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Dividend derivatives are not simply a by-product of equity derivatives. They constitute a distinct grow-
ing market and an entire suite of dividend derivatives are offered to investors. In this paper we look
at two potential models for equity index dividends and discuss their theoretical and practical merits.
The main results emerge from a downward jump-diffusion model with beta distributed jumps and a
stochastic logistic diffusion model, both able to capture the particular dynamics observed for dividends
and cum-dividends, respectively, in the market. Smile calibration results are discussed with market data
on Dow Jones Euro STOXX50 DVPr dividend index for futures and European call and put options.
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1. Introduction

Dividends played a major role in the development of equity financial products over the years. Lu
and Karaban (2009) showed that since 1926, dividends have represented approximately one-third
of total returns, the rest coming from capital appreciation. Moreover, total dividend income has
increased in U.S. six-fold between 1988 and 2008, reaching almost 800 billion USD. While dividends
have grown in proportion to increasing stock market capitalization, evidence shows that dividends
have also grown as a proportion of personal income. Furthermore, dividends are considered a good
hedge against rising inflation and they have in general lower volatility than equities as discovered
by Shiller (1981).

The increasing market activity in equity futures and forwards, options, and structured products
implies a growing exposure for banks to dividend payments on balance sheets. Dividend risk is
traded through many type of contracts from single-stock and index to swaps, steepeners, yield
trades, ETFs, options, knock-out dividend swaps, dividend yield swap and even swaptions. Bren-
nan (1998) suggested to strip off the equity index from its dividends and create a market in the
dividend strips which should improve the informational efficiency in the economy. Another financial
innovation designed to offer dividend protection is the endowment warrant, although, as discussed
by Brown and Davis (2004), the protection is only partial and pricing is not easy since it is a
long-term option having a stochastic strike price driven by the cash-flow of dividends.

Dividend derivatives have been traded over-the-counter (OTC) since the turn of the millen-
nium, mainly in the form of index dividend swaps. The first time dividend derivatives were traded
on an exchange was in 2002 in South-Africa, see Wilkens and Wimschulte (2010), but the suc-
cess was moderate. NYSE Liffe have launched futures contracts on the FTSE100r dividend in-
dex in May 2009. There are also exchange-traded dividend futures on the HSI and HSCEI in-
dexes traded in Hong Kong, on the AEX index in Netherlands. On 25 May 2010 the S&P 500
Dividend Index (DVS) and options on the S&P500 Annual Dividend Index (DIVD) were intro-
duced on CBOE, while options on Euro STOXX50 Index Dividend Futures (FEXD) and Euro
STOXX50 Index Dividend Points (DVP) were also introduced on Eurex. The futures contract on
the Dow Jones Euro STOXX50 DVPr index introduced on 30 June 2008 by Eurex has experienced
a meteoric development. This is hardly surprising since reinvested dividends accounted for almost
half of the Dow Jones Euro STOXX50r total returns since the end of December 1991.

There is a buoyant market now driven by these contracts, establishing dividends as an asset class
of its own as argued by Manley and Mueller-Glissmann (2008). The volume of contracts and open
interest are illustrated in Figure 2(a) for dividend futures and in Figure 2(b) for dividend options.

Dividend derivatives have many applications for investors. Equity derivatives traders and struc-
tured products engineers must consider their dividend risk and manage its risk. Portfolio managers
with convertible bond positions and equity positions have exposure to dividend risk. In some coun-
tries investing in dividends offer a degree of tax reduction. Last but not least, carrying equity stock
during systemic crises may imply less dividend payments than expected so by taking positions on
dividend derivatives the investor on exchanges may help avoiding liquidity pressures.

As with many other emerging asset classes, the modeling for dividend derivatives lags behind in
development, although modeling dividends has preoccupied academics and practitioners for many
years. The literature on dividend derivatives pricing is very sparse. In general the models covering
dividends modeling assume the dividend payments have either known size or timing or both. This
strong assumption will make almost impossible a dividend derivatives smile calibration. The scope
of this paper is to present two models that are flexible enough to provide an overarching calibration
to dividend futures and dividend European options. One model focuses on the dividend individual
payments as jumps associated with the evolution of the underlying stock price. Both the size and
frequency is captured from historical data and then the incomplete market model is completed
with the futures prices. The second model aims to capture the dynamics of the cum-dividend value
within the year. This is very useful since the dividend derivatives payoffs are functions of the cum-
dividend itself. For both models we show how to calibrate the smile across the strike prices and
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Figure 1. The number of traded contracts and open interest in the Eurostoxx 50 Dividend Futures and Options
traded on Eurex as of September 2014. Source: Eurex.
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(a) Eurostoxx 50 Dividend Futures.
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(b) Eurostoxx 50 Dividend Options.

also across the maturities going up to ten years ahead. This is achieved with our models having
only few parameters.

The article is structured as follows. Section 2 provides a literature review of dividend modeling
related literature.

Section 3 describes the data used in this research. The main modeling results are contained in
Section 4. Numerical results using the available data are provided in Section 5. The last Section
discusses the advantages and disadvantages of the models and points out their current applications.
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2. The Linkage Between Equity and Dividends

2.1. Connection with Literature

Black (1976) and Black (1990) argued that investors value equity by predicting and discounting
dividends but that we know very little about what should investors do with their dividends and what
should issuing corporations do about dividend policy. Using tests based on volatility, Shiller (1981,
1986) emphasized that stock price movements cannot be explained only from the information on the
future dynamics of dividends around a long-run historical trend. In the literature the overwhelming
conclusion is that future dividends are uncertain, both in their timing and size.

Denoting with Divt,T the gross dividend paid on the equity index over the period [t, T ] the
forward price at time t on the cumulative dividend stream {Divt,T }t≤u≤T is given by FWt(Divt,T ) =
PVt(Divt,T ) exp (rt,T (T − t)) where rt,T is the risk-free interest rate and PVt(Divt,T ) is the present
value of the gross dividend stream for the period [t, T ] at time t. For dividend derivatives it would
be useful to know the dividends that will be paid at a given horizon. Harvey and Whaley (1992) and
Brooks (1994) extracted implied dividends employing the put-call parity but these estimators were
too noisy for predicting the next dividend. However, their idea to calculate the implied dividend
quantity to the required horizon of dividend derivatives as

PVt(Divt,T ) = St + pEt (K,T )− cEt (K,T )−K exp [−rt,T (T − t)]. (1)

where S is the underlying equity index, cE and pE are the call and put European option prices
with maturity T and exercise price K, is used by some investors1 to calculate the price of dividend
derivatives, assuming a given risk-free rate. Considering qt,T as the continuously compounded
dividend yield for the period [t, T ] Golez (2014) suggested reverse engineering both the implied
risk free rate rt,T and the implied dividend yield qt,T from the futures price formula2 and the
put-call parity from associated equity options

Ft(T ) = St exp [(rt,T − qt,T )(T − t)] (2)

where Ft(T ) is the futures price at time t for maturity T ,

cEt (K,T )− pEt (K,T ) = St exp [−qt,T (T − t)]−K exp [−rt,T (T − t)] (3)

The two equations (2) and (3) give

rt,T =
1

T − t
log

[
Ft(T )−K

cEt (K,T )− pEt (K,T )

]
(4)

and

qt,T = − 1

T − t
log

[(
cEt (K,T )− pEt (K,T )

St

)
+
K

St

(
cEt (K,T )− pEt (K,T )

Ft(T )−K

)]
(5)

1Some interesting readings in this area can be found in Bos and Vandermark (2002), Frishling (2002), Lu and Karaban (2009),
Manley and Mueller-Glissmann (2008) used to deal with dividend paying stocks by assuming constant and unknown dividends,
in cash or as an yield, and then proceed with an option pricing calculator such as Black-Scholes for example, with a deflated
stock price resulting from stripping out the presumed known dividends over the life of the option from current stock price.
2Remark that in this case, due to the tacit assumption that rt,T is constant, forward prices are equal to futures prices.
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Because PVt(Divt,T ) = exp [−qt,T (T − t)] the value of the forward price on the dividends on
Dow Jones Euro STOXX50r would follow immediately3.

This model free approach, while easy to implement, has several flaws. First and foremost, it
assumes that the future dividends are unknown but constant which is not the case in reality.
Secondly, another problem is the choice of the exercise price K since the results may be sensitive
between the futures price series and interest rate series to see if the futures prices are equal to
forward prices.

Since there is an intrinsic relationship between a stock index and the corresponding dividend
stream one may consider calibrating both index options and dividend derivatives, jointly. The
efficient market model (Campbell et al. 1997) is described by the two relationships given all infor-

mation available at time t Rt+1 = St+1+Divt,t+1

St
− 1 and Et(Rt+1) = r, where r is the risk-free rate.

Then, straightforward calculations lead to St = Et(St+1+Divt,t+1)
1+r and applying the law of iterated

expectations gives

St = Et

(
T∑
i=0

Divt+i,t+i+1

(1 + r)i

)
+ Et

(
St+T

(1 + r)T

)
(7)

This relationship may imply a possible calibration of dividend expectation curves to the stock
index. However, as Shiller (1981) demonstrated this efficient markets model leads to a mismatch
in the volatilities of the stock index and the volatility of the associated dividends.

Implied dividends have been utilised as part of the estimation process for risk-neutral densities by
Ait-Sahalia and Lo (1998). The empirical properties of dividends have been amply discussed by van
Binsbergen et al. (2012). Models that forecast dividends have had mixed results in the literature
and the empirical evidence is divided on their usefulness, particularly for long maturities. Chance
et al. (2000) developed a forecasting model for dividends accounting for seasonality and mean
reversion effects, showing that it is possible to produce unbiased estimators of dividend related
quantities. Recent papers showing how to forecast the dividend yields are van Binsbergen et al.
(2012), Chen et al. (2012), Overhaus et al. (2007), Kruchen and Vanini (2008), Buehler et al.
(2010). A no-arbitrage methodology for estimating discrete dividend payments from market prices
of options is proposed in Desmettre et al. (2015) on the assumption that dividend cash payments
are replicable by market instruments such as forwards on associated equity.

Chance et al. (2000) analysed index option prices based on ex-post realized dividend information,
with the corresponding options valued using ex-ante dividend forecasts, and they found that the
latter does not lead to biased pricing, although the sample error is quite large. On the other hand,
the implied dividends from S&P500 options may improve significantly the forecasts of market
returns as demonstrated by Golez (2014). Using data between 1994 and December 2009, Golez
first shows that the dividend-price ratio gives a poor forecast for future returns and dividend
growth. Kragt et al. (2014) used dividend futures term structure to extract information about the
investors’ expectations on equity.

Geske (1978) pointed out that assuming that dividends are known when in fact they are not,
has the effect to mis-estimate the volatility. On the other hand, Chance et al. (2002) demonstrated
that when dividends are stochastic and discrete such that the present value of all future dividends
is observable and tradable in a forward contract, Black-Scholes formula still applies for pricing
European options. Assuming that the present value of all dividend payments generated by a stock
to a given maturity is known may seem quite strong, although the very nascency of dividend futures
markets may provide a good mechanism to ascertain this value. The interlink between dividends

3Alternatively one can reverse-engineer from put-call parity directly the present value of all gross returns

PV (Divt,T ) = St −
[
cEt (K,T )− pEt (K,T )

] Ft

Ft −K
. (6)
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and volatility was emphasized by Broadie et al. (2000), who proved that both dividend risk and
volatility risk are relevant for pricing American options contingent on an asset with stochastic
volatility and an uncertain dividend yield.

Frishling (2002) discussed three different approaches to model the linkage between dividends
and stocks modeled stochastically. For the same dividend payment and identical parameters for
stock price Frishling (2002) provided an example illustrating that it is possible to get very different
distributions for the stock at maturity T when using different models. Hence, the method employed
to model dividends can have a great impact on the final results. Lioui (2005) derived analytical
formulae for pricing forward and futures on assets with a stochastic dividend yield and Lioui
(2006) developed European options pricing formula of Black-Scholes type, incorporating stochastic
dividend yield and using a stochastic mean-reverting market price of risk. Importantly, Lioui (2006)
showed that stochastic dividend yields may lead to a different type of put-call parity for equity
from the one that is normally used to reverse engineer the dividend yield from market European
option prices, thus invalidating the approach based on the direct formula (1). Recognizing that
in practice dividends on stocks are not paid continuously but at discrete times, Korn and Rogers
(2005) developed a general approach for stock option pricing, where the absolute size of the dividend
is random but its relative size is still constant. One advantage of their model can be adapted to
deal with dividends announced in advance and with changing in dividend policy. Bernhart and
Mai (2015) generalized this line of modeling dividends as a discrete cash-flow series and proposed a
no-arbitrage methodology capable of embedding many well-known stochastic processes and general
dividend specification. Brockhaus (2016) presented a general family of models treating dividends
for equity derivatives, encompassing the model in Korn and Rogers (2005). Another interesting
approach in Buehler et al. (2010) considers an equity stock price model with discrete stochastic
proportional dividends. Their model assumes that dividend ratios are a linear combination between
the classic known proportional dividends and a stochastic dividend part described by an Ornstein-
Uhlenbeck process.

van Binsbergen et al. (2013) used the dividend futures to construct equity yields by analogy with
bond yields. They showed that the equity yields obtained in this manner can be decomposed into ex-
pected dividend growth rates and risk premia. Using the dividend futures term structure facilitates
the study of the term structure of risk premia and conclude that the slope of the term structure of
expected dividend growth rates is counter-cyclical. Denoting by Divt,T the cum-dividend paid by a
stock index over the period (t, T ] and by r the risk-free rate for that same period, van Binsbergen
et al. (2013) price dividend futures with the formula

Ft,T (Divt,T ) = PV (Divt,T ) exp(r(T − t)) (8)

arguing that this formula is correct because:

“This no-arbitrage relationship holds for non-dividend paying assets. At first sight this may be con-
fusing,as the focus of the paper is on dividends. The index does indeed pay dividends, and therefore,
futures on the index are affected by these dividend payments. However, the futures contracts we study
are not index futures, but dividend futures. These dividend futures have the dividend payments as
their underlying, not the index value. As dividends themselves do not pay dividends, Eq. (8) is the
appropriate formula.”

There are many assets that do not pay dividends such as oil, gas, soybean, coffee, freight, real-
estate indices and so on. Yet, none of the futures traded on this asset classes has a stock paying
no dividend forward type of formula such as (8). In other words, the formula (8) is simply wrong,
the mistake consisting in van Binsbergen et al. (2013) failing to recognise that dividends are not
tradable and therefore dividend derivatives should be priced in an incomplete market set-up, as
for any non-tradable underlyings– see Bjork (2009). The main scope of this paper is to propose
suitable pricing models that can be used to price dividend futures and European options. One
should recognise in the case of dividend futures that a) we are dealing with an incomplete market
and any pricing model should take this into account and b) one the dividend derivatives market

5
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Figure 2. The daily dividends in index points paid on the Dow Jones Euro STOXX50r index. The series is daily
between 22 December 2008 and 17 December 2012. Source: Eurex.
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is completed with futures any other derivatives such as options should be priced under the same
martingale pricing measure.

2.2. Motivation of proposed models

The literature suggests that for pricing dividend derivatives the focus should be on the dividend
cash-flow stream itself and consider dividends evolving in a stochastic manner over time. An insight
into how can we capture the randomness in the dividends evolution can be gained from the historical
time series of paid dividends for Dow Jones Euro STOXX50r presented in Figure 2. Dividends are
also measured in index points. One clear characteristics of this series is that the time series resembles
a jump process and that the size of the jumps looks stochastic.
Another way dividends are reported is based on the cum-dividend series within each calendar
market year. This is helpful for the dividend futures contracts traded on Eurex or for index dividend
swaps contracts traded over-the-counter. The cum-dividend series depicted in Figure 3 display a
very interesting regular pattern. The shape is clearly sigmoidal with an inflection point almost
half-way in June. Our stochastic logistic diffusion model described in Section 4.2 is capable of
producing exactly this type of dynamics pattern.

Whether dividends should be outstripped from equity or modelled on their own is still subject
to debate but we offer in this paper in section 4 a model from each category. What has been less
emphasized in dividend derivatives pricing literature is that this market is clearly incomplete and
therefore the dividend futures prices will help identifying an equivalent martingale pricing measure.
Then, pricing of all other derivatives such as European vanilla options on dividends is done under
the same pricing measure and the quality of the model can be measured by analysing how well the
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Figure 3. The cum-dividend daily time series in index points paid on Dow Jones Euro STOXX50r index. The
historical data is daily for the period 22 December 2008 and 17 December 2012. Source: Eurex

0

20

40

60

80

100

120

140

CumDividend

options prices are calibrated.

3. Data Description

The analysis in this paper is focused on the dividend stream generated by the Dow Jones EURO
STOXX50r stock index introduced on 26 February 1998 by Stoxx Ltd. This index covers 50 blue-
chip companies from 12 Eurozone countries: Austria, Belgium, Finland, France, Germany, Greece,
Ireland, Italy, Luxembourg, the Netherlands, Portugal, and Spain traded on the Eurex. The index
has a base value of 1000 points for 31 December 1991. The composition of the index is refreshed
every September based on free float market capitalization, with all weightings capped at 10%. The
weight is divided by an index divisor. On 16 June 2008 the Dow Jones EURO STOXX50 DVPr

Index was introduced, cumulating all dividend payments in index points from the first business day
after the third Friday in December to present. Index resets annually on the third day in December.
The stock and the dividend indices use the same calculation formula, one with prices and the other
with ordinary un-adjusted gross dividends.

The Dow Jones Euro STOXX50r index dividend futures contract traded on Eurex was intro-
duced on 30 June 2008 trading initially for seven annual maturities with a value of 100 EUR per
one index dividend point as described in Baldwin (2008). The contract is cash settled on the first
exchange day after the settlement day which is the third Friday of December of each maturity
year1. The minimum price change is 0.1 points and since May 4, 2009 there are ten annual con-

1If the third Friday is not an exchange day then the settlement day is the exchange day immediately preceding that day.
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tracts. In this contract, at maturity, the buyer pays the futures price established when the contract
is initiated and the seller pays the euro amount of dividends during a full calendar year determined
by the market roll on the third Friday of December. For example, on 9th February 2012 the div-
idend futures contract on Dow Jones EURO STOXX50 DVPr for the December 2012 maturity
was 114.90 EUR while the contract for the December 2021 maturity traded for 93.10 EUR. Hence,
on the third Friday of December 2012, the buyer of the futures contract will pay 114.90 EUR
while the seller will pay the cash dividend generated from the companies on the Dow Jones EURO
STOXX50r index between the third Friday in December 2011 and the third Friday in December
of 2012. Likewise, on the third Friday of December 2021, the buyer will pay 93.10 EUR and will
receive from the seller the cash dividend between the third Friday in December 2020 and the third
Friday in December of 2021.

The final settlement price in this futures contract is determined by the final value of the underly-
ing Dow Jones EURO STOXX50 DVPr, the index of dividends calculated for that annual period.
Only gross unadjusted dividends that are declared and paid in the contract period by any of the in-
dividual components of the Dow Jones Euro STOXX50r are considered for settlement purposes1.
The special dividends are excluded from the dividend cash-flow stream underlying the futures con-
tracts but this should not cause concern since the share of special dividends from all dividends has
decreased over time as pointed out by DeAngelo et al. (2000). The gross ordinary dividends are the
unadjusted cash dividends paid between the third Friday of December in preceding year, excluding,
and the third Friday of December of current year, inclusive. The futures prices are quoted daily.
Hence, index companies paying multiple dividends will contribute on each ex-dividend date based
on the free float adjusted share. The descriptive statistics for the Dow Jones Euro STOXX50r ,
its corresponding logarithmic returns series2 and its corresponding cum-dividend series in index
points are presented in Table 1. The standard deviation of the equity index is equal to 278.08 and
this is more than five times larger than the standard deviation of the cum-dividend series equal
to 44.43, in line with the conclusions from Shiller (1981). Interestingly, the standard deviations for
the futures series presented in Table 2 vary between 6.26 for the nearest maturity contract and
18.50 for the second maturity, even lower than the standard deviation of the dividend time series.

Table 1. Descriptive Statistics for the Dow Jones Euro STOXX 50 index, the STOXX50 logarithmic returns
annualized, its corresponding cum-dividend series and dividend series in index points. The historical series covers

the daily data for the period 22 December 2008 and 17 December 2012.Source: Eurex.

STOXX50 index STOXX50 log-return Cum-Dividend Dividend
Mean 2579.89 2.25% 64.95 0.45
Median 2592.71 -2.37% 88.27 0
Standard Deviation 278.08 25.39% 44.43 1.39
Kurtosis 2.05 3.0101 1.37 30.27
Skewness -0.29 0.0049 -0.3823 4.63
Minimum 1809.98 -1592% 0 0.00
Maximum 3068.00 2481% 124.34 14.99
Count 1028 1027 1028 1028

The descriptive statistics of the dividend futures prices are reported in Table 2. The last three
maturities of the currently ten contracts traded actively on Eurex from 4 May 2009, and in general
these three contracts have very similar prices. The graph in Figure 4 shows the futures settlement
prices on Dow Jones Euro STOXX50 DVPr index from Eurex for the first seven maturities, using

1The settling at maturity is done versus the weighted sum of the gross cumulative cash dividends paid by each company that
is part of the Dow Jones Euro STOXX50r index during that period, multiplied by the number of free-float adjusted shares,

and the total is then divided by the index divisor.
2The descriptive statistics for the log-returns of the equity index are annualized. It is not straightforward to annualize the
skewness and kurtosis and here we used the procedure described in Meucci (2010) based on calculating the cumulants of the
aggregated series to the required horizon, in this case one year.
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a longer historical data. The nearest maturity contract has had a different evolution compared to
the remaining six maturities futures depicted3, which have a more correlated dynamics. The only
time when they all seem to converge is at rollover time due to the pull to maturity effect.

Table 2. Descriptive Statistics for the Futures on Dow Jones Euro STOXX50 DVPr index for all maturities. The
historical series is daily between 22 December 2008 and 8 February 2012 for the first seven maturities and between

1 May 2009 and 8 February 2012 for the last three yearly maturities. Source: Eurex.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Mean 115.56 102.05 96.42 94.55 94.38 94.96 95.79 100.44 101.37 102.20
Median 113.45 107.70 99.50 98.30 98.30 99.00 100.10 103.60 104.80 106.30
Mode 112.80 113.90 88.60 104.40 114.80 115.20 105.60 105.50 78.60 111.60

Std 6.26 18.50 18.42 17.55 17.35 17.03 17.14 14.45 15.04 15.42
Kurtosis -0.19 0.49 -0.15 -0.53 -0.72 -0.85 -0.89 -1.02 -0.97 -0.95
Skewness -0.02 -1.18 -0.84 -0.64 -0.52 -0.44 -0.42 -0.33 -0.35 -0.39

Min 96.10 54.00 51.70 53.70 54.50 55.50 57.20 69.90 69.50 69.20
Max 125.10 125.30 119.90 120.60 122.90 124.30 126.50 128.80 131.10 132.50
Count 806 806 806 806 806 806 806 717 717 717

For pricing purposes discount factors to the required maturity are also needed. In the aftermath
of the subprime crisis the role of the funding rate has become prominent. Since the purpose of
our paper is to price dividend derivatives traded on an exchange there is no reason for a collateral
agreement and therefore for using OIS curve for discounting. Hence, here we work with discount
factors calibrated from the Euribor-swaps curve. In order to have a smooth pasting from euro
futures implied rates to swap implied rates we use 3-month tenor swaps with a 3-month Euribor
reference rate. The risk-free discount curves produced in this way are equivalent to those used by
an investment bank on the day where pricing of dividend futures and options is undertaken. The
discount curves go to the required maturity, up to ten years ahead.

4. Models for Index Dividend Derivatives

Previous studies, see Baldwin (2008), have hinted that dividend yields implied by the
Dow Jones Euro STOXX50r Index dividend swap contracts are uncorrelated to the three-month
EURIBOR rates. Here we have tested this analysis for the period 23 December 2008 to 8 Febru-
ary 2012 and for the first six maturities of the Eurex dividend futures contracts. The OLS
regression lines depicted on each graph all have very low R2 values, confirming previous con-
clusions that interest rates are uncorrelated1 to dividend futures prices. This empirical arte-
fact supports the idea that futures prices may be congruent with forward prices in the case of
Dow Jones Euro STOXX50r dividend index. Thus the futures prices are given by the expectation
of the payoff under a suitable risk-neutral measure.
For pricing and calibrating dividend index derivatives we consider the time grid

T0 < t0 < t1 . . . < tn1
< . . . < T1 < . . . < T2 < . . . < T10 < . . . < T ∗

where T ∗ is a very large but still finite maturity, Ti are yearly December maturities with i =
1, . . . , 10, and tj are daily times so tj+1− tj = ∆t represents one day, for any positive integer j and
Ti+1 − Ti = 1 year, for any i.
One may consider that in order to price dividend derivatives the only thing that is needed is
the distribution of cum-dividends at the end of the year. This is correct if the only objective

3To an extent the second maturity dividend futures contract also departs from the rest.
1Remark that it is possible to have a low R2 value but the explanatory regression variable to be significant. Hence, for each
December maturity the null hypothesis that the changes in Euribor rates do not impact upon the changes on implied dividend

yields was tested. In all cases, we have failed to reject the null hypothesis.
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Figure 4. The futures curves for Dow Jones Euro STOXX50 DVPr index. The daily series for the first seven yearly
December maturities are presented for the period 22 December 2008 to 8 December 2012.Source: Eurex.
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is pricing futures and European options. However, some complex financial instruments traded
over-the-counter, see section 6, will require a path modelling approach capable of handling path-
dependent payoffs. One case where a distribution rather than a stochastic process seems to be more
appropriate for modelling dividends is Japan where dividends are paid usually on the 30 June and
31 December each year, or more exactly at the end of the financial fiscal year for that company.

4.1. A jump-diffusion model for dividends

The first model analysed here is a jump-diffusion model with jumps tailored for dividends only.
Thus, the jumps can be only downward jumps. The dividend payments are intrinsically linked to
the corresponding equity index. The dynamics therefore should follow the equity index. Under the
physical measure P

dSt
St

= [µ− θE(V − 1)]dt+ σdWt + d

(
i=Nt∑
i=1

(Vi − 1)

)
(9)

10



April 18, 2017 Quantitative Finance DivDerivs˙QF˙last

Figure 5. Scatter plots of daily changes in dividend futures implied yields and the corresponding three month
EURIBOR funding rates. Data for the period 23 December 2008 to 8 February 2012. The daily first differences in
implied dividend yields are on the vertical axis in index points while the daily changes in 3-month Euribor funding
equivalent rate to the maturity of the corresponding futures contract are on the horizontal axis.
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where1 {Wt}0≤t≤T ∗ is a Wiener process, {Nt}0≤t≤T ∗ is a Poisson process with arrival rate θ ac-
counting for the payment times of dividends per unit of time and {V }i=1,2,... is a sequence of inde-
pendently and identically distributed random variables, with distribution function H, representing
the jump factor size. The three stochastic structures are assumed to be mutually independent, with
µ ∈ R constant and θ, σ ∈ (0,∞). The SDE (9) has the solution

ST = St exp

{
σ(WT −Wt) +

(
µ− θE(V − 1)− 1

2
σ2

)
(T − t)

} NT∏
i=Nt+1

Vi (10)

For the first model proposed here the following assumptions are made.

Assumption 1 All jumps in the equity index dynamics are downward, reflecting dividend adjust-
ments.

Assumption 2 All dividends are in index points and are a stochastic proportion of the equity
index.

Hence, this model lies between the usual jump-diffusion models for equity asset pricing due
to Merton (1990) and the jump to default credit risk models. Merton’s model does not price the
jump-risk and it assumes that the extra randomness due to jumps is fully diversifiable1, furthermore
arguing that the distribution of the Poisson jump components does not change under the change
of measure. We take a theoretically more robust approach here and account for the market price
of the jump-risk. This will allow us to fix the martingale pricing measure by matching exactly the
market dividend futures prices.

All dividend derivatives are based on the the cum-dividend process in index points. For a generic
period (t, T ] the cum-dividend generated by the model can be approximated by

Div(t,T ] =

j=m∑
j=1

Stj+kδtj+kYtj+k (11)

where m = T−t
∆t and t ≡ tk, and {Ytj}j≥1 are Bernoulli variables taking the value 1 with probability

θ∆t and the value zero with probability 1− θ∆t. The pricing of any contingent claim on Div(t,T ]

can be carried out by Monte Carlo simulation under a suitable risk-pricing measure.
The model presented so far is quite general2 and it covers a wide range of specifications that

1Our notation follows Kou (2008). The process in (9) can be defined more formal as follows.

dSt = µSt−dt+ σSt−dWt +

∫ ∞
−∞

ySt− (ψ(dy, dt)−H(dy)dt)

where W is a standard Brownian motion and ψ is a homogeneous Poisson measure with deterministic compensator Υ(dy)dt,
with θ the jumps arrival rate per unit of time and Υ the θ-fold of the distribution of the random variable Vi − 1. The i.i.d
random variables Li ≡ Vi − 1 allow rewriting the Poisson measure as

ψ(ω; dy, dt) =
∑

i=1,2,...

1[Ti(ω)]δ(Li(ω),Ti(ω))(dy, dt)

where δa is the usual Dirac measure notation in point a and 1[·] is the indicator function. One can then show that∫∞
−∞ ySt− (ψ(dy, dt) − H(dy)dt) = St− (ItdNt − θE(V − 1)dt). This process is defined on a probability space (Ω,FT , P ),

being endowed with the right-continuous, P -complete filtration.
1Assuming jumps to be diversifiable helped Merton arrive at a pricing measure that gave the price of a European call as a

convex combination of Black-Scholes prices with weights given by the jumps arrival probabilities. This approach is not pursued

here and pricing measure will be associated with a separate market price of risk parameter. Furthermore, van Binsbergen et al.
(2012) found substantial excess returns on dividend contracts so a pure Merton’s approach will not be correct.
2Buehler et al. (2010) proposed a model combining a diffusion part for the equity stock with a random part driven by dividends

and modelled with a sum of Dirac measures. However, their model can generate negative dividends. Our model specification

12
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depend further on how jumps are viewed in relation to the underlying index and also on vari-
ous distributions for the jump sizes such that jumps are only downward. Here we propose a full
parametric approach and we make a third assumption about the distribution of the jump sizes.

When a jump occurs at time t the stock moves from St to StVt. Therefore Vt acts as deflation
factor so if Vt = 0.90 it implies that a 10% dividend was paid. The jump sizes here are random
quantities Vi ∈ (0, 1). The price of the index ex-dividend is StVt so the dividend paid for day t is
St(1−Vt), and this will be paid with probability θ∆t. In order to simplify the notation, δt ≡ 1−Vt
henceforth. The model will be referred to henceforth as the Beta Jump Down (BJD) model.

Assumption 3 {Vi}i≥1 are i.i.d and Vi ∼ c+ (1− c)Beta(a, b) where c ∈ (0, 1) and Beta(a, b) is
the Beta distribution with shape parameters a, b.

Then the jump sizes V have support1 in (c, 1) which means that δ = 1−V has support in (0, 1−c).
Thus E(V ) = a+bc

a+b and E(δ) = b(1−c)
a+b .

There have been previous attempts of using the beta distribution for the jumps amplitude in
a jump-diffusion model. Ramezani and Zeng (1998) proposed a jump-diffusion model with two
jump processes, an upward process with Pareto distributed jumps for good news and a downward
process with Beta distributed jumps for bad news. Ramezani and Zeng (2007) showed the link
of that model to the double exponential jump diffusion model of Kou (2002). Our model maps
dividends strictly with downward jumps and our focus is to generate jumps along the path in order
to harvest the actual dividends being paid for a given stock. Using two asymmetric jump processes
will lead to identifiability problems regarding the actual size of dividends. For example, at a given
ex-dividend time, an upward jump due to positive news will offset the downward jump triggered
by a dividend payment. Thus, the total change in stock price at that time will mask the actual
dividend payment. In addition, our distribution for jumps is further rescaled such that dividend
payments fall within a range similar to what is observed empirically, dividend payments being
equal to relatively low percentages of contemporaneous stock prices. Having closed form solution
for European options contingent on jump diffusion processes does not help very much because we
are only interested in the derivatives contingent on the dividend flow.

In Figure 6 we illustrate in panel 7(a) 20 paths simulated by Monte Carlo from the jump-diffusion
model with Beta distributed jumps calibrated on the market data for STOXX50, together with
the corresponding market observed path of STOXX50. Furthermore, the histograms depicted in
panels 7(b) and 7(c) show the distributions of the dividends paid on the STOXX50 and resulting
from the BJD model, respectively. We also report in Table 3 the descriptive statistics for the
numbers obtained on three of these paths.

Table 3. Descriptive Statistics for three Monte Carlo of STOXX50 simulated paths of STOXX50 index and the
corresponding Cum-dividend paths for one year period, based on the calibrated jump-diffusion model with Beta

distributed jumps.

STOXX50 one Cum-div one STOXX50 two Cum-div two STOXX50 three Cum-div three

Mean 2563.1 45.59 2757.6 48.43 2452.3 50.59

Std 222.28 25.96 129.67 26.91 222.34 24.03
Skewness -0.47 0.0008 0.20 -0.3605 0.69 -0.4104
Kurtosis 2.38 1.68 2.10 1.72 2.39 2.07

Changing to a risk-neutral measure, denoted by ,̃ is done over all three sources of stochasticity.
We follow the framework described in Chapter 11 of Shreve (2004). The change to a risk-neutral
measure is reflected in the market price of risk identity

µ− θE(V − 1) = r − θ̃Ẽ(V − 1) + λσ (12)

ensures that dividends are always positive and only a fraction of the current stock value.
1The probability density of random variable V is fV (x) = 1

(1−c)B(a,b)
(x− c)a−1(1− x)b−1.
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Figure 6. Simulated paths of STOXX50 index based on the calibrated jump-diffusion model with Beta distributed
jumps and the market observed path (thick line) for one year evolution of STOXX50 index.

0 50 100 150 200 250 300
1500

2000

2500

3000

3500

4000

4500

5000

day

ST
OX

X5
0

(a) Simulated vs Observed STOXX50

0 2 4 6 8 10
0

50

100

150

200

250

(b) STOXX50 Dividends Market

0 2 4 6 8 10
0

50

100

150

200

250

(c) STOXX50 Dividends BJD

The parameter λ reflects the market price of risk. Fixing the measure can be done by calibrating
the parameters for each maturity, given the way the market is organised with payments being
determined only by the cum-dividend over a one year period. Denoting by q̃

.
= −Ẽ(V − 1) = Ẽ(δ),

under the risk-neutral measure Q the dynamics relevant for pricing dividend derivatives is the SDE

dSt
St

= (r + θ̃q̃ + λσ)dt+ σdW̃t + d

i=Ñt∑
i=1

(Vi − 1)

 (13)

where r is the risk-free rate.

Proposition 1 Under the BJD model the dividend futures price for first year maturity is given

14
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by the formula

FDivt (T1) = Ste
(r+λσ)(T1−t)

[
e(θ̃q̃1)(T1−t) − 1]

]
(14)

while for the remaining nine yearly maturities the dividend futures prices are calculated with

FDivt (Ti, Ti + 1]) = Ste
(r+λσ)(Ti+1−t)

[
e(̃θq̃i+1)− 1]

]
(15)

for all i ∈ {1, . . . , 9}

Proof. The solution of equation(13) is

ST = St exp{σW̃T−t +

(
r + θ̃q̃ + λσ − 1

2
σ2

)
(T − t)}

ÑT∏
j=Ñt+1

Vj (16)

Therefore, at time t, under the BJD model the cum-dividend that will be produced until the nearest
maturity T1 is given by

Div(t, T1] = St exp

{
σW̃T1−t +

(
r + θ̃q̃1 + λσ − 1

2
σ2

)
(T1 − t)

}1−
ÑT1∏

j=Ñt+1

Vj

 (17)

where evidently q1 ≡ q. For the future (Ti, Ti + 1] period1 the cum dividend that we can project is

Div(t, Ti, Ti + 1] = STi exp

{
σW̃1 +

(
r + θ̃q̃i+1 + λσ − 1

2
σ2

)}1−
ÑTi+1∏

j=ÑTi+1

Vj

 (18)

Under the BJD model, the dividend futures at time t with maturity T1 is given by

FDivt (T1) = Ẽt(Div(t, T1]) = Ste
(r+λσ)(T1−t)

[
eθ̃q̃1(T1−t) − 1]

]
(19)

Using (17)

Ẽt(Div(t, T1]) = Ste
(r+λσ−σ2

2
+θ̃q̃1)(T1−t)

eσWT1−t

1−
ÑTi+1∏

j=ÑTi+1

Vj



= Ste
(r+λσ−σ2

2
+θ̃q̃1)(T1−t)e

σ2

2
(T1−t)ẼN,Vt

1−
ÑTi+1∏

j=ÑTi+1

Vj



= Ste
(r+λσ+θ̃q̃1)(T1−t)ẼN,Vt

1−
ÑTi+1∏

j=ÑTi+1

Vj



1Remark that since the tenor in dividend derivatives markets is annual then Ti+1 = Ti + 1.
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Using a standard conditioning argument and taking into account that all thee sources of

stochasticity are independent we calculate Ẽt

(∏ÑT1
j=Ñt+1

Vj

)
(and similar calculations occur for

Ẽt

(∏ÑTi+1

j=ÑTi+1
Vj

)
). If ηk(θt) denotes the probability that a Poisson process {Nt}t≥0 with arrival

rate θ is equal to the positive integer k, then for any positive real number a it is known that∑∞
k=0 ηk(θt)a

k = eθ(a−1)t. Thus

ẼN,Vt

 ÑT1∏
j=Ñt+1

Vj

 = ẼNt

ẼV |Nt

 ÑT1∏
j=Ñt+1

Vj


=

∞∑
k=0

ηk(θ̃(T1 − t))ẼVt

 k∏
j=1

Vj


i.i.d
=

∞∑
k=0

ηk(θ̃(T1 − t))[ẼVt (V )]k

= e−θ̃q̃(T1−t)

Similarly one can prove that

Ẽt

 ÑTi+1∏
j=ÑTi+1

Vj

 = e−θ̃q̃i+1 (20)

so, under the BJD model, the dividend futures at time t with maturity Ti + 1, i.e. for the period
(Ti, Ti + 1], is given by

FDivt (Ti, Ti + 1]) = Ẽt(Div(t, Ti, Ti + 1]) = Ste
(r+λσ)(Ti+1−t)

[
eθ̃q̃i+1 − 1]

]
(21)

for all i ∈ {1, . . . , 9}.

The model can be now calibrated in several ways. One possibility would be to use two derivatives
for the stock index and the full term structure of dividend futures. The first two instruments are
used for λ and θ while the parameters q̃ii=1,...,10 are used to calibrate the distribution of jump
sizes for various maturities, which is changing shape as pointed out by Kruchen and Vanini (2008).
Another possibility would be to calibrate the martingale pricing measure using all the ten dividend
futures contracts and two dividend options. It is also helpful to assume that the arrival rate is
the same under the physical measure and under the risk-neutral measure, since the calendar of
dividend payments is more or less the same in a given equity market. Another simplification that
could be taken into consideration is that the mean of the cash dividend payments may increase
with time.

This allows a direct calibration of futures contracts. Matching the right hand side of (19) with

the market futures value FDiv,mktt (T1) allows reverse-engineering the values of q̃1 which represents
the mean size of dividends under the risk-neutral measure view. Thus,

q̃1 =
1

θ̃(T1 − t)
ln

(
1 +

FDiv,mktt (T1)

Ste(r+λσ)(T1−t)

)
(22)
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The parameter fixing the pricing measure will be fixed by

q̃i+1 =
1

θ̃
ln

(
1 +

FDivt (Ti, Ti + 1])

Ste(r+λσ)(Ti+1−t)

)
(23)

While there are analytical formulae for the futures under the BJD model1, for pricing dividend
European options (and possibly other path-dependent options), we must resort to Monte Carlo
simulation. The simulation can be done with formulae (17) and (18) or based on discretizing the
equation (13).

4.2. The Stochastic Logistic Diffusion Model

From the graph in Figure 3 the cumulative dividends time series paid on the
Dow Jones Euro STOXX50r index displays an interesting stationarity and yearly periodicity. The
most striking characteristic is the sigmoidal shape of the series within each year and the fact that
there is an acceleration of dividend payments followed by a change of convexity during the period
May-June. It would seem useful if one could model directly the cum-dividends series. In this section
we denote by Xt the cum-dividend from the beginning of the year Ti−1 until the current time t,
where t ≤ Ti, and i = {1, . . . , 10}, with T0 = 0.

Under the physical measure P the main model proposed in this research is characterised by the
following SDE

dXt = νXt

(
1− Xt

F

)
dt+ σXtdW

P
t . (24)

with X0, ν, F and σ all positive. This is the stochastic diffusion version of the Verhulst-Pearl
differential model describing constrained growth in biology 2. This model has been called also the
geometric mean reversion model. It appeared in finance literature early on but financial research
on it has been sparse so far. Merton (1975) arrived at this process looking at the output-to-capital
ratio derived from a growth model with uncertainty based on a Cobb-Douglas production function
and assuming that gross savings are a deterministic fraction of output. The general model discussed
by Metcalf and Hasset (1995) contains the model given in (24) as a particular case.

In Figure 7 we illustrate a possible path generated under this model. The usual logistic sigmoidal
curve is superimposed for illustration purposes as a deterministic shape around which the stochastic
process fluctuates. The shape resembles the observed data for cum dividend for VSTOXX presented
earlier in Figure 3.

It can be proved, see Appendix, that the solution to the equation (24) is given by

Xt =
X0 exp

(
(ν − σ2

2 )t+ σWt

)
1 + νX0

F

∫ t
0 exp

(
(ν − σ2

2 )s+ σWs

)
ds

(25)

where X0 ≡ XTi−1
is the initial point. The solution shows that Xt > 0 at any time t ∈ (Ti−1, Ti]

for any parameters ν, F, σ and initial starting point X0 > 0. The interpretation of the parameters
is interesting in itself in a dividends market space. The upper limit for the corresponding logistic

1The approach finally taken here with the jump-diffusion model requires only the expected jump size, but not its distribution,
under a pricing measure. We thank an anonymous referee for pointing out this flexible feature. The distribution of jumps under

the physical measure P is still useful for risk management calculations such as value-at-risk, which are outside the scope of this
paper.
2The model was called the logistic growth model because it gives the dynamics of a population which grows at a geometric rate
in an environment with limited feeding resources. In that context b denotes the growth rate per individual, F is the maximal

level of population that can be supported by the resources in the environment and σ is a variation parameter.
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Figure 7. Simulated path for cum dividends based on the stochastic logistic diffusion model.

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

Trading Days

C
um

 D
iv

id
en

d 
S

im
ul

at
io

n

process3 is F while ν is the speed of production of dividends. As pointed out by Merton (1975)
and reinforced recently by Yang and Ewald (2010), for the parameter F of the stochastic logistic
diffusion model it is not true that

lim
t→∞

EP(Xt) = F

The model given above is in isolation of any dynamics of the equity index itself. This would solve the
equity-dividend puzzle discovered by Shiller (1981) that makes equity dynamics incompatible with
the production of future dividends from a volatility perspective. Thus, this model should be more
robust for pricing dividend derivatives than the previous jump-diffusion model. The stochastic
logistic diffusion model described by (24) implies an incomplete market for dividend payments
because the underlying is not a tradable asset. Fortunately the dividend futures contracts traded
on Eurex are available to complete the market and determine the martingale pricing measure that
can be used for pricing other derivatives such as European call and put options. This can be done
period by period. Following Bjork (2009) we can fix the martingale measure Q by determining the
market price of risk λ(t,Xt) such that

dXt = Xt

(
ν − λ(t,Xt)σ −

Xt

F

)
dt+ σXtdW

Q
t . (26)

Since at each moment in time t the market will be completed for all 10 years spanned by the
running futures contracts, we assume that λ(t,Xt) ≡ λi, for all i = {1, . . . , 10}. Each parameter λi
will be identified by exact calibration to dividend futures prices from the model with the dynamics

3The logistic process is defined purely by the drift so the equation is the following ODE dXt
dt

= νXt

(
1− Xt

F

)
which can be

solved analytically to give the logistic function with the well-known sigmoidal shape.
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given by the SDE for any Ti−1 < t ≤ Ti

dXt = Xt

(
ν − λiσ −

Xt

F

)
dt+ σXtdW

Q
t . (27)

The distribution of the solution in (25) has been derived in closed-form by Yang and Ewald (2010)
but it is cumbersome for practical calculations even of vanilla derivatives such as European put
and call options.

Nevertheless, the calibration of parameters λ can be easily done from futures market prices
because the futures price of the payment Div(Ti−1,Ti] is equal to EQ

t (XTi). Thus, the parameter λi
can be determined by first discretizing the equation (28) into

XTi−1+j∆t = XTi−1+(j−1)∆t

[
1 +

(
ν − λiσ −

XTi−1+(j−1)∆t

F

)
∆t+ σ

√
∆tZj

]
(28)

where Zj ∼ N(0, 1), ∀j, and then generating M different paths between XTi−1
and XTi , and finally

computing the required expectation by Monte Carlo simulation

EQ
t (XTi) =

1

M

M∑
k=1

X
(k)
Ti
.

There are two major advantages of this Monte Carlo approach: a) the futures curve provided by the
dividend futures market on Eurex will be perfectly calibrated, and b) other derivatives, including
path-dependent derivatives, can be directly priced since path values are readily available under the
correct martingale measure.

While for the maturities 2 to 10 the simulation exercise is more straightforward since the entire
year is used for path simulations of cum-dividends, for the current year care must be taken since
at any time t > T0 some dividends may have been paid already.

5. Numerical Examples

In this section we shall explore some numerical exemplification of the two dividend models proposed
in this paper.

5.1. Jump-down diffusion model

For practical purposes we need to calibrate the parameters ã, b̃, c̃, σ, θ̃ defining the risk-neutral
measure driving the dynamics of the BJD model. This process can be done maturity by maturity
since the payments at time Ti refers only to the cum-dividend in the year running up to that time.
The only constraints among the parameters are those provided by relationships (22) and (23). The
risk-free rate is considered here as a constant1 approximating the cost of funding to the required
horizon. Different values are used for different horizons and the risk-free rate is calibrated from
Euribor-swap market curve on the day of calculation.

For pricing futures and European options a Monte Carlo approach is followed that simulates daily
paths to the required maturity. Each day we simulate possible values from a standard geometric
Brownian motion under the risk-neutral pricing measure. Then, we simulate in a binary fashion

1A more elaborated approach would involve having a separate short-rate model or market model for the risk-free rate. Given
that post subprime-liquidity crisis it is difficult to say which model would be most appropriate for interest free rate concept,

we prefer to use a unique number for r.
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Figure 8. European Option pricing with the downward jump-diffusion beta dividend model for the first four Decem-
ber maturities, on 20 Dec 2010.
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whether a dividend payment is made. The probability of success is equal to θ̃∆t. Conditional on a
dividend payment being made a random draw from a Beta(b̃, ã) distribution is made for the size
of the jump. If a dividend payment is made the value of the simulated equity index is reduced
proportionately exactly with the size of the jump.

This methodology has the advantage that once paths are simulated to required maturities, any
other derivatives, including path dependent derivatives, can be priced accordingly. A similar proce-
dure can be implemented to produce risk measures, such as value-at-risk, derived from the dynamics
of the model presented in this section, under the physical measure.

The model ensures matching futures prices exactly and so taking advantage of put-call parity
of options on futures, which is a tradeable asset here, we can construct the Black-Scholes im-
plied volatilities. The fitting results for options pricing is exhibited in Figure 8 where the implied
volatilities are presented for all ten maturities on 20 December 2010.

Overall the smile calibration is very good, particularly for longer maturities. For the nearest
maturity the fit can be improved. The jump diffusion model works well in terms of producing
fatter tails as observed in the empirical literature. However, the correct statistical distribution of
jumps amplitude is difficult to get. Even if the dividend proportion is correct, if this is applied
to an index that is drawn from a distribution that is not quite correct, it may lead to possible
misfits. Future research may replace the geometric Brownian motion for the equity index with
other processes such as a Lévy process or a stochastic volatility model.
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5.2. The Stochastic Logistic Diffusion Model

For calibration purposes we need to determine the parameters ν̃, F̃ , λ and σ that will give the
risk-neutral measure. In order to get an idea where the values of the parameters are under the
physical measure, the parameters ν, F and σ can be estimated from the OLS estimates over one
year of data. Once the pricing measure is determined by calibrating the futures curves, all other
contingent claims on the Dow Jones Euro STOXX50r dividend index can be calculated directly.
Applying the Monte Carlo methodology described in Section 4.2 it is possible to determine the
price of European call and put options, as well as other path dependent derivatives.

The graph in Figure 9 depicts the smile fit for European options on
Dow Jones Euro STOXX50r dividend index on 20 Dec 2010 based on market data from
EUREX. The smile fit is an improvement over the smile fit resulting from the jump-diffusion
model with Beta distributed jumps. Considering the small number of parameters underpinning
the stochastic logistic diffusion model this flexible model looks very promising. The smile curves
in this example suggests that the implied volatility decreases with time. Furthermore the smile
is flattening at the back end of the futures curve for this model whereas for the jump-diffusion
model with Beta distributed jumps the Black-Scholes implied volatility curves are alternating.
Both models calibrations suggest that the nearest maturity implied vols are quite different from
the remaining nine maturities. This can be explained by the well-known mean-reverting stylized
feature of volatility and the fact that the near term volatility implied from the dividend futures
options are high, due possibly to a combination of Samuelson effect and increased uncertainty at
the time in EU economic area caused by the sovereign crisis that started in 2010.

Figure 9. European Option pricing with the stochastic logistic diffusion model for cum-dividends for the first four
December maturities for the indicated maturities, on 20 Dec 2010.
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In Figure 10 the term structure of market price of risk parameter λ are illustrated for three
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different days. These values are calculated at the beginning of the December roll and they are fixing
the martingale pricing measure for each of the ten December maturities. The shape of the term
structure of market price of risk for Dow Jones Euro STOXX50 DVPr can be inverted, upward
trending and upward then downward trending. Overall the curves presented in Figure 10 suggest
that the term structure of λ is almost always concave, but this conclusion is more a conjecture at
this stage of research in this area.

Figure 10. Term structure of market price of risk parameter λ for all ten December maturities calibrated from Eurex
market futures prices on three different days. The calibration is done by matching the dividend futures market prices
with the theoretical dividend futures given by the stochastic logistic diffusion model
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5.3. Testing the Calibration with the SLD model

In this section we follow the smile calibration of our best model, the stochastic logistic diffusion
model, for more than one day. Thus, we calibrate the smile for put and call options with all exercise
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prices, for all ten year maturities, daily1 between 19 Dec 2011 and 9 Feb 2012. Each day there are
between 164 and 169 call prices, paired by the same number of put prices. In total we get a sample
of 6347 market prices that will be compared with the prices produced by the model, and ideally
the two series should be very close. The testing is done each day because new dividends may be
added daily to the cum-dividend series and the information filtration set is changing from one-day
to another, providing possibly more information about the terminal distribution of dividends.

In order to gauge the matching of prices we employ, each day and for each option series, the
two sample Kolmogorov-Smirnov test (KS test) that compares the empirical distribution obtained
from market prices with the distribution obtained under the stochastic logistic distribution model.
The testing is done daily at 95% confidence level and the null hypothesis is that the two series
come from the same distribution. Hence, failing to reject the null is indicative that the SLD model
explains well the market data.

Table 4. Summary statistics of the p-values of the two-sample Kolmogorov-Smirnov tests for the stochastic logistic
diffusion model applied to all European call and put dividend derivatives daily between 19 Dec 2011 and 9 Feb for

all strike prices and all ten yearly December maturities 2012.

KS call KS put
Mean 0.8088 Mean 0.7152
Median 0.8115 Median 0.7212
Mode 0.6787 Mode 0.6787
Standard Deviation 0.1278 Standard Deviation 0.1923
Minimum 0.4093 Minimum 0.2709
Maximum 0.9887 Maximum 0.9651

The results reported1 in Table 4 reflect the quality of calibration under the SLD model. Each
day, for the dividend European call series, we fail to reject the two-sample KS test, the minimum
p-value calculated being 0.4093. Likewise, we fail to reject the two-sample KS test each day for the
dividend European put series, the minimum p-value calculated being 0.2709.

6. Summary Discussion of the Two Models

The literature on pricing dividend derivatives is sparse. From the equity derivatives pricing liter-
ature it seems conclusive that dividends are stochastic in nature. Hence, it is important to find
models that can be easily implemented but that also preserve the stochastic character of dividends.
The two models proposed here can be applied to dividend streams generated by equity stocks and
indices worldwide. Our empirical investigation was conducted on STOXX dividend index due to
data availability, rather than any other rationale. Since the two models have very different motiva-
tions and structure it is worthwhile to discuss comparatively the advantages and disadvantages of
both models. Essentially all models are “wrong” and they are only approximations of the reality.

Our first model, the jump-diffusion model, can be accepted based on the following arguments: a)
the model must be arbitrage free and ours by design is; b) the jump part will introduce fat tails,
leptokurtosis and is helping calibrating the smile observed in options prices; c) once calibrated
the model can be used for other derivatives such as path-dependent options, and d) the model
must have a clear financial economics interpretations– in our case downward jumps are directly
associated with jumps. Last but not least, we are also highly appreciative of parsimony and models
with less parameters should present less challenges for risk management and sensitivity analysis.

1The cum-dividend paid up to each date is taken into consideration when constructing the distribution of cum-dividend to the
nearest maturity. For the second to the tenth maturities the model projects a full year cum-dividend.
1The individual KS tests for all 76 series can be obtained from the author upon request. Due to lack of space it is not possible

to report all of them here.
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One clear disadvantage of the BJD model is that it depends on the dynamics specified for the equity
index. If this model is not well specified, even if the linkage between equity index and dividend
payment generation is correct, it may lead to miscalibrated distributions of dividend payments.

The stochastic logistic diffusion model is a continuous-time finance model that has not been used
very often in finance in the past. The model is very easy to interpret and it calibrates very well the
dividend options smile. One great advantage of this model is that it considers directly the dynamics
of the dividend index itself, in other words it is suited for dividend derivatives as an asset class of
its own. The only slight disadvantage is that it must be reset on an annual basis, but since this is
driven by the mechanics of the dividend derivatives market is not really a total negative feature.

The two models developed here for pricing dividend derivatives are very different, the first one
modeling the dividend payment series while the latter follows the cum-dividend series. Both models
rely on the Monte Carlo simulation approach for implementation but there are immediate advan-
tages in doing so since other path dependent derivatives would be priced directly based on the same
set of simulations. The BJD model seems to provide not as better fit to the option prices smiles
as the SLD model, in spite of having more parameters. Computational time for the Monte Carlo
exercise is also longer for BJD model than for the SLD model. The stochastic logistic diffusion
model for dividend index has the advantage that it is disconnected from the dynamics of the asso-
ciated stock index. In this way the well-known puzzle identified by Shiller (1981) that no observed
movements in the aggregated dividends were ever correctly forecast by movements in aggregate
stock prices is circumvented.

Once the model parameters are estimated and a martingale pricing measure is determined from
the futures term structure, the two models can be easily applied to price more advanced dividend
derivatives such as path dependent options like Asian, barriers, lookbacks and so on. Given that
dividend derivatives have been traded on the exchanges only recently there is limited information
about market prices on more advanced dividend derivatives. The first model can be applied directly
to the endowment warrant discussed in Brown and Davis (2004) which is a contract giving the
buyer a claim on both capital gains and dividends since the final exercise price is reduced based
on all dividends paid on the stock. There are other more advanced over-the-counter products on
dividends linked to the performance of the equity itself, as described in Buehler et al. (2010), where
the first model can be very useful due to its intrinsic relationship between equity and dividends.
The knock-out dividend swap pays a standard forward-type payoff Div(T1,T2]−K if the associated
equity index S trades below a given barrier B. Another instrument where our first model can be
useful is a dividend yield swap that will pay the sum of realized dividends over the monthly average
spot of the equity, or another variant obtained by dividing each dividend by the stock price of the
previous trading day.

The second model, the stochastic logistic diffusion model, can be applied to a leveraged dividend
yield swap certificate. This is a fixed income instrument paying coupons equal to the difference
between interest rates and dividends. If {ti}i∈{1,2,...} are monthly fixings and defining the realized
dividend yield generated by a stock S between two time points T1 and T2 as dyld(T1, T2) =

1
ST2

Div(T1,T2] and letting Libort be the 12 months Libor rate at time t then the certificate pays

something like

max

100% + 5
∑

t=1y,2y,3y

[Libort − dyld(t, t+ 1y)], f loor



where the floor is typically 30%. The model working directly with the cum-dividends seems to be
more useful for dividend derivatives.
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