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Abstract

Systems medicine is a promising new paradigm for discovering associa-
tions, causal relationships and mechanisms in medicine. But it faces some
tough challenges that arise from the use of big data: in particular, the problem
of how to integrate evidence and the problem of how to structure the devel-
opment of models. I argue that objective Bayesian models offer one way of
tackling the evidence integration problem. I also offer a general methodology
for structuring the development of models, within which the objective Bayesian
approach fits rather naturally.

Systems medicine applies systems approaches, analogous to those used in sys-
tems biology, with the aim of improving medical treatment and progressing medical
science. These approaches are often described as ‘data-intensive’ or ‘data-driven’
because they attempt to draw inferences from a variety of large datasets. This paper
explores two problems that face systems medicine. First, there is the problem of
diversity of evidence: in addition to large amounts of data (‘big data’), the available
evidence tends also to be very heterogeneous, and the question arises as to how the
whole range of evidence can be integrated in a coherent manner, to enable reliable
inferences. The second problem is that of diversity of models: systems medicine
employs different models for different purposes, and it is often far from clear as to
how these models relate to one another. Can anything be done to shed light on the
relationships between models?

This paper develops a normative response to these problems. It puts forward
an approach based on Bayesian epistemology for integrating multiple datasets. It
then puts forward a way to integrate evidence of mechanisms, which can often be
qualitative, into the resulting quantitative models. (This approach can be thought of
as a contribution to the EBM+ programme, which seeks ways of integrating evidence
of mechanisms with evidence of associations in order to lead to better outcomes in
medicine—see ebmplus.org.) The paper goes on to suggest that Bayesian networks
can provide a unified modelling formalism. (This conclusion, if not the detail of the
approach, is in line with that of Landes et al. (2017), who present a Bayesian network
modelling framework for inference in pharmacology.) There is no claim that the
framework developed here is the only way to tackle the foundational problems that
face systems medicine, but it is hoped that the present attempt will encourage others
to tackle these problems.
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The paper is structured as follows. §1 introduces systems medicine and notes
that its appeal to a wide variety of data makes it a promising new paradigm for med-
ical research. However, progress in systems medicine has not been as rapid as some
have anticipated. In §2 it is suggested that this slow progress might be explained
by the enormity of the challenges faced by systems medicine. Two challenges stand
out as particularly pressing: how should the massive amount of evidence in systems
medicine be integrated? how should one go about modelling in systems medicine?
In §3 I classify models in systems medicine as being of four kinds: quantitative
models of association; quantitative causal models; qualitative mechanistic models;
and quantitative mechanistic models. In §4 I show how objective Bayesian episte-
mology can be applied to data integration and how an objective Bayesian net can
be used as an association model. In §5 I then sketch a principled way of generating
a causal model, and of structuring the development of models in systems medicine
in general.

§1
Systems Medicine

Systems medicine and systems biology. Systems medicine is an approach to medicine
that has emerged only in the last few years. Systems medicine is closely related
to systems biology, which studies biological systems holistically. Typically, systems
of molecules and their interactions within the cell are the primary objects of study
of systems biology, and its main aim is to discover new biological mechanisms
(see Boogerd et al., 2007, e.g., §1.4.4). One characteristic of the systems approach
is the use of data-intensive functional genomics techniques: e.g., transcriptomics,
metabolomics and proteomics.

Systems medicine applies systems biology to medicine. While it retains the
data-driven approach to discovery that is a feature of systems biology, there are
some important differences between systems medicine and systems biology.

First, systems medicine inherits from medicine a practical goal—diagnosis,
prognosis and treatment—in addition to the theoretical goal of discovering patho-
physiological mechanisms (Kyriakopoulou and Mulligan, 2010, p. 3). This practical
goal means that, in systems medicine, causal discovery is as important as—if not
more important than—mechanism discovery. (This is because, as we shall see in
§3, causal models are more directly applicable to these practical ends than are
mechanistic models.)

Second, the data to which systems medicine appeals is perhaps more diverse
still than that considered by systems biology, because it includes, in addition to
sub-cellular molecular data, higher-level clinical variables (e.g., size of tumour, sex
of patient) and environmental features (describing, e.g., the origin of disease). More-
over, some researchers involved in systems medicine hope to make use of charac-
teristics collected by personal health and fitness apps—such as number of steps
walked in a day, weight and blood pressure—as well as entire medical histories col-
lected by hospital and primary care IT systems. It is therefore clear that ‘big data’
plays an important role in systems medicine. Moreover, the causal discovery pro-
cess also depends heavily on information about mechanisms, including social and
environmental mechanisms in addition to the underlying physiological mechanisms
and their malfunctioning variants. Evidence of mechanisms aids causal discovery
in a variety of ways. For example, it helps to determine the direction of causation
and to identify causal intermediaries. Moreover, because systems medicine appeals
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to data at different levels of scale—ranging from the level of the genome to the level
of populations—many of the variables in these datasets are related constitutively
rather than causally (Craver, 2007). Evidence of mechanisms can help to determine
which associations in the data are attributable to causal relationships and which are
attributable to constitutive relationships.

Systems medicine seems to have emerged as a distinct field around 2009. Dis-
eases tackled by large systems medicine research projects include AIDS, atheroscle-
rosis, cervical cancer, chronic inflammatory bowel disease, colorectal cancer, fasci-
itis, liver cancer, lung disease, malaria, motor neurone degeneration, multiple scle-
rosis and tuberculosis.

This paper focusses on modelling in systems medicine. For discussions of mod-
elling and the problem of model integration in systems biology, see O’Malley and
Soyer (2012); Brigandt (2013); Green (2013) and MacLeod and Nersessian (2013).

The promise of systems medicine. Systems medicine is considered to be an exciting
new paradigm for medicine, largely on account of its data-driven methodology.
The use of massive amounts of data promises more robust conclusions, with fewer
conclusions attributable to artefacts of the data and a larger proportion attributable
to genuine connections in the sampled population. The use of big data also offers
the hope of increased personalisation, with so many data points that one will be
able to discover causal relationships that obtain in small subpopulations, which
might otherwise be washed out in the population as a whole. This increased per-
sonalisation, in turn, offers the prospect of better-targeted treatments: treatments
targeted at small subpopulations or even particular individuals, rather than at the
population as a whole. Furthermore, the datasets that drive systems medicine often
measure very large numbers of variables. This ability to consider so many factors
at once gives systems medicine the potential to discover more complex pathophys-
iological mechanisms than would be discoverable by more focussed studies which
concentrate only on a putative cause and effect and a few potential confounding
variables.

Systems medicine clearly offers a range of opportunities. This has led some of its
proponents to predict that the systems approach will quickly induce a revolution in
medicine. (These bold predictions are reminiscent of those made in the early years
of artificial intelligence research.) Systems medicine has been called ‘P4 Medicine’
in the sense that it is predictive, preventative, personalised and participatory, and
many ambitious claims centre round this combination of roles. For example:

the entire healthcare industry (from pharmaceutical companies to health-
care providers, insurance companies and medical diagnostic laborato-
ries, etc.) will also have to transform in the years to come, possibly
favoring the creation of global strategic alliances between academics,
industry and administrations in order to facilitate and catalyze the ar-
rival and development of P4 Medicine. (Sobradillo et al., 2011, p. 39.)

We stand at the brink of a fundamental change in how medicine will
be practiced. Over the next 5-20 years medicine will move from being
largely reactive to being predictive, personalized, preventive and partic-
ipatory (P4). Technology and new scientific strategies have always been
the drivers of revolutions and this is certainly the case for P4 medicine,
where a systems approach to disease, new and emerging technologies

3



and powerful computational tools will open new windows for the inves-
tigation of disease. Systems approaches are driving the emergence of
fascinating new technologies that will permit billions of measurements
on each individual patient. . . . We predict that emerging technologies,
together with the systems approaches to diagnosis, therapy and preven-
tion will lead to a down turn in the escalating costs of healthcare. In
time we will be able to export P4 medicine to the developing world and
it will become the foundation of global medicine. The “democratiza-
tion” of healthcare will come from P4 medicine. . . . It is evident that the
business plans of every sector of the healthcare industry will need to
be entirely transformed over the next 10 years (Galas and Hood, 2009,
p. 1)

While some of these claims may be true, the pace of change isn’t as rapid as
we might be led to believe. This 10-year milestone is soon upon us and as yet
there remain relatively few large-scale systems medicine research projects, let alone
drastic repercussions on health care in general. To give a sense of the scale of
current research, in 2015 the EU allocated roughly 36 million euros to fund around
six new projects specifically in the area of systems medicine; this amounts to only
about 3% of the 2014-15 budget allocated to the ‘health, demographic change and
wellbeing’, which is itself only one of the streams of EU funding for health research.

§2
Challenges for Systems Medicine

Why is the promise of systems medicine not being realised as quickly as some have
anticipated?

One reason, explored in detail by Carusi (2014), is that it can be challenging to
validate models in the interdisciplinary setting of a large systems medicine project,
because team members may disagree as to what counts as validation.

A second reason is simply that it is hard to handle big data. The systems
approach demands a lot in terms of consistency of measurement over time and
between health authorities distributed across a continent or even across the globe.
Big data also make big demands in terms of computational complexity. Most al-
gorithms for constructing a model from a dataset require computational resources
that increase non-linearly with respect to the number of variables measured in the
dataset. When the dataset measures several thousand variables, as can be the case
with molecular-level measurements, even a quadratic-time algorithm can be compu-
tationally infeasible. Because of this issue of computational complexity, the systems
approach is often forced to make a large number of simplifying assumptions, to
bring the complexity down to manageable proportions. These simplifications can
work against some of the advantages of the big-data approach. It is not obvious
that big data together with simplifying assumptions will necessarily lead to more
robust conclusions than using smaller datasets while avoiding over-simplifications.

A third—and perhaps the biggest—challenge facing systems medicine is that
of data integration. How should the various datasets and other sorts of evidence
combine to yield an over-arching model or set of models? Vandamme et al. (2013)
introduce this challenge as follows:
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the technologies to get large amounts and different types of data will
soon be affordable and readily available in the clinic. But what are
we going to do with these long lists of data? Taking all this data into
account, and integrating it, is not a trivial task when taking decisions
in the daily practice. The sheer volume of data necessitates multidisci-
plinary interaction; a general practitioner cannot make diagnostic and
therapeutic decisions based on hundreds of thousands of data points
of -omics data by integrating it in his or her head, they require support
of experts from other fields. The development of mathematical and in-
formation science tools has opened up possibilities to mine these large
sets of data, to post-process them and to reduce the noise in the data. . .
There is a need for flexible, integrative systems approaches to combine
such -omics data with clinical, societal and environmental factors in-
cluding sex, type of work, sleep and eat habits, etc. (Vandamme et al.,
2013, pp. 892–893.)

The current approach to data integration in systems medicine often proceeds
as follows (see, e.g., Lefaudeux, 2014). First, each dataset yields a ‘fingerprint’. This
is a model that gives an indication of the connections amongst the variables in
that particular dataset. For example, a systems medicine project might produce a
fingerprint model for each of the following sorts of data: metabolomic, proteomic,
transcriptomic and clinical data, and patient-reported outcomes. Moreover, it is
typical for most of these kinds of data to be collected both in animals (e.g., mice) as
well as in humans. Ten datasets, then, would generate ten fingerprint models. Next,
one or more models, involving the whole range of variables under consideration,
are constructed that best fit all these fingerprint models: these are sometimes called
‘handprint’ models.

There are a number of difficulties with this process. First, there is no consensus
as to how to generate a handprint model from a collection of fingerprint models.
This tends to be done on a case-by-case basis, for example by putting the finger-
print models into a single representational scheme—e.g., Systems Biology Graphical
Notation (Novere et al., 2009)—and using ingenuity to paper over the cracks which
arise where the fingerprints are inconsistent. Given the scale of systems medicine
projects, what is needed is a normative approach to data integration which can be
applied in a systematic way, rather than ad hoc methods that appeal to intuitions
which can sometimes be flawed.

The second difficulty is that a systems medicine project might aim to generate
several different handprint models, using different modelling technologies and with
different goals in mind for each model. There is a need to clarify the relationships
amongst the models and to develop a normative approach to evidence integration
for each substantially different kind of handprint model.

Third, there is a tendency—no doubt inherited from the protocols for evaluat-
ing evidence produced by the evidence-based medicine (EBM) movement (Clarke
et al., 2013)—to think that the evidence to be integrated is entirely constituted by
the datasets that have been collected: i.e., to think that, if it’s not a dataset then it’s
not evidence. Thus the methodology is roughly:

datasets −→ fingerprint models −→ handprint models

The upshot is that important evidence which does not take the form of datasets
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tends to get sidelined or to be treated implicitly. While the data indeed constitute
the bulk of the evidence required to ascertain the correlations that obtain between
the variables of interest, evidence of the underlying mechanisms often comes from
sources other than datasets, including searches of the physiological literature; past
studies; individual case reports; biomedical imaging; autopsies; simulations; and
the physiological knowledge of domain experts (Clarke et al., 2014a). The standard
approach has hitherto involved a mixture of ignoring some such evidence and using
intuition and experience to ensure that other such evidence constrains the hand-
print models in an appropriate way. While this sort of approach may work quite
well in small medical studies, it is problematic in the systems medicine paradigm
because there is simply too much of this sort of mechanistic evidence to simply
eyeball it all and treat it intuitively. All the relevant evidence needs to be made
explicit and integrated in a systematic way.

Of course, this is a big ask. These challenges are not going to be easy to meet,
and this difficulty might explain why systems medicine is likely to develop at a
slower pace than some have anticipated. Nevertheless, I shall suggest that we can
make some useful inroads into these challenges, in the hope that systems medicine
might eventually be put on a stronger footing.

§3
Kinds of Handprint Model

A first step towards clarifying the role that models play in systems medicine is to
distinguish different kinds of model. Broadly speaking, four kinds of model are
routinely employed in systems medicine: (I) association models, which are normally
quantitative; (II) causal models, which are also normally quantitative; (III) qualitative
mechanistic models; and (IV) quantitative mechanistic models.

I. Association Models. Association models are used to capture the extent to which
variables measured in the datasets are predictive of one another, or of a particular
target variable, such as severity of disease. Such a model can provide answers to
questions such as: what are the main predictive factors of disease severity? If the
patient exhibits factors X , how likely is a severe outcome?

In order to be used for accurate prediction, an association model needs to in-
clude the variables that are most correlated (with each other or, respectively, with
the target variable). In essence this is the easiest of the four kinds of model to con-
struct, because it suffices to capture the probability distribution over the variables
included in the model. In practice, however, it is almost never the case that all
variables in the handprint model are measured in the same dataset. Rather, each
dataset measures a subset of the variables of interest, and there will normally be
relatively few variables measured by more than one dataset. Therefore, while each
dataset can be used to provide an estimate of the marginal distribution of those
variables measured by that dataset, these marginal distributions constrain—rather
than fully determine—the joint probability distribution over the whole set of vari-
ables in the handprint model. The key task is thus to determine and represent an
appropriate joint probability distribution, from all those that satisfy the constraints
imposed by the marginal distributions that are determined by the datasets and
represented by the fingerprint models.

The qualitative relationships in an association model might be depicted as in
Fig. 1. In this kind of undirected graph, sometimes called a Markov network, the
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T1

M1 M2 S T2

C1 P1 C2 O1

Figure 1: Qualitative representation of association relationships involving metabolic
variables Mi , transcriptomic Ti , proteomic Pi , clinical Ci , patient-reported out-
come Oi , severity of disease S.

T1 T2

M1 M2 S C1

P1 C2 O1

Figure 2: Qualitative representation of causal relationships involving metabolic
variables Mi , transcriptomic Ti , proteomic Pi , clinical Ci , patient-reported out-
come Oi , severity of disease S.

links represent correlations, and if, for sets X ,Y , Z of variables, Z separates X from
Y , then Z renders X and Y probabilistically independent, written X ⊥⊥ Y | Z. In
Fig. 1, for instance, S separates M1 and M2 from T2, so the graph implies that
{M1, M2} is probabilistically independent of T2 conditional on S.

A Markov network is just one kind of probabilistic model. While association
models are typically probabilistic, non-probabilistic association models, such as
neural networks, also have advocates.

II. Causal Models. Causal models are similar to association models in that they
model relationships between variables, including statistical associations, and can be
used for prediction. In contrast to association models, however, causal models also
distinguish causes from effects, usually representing causal connections graphically
by means of directed acyclic graphs (DAGs) such as that depicted in Fig. 2. By
explicitly representing causal relationships, causal models can be used to predict
the effects of interventions: intervening to change the value of a variable will only
induce further changes to those other variables in the network that are its effects, so
the cause-effect relationship needs to be explicitly modelled in order to reason about
interventions. Causal models thus go further than association models, in that they
can be used to decide how best to control (i.e., intervene upon) variables, as well
as to predict the values of certain variables when the values of other variables are
observed. One increasingly common type of causal model is the causal Bayesian net
(CBN), which consists of a directed acyclic graph that represents a network of causal
relationships, together with the probability distribution of each variable conditional
on its direct causes (Pearl, 1988, 2000).
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Causal models are also used for explanation: the value that one variable is
observed to take may be explained in terms of the fact that its causes take certain
values which make the observed value of the effect in question more probable.
This sort of explanation may be thought of a schematic abstraction of a much more
nuanced explanation that describes how the underlying physiological and / or social
mechanisms are responsible for the phenomenon in question.

III. Qualitative Mechanistic Models. Mechanisms may be understood in a broad
sense to include physical processes (Salmon, 1984; Dowe, 2000) as well as complex-
systems mechanisms, i.e., entities and activities organised in such a way as to be
responsible for some phenomenon to be explained (Machamer et al., 2000; Illari
and Williamson, 2012). In order to properly explain some observed phenomenon,
we normally seek to describe the mechanisms that give rise to the phenomenon.
For example, the progress of a disease might be explained in terms of the en-
vironmental and social processes that trigger the disease, as well as failures of
the physiological mechanisms that usually protect the body from the disease, the
physiological mechanisms that allow the disease to progress, and the processes of
degeneration that accompany the disease. The mechanisms involved will often be
hierarchically structured, involving components at the levels of society, the body,
the organ, the cell, and the gene, for instance, with lower levels explaining or con-
stituting some of the features at higher levels. Also, mechanistic explanations will
typically appeal heavily to the organisation of the entities and activities involved,
particularly their spatio-temporal organisation. These hierarchical and organisa-
tional features—which causal models tend to abstract away from—are explicitly
represented in mechanistic models (Williamson, 2013a).

Qualitative mechanistic models often take the form of diagrams which can en-
capsulate these kinds of feature—see Fig. 3 for example, in which hierarchical struc-
ture and spatio-temporal organisation is clearly important.

IV. Quantitative Mechanistic Models. While a diagram is often an excellent descrip-
tion of the salient ingredients of a mechanistic explanation, a purely qualitative
model of this form cannot fully explain why variables of interest take certain spe-
cific values—e.g., why did the disease progress for 10 years as opposed to 5 or less?
In order to answer such questions, we need to introduce quantities into the model.
Causal models are typically quantitative and can be used to answer questions such
as this. However, as noted above, causal models explain by identifying only the key
causal variables—milestones on the pathways to the effect to be explained. Some-
times such explanations are too superficial and a fuller description of the underlying
mechanisms needs to be given. In such a case, a qualitative mechanistic model can
be augmented with functional relationships which determine some of the quantities
of interest in the mechanism in terms of others. This yields a quantitative mecha-
nistic model. Such a model might, for example, take the form of a picture of the
qualitative structure of the mechanism together with a system of differential equa-
tions linking key quantities. A second example of a quantitative mechanistic model
is a recursive Bayesian net (RBN), which models a mechanism using a hierarchical
array of causal Bayesian nets (Casini et al., 2011; Clarke et al., 2014b).

Another kind of mechanistic model is an agent-based model, which explains
behaviour in terms of interactions between similar components, using simulations.
Such models are often qualitative but can be quantitative.
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Figure 3: T cell effector mechanisms in a lung infected by influenza A virus (Gruta
and Turner, 2014).

?

The four kinds of model are summarised in Table 1. Of these four kinds of
model, the quantitative mechanistic model contains the most information and thus
it is the hardest kind of model to obtain reliably. For this reason, a large-scale
systems medicine project may aim to build several or all of these four kinds of
model, rather than simply rely upon a quantitative mechanistic model (Wilde and
Williamson, 2016). For instance, for prediction it can make much more sense to
use an association model rather than a quantitative mechanistic model, because
the latter kind of model will typically be far more speculative than the former
kind of model, especially when evidence is limited—e.g., when evidence consists
purely of datasets that record the values of the associated variables. Similarly, given
limited evidence, a causal model will normally be more reliable than a quantitative
mechanistic model for predicting the effects of interventions. On the other hand, a
quantitative mechanistic model is the only option when certain observed quantities
need to be explained in depth.

We see, then, that by classifying them according to kind of model we can be-
gin to make sense of the array of models that are generated by systems medicine
projects. There are four natural kinds of model, each of which has characteristic
uses and can be used to answer distinctive questions. In §5 we shall return to the
challenge of how to structure the development of models in systems medicine. In
the meantime, we turn to the other key challenge facing systems medicine, that of
evidence integration.
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Table 1: Kinds of handprint model used in systems medicine

Kind of model Kinds of question it can answer
I. Association Which factors are the main predictors of brain

damage severity?
If the patient exhibits factors X , how likely is a
severe outcome?

II. Causal What are the main causes of brain damage?
If we intervene with drug X , how will that change
the probability of a severe outcome?

III. Qualitative
Mechanistic

What explains the fact that inflammation is a
cause of brain damage?
What explains the fact that protein X is predic-
tive of a severe outcome?

IV. Quantitative
Mechanistic

What explains the fact that gestational term is
a better predictive factor of brain damage than
MRI feature X is?
What explains the fact that hypoxia doubles the
chance of biomarker X ?

§4
Objective Bayesian Nets as Association Models

Let us consider perhaps the main challenge facing systems medicine, namely that of
evidence integration: how can one construct handprint models which take all the
evidence into account? The standard paradigm in machine learning is to produce
algorithms for constructing an association model or a causal model from a single,
high-quality dataset. However, in systems medicine one is typically faced with many
datasets, each pair of which may measure relatively few variables in common. In
addition, there is evidence of the underlying mechanisms to take into account. How
can handprint models take all this evidence into account? This section will develop
a principled way of generating an association model from a range of datasets. In
the next section we shall turn to the task of constructing a causal model which also
takes mechanistic evidence into account.

Objective Bayesian Epistemology. The procedure for generating a handprint associ-
ation model that we shall advocate in this section is motivated by a philosophical
theory of strength of belief, namely objective Bayesian epistemology (OBE). Here
we outline the version of OBE developed in Williamson (2010).

According to OBE, the strengths of our beliefs should satisfy three norms.
The Probability norm says that degrees of belief should be probabilities—i.e.,

numbers in the unit interval [0,1] such that the strength to which one believes a
disjunction of disjoint propositions equals the sum of the strengths to which one
believes the individual propositions. Thus, the strengths of one’s beliefs should be
captured by some function P in the set P of all probability functions.

The Calibration norm says that degrees of belief should be calibrated to ev-
idence. In particular, degrees of belief should be calibrated to physical chances,
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insofar as one has evidence of them: if it is reasonable to infer from empirical data
that the chance function P∗ is in some convex subset P∗ of probability functions
then one’s belief function P also ought to lie in that set. Not all evidence is evidence
about chances, and, more generally, the Calibration norm says that evidence will
constrain P to lie in some subset E of probability functions that are calibrated to
evidence.

The third norm—the Equivocation norm—says that, insofar as the choice of be-
lief function P is not fully determined by the previous two norms, one’s belief func-
tion should equivocate sufficiently between the most fine-grained possibilities that
one can express: P should be a function in E that is sufficiently close to the equivo-
cator function P= which gives each basic possibility the same probability. Here we
shall assume that there is a finite partition Ω of basic possibilities (most fine-grained
possibilities that one can express) and we shall adopt the usual measure of distance
between probability functions, Kullback-Leibler divergence (KL-divergence):

d(P,Q)= ∑
ω∈Ω

P(ω) log
P(ω)
Q(ω)

,

for probability functions P and Q defined on Ω. If there is a function in E that
is closest to the equivocator function P= then OBE will normally suggest that one
should adopt that function. Equivalently, one’s belief function P should be the
probability function in E that has maximum entropy:

H(P)=− ∑
ω∈Ω

P(ω) logP(ω).

This maximum entropy principle was originally put forward by Jaynes (1957).
To visualise the norms of OBE, suppose there are three basic possibilities

Ω = {ω1,ω2,ω3} and consider Fig. 4. The simplex P of all probability functions
consists of the triangle linking the basic possibilities and its interior. A vertex of
this triangle is the probability function that gives probability 1 to the correspond-
ing basic possibility and probability 0 to the other two basic possibilities; edges
contain the probability functions that give probability 0 to the basic possibility at
the opposite vertex; interior points give non-zero probability to all three possibili-
ties. The Probability norm says that P should lie in this triangle. The Calibration
norm says that evidence eliminates all but some subset E of probability functions,
and P should lie in this set. The Equivocation norm says that P should otherwise
be closest to the equivocator function P= which gives probability 1

3 to each basic
possibility.

The three norms of objective Bayesianism can be motivated in terms of avoiding
avoidable losses which arise when one acts or bets according to one’s degrees of
belief (Williamson, 2010, Chapter 3; Williamson, 2017, Chapter 9). In order to avoid
the possibility of loss whichever basic possibility turns out to be true, the Probability
norm must hold. In order to minimise worst-case expected loss, the Calibration and
Equivocation norms must hold.

OBE for Data Integration. Consider evidence consisting of datasets D1, . . . ,Dk
where each dataset D i measures some subset Vi of the set V of variables of interest.
If V = {X1, . . . , Xn} then each basic possibility takes the form X1 = x1, . . . , Xn = xn,
which we may abbreviate by x1 · · ·xn.

Each dataset D i determines a probability distribution Q i on Vi ⊆V , which tal-
lies the frequency with which each combination of values of Vi occurs in the dataset.
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Figure 4: Visualisation of the norms of objective Bayesian epistemology.

From this data distribution, we may infer something about the data-generating
chance distribution P∗. If the dataset is large enough and of sufficient quality, we
may be willing to infer that P∗

�Vi
=Q i , i.e., that the chance distribution P∗, defined

over the whole domain V , matches the data distribution on the subdomain Vi . In
this case Q i acts as a point estimate of P∗

�Vi
. Otherwise, if the dataset is not suf-

ficiently large (but still of sufficient quality), we may only be willing to infer that
P∗
�Vi

lies in some convex confidence region around Q i . A 95% confidence region, for
instance, would be such that, if the process for generating D i were to be repeated,
in 95% of the generated datasets the induced confidence region would include P∗

�Vi
.

Either way, then, we have that P∗
�Vi

is constrained to lie in a closed convex set of
probability functions on Vi . Note that any closed convex set of restricted probabil-
ity functions on Vi ⊆ V can be represented as a closed convex set of unrestricted
probability functions on V , the domain as a whole. Therefore, for each dataset
D i there is some closed convex subset Ei of P, defined on V as a whole, within
which we infer that the chance function lies. Note that this inference is the sort
of inference that is routinely drawn in classical frequentist statistics (Williamson,
2013b). It is only when calibrating a belief function P to the chances, by adopting
the constraint P ∈ Ei , that we move to the realm of Bayesian epistemology.

Consider a simple example. Suppose there are two binary variables, V = {A,B}.
In this case the basic possibilities are Ω = {ab,ab̄, āb, āb̄}. In order to represent
this scenario in two dimensions, we shall assume that āb̄ is impossible, so we may
restrict our attention to three basic possibilities, ω1 = ab,ω2 = ab̄,ω3 = āb. The
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Figure 5: Single dataset, point estimate.

set P of probability functions is represented by the simplex P in Fig. 5. Suppose
there is a single dataset D1, measuring a single variable V1 = {B}, which yields
an observed frequency of 0.9 for b, Q1(b) = Q1(ω1)+Q1(ω3) = 0.9. If we use this
as a point estimate of the chance function restricted to V1, P∗

�V1
, then the chance

function must lie on the line segment E1 depicted in Fig. 5. Applying OBE, the
Calibration norm constrains a belief function P to also lie on this line segment.
The Equivocation norm fixes P to be the function on E closest to the equivocator
function, as shown in Fig. 5. If, instead of a point estimate, we infer a confidence
region E1, then P is yet more equivocal, as depicted in Fig. 6.

In the case of two datasets, Fig. 7 represents the objective Bayesian approach
to data integration. Here we infer from dataset D1 that P∗ lies in the closed
convex set E1 of probability functions. P1 is the probability function that would be
advocated by OBE from that dataset alone; this is the function to be represented
by a fingerprint association model. Similarly for dataset D2. In this case V2 = {A},
and we have inferred a confidence region around the data distribution Q2(a) =
Q2(ω1)+Q2(ω2) = 0.8. Since we infer that P∗ lies in E1 and we infer that P∗ lies
in E2, we infer that it lies in both E1 and E2, i.e., in their intersection. Thus the
set of calibrated probability functions is E= E1 ∩E2. From this we choose the most
equivocal function P . This is the function we need to represent using a handprint
association model.

All this assumes that the region E1∩E2 is non-empty; only then can we say that
E = E1 ∩E2. This intersection is bound to be non-empty in our original example
involving two datasets measuring variable A and variable B respectively. But in
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Figure 6: Single dataset, confidence region.
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Figure 7: The objective Bayesian approach to data integration.
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E1
P1

E2 P2

Figure 8: Inconsistent inferences: the Ei do not meet.

more general situations, an empty intersection, E1∩E2 =;, is a genuine possibility.
If E1 and E2 do not overlap, as represented schematically in Fig. 8, then we have
drawn inconsistent inferences which together imply that P∗ ∈;. The need to draw
sensible conclusions about P∗ motivates abandoning these original inferences and
starting again, using wider confidence regions around each dataset distribution.
These will translate into larger subsets E1 and E2 of P. This process of revision
needs to continue until E1 ∩E2 6= ;. Only then will the two inferences—namely the
inference to the conclusion that P∗ is in E1 and the inference to the conclusion
that P∗ is in E2—be consistent, and only then can we infer that P∗ is in E1 ∩E2.
This consistency maintenance process is pictured in Fig. 9. All this generalises to
the situation of k datasets with which we started: from each dataset D i one infers
that the chance function P∗ lies in some region Ei ⊆P; these inferences need to be
jointly consistent, and can be made so by widening the confidence regions.

Note that widening the confidence regions corresponds to increasing the confi-
dence level. While the confidence level may initially be 95%, we may need to widen
the regions until the confidence level is 99%, say. In Bayesian terms, we become in-
creasingly confident that the chance function P∗ is in E. Indeed, if we are 100−δ%
confident that P∗ is in Ei , for each i = 1, . . . ,k, then we will be at least 100− kδ%
confident that P∗ is in

⋂k
i=1Ei ; this follows from Adams’ Uncertainty Theorem

(Adams, 1998, Theorem 13). Therefore, a 1% increase in confidence for each region
leads to at least a k% increase in confidence for the process as a whole, where k is
the number of datasets. Widening the confidence regions involves a trade-off, how-
ever, in that increasing confidence often leads to a less committal belief function P .
While Fig. 9 shows that increasing confidence can lead to a fairly committal belief
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Figure 9: Widening the confidence regions to ensure that the Ei meet.

function, Fig. 10 depicts a case in which three dataset regions are jointly inconsis-
tent and in which widening the regions to make them consistent would lead to the
equivocator function P= as the belief function P .

This point serves to highlight the fact that the belief function P depends cru-
cially on the chosen confidence level. Which confidence level should one choose?
Plausibly, the confidence level should depend to some extent on the number k of
datasets under consideration. This is to avoid situations analogous to the preface
paradox: if the confidence level is 90% and there are 10 datasets then while one
might infer, for each dataset, that the chance function lies inside Ei , one would
expect the chance function to lie outside one of these regions because a 90% con-
fidence level means that on average only 9 out of 10 confidence regions would
contain the chance function. Thus, it is only credible to infer that the chance func-
tion lies in the intersection of the Ei when the (100−δ)% confidence level is greater
than (100−100/k)% = 100(k−1)/k%. Equivalently, δ< 100/k. Adams’ Uncertainty
Theorem gives us an even tighter bound. If 100− kδ% < 50% then it may be more
likely than not that the chance function lies outside the intersection of the Ei . In
order to avoid this possibility we need to choose δ≤ 50/k. More generally, if there
is a threshold τ such that we need to be at least τ% confident in the inference that
P∗ ∈⋂k

i=1Ei then we need to choose δ≤(100−τ)/k.
There is a second consideration that arises when deciding upon a confidence

level. This is that one needs to balance two desiderata: confidence of inference
(from the point of view of avoiding falsity, the more confident one can be about
one’s inferences to chances, the better) and strength of inference (from the point
of view of seeking truth, the more information one can extract from the evidence,

16



P

E1
P1

E3
P3

E2
P2

Figure 10: Widening confidence regions can lead to a less committal belief function.

the better). These two desiderata are in tension: higher confidence corresponds
to wider regions which correspond to weaker inferences. The right balance will
of course depend on the outcomes, such as the cost of obtaining more evidence:
while weaker inferences correspond to higher confidence levels, we have seen that
they can lead to a more equivocal belief function, in which case evidence is more
costly insofar as it fails to sway one’s beliefs. There are two extreme positions re-
garding the right balance between confidence and strength. One is uninteresting: if
confidence absolutely trumps strength then inferences will be drawn to the widest
possible confidence regions, Ei = P, representing a 100% confidence level; this will
always lead to fully equivocal degrees of belief, P = P=. The second extreme po-
sition is more interesting: if strength trumps confidence then use point estimates
where possible—i.e., where it is consistent to do so—and otherwise increase the
confidence level the minimum amount required to ensure consistency. This sec-
ond position is quite plausible, for three reasons. First, although point estimates
are almost always wrong, they are likely to be approximately correct—given our
assumption that the data is of sufficient quality and quantity to draw these infer-
ences in the first place—so they can still yield sensible conclusions. Second, the
impact of incorrect point estimates is mitigated by the fact that inferences under
OBE are highly defeasible, in the sense that as new evidence is gathered, the three
norms are applied over again, so the influence of misleading evidence can soon
be washed out by new inferences about chances. (This is not so under the subjec-
tive Bayesian approach, which conditionalises on total evidence and thus ensures
its continuing influence.) Third, although one might worry that this extreme view
leads to beliefs that are too committal, the Equivocation norm already ensures that,
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given some inferred E, degrees of belief are as equivocal as possible. Hence, opting
for stronger inferences only leads to committal beliefs in a qualified sense: one is
inferring as much as possible from the data, but, given that fact, degrees of belief
are as equivocal as possible.

We thus have some motivation for starting with point estimates and increasing
confidence levels just enough to ensure consistency. As an alternative approach,
one might suggest the following recipe: instead of starting with point estimates,
start with confidence regions, where the confidence level incorporates the bound
arising from Adams’ Uncertainty Theorem, i.e., start off with δ = (100−τ)/k and
decrease δ just enough to ensure consistency. One should note, however, that
this modification can significantly tip the balance away from strength of inference,
towards confidence of inference, and can lead to very equivocal belief distributions.
Consider the case where there is a large number k of datasets being integrated,
none of which contains a large number of sampled individuals. In this case δ will
be very small because k is large, the confidence level will be very high, and each
region Ei will be large because of this high confidence level and the small number
of observations in each dataset. Thus the intersection of these regions can be large.
Moreover, if each region is large enough to include the equivocator function P=
then that is the function that will be chosen as the resulting belief function. (This is
the same belief function that would be chosen if there were no data at all.) It seems
that much of the useful information contained in the data is being overlooked.
Starting with point estimates, as suggested above, avoids this problem.

Thus far we supposed that each dataset is of sufficiently high quality to permit
an inference from the dataset to a point estimate or a confidence region estimate.
This is reasonable in the context of a systems medicine project, which is responsible
for collecting its own data, and for its own quality control. (This assumption may
be less reasonable in the context of a systematic review or meta-analysis of studies
produced by disparate research teams.) Nevertheless, even within a project, different
datasets can be judged to be of differing quality. What can be concluded when
the datasets are of variable quality? One possibility is to appeal to the following
Bayesian approach which factors in judgements of quality. Let Q i be the proposition
that dataset D i is of high enough quality for one to be willing to infer a confidence
region estimate from the data at the 100−δ% level. Then,

P(P∗ ∈ Ei)= P(P∗ ∈ Ei |Q i)P(Q i)+P(P∗ ∈ Ei | ¬Q i)P(¬Q i).

From a Bayesian point of view, P(P∗ ∈ Ei |Q i) is just the confidence level; P(Q i) is
the judged quality level of the dataset; and P(P∗ ∈ Ei | ¬Q i) might be estimated to
be the proportion of the simplex contained in region Ei . Let x = P(Q i). Then,

P(P∗ ∈ Ei)= 100−δ
100

x+ |Ei|
|P| (1− x).

This relativises P(P∗ ∈ Ei) to the quality of the data. One can vary the confidence
level P(P∗ ∈ Ei | Q i) from dataset to dataset to ensure a uniform value P(P∗ ∈ Ei)
across the datasets.

?

We see, then, that objective Bayesian epistemology provides a systematic way of
integrating datasets, each of which measures only a subset of variables of interest.
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The next step is to model the relevant probability distributions—i.e., to represent
these probability distributions efficiently, in such a way that probabilities of interest
may easily be inferred from the model. Each dataset determines a probability
distribution Pi ; a model of such a distribution is a fingerprint model. A model
of the distribution P which integrates all the data is a handprint model. (These
models are all association models—they can be used for prediction, but they do
not model causal relationships or mechanisms. Causal and mechanistic models
will be considered separately in §5.) Recall from §2 that the standard approach in
systems medicine is to determine a handprint model directly from the fingerprint
models. Fig. 7 gives us reason to question this approach: while the integrating
probability distribution P is determined by that data regions Ei , it does not seem
to be determined by the individual distributions Pi—there does not seem to be
enough information encapsulated in these regions to determine P .

Next we shall propose a particular kind of fingerprint and handprint association
model, namely an objective Bayesian net model. We shall see that at least in some
cases, the fingerprint models do determine the handprint model.

Objective Bayesian nets. Bayesian nets have become perhaps the model of choice
for representing and reasoning with a probability distribution on a finite number
of discrete variables. This is because, while probabilistic inference is extremely
computationally complex in the worst case, probabilistic inference using Bayesian
nets tends to be quite efficient in typical cases. Indeed, a wide variety of typically
efficient algorithms have been developed, both for constructing Bayesian nets (e.g.,
Neapolitan, 2004) and for inferring probabilities from them (e.g., Darwiche, 2009).

A Bayesian net consists of a directed acyclic graph (DAG) with the variables as
nodes, together with the probability distribution of each variable conditional on
its parents in the DAG. The main modelling assumption is the Markov Condition:
each variable is probabilistically independent of its non-descendants in the graph,
conditional on its parents. Under this assumption, a Bayesian net determines a joint
probability distribution over the set of variables under consideration.

An objective Bayesian net (OBN) is a Bayesian net which represents a probability
distribution advocated by OBE, i.e., a probability distribution which fits available
evidence but which otherwise has maximum entropy. Thus OBNs can be used
to represent the functions Pi and P outlined above. OBN representations of the
Pi constitute fingerprint association models, while an OBN representing P is a
handprint association model.

Let us consider how one might apply OBNs to data integration in systems
medicine. We shall sketch the simplest case, where there are k consistent data
distributions Q1, . . . ,Qk, and these are used as point estimates, i.e., one infers
that P∗

�Vi
= Q i for i = 1, . . . ,k. This case is treated in more detail in Landes and

Williamson (2016). See Williamson (2005b) for a general introduction to OBNs.
The first task is to model each data distribution Q i . This can be done by ap-

plying the standard machine learning techniques alluded to above, to construct a
Bayesian net that represents the data distribution in question. Note that this Bayes-
ian net only involves variables in Vi . Since we infer that the chance distribution
matches the data distribution on Vi , P∗

�Vi
= Q i , and the Calibration norm says

that one’s belief function should match the chance distribution insofar as evidence
determines the chance distribution, this belief function should match the data dis-
tribution, Pi�Vi = Q i . Thus the Bayesian net model of Q i can also be thought of
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as a model of the probability distribution Pi advocated by OBE given evidence
solely consisting of dataset D i . Consequently, this Bayesian net model of Q i is a
fingerprint model.

The second task is to build a handprint OBN model, which represents the dis-
tribution P advocated by OBE given all the datasets D1, . . . ,Dk. In order to build
the DAG in the model, first construct an undirected graph on V by linking each
pair of variables that occur in the same subdomain Vi , for any i = 1, . . . ,k. This
undirected graph is a Markov network (§3) which represents probabilistic indepen-
dencies that are guaranteed to be satisfied by P : if Z ⊆ V separates X ⊆ V from
Y ⊆ V in this graph then X and Y are probabilistically independent conditional
on Z, X⊥⊥PY | Z, for the rational belief function P (Williamson, 2005a, Theorem
5.1). (That these independencies provably hold is attributable to the fact that P
maximises entropy. Of course it may be that the chance function P∗ does not sat-
isfy all these independencies, but as the data do not provide any information as to
whether this is the case or not, the best one can do is act in accordance with the
norms of OBE, i.e., in accordance with the rational belief function P .) Now P will
satisfy further probabilistic independencies: for each i, P�Vi =Q i and the Bayesian
net model of Q i implies certain independencies which cannot be inferred from the
undirected graph by means of the separation criterion. In order to capture as many
of these independencies as possible, one can prune edges from the undirected graph
to yield a sparser Markov network.1 Next, one can transform the resulting sparser
undirected graph into a DAG such that the Markov Condition is bound to hold—an
algorithm for doing so is presented in Williamson (2005a, §5.7). This is the DAG in
the OBN representation of P . It remains to specify the probability distribution of
each variable conditional on its parents in the graph. Some of these distributions
can be obtained very straightforwardly (Landes and Williamson, 2016). For exam-
ple, if a variable and its parents all occur in the same subdomain Vi for some i,
then the distribution can be obtained from the corresponding fingerprint model. In
other cases, an optimisation problem must be solved in order to find the maximum
entropy solution.

This procedure is illustrated in Fig. 11 in the case of two datasets, each of which
measures three binary variables. In this illustration, the DAG of the handprint
model looks much like the composition of the DAGs of the fingerprint models.
While this is sometimes so, it is not always the case. However, in our set-up of k
consistent point-estimate data distributions Q1, . . . ,Qk, it is always the case that the
Bayesian net fingerprint models determine the handprint model. This provides a
partial vindication of the systems medicine methodology of constructing a hand-
print model from fingerprint models. It is only a partial vindication because this
does not apply to the more general approach involving confidence region estimates
rather than point estimates. There, the handprint model will depend on the con-
fidence regions themselves, not simply on the fingerprint model: the fingerprint
models do not ‘screen off’ the data from the handprint model.

Having sketched a principled way of integrating data to form a handprint as-
sociation model, we shall now turn to the task of constructing a handprint causal

1This can be done as follows. The undirected graph constructed above can be thought of as
⋃k

i=1 C i ,
where C i is the complete graph on Vi . Instead of this graph, one can take a sparser graph in two steps.
First take

⋃k
i=1 Mi , where Mi is the moral graph on Vi formed by (i) taking the DAG in the Bayesian

net model of Q i , (ii) for each variable in Vi joining each pair of its parent variables by an edge, and (iii)
finally removing the orientations on the remaining arrows. Second, ensure that each pair of variables
that occur together in more than one variable set are connected by an edge.
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Dataset D1:

A B C
Jill 3 7 3

Keith 3 7 7
Linda 7 7 3

. . . . . . . . . . . .

Bayesian net fingerprint model 1:

A B C

Dataset D2:

C D E
Jim 7 7 3

Kirsty 3 3 3
Lionel 7 3 7

. . . . . . . . . . . .

Bayesian net fingerprint model 2:

D

C

E

Objective Bayesian net handprint model:

D

A B C

E

Figure 11: An OBN handprint model from Bayesian net fingerprint models.

model.

§5
Causal and Mechanistic Models

In this section we shall outline a standard methodology for constructing a causal
model, argue for an alternative methodology, and develop a general framework for
model construction in systems medicine.

Standard methodology. As mentioned in §3, one common kind of causal model is a
causal Bayesian net (CBN). This is a Bayesian net whose DAG conveys information
about causal connections as well as probabilistic independencies: an arrow from
one variable to another indicates that the former variable is a direct cause of the
latter. In the CBN case, the Markov Condition, now called the Causal Markov
Condition, says that each variable is probabilistically independent of its non-effects,
conditional on its direct causes.

The standard approach to generating a CBN is a data mining approach: input
a dataset; find a Bayesian net which best fits the data distribution (or a class of
nets which best fit the data distribution); interpret the arrows in the DAG (or those
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arrows common to all DAGs in the class of nets) as direct causal connections or as
indicative of unmeasured common causes (Spirtes et al., 1993; Gammerman, 1999;
Glymour and Cooper, 1999; Pearl, 2000, Chapter 2). According to this standard
approach, causal discovery can be automated by implementing appropriate data
mining algorithms. This approach has been so influential that causal learning is
now considered to be one of the subfields of machine learning.2 This standard
approach is thus closely related to the way in which non-causal Bayesian networks
are constructed from data. The idea is roughly that the arrows in such a Bayesian
net represent a pattern of statistical associations and independencies, and that the
best explanation of this pattern is that there are corresponding causal connections
which give rise to the pattern, so we may interpret the arrows causally.

This standard data mining methodology needs to be adapted to fit the systems
medicine context. This is because, in the systems medicine context, there is not
a single dataset on the whole domain V from which to learn a causal handprint
model—there are lots of datasets on various subdomains Vi . Thus, while one
may be able to apply the standard methodology to yield causal fingerprint models,
further methods are required in order to generate a handprint model. One such
method was developed by Danks (2002); Tillman et al. (2008) and Tillman and
Spirtes (2011): this involves patching together several CBN fingerprint models in
order to generate a CBN handprint model.

The main difficulty with both this method and the standard data mining method-
ology is that they assume that all correlations should be explained causally. Even
in the case of the fingerprint models, a causal interpretation of the arrows in the
network is controversial (e.g., McKim and Turner, 1997) and indeed often implausi-
ble. The best explanation of an association in the data may not be a corresponding
causal connection. In many cases the best explanation is measurement error or
bias; or that the variables are associated in virtue of being time-series measure-
ments, or in virtue of a semantic, constitutive, logical, mathematical or physical
connection rather than a causal connection (Williamson, 2005a, §4.2). As medicine
knows to its cost, only very rarely does a new association in data turn out to be
genuinely causal.

Indeed, at least in the health sciences, establishing association is not normally
enough to establish causation. Typically, in order to establish that A is a cause of B,
one needs to establish not only that A and B are appropriately associated (i.e., that
they are probabilistically dependent conditional on B’s other direct causes), but also
that there is some underlying mechanism linking A to B which can account for this
association and by which one can explain instances of B by citing instances of A
(Russo and Williamson, 2007). Only then is the best explanation of the association
between A and B that A is a cause of B.

This observation suggests a revision to the standard methodology for generat-
ing a CBN: one should base a causal model on evidence of mechanisms as well
as on the associations found in data. Evidence of mechanisms tends to be much
more multifarious than evidence of association. For instance, evidence of mecha-
nisms can be had by manipulation (e.g., in vitro experiments), by observation (e.g.,
biomedical imaging, autopsy, case reports), from statistical trials (e.g., randomised
controlled trials), from confirmed theory, by analogy (e.g., animal experiments), and
by simulation (e.g., agent-based models). Clarke et al. (2014a) argue that all such

2Challenge problems are sometimes devised to test causal discovery algorithms—see, e.g., Causality
Workbench, http://www.causality.inf.ethz.ch/.
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evidence needs to be taken into account when establishing causal claims. As noted
in §1, evidence of mechanisms can help to distinguish those correlations that are
causal from those that are attributable to other considerations, such as constitutive
relationships.

Alternative methodology. This sort of revised methodology can be developed as
follows. The goal is to generate CBNs that best fit both the pattern of dependencies
and independencies suggested by the data and the causal constraints imposed by
evidence of underlying mechanisms. Instead of generating regular CBNs, however,
we shall consider labelled CBNs, that is, CBNs whose arrows are annotated. The
label attached to an arrow provides information about the kind of connection rep-
resented by the arrow. Some arrows will be labelled as causal, while others may
signify constitutional, semantic or logical connections, for example, and labelled as
such.

For instance, mechanistic evidence might establish that A is not a cause of B
(perhaps because A only occurs after B, or because A is related to B constitutionally
rather than causally), in which case it imposes the following constraint on a causal
handprint model: there should be no chain of causal arrows (i.e., arrows that are
labelled as causal) from A to B. If the mechanistic evidence determines that A is
related to B constitutionally rather than causally, then there is a further constraint
that A and B should be connected in the DAG by arrows that are labelled as
constitutional.

The key task is then to identify those labelled CBNs which (i) satisfy the con-
straints imposed by mechanistic and other evidence, (ii) explain all the dependen-
cies in the OBN by labelled arrows in the CBN, and (iii) posit as few connections as
possible that do not correspond to dependencies in the OBN. One practical method
for carrying out this task will be developed shortly.

The main differences between this approach and the standard CBN data min-
ing methodology are as follows. First, evidence other than the data is taken into
account by condition (i). Second, the standard CBN methodology explains all the
dependencies in the data by causal relationships; here, condition (ii) requires merely
that every dependency be explained in some way, by invoking a causal, mechanis-
tic, semantic, or some other relationship. (In certain cases it may be that, given
all available evidence, the best explanation of a dependency in the data is that it
is accidental, attributable for example to a small sample size. In such cases, the
corresponding arrows may be labelled ‘accidental’.)

If necessary, the labels attached to the arrows of the CBN can be further refined.
In particular, once the labelled DAG is constructed, one can evaluate each of the
causal claims posited by the model, considering a causal relationship to be estab-
lished just when the available evidence establishes both an appropriate association
(with respect to the chance function P∗ rather than the rational belief function P)
and that this association is causal, i.e., that there exists some suitable mechanism
which appeals to the putative cause to explain the putative effect. One can then
further label the corresponding arrow in the DAG as ‘established’. Those causal
claims that cannot be considered to be established may be classified as provisionally
established (or, more simply, provisional); arguable; or speculative, ordered according
to increasing likelihood that future evidence will lead to such claims being revisited
and rejected (Parkkinen et al., 2017). This leads to a more fine-grained classification
of causal relationships.
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Having constructed the labelled DAG of the CBN, it remains to specify the
probability distribution of each variable conditional on its parents in the DAG. The
joint probability distribution P, defined over the domain as a whole, is already
fully determined by the OBN, and the required marginal distributions can thus be
obtained directly from the OBN by applying standard Bayesian network inference
algorithms.

Constructing a labelled DAG. So, how should the labelled DAG be constructed in
practice? We shall describe an approach which presupposes that the available evi-
dence fully determines the non-causal relationships. It is often the case that mecha-
nistic evidence determines the constitutional relationships but does not fully deter-
mine the causal relationships. Similarly, evidence of semantic relationships among
the variables may well fully determine which variables have overlapping meaning
yet fail to determine, of those variables that represent disjoint events, which causes
which. If it is indeed the case that the non-causal relationships amongst the vari-
ables are known, then any unexplained correlations in the data are best explained
causally. If so, then, by default, causal relationships should be posited to explain
unexplained correlations.

The first step is to construct a model which best represents those DAGs that
chart the probabilistic independencies of the joint probability distribution P . The
standard way to represent a Markov equivalence class of DAGs—i.e., a class of DAGs
that characterise the same set of independencies—is to construct a partially directed
acyclic graph (PDAG). This is a graph which may contain a mix of arrows and
(undirected) edges, with no directed cycle. A PDAG represents an equivalence class
of DAGs when every completion of the PDAG (an orientation of the undirected
edges in the PDAG which produces a DAG) lies in the equivalence class, and, vice
versa, every member of the class is a completion of the PDAG.

This PDAG is straightforward to construct, given a catalogue of the indepen-
dencies of the probability distribution. Koller and Friedman (2009, §3.4), for ex-
ample, provide simple algorithms for generating the PDAG which represents the
equivalence class of minimal DAGs that characterise the independencies of a joint
distribution. These independencies can be read off the undirected Markov network
which was constructed in §4 as a stepping-stone to an OBN: recall that, if Z sep-
arates X from Y in this graph then X and Y are probabilistically independent
conditional on Z.3

Having constructed the PDAG, the second step is an iterative approach to solv-
ing a constraint satisfaction problem. The DAGs represented by the PDAG satisfy
condition (iii) given above: they posit as few connections as possible that do not
correspond to dependencies in the OBN, since they are minimal models of the
independencies of P . It remains to satisfy the other conditions: i.e., to find the
labelled DAGs that satisfy the constraints imposed by mechanistic and other evi-
dence. This can be done by searching through the DAGs represented by the PDAG,
seeing whether some labelling exists that satisfies the constraints, and rejecting
those DAGs that do not satisfy the constraints. If no such minimal DAG satisfies
the constraints, then we can proceed to search incrementally through DAGs with

3If all the independencies of P can be represented by some DAG then the PDAG is uniquely
determined. (A sufficient condition for this is that the undirected graph used in the construction of the
OBN is triangulated.) If not, then a class of PDAGs will be needed to represent the class of all possible
DAGs compatible with P (see, e.g., Koller and Friedman, 2009, §3.4).
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Dataset D1 · · · Dataset Dk
Other evidence
of mechanisms

Fingerprint
model

· · · Fingerprint
model

Association model
(e.g., OBN)

Qualitative
mechanistic model

Causal model
(e.g., labelled CBN)

Quantitative
mechanistic model

(e.g., RBN)

Figure 12: Relationships amongst models.

one or more extra arrows. Assuming the constraints are satisfiable at all, this cul-
minates in a set of minimal labelled CBNs that satisfy the constraints imposed by
all the evidence—not just the datasets.

The more fine-grained labelling might be used to select certain preferred models
from within this set for the purpose of inference. The aim would be to select those
causal handprint models whose causal relationships are less prone to revision—i.e.,
to prefer established causal relationships over those that are provisional, provisional
over arguable, and arguable over speculative. The handprint model can then be
used for causal inference—e.g., for deciding which of the correlates of an outcome
variable, such as severity of disease, to intervene upon in order to alleviate the
disease.

General framework for model construction. In terms of the array of handprint models
discussed in §3, the causal model depends not only on the correlations represented
by an association model, but also on the mechanisms represented by a qualitative
mechanistic model. The general picture is presented in Fig. 12. This depicts the
situation in which the fingerprint models screen off the data from the association
model, as is the case for instance with point-estimate Bayesian net fingerprint mod-
els and an OBN handprint model. Note that evidence other than data can influence
the choice of fingerprint models. For example, information about mechanisms as-
sists with the design and interpretation of statistical trials (Clarke et al., 2014a).
Similarly, associations found in the data and represented in the fingerprint models
can suggest new mechanistic connections, and so influence the development of a

25



qualitative mechanistic model. As suggested above, a causal handprint model needs
to be influenced by both the associations represented in the association handprint
model and the pattern of mechanistic connections implied by a qualitative mecha-
nistic model. This mechanistic model may well be tentative in parts or incomplete.
Causal models tend to be quantitative, so the causal model can, in turn, influence
the development of a quantitative mechanistic model by suggesting relationships
amongst quantities that feature in the mechanism.

It is thus possible to develop a principled methodology for structuring the de-
velopment of models in systems medicine—an array of models which can otherwise
seem bewildering to those involved in a large systems medicine project, let alone
those outside the project trying to comprehend its results. As a further simplifica-
tion, the Bayesian network modelling formalism can be used to unify the models
employed in such a project: standard Bayesian nets can act as useful association
fingerprint models; an objective Bayesian net constitutes an association handprint
model; as we have just seen, in conjunction with qualitative information about
mechanisms, such a net is a natural stepping stone to a labelled causal Bayesian
net handprint model; finally, recursive Bayesian nets (see §3) allow one to draw
inferences across the levels of a hierarchical mechanism, and so act as a kind of
quantitative mechanistic model.

While this approach structures and unifies modelling in systems medicine, it
does not make modelling easy. In particular, it is harder to automate the discov-
ery of causal relationships under this approach than it is under the standard (but
problematic) data-mining approach. This is because causal claims need to track
mechanistic connections as well as associations in the data, and thus the whole
range of evidence of mechanisms needs to be evaluated in order to determine how
it constrains the causal claims that can be made. Therefore, the pathways from
evidence to a qualitative mechanistic model, depicted in Fig. 12, are not readily au-
tomated. Moreover, it is not easy to automate the move from qualitative mechanistic
models that take the form of diagrams or pictures, such as Fig. 3, to constraints
on a CBN. In order to automate this step, one needs other forms of qualitative
mechanistic model which are more accessible from a computational point of view
(though invariably less intuitive to humans). These sorts of models, standardised
by being represented in Systems Biology Markup Language (SBML) and structured
in terms of semantic relationships specified in various biomedical ontologies, are
increasingly prevalent in systems medicine (see, e.g., Hoehndorf et al., 2011).

§6
Conclusions and Open Questions

Progress in systems medicine has been slower than anticipated. Arguably this for
two main reasons: (i) evidence integration is a challenge; (ii) building and compre-
hending a large array of models is a challenge. In this paper I have tried to take a
constructive approach to these two challenges, by setting out a possible modelling
methodology for systems medicine. At a general level, this methodology seeks to
elucidate the relationships between models, as well as to structure their develop-
ment, as depicted in Fig. 12. At a more specific level, this methodology fits very
well with the Bayesian net approach to modelling, and objective Bayesian nets offer
a natural framework for data integration.

This paper has focussed on theoretical models in systems medicine—models that
are abstractions of the phenomena they seek to model. Biological models—i.e.,
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models that are organisms or parts of organisms (Wilde and Williamson, 2016)—are
also widely applied in systems medicine. While the relationship between theoretical
and biological models is somewhat complex, an interesting next step would be to
integrate the role of biological models into this modelling framework.

In terms of developing the OBN formalism, while OBNs are currently well un-
derstood in the case of consistent point-estimate data distributions, this is far less so
in the case of confidence-region estimates. This is one natural direction for further
research. Another direction involves extending the OBN methods introduced above,
which deal with datasets that measure subsets of V , i.e., unconditional marginal dis-
tributions of P∗, to those that measure conditional marginal distributions. Often, a
study will examine only a subpopulation of the target population, e.g., patients who
are not pregnant, and its conclusions can be thought of as pertinent to estimating a
conditional chance distribution, e.g., P∗(·|¬Pregnant). While the objective Bayes-
ian principles of data integration that are outlined above extend naturally to this
situation, it remains to be seen how the algorithms for OBN construction should
best be adapted to the conditional distribution case.

With regard to the labelled CBN formalism, two tasks are particularly pressing.
First, the approach introduced above dealt with the case in which any unexplained
correlation is to be explained causally. A strategy is needed for dealing with other
situations—e.g., those in which one needs to decide whether to introduce a causal
claim or a constitutional claim to explain a correlation. One strategy is to appeal to
Craver’s characterisation of constitution relations in terms of mutual manipulability
(Craver, 2007). However, this approach has its detractors (e.g., Leuridan, 2012;
Baumgartner and Gebharter, 2015), and bears closer scrutiny. Second, predicting
the effects of interventions can be non-trivial when some of arrows in the model
are non-causal. In a CBN in which all the arrows are causal, one can predict the
effect of interventions by deleting the arrows that lead into the variable which is
intervened upon, and then using standard Bayesian network inference algorithms
to update the probabilities of variables of interest. In the labelled CBN formalism,
if some of the arrows incident upon the intervention variable are non-causal, it
can be far from obvious as to which—if any—of these should be deleted. The
prospects of a generalised approach to intervention is an interesting question for
further research.
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