
Aaron, Samuel, Orchard, Dominic and Blackwell, Alan F. (2014) Temporal 
semantics for a live coding language.  pp. 37-47. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/57489/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1145/2633638.2633648

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/57489/
https://doi.org/10.1145/2633638.2633648
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Temporal Semantics for a Live Coding Language

Samuel Aaron Dominic Orchard Alan F. Blackwell
Computer Laboratory, University of Cambridge, UK

firstname.lastname@cl.cam.ac.uk

Abstract
Sonic Pi is a music live coding language that has been designed
for educational use as a first programming language. However, it
is not straightforward to achieve the necessary simplicity of a first
language in a music live coding setting, for reasons largely related
to the manipulation of time. The original version of Sonic Pi used
a ‘sleep’ function for managing time, blocking computation for a
specified time period. However, while this approach was concep-
tually simple, it resulted in badly timed music, especially when
multiple musical threads were executing concurrently. This paper
describes an alternative programming approach for timing (imple-
mented in Sonic Pi v2.0) which maintains syntactic compatibility
with v1.0, yet provides accurate timing via interaction between real
time and a “virtual time”. We provide a formal specification of the
temporal behaviour of Sonic Pi, motivated in relation to other re-
cent approaches to the semantics of time in live coding and general
computation. We then define a monadic model of the Sonic Pi tem-
poral semantics which is sound with respect to this specification,
using Haskell as a metalanguage.

Categories and Subject Descriptors H.5.5 [Information Inter-
faces and Presentation]: Sound and Music Computing; F.3.2
[Logics and Meanings of Programs]: Semantics of Programming
Languages; D.3.2 [Programming Languages]: Applicative (func-
tional) languages; J.5 [Arts and Humanities]: Music

Keywords time; music; live coding; temporal semantics; monads

1. Introduction
Timing is a critical component of music. Therefore any language
for describing music must have a method for describing the precise
timing of sounds, such as individual notes. Performing a piece of
music correctly then amounts to a computation, evaluating the mu-
sical description to emit correct notes at correct times. This kind
of timing contrasts with many notions in computing. For example,
“real-time computing” approaches often focus on computing within
a certain time limit (a deadline), thus high-performance is impor-
tant. But in music, being early is just as bad as being late. A similar
situation arises in mechanical coordination tasks, such as program-
ming robotic limbs for walking. For these kinds of application, a
robust programming model for timing is required. We argue that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FARM ’14, September 6, 2014, Gothenburg, Sweden.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3039-8/14/09. . . $15.00.
http://dx.doi.org/10.1145/2633638.2633648

our Sonic Pi language provides a suitable, robust temporal model
for music in the context of live programming and education.

Sonic Pi is a domain specific language for manipulating synthe-
sisers through time [AB13]. It was designed for teaching core com-
puting concepts to school students using creative programming,
specifically live-coding music, as a means for engaging students.
Sonic Pi is a mostly pure language, with first-class functions. Its im-
purity arises from timing and output effects (for producing sounds).
The precise timing of effects, which do not occur too early or too
late, is core to the programming approach of Sonic Pi. Primarily,
this paper introduces the temporal programming model of Sonic
Pi. We give a monadic description of its effects, showing that the
impure parts of the language can be embedded in a pure language.

As well as the need for programming approaches to time, there
is a well-recognised need for models of temporal behaviour cou-
pled with reasoning systems for time. This has been explored par-
ticularly in logic, with modal logics such as the Real-Time Compu-
tation Tree Logic [EMSS91]. In the literature, Lee makes a power-
ful argument for the development of a semantics of time in compu-
tation, or as he describes it, a properly formalised class of “time sys-
tem” that can be applied alongside type systems (which are already
understood to be essential software engineering tools) [Lee09]. It
is in this spirit that we develop two kinds of model for the temporal
semantics of Sonic Pi: a time system and a denotational model.

The core contributions of this paper are three-fold:

• We present a new programming approach for precisely timing
effects, which is implemented as part of the Sonic Pi language
for music live coding. We explain how this programming ap-
proach has evolved to replace the previous version of the Sonic
Pi language (Section 2), providing a syntactically identical lan-
guage but with an improved approach to timing (Section 3).

• We formalise the temporal semantics of this approach, introduc-
ing a specification of the temporal behaviour of a core subset of
Sonic Pi programs: a time system, which provides a static anal-
ysis of timing (Section 4). The style is axiomatic, and can be
considered an abstract model of temporal behaviour.

• We give a monadic denotational semantics to a core subset lan-
guage (Section 5) and prove it sound with respect to the time
system, i.e., the language is time safe. We later extend this
model to include temporal warnings (Section 6). The denota-
tional approach complements the abstract time system model.

We use the phrases time system and time safety to draw analogy
with traditional notions of type system and type safety.

We begin with a discussion of the first programming language
and live coding contexts (particularly for music), as these aspects
motivate the language design. Readers who are keen to get to the
language design may skip over this discussion to Section 2.



play 52
play 55
play 59

(a) Successive notes

play 52
sleep 1
play 55
sleep 1
play 59

(b) Notes separated by sleeps

Figure 1. Playing MIDI notes of an E minor chord in Sonic Pi v1.0

1.1 The first language and live coding contexts
A first programming language should be conceptually simple and
syntactically uncluttered. However, achieving this simplicity in a
music live coding language is not easy for reasons largely re-
lated to the representation of time. Representing musical time in
a programming language is often problematic, firstly because nat-
ural ways of describing and organising musical events are multi-
threaded (scores, chords, resonance, reverb), and secondly because
so many standard computational formalisms treat execution time
as a non-functional requirement [Lee09]. Time can be even more
problematic in live coding, because the creation of the code, as a
performance, is interleaved with the sound events resulting from its
execution. Yet for users of Sonic Pi, the creative experience they
have, like all experience, arises through time – as media theorist
Mieke Bal says, “time is where subjectivity is produced” [Bal02].

As noted by Rorhruber [BMNR14], there have been many
publications discussing alternative approaches to the represen-
tation of time in live coding, choosing between explicit or im-
plicit representation of time and between description of time
with reference to internal or external state. These many interest-
ing strategies include McLean’s formalism of cyclic time in the
Tidal language [McL13], and Sorensen’s temporal recursion in Im-
promptu/Extempore [SG10]. In this paper, we present a formalism
that is designed to achieve production-quality sound (via the Super-
Collider synthesis server) while allowing inexperienced program-
mers in an educational setting (typically 11-12 year-old children)
to express the temporal structure in terms that have an intuitive
correspondence to the experience and production of music.

In music, it is clear that we must be able to speak about the
precise location of events in time, and hence that any music pro-
gramming language must of necessity provide some kind of time
semantics, even if these are only informal. In the case of live coding
languages, an additional consideration is that the time at which the
program is edited may coincide or overlap with the time at which
it is executed. This overlap between execution and creation time is
of broader value in software engineering, as noted for example by
McDirmid [ME14], whose Glitch system allows the user to adjust
the notional execution time relative to a point in the source code
editing environment. Tools of this kind can also benefit from a for-
mal semantics in which to define the relationship between changes
or navigation within the code, and changes or navigation within the
cause-effect sequence of execution time.

2. Problems with timing in Sonic Pi v1.0
Sonic Pi was designed to teach a large number of computing con-
cepts covered in the new UK computing curriculum introduced in
September, 2014. Examples of these concepts are conditionals, iter-
ation, variables, functions, algorithms and data structures. We also
extend beyond these to provide educators with an opportunity to in-
troduce concepts which we believe will play an increasingly impor-
tant role in future programming contexts such as multi-threading
and hot-swapping of code.

One of the core UK computing curriculum concepts that Sonic
Pi immediately focusses on is the sequential ordering of effects
in imperative programs, such as playing successive notes see Fig-
ure 1(a) (which is considered here to be a Sonic Pi v1.0 program).

loop do
play 30 #A
sample :drum_heavy_kick #B
sleep 0.5 #C

end

Figure 2. A continuously repeating bass and drum hit.

in_thread
loop do

play 30
sleep 0.5

end
end
in_thread

loop do
sample :drum_heavy_kick
sleep 1

end
end

Figure 3. Two concurrent threads playing in synchronisation.

Sonic Pi v1.0 takes advantage of the fast clockspeeds of mod-
ern processors in assuming that the sequence of instructions of Fig-
ure 1(a) are likely to be executed so quickly in succession that they
will be perceived as a chord i.e., all the note being played simul-
taneously, rather than as successive notes in an arpeggio form. In
order to further separate the instructions in time such that their sep-
aration may be perceived it is necessary to insert explicit timed de-
lays. This can be achieved by “sleeping” the current thread for a
number of seconds, see Figure 1(b). This notion of sleep is similar
to that of the standard POSIX sleep operation that suspends execu-
tion for the specified time [IG13].

These temporal semantics worked well in a computing educa-
tion context for demonstrating effect execution order, but they do
not translate well to music contexts due to a mismatch with user
expectations; they do not allow correct timing of musical notes.
This mismatch was emphasised when Sonic Pi gained the ability to
play drum samples. Consider the example in Figure 2. Here we are
attempting to regularly play MIDI note 30 at the same time as the
sample :drum heavy kick with half a second between each onset.
Unfortunately the execution will not produce the desired behaviour
and the rhythm will drift in time due to the addition of the execution
time itself to the sleep time. For example, after line A in Figure 2
has completed execution, the clock time will have moved on by
the amount of time it took to execute the line. Similarly for line B.
Line C introduces two extra sources of time, the sleep time and the
time spent waiting for the scheduler to pick up and continue execut-
ing the thread. Therefore, instead of each iteration taking precisely
0.5s, the actual time is the summation of the computation time of A,
the computation time of B, 0.5 and the scheduler pick-up time. De-
pending on load and processor speed, these extra times can produce
dramatically noticeable results. This is profoundly apparent when
the user requests two threads to work in synchronisation such as in
Figure 3. The threads may start out in synchronisation, but because
the extra computation time will differ across the threads, they will
drift at varying rates and move out of synchronisation.

Sonic Pi’s timing issues are further compounded by the fact that
calls to play and sample are asynchronous messages, and there is
an additional time cost for these messages to be sent and interpreted
by the external synth process. This then adds additional varying
time (jitter) to each sound trigger.

The temporal issues described in this section are summarised
in Figure 4, which describes the timing behaviour of Sonic Pi v1.0
code triggering three successive chords. Each of the ∆ times in
the far left column represents the real computation time of each
statement. Notice how they are all unique. The precise duration is
related to aspects such as the amount of processing required for



sleep 1

sleep 0.5

play :C

play :E

play :G

play :F

play :A

play :C

play :G

play :B

play :D

Real 
Time

    Δa + Δb + Δc + 1

 Δc

 Δa

 Δb

Statement
Duration

  Δa

  Δa + Δb

  Δa + Δb + Δc

 Δd
    Δa + Δb + Δc + 1 + Δd

    Δa + Δb + Δc + 1 + Δd + Δe

    Δa + Δb + Δc + 1 + Δd + Δe + Δf

    Δa + Δb + Δc + 1 + Δd + Δe + Δf + 0.5

    Δa + Δb + Δc + 1 + Δd + Δe + Δf + 0.5 + Δf

    Δa + Δb + Δc + 1 + Δd + Δe + Δf + 0.5 + Δf + Δg

 Δe

 Δf

 Δg

 Δh

 Δi
    Δa + Δb + Δc + 1 + Δd + Δe + Δf + 0.5 + Δf + Δg + Δh

Figure 4. The timing behaviour in Sonic Pi v1.0

the computation, the current load of the system and the processor
speed. The duration of ∆s is therefore nondeterministic and will
not be consistent across runs of the same program. As Figure 4
illustrates, the actual run time of the program is a summation of all
these ∆ times in addition to the requested sleep durations:

∆a + ∆b + ∆c + 1 + ∆d + ∆e + ∆f + 0.5 + ∆g + ∆h + ∆i

This results in both drift and jitter of the timing of the sounds
produced by the program.

2.1 Temporal expectations
When users create programs in Sonic Pi, the ease with which
they can produce the musical effects they intend is dependent on
their expectations of the code’s behaviour. As described by Hon-
ing [Hon93] (see Section 7), music systems may represent temporal
structure either explicitly (describing time intervals and relations)
or implicitly (in an ordered sequence of notes having different du-
rations). Musical scores provide an implicit time representation,
while most music programming systems rely on explicit time rep-
resentation. Unfortunately, in the case of general purpose program-
ming languages, the typical implementation of the sleep operator
supports an explicit representation of rhythm that is guaranteed to
be accurate only in the ordering of the notes, not in the elapsed
time between them. In teaching programming, the usual focus is
on correctness of this explicitly specified behaviour. When teach-
ing programming through the medium of music, as in Sonic Pi, the
musical expectations that are usually associated with implicit rep-
resentation of rhythm mean that non-expert musicians are likely to
hear that something is wrong, while not being able to express pre-
cisely what the problem is.

Less expert musicians might be able to identify more explicit
problems (such as extra beats), but find it harder to say precisely
what the problem is when that problem is related to their implicit
expectations. Even if the user can perceive the timing mistakes, the
language provides no means to fix them. One of the goals of Sonic
Pi is to to create a system that is useful to experienced musicians
(with clear musical goals) and acceptable to inexperienced musi-
cians that may not be able to clearly articulate what they want to
achieve, but know when it is wrong.

It is therefore important to maintain the conceptual simplicity of
the original approach, while providing an improved time semantics
that satisfies not only explicit expectations of the musical listener,
but also these implicit expectations.

play :C ; play :E ; play :G
sleep 1
play :F ; play :A ; play :C
sleep 0.5
play :G ; play :B ; play :D

Figure 5. Playing three chords (C major, F major, G major) in
Sonic Pi v2.0, with the second two played closer together by 0.5s.

3. Reinventing sleep
Sonic Pi v2.0 introduces a new implementation and semantics
of the sleep command which maintains syntactic and conceptual
compatibility with the previous implementation yet modifies the
temporal semantics to match the implicit rhythmical expectations
previously described. The semantics is no longer similar to that of
the POSIX sleep command. The underlying programming model
of Sonic Pi v2.0 provides a way to separate the ordering of effects
from the timing of effects. Figure 5 shows the program that was
used in Figure 4, but we now treat it as Sonic Pi v2.0 program.
This example program (playing three chords in sequence) combines
simple notions of parallel, timed, and ordered effects.

The first three statements play the notes of a C major chord
in parallel. A sleep statement then provides a “temporal barrier”
which blocks the computation from continuing until 1 second has
elapsed since the start of the program (not since the end of playing
the notes). Once one second has elapsed, the next three statements
are executed, which play an F major chord. The next sleep means
that the final chord is not played until 1.5 seconds has elapsed
since the start of the program. Figure 6 illustrates the timing. Thus,
sleep t communicates that, after it has been evaluated, at least t
seconds has elapsed since the last sleep. This provides a minimum
time. In between calls to sleep, any other statements can (with
some limits) be considered task parallel. The semantics of sleep
is similar to the interaction of time and the (multiply) overloaded
=> operator in the live coding language ChucK [WC03].

These semantics are achieved by introducing a notion of virtual
time as a thread-local variable which is only advanced by the new
sleep operation. Each thread has access to both real time and
virtual time, with the virtual time used to schedule external effects.
In order to keep the execution of the program in synchronisation
with the explicit timing requirements of the program, sleep takes
into account the execution time since the last sleep and reduces
the requested sleep time appropriately. Therefore if the user issues
a sleep 1 statement, and the current execution time since the last
sleep statement is 0.1 seconds, the implementation only sleeps the
current thread for 0.9s. This ensures that no drifting occurs.

Figure 6 demonstrates the timing of the Figure 5 program in
Sonic Pi v2.0, which contrasts with the timing diagram in Figure 4.
The overall elapsed time for the program is now:

(v2.0) 1.5 + ∆g + ∆h + ∆i

which contrasts with the Sonic Pi v1.0 timing for the same pro-
gram:

(v1.0) 1.5 + ∆a + ∆b + ∆c + ∆d + ∆e + ∆f + ∆g + ∆h + ∆i

This shows that we have eliminated drift in Sonic Pi v2.0 since
the only overhead is now just the overhead of the play statements
following the last sleep. For Sonic Pi v1.0, each block of play
statements adds overhead, leading to timing drift over the course of
a program. In Section 4 we will make precise the behaviour of the
new sleep operation.

In order to deal with relative execution times within a sleep
barrier, e.g., the play :C ; play :E ; play :G operations in
Figure 5, and also to accommodate the cost of scheduling output
effects (to the synthesiser serve), a constant scheduleAheadTime



sleep 1

sleep 0.5

play :C

play :E

play :G

play :F

play :A

play :C

play :G

play :B

play :D

Real 
Time

Scheduled 
Time

0

0

0

1

1

1

1.5

1.5

1.5

Virtual
 Time

  1

 Δc

 Δa

 Δb

Statement
Duration

  0 + Δa

  0 + Δa + Δb

  0 + Δa + Δb + Δc

 Δd
  1 + Δd

  1 + Δd + Δe

  1 + Δd + Δe + Δf 1

0.5

0.5

0.5

1.5

1.5

1.5

  1.5

  1.5 + Δg

  1.5 + Δg + Δh

2

2

2

 Δe

 Δf

 Δg

 Δh

 Δi
  1.5 + Δg + Δh + Δi 1.5

Figure 6. Timing behaviour of Sonic Pi v2.0 including virtual and
scheduled time with a scheduleAheadTime of 0.5.

value is added to the current virtual time for all asynchronously
scheduled effects. Provided that the addition of the jitter time and
the execution time between calls to sleep never exceeds this value,
the temporal expectations of the system are met.

It is possible that a computation preceding a sleep can over-
run; that is, run longer than the sleep time. Thus, the programming
model is not suitable for realtime systems requiring hard deadlines
but sleep instead provides a soft deadline (in the terminology of
Hansson and Jonsson [HJ94]). However, if a given thread falls be-
hind, the user receives explicit timing warnings (described further
in Section 6). Finally, if the thread falls further behind by a user-
specifiable amount of time then Sonic Pi will stop that thread by
throwing a time exception. This therefore not only provides essen-
tial information to users about the temporal behaviour of the pro-
gram but also serves as a safety mechanism against a common class
of errors such as placing an isolated call to play within a loop with
no calls sleep. In such cases, the thread will no longer permanently
sit in a tight loop consuming all resources, but will self-terminate
allowing any other threads to continue executing normally.

3.1 Examples
Figure 7 shows four similar programs which each have different
internal behaviours for sleep, illustrating its semantics. We use
the function kernelSleep, which is not a standard part of the
Sonic Pi language, as a placeholder to represent a computation
lasting a particular length of time (as specified by the parameter
to kernelSleep). The first three example programs take 3s to
execute and the last takes 4s to execute, with the behaviours:

(a) 3s – sleeps for 1s then sleeps for 2s (two sleeps performed);

(b) 3s – performs a computation lasting 1s, ignores the first sleep
since its minimum duration has been reached, and then sleeps
for 2s (one sleep performed);

(c) 3s – performs a computation lasting 2s, which means that the
first sleep is ignored, and the second sleep waits for only 1s
to reach its minimum duration (half a sleep performed);

(d) 4s – performs a computation lasting 2s, thus the first sleep
is ignored, then performs a computation lasting 2s, thus the
second sleep is ignored (no sleeps performed).

sleep 1
sleep 2

(a) Two sleeps

kernelSleep 1
sleep 1
sleep 2

(b) One sleep

kernelSleep 2
sleep 1
sleep 2

(c) Half a sleep

kernelSleep 2
sleep 1
kernelSleep 2
sleep 2

(d) No sleeps

Figure 7. Example programs with different sleep behaviours

4. A time system for Sonic Pi
From our experiences, we’ve found that the programming model
of Sonic Pi, particularly its temporal model, is easy to understand
by even complete beginners, including children. By a few simple
examples it is easy to demonstrate the temporal semantics, using
sounds as output, without having to appeal to any meta-theory;
Sonic Pi attains the goal of being a good first language.

In this section, we approach the programming model of Sonic Pi
from a more theoretical angle, in order to develop a specification of
our programming model that can be reused for other applications
and languages outside of the Sonic Pi context. From our model
we prove a number of core properties of Sonic Pi as well. It is in
no way necessary for programmers of Sonic Pi to understand this
theory, but the contribution here is useful for future language design
and implementation research.

Firstly, we define an abstract specification of virtual time and ac-
tual elapsed time in a simple core subset of Sonic Pi (Section 4.1).
This gives an abstract, axiomatic model of the semantics which we
call a time system. This model is made more concrete by providing
a denotational-style, monadic semantics in the next section (Sec-
tion 5), introducing the temporal monad. We prove the monadic
model sound with respect to the initial axiomatic specification, up
to small permutations in time delay (Section 5.3).

Terminology and notation We refer to sequences of statements as
programs. Throughout, P , Q range over programs, and s, t range
over times (usually in seconds).

A core fragment of Sonic Pi In the rest of this paper, we model
a core subset of the Sonic Pi v2.0 language with the following
grammar, where P are programs, S statements, andE expressions:

P ::= P ;S | ∅
S ::= E | v = E

E ::= sleep R>0 | Ai | v

where Ai represents operations (actions) in Sonic Pi other than
sleep, e.g., some Aj is the play operation. We use this to abstract
over operations in the language which do not modify virtual time.

By the above definition, programs P are a “snoc”-list (i.e., el-
ements are “consed” onto the end, not front as is standard for
inductively-defined lists) where ∅ is the empty list. Equivalently, se-
quential composition of statements is syntactically left-associated.
This structure aids later proofs since it allows inductive reasoning
on a statement of a program and its preceding program, which is
key to accurately modelling sleep.

Statements S may be expressions on their own, or may have
(pure) bindings to variables. Throughout we consider the first case
of S as a degenerate case of the second where the variable is
irrelevant i.e., = E where denotes a wildcard variable.

We’ll add the previously seen kernelSleep operation to the
core subset here, which blocks the current computation for the time
specified by its parameter, i.e., it has the semantics of POSIX sleep.
This operation is not available in the actual language, but it is useful
for examples and contrasting with sleep.

This core subset is a zero-order language, in the sense that we do
not include the definition or calling of user-defined functions; nor



do we incorporate the threading constructs provided by Sonic Pi.
Extending the model here to include these is however straightfor-
ward, but we stick with a simple language for the sake of succinctly
introducing and reasoning about the core temporal behaviour.

4.1 Virtual time and real time
As described previously, the programming model of Sonic Pi dis-
tinguishes between the actual time elapsed since the start of a pro-
gram P which we write here as [P ]t and the virtual time which is
advanced by sleep statements which we write as [P ]v. Both these
abstract functions return time values, thus, [−]v, [−]t ∈ R>0, i.e.,
both return positive, real-number values.

In this section, we give specifications to [−]v and [−]t providing
an axiomatic model of Sonic Pi’s temporal behaviour.

Virtual time [−]v can be easily defined over all programs, state-
ments, and expressions, since the sleep operation is the only ex-
pression changing virtual time:

Definition 1. Virtual time is specified for statements of Sonic Pi
programs by the following cases:

[P ; v = E]v = [P ]v + [E]v [sleep t]v = t [v]v = 0
[∅]v = 0 [Ai]v = 0

We therefore overload [−]v to programs, statements, and expres-
sions. Anything other than sleep or sequential composition has
the virtual time is 0. Note that the equations on the left define
[−]v for programs (with statements covered by the single case for
P ; v = E), and on the right for expressions.

Equality on time Providing exact deadlines in real-time systems
is difficult due to non-determinism combined with execution over-
heads. We do not ignore this problem in the programming model
of Sonic Pi and the discussion here. We define the relation ≈ on
actual times, where:

∀s, t. s ≈ t ≡ |(s− t)| 6 ε (1)

for some value of ε which is the maximum negligible time value
with respect to the application at hand. For example, if ε = 0.1
then 3 ≈ 3.05 ≈ 2.92.

In the case of Sonic Pi, we mitigate any ε-time differences by
scheduling calls to the synthesise server using the current virtual
time (see the diagram of Figure 6). Later in the denotational model
(Section 5), we’ll demonstrate sources of temporal variations ε,
which are limited to a very small part of the model. Crucially,
these ε time differences do not accumulate– the sleep operation
provides a barrier which prevents this.

Axioms of actual time The virtual time and actual time of a single
sleep statement are roughly the same, i.e., [sleep t]v ≈ [sleep t]t
and thus [sleep t]t ≈ t (by the specification in Definition 1).
This holds only when sleep is used in isolation, that is, when it
is the only statement in a program. As shown by the examples of
Section 3.1, the use of sleep t in a program does not mean that a
program necessarily waits for t seconds– depending on the context,
it may wait for anywhere between 0 and t seconds.

Definition 2. The actual elapsed time [−]t can be (partially) spec-
ified at the level of programs by the following equations:

[∅]t ≈ 0

[P ; sleep t]t ≈ ([P ]v + t) max [P ]t

[P ; v = Ai]t ≈ [P ]t + [Ai]t

In the case of Ai = kernelSleep, then [kernelSleep t]t = t.

Example 1. The following two small example programs illustrate
this definition, both of which have actual time 2 but arising from
different calls to sleep and kernelSleep.

– [kernelSleep 2; sleep 1]t ≈ 2

where P = kernelSleep 2, [P ]v = 0, t = 1, and
[P ]t = 2, thus ([P ]v + t) < [P ]t

– [kernelSleep 1; sleep 2]t ≈ 2

where P = kernelSleep 1, [P ]v = 0, t = 2, and
[P ]t = 1, thus ([P ]v + t) > [P ]t

Definition 2 illuminates the semantics of sleep, showing the in-
teraction between actual [−]t and virtual time [−]v in the case for
sleep. In this case, the definition of [−]t is not a straightforward
recursive decomposition on programs, statements, and expressions
as in the definition of [−]v. Instead, the actual time of a sleep
depends on its context, which is the pre-composed (preceding) pro-
gram P and its actual time [P ]t. This is why we have structured the
core subset language here in terms of “snoc”-list since the tempo-
ral semantics of an individual statement can depend on the program
that has come before it (the tail of the “snoc”-list). Thus, the syntac-
tic structure here facilitates the modelling of sleep and subsequent
proofs on program properties (coming up next).

The specifications on [−]v and [−]t provide the following
lemma about the temporal semantics of Sonic Pi programs:

Lemma 1. For any program P then [P ]t > [P ]v.

That is, the actual running time of a program is always at least
the virtual time; a Sonic Pi program never “under runs” its virtual
time specification.

Proof. By induction on the structure of programs.

• P = ∅. Trivial since [∅]v = 0 by Definition 1.
• P = (P ′; v = E), split on E

E = sleep t
(a) by Definition 1, [P ′; sleep t]v = [P ′]v + t.
(b) by Definition 2, [P ′; sleep t]t = ([P ′]v+t) max [P ′]t.
(c) by (b) (([P ′]v + t) max [P ′]t) > [P ′]v + t
∴ by (a) and (c) then [P ′; sleep t]t > [P ′sleep t]v
otherwise E = Ai

(a) by Definition 1, [P ′; v = Ai]v = [P ′]v
(b) by Definition 2, [P ′; v = Ai]t = [P ′]t + [Ai]t
(c) by inductive hypothesis [P ′]t > [P ′]v.
(d) since [−]t ∈ R>0, by monotonicity and (c) [P ′]t +
[A1]t > [P ′]v.
∴ by (a), (b), (d) then [P ′; v = Ai]t > [P ′; v = Ai]v.

Note that this proof only makes use of basic properties on rela-
tions and the specifications of [−]t and [−]v given here. This will
be useful later: we can prove soundness of our denotational model
with respect to the two definitions and get the above lemma for free
following from this proof.

The abstract specification of the temporal behaviour here gives us
a model to reason about time in Sonic Pi programs.

Example 2. Consider subprogramsA,B,C where [A]v = [B]v =
[C]v = 0 which are interposed with two sleep statements of
duration s1 and s2:

P = A; sleep s1; B; sleep s2; C

Then by the above definitions, we see that if [A]t 6 s1 and
[B]t 6 s2 then [P ]t = s1 + s2 + [C]t.

We now move on to a denotational model, which provides a seman-
tics for the core subset of the language described here. We’ll prove
this sound semantics with respect to the axiomatic model of this
section, linking the two levels of model.



5. A denotational model of Sonic Pi’s temporal
semantics

In the following, we use Haskell as a meta language for a deno-
tational model since it provides a convenient syntax for working
with monads. This approach also provides an executable seman-
tics that is useful for experimentation and integrating into other ap-
proaches. The source code is available at https://github.com/
dorchard/temporal-monad.

We prove our model sound with respect to the time system
approach of the previous section (Section 5.3) and briefly consider
alternate simplified models using applicative functors or monoids
(Section 5.5). In Section 6, we extend the model with “temporal
warnings” describing overrun errors that can occur at runtime.

5.1 The Temporal monad
We define an interpretation J−K for programs, statements, and ex-
pressions into values of a parametric data structure, named Tempo-
ral, which encapsulates the effects of the Sonic Pi programs. Com-
putations encapsulated by Temporal are functions of the form:

(start time, current time)

→ (old vtime→ kernel-access (result, new vtime))

that is, mapping a pair of two times: the start time and current time
of the computation (which are used to compute the time elapsed
since the program start), to a stateful computation on virtual times
(mapping from an old virtual time to a new virtual time) which may
access the kernel to get the actual clock time, and produces a result
along with the new virtual time. Concretely, Temporal is defined:

data Temporal a =
T ((Time,Time)→ (VTime → IO (a,VTime)))

where IO is part of the Haskell implementation and encapsulates
access to the actual clock time from operating system.

Temporal has a monad structure, defined by the following
instance of the Monad class:

instance Monad Temporal where
return a = T (λ → λvT → return (a, vT ))

(T p)>>= q = T (λ(startT ,nowT )→ λvT →
do (x , vT ′) ← p (startT ,nowT ) vT

let (T q ′) = q x
thenT ← getCurrentTime
q ′ (startT , thenT ) vT ′)

To ease understanding, we recall the types of return and (>>=) and
give some intuition of their behaviour for Temporal:

• return :: a → Temporal a lifts a pure value into a triv-
ially effectful computation by ignoring the time parameters and
providing the usual pure state behaviour of returning the pa-
rameter state vT unchanged along with the result. The nested
use of return , on the right, comes from the IO monad (i.e.,
return :: a → IO a).

• (>>=) :: Temporal a → (a → Temporal b) → Temporal b
composes two computations together. The result of composing
two temporal computations, with start time startT, current time
nowT, and virtual time vT, is the result of evaluating first the
left-hand side at time nowT and then right-hand side at the
new current time thenT. The expression getCurrentTime ::
IO Time retrieves the time from the operating system.

Thus, the current time is retrieved with each use of >>=, rather than
using getCurrentTime directly in any operation that requires the
time. This choice was made in order to collect the temporal features
of the model together in the monad.

time :: Temporal Time
time = T (λ( ,nowT )→ λvT → return (nowT , vT ))

start :: Temporal Time
start = T (λ(startT , )→ λvT → return (startT , vT ))

getVirtualTime :: Temporal VTime
getVirtualTime = T (λ( , )→ λvT → return (vT , vT ))

setVirtualTime :: VTime → Temporal ()
setVirtualTime vT = T (λ → λ → return ((), vT ))

kernelSleep :: RealFrac a ⇒ a → Temporal ()
kernelSleep t = T (λ( , )→ λvT →

do threadDelay (round (t ∗ 1000000))
return ((), vT ))

Figure 8. Simple Temporal computations, used by the model

To model program evaluation, the runTime operation executes a
temporal computation inside of the IO monad, providing the start
time from the operating system and virtual time 0:

runTime :: Temporal a → IO a
runTime (T c) = do startT ← getCurrentTime

(x , ) ← c (startT , startT ) 0
return x

Example 3. To illustrate the evaluation of temporal computations
and the ordering and interleaving of calls to the operating system
for the current time, consider the program:

runTime (do {f ; g ; h; })
(where f = (T f ′), g = (T g ′), h = (T h ′)) which desugars to
the following IO computation, after some simplification:

do startT ← getCurrentTime
( , vT ′)← f ′ (startT , startT ) 0
thenT ← getCurrentTime
( , vT ′′)← g ′ (startT , thenT ) vT ′

thenT ′ ← getCurrentTime
(y , ) ← h ′ (startT , thenT ′) vT ′′)
return y

This illustrates the repeated calls to getCurrentTime , the constant
start time parameter, and the threading of virtual time state through-
out the computation.

Figure 8 shows effectful operations of the Temporal monad,
used in the next part of the model to access the current time, the
start time, get and set the virtual time, and cause a kernel sleep.

5.2 Interpreting Sonic Pi statements
The interpretation J−K is overloaded on programs, statements, and
expressions, thus the type of the interpretation depends on the
syntactic category. Each interpretation produces a computation in
the Temporal monad. For open syntax (i.e., with free variables),
we model a variable environment mapping variables to values by
the Env type, which is threaded through the interpretation. For
expressions, we model the value domain via the Value data type,
for which we elide the details here.

The interpretation reassociates the left-associated program syn-
tax (where the last statement is at the head of the snoc-list represen-
tation) to a right-associated semantics using a continuation-passing
approach, e.g., for a three statement program:

J((∅;S1);S2);S3K = JS1K ◦̂ (JS2K ◦̂ (JS3K ◦̂ J∅K))

https://github.com/dorchard/temporal-monad
https://github.com/dorchard/temporal-monad


where ◦̂ represents (forwards, left-to-right) sequential, monadic
composition of denotations in the Temporal monad.

The interpretation of statement sequences is defined:

JP K :: (Env → Temporal ())→ Temporal ()

J∅K k = k emptyEnv

JP ;SK k = JP K (λenv → (JSK env)>>= k)

The parameter k is a continuation (taking an environment Env ) for
the tail of the right-associated semantics. In the inductive case, the
continuation passed to JP K is the pre-composition of the interpre-
tation of the statement S to the parameter continuation k.

At the top-level, we interpret a closed program to a Temporal ()
value by passing in the trivial continuation returning ():

JP Ktop = runTime (JP K (λ → return ()))

The interpretation of statements maps an environment to a possibly
updated environment, inside of a Temporal computation, defined:

JSK :: Env → Temporal Env

J = EK env = (JEKenv)>>= (λ → return env)

Jv = EK env = (JEKenv)>>= (λx → return env [v 7→ x])

For both kinds of statement, with and without variable binding, the
expression E is evaluated where JEK :: Env → Temporal Value .
The result of evaluating E is then monadically composed (via
>>= of the Temporal monad) with a computation returning an
environment. For statements without a binding, the environment
env is returned unmodified; for statements with a binding, the
environment env is extended with a mapping from v to the value x
of the evaluated expression, written here as env [v 7→ x].

For expressions, we show just the interpretation of sleep and
variables expressions:

JEK :: Env → Temporal Value

Jsleep tK env = sleep t

JvK env = return (env v)

Thus, sleep is interpreted in terms of the sleep function (see be-
low), where t is a constant, and variable expressions are interpreted
as a projection from the environment. The concrete interpretation
of other actions in the language, such as play, is ignored here since
they does not relate directly to the temporal semantics.

Interpretation of sleep The sleep operation, used above, pro-
vides the semantics for sleep as:

sleep :: VTime → Temporal Value
sleep delayT = do nowT ← time

vT ← getVirtualTime
let vT ′ = vT + delayT
setVirtualTime vT ′

startT ← start
let diffT = diffTime nowT startT
if (vT ′ < diffT )

then return ()
else kernelSleep (vT ′ − diffT )

return NoValue

where NoValue ∈ V alue. Thus, sleep proceeds first by getting
the current time nowT, calculating the new virtual time vT’ and
updating the virtual time state. If the new virtual time is less than
the elapsed time diffT then no actual (kernel) sleeping happens.
However, if the new virtual time is ahead of the elapsed time,
then the process waits for the difference such that the elapsed time
equals the virtual time.

Note that in this definition we have introduced an overhead, an
ε time, arising from the time elapsed between the first statement

nowT ← time and the kernelSleep operation. The initial time
operation retrieves the current time and is used to calculate the
duration of the preceding program. Any sleeping that happens
however occurs after we have calculated the amount of time to sleep
and after we have decided whether a sleep is needed (all of which
takes some time to compute). Therefore a small ε time is introduced
here. We will account for this in the following section.

5.3 Soundness of the temporal monad: time safety
We replay the previous axiomatic specifications on the temporal
behaviour of Sonic Pi programs, and show that the monadic model
is sound with respect to these, i.e., that the model meets this spec-
ification. We call this a time safety property of the language, with
respect to the time system provided by the axiomatic specification.

Definition 1 (recap). Virtual time is specified for statements of
Sonic Pi programs by the following cases:

[P ; v = E]v = [P ]v + [E]v [sleep t]v = t [v]v = 0
[∅]v = 0 [Ai]v = 0

Lemma 2. [runTime JP K]v = [P ]v, i.e., the virtual time of the
evaluated denotational model matches the virtual time calculated
from the axiomatic model.

Proof. For our model, the proof is straightforward. For the case of
P ;S, we rely on the monotonicity of virtual time: virtual time is
only ever increasing, and is only ever incremented by sleep.

Definition 2 (recap). The actual elapsed time [−]t can be (par-
tially) specified at the level of programs by the following equations:

[∅]t ≈ 0

[P ; sleep t]t ≈ ([P ]v + t) max [P ]t

[P ; v = Ai]t ≈ [P ]t + [Ai]t

Lemma 3. [runTime JP K]t ≈ [P ]t, i.e., the actual time of the
evaluated denotational model is approximately equal to actual time
calculated from the axiomatic model.

Proof. The key case is for (P ; sleep t), which we show here. Our
model interprets the evaluation of (P ; sleep t) as:

runTime (JP ; sleep tK (λ → return ()))

which desugars and simplifies as follows:

runTime (JP K (λe → (Jsleep tK e)>>= λ → return ()))
≡ runTime (JP K Jsleep tK)

The semantics reassociates statements, thus the interpretation for
P = ((∅;S1); ...);Sn is of the form (JS1K ◦̂ ...(JSnK ◦̂ Jsleep tK))
(where f ◦̂ g is monadic forwards composition, i.e., f ◦̂ g = λx →
(f x ) >>= g). Therefore, we can unroll and simplify the semantics
further to get the following IO computation (where JP K′ denotes
the unrolled interpretation of P ):

do startT ← getCurrentTime
(x , vT ′) ← JP K′ (startT , startT ) 0
nowT ← getCurrentTime
let vT ′′ = vT ′ + t
setVirtualTime vT ′′

let diffT = diffTime nowT startT
if (vT ′′ < diffT ) then return ()

else kernelSleep′ (vT ′′ − diffT )

where kernelSleep′ x = threadDelay (round (x ∗ 1000000)) is
used to simplify the code here (as per the definition of kernelSleep
in Figure 8).



From this we see that diffT = [P ]t and vT’ = [P ]v and
vT” = [P ]v + t. Therefore, the guard of the if expression is
([P ]v + t) < [P ]t. If the updating of the virtual time state and
the computing of the guard takes e then the overall time taken is:

[P ; sleep t]t =

{
[P ]t + e ([P ]v + t) < [P ]t
[P ]t + e+ ([P ]v + t)− [P ]t otherwise

=

{
[P ]t + e ([P ]v + t) < [P ]t
[P ]v + t+ e otherwise

= ([P ]t + e) max ([P ]v + t+ e)

≈ [P ]t max ([P ]v + t)

where the third step follows by monotonicity of +e on each side of
the guard, The final stage in this simplification holds if e 6 ε and if
the reduction to the interpretation to get to the above code takes less
than ε. This ε is not however a drift, but a single overhead that can
be be masked by a small scheduleAheadTime (see Section 3).

Thus our model is time safe, in the sense that it satisfies the
invariants described by the time system of Section 4. Following
from these definitions we then get Lemma 1 “for free”, that for all
P , [P ]t > [P ]v, i.e., a program never “under-runs” its virtual time
specification. The lemma holds for free, since its proof relies only
on the satisfaction of the specifications on [−]t and [−]v, which we
have shown above for our model.

5.4 Monad laws and equational theory for Sonic Pi programs
The Temporal monad is “weak”, in the sense that the standard
monad laws do not always hold. For example, consider the law:

(m >>= return) ≡ m (2)

where m :: Temporal a . In our model this corresponds to the
following equality on programs:

Jx = P ; y = xK ≡ Jy = P K

This should seem an intuitive rule to most programmers. However,
for the Temporal monad, this law is violated in cases where m
depends on the current time. For example, let m be defined:

m = do kernelSleep 1
start ← start
end ← time
return (diffTime end start) -- duration

Then we can run an experiment in GHCi to see that different results
are possible:

*Main> runTime $ m >>= return
1.001113s
*Main> runTime $ m
1.00114s

(note, these results are also non-deterministic). The difference in
results follows from the additional reduction required on (>>=)
in the first case (left-hand side of (2)). Note that we calculate
a duration here since using the absolute time produced by time
would be disingenuous, since we are evaluating m >>= return and
m at different start times.

In the above example, we have computed a time-dependent
value (the duration). Due to variations in timing (and in the ε
overheads), this disrupts the monad laws as seen above with the
monad law shown in equation (2). However, in the programming
model of Sonic Pi, there are no operations that expose the actual
time (or current) time to the user– that is, the above program is not
the model of any Sonic Pi program. We can therefore “quotient” the
model by operations that do not expose the time, i.e., we exclude

start and time , which are not part of the Sonic Pi language. From
this we regain the monad laws, up to ≈ due to small variations (as
seen above). These are then:

(return x )>>= f ≈ f x

m >>= return ≈ m

m >>= (λx → (f x )>>= g) ≈ (m >>= f )>>= g

which each provide the following standard equational theory on
Sonic Pi programs respectively:

y = x; P ≡ P{y 7→ x}
x = P; y = x ≡ y = P

(x = P; y = Q); z = R ≡ x = P; (y = Q; z = R)

5.5 Subsets of the semantics
We briefly discuss alternative structuring of the model here.

For most of our example Sonic Pi programs here, the full struc-
ture of a monad is not needed to give their semantics as there is no
use of binding between statements (and thus no dataflow). In these
case just an applicative functor [MP08] or even a monoid would
suffice. These can be derived from the monad structure on Tem-
poral since all monads are applicative functors and all monads m
define a monoid over m ().

Applicative subset Applicative functors are described by the fol-
lowing interface in Haskell:

class Functor f ⇒ Applicative f where
pure :: a → f a
(<∗>) :: f (a → b)→ f a → f b

The Applicative class describes how to compose effectful compu-
tations encoded as values of type f a (the effectful computation of
a pure value of type a). Thus, pure constructs a trivially effectful
computation from a pure value and <∗> (akin to application) takes
an effectful computation of a function and an effectful computation
of an argument and evaluates the two effects in order to apply the
function to the argument.

Our Temporal denotations have the applicative functor structure
with the following derivation in terms of the monad:

instance Functor Temporal where
fmap f x = do {x ′ ← x ; return (f x ′)}

instance Applicative Temporal where
pure a = return a
f <∗> x = do {f ′ ← f ; x ′ ← x ; return (f ′ x ′)}

Note that the definition of <∗> here orders the effects left-to-right.
The interpretation of sequential composition for statements

(with no dataflow) is then JP ;QK = (λ()→ JP K) <∗> JQK.

Monoid subset Alternatively, the full structure of an applicative
functor is not even needed in this restricted case. Instead, a monoid
over Temporal () would suffice:

class Monoid m where
mempty :: m
mappend :: m → m → m

instance Monoid (Temporal ()) where
mempty = return ()
a ‘mappend ‘ b = do {a; b; return ()}

with the interpretation JP ;QK = JP K ‘mappend ‘ Q and where
mempty provides a no-op.



weakWarn :: VTime → TemporalE ()
weakWarn t = TE (λ → return ((), [Weak t ]))>>

(warn $ "warning: overran by " ++ (show t))

strongWarn :: VTime → TemporalE ()
strongWarn t = TE (λ → return ((), [Strong t ]))>>

(warn $ "WARNING: overran by " ++ (show t))

warn :: String → TemporalE ()
warn s = lift (T (λ → λvt → do putStrLn s

return ((), vt)))

epsilonTime :: TemporalE VTime
epsilonTime = TE (λeps → return (eps, [ ]))

lift :: Temporal a → TemporalE a
lift t = TE (λ → fmap (λa → (a, [ ])) t)

Figure 9. Simple TemporalE computations

6. Emitting overrun warnings
We extend the Temporal monad with an additional parameter for
the ε time, which we interpret as the maximum allowable overrun,
and an output stream for sending “warnings” when overruns occur.

Overrun warnings are either strong, when the real time is more
than ε ahead of virtual time, or weak when the real time is less than
ε ahead of virtual time. That is:

• [P ]t > ([P ]v + ε) ⇒ JP K strong warning
• [P ]v 6 [P ]t < ([P ]v + ε) ⇒ JP K weak warning

We redefine the interpretation J−K to produce computations de-
scribed by the following type TemporalE , thus JP K : TemporalE ():

data Warning = Strong VTime |Weak VTime

data TemporalE a =
TE (VTime → Temporal (a, [Warning ]))

Therefore, TemporalE wraps the previous Temporal type with
a VTime parameter for ε and pairs the result with a list, repre-
senting the output stream of warnings. The lift function (shown
in Figure 9) allows the previous effectful operations on Temporal
to be promoted to the TemporalE type (by ignoring the new pa-
rameter for ε and producing the empty output stream), of type
lift :: Temporal a → TemporalE a . Figure 9 shows a number
of other simple TemporalE computations for raising warnings and
accessing the ε parameter.

The TemporalE encoding has the following instance of Monad
which is simply a combination of the usual reader monad behaviour
(for the ε parameter) and the writer monad (for the output stream),
lifted to the Temporal monad:

instance Monad TemporalE where
return a = TE (\ → return (a, [ ]))
(TE p)>>= q = TE (λeps → do (a, es)← p eps

let (TE q ′) = q a
(b, es ′)← q ′ eps
return (b, es ++ es ′))

The do here is a Temporal computation, with the previous
monadic semantics.

Evaluating TemporalE computations is much the same as be-
fore, with the ε time passed as a parameter:

runTime :: VTime → TemporalE a → IO (a, [Warning ])
runTime eps (TE c) = do startT ← getCurrentTime

let (T c′) = c eps
(y , )← c′ (startT , startT ) 0
return y

Finally, the new definition of sleep for TemporalE is the point at
which warnings may be emitted:

sleep :: VTime → TemporalE ()
sleep delayT =

do nowT ← time
vT ← getVirtualTime
let vT ′ = vT + delayT
setVirtualTime vT ′

startT ← start
eps ← epsilonTime
let diffT = diffTime nowT startT
if (vT ′ < diffT )

then if ((vT ′ + eps)< diffT )
then strongWarn (diffT − vT ′)
else weakWarn (diffT − vT ′)

else kernelSleep (vT ′ − diffT )

The definition is similar to sleep for Temporal , except that in the
true-branch of the conditional there is additional testing to see if
diffT is greater than the new virtual time + ε (in which case a
strong exception is raised), or if diffT is between vT ′ and vT ′ + ε
(in which case a weak exception is raised).

The implementation of Sonic Pi has a similar semantics and
warning system, for which this provides a general description.

7. Related work
Section 1.1 considered some related live coding languages and
approaches. Here we highlight related approaches to temporal
programming and reasoning in logic, artificial intelligence, and
dataflow programming.

Logics There has been various work on reasoning about time in
logic. For example, modal CTL (Computational Tree Logic) has
been extended with time bounds for deadlines [EMSS91] (RCTL,
Real-Time Computational Tree Logic) and for soft deadlines with
probabilities on time bounds [HJ94]. In these logics, temporal
modalities are indexed with time bounds, e.g., AF650p means p
is true after at least 50 “time units” (where A is the operator for
along all paths and F for finally/eventually). Our approach is less
prescriptive and explicit, but has some resemblance in the use of
sleep. For example, the program sleep t;P roughly corresponds
to AF6tJP K, i.e., after at least t then whatever P does will have
happened. Our framework is not motivated by logic and we do not
have a model checking process for answering questions such as, at
time t what formula hold (what statements have been evaluated).
The time system approach of Section 4 does however provide a ba-
sis for programmers to reason about time in their programs. In prac-
tice, we find that such reasoning can be done by children in a com-
pletely informal but highly useful way; the language has reached a
sweet-spot between expressivity and ease of understanding.

Artificial intelligence Reasoning about the temporal component
of events and action is a classic problem in artificial intelligence
(e.g., Shoham [Sho88], Shanahan [Sha95], Fisher et al. [FGV05]),
in which causal mechanisms and metrical description may be more
or less tightly coupled. Human interaction with systems that em-
ploy temporal reasoning can be considered either from a software
engineering perspective (the usability of formal time notations, for
example as in Kutar et al. [KBN01]), or from a cognitive science



standpoint, as in Honing’s discussion of music cognition from a
representational perspective [Hon93]. This is particularly relevant
to Sonic Pi, where we are trying to invent a novel representation for
music. Honing observes that representation of time in music can be
both declarative and procedural, drawing on propositional and ana-
logical cognitive resources. These representations may have con-
flicting implications for efficiency of control and accessibility of
knowledge, for example trills or vibrato can be readily performed
by an expert musician, but use mechanisms that are difficult to de-
scribe. Honing suggests that computer music systems should be
distinguished according to whether they support only tacit time rep-
resentation (events are encoded only as occurring ”now”), implicit
time representation (events are ordered in a metrical sequence) or
explicit time representation (temporal structure can be described
and manipulated). These principles can be used to compare alter-
native design options for systems such as Sonic Pi. Bellingham et
al. [BHM14] provide a survey of 32 algorithmic composition sys-
tems, in which they apply Honing’s framework to discuss the prob-
lem of notating the hierarchical combinations of cyclical and linear
time that result in musical perception of pattern and tempo.

Dataflow Various dataflow languages incorporate real or virtual
times into their semantics and core language constructs. For exam-
ple, clocked dataflow languages (e.g., LUSTRE [PHP87]) provide
stream-based abstractions over time with a notion of discrete clock
which may or may not correspond to real time.

Related to the dataflow tradition, the functional reactive pro-
gramming (FRP) paradigm abstracts over time-varying, reactive
values and discretely-timed sequences of events in a declarative
language [NCP02]. Related to our work, FRP has been used for de-
signing modular synthesisers [GN08], for which Sonic Pi v2.0 has
related functionality. The FRP notion of events (a discrete stream)
is used to encode sequences of notes. Our approach is less declara-
tive, but requires a smaller set of constructions in order to support
our first-language and educational goals.

Although the general approach is very different, the overarching
theme of a semantics for time is common to both this work and FRP.
There are related notions to time safety in the semantics of Wan and
Hudak, where an idealised denotational semantics for FRP is com-
pared to operational (implementation-oriented) semantics [WH00].
In their work, an implementation is said to be “faithful” when its
actual implementation differs only by an ε-time to the denotational
model. This is similar to the conditions of our time safety property
between our axiomatic time system (Section 4) and the monadic
model (Section 5).

8. Conclusion
This paper described an enhancement to the Sonic Pi language that
improves the quality of musical experience for novice programmers
in a live coding context. This is achieved by modifying the seman-
tics of the familiar “sleep” operator in a manner that is consistent
with musical expectations, while differing from the conventional
interpretation in many languages. As a result, the enhanced Sonic
Pi is able to retain identical concrete syntax to earlier versions,
while implementing behaviour that is simple and predictable from a
programmer perspective. Other music programming systems often
provide similar mechanisms in order to achieve predictable timing
behaviour, and our solution is comparable to those that have been
implemented in other systems. We therefore introduced a formal
semantics that can be used to prove the desirable properties of this
kind of temporal behaviour. This combination of simple syntax,
with formally defined semantics that correspond to user expecta-
tions, promises to be beneficial beyond the domain of music pro-
gramming, to other types of physical world interface.

We used the phrases time system and time safety to draw analogy
with traditional notions of type system and type safety. Further
work is to expand the power of time systems and the notion of time
safety, beyond what we have introduced here, exploring their use
in live coding languages and languages for temporal coordination
(such as in robotics). We considered the safety property of “not
being too early”, which is an invariant of the Sonic Pi language.
Further work is to explore language invariants relating to deadlines
(similar to the real-times logics discussed earlier).

Acknowledgements Thanks are due to the anonymous reviewers
for their extremely helpful comments which in particular have
improved the semantic part of this paper. Further thanks to Henrik
Nilsson for his assistance and comments, Andrew Rice for helpful
discussion about the temporal analysis, and Andy Hopper for his
support. This work was kindly supported by the Raspberry Pi
foundation.

References
[AB13] Samuel Aaron and Alan F Blackwell, From Sonic Pi to Over-

tone : Creative Musical Experiences with Domain-Specific and
Functional Languages, The First ACM SIGPLAN Workshop
on Functional Art, Music, Modeling & Design (Boston, Mas-
sachusetts, USA), ACM, 2013, pp. 35–46.

[Bal02] Mieke Bal, Travelling concepts in the humanities: A rough
guide, University of Toronto Press, 2002.

[BHM14] Matt Bellingham, Simon Holland, and Paul Mulholland, A cog-
nitive dimensions analysis of interaction design for algorith-
mic composition software, Proceedings of Psychology of Pro-
gramming Interest Group Annual Conference 2014 (Benedict
du Boulay and Judith Good, eds.), University of Sussex, 2014,
pp. 135–140.

[BMNR14] Alan Blackwell, Alex McLean, James Noble, and Julian
Rohrhuber, Collaboration and learning through live coding
(Dagstuhl Seminar 13382), Dagstuhl Reports 3 (2014), no. 9,
130–168.

[EMSS91] E Allen Emerson, Aloysius K Mok, A Prasad Sistla, and Jai
Srinivasan, Quantitative temporal reasoning, Computer-Aided
Verification, Springer, 1991, pp. 136–145.

[FGV05] Michael David Fisher, Dov M. Gabbay, and Lluis Vila (eds.),
Handbook of Temporal Reasoning in Artificial Intelligence,
Elsevier B.V., 2005.

[GN08] George Giorgidze and Henrik Nilsson, Switched-on Yampa –
Declarative Programming of Modular Synthesizers, Practical
Aspects of Declarative Languages, Springer, 2008, pp. 282–
298.

[HJ94] Hans Hansson and Bengt Jonsson, A logic for reasoning about
time and reliability, Formal aspects of computing 6 (1994),
no. 5, 512–535.

[Hon93] Henkjan Honing, Issues on the representation of time and
structure in music, Contemporary Music Review 9 (1993),
no. 1, 221–238.

[IG13] The IEEE and The Open Group, sleep – the open group base
specifications issue 7, 2013, http://pubs.opengroup.
org/onlinepubs/9699919799/functions/sleep.html
Retrieved 15 May, 2014.

[KBN01] M. Kutar, C. Britton, and C.L. Nehaniv, Specifying multiple
time granularities in interactive systems, Lecture Notes in
Computer Science 1946 (2001), 51–63.

[Lee09] Edward A Lee, Computing needs time, Communications of the
ACM 52 (2009), no. 5, 70–79.

[McL13] Alex McLean, The textural x, Proceedings of xCoAx2013:
Computation Communication Aesthetics and X (2013), 81–88.

[ME14] Sean McDirmid and Jonathan Edwards, Programming with
Managed Time, Tech. report, Microsoft, 2014.

http://pubs.opengroup.org/onlinepubs/9699919799/functions/sleep.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/sleep.html


[MP08] Conor McBride and Ross Paterson, Functional pearl: Applica-
tive programming with effects, Journal of functional program-
ming 18 (2008), no. 1, 1–13.

[NCP02] Henrik Nilsson, Antony Courtney, and John Peterson, Func-
tional reactive programming, continued, Proceedings of the
2002 ACM SIGPLAN workshop on Haskell, ACM, 2002,
pp. 51–64.

[PHP87] Daniel Pilaud, N Halbwachs, and JA Plaice, Lustre: A declara-
tive language for programming synchronous systems, Proceed-
ings of the 14th Annual ACM Symposium on Principles of
Programming Languages (14th POPL 1987). ACM, New York,
NY, vol. 178, 1987, p. 188.

[SG10] Andrew Sorensen and Henry Gardner, Programming with time:
cyber-physical programming with impromptu, ACM Sigplan
Notices 45 (2010), no. 10, 822–834.

[Sha95] Murray Shanahan, A circumscriptive calculus of events, Artifi-
cial Intelligence 77 (1995), no. 2, 249–284.

[Sho88] Yoav Shoham, Reasoning about change : time and causation
from the standpoint of artificial intelligence, The MIT Press
series in artificial intelligence, Cambridge, Mass. MIT Press,
1988, Includes index.

[WC03] Ge Wang and Perry R Cook, ChucK : A Concurrent, On-the-fly,
Audio Programming Language, International Computer Music
Conference, 2003, pp. 1–8.

[WH00] Zhanyong Wan and Paul Hudak, Functional reactive program-
ming from first principles, ACM SIGPLAN Notices, vol. 35,
ACM, 2000, pp. 242–252.


