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Abstract 

The continuous capacitated single-source multi-facility Weber problem with the presence of 

facility fixed cost is investigated. A new mathematical model which incorporates multi-level 

type capacity (or design) and facility fixed cost that is capacity-based and zone-dependent is 

introduced. As no data set exists for this new location problem, a new data set based on 

convex polygons using triangular shape is constructed. A generalised two stage heuristic 

scheme that combines the concept of aggregation, an exact method, and an enhanced 

Cooper’s alternate location-allocation method is put forward. A framework that embeds 

Variable Neighbourhood Search is also proposed. Computational experiments show that 

these matheuristics produce encouraging results for this class of location problems. The 

proposed approaches are also easily adapted to cater for a recently studied variant namely the 

single-source capacitated multi-facility Weber problem where they outperform those recently 

published solution methods. 

 

Keywords: location, continuous space, capacity and fixed cost, single-source, matheuristics. 

 

1. Introduction 

The Multi-facility Weber problem (MFWP) deals with finding the location of m facilities 

in the continuous space and the allocation of each customer to the m chosen facilities so that 

the sum of the total transportation costs is minimised. This problem, also known as the planar 

location-allocation problem, is classified as the Multi-facility Weber problem if the demand 

                                                           
*This research has been supported in part by the Spanish Ministry of Economy & Competitiveness, research 

project MTM2015-70260-P 
† Corresponding author. E-mail address: S.Salhi@kent.ac.uk 



2 

 

or weight of all customers is unity and as the generalised MFWP otherwise. Cooper (1963 

and 1972) shows that the objective function of MFWP is neither concave nor convex and 

may contain multiple local minima which makes the problem difficult to solve using exact 

methods. Hence, the MFWP falls in the realm of global optimisation problems. In addition, 

the MFWP is shown to be NP-hard, see Megiddo and Supowit (1984) and Sherali and Nordai 

(1988).  

The single source location problem arises in situations where customers must be served 

by one facility only which is referred to as the single source capacitated multi-facility Weber 

problem (SCCMFWP). For instance, in a telecommunication network design, a user is 

assigned to a single base transceiver station, while when locating oil drill platforms, each oil 

well has to be allocated to one platform (Devine and Lesso, 1972 and Rosing, 1992). In real 

life applications, it is also worth taking into account a set up or opening cost of a facility 

which may be dependent on geographical areas (zones) and/or a throughput rate (capacity) of 

the facility.  For example, for political, environmental or economic reasons, there are some 

governments that implement different tax policies for urban, suburban, and remote regions or 

regional restrictions as some areas are under government protections such as forests, lakes, 

rivers, etc. As a result, in some areas there may be cheaper opening costs of locating a facility 

whereas in others extortionate costs could be imposed. This paper proposes a mathematical 

model and solution methods to deal with such a strategic decision problem which, in many 

cases, require a massive investment. 

In this study we aim to  

(i) propose a new mathematical model for the SCCMFWP considering the fixed costs that 

are capacity-based and zone-dependent (SSCMFWP-FC) 

(ii) develop an effective two stage heuristic approach and introduce an enhanced Variable 

Neighbourhood Search 

(iii) construct new data sets for the SSCMFWP-FC and record promising results, and  

(iv) produce several new best solutions for the recently studied location problem variant 

namely the SSCMFWP.  

The paper is organised as follows.  In the next section, a review of the relevant literature 

is provided. The section thereafter presents the mathematical models for both the SSCMFWP 

and the SSCMFWP-FC. In Section 4, the proposed solution frameworks are described 

followed by the computational results in Section 5. The adaptation and the implementation of 
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our approach for the SSCMFWP problem are presented in Section 6. Finally, our conclusions 

and some highlights of future research are given in the last section. 

2. Literature review 

In this section we first briefly look at works that treat problems similar to ours. This is 

followed by a more detailed description of the few papers on the single-source capacitated 

multi-facility Weber Problem itself. For a comprehensive review on the MFWP which has 

attracted much research attention in the literature, the reader can refer to the works of 

Brimberg et al. (2008) and Brimberg et al. (2014). The discrete case is not reviewed here, but 

for completeness see Correia and Captivo (2003) for the capacitated case, and Correira and 

Captivo (2006) for the single source case. 

(i) A brief on the capacitated MFWP (CMFWP) 

Cooper (1972) is among the first who puts forward exact and heuristic methods for the 

CMFWP. The latter is the well-known alternating transportation-location (ATL for short) 

heuristic. Basically, ATL is a modification of the heuristic (ALA) originally developed by 

Cooper (1964) for the MFWP. This technique is based on alternately solving the location-

allocation problem and the Transportation Problem (TP) until there is less than epsilon () 

improvement found in the total cost. It is worth noting that once the facilities are located, the 

CMFWP reduces to the classical TP. Sherali and Shetty (1977) propose a convergent cutting 

plane algorithm, which is originally derived from a bilinear programming problem, to solve 

the rectilinear distance CMFWP. 

Sherali and Tuncbilek (1992) revisit the problem using a distance proportional to the 

square of the Euclidean distance. They design a branch and bound algorithm to compute 

strong upper bounds. Sherali et al. (1994) formulate the rectilinear distance CMFWP as a 

mixed integer nonlinear programming model, and develop a reformulation-linearization 

technique to transform the problem into a linear mixed-integer program. Sherali et al. (2002) 

also design a branch and bound technique based on partitioning the allocation space to 

construct global optimisation procedures for the Euclidean and lp distance CMFWP.  

Zainuddin and Salhi (2007) propose a perturbation-based heuristic to tackle the 

CMFWP. This scheme considers borderline customers whose locations lie approximately 

half-way between their nearest and their second nearest facilities. Aras et al. (2007a) develop 

three heuristic techniques which include Lagrangean heuristic, the discrete p-capacitated 
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facility location heuristic which is similar to the p-median method of Hansen et al. (1998), 

and the cellular heuristic of Gamal and Salhi (2003) to solve the CMFWP with Euclidean, 

squared Euclidean, and lp distances. Aras et al. (2007b) adopt simulated annealing, threshold 

accepting, and genetic algorithms to deal with the CMFWP with rectilinear, Euclidean, 

squared Euclidean, and lp distances. In a following study, Aras et al. (2008) adapt their earlier 

approaches to tackle the CMFWP with rectilinear distance. 

Luis et al. (2009) study the CMFWP by designing restricted regions within their 

constructive heuristic which forbid new locations to be sited too close to the previously found 

locations. A discretisation method which divides a continuous space into a discrete number of 

cells while embedding the use of restricted regions within the search is also put forward. 

Mohammadi et al. (2010) design two genetic algorithms (GAs); one for the location problem 

and the other for the allocation of customers to those open facilities. Luis et al. (2011) present 

a novel guided reactive greedy randomised adaptive search procedure by designing a 

framework that combines adaptive learning with the concept of restricted regions. Akyüz et 

al. (2014) study the CMFWP by developing two branch and bound algorithms with the first 

designed for the allocation space whereas the second for the partition of the location space. 

(ii) A brief on the SSCMFWP 

The literature on the SSCMFWP is very scarce. Gong et al. (1997) propose a hybrid 

evolutionary method based on GA to search the locatable area and hence find the global or 

near global solutions. In the allocation stage, a Lagrangean relaxation approach is applied. 

Experiments are carried out on randomly generated data with the number of facilities (m) 

varying from 2 to 6. 

Manzour al-Ajdad et al. (2012) develop an iterative two phase heuristic algorithm to 

tackle the problem. In the first phase or location phase, the ALA method of Cooper (1964) is 

modified by introducing two assignment rules namely the simplified and parallel assignments 

respectively. In the second phase or the allocation phase, customers are allocated to facilities 

by solving optimally the generalised assignment problem. A simulated annealing algorithm is 

also used as an alternative solution in the first phase. Data sets taken from the literature are 

adapted accordingly to cater for the SSCMFWP. The results are compared with a general 

MINLP solver BARON that is run for a limited time. The authors claim that their proposed 

methods provide better results than BARON. Manzour et al. (2013) produce a simpler 

http://www-scopus-com.eserv.uum.edu.my/authid/detail.url?authorId=36026906100&eid=2-s2.0-78751538829
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version to the one proposed by Manzour al-Ajdad et al. (2012) but with slightly inferior 

results. 

Öncan (2013) investigates the SSCMFWP with Euclidean and Rectilinear distances by 

proposing three solution methods. The first one is the Single-Source ALA method which is 

an improved version of Cooper’s ALA method (Cooper, 1964) when the allocation phase is 

solved optimally. In the second one, a very large neighbourhood search procedure is 

employed within the first method to solve the allocation problem efficiently. In the third 

method, a discrete approximation technique that uses Lagrangean Relaxation is put forward 

to find lower and upper bounding procedures for the SSCMFWP. Experiments are performed 

using three classes of instances from the literature as well as newly randomly generated data 

sets. Competitive empirical results are produced when compared to the published work 

though these are found to be relatively inferior in some instances to those given by Manzour 

al-Ajdad et al. (2012). 

(iii) A brief on the Weber problem in the presence of fixed cost 

Most of the literature on the facility location problems with fixed costs focus on the 

discrete space, see for instance the recent papers by Rahmani and MirHassani (2014), 

Guastaroba and Speranza (2014), Farahani et al. (2014), and Ho (2015). However, in the 

continuous location problem there is a shortage of references which investigate the presence 

of fixed costs. Brimberg et al. (2004) study the multi-source Weber problem with constant 

fixed cost and design a multiphase heuristic to deal with the problem. The discrete version of 

the problem is first solved to find an approximate number of facilities and then the facility 

configuration is improved by applying Cooper’s ALA scheme. Brimberg and Salhi (2005) 

propose fixed costs which are zone-dependent for locating a single facility in the continuous 

space. The zones are defined as non-overlapping convex polygons. An efficient approach is 

presented to optimally solve the problem. A discretization approach to deal with multi facility 

problem is also designed. Both studies are focused on the uncapacitated case.  

Luis et al. (2015) deal with CMFWP by introducing three types of fixed costs which are 

constant, zone-based, and continuous fixed cost functions. Heuristic methods that adopt the 

concept of restricted regions and a GRASP metaheuristic are used to tackle the problem. 

Competitive results are obtained when the methods are implemented using the four well-

known data sets from the literature (see Brimberg et al. (2000). Hosseininezhad et al. (2015) 

propose a cross entropy heuristic to solve CMSWP with a zone-based fixed cost which 
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includes production and installation costs. Numerical examples were generated as a platform 

to evaluate the methods. The results perform well when compared to the optimizer results 

performed by GAMS. 

 

3. Mathematical formulation 

In the single-source capacitated problem, we are given a set of customers, located at n 

fixed points, with their respective demands. The aim is to (i) locate m facilities in a 

continuous space, (ii) determine the capacity of each facility and (iii) allocate customers to 

exactly one facility without violating the capacity of the facility while minimising the sum of 

the transportation costs. We first present the mathematical model for the SSCMFWP 

followed by the one for the SSCMFWP-FC. For completeness we also provide at the end of 

this section, the discrete counterpart variants to SSCMFWP and SSCMFWP-FC as we shall 

use these for benchmarking purposes. We refer to these variants as the Discrete Multi Facility 

Location Problem (DMFLP) and the Discrete Multi Facility Location Problem with Fixed 

Cost (DMFLP-FC) respectively. 

 

3.1. Mathematical model of the SSCMFWP 

The following notations are used to describe the sets and parameters of the SSCMFWP 

model. 

Notations 

Sets and Parameters 

I : set of customers with i as its index 

m : the number of facilities 

n : the number of customers 

ia  =   a
i

a
i yx ,  : location of customer i where Iiai  ,2

; 

iw  : demand or weight of customer i, Ii ; 

jQ  : capacity of facility j, mj ,...,1 ; 

Decision Variables 

ijY  = 


 

otherwise0,

 ;1,...;  ,facility   toassigned is customer  if,1 mjIiji
 



7 

 

jX  =   jj yx ,  : coordinates of facility j where 2jX , .,...,1 mj  ; 

Let ),( ij aXd  be the Euclidean distance between facility j and customer i.  

The mathematical model of the SSCMFWP can be formulated as follows: 

  Minimise   
 


m

j Ii

iijij waXdY

1

),(  (1) 

Subject to 

IiY
m

j

ij 


,1

1

 (2) 

  mjQYw j

Ii

iji ,...,1, 


 (3) 

{0,1} , 1,...,ijY i I j m     (4) 

2 1,...,jX j m    (5) 

The objective function (1) is to minimise the sum of the transportation costs. Constraints (2) 

ensure that each customer’s demand has to be satisfied by exactly one facility. Constraints (3) 

guarantee that capacity constraints of the facilities are not violated. Constraints (4) and (5) 

refer to the binary nature of the variables and the continuous location variables, respectively. 

It is worth noting that once the allocations are known, the problem turns into m pure single 

facility location problems where each one can be solved optimally by the well-known 

iterative equations given by Weiszfeld (1937).  

We also note that once the m facilities are located, the problem reduces to the generalised 

assignment problem (GAP) which can theoretically be solved optimally by any suitable ILP 

solver such as CPLEX, Lingo, GuRobi, or Xpress-MP. The mathematical formulation of the 

GAP is relatively similar to SSCMFWP except that (5), relating to the location of facilities 

)( jX , is now fixed turning ),( ij aXd  to be known which reduces the problem to an integer 

(binary) linear programming problem (ILP). Equations (1) – (4) are then used to deal with the 

GAP. This is still relatively more difficult to solve due to the binary nature of the decision 

variables (Yij) compared to its counterpart the Transportation Problem (TP) which is usually 

applied at the allocation phase when solving the multi-source capacitated multi-facility 

Weber problem (see Luis et al., 2011). 
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3.2. Mathematical model of the SSCMFWP-FC 

This subsection presents the mathematical model of the new problem SSCMFWP-FC 

where the fixed cost is taken into account and the capacity of the facilities is also considered 

as a decision variable. The fixed cost may not always be based on the chosen capacity but, in 

many situations, it is linked to the region/zone where the facility is located.  Here, as the 

location of each facility is unknown, the region/zone is also treated as a decision variable. In 

this study, for simplicity, we consider the shape of each zone to be a convex polygon. If it is 

not the case, we simply decompose any non-convex polygon into a number of smaller convex 

areas as commonly used in the literature (see Fernandez et al., 2000).  

The D-function (Chernov et al., 2009), which is used in our formulation, is utilised to 

determine whether a point is inside a convex polygon or not.  For instance, given two points 

P1(x1, y1) and P2(x2, y2), the corresponding edge vector of the polygon 21PP has four 

parameters defined as follows:  

    2
12

2
12 )(2,1 xxyyPPd  ;

 



 21 yy

;





)( 12 xx






)( 1221 yxyx
 (6)  

A point, say point P3 ( 33 , yx ), is inside the polygon if it is on the right hand side of all 

edges. In other words, we compute  33 yx  and check whether point P3 lies 

on the edge (i.e., 0  ), left hand side (i.e., 0  )  or right hand side(i.e., 0  ).   

The notations used for sets and parameters in this model are similar to the ones given earlier 

with the following minor additions: 

Notations 

Set and Parameters 

R : set of regions/zones. 

rD  : set of capacity designs for facilities located in zone/area r ( Rr ).  

rdF : fixed cost of a facility located in zone r using design d ( Rr , rDd  ) 

rdb  : the capacity of a facility located in area r using design d ( Rr , rDd  ) 

rE  : set of edges of zone r ( Rr ) with e as its index. The edges make up a convex polygon 

(zone) where one or more facilities can be located  
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re , re , and re  : the parameters for edge e of zone r (rR, rEe ) as defined in (6)

))0,,(( a
i

a
i

Ii
yxMaxMaxU


 : a large number used in later equation to check whether a facility   

         is inside a certain region/zone. 

 

Decision Variables 

ijY  = 


 

otherwise0,

 ;1,...;  ,facility   toassigned is customer  if,1 mjIiji
 

jrdS  = 


 

otherwise0,

;,...,1; ;,design  using and  areain  located is facility  if,1 mjDdRrdrj
  

jX  =   jj yx ,  : coordinates of facility j where 2 ; 1,...,jX j m  . 

Note that the design of a facility can be defined by the type of machinery, the capacity, etc. 

The problem SSCMFWP-FC can be modelled as a binary nonlinear problem as follows. 

Objective function: 

 Minimise       
   


m

j Rr Dd

jrdrd

m

j Ii

ijiij

r

SFaXdwY

11

),(  (7) 

Subject to 

 IiY
m

j

ij 


,1

1

 (8) 

     mjSbwY

Rr Dd

jrdrd

Ii

iij

r

,...,1,   
 

 (9) 

 mjS

Rr Dd

jrd

r

,...,1,1  
 

 (10) 

 ;,...,1;;;,)1( mjDdEeRrSUyx rrjrdrejrejre    (11) 

 mjIiYij ,...,1;},1,0{   (12) 

 }1,0{jrdS ,     ;,...,1;; mjDdRr r   (13) 

 mjX j ,...,1,2   (14) 

 

The objective function (7) is to minimise the sum of the total costs including the 

transportation and the opening facilities fixed costs. Constraints (8) guarantee that each 

demand point is served by one facility. Constraints (9) ensure that capacity constraints of the 
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facilities are met. Constraints (10) make sure that a facility located in an area with one 

capacity assigned. Constraints (11) indicate the region/zone of the open facilities.  Constraints 

(12) and (13) refer to the binary nature of the variables whereas Constraints (14) specify the 

continuous location variables.  

In case the location of the m facilities are fixed or known, the problem can be treated as the 

assignment problem. However, the decision is not only to assign each customer to which 

facility but also to determine the capacity required by each facility. We refer to this 

assignment problem as the generalised assignment problem with fixed cost (GAP-FC). As the 

location of each facility is known, its corresponding zone (area) is also known. Therefore, the 

fixed cost is now only related to the location and the capacity of the facility )ˆ( jdF  

considering the location (region) cost. The mathematical model for the GAP-FC is as follows. 

Decision Variables 

ijY  = 


 

otherwise0,

 ;1,...;  ,facility   toassigned is customer  if,1 mjIiji
 

jdS  = 


 

otherwise0,

;,...,1;,design  uses facility  if,1 mjDddj
  

 

The GAP-FC model 

Objective Function 

 Minimise       
  


m

j Dd

jdjd

m

j Ii

ijiij SFaXdwY

11

ˆ),(  (15) 

Subject to 

 IiY
m

j

ij 


,1

1

 (16) 

     mjSbwY

Dd

jdd

Ii

iij ,...,1,  


 (17) 

 mjS

Dd

jd ,...,1,1 


 (18) 

 mjIiYij ,...,1;},1,0{   (19) 

 }1,0{jdS ,     ;,...,1; mjDd   (20) 
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3.3. Mathematical model for the DMFLP-FC 

As the SSCMFWP-FC model is nonlinear and non-convex, it cannot be solved optimally 

by an exact method using commercial software optimizer such as CPLEX. For benchmarking 

purposes, we also propose its linear discrete counterpart model, the DMFLP-FC. Similar to 

the previous model, let J be a set of potential facilities. The zone (area) for each potential 

facility is also known as its location is known. Therefore, the zone is not treated as a decision 

variable as each potential site is a zone on its own right. In the model, the fixed cost )ˆ( jdF is 

now only related to the location and the capacity of the potential facility )ˆ( jdb  considering 

the location (zone) cost. Each potential facility j has a set of capacity designs )( jD  based on 

its corresponding area. The notations used for sets and parameters in the DMFLP-FC model 

are relatively similar to those in previous models with J being an additional set indexed by j.   

Decision Variables 

ijY  = 


 

otherwise0,

 ;;  ,facility   toassigned is customer  if,1 JjIiji
 

jdS  = 


 

otherwise0,

;;,design  uses andopen  is facility  if,1 jDdJjdj
  

Objective function: 

 Minimise       
  



Jj Dd

jdjd

Jj Ii

ijiij

j

SFaXdwY ˆ),(  (21) 

Subject to 

 IiY

Jj

ij 


,1  (22) 

     JjSbwY

jDd

jdjd

Ii

iij  


,ˆ  (23) 

 JjS

jDd

jd 


,1  (24) 

 mS

Jj Dd

jd

j

 
 

 (25) 

 JjIiSY

jDd

jdij  


,,0  (26) 

 {0,1}, ;ijY i I j J     (27) 
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 }1,0{jdS ,     jDdJj  ,  (28) 

Constraints (25) ensure that the number of open facilities is now fixed to m. 

Note that DMFLP can be obtained from the above model by setting in the objective function 

0 ;jd jF d D j J    , and replacing constraints (25) by 
jd d

j J

S d D


   , with 
d   

referring to the capacity design at facility d while 
jD becomes constant and set to D . 

 

4. The proposed solution methods for the SSCMFWP-FC 

The above mathematical model is interesting and appropriate for small size instances 

only and hence powerful heuristic methods are the best way forward to tackle such a difficult 

and challenging location problem. For an overview of heuristic search in general, the reader 

will find the recent book by Salhi (2017) to be informative and easy to read. In this paper, we 

propose two heuristic based-methods for solving the SSCMFWP-FC. The first one is a 

generalised two-stage heuristic while the second is a VNS-based metaheuristic. 

 

4.1. A generalised two-stage heuristic method  

This approach can be categorised as a multi-start method consisting of two stages. We 

refer to this as the generalised two-stage heuristic method (GTSHM) whose main steps are 

depicted in Figure 1. In the initialisation stage, these zones/areas with non-convex shapes are 

first decomposed into convex polygons. This is achieved by applying classical methods such 

as the ones proposed by Fernández et al. (2000) which are known to be efficient and easy to 

implement.  

Stage 1 aims to find a relatively good initial solution by solving the discrete counterpart 

of DMFLP-FC. When n and |J| are large, the DMFLP-FC is not easy to solve optimally. One 

way to overcome this shortcoming is to adopt an aggregation approach. There are several 

schemes that could be adopted such as a simple but guided randomised approach, a 

hierarchical agglomerative clustering, a p median-based approach, customer aggregation 

method as proposed by Sankaran (2000), among others. A comprehensive review on 

aggregation techniques for large facility location problems is given in Irawan and Salhi 

(2015b). In our study, the number of potential facility sites is reduced to μ sites (μ << n) 
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while all customers are fully served. To determine the μ potential facility sites, we first build 

  clusters by solving the uncapacitated p-median problem based on the customers’ locations 

with p  using the well-known local search proposed by Resende and Werneck (2007).  

 

Figure 1. The two stage heuristic method (GTSHM) 

Let cN
~

 be the set of customers that belong to cluster c, c = 1,…, μ. The centroid of each 

cluster is determined using the following equations:  

 















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
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
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x

~

~

~

~
~;~ ,     ,...,1c  (29) 

Initialisation 

a. Find the zones/areas whose shape are non-convex and decompose those into convex polygons. 

b. Define the number of iterations (T) and the reduced number of potential sites (  ). Set 

bestz . 

For t = 1 to T do the following stages: 

Stage 1  

a. Reduce the number of potential facilities from n to   by heuristically solving the p-

median problem to generate   clusters where p . Determine the centroid of each 

cluster using Equation (29) and treat these centroids as potential facility sites.  

b. Solve the reduced discrete problem (DMFLP-FC) which consists of n customers and   

potential facilities using an exact method (CPLEX). Let z be its objective function value 

and for all j = 1 to m let ),( jjj yxX  be the coordinates of facility j, jN  the set of 

customers to be served by facility j, jA  the area of  facility j, and jK  the capacity 

design of  facility j. 

c. Set  =  -1. 

Stage 2 

a. Apply the proposed local search given in Figure 5 using z, jX , jN , jA , jK  

mj ,...,1  obtained from Stage 1. If a better solution is found update all the above 

information  

b. If bestzz   update zzbest   along with j
best
j XX  , j

best
j NN  , j

best
j AA  , 

and j
best
j KK   mj ,...,1  

End for 
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The centroids of clusters are then treated as a set of potential facility sites. To diversify the 

search, the value of μ is adjusted systematically where   value is reduced by one for the next 

iteration.  A similar methodology has shown to be promising when solving large p-median 

problems (Irawan et al., 2014; Irawan and Salhi, 2015a) and p-centre problems (Irawan et al., 

2016). Here, the reduced DMFLP-FC is solved by CPLEX.  

Speeding-up mechanism- To speed up the search process, we relax the DMFLP-FC by 

ignoring the integrality requirements on the allocation variables ijY . The resulting MIP is 

relatively much easier to solve without a significant loss in solution quality. We also consider 

near optimal solutions by terminating CPLEX when a duality gap (%Gap) reached α which 

we set to 2.5%. In addition to the objective function value (z), by solving the reduced 

DMFLP-FC the location of the m facilities along with their capacity is obtained. These 

solutions are then fed into the next stage and treated as the initial solution. 

In Stage 2, we propose a local search based on the ALA heuristic introduced by Cooper 

(1964). Here, we introduce some enhancements to cater for the characteristics of the 

SSCMFWP-FC where a multi-level type capacity is considered and the fixed cost is capacity-

based and zone-dependent. The proposed local search also incorporates the Weiszfeld’s 

formula to find a new location for an open facility on the plane. The main steps of the 

proposed local search are given in Figure 2. The process of using Stages 1 and 2 is repeated 

until a prescribed maximum number of iterations (T) is reached. Note that in case the location 

of a facility happens to lie on the boundary of two adjacent zones (areas), we break the tie by 

selecting the zone with the cheapest fixed cost.  

The idea behind the use of such a multi-start process is that there is a lack of correlation 

between a good initial solution and a good final solution. For instance, Manzour al-Ajdad et 

al. (2012) refer to the best solution only which can, in our views, be restrictive. In our 

preliminary study, it reveals that the best solution is obtained not necessarily from the best 

initial solution. A similar lack of correlation is also well known in location-routing problems 

where the best location at the location stage does not necessarily lead to the best overall cost 

when routing is involved, see Salhi and Rand (1989), and Salhi and Fraser (1996) for the case 

of homogeneous and heterogeneous  vehicle fleet respectively. 
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Figure 2. The proposed local search  

Procedure LocalSearch (z, jX , jN , jA , jK , mj ,...,1 ) 

1. Define   and T̂  

2. Set jj XX ˆ , jj NN ˆ , jj AA ˆ , and jj KK ˆ  for all mj ,...,1   

3. Do the following steps T̂  times: 

a. Update jX̂  and jÂ  ),...,1( mj   using the following: 

(i). Set j = 1. 

(ii). Calculate the total cost of facility j with  




jNi

ijrd aXdFf
ˆ

),ˆ(ˆ  where 

jKd ˆ  and jAr ˆ . 

(iii). Set jj XX ˆ  

(iv). Repeat the following steps: 

 Calculate jX
~

 using Weiszfeld’s equations as follows: 
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 If d( jX , jX
~

) ≤   go to Step 3a(v). 

 Determine the area ( jA
~

) of the new location ( jX
~

) of facility j  and use tie 

breaker if necessary 

 Calculate 




jNi

ijrd aXdFf
ˆ

),
~

(
~

 where jKd ˆ  and jAr
~

 . 

 If ff ˆ~
  update ff

~ˆ   along with jj XX
~ˆ   and jAA

~ˆ  .  

 Update jj XX
~

   

(v). If j = m go to Step 3b, otherwise set j = j + 1 and go to Step 3a(ii).  

b. If d( jX̂ , jX ) ≤   mj ,...,1  go to Step 4. 

c. Solve the GAP-FC using jX̂  and jÂ . Let ẑ  be its objective function value and record 

jK̂  and jN̂  mj ,...,1 . 

d. If zz ˆ  update zz ˆ  along with jj XX ˆ , jj NN ˆ , jj AA ˆ , and jj KK ˆ  

for all mj ,...,1  

4. Return z along with jX , jN , jA , and jK  for all mj ,...,1 . 
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4.2.   Enhanced VNS-based methods  

VNS is a metaheuristic technique that comprises a local search and a neighbourhood 

search. The former aims to intensify the search while the latter aims to escape from the local 

optima through diversification by systematically changing the neighbourhood. For various 

variants and successful applications of VNS, the reader can refer to Hansen et al. (2010) and 

Brimberg et al. (2014).  In this section, we propose a VNS-based method which we refer to as 

the Enhanced VNS (EVNS). This metaheuristic which consists of two stages is presented in 

Figure 3. 

 

Figure 3. The Enhanced VNS (EVNS) 

Initialisation 

a. Identify the zones/areas whose shape are non-convex and decompose them into convex 

polygons. 

b. Define T, maxk and  . Set bestz . 

Stage 1  

Apply Stage 1 of GTSHM (Figure 1) T  times and take the solution that yields the smallest 

objective function value ( z ) along with jX , jN , jA , and jK mj ,...,1  

Stage 2  

a. Update bestzz   along with best
jj XX  , 

best
jj NN  , 

best
jj AA  , and 

best
jj KK  , mj ,...,1  

b. Set k = 1 

c. Shaking  

Update jX , mj ,...,1 , using Procedure Shaking given in Figure 7 with k as an input. 

d. Local search  

Apply the proposed local search, given in Figure 5, using z, jX , jN , jA  and jK  

mj ,...,1 .  

e. Move or Not 

If bestzz   then  

o Set k = 1 and zzbest   along with j
best
j XX  , j

best
j NN  , j

best
j AA   and 

j
best
j KK  , mj ,...,1 .  

Else  

o Set k = k+1 and bestzz   along with best
jj XX  , 

best
jj NN  , 

best
jj AA  , 

and 
best
jj KK  , mj ,...,1 . 

f. If maxkk   go back to Stage 2(c), otherwise  stop. 
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In Stage 1, a relatively good initial solution is first obtained by solving T reduced 

discrete problems (DMFLP-FC) using an exact method. The solution that yields the smallest 

objective function value is chosen as the one to be fed into the VNS-based algorithm. The 

shaking process is conducted by removing a randomly chosen facility from the current 

solution configuration and introducing a facility located at a customer site that is randomly 

selected (i.e., customer i) outside the forbidden regions. In this study, we define a forbidden 

region by a circle centred at the existing facility site with a radius ( r̂ ).  

The steps of the shaking process are provided in Figure 4. In the local search, the algorithm 

presented in Figure 2 is also used here to find the local optima. In the move or not move step, 

a larger neighbourhood will be systematically used if an improvement is not found (i.e., 

k=k+1), otherwise the search reverts back to the first (i.e., the smallest) one (i.e., k=1). The 

search terminates when maxkk  . 

 

Figure 4. The main steps of Procedure Shaking 

  

Procedure Shaking (k,  
mjjX

,...,1
) 

1. Define β and γ. 

2. Calculate r̂  using the  following Equation: 

  

m

aXdMax

r

m

j

ij
Ni j


  















1

,

ˆ  (31) 

3. Do the following step k  times 

(i) Set 0v  and rr ˆ


. 

(ii) Select randomly a facility, say facility ĵ , from the set of open facilities  
mjjX

,...,1
 

(iii) Choose randomly customer i.  

(iv) For j = 1 to m ( jj ˆ ) do the following mini steps: 

 If raXd ij


),( then  

o Set 1 vv . 

o If v  then set rr

   and 0v . 

o Go back to Step 3(iii). 

(v) Update ij aX ˆ . 
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5. Computational results of the SSCMFWP-FC 

We carried out extensive experiments to examine the performance of the proposed 

heuristic approaches. These were coded in C++ .Net 2012 where we also used the IBM ILOG 

CPLEX version 12.6 Concert Library. The tests were run on a PC with an Intel Core i5 CPU 

@ 3.20GHz processor, 8.00 GB of RAM and under Windows 7. As there is no data available 

in the literature for the SSCMFWP-FC, we constructed a newly generated dataset with 

100n  to 1000 with an increment of 100 where we  randomly generated the demand of each 

customer between 1 and 10 and fixed the number of areas/zones R  to 0.1n . Figure 5 

illustrates an example when n = 1000 and |R| = 100. As the shape of each region/zone is a 

convex polygon, we propose for convenience a triangular shape. We classify these regions 

into three categories, namely category 1, 2 and 3 which represent cheap, average, and 

expensive regions respectively. We vary the value of m from 5 to 25 with an increment of 5.  

 

Figure 5. Illustration of a dataset with n = 1000 and |R| = 100 using generator of Figure 6 

The set of possible capacities (Dr) and the fixed cost (Frd) for opening a facility located in an 

area are also randomly generated based on the total customers demand, the average distance 

from one customer to others, and the number of open facilities (m). The main steps of the 

data set generator are given in Figure 6. Here, we set rD  to 3 for all Rr . The dataset can 
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also be collected from the authors or downloaded from the CLHO (2016) website 

(http://www.kent.ac.uk/kbs/research/research-centres/clho/datasets.html). 

 

Figure 6. The Procedure for generating the capacities (Dr) and the fixed costs (Frd) 

To assess our proposed approaches, we compare the obtained solutions with those found 

by the exact method using CPLEX for the DMFLP-FC problem (i.e., the discrete problem) 

where we limit the computing time of CPLEX to 3 hours. This strategy provides lower bound 

(LB), upper bound (UB), and duality Gap (%). The performance measure using the Dev (%) 

between the Z value obtained by the metaheuristic approach ( mZ ) and the best known )( bkZ  

is adopted where Dev (%) is calculated as follows: 

100(%) 



bk

bk
h

Z

ZZ
Dev  (32) 

with Zh referring to the feasible solution cost obtained by either the exact method (UB) on the 

discrete problem or the metaheuristic method (h).  

In our experimental study, we set parameters 0001.0 , )75.0,10min( nm , 5ˆ T , 

%5.2 . In addition, the parameter T is set to 10 for GTSHM whereas for EVNS we use T 

= 5, 10max k , β = 10 and γ = 0.5. Those parameters were chosen based on our preliminary 

experiments. The summary results are shown in Tables 1a and 1b where the results of the 

exact method on the DMFLP-FC (i.e., Gap (%) and CPU time (in seconds)) are given. It is 

Procedure Generating Capacities and Fixed Costs 

1. Let denote ̂  be the average distance among customers and calculate mw

Ii

i /ˆ 


    

2. For each region r in R do the following steps:   

a. Let unit cost ̂ˆ c , ̂25.1ˆ c  and ̂5.1ˆ c  for cheap, average and expensive region 

respectively. 

b. Set  ˆ7.0 
 and  ˆ9.0 

. Set )]1(,0[1
   randbr  and 

cbF rr ˆ11  . Set     

c. Set 1    and   
 

d. Set )]1(,0[2
   randbr  and 99.0ˆ22  cbF rr . 

e. Set 1    and   
 

f. Set )]1(,0[3
   randbr  and 97.0ˆ33  cbF rr . 

http://www.kent.ac.uk/kbs/research/research-centres/clho/datasets.html
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interesting to note that CPLEX obtains the optimal solutions for the DMFLP-FC for all 

instances for 5m  and n = 100, 200 and 400.  However, when 900n , CPLEX fails to 

obtain neither UB nor LB values within the 3 hours. 

The bold numbers in Tables 1a and 1b refer to the best deviation found including ties. It 

can be observed that GTSHM produces better results when compared to EVNS and the exact 

method on the DMFLP-FC. The Average* in the tables refers to the average results based on 

the 39 instances that can be solved by the exact method on the DMFLP-FC. Based on the 

Average* indicator, GTSHM yields the smallest deviation of 0.0743% whereas EVNS and the 

exact method on the DMFLP-FC produce a deviation of 0.3391% and 2.5608% respectively. 

The Average+ in the tables indicates the average performance from all 50 instances. This 

measure can be calculated only for GTSHM and EVNS where GTSHM still performs better 

than EVNS as GTSHM produces a smaller deviation of 0.0739%. The GTSHM also obtains 

41 best solutions whereas EVNS and the exact method attain 9 and 4 best solutions, 

respectively. However, GTSHM consumes slightly more computational time than EVNS. In 

general, the GTSHM is found to be the most suitable method for solving the SSCMFWP-FC 

as it provides good quality solutions within an acceptable computing time.  

 

Table 1a. Computational Results for the SSCMFWP-FC 

N M 

Best 

Known 

)( bkZ  

Exact Method for the DLPFC  
Proposed Methods 

 
GTSHM 

 
VNS 

Dev (%) Gap (%) CPU (s) 
 

Dev (%) CPU (s) 
 

Dev (%) CPU (s) 

100 

5 39,547.60 0.4745 0.01 6 
 

0.0000 13 
 

0.2742 9 

10 37,418.01 0.8014 0.01 78 
 

0.0000 17 
 

0.0000 27 

15 36,541.88 1.9348 0.01 193 
 

0.0000 55 
 

0.4594 79 

20 36,354.43 1.3569 0.01 7,902 
 

0.0000 100 
 

0.7362 110 

25 36,127.23 1.1703 0.01 265 
 

0.0000 140 
 

0.6475 97 

200 

5 162,465.44 0.2431 0.01 7,369 
 

0.0000 30 
 

0.0671 26 

10 153,293.61 0.3550 0.44 10,800 
 

0.0000 192 
 

0.0290 156 

15 150,452.26 0.3406 0.18 10,825 
 

0.0000 229 
 

0.0261 200 

20 147,763.09 0.6739 0.25 10,868 
 

0.0000 344 
 

0.0000 242 

25 146,315.41 0.7356 0.02 10,803 
 

0.0000 332 
 

0.2036 382 

300 

5 324,632.28 0.1328 0.27 10,800 
 

0.3832 36 
 

0.0000 28 

10 297,007.76 0.0000 0.18 10,807 
 

0.1503 164 
 

0.1149 297 

15 287,375.31 0.5080 0.24 10,807 
 

0.0000 381 
 

0.1998 317 

20 283,139.76 0.7441 0.38 10,838 
 

0.0000 456 
 

0.5593 453 

25 279,194.45 0.9059 0.32 10,804 
 

0.0000 2,952 
 

0.4542 1,476 
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Table 1b. Computational Results for the SSCMFWP-FC (continued) 

N m 
Best Known 

)( bkZ  

Exact Method for the DLPFC  
Proposed Methods 

 
GTSHM 

 
VNS 

Dev (%) Gap (%) CPU (s) 
 

Dev (%) CPU (s) 
 

Dev (%) CPU (s) 

400 

5 590,426.48 0.0000 0.01 3,023 
 

1.0868 55 
 

2.1698 41 

10 548,815.92 0.0000 0.03 10,801 
 

0.8253 151 
 

0.7585 185 

15 530,597.49 0.1669 0.42 10,801 
 

0.0000 556 
 

0.1694 501 

20 522,212.16 0.3310 0.44 10,898 
 

0.0000 677 
 

0.1668 643 

25 516,077.45 0.8627 0.94 10,897 
 

0.0000 1,112 
 

0.0679 926 

500 

5 971,248.29 0.0588 0.32 10,801 
 

0.0000 76 
 

0.9664 77 

10 906,169.89 0.6894 0.31 10,801 
 

0.0000 507 
 

0.1752 338 

15 882,259.77 0.5752 0.46 10,801 
 

0.0000 692 
 

0.7751 616 

20 871,717.11 0.7856 0.77 10,801 
 

0.0000 999 
 

0.0672 899 

25 861,997.10 0.1707 0.26 10,801 
 

0.0000 2,936 
 

0.1717 1,476 

600 

5 1,352,323.29 0.3255 0.79 10,801 
 

0.0846 144 
 

0.0000 110 

10 1,264,461.05 0.0571 0.66 10,805 
 

0.0000 1,059 
 

0.2098 689 

15 1,214,664.57 0.7665 0.59 10,801 
 

0.0000 1,338 
 

0.7480 1,032 

20 1,187,100.93 1.4779 1.22 10,801 
 

0.0000 1,107 
 

0.2240 784 

25 1,172,741.02 1.3737 1.07 10,801 
 

0.0000 2,427 
 

0.0000 2,295 

700 

5 1,868,881.42 0.4377 1.05 10,802 
 

0.0000 172 
 

0.3459 99 

10 1,716,374.36 0.0000 0.14 10,802 
 

0.0931 771 
 

0.4542 847 

15 1,668,837.17 0.7989 0.71 10,803 
 

0.0000 1,230 
 

0.1175 965 

20 1,640,359.95 2.1913 1.95 10,802 
 

0.0000 2,788 
 

0.2657 1,979 

25 1,624,202.25 2.1404 2.12 10,803 
 

0.0000 3,196 
 

0.0381 3,214 

800 

5 2,467,417.90 NF NF NF 
 

0.0000 267 
 

0.0223 202 

10 2,215,644.68 71.6548 41.80 10,809 
 

0.2743 873 
 

0.0000 637 

15 2,160,250.08 2.1546 2.35 10,804 
 

0.0000 1,257 
 

0.6039 1,072 

20 2,132,376.26 0.6516 1.26 10,806 
 

0.0000 2,055 
 

0.9582 1,228 

25 2,115,741.63 1.8243 2.55 10,803 
 

0.0000 2,153 
 

0.0000 2,140 

900 

5 3,067,730.33 NF NF NF 
 

0.1750 419 
 

0.0000 361 

10 2,844,267.01 NF NF NF 
 

0.0000 1,949 
 

0.3012 1,447 

15 2,729,273.85 NF NF NF 
 

0.0000 2,872 
 

0.2761 2,029 

20 2,676,813.17 NF NF NF 
 

0.0000 3,424 
 

0.2703 2,258 

25 2,637,616.26 NF NF NF 
 

0.0000 4,619 
 

0.1491 4,249 

1000 

5 3,852,783.93 NF NF NF 
 

0.6216 716 
 

0.0000 444 

10 3,596,016.11 NF NF NF 
 

0.0000 2,353 
 

0.1215 1,464 

15 3,458,598.86 NF NF NF 
 

0.0000 5,390 
 

0.2384 4,065 

20 3,379,402.71 NF NF NF 
 

0.0000 2,071 
 

0.0797 1,714 

25 3,329,234.96 NF NF NF 
 

0.0000 4,645 
 

0.7525 3,712 

Average* 2.5608 
 

9,355 
 

0.0743 866 
 

0.3391 684 

Average+ 
    

0.0739 1,250 
 

0.3087 973 

#Best 4 
   

41 
  

9 
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6. The adaptation of the proposed heuristic methods for the SSCMFWP  

Our two proposed methods (GTSHM and EVNS), which are originally designed to solve 

the SSCMFWP-FC, can easily be adapted to tackle the simpler version namely SSCMFWP. 

We perform two scenarios, one with variable capacity of the facility where no available 

results are reproetd in the litertature and the other using constant capacity where published 

results do exist. Our revised approach contains the following minor modifications. 

a) The exact method for solving the reduced discrete problem 

The implementation of the exact method with CPLEX is to solve the reduced discrete 

problem for the DMFLP instead of DMFLP-FC. As a result, decision variables jA  and 

jK , mj ,...,1 , are no longer required. Similar to the previous method, the DMFLP is 

also relaxed here by transforming variables ijY  from integer to continuous. 

 

b) The  proposed local search  

As the SSCMFWP does not consider the fixed cost )( rdF , the total cost of each open 

facility ( f̂  and f
~

), as shown in Figure 2, is now based on the distance between the 

facility and its customers only. The parameter T̂  is set to   meaning that the stopping 

criteria of the search process of the new location for a facility is based on the distance 

between the new location and the previous one only (compared to  ). Besides, the 

process to determine the area of the new location )
~

( jA  is also not needed here. In Step 

3c of Figure 2, instead of solving the GAP-FC to allocate customers to the new facilities, 

the classical GAP, which is relatively easier to solve, is considered instead. 

 

 

6.1. Case of variable capacity- Experiments using newly generated dataset 

This section presents the computational results of our adapted method where the capacity 

of the open facilities is not constant. As there is no available data in the literature relating to 

this problem, we use the newly generated dataset utilised in Section 5 where n = 100 to 1000 

with an increment of 100 and the customer demand is generated randomly between 1 and 10. 

We also vary m from 5 to 25 with an increment of 5. There are three capacity designs for the 
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m open facilities with K = {1,2,3} reflecting small, medium, and large capacity. The capacity 

of design k, k , is defined as follow: 

Kk
m

w
Ii

ik

k 






 ,



  (33) 

k  is set to 0.8, 1, and 1.4 for k = 1, 2, and 3 respectively. The number of open facilities that 

use capacity design k, k , is calculated as  mkk    where k  is set to 0.2, 0.4, and 0.4 

for k = 1, 2, and 3 respectively.  

 

Table 2a. Computational Results for the SSCMFWP using newly generated dataset 

n m 
Best Known 

)( bkZ  

Exact Method for the DLPFC  
Proposed Methods 

 
GTSHM 

 
VNS 

Dev (%) Gap (%) CPU (s) 
 

Dev (%) CPU (s) 
 

Dev (%) CPU (s) 

100 

5 9,378.48 0.9905 0.00 1 
 

0.0000 2.36 
 

0.0000 1.92 

10 5,553.85 0.9141 0.00 1 
 

0.0000 5.75 
 

0.9259 6.02 

15 4,102.37 1.2179 0.01 1 
 

0.4031 6.22 
 

0.0000 5.84 

20 3,318.27 0.6810 0.00 4 
 

0.0000 10.32 
 

1.9220 9.55 

25 2,624.86 0.0000 0.01 3 
 

0.8423 7.32 
 

0.9799 7.60 

200 

5 36,556.81 0.3047 0.00 3 
 

0.0000 5.82 
 

0.0038 5.34 

10 24,858.34 1.0989 0.00 5 
 

0.0007 18.21 
 

0.0000 14.05 

15 19,322.80 0.3279 0.00 9 
 

0.0000 38.47 
 

0.1712 24.73 

20 15,537.97 0.6039 0.01 6 
 

0.0000 38.45 
 

0.0000 26.32 

25 12,924.38 0.7378 0.01 5 
 

0.0000 35.55 
 

0.0000 27.30 

300 

5 76,214.07 0.3655 0.00 14 
 

0.0000 10.81 
 

0.0000 10.24 

10 52,916.81 0.1247 0.00 20 
 

0.0000 44.53 
 

0.0227 33.63 

15 41,730.30 0.3091 0.01 10 
 

0.0000 69.46 
 

0.0000 46.53 

20 34,906.12 0.6832 0.01 12 
 

0.0000 79.69 
 

0.0044 53.24 

25 30,395.59 0.6995 0.01 19 
 

0.0000 74.61 
 

0.0426 52.97 

400 

5 146,200.26 0.2385 0.01 58 
 

0.0000 21.44 
 

0.0025 16.51 

10 98,533.76 0.7563 0.01 124 
 

0.0000 121.59 
 

0.1921 61.30 

15 74,791.00 0.1665 0.00 32 
 

0.0000 118.01 
 

0.1467 118.72 

20 62,655.34 0.6835 0.01 42 
 

0.0000 106.10 
 

0.1296 78.50 

25 54,845.44 0.5573 0.01 61 
 

0.0000 106.82 
 

0.0081 83.07 

500 

5 240,569.47 0.2214 0.01 138 
 

0.1132 32.27 
 

0.0000 32.53 

10 161,110.97 0.9518 0.00 239 
 

0.0000 109.52 
 

0.0232 72.20 

15 129,497.44 0.4632 0.01 391 
 

0.0000 196.43 
 

0.0198 137.12 

20 106,965.35 0.8537 0.01 168 
 

0.0000 175.57 
 

0.0040 172.18 

25 93,650.37 0.2481 0.01 344 
 

0.0000 170.64 
 

0.0000 118.90 
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Table 2b. Computational Results for the SSCMFWP using newly generated dataset 

(continued) 

N m 
Best Known 

)( bkZ  

Exact Method for the DLPFC  
Proposed Methods 

 
GTSHM 

 
VNS 

Dev (%) Gap (%) CPU (s) 
 

Dev (%) CPU (s) 
 

Dev (%) CPU (s) 

600 

5 332,883.79 0.2295 0.01 602 
 

0.0343 41.88 
 

0.0000 77.17 

10 232,284.39 0.3074 0.01 794 
 

0.0000 311.68 
 

0.2846 178.57 

15 185,998.75 0.4736 0.00 600 
 

0.0592 374.69 
 

0.0000 225.79 

20 156,352.37 0.2357 0.01 525 
 

0.0000 624.83 
 

0.0998 346.61 

25 134,870.61 0.4174 0.01 188 
 

0.0000 215.12 
 

0.0079 150.72 

700 

5 462,057.44 0.1852 0.00 605 
 

0.0000 65.84 
 

0.0000 79.91 

10 314,415.42 0.5362 0.01 884 
 

0.0325 213.99 
 

0.0000 148.76 

15 252,399.38 0.4608 0.01 624 
 

0.0000 464.16 
 

0.0854 272.01 

20 215,202.11 0.3177 0.01 555 
 

0.0000 449.24 
 

0.3155 280.30 

25 187,164.60 0.4165 0.01 285 
 

0.0000 299.70 
 

0.0479 199.60 

800 

5 601,705.39 0.2120 0.00 1,385 
 

0.0038 83.75 
 

0.0000 59.89 

10 406,401.58 0.4342 0.01 1,555 
 

0.0892 331.43 
 

0.0000 274.05 

15 328,582.61 0.5350 0.01 4,178 
 

0.0000 1,679.28 
 

0.2165 872.92 

20 278,812.68 0.5261 0.01 2,998 
 

0.0000 712.46 
 

0.2502 506.59 

25 243,614.41 0.3784 0.01 5,850 
 

0.0120 365.40 
 

0.0000 395.33 

900 

5 759,185.58 0.2910 0.00 1,133 
 

0.0000 99.61 
 

0.0000 112.50 

10 527,455.13 0.2877 0.01 1,346 
 

0.0027 383.69 
 

0.0000 275.43 

15 424,515.93 0.2939 0.01 6,623 
 

0.0000 869.02 
 

0.0222 503.77 

20 364,407.43 0.1910 0.01 4,395 
 

0.0000 777.95 
 

0.6135 503.89 

25 322,183.39 0.2286 0.01 2,487 
 

0.0000 726.70 
 

0.0384 402.15 

1000 

5 966,903.15 0.0536 0.00 2,838 
 

0.0116 124.69 
 

0.0000 100.61 

10 663,115.73 72.1917 100.00 10,907 
 

0.0000 656.66 
 

0.1685 381.66 

15 527,104.49 0.1373 0.00 7,121 
 

0.0000 1,487.82 
 

0.5967 1,036.86 

20 446,532.01 0.0000 0.01 2,854 
 

0.2864 743.82 
 

0.2950 505.10 

25 388,398.57 0.3524 0.01 1,627 
 

0.0000 725.15 
 

0.0776 646.67 

Average 
 

1.8778 
 

1,293.32 
 

0.0378 288.69 
 

0.1544 195.06 

#Best 
 

2 
   

37 
  

19 
 

 

In our experiments, the parameters setting for the proposed methods is similar to the one in 

Section 5 except ))150,75.0min(,10min( nm . The summary results of the proposed 

methods are shown in Tables 2a and 2b where the results of the exact method on the DMFLP 

(Gap (%) and CPU time in seconds) are also given. Here, almost all instances of the DMFLP 

can be solved optimally using CPLEX within 3 hours except when n = 1000 and m = 10. It 

can be noted that GTSHM produces better results when compared to EVNS and the exact 

method on the DMFLP. This claim is similar to the one gathered in our previous experiments 
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on the SSCMFWP-FC. According to average results, GTSHM yields the smallest deviation 

of 0.0378% while EVNS and the exact method on the DMFLP produce deviations of 

0.1544% and 1.8778% respectively. The GTSHM also obtains 37 best solutions whereas 

EVNS and the exact method on the DMFLP attain 19 and 2 best solutions, respectively. 

However, EVNS is found to run relatively faster than the other methods.  

 

6.2. Case of constant capacity-  Experiments using existing dataset  

The performance of our adapted methods is also tested for the SSCMFWP when the 

capacity of a facility is constant. The three well known data sets from Brimberg et al. (2000) 

originally used for the multi-facility Weber problem are used here. These data sets are 50, 

654, and 1060 customers and the demand of all data sets is set to one unit. 

Here, the capacity of a facility is defined as the average total demand of all customers per 

facility (i.e., 













 



mwqQ
n

i

ij

1

, with  x  being the smallest integer greater than or equal to 

x ). This setting was initially proposed by Zainuddin and Salhi (2007) and also adopted by 

Luis et al. (2009 and 2011) for the case of CMFWP.  

The experiments are performed by varying the number of facilities (m) from 2 to 25 for 

the 50 customers and 5 to 50 with an increment of 5 for the other two data sets. The solutions 

of the MFWP given by Brimberg et al. (2000) are set as ‘lower bounds’ for the SSCMFWP. 

These solutions are optimal for the 50 dataset and the best known solutions for the others. 

Though these ‘lower bounds’ may not be valid for the larger problems where the optimal 

solutions are unknown, these values can still be considered as good reference points as noted 

by Luis et al. (2009).  To the best of our knowledge, the only empirical results that adopted 

such setting for these data sets are those by Manzour al-Ajdad et al. (2012) using the 

heuristics MA-TPP and MA-TPS for short, Manzour et al. (2013) using the procedure HM-

PALAS for short, and finally Öncan (2013) using the heuristic TO-SSALA for short. For 

comparison purposes, the best methods proposed by these three studies are reported only.  

In this experiment, the parameters setting for the proposed methods is similar to the one 

in Section 5 except that )75.0,10min( nm  for n = 50 and Tm  for other datasets. 

Tables 3, 4 and 5 present the summary results for n = 50, 654 and 1060 respectively. In the 

tables, Dev (%) is calculated using Equation (32) with bkZ  replaced by LB and hZ  refers to 
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the objective function value produced by heuristic (h). In the ‘Dev (%)’ column of our 

proposed methods, ‘*’ refers to a new best solution. In the case of n = 50 customers, GTSHM 

produces better results when compared to EVNS and the other published results such as MA-

TPP and HM-PALAS. In this case, GTSHM yields the smallest average deviation of 8.12%. 

Both GTSHM and EVNS produce 14 new best solutions out of 24.  

Table 3. Computational results on the dataset with n = 50 for the SSCMFWP 

m LB 
HM-PALAS  MA-TPP  

Proposed Methods 

  
GTSHM 

 
VNS 

Dev (%) CPU (s) 
 

Dev (%) CPU(s) 
 

Dev (%) CPU (s) 
 

Dev (%) CPU (s) 

2 135.52 0.85 0.90 
 

0.93 1.27 
 

0.86 0.25 
 

1.34 0.21 

3 105.21 1.06 1.20 
 

1.07 1.66 
 

1.26 0.44 
 

1.09 0.45 

4 84.15 3.88 1.60 
 

2.76 2.55 
 

2.78 0.77 
 

2.78 0.61 

5 72.24 8.38 1.87 
 

8.98 2.63 
 

5.96* 1.19 
 

6.10 0.95 

6 60.97 0.91 2.37 
 

0.92 3.84 
 

0.93 0.44 
 

0.93 0.70 

7 54.5 5.44 2.54 
 

6.20 6.07 
 

3.42* 0.77 
 

3.42* 1.14 

8 49.94 2.45 3.50 
 

2.80 5.27 
 

2.46 0.87 
 

4.74 0.66 

9 45.69 3.51 3.72 
 

3.52 7.22 
 

3.52 0.94 
 

3.54 0.77 

10 41.69 21.46 3.71 
 

18.21 8.66 
 

15.72* 7.85 
 

17.90 4.92 

11 38.02 10.53 4.42 
 

10.93 8.11 
 

6.14* 1.01 
 

6.14* 1.22 

12 35.06 2.57 6.37 
 

2.79 10.24 
 

2.07* 0.66 
 

5.83 0.63 

13 32.31 12.85 5.34 
 

16.76 12.14 
 

8.87* 2.17 
 

9.61 2.24 

14 29.66 9.52 5.78 
 

4.70 11.72 
 

4.76 1.17 
 

10.58 0.91 

15 27.63 4.01 7.26 
 

2.39 13.29 
 

6.98 1.12 
 

7.42 0.91 

16 25.74 9.08 8.24 
 

3.98 15.56 
 

4.09 0.95 
 

4.09 0.77 

17 23.99 11.09 8.13 
 

11.57 10.43 
 

8.64 1.53 
 

8.23* 2.17 

18 22.29 8.86 7.10 
 

7.20 14.40 
 

8.14 1.23 
 

7.21 1.30 

19 20.64 9.36 7.92 
 

11.35 12.68 
 

9.04* 1.29 
 

9.04* 1.08 

20 19.36 7.04 8.38 
 

7.80 13.30 
 

6.56* 1.34 
 

6.77 0.98 

21 18.08 5.99 8.67 
 

13.00 14.51 
 

5.11* 1.15 
 

5.11* 1.01 

22 16.82 17.37 9.80 
 

9.74 14.93 
 

5.09* 1.19 
 

5.09* 0.93 

23 15.61 17.69 11.14 
 

8.68 14.88 
 

4.67* 1.17 
 

4.67* 1.05 

24 14.44 20.91 10.61 
 

7.32 17.65 
 

4.88* 1.25 
 

4.88* 0.95 

25 13.3 87.50 10.03 
 

82.46 13.54 
 

73.02* 2.87 
 

73.02* 2.26 

Average 11.76 5.86 
 

10.25 9.86 
 

8.12 1.40 
 

8.73 1.20 

#Best 5 
  

4 
  

13 
  

9 
 

HM-PALAS : Priority-based ALA with simplified assignment proposed by Manzour et al. (2013) 

 MA-TPP : Two-phase with parallel assignment proposed by Manzour-al-Ajdad et al. (2012) 
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Table 4. Computational results on the dataset with n = 654 for the SSCMFWP 

m LB 
TO-SSALA  HM-PALAP  MA-TPP  

Proposed Methods 

   
GTSHM 

 
VNS 

Dev (%) CPU (s) 
 

Dev (%) CPU (s) 
 

Dev (%) CPU (s) 
 

Dev (%) CPU (s) 
 

Dev (%) CPU (s) 

5 209,068.80 54.00 300.20 
 

60.47 5.63 
 

54.00 8.20 
 

54.00 7.73 
 

54.00 5.94 

10 115,339.03 42.81 1,104.50 
 

54.67 11.45 
 

42.81 17.96 
 

42.81 14.88 
 

42.81 10.58 

15 80,177.04 67.69 2,586.40 
 

81.42 19.18 
 

67.69 29.82 
 

67.69 21.33 
 

67.69 22.67 

20 63,389.02 69.36 4,278.80 
 

74.90 35.50 
 

71.36 49.91 
 

69.36 26.26 
 

69.42 31.71 

25 52,209.51 47.52 6,560.80 
 

67.72 41.73 
 

47.52 64.35 
 

47.52 32.46 
 

47.52 41.99 

30 44,705.19 76.34 9,362.30 
 

109.58 60.74 
 

76.40 72.96 
 

77.63 37.18 
 

76.33* 34.09 

35 39,257.27 78.65 13,080.40 
 

89.48 75.86 
 

82.80 104.76 
 

78.76 39.96 
 

79.70 73.05 

40 35,704.41 47.63 17,414.10 
 

62.30 104.92 
 

44.71 139.41 
 

44.71 40.62 
 

43.86* 56.82 

45 32,306.97 55.77 21,321.30 
 

75.72 98.25 
 

59.35 237.81 
 

55.57* 50.29 
 

55.58 91.60 

50 29,338.01 31.27 25,870.60 
 

42.68 2.00 
 

31.31 184.77 
 

30.13* 52.87 
 

38.45 31.74 

Average 57.10 10,187.90 
 

71.89 58.63 
 

57.80 91.00 
 

56.82 32.36 
 

57.54 40.02 

#Best 6 
  

0 
  

4 
  

7 
  

6 
 

                
TO-SSALA : Single Source Alternate Location-Assignment (SSALA) proposed by Oncan (2013) 

      
HM-PALAP : Priority-based ALA with parralel assignment proposed by Manzour et al. (2013) 

      
MA-TPP : Two-phase with parallel assignment proposed by Manzour-al-Ajdad et al. (2012) 
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Table 5. Computational results on the dataset with n = 1060 for the SSCMFWP 

m LB 

TO-SSALA  HM-PALAS  MA-TPS  
Proposed Methods 

   
GTSHM 

 
VNS 

Dev (%) CPU (s) 
 

Dev (%) CPU (s) 
 

Dev (%) CPU (s) 
 

Dev (%) CPU (s) 
 

Dev (%) CPU (s) 

5 1,851,879.9 0.98 801.90 
 

1.57 10.92 
 

1.06 15.82 
 

1.06 16.27 
 

1.06 11.38 

10 1,249,564.8 2.66 3,487.50 
 

6.94 23.80 
 

3.20 35.86 
 

3.11 25.87 
 

3.13 23.49 

15 980,132.13 1.65 7,589.70 
 

4.19 45.42 
 

1.68 90.20 
 

1.65 33.69 
 

1.65 44.81 

20 828,802.00 2.33 12,526.30 
 

9.60 60.24 
 

3.46 141.15 
 

3.47 42.87 
 

3.47 61.24 

25 722,061.19 3.95 20,756.60 
 

8.64 84.61 
 

5.17 190.12 
 

4.42 58.84 
 

4.15 56.38 

30 638,263.00 4.07 27,303.40 
 

9.80 133.35 
 

5.32 273.63 
 

4.00* 61.64 
 

4.45 92.22 

35 577,526.63 3.56 40,235.30 
 

6.31 164.81 
 

4.26 422.27 
 

3.44* 75.50 
 

3.46 101.00 

40 529,866.19 6.89 56,384.40 
 

10.37 244.25 
 

7.72 526.11 
 

6.62* 78.71 
 

6.77 95.75 

45 489,650.00 8.92 67,218.30 
 

13.80 354.98 
 

9.02 842.86 
 

9.20 88.60 
 

8.36* 97.34 

50 453,164.00 6.61 74,328.60 
 

10.48 479.87 
 

7.80 816.89 
 

6.99 90.51 
 

7.49 193.27 

Average 4.16 31,063.20 
 

8.17 160.23 
 

4.87 335.49 
 

4.40 57.25 
 

4.40 77.69 

#Best 6 
  

0 
  

0 
  

4 
  

2 
 

                
TO-SSALA : Single Source Alternate Location-Assignment (SSALA) proposed by Oncan (2013) 

    
HM-PALAS : Priority-based ALA with simplified assignment proposed by Manzour et al. (2013) 

    
MA-TPS : Two-phase with simplified assignment proposed by Manzour-al-ajdad et al. (2012) 
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For the case of n = 654 customers, GTSHM also achieves better results when compared 

to the other heuristics (EVNS, TO-SSALA, HM-PALAP, and MA-TPP). Besides, GTSHM 

yields the smallest average deviation of 56.82% whereas EVNS, TO-SSALA, HM-PALAP, 

and MA-TPP produce 57.54%, 57.10%, 71.89%, and 57.80% respectively. Our methods 

produce 4 new best solutions out of 10. For the case of n = 1060 customers, both GTSHM 

and EVNS have relatively small deviations of 4.40% though marginally larger than the one 

obtained by TO-SSALA (4.16%). However, the average computational time required by TO-

SSALA to solve one instance is recorded to be over 31,000 seconds (more than 8.6 hours) 

whereas GTSHM and EVNS only require approximately 57 and 78 seconds respectively. 

Note that the computer used to execute TO-SSALA is faster than the one for GTSHM and 

EVNS. In addition, 4 new best solutions out of 10 were also obtained here.  

It is worth noting that though GTSHM requires 57.25 seconds on average and MA-TPS 

needs 335.49 seconds, the latter was coded in Matlab and run on Intel Dual Core@2.4GHz. 

Moreover, MA-TPS used an older version of CPLEX (version 10) to solve the assignment 

problem. According to http://cpuboss.com/compare-cpus, Intel Dual Core@2.4GHz is 

approximately 1.5 slower than Intel i5 3.2GHz. Based on Aruoba and Fernández-Villaverde 

(2014), on average, Matlab is 10 times slower than C++. A report from Tramontani (2014) 

reveals that CPLEX version 10 is approximately 8.5 times slower than CPLEX version 12.6 

when solving MIP. In the GTSHM, CPLEX approximately makes up on average 96% of the 

total computing time. As an example, if GTSHM was to be coded in basic Matlab and 

executed on Intel Dual Core@2.4GHz, and assuming the coding structures used are similar in 

both approaches, GTSHM would on average approximately require 57.25*(0.96*8.5 

+0.04*10)*1.5 =735.09 seconds, making it slightly more than twice slower. This observation 

shows that it is that simple to compare fairly the computing time required by different 

algorithms given the various ingredients under which the algorithms are written, implemented 

and run.. 

In brtief, based on our findings, we can report that the proposed methods (GTSHM and 

EVNS) perform rather well in all datasets as demonstrated by a total of 22 best solutions out 

of 44 which is an impressive result. 
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7. Conclusion and suggestions 

A variant of the multi-facility Weber problem known as the single-source capacitated 

multi-facility Weber problem with opening facility fixed costs is studied. A new model 

(SSCMFWP–FC) that considers the presence of the fixed cost based on capacity and zone-

dependent is also proposed. A framework that integrates the aggregation technique, the 

implementation of an exact method using CPLEX, and the enhanced well-known alternate 

location-allocation method of Cooper is put forward. A Variable Neighbourhood Search is 

then adapted to address the problem. A set of new instances which we generated for the new 

model is used to evaluate the performance of our heuristics. Very competitive results are also 

obtained when compared against the exact method on the discrete location problem (DMFLP-

FC). The proposed methods are also adapted to solve the single-source capacitated multi-

facility Weber problem (SSCMFWP) and are assessed on two types of datasets. The first one 

is the newly generated dataset used for the SSCMFWP–FC where our proposed methods 

perform very well when compared against DMFLP and the second one is a dataset available 

in the literature. The empirical results show that our proposed heuristics provide superior 

results on almost all instances when compared against the recently published ones.  

The following research directions could be worth exploring in the future. In this study, the 

fixed cost of the zones is generated irrespective of the effect of continuity between adjacent 

zones. For example in our experiment if a location happens to be on the boundary we opt for 

the cheapest fixed cost. However, in practice the change in the fixed cost between two 

adjacent zones would not be drastically different. A new construction of the fixed cost that 

takes into account such a smoothness of the fixed cost is worth examining. The problem 

could also be extended to other classes of location problems such as the location of casualty 

collection points that arises in the case of catastrophic events (Drezner et al., 2006), the 

location routing problem on the plane (Salhi and Nagy, 2009), and  the continuous 

competitive facility location problem (Redondo et al. 2013). From a technical view point, the 

current VNS approach can be modified to enhance its efficiency further by incorporating an 

adaptive memory mechanism to govern selection moves in a neighbourhood.  

 

Acknowledgements – The authors would like to thank all the referees for their constructive 
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