical drder
relation to a central point. The following is an example ofreeo
dimensional grid pattern:

X:| 1l Qcr |

This pattern binds the variablésc, andr to consecutive el-
ements in a grid along the dimensidh. The variable which is
bound to thefocal pointof the grid is delineated by th@ sym-
bol. This grid pattern is analogous to following bindingsi@-like
language wherg is an array and is the current index:

1 = A[i-1]; c = A[i]; r = A[i+1];

The cursor (equivalent to the above indey,is used by the
implementation to give correct bindings to grid patterrs,tlze
cursor denotes the position of the focal element in a gridndur
a stencil computation.

One-dimensional grid patterns can be nested inside one an-
other to given-dimensional patterns. Alternatively, variables can
be bound in one dimension and passed to another stenciidanct
For example, if the above one-dimensional stencil was egpb a
grid of dimensionsX x Y each bound variable would correspond
to an array slice of dimensior which could be further matched
upon by a separate stencil function.

As a syntactic convenience we provide an additional two-
dimensional grid pattern whose concrete syntax spans pleulti
source lines; a change in line corresponds to an incremethiein
second dimension’s index. For example, the following patie
the standard 5-point stencil in dimensiakisx Y:

-t -
[l Qc r
- b

(X xY):

As an example of concrete syntax, the following is a complete
stencil function with a grid pattern that matches elementimen-
sionsX x Y and computes the mean:

ave2D :: Grid (X * Y) Double -> Double
ave2D (X * Y): | _t _ | = (t+l+c+r+b)/5.0
| 1 @ r |
| _ b |

Grid patterns directly express data access as part of a ¢ampu
tion, they are not simply annotations given to purportedigatibe
the access pattern of a separate piece of low-level codeauBec
the grid patterns are static they provide decidable contjiie in-
formation. If conditional expressions are used to choo$edmn
stencils then a decidable over-approximation calculdtesunion
of all possible data access patterns for the outer stenwtifon.

At compile time a bounding box of a grid pattern is constrdcte
capturing the amount of boundary communication and ovedap
quired between subgrids when parallelising via domain oigxms
sition. The maximum distance of subpatterns from the fooaitp
in each dimension, defines a bounding matrix. In the caseeof th
ave2D example, a single row and column of data is required to be
replicated at subgrid boundaries in each direction, thegdtow-
ing bounding matrix is inferred:

-1 -1
[[aVGQDHaccess: |: 1 1 :|

2.4 Applying Stencil Functions
Therun primitive applies a stencil function to a grid, and has type:
run :: (Grid D @ — b) — Grid D a — Grid D b

Therun primitive takes a stencil function as its first parameter
and a grid as its second, applying the stencil function togtfia
once for every possible grid position, instantiating thie’'grcursor
to the index of each element. A value of typis returned for every
position in the grid whichrun returns in a new grid of element type
b. Figure 3(a) illustrates a stencil, anBigure 3(b) illustratesrun
once it has been partially applied to a stencil function.

alalala alalala b|b|b|b
alalala b alalala }bbbb
alalala alalala b|b|b|b
alalala alalala b|b|b|b

(a) lllustration of a stencil
function f :: Grid a — b

(b) lllustration of
run f :: Grid a — Grid b

Figure 3. lllustrations stencil function application to a grid.

Note that the stencil function is applied to every elemerihe
grid, therefore applications of a stencil applied at, orntee edge
of the grid may attempt to bind values outside of the grid.aDéf
values outside of a grid can be specified, as well as more @mpl
behaviours (see Section 3.4).

2.5 Comparingrun to the map function on lists

Applying a stencil function with a grid pattern matchingtjtise
focal point is equivalent to mapfunction over grids. i.e.

run (\|Qc|. f ¢) g =mapGf g
Recall the standard definition ofapover lists:
mapf [z1,...,zn] = [f z1,-.., [Tx]

Consider a functiomap2 which applies a binary function to con-
secutive pairs of elements from a list, of type

map2 :: ((a x a) — b) — [a] — [b]
The operation ofmap2may be something like:
o] = [f(z1,22), . f(Tn—1,20)]

The number of elements in the results list is one fewer thamp#
rameter list. A defaulboundaryvalued remedies this discrepancy:

[f(l'1,1’2), B '7f(xn*17mn)7f(xnvd)]

map2f [z1,. ..

map2f [z1,...,Tx]

An alternate version ofmap2might use the default value at the
beginning of the list instead of at the end:

vxn) = [f(d, 1), f(x1,22),. .oy f(Tn—1,Tn)]

The Ypnos equivalent stencil computationneép2on grids is:
run (A@Qz y[. f(z,9)) g

The equivalent stencil computation wiap2’is:

run (A|z @y f(z,y)) g

map2andmap2’ show the effect of two subtly different stencils,
one bhinding the current element and the element one positithe
right, the other binding the current element and elemeritedeift.

map2’ f [z1,...

2.6 Summary

We have introduced the centr@kid data structure and the type-
level concept of dimensions to differentiate between diffie di-
mensional grids. Stencil functions in Ypnos have tyeed D a —

b. Therun combinator applies stencil functions to grids:

(Grid D a — b) — Grid D a — Grid D b

The Grid data structure containsarsor which is instantiated
by therun combinator to each position in the grid. The hidden cur-
sor is required by the implementation to give the correctlinigs
of grid patterns Grid patterns bind values from the grid to vari-
ables where théocal point or current element, is delineated with
an @ symbol. Grid access is defined statically with no dynamic
index expressions and thus is known statically at compihe ti

Grid patterns restrict stencil functions to locally dengkb-
ally sparse, access patterns. That is, the neighbourhosléroents
accessed from the grid around the focal point is relativetals
in comparison with the problem size. Therefore dependsnuoée
tween subgrids are minimal, reducing expensive interggscom-
munication under parallelisation via domain decompositid is
syntactically inconvenient to write overly large stenditgeater
than about 5 elements in each direction), thus communitaite
quirements are kept relatively small.

Ypnos’ programs have what we call tlsingle, independent
writes (SIW) property: that application of a stencil function make
a single write to the focal position, thus writes never caerIThis
property is enforced by the types of stencil functions (picdg
a single value), theun combinator (applying the stencil function
once per element), and the absence of random-access weita-op
tions. The guaranteed SIW property is leveraged for opétita
and parallelisation in Section 4.

run ::

3. Further Ypnos

Ypnos' primitive operations, of whiclun andgrid have already
been seen, are listed along with their type&igure 4.

3.1 Tuples of values

Thezip, and complementanynzip, operations respectively pair the
elements of two grids and split a grid of pairs into a pair ofigr
These operations are especially useful when performingciste
operations on several parameter grids. There are corrésgpn
operations for 3-tuples, 4-tuples etc.

Extra syntactic sugar allows grid patterns on grids of tsipte
be written as a tuple of grid patterns e.g.

f | 1A GcA rA |,| 1B @cB rB |
instead of
f | (1A, 1B) @(cA, cB) (rA, rB) |

Note each grid pattern must be equal in size and have the focal
element in the same position.

3.2 Reductions

A common part of structured grid computations is teéguctionof
grids to a single result such as the mean, maximum value,nor su
Ypnos provides a simple reduction primitiveduce, which takes
an associative reduction operator of tyjpe— a — «) and applies
the operation in parallel to all elements and partial result

Some reductions generate values of a different type to #e el
ment type of a grid. A structure calledReducer packs together
a number of functions for parallel reduction under reductper-
ators of this type. ThenkReducer constructor builds d&educer,
taking four parameters:

¢ A function reducing an element and partially-reduced vatue
another partially-reduced valugt — b — b)

e A function combining two partially-reduced values, po$sib
from two reduction processes on subgrifis:— b — b)

e Aninitial partial result:b

¢ A final conversion function that converts the partial-résola
final value:(b — ¢).

There are a number of built-in reducersax, min, sum, and,
or, andmean. A Reducer structure can be applied to a grid using
the reduceR primitive. Theiterate and iterateT operations also
take aReducer as a parameter.

3.3

Similar torun, the iterate primitive iteratively applies the stencil
function over a grid until a stop condition is reached. Tieeate
operation takes a stencil functionRaducer of boolean result for
the stop condition, and a parameter grid. Tfeeate operation can
be derived fromreduce andrun, although the primitive provided
uses local mutable state for optimisation (see Section 4.1)

Iterative stencil application

iterate f r g = if (reduceR r g)
theniterate f r (run f g)
elseg

i.e. if the stop condition is not reached then apply and recurse
on the result, if the stop condition is reached then retuerctirrent
result. Note that the parameter grid and return grid muse tiag
same element type for iterative stencil function applaatias the
result of one application is passed to the next.

3.4 Boundaries

Stencil functions applied near or at the edge of a grid mag cas
out-of-bounds data access. One approach to handling boesda
Ypnos is to manually account for boundary conditions vialtbe a

pattern in a grid pattern which binds the indices of the fpoaht
(cursor) to a variable. For example, the following pattemdbi to

the index of the current focal point:

X |l Qc#i r |

An out-of-bounds check can be performed on the index, phogid
values to otherwise undefined variables. This feature caisée to
implement a type of random access on grids, but the functiest m
still be applied to a grid usingun, thus would be vastly inefficient.
The index checking technique has the added caveat that pach a
plication of a stencil requires extra index-testing contiamv. Ex-
tra control flow can be especially undesirable when conmpiiina
GPU, which often has more costly control flow operations.

An alternative, more efficient, solution is provided lify which
lifts a finite grids to an infinite grid, allowing out-of-boda access.
Thelift primitive takes a grid and facetsstructure (essentially a
record) which describes boundary behaviour for each fazkyd|,

grid :: (D Int) — [a] — Grid D a

zip :: Grid D a — Grid D b — Grid D (a, b)
unzip :: Grid D (a,b) — (Grid D a,Grid D b)

reduce:: (a = a—a) — Grid Da—a
reduceR :: Reducera b — Grid D a — b
mkReducer :: 3b (a - b —b) - (b—b—b) — b

— (b — ¢) — Reducer a ¢

run :: (Grid D @ — b) — Grid D a — Grid D b

iterate :: (Grid D a — a) — Reducer a Bool
— Grid D a — Grid D a
iterateT :: (Grid (T' x D) a — a) — Reducer a Bool
— Grid D a — Grid D a
lift :: Grid D a — Facet D a — Grid™ D a
unlift :: Grid®™® D a — Grid D a
defaults :: Grid D a — a — Grid™ D a

run® :: (Grid> D a — b) — Grid®™ D a — Grid D b

Figure 4: Key primitive operations on structured grids

face, etc.) of a grid. Possible boundary behaviours incldd&ult
valueswrapping(reading a value from the opposite side of a grid),
or reflecting A complementarynlift primitive returns a finite grid
from an infinite grid. For space reasons, we omit a discussitime
exact nature of the facets structure.

All but one of the primitive operations can be called withdd
grids, returning a lifted grid. The exceptionrisn, which is unable
to return a lifted grid when applied to a lifted grid becausea
allows the element type of the returned grid to be differerthat
of the parameter grid, thus a facet structure of the corlechent
type is unavailable. The type aiin™ reflects this behaviour.

A simple lifting operationdefaults, provides support for adding
default values infinitely outside the boundaries of a grid.

3.5 Other considerations

In numerical analysis there are a number of techniques pesds
up convergence, such &auss-Seidel iterationand relaxation
methods such aSuccessive Over Relaxati¢gBOR). These tech-
niques can be applied in practice to speed up computations.

Gauss-Seidel iterations compute results based on already c
puted results in the current iteration [9]. For example:

for (i=0;i<N;i++){
A[i] = (A[i-1] + A[i+1]1)%0.5;
}

Ypnos provides Gauss-Seidel support vifthatelnplace which
causes a stencil function to read and write the same grid mane

In the SOR technique, grids are often processed in a checker-
board fashion, first computing values for odd elements, aed t
for even elements. There is currently no support for this pmas,
although a system of executiomaskds under consideration.

4. Optimisation and Parallelisation

The guaranteedingle, independent writdSI1W) property, and the
static data access information provided by grid patteresm op-
timised and parallel implementations can be given to Ypnosip
tives, which are safe, i.e. do not alter program correctreass are
guaranteed to be applicable. Parallel and/or optimisedeimgn-
tations ofrun, iterate, anditerateT are provided by the back-end
grid structure parameterising the Ypnos EDSL (see Secbion 6

4.1 Optimisation by Destructive Update & Allocation Reuse

It is well known that the absence of side effects and the iraiilst
ity of data structures is advantageous for parallelism Badvan-
tageous for updating large data structures, such as aasysne
is spent copying, allocating, and deallocating data [1Bh&s pro-
vides optimised primitivesiterate anditerateT, which use local
destructive array updates to reduce execution time speaitaca-
tion, deallocation, and garbage collection.

The iterate operation (introduced in Section 3.3) can be given
an optimised implementation where a pair of auxiliary migab
grids store intermediate results. One mutable grid sttvesdlues
of the previous iteration, the other is destructively updaas the
current iteration is computed. At the end of an iteration rtible
of each allocation is swapped (illustratedrigure 5(a)), similar
to theswap operation ofFigure 1. Due to the SIW property, write
operations never interfere, thus destructively writing temporary
grid structure is safe. When the stop conditioitefate is satisfied,
all local effects are applied and a pure grid is returneds tine
effects of the destructive update are hidden ingielate.

TheiterateT primitive extends the (internally) destructive be-
haviour ofiterate to computations involving past versions of a grid,
without the programmer having to alias grids between caltsit.
TheiterateT primitive embeds a grid into a reserved temporal di-
mensionT’ over which grid patterns are reused to define the exact
number of previous grid versions required in a computat&aen
this information,iterateT keeps in memory enough copies of the
grid to satisfy thishistoric grid pattern. When previous grid allo-
cations can no longer be accessed by the stencil fundtioateT
safely reuses these allocations cyclically. For examplke fallow-
ing temporal stencil matches the two preceding iterations

T:|g" g Q|

Subsequently,iterateT creates three mutable grid allocations
which are cyclically written to in-place (illustrated igure 5(b)).
Because of the static guarantees of grid pattétasiteT obviates
the need for an alias analysis, or a system sudimear typeg31],
to ensure that intermediate grids are not aliased and thexhlater
once destructively updated, reallocated, or deallocated.
Neitheriterate noriterateT extend the expressive power of Yp-
nos, they are merely optimised forms of operations whichdcba
derived usingun and reduces. The use of either primitive commu-
nicates to the compiler that the programmer wishes to useptie
misation of mutable state. FaerateT, the programmer also com-
municates to the compiler the exact number of previous dlid a
cations required. Thus, these optimisations are not fligmatic
(i.e. they are not result of a compiler analysis and tramsé&tion)
and are not manual either, buiman-drivenwith predictable gains
thanks to the static guarantees of Ypnos.

4.2 Parallelisation

Due to thesingle, independent writggoperty, individual applica-
tions of a stencil function to a grid may be safely performedny
order or in parallel, as read and write operations do notfete.

1Note, the focal point matching the current version must beildcard
pattern, asterateT marks the current grid version as undefined

Y Y
—_ —_
X ST X ™=
~_| | >~ | | | —
T
(a) iterate (b) iterateT (AT : |g”"g’@]|...)

Figure 5. Allocation reuse patterns of optimised primitives

Applying each stencil function in parallel over a grid wouldw-
ever incur a large overhead from each thread creation.ddstee
can perform domain decomposition (described in Sectiorl),.1
factoring a grid into subgrids for independent parallel patation.
Because of the static data access information afforded iy gr
patterns, the exact amount of boundary communication redui
between subgrids is known. Thusn, iterate, anditerateT prim-
itives can be given parallel implementations which are goied
to be safe (by SIW) with the correct, and minimal, amount aheo
munication between processes as specified by the progratraer
informally describe the parallel implementationraf for a stencil
function £, applied to a grids, with access patteracc = [£]access
(see bounding matrix in Section 2.3), whew{ D] means the vec-
tor at the D-th column of the bounding matrix, representing the
data access pattern in dimensibn

1. Splitg into subarraygs, adding boundaries of sizedD] for
dimensionsD from g or from the associated facets structure
if at the grid edge. Prefer splitting along a dimension where
>~ acdD] = 0i.e. no boundary communication required.

2. Spawn threads eftinSeq f g”, for each subgrig” € gs, where
runSeq is a sequentialun operation.

3. Join the computed subgrids into a single ggid removing
boundaries, and return.

For iterate and iterateT we apply a similar scheme, where se-
quential, optimised versions tierate anditerateT are applied to
each subgrid in independent threads. After step 2, bourmtamy
munication between subgrids takes place, where boundaayisia
swapped with neighbouring processes, before testing tpecsin-
dition, moving to step 3 if true or iterating if false.

5. Further Examples

Solving TheLaplace Equation The following example solves the
Laplace equation using a Gauss-Seidel method over a grid.

laplace (X*Y): = (atb+d+e)*0.25

| _a_ |
| be_dl
| _e |

g’ = iterateInplace laplace (ntimes 1000) (defaults g 0.0)
A special impure reduction operataitimes, counts the number
of iterations, reducing ttrue when a specified limit is reached.

Conway's Game of Life It has been noted online by Piponi that
cellular automata are comonadic [24]. In a similar vein fallew-
ing example computes Conway’s Game of Life in Ypnos.

life (XxY): = let local = (atbt+c+d+e+f+g+h+i)
in if (e==1) then
if (local<2 || local>2)
then 0 else 1
else
if (local==3)
then 1 else O

| ab c |
| d @e £ |
|l gh i |

-- Create environment

initalState = grid <X=10, Y=10> randomConfiguration 7. Mathematical Structure

untilMostlyDead = Reducer (+) (+) 0.0 (\x -> (x<10)) The core of Ypnos is structured around t&ed type which m_od-
stopCondition = (untilMostlyDead ‘orReducer’ (ntimes 100)) els acomonadstructure from category theory. T_he operatlo_ns _of
the comonad correspond to, or are used to derive, the care-pri
intialState’ = (defaults 0.0 initialState) tive features of our language. The optimised primitivesigignu-
finalState = iterate life stopCondition initialState’ tability (iterate anditerateT) combine a comonad with a monad,
. . . describing their effects, viadistributive law(as in [25]).

The above code makes use of a special reduction combina- The category theory structures used to organise the larguag
tor, orReducer, which creates a disjunction of two reducers with ive a clear separation of the concepts underlying Ypnosfand
boolean results. There is a similar combinator for conjianct cilitates modular back-end implementations. Abstradtg, asso-
Writing Non-Structured Grid Applications The following, slightly ~ ciated coherence laws of comonads, monads, and distribgtve
contrived, example does not fit the structured grid progralgm ~ Properties that the back-end implementer should be miruffif

pattern because it uses random-access writes to an arraghile COITECt execution is expected. Although Haskell does npps
the implementation of the program first in C and then show an the encoding of these properties, they can be checked by hand

implementation in Ypnos. We briefly introduce the abstract structures used by Ypnus, a
describe a sequential, pure instantiation of el comonad that
int A[5] = {1,4,2,3,0}; int Atemp[5]; provides a simple semantics to the language.
for (int i=0;i<5;i++){ 7.1 Comonad
int x = A[i];
Atemp[x] = i; Until recently comonads have received less attention ignairo-
¥ ming than their dualmonads traditionally used to describe com-

putational effects [20]. Uustalu and Vene showed that treast-
based dataflow computations of the Lucid programming laggua
can be described with a comonad [28]. Their thesis: comocajls
ture theessenceof dataflow. The Lucid programming language,
originally purposed for declarative iteration, can be usti®d as a
language of context-dependent computations, where catipos
are modelled as streams mapping discrete time contextduesva

A five element one-dimensional array is initialised withegérs
from O to 4. In the loop, each array value is used to inglexmp,
where the current index is written. The computation is O(n).

The equivalent Ypnos code uses a stencil function to emulate
random writes, comparing the focal point index to the writeex;
if equal, the write element is returned, else the currermt gaiue.

g = grid <X=5> [1,4,2,3,0] [30]. Lucid was later extended to multi-dimensional streawhere
g’ = grid <X=5> [0,0,0,0,0] contexts are Cartesian coordinates [3]. Multi-dimendistr@ams
))))) are akin to array structures. Our hypothesis is that conmoatsb
randﬁmwrlte grid x i = run randomWrite’ grid capture the essence of structured grid computations.
wnere
randomWrite’ | Q@c#j | = if (i==j) then x else ¢ Definition For a categoryC and an endofunctoD : C — C, a
. .) comonads a triple(D, ¢, ¢) of D and two natural transformations,
reArrange | Q@c#i | = randomWrite g’ i c where:
run reArrange g [Clle: D — 1¢
. 2
The program is certainly inelegant to write in Ypnos, is sl@v [C2]6: D _’D . . .
O(n?)), and returns a grid of grids, using more memory and pre- [C3] associativity and identity laws hold for objectsn

senting difficult-to-compile code for a GPU target. The litiey of

the programming task reflects its non-structured grid patte If we interpret the comonad’s endofunctbras a data structure in a

functional language, the operation corresponds to a polymorphic
function that extracts a value from the comonadunit), and §

6. Implementation corresponds to a polymorphic function that expands a cothimta
The current Haskell EDSL implementation of Ypnos is parame- @ nested comonad inside a comonenjgin):
terised by a number of data structures which provide a seasant counit::Va . D a — a

to Ypnos, with Haskell as the meta language (see Sectiom7). | —

this way, different back-end implementations can be girth cojoin:: ¥a . D a — D (Da)

as a parallelising back-end, or one that generates C withdPI The functional programming interpretation of functor apgglion

CUDA. Section 7.2.1 gives a simple, pure, sequential seiocgant to morphisms is a higher-order function calli@dap which lifts a
Syntactic extensions for grid patterns are implementeautitbie function to operate over a data structure:

guasiquoting extension to Template Haskell [18] which aesed .

into an AST using the Parsec parser combinator library [TAg fmap:: ¥a. (a — b) — (D a — D b)

use of the quasiquoting technique adds some extra syntactien Comonads are defined above in tteenonoidform, from which
which we omitted in our examples for clarity. The followirgyan thecoextensiorfiorm can be derived. In the coextension forncoa
example stencil function in the current implementation: extensiomatural transformation, often calledbindin functional
_ . programming, takes a function from a comondd) to an ob-
2D = [$f X*Y: ! o X
ave [$fun] X+ II 1 @Z T : ject(db) and lifts it to a function from{D a) to a comonad D b). It
| _ b _ | -> (t+l+c+r+b)/5.0 1] can be derived by composition of functor application vadjoin:

wherefun preprocesses the grid pattern and generates grid access cobind :: (Da—b) —(Da— Db)
code, taking the expression after as Haskell code which is trans- cobind f = (fmap f) o cojoin (1)
lated verbatim as the stencil function body. The macro geasr
a tuple of the stencil function with a vector of grid’'s datxess 2The extension form of a monad is often calkdidd in functional program-

pattern and dimension information. ming, hence the namingpbind

The first parameter afobindis known as aoKleislimorphism, or
arrow. Given a comonad in categoryC, acoKleislicategoryCp
has morphisms,g : D A — B from C. The cobind operation
allows such coKleisli arrows to be composed:

(gop f) = go (cobindf)

7.2 Grids as Comonads
We briefly describe the derivation of Ypnos primitives frohet
comonadic, paramet&rid structure:
e Grid comonads are parameterised by a dimensigni.e.
(Grid D) is the comonad.
e Therun operation of Ypnos is exactly trewbind operation.
e Stencil functions are the coKleisli arrows of the comonad.

e Grid comonads areopointed having acursor (focal point);
counitreturns the grid value pointed to by its cursor.

e Grid comonads areymmetric semi-monoidal comona@9]
thus are equipped with the natural transformation:

zipyp: DAX DB — D(AXB)
providing zip; unzip is provided by a pair of the left and right
tuple projections lifted to grids bfmap
unzipx = (fmapm =, fmapm)
e Grid comonads require additionstift operations (like the nav-
igation principles of aipper[14]) to modify the cursor, allow-
ing grid patterns to access elements relative to the fodak po

of a grid. A grid comonad must providiftLeftandshiftRight
parameterised by the dimensiér in which to navigate:

shiftLeft :: D' — Grid D a — Grid D a
shiftRight :: D’ — Grid D a — Grid D a
e Reduction feduce, etc.) and lifting operationdift, etc.) must
be supplied as additional operations specific ta3tieé comonad.

7.2.1 A Pure, Sequential Grid Comonad
The following comonadicGrid data structure provides a pure, se-
quential semantics to Ypnos. The grid structure is a pairafraor
and a function from indices to values, where indices aregSam
products of integers:
Grid D A = NPl » (NP1 4)

Such grids are infinite. Th@rid functor’'s operation on morphisms
applies the parameter function to each element of the grid:

fmap :: (a — b) — (Grid D a — Grid D b)

fmap f (c,g) = (¢, (An . f(g n)))

Thecounitoperation returns the value at the location pointed to by
the cursor. Theobind operation can be derived frogojoin and
fmapon Grid as in (1), but we give a specialised version here.

counit :: Grid D a — a
counit(c,g) =g ¢
cobind :: (Grid D a — b) — Grid D a — Grid D b
cobindf (¢,g9) = (¢,(An. f (n, g)))
Thezip operation is defined:
zip :: Grid D a — Grid D b — Grid D (a, b)
zip(c,9) (¢, g") = (¢, An.(gn,g’ n))) wherec = ¢’

Shifting operations alter the focal point, whéie— 1] is an index
where thei-th element is 1 and all other elements are 0:

shiftLeft :: D' — Grid D a — Grid D a
shiftLeftd (¢, g) = (¢ — [d+— 1],9)
shiftRight :: D’ — Grid D a — Grid D a
shiftRightd (¢, g) = (c+ [d — 1], 9)
Lifting and reduction operations are omitted for spacesoea.

7.3 Effectful Primitives

The optimised primitivesterate anditerateT, generate and apply
side effects internally thus the effects cannot “escapé’moduce
global effects. Conceptually, and ideally, the effectfuhptives
would be implemented using a stat®nad[20], and a distributive
law to combine the state monad aGdd comonad [25].

The distribution operation, corresponding to the distiimu
law, has the following typelp is a comonad]" is a monad):

dist:: D (T'a) — T (D a)

Thus, local effects in the elements of the comonad are blig&d
outside of the comonad. Usirttist we derive an operation that we
calledbibind, allowing morphisms in ®iKleisli category, of type
(D a — T a), to be composed:

bibind : (Da—Ta) - T(Da)—T(D a)
bibind f = bind (disto cobind f)

Stencil functions of coKleisli arrow type are wrapped in diec
producing write operation to destructively update the gtidcture,
thus giving a biKleisli arrow which is applied usifypind.

The current implementation of Ypnos uses a slightly diffiere
structure to the monad and distributive law approach becthes
mutable array structures in Haskell cannot be given pureocaitic
operations. Instead we use effectful comonadtyle structure.
Unfortunately there is not time to discuss the issues hertethlere
is certainly future work in looking at how mutable data stwes
in functional programming, such as mutable arrays, can be de
scribed purely as a comonad, and then impurely by generaitag)
monadic effects which are made global by a distributive law.

8. Related Work

There is a multitude of work on parallelisation of languadesh
automatic and manual. We mention just a couple here.

The Chapel language, developed at Cray, has the similar aim
to Ypnos, of separating problem and parallelisation codeap€l
can be used for stencil computations and distribution o&yesrr
[4]. Arrays in Chapel are typed by domain a finite space of
indices, and are accessed byf@all iterator which visits each
element, similar to theun operation of Ypnos. Stencils are defined
by offset tuples (akin to basis vectors) added to a curresgxn
tuple. Stencils can also be defined as an array of tuples vich
applied with areduce function to an array. The reduction-based
approach conveys the intent of the stencil and the domaitiseto
compiler for possible efficient computation, although ¢hare no
static guarantees of efficient execution.

The CAPTools toolkit for FORTRAN provides aimostauto-
matic transformation tool for parallelising structureddgy featur-
ing a powerful symbolic dependence analysis augmented &y us
interaction to attain a more accurate dependence graplOj].
own approach mitigates the need for interaction by comnatimg
data dependencies statically via grid patterns.

Piponi noted the comonadic structure of structured gke-li
computations in his superlative blog [24], giving a smakheple
in Haskell of a one-dimensional cellular automata.

The Lucid dataflow language, already mentioned in Sectibn 7. 9.2 Cost Model and Predictability
and the work of Uustalu and Vene, who described comonads as
the “essence of dataflow” [28] inspired the comonadic stmicg
of Ypnos. Lucid is often described as eatensional programming
language or acontext-dependent languadeucid expressions can
be understood as describing histories of computations;twien
be modelled in the language semantics as streams. Speeial op
ations navigate forwards and backwards inside streamsciesac
elements. The language looks and feels very different ta¥ tre-
cause in Luciceverythings implicitly a stream; in Ypnos, grids are
explicit, and scalar non-grid expression coexist with grigbres- 9.3 Multi-scale Grids
sions. Ypnos grids are however similar in flavour to the ndisti
mensional streams of Multidimensional Lucid and its dedeets
[3], where operations that manipulate and navigate thretiglams
are replaced with grid patterns. In Multidimensional Lycfe cur-
rent context of a stream can be accessed via tperator, and the
operator provides random-access into a stream. Theseozeira
fluenced our syntax in the index accessor pattern # in grie e,
andae to denote which variable is bound to the current context.

Recent work by Lee, Chakravarty, Grover, and Keller targets
GPU programming with an EDSL in Haskell that constrains the
programmer to code suitable for GPU execution [16]. Thei ap
proach has some similarities to our own, using the stroriig $y-
ing of Haskell to guide the programmer. In their EDSL, theetyp
of operations are sufficiently restricted such that it ispussible to
write code that would not be executable on a GPU. Their agproa
uses array types similar to our grids types, but stencil edep
tion is not addressed in the same way. Our work is more general
in terms of implementation, but is more specific in the coraput ~ Earlier GPUs had a fixed execution pipeline, with computetio

A cost model for execution is provided to the user by the stati
guarantee of optimisation byerate anditerateT, and no optimi-
sation byrun; there are no unpredictable automatic analyses and
transformations. However, there is no control over impletaton
properties such as the size of subgrid tiles, affecting i@t time

and memory requirements. We would like to extend Ypnos with
configuration variablesa form of compiler directive, for express-
ing numerical parameters for decomposition and paradigts.

Multigrid methodsuse different levels of discretisation (essentially
different resolutions or scales), to speed up convergegagsing
coarse grained approximations of a grid to guide computatio
fine grained versions of the grid [10]. The type of interactio
between levels of discretised grids is often problem depend
Adaptive mesh refinemenése a more general technique for
speeding up convergence by approximating regions of a gridhw
have reached a fixed point, hence for which computation wbald
unnecessary [6]. Regions in equilibrium aeéinedby representa-
tion as a unit at a different scale to the rest of the grid, Itegpin a
grid with tessellating rectangles of different sizes (@olations).
Both techniques are valuable when performing intensive-com
putations with large data sets, but it is not clear to us hdheei
technique could be achieved in a language similar to Ypnos.

9.4 \Vertex Shaders: the Formal Dual of Fragment Shaders

tional pattern supported. There are a number of importantets ~ largely split between two types of processovertex and frag-

addressed by their language which Ypnos does not addressdeec ~ mentprocessors, handling respectiertexandfragment(or pixel)

it aims to be implementation agnostic. For example, arragneht shaders. Vertex shaders are capable of random-access (gcig-

types are constrained to those which can be efficiently ke a ters) but only perform single reads from the current stream juosit

GPU, and nested parallelism and recursion are disalloweetelis Conversely, fragment shaders are capable of random-aceads

much that is similar in motivations of both our designs, eatth (gather$ but can only perform single writes to the current stream

slightly different focus. Such work could provide an implemta- position [12]. Fragment shaders correspond to the stredtgrid

tional back-end for execution of Ypnos programs on GPUSs. computations seen in this paper. Newer architectures haifn
ferentiation between types of processor, offering manyggrpro-

9. Further Work cessors that can handle either type of computation. [23]

.)) It is conceivable that the scatter operations of vertexgssars
There are certainly many possible extensions to Ypnos. én th coyiq pe parallelised in the same way as structured gridatipes
current implementation we plan to implement efficient back- assuming the domain of writes was sufficiently local so agtonit

ends for parallel GPU execution and parallelisation via diom efficient execution under domain decomposition.
decomposition, and hope to have performance measurestser. We have already described fragment shader computations, co
we describe possible further extensions to the Ypnos lagggua responding to stencil functions, as coKleisli arro@sid D a — b.

However, vertex shader computations, which read a sindlesva

]])] and produce several write operations, are more suitablgdtyp
The current Ypnos EDSL implementation permits differentkba ;" Grid D », corresponding tdleisli morphisms: the mor-

ends, thus allowing sequential or parallel implementatiofprim- phisms of a Kleisli category formed from monad Gather op-
itive operations. However, a compiler that always prodyzesllel erations are therefore the dual of scatter operations, threx

implementations may produce inefficient solutions as sonmm computations are the dual of fragment computations, whichhe
computations may be more efficient when implemented sequen- gtryctured by the dual of comonads: monads!

9.1 Mixing Sequential and Parallel Code

tially [21]. Thus, we hope to extend Ypnos to include bothueet A larger language, perhapgnos++ might have two classes
tial and parallel primitivestun andrunSeq, iterate anditerateSeq, of application primitives: the standard comonadic coesim op-
etc. Thus the back-end requires modification, perhaps tatzp erations fun, iterate, etc.) for stencil computations and monadic

eterisable by sequential and paratlebindoperations on the same extension operations (maykbenVertex) for mould computations:
grid structure, or parameterisable by some other structpes-

senting distributed grids which interacts with tGeid comonad. runVertex :: (a — Grid D b) — Grid D a — Grid D b

_ Furthermore, there are some useful programs that are dyrren gych a language could encompass a larger class of algoyigthms
difficult to get efficient executions of using Ypnos. One egien lowing both stencil and mould functions to be expressed thieir
using parallel reductions during application iwérateT, which interaction mediated by a comonadic/monadic grid datastra.

are not used as stop conditions. Currently such reductiansat
be made. Instead, such code must be written using thus the .
iterateT optimisations of mutable state cannot be used, and the 10. Conclusions

persistence of subgrids on process-local memory duringalom There are many different parallel programming patterns I[&]
decomposition is lost. We hope to rectify this inflexibilggon. single programming language can be suitable for programgmlin

such patterns. We have introduced the domain-specific &gegu
Ypnos, targeted at parallel structured grid programming.

Ypnos is restricted to the single application domain of cstru
tured grid programming by its primitive operations, its abgyn-
tactic forms, and its embedding into a pure, functional lege.
All programs satisfy thesingle, independent writgsroperty, thus
correct optimised and parallel executions can be providedsh
primitives. Furthermore, aggressive and unpredictakddéyans and
transformations are not required as data access patteraseoded
in grid patterns which have a simple translation to compile-time
data access information. Ypnos' restricted forms provideasier
approach to structured grid programming for those unfamiliith
(parallel) programming.

Ypnos employs category theoretic abstractions to orgaaise
putations. The Ypnos EDSL implementation can be instadiat
with different instances of the underlying abstract stutes. In
this way, Ypnos is hardware- and implementation-agnoatioy-
ing different back-ends for different implementationser\wcode
generation for further compilation.

Just as assembly programming can result in faster code than

that produced by compilers, we expect that Ypnos code widrof
be slower than that programmed manually by an expert. The gai
however, is in ease of programming, low development timed, a
high portability.

We would be interested to see if other restricted syntactin$,
like grid patterns, could be applied in further domain-sipetan-
guages to facilitate parallelisation of other computaigratterns.

In the late 1980s and early 90s there was much interest iy-appl
ing dataflow languages to parallel architectures (such as&mn
tions Machines). Besides the GLU (Granular Lucid) pargiiel-
gramming system [15] the application of dataflow prograngin
parallel architectures never gained momentum. Now, 2Gsylater,
there is a veritable renaissance in parallel architectwigrsmulti-

[8] E. W. Evans, S. P. Johnson, P. F. Leggett, and M. CrossrAatic and
effective multi-dimensional parallelisation of stru@drmesh based
codes.Parallel Comput. 26(6):677—703, 2000. ISSN 0167-8191.

[9] C. Gerald and P. WheatleyApplied Numerical Analysis Pearson
Education, Addison Wesley, San Francisco, 2004.

[10] W. Hackbusch. Multi-grid methods and applicationsVolume 4 of
Springer series in computational mathematics. Sprin@851

[11] T. Halfhill. Parallel Processing with CUDAMicroprocessor Report
Januray 2008.

[12] M. Harris. Mapping computational concepts to GPUsSIGGRAPH
'05: ACM SIGGRAPH 2005 Coursggage 50, New York, NY, USA,
2005. ACM.

[13] P. Hudak and A. Bloss. The aggregate update problemrintional
programming systems. IROPL '85: Proceedings of the 12th ACM
SIGACT-SIGPLAN symposium on Principles of programming lan
guages pages 300-314, New York, NY, USA, 1985. ACM.

[14] G. Huet. The ZipperJ. Funct. Program.7(5):549-554, 1997. ISSN
0956-7968.

[15] R. Jagannathan, C. Dodd, and I. Agi. GLU: A high-levekteyn
for granular data-parallel programmingoncurrency: Practice and
Experience9(1):63-83, 1997.

[16] S. Lee, M. M. Chakravarty, V. Grover, and G. Keller. GPErKels as
Data-Parallel Array Computations in Haskell. 2009.

[17] D. Leijen and E. Meijer. Parsec: Direct style monadicsea combi-
nators for the real world. Technical Report, 2001.

[18] G. Mainland. Why It's Nice to be Quoted: Quasiquoting Feaskell.
In Haskell '07: Proceedings of the ACM SIGPLAN workshop on
Haskell workshoppages 73-82, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-674-5.

[19] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. KilgardCg: a
system for programming graphics hardware in a C-like lagguan
SIGGRAPH '03: ACM SIGGRAPH 2003 Papgrages 896-907, New
York, NY, USA, 2003. ACM. ISBN 1-58113-709-5.

core general purpose CPUs abounding, and many-core machine [20] E. Moggi. Notions of computation and monadsf. Comput, 93(1):

now a commodity through GPUs. Ypnos is child of modern func-

tional programming and multi-dimensional Lucid, targgtias its
dataflow ancestors were primed to target, parallel comiputat

Acknowledgments

This work has been generously supported by an EPSRC DTA.

Many thanks to Tom Schrijvers for various insights and helitw
paper, and to Marcelo Fiore for many interesting discussion

References

[1] ACE Associated Compiler Experts bv. ParallelizatioringsPolyhe-
dral Analysis, 2008, last accessed September 208%ps: //www.
opencosy.org/node/37.

[2] K. Asanovic, R. Bodik, Demmel, et al. The Parallel ComipgtLab-
oratory at U.C. Berkeley: A research agenda based on theeBgrk
view. Technical Report UCB/EECS-2008-23, EECS Departiriénit
versity of California, Berkeley, Mar 2008.

[3] E. A. Ashcroft, A. A. Faustini, R. Jagannathan, and W. Wadye.
Multidimensional programming Oxford University Press, Oxford,
UK, 1995. ISBN 0-19-507597-8.

[4] R. F. Barret, P. C. Roth, and S. W. Poole. Finite Differei8tencils
Implemented Using Chapel. Technical Report TM-2007/109,72

[5] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temauiting
Polyhedral Loop Transformations to Work. Research Repétt R
4902, INRIA, 2003.

[6] M. J. Berger. Adaptive mesh refinement for hyperbolic partial differ-
ential equationsPhD thesis, Stanford, CA, USA, 1982.

[7] L. Dagum and R. Menon. OpenMP: An Industry-Standard Ad?l f
Shared-Memory Programmin¢EEE Comput. Sci. Eng5(1):46-55,
1998. ISSN 1070-9924.

55-92, 1991. ISSN 0890-5401.

[21] N. Mukherjee and J. R. Gurd. A comparative analysis of foaral-
lelisation schemes. IICS '99: Proceedings of the 13th international
conference on SupercomputjrEages 278-285, New York, NY, USA,
1999. ACM. ISBN 1-58113-164-X.

[22] A. Munshi. OpenCL: Parallel computing on the GPU and CPie-
sentation at SIGGRAPH 200Bttp://s08.idav.ucdavis.edu/
munshi-opencl.pdf.

[23] S. Patidar, S. Bhattacharjee, J. M. Singh, and P. J.yldaen. Exploit-
ing the Shader Model 4.0 Architecture, March 2007. TechiiRegort
IIT/TR/2007/145, 2007

[24] D. Piponi. Evaluating cellular automata is comonadigcember
2006, Last retrieved September 20Qftp://blog.sigfpe.com/
2006/12/evaluating-cellular-automata-is.html.

[25] J. Power and H. Watanabe. Combining a monad and a comonad
Theor. Comput. S¢i280(1-2):137-162, 2002. ISSN 0304-3975.

[26] M. Snir and S. Otto.MPI-The Complete Reference: The MPI Core
MIT Press, Cambridge, MA, USA, 1998. ISBN 0262692155.

[27] D. Stewart. Domain Specific Languages for Domain Speétfiob-
lems. InWorkshop on Non-Traditional Programming Models for
High-Performance Computing, LACSZ09.

[28] T. Uustalu and V. Vene. The Essence of Dataflow Programgmi
Lecture Notes in Computer Sciendd 64:135-167, November 2006.

[29] T. Uustalu and V. Vene. Comonadic Notions of Computati&lec-
tron. Notes Theor. Comput. Sc203(5):263—-284, 2008. ISSN 1571-
0661.

[30] W. Wadge and E. AshcroftLUCID, the dataflow programming lan-
guage Academic Press Professional, Inc., San Diego, CA, USA5198
ISBN 0-12-729650-6.

[31] P. Wadler. Linear Types Can Change the World! Pirogramming
Concepts and Methodslorth, 1990.

