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Abstract

In recent years there has been increasing interest in Bayesian nonparametric methods due to their

flexibility, and the availability of Markov chain Monte Carlo (MCMC) methods for sampling from the

posterior distribution. As MCMC methods are generally time consuming for computation, there is a

need for faster methods, which can be executed within a matter of seconds. A fast alternative to MCMC

for sampling the well known and widely used Dirichlet process mixture (DPM) model is investigated

to draw approximate independent and identically distributed samples from the posterior distribution

of the latent allocations, and then to draw samples from the weights and locations conditional on the

allocations. To address the order depend issue of the proposed algorithm, an optimal ordering scheme

based on a sequence of optimizations is proposed to first obtain an optimal order of the data, and then

run the algorithm on this ordering. The fast sampling algorithm is assisted by parallel computing using

commands within MATLAB.
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1. Introduction

This paper is concerned with fast prediction from mixture models. The starting point is the well

known Dirichlet process mixture (DPM) model ([1]), which places a Dirichlet process (DP) prior ([2])

on a mixing distribution. The density model, in the independent and identically distributed case, takes

the form

f(y) =

∫
K(y; θ) dP (θ),

where K(y; θ) is a density function for each θ, and P (·) is a random distribution function, specifically a

DP with the representation ([3]) given by

P (·) =

∞∑
j=1

wj δθj (·),

where δθ(·) denotes the point mass at θ. Here the (wj) are random weights obtained via w1 = v1 and

wj = vj
∏
l<j(1 − vl), for j > 1 and the (vj) are independent and identically distributed as beta(1, c)

for some c > 0. The (θj) are independent and identically distributed from some density function g. If
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G is the distribution function corresponding to g then (c,G) are the parameters of the prior and, in5

particular, EP = G.

There is now a rich literature on how to sample the posterior model in order to construct a predictive

density estimate. The complexity of the model determines that the sampling needs to be done using

MCMC methods, and the first such algorithms were presented in the PhD Thesis of Escobar ([4]). Since

then numerous types of MCMC algorithms have been proposed and for a recent review we refer the10

reader to [5].

Recently there has been proposed a number of fast algorithms which avoid the use of MCMC. The

most notable of which is the iterative, or sequential, update procedure described in [6] and [7]. This is

an approximation to the posterior and requires some non-trivial numerical integration. More recently a

fast algorithm has been put forward by [8] which works with an approximated marginal likelihood for15

the allocation variables of the mixture model. Maximizing this marginal likelihood then yields a set of

allocation variables from which it is easy to obtain (approximate but correct given the approximated

allocation variables) predictive samples. As with all sequential techniques, including Newton and Zhang’s,

this method relies on the chosen ordering of the data. To reduce the impact of the ordering problem

various proposals have been made which include trying out a few random permutations and then, in the20

case of [8], to select the permutation which provides the best fit to the data according to some decision

criterion.

Our proposal is similar to the [8] idea but with a notable extension. Our main goal and result is that

we find an optimal permutation of the data. This is based on a sequence of optimizations; conditionally

maximizing the sequence of predictives given the allocation variables, iterated with conditionally maxi-25

mizing the probability of the allocation variables given the current order of the data. The idea is that

we find the permutation or ordering of the data which maximizes the marginal likelihood.

Describing the layout of the article; in section 2 we describe and derive the conditional posterior

distribution of the latent allocation variables, which tells us the probability of which individuals belong

to which groups. Section 3 details how we obtain approximate samples from the distribution of allo-30

cation variables and then how obtain an optimal ordering for the data using a sequence of conditional

maximization routines. Section 4 discusses the extension to the regression model. Section 5 then puts

all these pieces together to present some illustrations including both real and simulated data sets, and,

finally, section 6 contains a brief discussion.

2. The marginal model for allocations35

A standard starting point for sampling the DPM model is given by the joint density function

p(y, d|θ, w) =

n∏
i=1

wdi K(yi; θdi).

Here the data is presented by y = (y1, . . . , yn) and the d = (d1, . . . , dn) are the latent allocation variables,

telling us who is in each group. Summing over the independent (di), which range over the positive

integers, returns the original likelihood function based on the mixture model. The (wdi) are the stick
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breaking mixture weights, with random parameters (vj), which are i.i.d. as beta(1, c) for some c > 0.

The idea now, as in [9] and [10], is to marginalize over the weights and locations, to obtain the conditional

distribution

p(d1, . . . , dn|y1, . . . , yn).

For the DPM model, with suitable choice of kernel and prior, this marginalizing can be done explicitly.

We will in fact demonstrate this for the components model

K(y|θ) = N(y|µ, 1/λ),

where λ is the reciprocal of the variance, and the prior chosen is the regular conjugate prior for an

unknown normal mean and variance; i.e. π(µ|λ) = N(ν, τ2/λ) and π(λ) = Ga(a, b). We can now obtain

p(d1, . . . , dn|y) = Ew,θ

{
n∏
i=1

wdi K(yi|θdi)

}
.

The first expectation is easy to compute;

Ew

[
n∏
i=1

wdi

]
=

∞∏
j=1

Evj
[
v
nj

j (1− vj)mj
]

=

∞∏
j=1

∫
v
nj

j (1− vj)mj c (1− vj)c−1 dvj ,

where nj = #{di = j} and mj = #{di > j}. This is given by

cD
D∏
j=1

Γ(nj + 1) Γ(mj + c)

Γ(nj +mj + c+ 1)
, (1)

where D = max{d1, . . . , dn}.

For the second expectation we are interested in computing

Eθ

[
n∏
i=1

K(yi|θdi)

]
,

which is comprised of integrals of the type

∫ ∏
di=j

K(yi|θj)π(dθj).

Dropping the subscript j, it is well known that for a sample size of n(= nj) and data y = (y1, . . . , yn),

∫ ∫ n∏
i=1

N(yi|µ, 1/λ)π(dµ|λ)π(dλ), (2)

is given by, up to some constant which does not depend on the data or the (di),

(
1/
√

2π
)n 1√

n+ 1/τ2
Γ(a+ n/2)

(b+ Ψ/2)a+n/2
,
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where

Ψ =

n∑
i=1

y2i + ν2/τ2 − ν2n(n+ 1/τ2),

and

νn =
nȳ + ν/τ2

n+ 1/τ2
.

Hence, up to a constant of proportionality,

p(d|y) ∝ cD
D∏
j=1

Γ(nj + 1) Γ(mj + c)

Γ(nj +mj + c+ 1)
×

D∏
j=1

1√
nj + 1/τ2

Γ(a+ nj/2)

Γ(a)

ba

(b+ Ψj/2)a+nj/2
, (3)

where

Ψj =
∑
di=j

y2i + ν2/τ2 − ν2j (nj + 1/τ2)

and

νj =

∑
di=j

yi + ν/τ2

nj + 1/τ2
.

This is a fully specified probability model for the allocations; if we can sample this p(d|y) then, as we

have previously mentioned, we can easily go on and sample the weights and locations and hence sample

from the predictive. Quite literally, the allocations are everything. Unfortunately, no-one has yet found

a way to sample from p(d|y) exactly without using MCMC. So direct sampling, i.e. obtaining i.i.d.40

samples, can only be done approximately. We show in section 3 how to obtain an approximate sample

from p(d|y).

Before this, we note that we can easily generalize the prior on the random (vj) to be vj ∼ beta(αj , βj).

We recover the DP if αj = 1 and βj = c; whereas the Pitman–Yor process arises if αj = 1− δ and βj =

c+jδ, where 0 ≤ δ < 1 and c > −δ. To ensure that
∑∞
j=1 wj = 1 a.s. we need

∑∞
j=1 log(1+αj/βj) =∞.45

Then for Ew we have

∞∏
j=1

∫
v
nj

j (1− vj)mj
1

B(αj , βj)
v
αj−1
j (1− vj)βj−1dvj

=

D∏
j=1

B(nj + αj ,mj + βj)

B(nj ,mj)
,

where D = max{d1, · · · , dn}. For further details for such (vj), see [11].

3. The algorithm

We split this section into two parts; in subsection 3.1 we discuss how to generate approximate samples

from the posterior once we have an optimal permutation of the data. In subsection 3.2 we provide the50

details of the optimal ordering.

3.1. Generating approximate independent samples

The correct way to sample d from p(d|y) is complicated in that it needs MCMC methods. The aim

here is to propose a fast alternative to MCMC. To do so, we need to find a good approximation to
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the correct p(di|d1, . . . , di−1, y1, . . . , yn), which can be sampled sequentially. This is taken from [8] and55

described here. Now

p(di|d1, . . . , di−1, y1, . . . , yn)

∝ p(di|d1, . . . , di−1, y1, . . . , yi−1, yi)× p(yi+1, . . . , yn|di, di−1, . . . , d1, y1, . . . , yi).

In p(di|d1, . . . , di−1, y1, . . . , yi−1, yi), the di only depends on observations (yj , j = 1, . . . , i). Therefore,

sampling di from this conditional can be carried out without MCMC. To use this approximation we have

left out the term

p(yi+1, . . . , yn|di, di−1, . . . , d1, y1, . . . , yi),

which is the key to the approximation and therefore should not vary much as di varies. Whether this

does or not is a difficult problem to assess exactly however the simulation study provided in section 5

confirms that the approximation is good, as we recover good estimates for the predictive.

To simplify the notation we will just use p(d1, . . . , di) to denote the conditional density of (d1, . . . , di)60

on (y1, . . . , yi). The basis for generating independent samples from p(d1, . . . , di) is that the actual

labels of the allocation variables are largely irrelevant. It is the groupings of the data which matters.

Hence, we can take d1 = 1 and then subsequently, for each 1 < i ≤ n, we take di from the set

di ∈ Si−1 = {d1, . . . , di−1, ki + 1}, where ki = max{d1, . . . , di−1}. In essence, we are constraining the

(di) to be taken from the first k integers only, when k is the number of distinct values.65

We can find the probabilities to provide a single sequence (d1, d2, . . . , dn). So we take d1 = 1 and

then compute

p(1, j) for j = 1, 2.

We sample d2 as j = 1 with probability

p(1, 1)

p(1, 1) + p(1, 2)
,

else we take j = 2.

Then we compute, in general, and given the values (d1, . . . , di−1),

p(d1, . . . , di−1, j) for j = 1, . . . , ki + 1

where ki = max{d1, . . . , di−1}. We then take di = j with probability

p(d1, . . . , di−1, j)∑ki+1
j=1 p(d1, . . . , di−1, j)

.

This process up to i = n yields a single (approximate) sample (d1, . . . , dn) from the posterior p(d|y).

The aim is to take, for example, up to M such sequences, in order to provide a predictive density

estimator. Running this in parallel, so that we obtain the M independent sequences in parallel which is

important and necessary, and the command in MATLAB uses the parfor loop in order to generate M70
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sets of (d1, . . . , dn). The code returns us n×M values.

Once we have a sequence of (di) from p(d|y) we can find the predictive density explicitly; it is given

by

f(y) =

D∑
j=1

w̄j fj(y) +

1−
D∑
j=1

w̄j

 f0(y), (4)

where D = max{d1, . . . , dn}, w̄j = nj/(c+ n), and the weight on the second term is c/(c+ n),

fj(y) = Eπj
N
(
y|µj , λ−1j

)
, (5)

where

πj(µj , λj |d, y) = N

(
µj

∣∣∣∣νj , 1

λj (nj + 1/τ2)

)
Ga(λj |a+ nj/2, b+ Ψj/2), (6)

and f0(y) is the prior predictive. The fj(y), including the f0(y), is available explicitly as a Student-t

density

fj(y) ∝
(
bj + 1

2 (y − νj)2/(1 + τ2)
)−aj− 1

2 , (7)

where aj = a+ nj/2 and bj = b+ 1
2Ψj .

The algorithm just described is similar in to the one presented in [8]. The difference is that [8] select

the (di) by taking the di which maximizes

p(di, d1, . . . , di−1).

In the next section we will propose an optimal ordering of the data.

In both algorithms, i.e. ours and [8], the ordering by arbitrarily setting d1 = 1 has an effect and75

changing this, to say putting d2 = 1, will change the estimation, which is hard to assess completely.

Consequently, [8] proposed to perform a number of random permutations of the orderings and then

select the permutation which provides the best fit according to a pseudo-marginal likelihood criterion.

On the other hand, we find an optimal ordering based on a sequential maximization routine, effectively

selecting the order which maximizes the sequence of predictive density functions.80

3.2. An optimal ordering of the data

Here we decompose p(d, y) as

p(d1, y1) p(d2, y2|d1, y1) . . . p(dn, yn|d1, y1, . . . , dn−1, yn−1). (8)

We sequentially maximize, with respect to both the y and d, over each term in (8). To explain this,

let us look at the first term. Noting that we can write p(d1, y1) = f(y1) p(d1|y1), we take y1 to be the

observation which maximizes the prior predictive f(y). We then allocate d1 = 1.

We then proceed to find y2 6= y1 which maximizes f(y|d1, y1) and then take d2 which maximizes, for
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j = 1, 2,

P(d2 = j|d1 = 1, y1) ∝ fj(y1) P(d2 = j|d1 = 1)

where f1(y1) will be described shortly as will P(d2 = j|d1 = 1).85

In general, we take yk 6= y1, . . . , yk−1 to maximize

f(y|d1, y1, . . . , dk−1, yk−1), (9)

and then take dk from {1, . . . ,K + 1}, where K = max{d1, . . . , dk−1}, to maximize

P(dk = j|d1, y1, . . . , dk−1, yk−1, yk) ∝ fj(yk) P(dk = j|d1, . . . , dk−1). (10)

Both (9) and (10) are easy to compute; see section 3.1. So (9) is the predictive given in (4) but with

k − 1 replacing n. All other aspects stay the same. And for (10), we have

P(dk = j|d1, . . . , dk−1) =
nj

c+ k − 1
,

for j = 1, . . . ,K, and P (dk = K + 1|d1, . . . , dk−1) = c/(c+ k − 1).

With this optimal ordering, we can then obtain the approximate sample (di) from p(d|y) and then

we can obtain an explicit form for the predictive density.

We use the Kullback–Leibler divergence to assess the quality of the density estimator. So if f∗ denotes

the true density then we would consider comparative values of

∫
f∗(y) log f̂(y) dy,

where f̂ denotes the density estimate. If we approximate this by

n−1
n∑
i=1

log f̂(yi), (11)

we have that f̂(yi) depends on an ordering of the data, specifically

f̂(yi) = f̂(yi|yσ(1), . . . , yσ(n)),

for some permutation σ on {1, . . . , n}. Obtaining the optimal σ here, i.e. maximize (11), is too difficult,

as there is no sequential route.90

Our next best agenda which does admit an easy to obtain optimal σ is to select the σ to maximize

the marginal likelihood

p(yσ(1), . . . , yσ(n)).
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This can be written sequentially as

n∏
i=1

p(yσ(i)|yσ(1), . . . , yσ(i−1)).

Specifically, we include the allocation variables in this maximization; so we find sequentially the optimal

σ by maximizing

p(yσ(i)|yσ(1), . . . , yσ(i−1), dσ(1), . . . , dσ(i−1)),

and then maximizing

p(dσ(i)|yσ(1), . . . , yσ(i−1), dσ(1), . . . , dσ(i−1), yσ(i)),

iteratively from 1 to n.

This gives a σ and hence an ordering, optimal with respect to the value of the marginal likelihood. It

is common for selection procedures to be based on the maximizing of a marginal likelihood; for example

in empirical Bayes estimation of the prior.

So though this marginal likelihood optimal σ is not necessarily the one which maximizes (11), we95

believe it should be a good proxy for it. This is substantiated from the simulation studies.

4. Regression model

The theory we have developed in sections 2 and 3 can apply equally to a particular type of regression

model. So suppose we have the model for (yi, xi)
n
i=1, where xi is a m× p matrix of covariates, and yi is

a m× 1 vector of observations, as

fP,λ(y|x) =

∫
N(y|xβ, λ−1) dP (β),

with the usual Dirichlet process prior on P , yielding

f(y|x) =

∞∑
j=1

wj N(y|xβj , λ−1).

Now we need to find the corresponding version of (2); and for this we will remove the subscript j and

assume the number of observations in component j is nj . So

yi ∼ Nm(·|xiβ, λ−1),

where β is a p× 1 vector of coefficients, with prior distributions for β and λ given by

π(β|λ) = N(·|µ,Σ/λ) and λ ∼ Ga(·|a, b)

for given values of (µ,Σ, a, b).
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Then, standard integration yields

∫ ∫ n∏
i=1

N(yi|xiβ, λ−1) N(dβ|µ,Σ/λ) Ga(dλ|a, b)

is given by, ignoring constants which will be common to all components,

|Ω|p/2 Γ(a+ nm/2)

(b+ y′y + µ′Σ−1µ− ν′Ων)a+nm/2
, (12)

where

Ω =

(
n∑
i=1

x′ixi + Σ−1

)−1
and ν = Σ−1µ+

n∑
i=1

x′iyi.

This then allows us to run the algorithm described in section 3 for the regression model by simply

swapping (2) for (12), and an obvious modification of (6).100

5. Illustrations

Here we evaluate the performance of the proposed algorithm based on the optimal ordering (OO)

and compare with two other methods; one is the standard MCMC algorithm with slice sampling (see

[12]) and the other is the SUGS algorithm by [8]. For the simulated data, we sample observations from

the true density given in section 5.1. We also demonstrate the optimal sampler algorithm on the galaxy105

data set in section 5.2, and to a real industry dataset in the regression case in section 5.3.

Before proceeding, we describe how in each case, i.e. MCMC, SUGS and our algorithm, we obtain

the estimates which appear in the figures. For the MCMC algorithm, at each iteration, a (di) will be

sampled, and then the predictive as a mixture of Student-t densities can be computed exactly, using (4)

and (7). The final predictive is averaged over all iterations. SUGS obtains a (di) from a permutation and110

hence gets the mixture of Student-t predictive from each permutation. A best predictive is then selected

from all those obtained from a number of permutations using the marginal likelihood criterion. For our

algorithm, we obtain the optimal permutation and then simulate a number of the (di), each giving a

predictive, and then we average over all these predictives. Also note that the (di) obtained are from the

correct posterior with the MCMC algorithm; the errors in SUGS and our algorithm are that the (di) are115

obtained approximately according to the ideas in section 3.1.

5.1. Simulated example

To evaluate the performance of the proposed algorithm, we consider the following true density which

is a mixture of three normal distributions.

f(y) = 0.3N(y;−2, 0.4) + 0.5N(y; 0, 0.3) + 0.2N(y; 2.5, 0.3).

This mixture was also used by [8].

We take the sample sizes to be n = 100, n = 200 and n = 500 and for each case, we consider 100

simulated datasets. For all the analysis reported here, we used c = 5 and choose the prior for λ as120
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sample size SUGS MCMC OO
100 0.0289 0.0321 0.0173
200 0.0155 0.0233 0.0091
500 0.0061 0.0152 0.0079

Table 1: The average KLD results of three algorithms based on three sample sizes n = 100, n = 200 and n = 500 with 100
repetitions.

data size SUGS OO
100 9.52 7.80
200 19.22 21.86
500 46.86 102.05

Table 2: The comparison of the time consumed (in seconds) of running SUGS and OO algorithms under the same condition
based on three sample sizes n = 100, n = 200 and n = 500.

π(λ) = Ga(a, b), with a = 1.28× lnn and b = 0.5, and τ2 = 10, in an attempt to be noninformative.

Using the algorithm scheme outlined in section 3, once we have the optimal ordering of the data, we

can obtain the predictive density using (4) and (7). We then average this over 100 predictives through

sampling 100 sets of (di) from the algorithm in section 3.1. The predictive estimates for the three sample

sizes, compared with the estimates provided by the MCMC algorithm and SUGS, are given in Figs. 1 to125

3. For the MCMC algorithm, we take c = 0.8, a = 5, b = 1 and τ2 = 25 as defaults. SUGS was repeated

for 100 random orderings.

To measure the closeness of the proposed density estimates to the true densities, we calculate the

Kullback-Leibler divergence (KLD) between densities f and g, defined as follows

K(f, g) =

∫
f(x) log

{
f(x)

g(x)

}
dx

with f being the true density and g being an estimate. Table 1 summarizes the averages of calculated

KLDs of three algorithms: the SUGS algorithm of [8]; MCMC with a slice sampling algorithm, and the

optimal ordering algorithm, proposed in this paper. Also, we compare the speed with SUGS and present130

the results in Table 2.

To check if in general the proposed ordering scheme through the sequential maximization step would

deliver the optimal (in terms of KLD) ordering of the data, we propose a simple simulation study focused135

on a small sample. We take 100 simulated datasets of length n = 20 from the above mixture of three

normals. Then we calculate the KLDs of our approach and SUGS for each dataset. For each dataset,

SUGS will pick the best result from 100 random permutations of the data. The results show that, within

the 100 datasets, our approach outperformed SUGS 99 times.

For sample sizes up to around 200, we are highly competitive with SUGS in terms of both accuracy140

and speed; whereas around 500 sample size, we see a reversal. At 500 the exact permutation does not

have an effect on the accuracy, so doing a few in number is not going to have a detrimental outcome. And
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Figure 1: Comparison of the simulated data (n=100) with predictives (MCMC, SUGS and OO). Panel (a): the true density
(dash) and the density estimates of MCMC method (solid); Panel (b): the true density (dash) and the density estimates of
SUGS method (solid); panel (c): the true density (dash ) and the density estimates of OO method using parfor, respectively.
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Figure 2: Comparison of the simulated data (n=200) with predictives (MCMC, SUGS and OO). Panel (a): the true density
(dash) and the density estimates of MCMC method (solid); Panel (b): the true density (dash) and the density estimates of
SUGS method (solid); panel (c): the true density (dash ) and the density estimates of OO method using parfor, respectively.
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Figure 3: Comparison of the simulated data (n=500) with predictives (MCMC, SUGS and OO). Panel (a): the true density
(dash) and the density estimates of MCMC method (solid); Panel (b): the true density (dash) and the density estimates of
SUGS method (solid); panel (c): the true density (dash ) and the density estimates of OO method using parfor, respectively.
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then SUGS also picks out the best predictive whereas we estimate by averaging. However, for smaller

sample sizes obtaining an optimal ordering appears the best choice.

5.2. Galaxy data set145

It would be remiss for us not to estimate predictive densities using the widely studied galaxy data,

which are the measured velocities of 82 galaxies; see, for example, the works of [13] and [14]. The sample

size of the data is n = 82, which includes six will-separated conic sections of space. We use the priors

with the same parameters set. The estimated predictive density functions are given in Fig. 4. This is

compared with the MCMC estimate, the kernel smoothed density estimate, and the SUGS estimate. Our150

method gave five distinctive clusters, which agrees with the results of [13] and [14]. Also, the runtime

(in seconds) of our method is very close to SUGS, which agrees with the findings in Table 2.

5.3. Regression case

The regression model we consider here comes from a real life case study between researchers at the

University of Kent and a manufacturer of precision sensors; supported by a Knowledge Transfer Project155

and funded by the Technology Strategy Board, UK. The company manufacturing high precision sensors

had accumulated huge historical databases on a type of sensor.

For the dataset we consider, there are response vectors (yi) and input vectors (xi1, . . .xip) for each

sensor i, where i = 1, . . . , n = 202 denotes the number of sensors in the dataset and p denotes the number

of independent factors related to the response. In practice, each yi is a 32×1 vector and Xi = (xi1, . . .xip)160

is a 32× 5 matrix. The model relating response and input vectors is the linear regression model:

yi = Xiβi + εi, (13)

where the εi is a 32× 1 vector of independent errors all with a normal distribution with zero mean and

variance λ−1. The βi is a 5× 1 vector of regression coefficients; a different set for each i.

The ordinary least square (OLS) estimates of the parameters (βi) demonstrate that the values exhibit

multi-modality. Figure 5 shows the histogram of the 202 OLS estimates of the parameters (βi3), where165

βi3 is the third component in the vector βi = (βi1, . . . , βi5) and i = 1, . . . , 202. Thus in a Bayesian

analysis, using a multivariate normal distribution for these random effects would be insufficient. Hence

a large model for the distribution of the (βi) is needed and we take this to be a Dirichlet process.

Consequently, the nonparametric regression model we use here is given by

f(y|X) =

∞∑
j=1

wj MVN32(y|Xβj , Im/λ),

where the prior for each βj is given by

π(βj) = MVN5(β0,Σ/λ)

and with π(λ) = Ga(λ|a, b). In the analysis we use the prior settings of a = 3 and b = 1 with c = 50.
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Figure 4: Comparison of the galaxy data with predictives (MCMC, SUGS and OO). Panel (a): the density estimates of
MCMC method (solid); Panel (b): the density estimates of SUGS method (blue); panel (c): the density estimates of OO
method using parfor, respectively.
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Figure 5: Histogram of 100 estimates of (βi3), the third component in the vector (βi), for i = 1, . . . , 100.
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The prior parameters (β0,Σ) are derived from further available historical data and specifically

β′0 = (1.0001, 0.0004,−0.008, 0, 0)

and

Σ =



0.049 0.009 −0.004 0 0

0.009 0.017 −0.007 0 0

−0.004 −0.007 0.007 0 0

0 0 0 2× 10−6 0

0 0 0 0 4× 10−7


Following a similar procedure as the independent case, we generateM = 100 sequences of (d1, . . . , d202).

For each such sequence we sample the corresponding parameters (w, β, λ). Once we have these samples,170

we can sample predictive samples of the “next” sensor, i.e. sensor 203, which has a particular covariate

value and in reality we do know what the observations from this sensor are to allow a comparison of the

predictive sample with the true observations. Figure 6 shows the comparison of a true response with 100

predictive samples, and the fit is good.

6. Discussion175

In this paper we have presented a fast approximate simulation of the MDP model which uses sequential

conditional maximization routines to obtain an optimal ordering for the data. This is the key novelty

of the paper. The algorithm does not use MCMC. We use the prior model for weights and locations

to be the usual conjugate style priors. With such a prior we can, once we have a set of allocation

variables, obtain an explicit form for the predictive density function; namely a mixture of Student-t180

density functions. The allocation variables can be sampled approximately in quite an easy way; for each

set of variables we have an explicit form for the predictive and our overall estimate of the density is an

average over these predictives.

We have compared our algorithm with both MCMC and SUGS. The idea is that our algorithm and

SUGS do not use MCMC and hence are time-wise faster than MCMC. Our algorithm obtains an optimal185

ordering of the data and hence does not need multiple permutations which SUGS needs. SUGS then

uses one (di) per permutation whereas we sample many (di) and average over the ensuing predictives.

Supplementary material. MATLAB code for the algorithm, with instructions, and the data sets for

all the illustrations in section 5 are provided in the supplementary material.
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