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Abstract

Reconstructing the meaning of a program from its binary is known as reverse

engineering. Since reverse engineering is ultimately a search for meaning, there is

growing interest in inferring a type (a meaning) for the elements of a binary in a

consistent way. Currently there is no consensus on how best to achieve this, with

the few existing approaches utilising ad-hoc techniques which lack any formal basis.

Moreover, previous work does not answer (or even ask) the fundamental question

of what it means for recovered types to be correct.

This thesis demonstrates how solvers for Satisfiability Modulo Theories (SMT)

and Constraint Handling Rules (CHR) can be leveraged to solve the type recon-

struction problem. In particular, an approach based on a new SMT theory of

rational tree constraints is developed and evaluated. The resulting solver, based

on the reification mechanisms of Prolog, is shown to scale well, and leads to a reifi-

cation driven SMT framework that supports rapid implementation of SMT solvers

for different theories in just a few hundred lines of code.

The question of how to guarantee semantic relevance for reconstructed types

is answered with a new and semantically-founded approach that provides strong

guarantees for the reconstructed types. Key to this approach is the derivation of

a witness program in a type safe high-level language alongside the reconstructed

types. This witness has the same semantics as the binary, is type correct by con-

struction, and it induces a (justifiable) type assignment on the binary. Moreover,

the approach, implemented using CHR, yields a type-directed decompiler.

Finally, to evaluate the flexibility of reificiation-based SMT solving, the SMT

framework is instantiated with theories of general linear inequalities, integer dif-

ference problems and octagons. The integer difference solver is shown to perform
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competitively with state-of-the-art SMT solvers. Two new algorithms for incre-

mental closure of the octagonal domain are presented and proven correct. These

are shown to be both conceptually simple, and offer improved performance over

existing algorithms. Although not directly related to reverse engineering, these

results follow from the work on SMT solver construction.
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Chapter 1

Introduction

The author of a high-level language program may utilise a wide range of abstrac-

tions for describing their algorithm: variables, compound arithmetic expressions,

loops, functions, high-level types (arrays, structures, lists, maps etc), object hier-

archies, threads and so on. But during compilation programs are converted into

low-level operations on registers and memory, and all these carefully crafted ab-

stractions are lost. This is unfortunate. Consider taking a poem and summarising

it in shorthand: Semantically the actions and descriptions of the poem can be

entirely reproduced from the summary. Yet all rhyme and rhythm, the nuances

of meaning, emotion and word plays, sentence structure and even visual cues like

the form of the text on the page, are lost. Similarly, in compilation programs are

transformed from elegantly engineered operational or declarative descriptions into

a series of opaque instructions. Reverse engineering (reversing) attempts to make

good this loss and uncover the operation and intent of a compiled program, either

by abstracting over the machine code to recover the original program features, or

by identifying entirely new traits that expose program functionality.

The history of software reversing has roots in the history of programming lan-

guage development itself: The earliest reverse engineering tools were disassemblers

developed to debug the first assembly language programs. A recurring application

is the reuse of legacy software, initially during the transition from second gener-

ation (transistor based) to third generation (integrated circuit based) computers

in the mid 1960’s to early 1970’s [53]. Though the earliest high level languages
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CHAPTER 1. INTRODUCTION 2

(such as ALGOL, COBOL and Fortran) were developed on second generation ma-

chines, most of the programs of the era were written in assembler, and thus not

portable. As second generation machines were rapidly replaced by third genera-

tion installations, there was a widespread desire to reuse existing programs, which

resulted in the first research into decompilation [44, 52, 53, 58, 60]. In the 1980’s a

prolific use of reversing was for breaking software protection to distribute software

(games, mostly) illegally [107]. Compaq famously reverse engineered the IBM PC

BIOS (Basic Input/Output System) to produce the first IBM PC clones in 1982

[20]. The theme of reversing proprietary systems has continued with the reverse

engineering of hardware drivers and software protocols to produce equivalents for

open source operating systems [25, 32, 48, 117].

However, reverse engineering remained mostly a niche activity until relatively

recently, when its most important applications became apparent; those relating to

software security. The last two decades have seen numerous exposures of serious

security vulnerabilities in widely used software (see, for example [40, 95, 97]), and

the advent of a global computer fraud and malware industry that is estimated

to cost the global economy hundreds of billions of dollars a year [67]. Anti-virus

companies use reversing to uncover the operation of malware, while government,

defense and security agencies reverse Commercial-off-the-Shelf (COTS) software in

search of security vulnerabilities. Governments are also thought to utilise reverse

engineering to engage in more disreputable activities, such as breaking into the

nuclear facilities of other sovereign nations [88].

Due to the niche it occupies, advances in software reversing have trailed those

in programming languages, compilers, and the complexity of programs themselves.

As a result modern binaries present many challenges to reversing. Unfortunately,

there is a lack of well developed tools to meet these challenges [116], and the

issue is exacerbated by the secrecy within which the groups most actively engaged

in binary reversing operate: Relatively few studies [6, 116] have examined the

workflow and processes used by reverse engineers themselves, which has made it

difficult for industry to develop commercial software targeted at reversing.

The industry standard tool is Interactive Disassembler Pro (IDA Pro, or simply

IDA), a disassembler and debugger targeting a wide range of binary formats and

processor architectures [57, 116]. IDA has gained popularity as the best available



CHAPTER 1. INTRODUCTION 3

tool for the job, but has significant limitations, mostly due to its reliance on pat-

tern matching and heuristics to recognise the code constructs emitted by specific

compilers. When confronted with a change to the way a compiler emits, for ex-

ample, C switch statements, IDA does not recognise the new pattern and cannot

continue [76]. When faced with intentionally obfuscated code (from malware, and

with increasing regularity, standard commercial software), IDA becomes almost as

much of a hindrance as a grace. It is no surprise that reversing binaries with IDA

generally takes weeks or months of effort [116].

Given the limited commercial attention to software reversing, it is somewhat

astonishing that the topic receives so much attention from academia. There are

several well established conferences (e.g. [15, 39, 47, 80, 89], though WCRE, the

Working Conference on Reverse Engineering, recently folded) and the field, while

still playing catch up, is reasonably mature. Some disparity between academia and

industry is not unusual, but it is particularly marked in this case, in part because

academics are not typically able to communicate directly with reverse engineers,

and because it is not clear to industry which academic advances, that are broadly

speaking only ever prototyped, might be developed into fully fledged tools. Studies

into the work practices of reverse engineers have stated scalability and reliability of

automated tools as problems [116]. Tools that do not scale to binaries beyond a few

megabytes in size are of limited use, as are those that cannot deal with irregularities

introduced by unusual compiler constructs, or obfuscated malware code. This

precludes the vast majority of academic implementations, which naturally seek to

demonstrate and evaluate science first, and focus on engineering second.

Yet, academia has developed techniques to meet challenges such as Control

Flow Graph (CFG) recovery [26] and type reconstruction [100], and tailored ab-

stract interpreters to compute useful approximations of possible machine code

values [35] (topics that will be covered here in due course). In addition, the last

decade has seen the rise of powerful boolean satisfiability (SAT), Satisfiability Mod-

ulo Theory (SMT) [34] and Constraint Handling Rules (CHR) [45] solvers, that

are able to solve a range of computationally hard problems. This thesis makes

the case that these solvers are perfectly suited to building the next generation of

principled, accurate and scalable reverse engineering tools, and that, in particular,

the open problems of automated type reconstruction and decompilation are fully
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achievable.

1.1 Type reconstruction

Reversing amounts to searching for a high-level meaning that is consistent across

a binary. Typing, likewise, checks the elements of a high-level program combine

in a consistent, meaningful way. Types themselves can expose the semantics of a

program, yielding a powerful abstraction for the reverse engineer [81]. Types can

also guide test-generation in fuzzing [114], help locate information in a core dump

in memory-based forensics [22], and support program reconstruction [37, 100].

Machine code is untyped, as all program data is stored in all-encompassing

registers and memory that must be able to hold data of any type. Registers are

of limited size (generally 64 bits or less) and are therefore normally only used to

store scalar values. Composite types such as arrays, structs, and arbitrary data

structures (objects, lists, trees etc) must therefore be stored in memory (stack or

heap) and accessed via pointers. Individual array entries, struct fields etc are stored

contiguously in memory, though they may be separated by redundant padding, to

word-align each element. The object is then referenced by a pointer to its first

element. Since low-level machine code instructions can only operate directly on

scalar values, high-level language operations on composite types must be broken

down to access individual elements of the composite object. This is done either by

modifying the pointer to the object directly (for example by iterating it to point

at subsequent array entries) or by using indexed addressing modes. Consider for

example, the following C linked list type, and code for iteratively summing the

elements in such a list:

struct list {
int value;
struct list ∗next node;

};

int
iterative sum(struct list ∗list node) {
int sum = 0;
while (list node != NULL) {
sum += list node−>value;
list node = list node−>next node;
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}
return sum;

}

The equivalent x86 code, given below, accesses the value element of the list node

by dereferencing the pointer stored in edx, and the next_node element using in-

dexed address arithmetic that adds four bytes to the same pointer and then deref-

erences the result, i.e. [edx+0x4]. The pointer to list_node itself is passed to

the function on the stack at [esp+0x4].

mov edx, [esp+0x4]
mov eax, 0x0

loop: test edx, edx
jz end
add eax, [edx]
mov edx, [edx+0x4]
jmp loop

end: ret

The seminal work on type reconstruction was by Mycroft [100], who observed

that although machine instructions are essentially untyped, a given instruction has

a finite number of possible typings with respect to a specific high-level type system.

Mycroft formulated each possible typing as a constraint over type variables, and

gave the typing for an instruction as a disjunction of those constraints. To illustrate

consider the instruction mov eax, 0x0, that moves the literal zero into a register,

and can be typed in two possible ways (with respect to a C-like type system). The

first possibility is that eax is a four byte integer being set to zero, the second that

it is a pointer of some sort being initialised with NULL. In this case, the constraint

Teax = int32 _ Teax = ptrpαq might be generated to express this, where

int32 indicates a 32 bit integer, and ptrpαq a pointer to some unknown type α.

Mycroft showed that a solution to a set of such constraints would type a pro-

gram fragment through type unification [91], and that, by using circular unification

[85], recursive types (such as the linked list given in the above example) could also

be recovered. It was also shown that the disjunctive nature of the constraints can

in general lead to multiple solutions. However, beyond a description of his modi-

fied unification algorithm, Mycroft did not provide a method to actually solve such

constraint systems.

The first body of work in this thesis is motivated by the problem of solving type
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constraints similar to those demonstrated by Mycroft, in order to type machine

code automatically. It is shown that this can be achieved by formulating an SMT

instance over the theory of rational-trees [87] (which is the term commonly used

for circular unification in the context of constraint solving). Satisfiability Modulo

Theories (SMT) [103] describes a class of problems that consist of formulae in

a given first-order theory, composed with Propositional connectives. The first-

order theory of rational-trees is not currently supported in any off-the-shelf SMT

solver, but efficient rational-tree unification [68] is integral to many Prolog systems.

Prolog is therefore a natural choice for implementing such a solver as the theory

part of the solver is provided essentially for free.

1.1.1 SMT solving with lazy-basic

One straightforward approach to SMT solving is to apply the so-called lazy-basic

technique which decouples Boolean satisfiability (SAT) solving [34] from theory

solving. To illustrate, consider the SMT formula f = px ď −1_−x ď −1q ^ py ď

−1_−y ď −1q and the SAT formula g = pp_ qq ^ pr_ sq that corresponds to its

Propositional skeleton. In the skeleton, the Propositional variables p, q, r and s, re-

spectively, indicate whether the theory constraints px ď −1q, p−x ď −1q, py ď −1q

and p−y ď −1q hold. In this approach, a model is found for pp_ qq ^ pr _ sq, for

instance, tp ÞÑ true, q ÞÑ true, r ÞÑ true, s ÞÑ falseu. Then, from the model, a con-

junction of theory constraints px ď −1q ^ p−x ď −1q ^ py ď −1q ^  p−y ď −1q

is constructed, with the polarity of the constraints reflecting the truth assignment.

This conjunction is then tested for satisfiability in the theory component. In this

case it is unsatisfiable, which triggers a diagnostic stage. This amounts to finding a

conjunct, in this case px ď −1q ^ p−x ď −1q, which is also unsatisfiable, that iden-

tifies a source of the inconsistency. From this conjunct, a blocking clause p p_ qq

is added to g to give g1 which ensures that conflict between the theory constraints

is never encountered again. Then, solving the augmented Propositional formula

g1 might, for example, yield the model tp ÞÑ false, q ÞÑ true, r ÞÑ true, s ÞÑ trueu,

from which a second clause p r _ sq is added to g1. Any model subsequently

found, for instance, tp ÞÑ false, q ÞÑ true, r ÞÑ true, s ÞÑ falseu, will give a con-

junction that is satisfiable in the theory component, thereby solving the SMT
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problem.

The lazy-basic approach is particularly attractive when combining an existing

SAT solver with an existing decision procedure, for instance, a solver provided by

a constraint library. By using a foreign language interface a SAT solver can be

invoked from Prolog [27] and a constraint library can be used to check satisfiability

of the conjunction of theory constraints. A layer of code can then be added to

diagnose the source of any inconsistency. This provides a simple way to construct

an SMT solver that compares very favourably with the coding effort required to

integrate a new theory into an existing open source SMT solver. The latter is

normally a major undertaking and often can only be achieved in conjunction with

the expert who is responsible for maintaining the solver. Thus, although one might

expect implementing a new theory to be merely an engineering task, it is actually

far from straightforward.

Prolog has rich support for implementing decision procedures for theories, for

instance, attributed variables [56, 59]. (Attributed variables provide an interface

between Prolog and a constraint solver by permitting logical variables to be as-

sociated with state, for instance, the range of values that a variable can possibly

assume.) Several theories come prepackaged with many Prolog systems. This

raises the questions of how to best integrate a theory solver with a SAT solver,

and how powerful an SMT solver written in a declarative language can actually be.

This motivates further study of the coupling between the theory and the Propo-

sitional component of the SAT solver which goes beyond the lazy-basic approach,

to the roots of logic programming itself.

The equation Algorithm = Logic + Control [78] expresses the idea that in logic

programming algorithm design can be decoupled into two separate steps: specify-

ing the logic of the problem, classically as Horn clauses, and orchestrating control

of the sub-goals. The problem of satisfying a SAT formula is conceptually one of

synchronising activity between a collection of processes where each process checks

the satisfiability of a single clause. Therefore it is perhaps no surprise that control

primitives such as delay declarations [102] can be used to succinctly specify the

watched literal technique [98]. In this technique, a process is set up to monitor

two variables of each clause. To illustrate, consider the clause px_ y _ zq. The

process for this clause will suspend on two of its variables, say x and y, until one
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of them is bound to a truth-value. Suppose x is bound. If x is bound to true then

the clause is satisfied, and the process terminates; if x is bound to false, then the

process suspends until either y or z is bound. Suppose z is subsequently bound,

either by another process or by labelling. If z is true then y is bound to true

since otherwise the clause is not satisfied; if z is false then the clause is satisfied

and the process closes down without inferring any value for y. Note that in these

steps the process only waits on two variables at any one time. Unit propagation is

at the heart of SAT solving and when implemented by watched literals combined

with backtracking, the resulting solver is efficient enough to solve some non-trivial

Propositional formulae [61, 62, 64]. In addition to issues of performance the cor-

rectness of this approach has been examined [38]. To summarise, Prolog not only

provides constraint libraries, but also the facility to implement a succinct SAT

solver [64]. The resulting solver can be regarded as a glass box, as opposed to a

black one, which allows a solver to be extended to support, among other things,

new theories and theory propagation.

1.1.2 SMT solving with theory propagation

The lazy-basic approach to SMT alternates between SAT solving and checking

whether a conjunction of theory constraints is satisfiable which, though having

conceptual and implementation advantages, is potentially inefficient. With a glass

box solver it is possible to refine this interaction by applying theory propagation.

In theory propagation, the SAT solving and theory checking are interleaved. The

solver not only checks the satisfiability of a conjunction of theory constraints,

but decides whether a conjunction of some constraints entails or disentails others.

Returning to the earlier example, observe that px ď −1q ^ p−x ď −1q is unsatisfi-

able, hence for the partial assignment tp ÞÑ trueu it follows that px ď −1q holds in

the theory component, therefore p−x ď −1q is disentailed and the assignment can

be extended to tp ÞÑ true, q ÞÑ falseu. Theory propagation is essentially the coor-

dination problem of scheduling unit propagation with the simultaneous checking

of whether theory constraints are entailed or disentailed.

Chapter 2 presents an SMT solving framework that utilises reification in Prolog

to synchronise theory and unit propagation, and in so doing enables development



CHAPTER 1. INTRODUCTION 9

of SMT solvers that are both efficient and elegant. Reification is a constraint han-

dling mechanism in which a constraint is augmented with a Boolean variable that

indicates whether the constraint is entailed (implied by the store) or disentailed

(is inconsistent with the store). This enables close coupling of unit and theory

propagation, such that the SAT and theory solvers drive each other towards a

solution instead of being led purely by SAT search heuristics as in the lazy-basic

approach [46, 103]. Together Chapters 2 and 3 build on this mechanism to offer an

expanded and revised version of the work presented in [108] and [109], and make

the following contributions:

• A framework for using reification as a mechanism to realise theory prop-

agation is presented. The idea is simple in hindsight and can be realised

straightforwardly in Prolog. The clarity and brevity of the code contrasts

with the investment required to integrate a theory into an existing open

source SMT solver.

• This framework is illustrated for three theories:

– The first theory is that of rational-trees, where the control is provided

by block and when-declarations to realise reification.

– The second theory is that of quantifier-free linear real arithmetic, where

CLP(R) provides a decision procedure for the theory part of the solver;

reification is achieved using a combination of delay declarations and

entailment checking.

– The third theory is that of quantifier-free integer difference logic, with

the decision procedure for the theory coded in Prolog and theory propa-

gation realised again using entailment checking and delay declarations.

• A new algorithm for finding the unsatisfiable core of an SMT instance is

presented, alongside a correctness argument. The algorithm is faster than

the well known QuickXplain [74] algorithm.

• Quantifier-free integer difference logic is a theory that is widely supported

by SMT solvers. As a strength test, the Prolog-based solver is benchmarked
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against a popular open-source SMT solver, CVC, using standard SMT-LIB

benchmarks.

• It is demonstrated that an elegant Prolog-based solver is capable of recover-

ing types for a range of binaries. The solver is benchmarked on these type re-

covery problems and also compared against an SMT solver constructed from

interfacing PicoSAT as a black-box solver using the lazy-basic approach (i.e.

without theory propagation). It is also shown how the failed literal tech-

nique [83] is simply realised in Prolog to optimise the search. This is a SAT

heuristic that discards those Propositional variables (or literals) that falsify

the Propositional formula in a single propagation step, so that the search

can be focused on other literals.

• Cutting through all of these contributions, it is argued that SMT has a role

in type recovery, indeed an SMT formula is a natural medium for expressing

the disjunctive nature of the types that arise in reverse engineering.

1.2 Type reconstruction as decompilation

The work of Chapters 2 and 3 succeeded in typing some hand-crafted binaries,

and critically, in achieving its intended objective of building a capable solver for

the rational tree constraint system proposed by Mycroft. However, when the

type reconstruction was evaluated against larger real-world binaries (the results

of which are presented in Chapter 3), an inherent shortcoming of the approach

was revealed. Subtle errors in the constraints produced for a single instruction

were found to lead to conflicts during constraint resolution that were hard to

diagnose. Similar issues could be caused by errors in the intermediate machine code

representation. Though in time these (seemingly minor) problems could be in some

sense “fixed”, it was impossible to have confidence that all constraints were correct.

In fact, even if solving yielded apparently meaningful types, and even if they

corresponded empirically to the original program types, it was impossible to have

confidence that the system as a whole was fundamentally correct. This situation

is naturally quite unsatisfactory. On reflection, the problem (which has been

recognised independently [19]) stems from the absence of a formal link between
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the x86 instruction semantics (which are themselves not formally defined), the

constraints, and the target high-level language type system itself.

Unfortunately, other work in the field suffers from the same problem: Type

recovery has been more make-shift and make-do than a discipline shaped by for-

mal principles. IDA Pro applies heuristics to assign simple types to locals [49].

REWARDS [84] recovers types from a single execution trace, which sheds no light

on other traces. TIE [81], SecondWrite [41] and Retypd [104] badge themselves

as being principled, but do not relate their type judgements to the semantics of

the binary (which remain unspecified). Further, a recent survey [19] identified

381 works on binary type inference, none of which report anything more than an

empirical correctness evaluation. Yet a firm semantic footing for these type sys-

tems is essential; a type recovery system which derives an incorrect type can easily

mislead a reverse engineer undertaking a security audit, or misdirect a fuzzer into

the wrong search space. The consensus is that types assigned to the binary should

correspond to the original types of the source. But, needless to say, in reverse en-

gineering this is almost always unavailable. This begs the question: what does it

mean for the types to be correct, if there is no source to check correctness against?

Chapter 4 (an expanded and revised version of [110]), answers this question

from a semantic perspective by constructing a witness program in a type-safe high-

level language. The witness is not an arbitrary program, but carefully constructed

to semantically coincide with the binary. Then, by proving that the witness is

type-correct, it is established unequivocally that the binary inhabits the recovered

types. Structural operational semantics (SOS) define the exemplar low-level and

high-level languages, inspired by x86 and C respectively. The centrepiece of the

formalisation is a decompilation relation that defines how the witness faithfully

mimics the executable, and under what conditions. Together these components

add up to a semantically-justified type-based decompiler. In summary, Chapter 4

makes the following contributions:

1. A novel semantics-driven approach to type recovery is presented that vali-

dates the types inferred for a low-level (MinX) program with a high-level

1Note that this large number is attributable to the inclusion of works on shape analysis, that
identify pointer based structures in memory dynamically (using concrete values), and are thus
not directly related to static type reconstruction.
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witness (MinC) program. Unique to the work is a rigorous connection from

the MinX binary to the MinC witness, founded on three key semantic com-

ponents:

(a) an SOS for MinX, designed as an abstraction of x86 to elucidate crucial

control-flow details, such as the argument passing convention, needed

to show that the MinX and MinC memories remain truly in sync;

(b) an SOS and static type system for MinC, a type-safe dialect of C de-

signed to illustrate decompilation of pointer arithmetic and the recovery

of recursive structures;

(c) a decompilation relation, that conservatively specifies when a MinX

program corresponds to a MinC program.

2. In two steps it is formally proven that the MinX program inhabits the re-

covered types:

(a) First it is shown that the witness program is type-correct for the derived

types.

(b) Then the operational equivalence of the MinC witness program and

the original MinX program is established in the form of memory con-

sistency.

3. A type-based decompiler is distilled from the decompiler relation and demon-

strates the potential of the approach.

(a) It is shown how non-deterministic choices in the relation can be replaced

with constraint propagators to give a solver that incrementally infers

the witness and the types; the resulting solver is thus solidly based on

the decompilation relation.

(b) The solver is applied to MinX binaries generated from over 21 textbook

[122] C programs that manipulate splay trees, treaps, pairing heaps, etc.

All (recursive) datatypes are successfully recovered.
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1.3 Decision procedures for the octagon abstract

domain

As detailed previously, Chapters 2, 3 and 4 focus on different aspects of reconstruct-

ing the types applicable to the registers and memory of machine code programs.

The next body of work in this thesis targets a different aspect of binary reversing,

namely the problem of statically inferring the possible values that registers and

memory may take. When considering this problem, the first point to consider is

that it is not tractable to enumerate all the possible values of each register and

memory location at each program point through every path in a program. Even

for small programs, the number of possible paths is large enough that it might

take a lifetime to enumerate them all [8, Chapter 1].

Instead, the accepted wisdom is to deal with a program abstraction, using the

abstract interpretation (AI) framework first established in [28]. The force of AI is

that it provides a tractable means to compute an over-approximation of the possi-

ble values of a program’s variables (or in this case, registers and memory). This is

achieved by defining a concrete domain that captures the property of interest, and

an abstract domain that abstracts that property. Perhaps the simplest example

is the interval domain, where ranges are constructed that describe the maximum

and minimum values that program variables may take, as an abstraction of the

actual concrete values. To complete the abstract interpretation, the semantics of

both domains must be defined and related. The concrete domain is described by

the collecting semantics, which details how concrete values are constructed by pro-

gram execution. Meanwhile, the abstract semantics perform the same function for

the abstract domain, instead describing how each program statement transforms

the abstract state.

The relationship between the domains is defined by two mappings; the abstrac-

tion mapping α, and the concretisation mapping γ. The former, α, maps concrete

states to their abstract counterparts, while γ performs the dual. Taking the in-

terval domain as an example, a given set of possible concrete values for a variable

x, say t1, 2, 5u are abstracted under α to yield αpt1, 2, 5uq = r1, 5s. At the same

time, it is easy to see that the abstraction creates an over-approximation, because

the concretisation of the interval is γpr1, 5sq = t1, 2, 3, 4, 5u, a strict superset of
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t1, 2, 5u. Note that though information has been lost, all the concrete states have

been captured, and there is still sufficient information to reason that x cannot be

strictly less than 1 and strictly greater than 5. AI is applied by using the abstract

semantics to compute the abstract state until a fixpoint is reached (i.e. the ab-

stract state no longer changes). Various techniques, most notably widening [28],

may be employed to guarantee convergence to a fixpoint. However, at this point we

must refer the reader to the very thorough explanation of AI given in [1]. Instead,

we will now focus on one particular abstract domain; the octagon domain.

The octagon domain [94] has become the de facto standard domain for large-

scale program analysis. Each invariant in the domain is a system (conjunction) of

inequalities over the variables in the program; each inequality takes the restricted

form of ˘xi˘ xj ď c, where xi and xj are variables and c is a numerical constant.

When xi = xj the inequality is unary otherwise it is dyadic (binary). A unary

inequality can express a lower or an upper bound on a variable; whereas a dyadic

inequality places a lower or an upper bound on either the difference between two

variables or their sum. A solid planar octagon is expressed as the system

x2 ď 1 ^ x1 + x2 ď 1 ^ x1 ď 1 ^ x1 − x2 ď 1 ^

−x2 ď 1 ^ −x1 − x2 ď 1 ^ −x1 ď 1 ^ −x1 + x2 ď 1

hence the name of the domain. The domain of octagons is more expressive than the

domain of intervals [54] because intervals cannot express differences [92]. Moreover,

octagons are more expressive than differences [92] since differences cannot bound

sums. Yet the domain of octagons is not as rich as the two-variable-per-inequality

(TVPI) abstract domain [112] which relaxes the requirement that coefficients are

˘1 and the TVPI domain is, in turn, less expressive than general polyhedra [30]

that permit arbitrary n-ary inequalities to be represented.

Domain construction is a balancing act since increasing expressiveness normally

degrades performance. The octagon domain has proved to be popular because it

is rich enough to support many client applications, yet all its operations can be

reduced to shortest path problems [43]. Octagons have been applied in model

checking [71], shape analysis [86], interpolation [50], proving program termination

[13] and deployed in commercial static analysis tools [29]. Any computational
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improvement for this domain thus promises to have wide impact.

Minè , who first proposed this domain [94], used difference bound matrices

(DBMs) to represent a system of octagonal inequalities. His insight was to in-

troduce auxiliary variables x1
2i+1 = −xi and put x1

2i = xi so that inequalities

such as xi + xj ď c and −xi − xj ď c can be translated into differences, namely

x1
2i−x1

2j+1 ď c and x1
2i+1−x1

2j ď c, and thereby represented with DBMs. Moreover

the unary inequalities xi ď c and −xi ď c can also be represented as differences

by x1
2i − x1

2i+1 ď 2c and x1
2i+1 − x1

2i ď 2c respectively. Minè derived a canonical

form for octagons by applying a Floyd-Warshall style algorithm [43] on the DBMs;

he also showed how all the domain operations can be reduced to computing this

canonical form, which is derived by an operation called closure. The intuition

behind closure is that it makes explicit all entailed unary and binary constraints

and thereby provides a canonical representation. As well as combining two dif-

ferences such as x1
i − x1

j ď c1 and x1
j − x1

k ď c2 to derive the entailed inequality

x1
i− x1

k ď c1 + c2, closure amalgamates unary constraints into a binary constraint.

This requires special logic since xi ď c1 and xj ď c2 are encoded as x1
2i−x1

2i+1 ď 2c1

and x1
2j − x1

2j+1 ď 2c1 which need to be combined to give x1
2i − x1

2j+1 ď 2c1 + 2c2

that encodes xi + xj ď c1 + c2. Likewise −xi ď c1 and −xj ď c2 need to be

combined to give −xi − xj ď c1 + c2, etc.

Minè adapted the Floyd-Warshall algorithm, which repeatedly combines differ-

ences, to handle unary constraints. Later it was independently shown, through an

ingenious correctness argument [3], that unary constraints can be handled outside

the main loop of the Floyd-Warshall algorithm, in a post-processing step called

strengthening. This result led to a performance improvement of approximately

20% [3] which is truly worthwhile. Another worthwhile refinement, which was ad-

vocated by Minè himself [93], is to exploit the frequent use-case in which a single

inequality is added to a closed system. Minè reordered the columns and rows of

the DBM (at least conceptually) so that only entries in the last two columns and

rows were recomputed, which led to a quadratic algorithm. Chapter 5 makes the

observation that an incremental algorithm for closure can be derived by consider-

ing only the paths that might change when adding a new constraint. As with the

strengthening refinement, which is essentially a very clever form of code motion,

this observation likewise leads to simpler and more efficient code.
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Chapter 5 proposes a new incremental algorithm for closing an octagon rep-

resented as a DBM. The chapter is a revised and expanded version of [23], and

additionally corrects an error in that paper (see example 6 in Section 5.2.2). The

chapter makes the following contributions:

• The new algorithm is simple and offers a significant performance benefit over

prior approaches.

• The correctness of the algorithm is proven and experimental results are pre-

sented which quantify their relative speed.

• Substantially simpler and more concise (than [3]) correctness proofs are pro-

vided for non-incremental versions of the algorithm.



Chapter 2

Theory Propagation and

Reification

DPLL-based SAT solvers have advanced to the point where they can rapidly decide

the satisfiability of structured problems that involve tens of thousands of variables.

SAT Modulo Theories (SMT) seeks to extend these ideas beyond Propositional

formulae to formulae that are constructed from logical connectives that combine

constraints drawn from a given underlying theory. This chapter introduces the mo-

tivating problem of type reconstruction from binaries, and explains why it leads

to work on theory propagation in a Prolog SMT solver. An SMT solving frame-

work based on reification in Prolog is introduced, including a new algorithm for

calculating the unsatisfiable core of an insoluble SMT instance, whose correctness

is argued.

2.1 Illustrative example

Returning to the earlier example of Section 1.1, consider the problem of inferring

types for the registers of the x86 assembly function, which is reprinted below:

1 mov edx, [esp+0x4]
2 mov eax, 0x0
3 loop: test edx, edx
4 jz end
5 add eax, [edx]
6 mov edx, [edx+0x4]
7 jmp loop
8 end: ret

17
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Recall that the function iteratively sums the elements in a C linked list of type:

struct list { int value; struct list *next_node; }

The function is simple: first edx is set to point at the first list item (from the

argument carried at [esp+0x4]) and eax, the accumulator, is initialised to 0 (lines

1 and 2). In the loop body the value of the item is added to eax (line 5) and

edx is set to point to the next item by dereferencing the next_node field from

[edx+0x4] (line 6). This repeats until a NULL pointer is found by the test on

line 3, whereupon execution jumps to end and the function returns.

Before typing the function, indirect addressing is simplified by introducing new

operations on fresh intermediate variables (A, B and C below). This reduction

ensures that indirect addressing only ever occurs on mov instructions, thus simpli-

fying the constraints on all other instructions. Registers are then broken into live

ranges by transforming into Single Static Assignment (SSA) form [33]. This gives

each variable a new index whenever it is written to, and joins variables at control

flow merge points with φ functions. The listing below shows the result of applying

these transformations:

1 mov A1, esp0
2 add A2, 0x4
3 mov edx1, [A2]
4 mov eax1, 0x0
5 loop: mov peax2,edx2q,

φ(peax1,edx1q, peax3,edx3q)
6 test edx2, edx2
7 jz end
8 mov B1, [edx2]
9 add eax3, B1

10 mov C1, edx2
11 add C2, 0x4
12 mov edx3, [C2]
13 jmp loop
14 end: ret

Rational-tree [65] constraints, describing unification of terms and type variables,

are now derived for each instruction. These are similar to the disjunctive con-

straints described by Mycroft for RTL [100], but include a memory model that

tracks pointer manipulation by representing memory in ‘pointed to’ locations as
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a 3-tuple. These work in much the same way as the zipper data structure of

functional languages [66]. The type of the specific location being pointed to is

the middle element, the first element is a list of types for the bytes preceding the

location, and the last the types for the bytes succeeding. The lists are open, as in-

dicated by the ellipsis (. . . ), since the areas of memory extending to either side are

unknown. For example, consider add on line 11. This gives rise to two constraints,

one for each possible meaning of the code:

pTC2 = basic( , int, 4)^ TC1 = TC2q

_

˜

TC1 = ptrpxr... s, β0, rβ1, β2, β3, β4, ...syq ^

TC2 = ptrpxr... , β0, β1, β2, β3s, β4, r...syq

¸

The first clause of the disjunction states that C2 is of basic type, specifically a four

byte integer (derived from the register size) with unknown signedness (as indicated

by a sign parameter that is an uninstantiated variable), the result of adding 4 to

C1, which has the same type. This is disjoint from the second clause, that asserts

that C1 is a pointer to an unknown type β0, whose address is incremented by 4 by

the add operation so that its new instance, C2, points to another location of type

β4. Observe how TC1 prescribes types of objects that follow the object of type β0

in memory whereas TC2 details types of objects that precede the object of type

β4. If further information is later added to TC2 due to unification it will propagate

into TC1 , and vice-versa, thus aggregate types analogous to C structs are derived.

Table 1 shows all constraints generated for the program. Note that some type

variables have been relaxed to , indicating an uninstantiated variable, so as to

simplify the presentation of the types. The complete problem is described by

the conjunction of these constraints. Type recovery then amounts to solving the

constraints such that the type equations remain consistent, whilst also ensuring

that the Propositional skeleton of the problem is satisfied.

In the case of the example, for the register used to store the argument of type

struct list *, constraint solving will derive a recursive type:

Tedx1 = ptrpxr...s, basic( , int, 4), r , , , Tedx1 , , , , ...syq



CHAPTER 2. THEORY PROPAGATION AND REIFICATION 20

Line Generated Constraints
1 TA1 = Tesp0
2 pTA2 = basic( , int, 4)^ TA1 = TA2q_

ˆ

TA1 = ptrpxr... s, α0, r , , , α1, ...syq ^
TA2 = ptrpxr... , α0, , , s, α1, r...syq

˙

3 TA2 = ptrpxr...s, Tedx1 , r , , , ...syq
4 Teax1 = basic( , int, 4)_ Teax1 = ptrpxr...s, α2, r...syq
5 pTeax2 = Teax1 ^ Tedx2 = Tedx1q ^ pTeax2 = Teax3 ^ Tedx2 = Tedx3q
8 Tedx2 = ptrpxr...s, TB1 , r...syq

9

ˆ

Teax3 = basic( ,int,4) ^
Teax2 = Teax3 ^ TB1 = Teax3

˙

_
¨

˝

Teax3 = ptrpxr...s, α3, r...syq ^
Teax2 = ptrpxr...s, α4, r...syq ^

TB1 = basic( ,int,4)q

˛

‚_

¨

˝

Teax3 = ptrpxr...s, α5, r...syq ^
Teax2 = basic( ,int,4) ^
TB1 = ptrpxr...s, α6, r...syq

˛

‚

10 Tedx2 = TC1

11 pTC2 = basic( , int, 4)^ TC1 = TC2q_
ˆ

TC1 = ptrpxr... s, α7, r , , , α8, ...syq ^
TC2 = ptrpxr... , α7, , , s, α8, r...syq

˙

12 TC2 = ptrpxr...s, Tedx3 , r , , , ...syq

Table 1: Generated constraints

which requires rational-tree unification. Note that as Tedx1 is a pointer, it has a

size of four bytes, hence the 3 underscores that follow Tedx1 which correspond to 3

bytes of padding in this representation.

Observe that there may be multiple solutions; in fact the problem outlined

above has two solutions, which differ in typing eax1, eax2 and eax3. The first

correctly infers that they are (like B1) integers of size 4 bytes, while the second

defines them as pointers to an unknown type, ptrpxr...s, α5, r...syq. Both solutions
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have the following typings in common:

TB1 = basic( ,int,4)

Tedx1 = Tedx2 = Tedx3 = TC1 = ptrpxr...s, basic( , int, 4), r , , , Tedx1 , , , , ...syq

TC2 = ptrpxr..., basic( ,int,4), , , s, Tedx1 , r , , , ...syq

TA2 = ptrpxr..., α0, , , s, Tedx1 , r , , , ...syq

TA1 = Tesp0 = ptrpxr...s, α0, r , , , Tedx1 , , , , ...syq

The second solution is equivalent to typing eax as void* and performing addi-

tion using pointer arithmetic. In the wider context of a program, this solution is

removed by constraints derived from the main() function.

2.2 SMT and Theory Propagation

The Boolean satisfiability problem (SAT) is the problem of determining whether

for a given Boolean formula, there is a truth assignment to the variables of the

formula under which the formula evaluates to true. Most recent SAT solvers are

based on the Davis, Putnam, Logemann, Loveland (DPLL) algorithm [34] with

watched literals [98].

2.2.1 SAT solving and unit propagation

At the heart of the DPLL approach is unit propagation. Let f be a Propositional

formula in Conjunctive Normal Form (CNF) over a set of Propositional variables

X. Let θ : X Ñ ttrue, falseu be a partial (truth) function. Unit propagation

examines each clause in f to deduce a truth assignment θ1 that extends θ and

necessarily holds for f to be satisfiable. For example, suppose f = p x _ zq ^

pu _  v _ wq ^ p w _ y _  zq so that X = tu, v, w, x, y, zu and θ is the partial

function θ = tx ÞÑ true, y ÞÑ falseu. In this instance for the clause p x _ zq to

be satisfiable, hence f as a whole, it is necessary that z ÞÑ true. Moreover, for

p w _ y _  zq to be satisfiable, it follows that w ÞÑ false. The satisfiability of

pu _  v _ wq depends on two unknowns, u and v, hence no further information

can be deduced from this clause. Therefore θ1 = θ Y tw ÞÑ false, z ÞÑ trueu.
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sat(Clauses, Vars) :-

problem_setup(Clauses), elim_var(Vars).

elim_var([]).

elim_var([Var | Vars]) :-

elim_var(Vars), (Var = true; Var = false).

problem_setup([]).

problem_setup([Clause | Clauses]) :-

clause_setup(Clause),

problem_setup(Clauses).

clause_setup([Pol-Var | Pairs]) :- set_watch(Pairs, Var, Pol).

set_watch([], Var, Pol) :- Var = Pol.

set_watch([Pol2-Var2 | Pairs], Var1, Pol1):-

watch(Var1, Pol1, Var2, Pol2, Pairs).

:- block watch(-, ?, -, ?, ?).

watch(Var1, Pol1, Var2, Pol2, Pairs) :-

nonvar(Var1) ->

update_watch(Var1, Pol1, Var2, Pol2, Pairs);

update_watch(Var2, Pol2, Var1, Pol1, Pairs).

update_watch(Var1, Pol1, Var2, Pol2, Pairs) :-

Var1 == Pol1 -> true; set_watch(Pairs, Var2, Pol2).

Figure 1: Prolog SAT solver using watched literals [63]

Searching for a satisfying assignment proceeds as follows: starting from an

empty truth function θ, an unassigned variable occurring in f , x, is selected and

x ÞÑ true is added to θ. Unit propagation extends θ until either no further propa-

gation is possible or a contradiction is established. In the first case, if all clauses

are satisfied then f is satisfied, else another unassigned variable is selected. In

the second case, x ÞÑ false is added to θ; if this fails the search backtracks to a

previous assignment.

Figure 1 provides the code listing for a Prolog SAT solver using watched literals,

taken from [63]. The watched literals technique is founded on the observation that

a particular clause can provide further information only if it does not contain two

unassigned variables [98]. Therefore, for each clause of a problem, two unassigned

variables are watched, with propagation occurring once either is assigned. The

SAT solver in Figure 1 takes a problem in CNF, specified as a list of clauses, and a



CHAPTER 2. THEORY PROPAGATION AND REIFICATION 23

list of variables. Each clause is itself a list of pairs Pol-Var, where Var is a variable,

and Pol indicates whether the variable has positive or negative polarity by being

either true or false respectively. For each clause, the set_watch predicate is

called, which sets up the first two variables in the clause (Var1 and Var2) to be

watched. This is achieved by using a block declaration to suspend the watch

predicate as a coroutine until Var1 or Var2 is instantiated (as specified by the

corresponding ‘-’ in the arguments of the declaration).

When a variable is instantiated watch resumes and executes update_watch.

If the instantiated variable matches its polarity, the clause is satisfied, and the

coroutine exits successfully. Otherwise another variable is selected for watching.

If there are no variables left then the clause is unsatisfiable and the goal will fail.

The search is realised as previously explained by using the elim_var predicate

to assign variables to true or false, with unit propagation occurring via watch

whenever watched variables are assigned. The search for a satisfying assignment

is then completed simply by Prolog backtracking.

2.2.2 SMT solving, the lazy-basic approach

SAT modulo theories (SMT) gives a general scheme for determining the satisfia-

bility of problems consisting of a formula over atomic constraints in some theory

T , whose set of literals is denoted Σ [103, 115]. The scheme separates the Proposi-

tional skeleton – the logical structure of combinations of theory literals – and the

meaning of the literals. A bijective encoder mapping e : Σ Ñ X associates each

literal with a unique Propositional variable. Then the encoder mapping e is lifted

to theory formulae, using epφq to denote the Propositional skeleton of a theory

formula φ.

Consider the theory of quantifier-free linear real arithmetic where the constants

are numbers, the functors are interpreted as addition and subtraction, and the

predicates include equality, disequality and both strict and non-strict inequalities.

The problem of checking the entailment pa < bq ^ pa = 0_ a = 1q ^ pb = 0_ b =

1q |ù pa + b = 1q amounts to determining that the theory formula φ = pa <

bq ^ pa = 0 _ a = 1q ^ pb = 0 _ b = 1q ^  pa + b = 1q is not satisfiable. For this

problem, the set of literals is Σ = ta < b, ... , a+ b = 1u. Suppose, in addition, that
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the encoder mapping is defined:

epa < bq=x, epa = 0q=y, epa = 1q=z,

epb = 0q=u, epb = 1q=v, epa+ b = 1q=w

Then the Propositional skeleton of φ, given e, is epφq = x^py_zq^pu_vq^ w. A

SAT solver gives a truth assignment θ satisfying the Propositional skeleton. From

this, a conjunction of theory literals, T̂ hΣpθ, eq is constructed. The conjunction

contains the literal ` if θpep`qq = true and  ` if θpep`qq = false. The subscript

will be omitted when Σ refers to all literals in a problem. This problem is passed

to a solver for the theory that can determine satisfiability of conjunctions of con-

straints. Either satisfiability or unsatisfiability is determined, in the latter case the

SAT solver is asked for further satisfying truth assignments. Details of a Prolog

implementation of this approach can be found in [64].

2.2.3 SMT, the DPLL(T) approach

The approach detailed in the previous section finds complete satisfying assign-

ments to the SAT problem given by the Propositional skeleton before computing

the satisfiability of the theory problem T̂ hpθ, eq. Another approach is to couple

the SAT problem and the theory problem more tightly by determining constraints

entailed by the theory and propagating the bindings back into the SAT prob-

lem. This is known as theory propagation and is encapsulated in the DPLL(T )

approach. Figure 2 gives a recursive formulation of DPLL(T ) derived from Algo-

rithm 11.2.3 of [79]. A more general formulation of DPLL(T ) might replace lines

(11)-(15) with a conflict analysis step that would encapsulate not just the approach

presented, but also backjumping and clause learning heuristics. However, the key

component of DPLL(T ) is the interleaving of unit and theory propagation and the

choice of conflict analysis is an orthogonal issue. The instantiation to chronological

backtracking presented in Figure 2 was chosen to match the implementation work.

The first argument to the function DPLL(T ) is a Boolean formula f , its second

a partial truth assignment, θ, and its third an encoder mapping, e. In the initial

call, f is the Propositional skeleton of the input problem, epφq, and θ is empty.

DPLL(T ) returns a truth assignment if the problem is satisfiable and the constant
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(1) function DPLL(T )(f : CNF formula, θ : truth assignment, e : Σ Ñ X)
(2) begin
(3) (θ3, res) := propagate(f , θ, e, H);
(4) if (is-satisfied(f , θ3)) then
(5) return θ3;
(6) else if (res = K) then
(7) return K;
(8) else
(9) x := choose-free-variable(f , θ3);
(10) (θ4, res) := DPLL(T )(f , θ3 Y tx ÞÑ trueu, e);
(11) if pres = Jq then
(12) return θ4;
(13) else
(14) return DPLL(T )(f , θ3 Y tx ÞÑ falseu, e);
(15) endif
(16) endif
(17) end

(1) function propagate(f : CNF formula, θ : truth assignment,
(2) e : Σ Ñ X, D : set of theory literals)
(3) begin
(4) θ1 := θ Y tep`q ÞÑ true | ` P D X Σu Y tep`q ÞÑ false |  ` P D ^ ` P Σu;
(5) θ2 := θ1Y unit-propagation(f ,θ1);

(6) pD, resq := deduction(T̂ h(θ2, e));
(7) if (D = H _ res = K)
(8) return (θ2, res);
(9) else
(10) return propagate(f , θ2, e, D);
(11) endif
(12) end

Figure 2: Recursive formulation of the DPLL(T ) algorithm

K otherwise.

The call to propagate is the key operation. The function returns a pair consist-

ing of a truth assignment and res taking value J or K indicating the satisfiability

of f and T̂ hpθ, eq. The fourth argument to propagate is a set of theory literals, D,
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and the function begins by extending the truth assignment by assigning Propo-

sitional variables identified by the encoder mapping. Next, unit propagation as

described in Section 2.2.1 is applied. The deduction function then infers those

literals that hold as a consequence of the extended truth assignment. The func-

tion returns a pair consisting of a set of theory literals entailed by T̂ hpθ2, eq and

a flag res whose value is K if T̂ hpθ2, eq or θ2 is inconsistent and J otherwise. The

function propagate calls itself recursively until no further propagation is possible.

After deduction returns, if f is not yet satisfied then a further truth assignment is

made and DPLL(T ) calls itself recursively.

The key difference between the lazy-basic approach and the DPLL(T ) approach

is that where the lazy-basic approach computes a complete satisfying assignment

to the variables of the Propositional skeleton before investigating the satisfiability

of the corresponding theory formula, the DPLL(T ) approach incrementally inves-

tigates the consistency of the posted constraints as Propositional variables are

assigned. Further, it identifies literals, `, such that T̂ hpθ, eq |ù `, allowing ep`q to

be assigned during propagation. It is the interplay between Propositional satisfi-

ability, posting constraints and the consistency of the store T̂ hpθ, eq that is at the

heart of this investigation.

2.3 Theory Propagation and Reification

This section provides a framework for incorporating theory propagation into the

propagation framework of the SAT solver introduced in section 2.2.1. The ap-

proach is based on reifying theory literals with logical variables. As will be illus-

trated in subsequent sections, this allows the use of the control provided by delay

declarations to realise theory propagation. The integration is almost seamless since

the base SAT solver is also realised using logical variables and by exploiting the

control provided by delay declarations.

2.3.1 Theory propagation

There are three major steps in setting up a DPLL(T ) solver for some problem φ:
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dpll_t(Prob):-

setup(Prob, TheoryLiterals, Skeleton, Vars),

post_theory(TheoryLiterals),

post_boolean(Skeleton),

elim_vars(Vars).

Figure 3: Interface to the DPLL(T ) solver

1. Setting up the encoder map e, linking each theory literal in a problem with

a logical variable.

2. Posting theory propagators (adding constraints) that reify the theory literals

with the logical variables provided by e.

3. Posting the SAT problem defined by the Propositional skeleton epφq.

The code in Figure 3 describes the high level call to the solver.

Set up Where Prob is an SMT formula over some theory, let litpProbq be the

set of literals occurring in Prob. TheoryLiteral is a list of pairs p`, ep`qq, where

` P litpProbq, that defines the encoder mapping e. Skeleton represents the Propo-

sitional skeleton of the problem, epProbq. Vars represents the set of variables ep`q,

where ` P litpProbq. The role of the predicate setup(+,-,-,-) is, given Prob, to

instantiate the remaining variables.

Theory propagators The role of post theory is to set up predicates to reify

each theory literal. The control on these predicates is key; the predicates need to

be blocked until either ep`q is assigned, or the literal (or its negation) is entailed

by the constraint store T̂ hpθ, eq. That is, the predicate for p`, ep`qq will propagate

in one of four ways:

• If T̂ hpθ, eq |ù ` then ep`q ÞÑ true

• If T̂ hpθ, eq |ù  ` then ep`q ÞÑ false

• If ep`q = true then the store is updated to T̂ hpθ Y tep`q ÞÑ trueu, eq

• If ep`q = false then the store is updated to T̂ hpθ Y tep`q ÞÑ falseu, eq
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Boolean propagators The role of post boolean is to set up propagators for

the SAT part of the problem epProbq. This uses Prolog block declarations to wait

for Propositional variables to be sufficiently instantiated to propagate bindings to

other Propositional variables following the watched literals technique as explained

in section 2.2.1.

Implementing the interface provided by predicates setup and post theory,

together with the SAT solver from section 2.2.1 results in a DPLL(T ) SMT solver.

Note that the propagators posted for the theory and Boolean components are

intended to capture the spirit of the function propagate from Figure 2. Indeed,

the integration between theory and Boolean propagation is even tighter than the

algorithm indicates. Rather than performing unit propagation to completion, then

performing theory propagation, then repeating, here the assignment of a Boolean

variable is immediately communicated to the theory. This tactic is known as

immediate propagation [79, Chapter 11] and is a natural consequence of using

Prolog’s control to implement propagators. Immediate propagation does away

with the need to analyse failure to determine an unsatisfiable core when a set of

theory constraints is unsatisfiable, but attracts a cost in monitoring the entailment

status of the theory literals.

2.3.2 Labelling strategies

The solvers presented in [64] maintain Boolean variables in a list and elim vars

assigns them values in the order in which they occur; the list has typically been

ordered by the number of occurrences of the variables in the SAT instance before

the search begins, the most frequently occurring assigned first. This tactic is

straightforward to accommodate into a solver coded in Prolog. However, in the

case of type recovery problems constraints are derived over entire programs, leading

to SMT instances that can have hundreds of thousands of clauses even for binaries

of less than 100 kilobytes. This desire to make type recovery problems tractable

motivates the adoption of more sophisticated heuristics for variable assignment.

One classic strategy for labelling that is also straightforward to incorporate

into a solver written in a declarative language is to rank variables by their number

of occurrences in clauses of minimal size [70]. This associates a weight to each
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unbound variable according to its number of occurrences in the unsatisfied clauses

of the (Boolean) problem. The ranking weights variables with fewer unbound

literals less heavily than those in clauses with a greater number of unbound literals.

A variable with greatest weight is selected for labelling, the aim being to assign

one that is more likely to lead to propagation.

However, this tactic is still insufficient to solve type recovery problems within

a reasonable time frame (less than several hours) for the benchmarked binaries.

A refinement is to apply lookahead [83] in conjunction with this labelling tactic.

Each variable with greatest weight, and therefore each candidate for labelling, is

speculatively assigned a truth value. For example, if X is assigned true and this

results in failure, then in order to satisfy the Propositional formula (skeleton) then

X must be assigned false. Likewise, if failure occurs when X is assigned false then

X must be true. Moreover, if one variable can be assigned using lookahead, then

often so can others, hence this tactic is repeatedly applied until no further variables

can be bound. Thus lookahead is tried before any variable is assigned by search.

Scoping this activity over the variables of greatest weight limits the overhead of

lookahead. The net effect is to direct the search away from variable assignments

that will ultimately fail. In practice lookahead is crucial for reducing the search

time required for real-world type recovery problems.

2.3.3 Calculating an unsatisfiable core

Given an unsatisfiable SMT problem, it can be useful to find an unsatisfiable core

of this problem, that is, a subset of the theory literals, Σ1 Ď Σ, such that T̂ hΣ1pθ, eq

is not satisfiable for any assignment θ, and for all Σ2 Ă Σ1 there exists a θ such

that T̂ hΣ2pθ, eq is satisfiable.

The unsatisfiable core needs to be calculated in the lazy-basic approach in

order to generate a blocking clause. Further, in the application to type recovery

problems, it is useful to be able to diagnose the cause of unsatisfiability to resolve

errors in the type system. An unsatisfiable core for the type recovery problems

is typically small and due to the size of the problems can take several hours to

find using existing algorithms (such as QuickXplain [74]). This motivates a more

aggressive algorithm for pruning out literals that are not in a core. Such an
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(1) function findcore (e = rt1 ÞÑ x1, ... , tn ÞÑ xns : Σ Ñ X,
(2) f : CNF formula, c : int, core : Σ Ñ X)
(3) begin
(4) if (e = r s)
(5) return core;
(6) else if (c = 0)
(7) core1 := rt1 ÞÑ x1, tn ÞÑ xns Y core;
(8) return findcore(rt2 ÞÑ x2, ... , tn−1 ÞÑ xn−1s, f , tn−1

2
u, core1);

(9) else
(10) i := 1; j := n;
(11) if ( DPLL(T )(f , H, rtc+1 ÞÑ xc+1, ... , tn ÞÑ xns Y core))
(12) i := c+ 1;
(13) endif
(14) if ( DPLL(T )(f , H, rti ÞÑ xi, ... , tn−c ÞÑ xn−cs Y core))
(15) j := n− c;
(16) endif
(17) if (c = 1)
(18) c1 := 0;
(19) else
(20) c1 := t c+1

2
u;

(21) endif
(22) return findcore(rti ÞÑ xi, ... , tj ÞÑ xj], f , c1, core);
(23) endif
(24) end

Figure 4: Finding an unsatisfiable core

algorithm is presented in Figure 4.

The first argument to findcore is (an ordered representation of) a partial en-

coder mapping from theory literals to Propositional variables; the second argument

is a Propositional formula, namely epφq, the Propositional skeleton of the initial

problem; the third argument is an integer, giving the number of elements of the

mapping on literals that will be pruned from one end (and then the other end) in

order to investigate satisfiability; the fourth argument is a partial mapping from

theory literals to Propositional variables, where the theory literals are part of the

unsatisfiable core. The initial call to the function is findcore(e,epφq,rm
2

s,H), where

e is the complete encoder map for Σ, rt1 ÞÑ ept1q, ... , tm ÞÑ eptmqs.
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The algorithm removes c elements from the beginning of the mapping (repre-

sented as a list) and tests the resulting problem for satisfiability. If the problem

remains unsatisfiable, the c elements removed are not part of the unsatisfiable core

and can be pruned all at once. This is repeated for the end of the mapping. The

c value begins large and is logarithmically reduced until it has value 0, at which

point the first and last elements of the list representing the mapping must be in

the core. The function findcore is then again recursively called with these end

points removed and the process continues until a core has been found.

The findcore algorithm is related to the previously mentioned QuickXplain

algorithm, which likewise computes an unsatisfiable core by removing blocks of

consistent constraints. The QuickXplain algorithm recursively divides a set of

constaints into two subsets. If the first subset is inconsistent, then the second can

be discarded immediately in the search for a core. Otherwise, some constraints

from the second are merged with constraints from the first to derive a core. This

divide-and-conquer algorithm resembles a precedessor of findcore though, crucially,

the above incarnation of the algorithm attempts to remove the first c1 = rm
2

s

constraints, then the last c1, then the first c2 = r c1
2

s, then the last c2, etc, as it

converges onto a core. This appears to be a more aggressive pruning strategy than

that applied in QuickXplain which maintains the first subset intact (see [74, Figure

1, Line 9]) whilst pruning the second, though a precise comparison has not been

made.

The following Proposition asserts that the algorithm correctly computes a

core.

Proposition 1. If T̂ hΣpθ, eq is unsatisfiable for any assignment θ and e is an

encoder mapping for Σ, then function findcore returns an encoder mapping that

represents an unsatisfiable core, Σ1 Ď Σ.

Proof. First it is argued that findcore terminates. Where a call to findcore is

findcorepe, f, c, coreq consider the ordered pair x|e|, cy. For each recursive call to

findcore the value of this pair lexicographically decreases, therefore by induction

findcore terminates.

Next it is demonstrated that findcore returns an encoder mapping represent-

ing an unsatisfiable set of variables. A precondition of a call to findcore is that
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T̂ hΣpθ, eq is unsatisfiable. Since core is initially empty, the encoder eY core repre-

sents an unsatisfiable set of variables. Lines (12) and (15) are the two places where

findcore changes eY core. Observe that the conditions on line (11) and (14) state

that the change of e to e1 (where e1 is the updated encoder mapping) occurs only

when e1Ycore represents an unsatisfiable set of variables. Hence that eYcore rep-

resents an unsatisfiable set of variables is invariant through the algorithm. When

|e| = 0 findcore returns, therefore returning core = e Y core which represents an

unsatisfiable set of variables.

Lastly it is demonstrated that the set of variables represented by the encoder

mapping returned represents an unsatisfiable core. Note that if some encoder map-

ping d represents an unsatisfiable set, then d1 Ě d also represents an unsatisfiable

set. Variable mappings are added to core on line (7). Suppose t ÞÑ x is added to

core at line (7). In the preceding call with c = 1, either pezrt1 ÞÑ x1sq Y core rep-

resents a satisfiable set or it does not. (The argument for tn ÞÑ xn is symmetric.)

If satisfiable, then t1 ÞÑ x1 is required for unsatisfiability, and this is the t ÞÑ x

added in line (7). If unsatisfiable, then the t ÞÑ x added in line (7) is t2 ÞÑ x2.

Note that in the initial call to findcore with mapping e (where |e| = m) all

elements of e to the left of t2 ÞÑ x2 are not part of the representation of the un-

satisfiable core since they are removed by lines (11)-(13). The number of elements

removed is described by Lemma 1, that is, m − 1. Therefore t2 ÞÑ x2 is the only

element remaining and this must be part of the representation of the unsatisfiable

core, since otherwise it would have been removed by lines (14)-(16). Therefore no

redundant elements are added and findcore returns an unsatisfiable core.

Lemma 1. Where m P N, let c1pmq = rm
2

s and cipmq = r
ci−1pmq

2
s, if ci−1pmq ą 1

and cipmq = 0 otherwise. Then
ř

i cipmq ě m− 1.

Proof. The proof proceeds by induction. Suppose m = 1, then c1pmq = 1 ě m−1.

Suppose m = 2, then c1pmq = 1 and c2pmq = 0, hence
ř

i cipmq = 1 ě m−1. Now

suppose m is odd, that is m = 2k − 1 (where k P N, k ě 1), then c1p2k − 1q =

r2k−1
2

s = k and c2p2k − 1q = c1pkq. Hence
ř

i cip2k − 1q = k +
ř

i cipkq ě 2k − 1 ě

2k − 2. Suppose m is even, that is m = 2k (where k ě 1) then c1p2kq = r2k
2

s = k

and c2p2kq = c1pkq. Hence
ř

i cip2kq = k +
ř

i cipkq ě 2k − 1.

Note that when this lemma is applied, cipmq corresponds to the third argument
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of findcore (c) at iteration i. This value is a function of m, the size of the initial

encoder map.

2.4 Summary

This chapter showed that the type reconstruction problem can be expressed as an

SMT instance over the theory of rational-tree unification, and introduced an SMT

solving framework for Prolog based on reification. Prolog is a natural choice for

type reconstruction because rational-tree unification is a Prolog language feature.

Reification in Prolog is an equally natural fit for SMT solving, because it enables

completely automatic synchronisation of unit and theory propagation: The pro-

posed framework eliminates the need to algorithmically interleave or schedule unit

and theory propagation (as in classic DPLL(T ) algorithms) at all.

A complementary algorithm for finding an unsatisfiable core of an SMT prob-

lem was also presented, and its correctness argued. Notably, the new algorithm

is more aggressive at pruning the search space than the related QuickXplain algo-

rithm [74].



Chapter 3

Implementing SMT with

Reification

Chapter 2 introduced an SMT framework for Prolog based on reification. This

chapter takes the logical next step of instantiating the framework with solvers for

three theories; rational-tree unification, Linear Real Arithmetic (LRA) and Integer

Difference Logic (IDL). In each case it is demonstrated that very close coupling

of unit and theory propagation may be achieved by reifying theory literals (con-

straints) with the logical variables corresponding to Booleans in the Propositional

skeleton of the SMT formula. This chapter highlights that the framework enables

fast development of succinct (in terms of lines of code) and efficient SMT solvers in

Prolog, regardless of whether the underlying theory is an intrinsic Prolog language

feature (rational-tree unification), available in the language via a library (LRA),

or has to be implemented in Prolog from scratch (IDL).

The rational tree solver is evaluated in the context of type reconstruction

against a range of binaries. To test the efficacy of the approach, it is also compared

to a lazy-basic (i.e. without theory propagation) solver that uses the PicoSAT open

source SAT solver as a black box. Since Quantifier Free Integer Difference Logic

(QF IDL) is a theory commonly found in contemporary SMT solvers, the IDL

solver is evaluated against the CVC3 and CVC4 solvers using SMTLib competi-

tion benchmarks.

34
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3.1 Instantiation for Rational-Trees

The theory component of an SMT solver requires a decision procedure for de-

termining the satisfiability of a conjunction of theory literals. Unification is at

the heart of Prolog and many Prolog systems are based on rational-tree unifica-

tion, hence a decision procedure for conjunctions of rational-tree constraints comes

essentially for free. This can be coupled with the control provided by delay declara-

tions to reify rational-tree constraints, hence implementing the interface described

in the previous chapter (Section 2.3). The code in Figure 5 demonstrates the use

of delay to realise theory propagation over rational-tree constraints via reification.

An SMT problem over rational-trees consists of Boolean combinations of theory

literals `. The call to setup/4 will instantiate TheoryLiterals to a list of pairs

of the form p`, ep`qq; the Propositional skeleton and a list of the ep`q variables

are also produced. In the following, a labelled literal (eqn(Term1, Term2), X) is

discussed. The post theory predicate sets up propagators for each theory literal

in two steps, while theory wait propagates from the theory constraints into the

Boolean variables.

The predicate theory wait uses the builtin control predicate when/2, which

blocks the goal in its second argument until the first argument evaluates to true. In

this instance the condition ?=(Term1, Term2) is true either if Term1 and Term2

are identical, or if the terms cannot be unified. That is, if Term1=Term2 is en-

tailed by the store then theory prop is called and assigns X=true. Similarly, if

the constraint is not consistent with the store, then Term1 and Term2 cannot be

unified and again theory prop reflects this by assigning X=false. In the opposite

direction, bool wait communicates assignments made to Boolean variables to the

theory literals. The predicate is blocked on the instantiation of the logical vari-

ables, waking when they become true or false. When true the constraint must

hold so Term1 and Term2 are unified. When false, it is not possible for the two

terms to be unified, hence the constraint is discarded and the call to bool wait

succeeds. Note that it is not possible to post a constraint that asserts that two

terms cannot be unified, since the control predicate dif/2 is defined as:

dif(X, Y) :- when(?=(X, Y), X \== Y).

That is, it blocks until either X and Y are identical or they cannot be unified, then
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post_theory([]).

post_theory([(eqn(Term1,Term2), X)|Rest]) :-

setup_reify(X, Term1, Term2),

post_theory(Rest).

setup_reify(X, Term1, Term2) :-

bool_wait(X, Term1, Term2),

theory_wait(X, Term1, Term2).

:- block bool_wait(-, ?, ?).

bool_wait(true, Term1, Term2) :-

Term1 = Term2, !.

bool_wait(false, _Term1, _Term2).

theory_wait(X, Term1, Term2) :-

when(?=(Term1, Term2), theory_prop(X, Term1, Term2)).

theory_prop(X, Term1, Term2) :-

Term1 == Term2 ->

X = true

;

X = false

.

Figure 5: Theory propagation for rational-tree constraints

tests whether or not they are identical. Hence dif/2 acts as a test, rather than a

propagating constraint. Consistency of the store is maintained by theory wait; if

X=false and the constraint is discarded, then later it is determined that Term1=Term2,

theory wait will attempt to unify X with true, which will fail.

3.2 Instantiation for Linear Real Arithmetic

Many Prolog systems come with the CLP(R) constraints package, which can de-

termine consistency of conjunctions of linear arithmetic constraints. This makes

quantifier-free linear real arithmetic a sensible theory for the solver. The challenge

is to implement reification for the constraints, an operation not directly supported.



CHAPTER 3. IMPLEMENTING SMT WITH REIFICATION 37

post_theory(TheoryLiterals):-

setup_reify(TheoryLiterals, _).

setup_reify([], _).

setup_reify([(C, V)|Cs], Y) :-

negate(C, NegC),

theory_wait(V, Y, C, NegC),

setup_reify(Cs, Y).

negate(X =< Y, X > Y).

negate(X < Y, X >= Y).

negate(X = Y, X =\= Y).

next_var(Y, Z) :-

var(Y), !, Y = Z.

next_var(prop(Y), Z) :-

next_var(Y, Z).

:- block theory_wait(-, -, ?, ?).

theory_wait(V, Y, C, _NegC) :-

V == true, !,

{C}, Y = prop(_).

theory_wait(V, Y, _C, NegC) :-

V == false, !,

{NegC}, Y = prop(_).

theory_wait(V, Y, C, _NegC) :-

nonvar(Y), entailed(C), !,

V = true.

theory_wait(V, Y, _C, NegC) :-

nonvar(Y), entailed(NegC), !,

V = false.

theory_wait(V, Y, C, NegC) :-

next_var(Y, U),

theory_wait(V, U, C, NegC).

Figure 6: Theory propagation for linear real arithmetic

The code in Figure 6 demonstrates the integration of a linear real arithmetic

decision procedure as realised by CLP(R) into the DPLL(T ) scheme. It assumes
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that the input problem has been normalised so that all the constraint predicates

are drawn from =, =< and <. The propagators, theory wait, are blocked on two

variables. The first of these is the labelling variable epCq – if this is instantiated,

the appropriate constraint is posted. To complete the reification, the propagators

need to detect the entailment of the linear constraint (or its negation). This can

be achieved using the builtin entailed/1, however the control for ensuring that

this is called at an appopriate time is less obvious.

Once a new constraint has been posted (or once the constraint store has

changed) other constraints or their negations might be entailed and this needs

to be detected and propagated. The communication between the propagators to

capture this is achieved with the second argument to theory wait. Each prop-

agator is set with its second argument the same logical variable (Y in the code)

and the propagators are blocked on this second argument. When a constraint is

posted, Y is instantiated, Y = prop( ). This wakes all active propagators which

either propagate or block again on the new variable. An alternative approach,

which would invoke the propagators less frequently, would be to only wake up the

activate propagators for those constraints that share a variable with the posted

constraint.

3.3 Instantiation for Difference Logic

Thus far it has been demonstrated how theory propagation can be realised for

SMT solvers over rational-tree unification and linear constraints, both of which are

constraint systems that are built-in to Prolog. This begs the question of whether

logical variables can be used to orchestrate theory propagation for a solver over

a theory, such as difference constraints, that is not readily available in Prolog.

The challenge is to find a way for efficiently deciding which theory constraints

are entailed or disentailed, and then communicating this information to the SAT

solver.

Difference constraints are a strict subclass of linear constraints in which each

constraint has unary coefficients and is over at most two variables. To be precise,

each constraint must take the form xi − xj ď c, where xi and xj are variables,

and c is a constant. A designated variable x0 is interpreted as zero to encode
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x1 x2

x3x4

-212

100-100

211

»

—

—

—

—

–

x1 x2 x3 x4

x1 0 8 −100 8

x2 −212 0 8 8

x3 8 8 0 211
x4 8 100 8 0

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

x1 x2 x3 x4

x1 −1 211 −101 110
x2 −213 −1 −313 −102
x3 99 311 −1 210
x4 −113 99 −213 −2

fi

ffi

ffi

ffi

ffi

fl

Figure 7: Illustrating Floyd-Warshall

unary constraints, and the constants themselves are either integers, rationals or

reals. Difference constraints are emblematic of other two variable systems and can

be readily modified to richer domains such as octagons [94] (see Chapter 5). For

this study we focus on integer difference logic. Integer difference logic (QF IDL)

is an SMT problem where integer difference constraints are composed with logical

connectives.

3.3.1 The Floyd-Warshall algorithm

Decision procedures for systems of difference constraints are often obtained by

viewing a system as a weighted directed graph. To illustrate, consider the con-

straints px1−x2 ď −212q^ px3−x1 ď −100q^ px4−x3 ď 211q^ px2−x4 ď 100q,

which can be interpreted as the graph given in the left column of Figure 7. The

graph in turn can be represented by the adjacency matrix given in the middle

column. Solving the all pairs shortest path problem [43, 121] then populates the

matrix with entries that describe the shortest paths between any two variables, as

shown in the right column of Figure 6. Observe that the diagonals of this final

matrix are negative, indicating that the graph contains negative cycles, showing

that the system of constraints is inconsistent.

The Floyd-Warshall algorithm [43, 121], which is in Opn3q, solves the all pairs

shortest path problem where n is the number of variables. Moreover, an incremen-

tal version can be formulated that is only Opn2q for each new added constraint

[10]. Both versions are shown in Figure 8. The non-incremental version compares

all possible paths through the graph between each pair of variables xi and xj by
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(1) function
(2) floyd-warshall(m, n)
(3) for k = 1 to n
(4) for i = 1 to n
(5) for j = 1 to n
(6) mi,j := minpmi,j,mi,k +mk,jq

(7) endfor
(8) if pmi,i < 0q
(9) return UNSAT
(10) endif
(11) endfor
(12) endfor
(13) return SAT

(1) function
(2) floyd-warshall(m, n, xp − xq ď c)
(3) for i = 1 to n
(4) for j = 1 to n
(5) mi,j := minpmi,j,mi,p + c+mq,jq

(6) endfor
(7) if pmi,i < 0q
(8) return UNSAT
(9) endif
(10) endfor
(11) return SAT

Figure 8: Floyd-Warshall algorithm: non-incremental and incremental versions

checking whether the path between them can be shortened by passing through

another variable xk.

The incremental version takes a new constraint xp−xq ď c, and checks whether

the path between xi and xj could be reduced by travelling via the new edge that

represents the constraint. That is, if the cost of travelling from xi to xp, then

from xp to xq (a distance of c) and then from xq to xj, is less than that of moving

from xi to xj directly. Observe that mp,q will be updated to c if c < mp,q when

i = p and j = q since mi,i = 0 and mj,j = 0, assuming consistency. In both cases

the consistency check is placed inside the main loop so that negative cycles cause

rapid failure (though failure could be made faster at the expense of decomposing

the innermost loop).
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3.3.2 Theory propagation in difference logic

For rational-trees, a built-in test can be used within a wait declaration to block

a goal until a rational-tree constraint is entailed or disentailed, which binds the

Propositional variable that reifies the constraint when the goal resumes. It is less

obvious how to program an analogous control structure for difference logic in order

to realise theory propagation. The rest of this section explains how this control

can be achieved.

3.3.2.1 Data-structures

The proposal is to shadow the Floyd-Warshall matrix with a square matrix of the

same dimension that records which constraints in the SMT formula are possibly

entailed or disentailed. This matrix, dubbed the watch matrix, is so named because

it is inspired by watched literals [98] that are key to efficient SAT solving. The

matrix is a control structure for efficiently identifying which Propositional variables

should be bound, and to what truth values, when an entry in the Floyd-Warshall

matrix is updated.

The watch matrix is constructed once. This matrix, in conjunction with the

Floyd-Warshall matrix, constitutes the store. The Floyd-Warshall matrix maps

each variable pair x-y (its indices) to a value v P ZY t8u which is the length of

the shortest known path from x to y (8 used to indicate the absence of any such

path). An entry of v can be interpreted as asserting the inequality x − y ď v,

which vacuously holds if v = 8.

The watch matrix maps the indices x-y to a pair EntL-DisL where EntL and

DisL are themselves lists of pairs, referred to as the entailed pairs and the disen-

tailed pairs. Each of the entailed pairs takes the form (c, Prop) where Prop is a

Propositional variable that reifies a constraint x−y ď c which occurs somewhere in

the SMT formula. When the px, yq entry is updated with v in the Floyd-Warshall

matrix, the corresponding list EntL is traversed to find those pairs (c, Prop) for

which v ď c. Each pair corresponds to a constraint x−y ď c in the formula that is

entailed and moreover reified with Prop. Thus Prop can be bound to true thereby

achieving partial theory propagation.

Complete theory propagation is realised by additionally recording in DisL those
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post_theory(Encoding, Store) :-

build_store(Encoding, Store),

setup_reify(Encoding, Queue),

process_queue(Queue, Store).

build_store([], Store) :-

empty_avl(Matrix), empty_avl(Watch),

Store = store(Matrix, 0, Watch).

build_store([(X-Y =< C)-Prop | Rest], Store) :-

build_store(Rest, StoreRest),

StoreRest = store(Matrix1, N1, Watch1),

Store = store(Matrix3, N3, Watch3),

add_var(X, N1, Matrix1, N2, Matrix2),

add_var(Y, N2, Matrix2, N3, Matrix3),

(avl_fetch((X, Y), Watch1, EntL-DisL) ->

avl_store((X, Y), Watch1, [(C, Prop) | EntL]-DisL, Watch2)

;

avl_store((X, Y), Watch1, [(C, Prop)]-[], Watch2)

),

NegC is -(C + 1),

(avl_fetch((Y, X), Watch2, EntL2-DisL2) ->

avl_store((Y, X), Watch2, EntL2-[(NegC, Prop) | DisL2], Watch3)

;

avl_store((Y, X), Watch2, []-[(NegC, Prop)], Watch3)

).

Figure 9: Setting up the Floyd-Warshall matrix and the watch matrix

disentailed pairs ((-c - 1), Prop) for which there exists a constraint y − x ď c

in the SMT formula. When v ď −c − 1 it follows that x − y ď −c − 1, thus

y − x ď c is disentailed since y − x ď c < c + 1 ď y − x. Disentailment is

communicated to the SAT solver by setting Prop to false. Note that Prop may

already be bound, though not necessarily to the same truth value, in which case

inconsistency is detected. Detecting all disentailed constraints again only involves

a list traversal and low-cost inequality checks.
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setup_reify([], _).

setup_reify([((X-Y =< C), Prop) | Rest], Queue) :-

bool_wait(Prop, X, Y, C, Queue),

setup_reify(Rest, Queue).

:- block bool_wait(-, ?, ?, ?, ?).

bool_wait(Prop, X, Y, C, Queue) :-

Prop == true, !,

insert_queue(Queue, X, Y, C).

bool_wait(Prop, X, Y, C, Queue) :-

Prop == false,

NegC is -(C + 1),

insert_queue(Queue, Y, X, NegC).

insert_queue(Queue, X, Y, C) :-

var(Queue), !,

Queue = [(X-Y =< C) | _Cons].

insert_queue([_Con | Cons], X, Y, C) :-

insert_queue(Cons, X, Y, C).

:- block process_queue(-, ?).

process_queue(Queue, Store1) :-

nonvar(Queue),

Queue = [(X-Y =< C) | Cons],

process_constraint(X-Y =< C, Store1, Store2),

process_queue(Cons, Store2).

Figure 10: Propagating from the SAT solver to the theory solver

3.3.2.2 Setup

The watch matrix is set up in tandem with the Floyd-Warshall matrix by the

build store predicate (Figure 9). This predicate traverses the encoder map,

considering each reified constraint (X-Y =< C)-Prop in turn. Both matrices are

represented by AVL trees so that elements of these matrices are accessed and

updated by avl fetch and avl store respectively. The body of build store

adds (C, Prop) to the list of entailed pairs in the watch matrix location (X, Y)

and (NegC, Prop) (where NegC = −C − 1) to the list of disentailed pairs at (Y,
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process_constraint(X-Y =< C, StoreIn, StoreOut) :-

StoreIn = store(Matrix1, N, Watch),

StoreOut = store(Matrix3, N, Watch),

avl_fetch((X, Y), Matrix1, C_XY),

min(C_XY, C, Min),

(C == Min ->

matrix_update((X, Y), C, Matrix1, Matrix2, Watch),

floyd_warshall(N, Matrix2, Matrix3, Watch)

;

Matrix3 = Matrix1

).

matrix_update(Key, Value, Matrix1, Matrix2, Watch) :-

(avl_fetch(Key, Watch, EntL-DisL) ->

true

;

EntL = [], DisL = []

),

entailed(EntL, Value),

disentailed(DisL, Value),

avl_store(Key, Matrix1, Value, Matrix2).

entailed([], _).

entailed([(C, Prop) | Rest], Min) :-

(Min =< C -> Prop = true ; true),

entailed(Rest, Min).

Figure 11: Propagating from the theory solver to the SAT solver

X). The calls to the add var predicate, when necessary, add a new row and column

to the Floyd-Warshall matrix and populates the new diagonal element with zero

and any other new entries with 8.

3.3.2.3 Posting difference constraints

Reification provides a channel for passing information from the theory solver to the

SAT solver. Conversely, when the SAT solver binds a Propositional variable that

reifies a difference constraint, either the constraint, or its negation, must be posted

(added) to the store. As a consequence of the update, incremental Floyd-Warshall
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should be applied together with any ensuing theory propagation.

Logical variables also provide a mechanism for coordinating these events, which

must be fully backtrackable. This can be elegantly achieved with an open list that

queues up the difference constraints that are to be posted to the store, as shown in

Figure 10. The predicate insert queue inserts a difference constraint at the end

of Queue. The predicate process queue blocks until a constraint is in the queue

at which point the constraint is passed onto process constraint that activates

Floyd-Warshall, before inspecting, and if necessary blocking, until another element

appears in the Queue. Observe how the store is updated as the constraints are

processed. The predicate process constraint (see Figure 11) invokes Floyd-

Warshall, though only if the new constraint x − y ď c has a constant c that is

strictly smaller than the value stored in the matrix at index px, yq. The update is

performed by matrix update which extracts two lists from the watch matrix: the

entailed pairs and the disentailed pairs. The predicate entailed serves to illustrate

how lightweight this form of theory propagation actually is once the watch matrix

has been constructed. The predicate disentailed is defined analogously.

The predicate bool wait which, recall, waits until a reification variable is set

to a truth-value, in this setting merely pushes the constraint, or its negation, into

the queue.

3.4 Experimental Results

3.4.1 Rational-tree solver

The DPLL(T ) solver for rational-trees has been coded in SICStus Prolog 4.2.1, as

described in Section 3.1. Henceforth this will be called the Prolog solver. To assess

this solver it has been applied to a benchmark suite of 84 type recovery problems,

its target application. The first eight benchmarks are drawn from compilations

at different optimisation levels of three small programs manufactured to check

their types against those derived by the solver. These benchmarks are designed to

check that the inferred types match against those prescribed in the source file, and

also assess the robustness of the type recovery in the face of various compilation

modes. The remaining benchmarks are taken from version 8.9 of the coreutils
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suite of programs, standard UNIX command line utilities such as wc, uniq, echo

etc. With an eye to the future, the DynInst toolkit [90] was used to parse the

binaries and reconstruct the CFGs. This toolkit can recover the full CFG for

many obfuscated, packed and stripped binaries, and even succeeds at determining

most indirect jump targets. CFG recovery is followed by SSA conversion which, in

turn, is followed by the generation of the type constraints, and the corresponding

SMT formula complete with its Propositional skeleton. The latter rewriting steps

are naturally realised as a set of Prolog rules.

At the time of publication [108], this work represented the first time that recur-

sive types have been automatically derived, hence it was not possible to compare

to previous approaches. Furthermore, no comparison is made with an open source

SMT solver equipped with rational-trees since no such system exists. Neverthe-

less, to provide a comparative evaluation a lazy-basic SMT solver based on an

off-the-shelf SAT solver, PicoSAT [14], has been constructed. This solver is also

implemented in SICStus Prolog 4.2.1 but uses bindings to PicoSAT to solve the

SAT formulae. PicoSAT, though small by comparison with some solvers at approx-

imately 6000 lines of C, applies learning, random restarts, etc, a range of tactics

not employed in the Prolog SAT solver. This SMT solver will henceforth be called

the hybrid solver. However, crucially, the hybrid solver does not apply theory

propagation; it simply alternates SAT solving with satisfiability testing following

the lazy-basic approach, which is all one can do when the SAT solver is used as a

black box.

The experiments were run on a single core of a MacBook Pro with a 2.4GHz

Intel Core 2 Duo processor and 4GB of memory. A representative selection of

the results are given in Table 2. The first column gives the binary from which

the constraints were generated, the second column the number of instructions

in the binary, the third the number of clauses in the problem, the fourth the

number of Propositional variables, and the fifth the number of theory variables.

In terms of timings, the sixth column records the runtime in seconds to find a

model or a core for the Prolog solver, the seventh gives the number of times the

Prolog SMT solver was called, the eighth gives the runtime in seconds to find

a model or a core for the hybrid solver, and the final column gives the number

of times the PicoSAT solver was called. To clarify, consider benchmark 1. The
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Table 2: Benchmarking for a selection of type recovery problems

vars SMT SAT
benchmark insns clauses prop theory time (s) calls time (s) calls
1 iter-sum.O1 296 2047 564 779 14.57 SAT 413.36 796
2 iter-sum.O2 312 2132 586 812 52.34 SAT seg
3 recu-sum.O1 302 2129 588 809 15.37 SAT 6382.50 998
4 mergesort.O0 480 3216 888 1220 585.89 70 seg
5 mergesort.O1 387 2636 718 1011 20.05 SAT 1176.58 1720
6 mergesort.O2 395 2628 713 1017 20.30 SAT 805.93 860
7 mergesort.Os 444 3275 907 1244 ą14400 seg
8 mergesort.O3 2586 15696 3741 6670 1551.23 31 ą14400
9 false 3747 27645 5357 12957 19.46 51 3250.05 536
10 true 3747 27645 5357 12955 19.27 51 3247.02 536
11 tty 3825 28255 5417 13373 20.02 51 3509.06 552
12 sync 3901 28706 5571 13466 70.76 52 3607.01 553
15 hostid 3912 28973 5576 13634 62.70 52 3651.77 550
19 basename 4114 30125 5829 14212 69.48 53 3939.21 544
20 env 4016 29670 5589 13956 22.69 53 3914.54 544
22 uname 4074 31048 5653 15034 32.28 52 3676.94 534
23 cksum 4259 31973 5975 15370 101.85 52 4516.21 554
24 sleep 4442 32993 6343 15637 84.89 51 4876.85 566
29 echo 4310 33087 6064 15571 41.41 51 4723.52 564
30 nice 4397 33057 6000 15719 11.23 51 4907.31 581
33 nl 5719 43834 7692 21240 17.20 56 seg
34 comm 5563 45401 7790 22797 108.09 53 10667.25 650
42 wc 6377 52105 8818 26713 93.91 52 12681.63 575
43 uniq 6595 52779 9013 27190 35.46 53 13281.49 581
51 join 7946 67168 10844 34688 85.93 60 ą14400
53 sha384sum 11612 78776 16419 36153 191.87 53 ą14400
54 cut 8173 68332 11248 36736 185.84 60 ą14400
58 ln 9369 83877 12668 44935 292.21 54 ą14400
61 getlimits 10797 92504 14856 47845 396.81 54 ą14400
66 timeout 12063 98544 16306 50019 126.79 53 ą14400
78 ptx 15919 141197 21850 76881 702.67 55 ą14400
89 mbslen 25895 257132 35148 148102 1935.12 56 ą14400

SMT formula is satisfiable, hence a core is not derived, and the problem is solved

with just one call to the Prolog SMT solver. The hybrid solver also requires just

one call but this, in turn, requires PicoSAT to be invoked 796 times, on all but
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the last occasion adding a single blocking clause to the Propositional skeleton.

By way of contrast, benchmark 9 is unsatisfiable hence a core is computed that

pinpoints a type conflict. The Prolog SMT solver is invoked 51 times to identify

this core; the hybrid SMT solver requires exactly the same number of calls, hence

the number is not repeated in the table. However, these 51 calls to the hybrid

solver cumulatively require 536 invocations of PicoSAT. On occasions the hybrid

solver terminated with a memory error1, indicated by seg, invariably after several

hours of computation. The fault is repeatable.

In addition to these timing results, the recursive types inferred for mergesort,

as well as those for iterative-sum and recursive-sum, have been checked against the

types prescribed in the source. The sum programs both build lists of integers but

then traverse them in different ways. Another point not revealed from the table

is that the largest benchmarks can take over 20 minutes to parse, reconstruct the

CFG, perform SSA conversion and then generate the SMT formula. Thus the time

required to solve the SMT formulae does not exceed the time required to generate

them, at least for the Prolog solver.

3.4.2 Integer difference logic solver

One of the attractions of the current work is that new theories can be coded in

Prolog and be integrated straightforwardly into the SMT solver via reification. For

rational-trees a comparison was made against a hybrid solver using PicoSAT as a

SAT engine. Since the theory of quantifier-free integer difference logic (QF IDL)

is a standard part of SMT packages, for this theory a more direct comparison

between the solver presented and an off-the-shelf solver can be made. That said,

off-the-shelf solvers deploy learning and random restarts, among other things, so

as to not get lost in the search space, whereas Prolog difference logic solver does

not even apply lookahead.

For this more demanding strength test, the Prolog-based SMT solver is bench-

marked against the open-source CVC3 (version 2.4.1) and CVC4 (version 1.3)

solvers, which both consist of many hundreds of thousands of lines of C++ code

1This bug has been fixed in the forthcoming SICStus 4.3, though at the time of writing the
latest version available is 4.2.3
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Table 3: Benchmarking for a selection of QF IDL problems

benchmark sat p-vars t-vars cvc3 cvc4 Prolog
queen8-1.smt2 X 352 9 288 702 30
toroidal queen7-1.smt2 X 434 8 132 99 20
queen9-1.smt2 X 450 10 908 462 120
jobshop6-2-3-3-2-4-12.smt2 X 252 25 36378 295 160
super queen11-1.smt2 X 834 12 356 296 90
queen12-1.smt2 X 816 13 752 521 140
SortingNetwork4 live bgmc002.smt2 X 503 21 28 17 110
inf-bakery-invalid-4.smt2 X 536 23 20 46 48050
super queen12-1.smt2 X 984 13 988 260 130
queen14-1.smt2 X 1120 15 11445 1810 1850
LinearSearch live bgmc003.smt2 X 673 36 28 0 430
queen15-1.smt2 X 1290 16 14397 3272 2150
toroidal queen13-1.smt2 X 1586 14 3548 678 630
super queen15-1.smt2 X 1506 16 12109 659 5280
queen16-1.smt2 X 1472 17 1728 767 360
super queen16-1.smt2 X 1704 17 50195 3770 12270
queen17-1.smt2 X 1666 18 7876 1213 850
super queen6-1.smt2 7 264 7 64 77 10
jobshop4-2-2-2-4-4-11.smt2 7 112 17 64 40 310
toroidal queen6-1.smt2 7 288 7 344 310 30
super queen7-1.smt2 7 354 8 216 368 40
super queen8-1.smt2 7 456 9 444 770 110
toroidal queen8-1.smt2 7 544 9 4680 670 740
jobshop6-2-3-3-2-4-9.smt2 7 252 25 7288 321 ą60000
super queen9-1.smt2 7 570 10 896 128 210
diamonds.11.3.i.a.u.smt2 7 188 78 25526 817 ą60000
toroidal queen9-1.smt2 7 738 10 14005 2267 3030
diamonds.16.2.i.a.u.smt2 7 209 81 ą60000 49910 ą60000
diamonds.12.3.i.a.u.smt2 7 205 85 57284 1584 ą60000
diamonds.17.2.i.a.u.smt2 7 222 86 ą60000 ą60000 ą60000
toroidal queen10-1.smt2 7 880 11 ą60000 7346 16490
jobshop8-2-4-4-4-4-12.smt2 7 448 33 ą60000 184 ą60000
diamonds.10.5.i.a.u.smt2 7 251 111 26782 525 ą60000
DTP k2 n35 c175 s4.smt2 7 699 35 10317 1076 ą60000
inf-bakery-mutex-7.smt2 7 914 38 132 288 ą60000
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and have performed well in the SMT competitions [17]. Problems from the latest

(2013 at time of publication) version of the SMT-LIB library of SMT benchmarks

[7] were used for testing and evaluation. SMT-LIB provides benchmarks for many

SMT theories, notably QF IDL problems. Moreover, benchmarks from this suite

are conveniently labelled according to whether they are satisfiable or not, making

it straightforward to test the Prolog solver for correctness, even for unsatisfiable

instances.

To read the instances, the Prolog solver was extended with a parser for the

smtlib2 input language, written using flex and bison, that outputs an abstract

syntax tree for an SMT instance represented as a single Prolog term. To resolve

overloading on the equality operator, which can be interpreted either as logical

bi-implication or as a relational arithmetical operator, the abstract syntax tree

was traversed to infer types and thereby disambiguate the usage of equality terms.

The benchmarks include both industrial problems, and difficult crafted prob-

lems designed specifically to test the performance of a solver. Instances in the

QF IDL class were ranked according to size, and directed at the Prolog solver and

at CVC3 and CVC4. CVC3 was timed using the unix time command, measuring

overall runtime, while the runtime of CVC4 was measured using its stats command

line option. Note that CVC4 sometimes reports a runtime of zero; this is not an

error. One might suppose that the problem was solved using some heuristic before

the search even began, but the true cause is unclear. The runtime of the Prolog

solver was found using the statistics predicate, though it was only able to resolve

the run time with a granularity of ten milliseconds. Table 3 gives a selection of

the results taken from the first two hundred benchmarks, which have been pruned

to remove any whose run time was less than fifty milliseconds for all three solvers

(which removed 35 benchmarks before the table even started). Benchmarks with

similar names and performance were also removed to make space for a wider range

of instances.
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3.5 Discussion

3.5.1 Rational-tree solver

The results in Table 2 demonstrate that an SMT solver equipped with an appro-

priate theory can be used to successful automate the recovery of recursive types,

a problem not previously solved.

On no occasion is the hybrid solver faster than the Prolog solver, which sug-

gests that a succinct implementation of theory propagation is more powerful than

deploying an off-the-shelf SAT solver as a black box in combination with a hand-

crafted theory solver using the lazy-basic approach.

It can be observed in Table 2 that many of the problems are unsatisfiable.

For these problems an explanation for a type conflict is returned rather than a

satisfying type assignment. As a strength test of the solver these problems are

good since the exhaustive search required to demonstrate unsatisfiability is more

demanding than the search for a first satisfying assignment. There are two results

that require discussion. Benchmark 4 has an unsatisfiable core of 26 constraints,

whereas most cores have less than 10 constraints. This explains why it is relatively

slow. Benchmark 7 has timed out, a reminder that large SMT problems can be

hard to solve. Efficiency could be improved by passing constraints to the SMT

solver one x86 function at a time, gradually working over the call graph in a top-

down manner, thus making the SMT problem more tractable (though increasing

the number of calls to the SMT solver).

The time required for type recovery is sensitive to optimisation level. It is

obvious that optimisations that increase code size and consequently the size of the

SMT instance will take longer to solve, but the precise effect of individual optimi-

sations is not clear. One might postulate that some optimisations could actually

reduce the complexity of the problem, but this requires further investigation.

For the unsatisfiable problems, a core of unsatisfiable constraints is calculated

using multiple calls to the DPLL(T ) solver as indicated. This core can be used

to diagnose unsatisfiability, in turn allowing the analysis to be refined to return
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Instruction Constraint
mov A1, rax1 TA1 = Trax1

add A2, rax1

ˆ

TA2 = basic( ,int,4)^ TA1 = TA2^

Trax1 = TA2

˙

_
¨

˝

TA2 = ptrpxr...s, α1, r...syq^
TA1 = ptrpxr...s, α2, r...syq^
Trax1 = basic( ,int,4)

˛

‚_

¨

˝

TA2 = ptrpxr...s, α3, r...syq^
TA1 = basic( ,int,4)^

Trax1 = ptrpxr...s, α4, r...syq

˛

‚

mov A3, [A2s TA2 = ptrpxr...s, TA3 , r , , , ...syq
nop A3

Table 4: Erroneous constraint generation

meaningful information despite the initial result. In the benchmarks unsatisfia-

bility is often caused by incorrect intermediate code generation, or unusual/un-

foreseen cases in constraint generation. For example, nop instructions such as

nop [rax+rax+0x0] appear in some binaries (this example is taken from the false

binary). This instruction does nothing, but has been generated by the compiler

with an encoded operand in order to make it a specific size for optimal perfor-

mance/code size. The indirect addressing is broken down and constraints gener-

ated as shown in Table 4. The final constraint states that A2 must have pointer

type, hence those for the add dictate that one of A1 and rax1 must be of basic

type, and the other a pointer; however, the first constraint says they have the

same type, so the system is inconsistent.

Another unexpected source of inconsistency is the hard-coded pointer addresses

sometimes found in mov instructions. These are often addresses of strings included

in the binary, but also include constructor and destructor lists, added by the

linker for construction and destruction of objects. For example, the instruction

mov ebx1, 0x605e38 appears in the cksum binary, and moves the address of a

string into ebx1 resulting in the constraint Tebx1 = basic( ,int,4). Later however,

ebx1 is dereferenced, which implies that it is a pointer, and conflicts with the

earlier inference.

Quite apart from the disjunctive nature of the constraints, the sheer number
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of x86 instructions pose an engineering challenge when writing a type recovery

tool; indeed the constraint generator module has taken longer to develop than

both SMT solvers together. Moreover, as the above two examples illustrate, type

conflicts stem from type interactions between different instructions which makes

the conflicts difficult to anticipate. The result produced from the solver is either

a successful recovery of types, or a core of inconsistent types, both of which can

be achieved sufficiently quickly. Since the core is typically small, it is of great

utility in pinpointing omissions in the type generation phase. It seems attractive

to augment the solver with a domain specific language for expressing and editing

the type constraints so that they can be refined, if necessary, by a user.

3.5.2 Integer difference logic solver

From the results in Table 3, together with the 35 benchmarks solved in less than

50ms by all solvers, it can be observed that the Prolog QF IDL solver performs

surprisingly well, solving many benchmark instances in times comparable to a well

established SMT solver. We suspect that the performance stems partly from our

incremental algorithm and partly from the watch matrices which enable lightweight

theory propagation, though it is not straightforward to determine the relative im-

portance of these techniques. The performance is particularly pleasing considering

that the solver employs neither learning nor lookahead. Morever, this performance

has to be balanced against the engineering effort required to implement and inte-

grate the theory in the Prolog solver, which totalled less than six hundred lines of

code. The brevity of the code also facilitates easy modification and experimenta-

tion, an advantage of any declarative language.

Timeouts occur with several of the benchmarks. The diamonds benchmarks,

handcrafted by Ofer Strichman [113], are particularly hard for the Prolog solver,

and indeed CVC3 and CVC4 both also timeout on several of these problems. These

benchmarks are recognised as challenging problems [2], for which special tactics

have been suggested [106], so it is no great surprise that they cause difficulty,

particularly as this Prolog solver does not employ any labelling heuristics. The

jobshop and DTP benchmarks are also hand-crafted problems designed to stress

a solver.
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3.6 Summary

This chapter has presented a DPLL(T ) SMT solver coded in Prolog for three theo-

ries – rational-tree unification, linear arithmetic and integer difference constraints.

The motivation for this work was the need for an SMT solver over rational-tree

unification to recover types from x86 binaries; with Prolog providing a decision

procedure for rational-tree unification the integration with the SAT solver in [64] is

a natural development. The effectiveness of the approach has been demonstrated

by the successful application of the solver to a suite of type recovery problems.

The integer difference solver performs surprisingly well, and it would certainly

be worthwhile investigating what further improvements could be made in order

to tackle harder problems. The search and labelling heuristics described in Sec-

tion 2.3.2 provide a good starting point, and additional domain specific optimi-

sations could also be made. The solver could also be extended to other similar

domains, such as Octagons [94] (see Chapter 5).



Chapter 4

Semantics-Driven Decompilation

of Recursive Datatypes

Leading on from the type reconstruction work of Chapters 2 and 3, this chapter

poses, and attempts to answer, a new question: In the absence of source code

to compare against, what does it mean for the recovered types to be correct? To

confront this challenge a new and semantically-founded approach is presented that

provides strong guarantees for the reconstructed types. Key to the approach is the

derivation of a witness program in a high-level language alongside the reconstructed

types. Since this witness has the same semantics as the binary, and is type correct

by construction, it induces a (justifiable) type assignment on the binary. Moreover,

this approach effectively yields a type-directed decompiler.

Specifically, this chapter offers a formalisation for the reversing of MinX, an

abstraction of x86, to MinC, a type-safe dialect of C with recursive datatypes.

The approach is implemented using Constraint Handling Rules (CHR) [45], and

evaluated by compiling a range of textbook C programs illustrating various data-

structures to MinX, and then recovering the original structures.

55
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Decompilation
Relation

Recovered
Types

MinX
program

Semantic Equivalence Well Typedness
MinC Witness

MinX
Program

Recovered
Types

MinC
Witness

Figure 12: System overview

4.1 System overview

Figure 12 illustrates how the components of the new type recovery system fit

together. Solid arrows indicate flow whereas dotted lines indicate bi-directional

semantic connections.

The decompilation relation sits at the heart of the diagram. It relates an

input MinX program to two outputs: the recovered types, and the MinC witness

program. The latter is subservient to the former, since its role (in type recovery)

is to justify the recovered types. The decompilation relation is exactly that, a

mathematical relation, that specifies what it means for a MinX program to be in

correspondence with a MinC program. Nevertheless, a solver can be constructed,

in conformance with the relation, which, given the input MinX program, computes

the two outputs. Hence the annotated direction of flow.

The semantic connection on the right indicates that the MinC witness program

inhabits the recovered types; the connection on the left expresses that the MinX

program is semantically equivalent to the witness, in the sense that their memories

remain in sync. The whole construction semantically relates the MinX program

to the recovered types; a connection that follows by transitive closure.

The structure of this chapter reflects the diagram; components are covered as

the diagram is swept left-to-right. Starting on the left, Structured Operational
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Semantics (SOS) for MinX programs are detailed in Section 4.2; followed by SOS

for MinC programs in Section 4.3. With these semantic foundations in place,

the decompilation (specification) relation is introduced in Section 4.4. Section 4.5

concerns the automation of the relation and Section 4.6 assesses the quality of the

recovered types, on the right.

4.2 The MinX Language

A lean instruction set, called MinX (Minimal x86), is used to illustrate the se-

mantic construction. MinX, by design, abstracts away from control-flow details

that distract from the main goal of recovering recursive datatypes. MinX fixes a

single calling convention, which avoids the need for argument detection techniques

and control-flow recovery [42, 4]. The instruction set also supports an unbounded

number of registers, which means that register spilling does not need to be consid-

ered and SSA conversion [119] can be avoided. These restrictions can be relaxed

in actual binaries by preprocessing steps.

4.2.1 Memory

An important challenge is that presented by differently-sized values. At the binary

level, the field of a structure is accessed by a byte offset, which depends on the

sizes of the data objects that precede it. This layout problem is intrinsic to type

recovery and therefore it must be assumed that memory is organised into bytes,

and that data objects are permitted to straddle contiguous bytes. Thus we define

Bit = t0, 1u and let Byte = Bit8
YtKu where K denotes a single byte of uninitialised

(random) memory. A word is then a vector of bytes, that is, Word = Byte4. The

operator : concatenates vectors of bytes (and single bytes).

Register Bank The set of registers, each of which is of word size, is denoted

Regs = tr0, r1, ...u. A function R : Regs Ñ Word maps registers to the words they

contain. To manipulate 1 byte and 2 byte objects within a register, we introduce

an accessor function Ri:j : Regs Ñ Byte∗ which slices from byte i (counting from

zero) up to but not including byte j of a given register r. This is defined by
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Ri:jprq = ~b1 where Rprq = ~b : ~b1 : ~b2 and

~b P Byte i ~b1
P Bytej−i ~b2

P Byte4−j

For the register map, R, we define a notion of partial update in which only the

least significant w = |~b| bytes of register r are updated with the bytes ~b as follows:

R ˝w tr ÞÑ ~bu = R ˝ tr ÞÑ ~b : Rw:4prqu

Heap Memory The heap is modelled as a (partial) function H : Word á Byte

and therefore is byte addressable. To read stored objects that straddle w consecu-

tive bytes we define a function Hw : Word Ñ Bytew that reads and amalgamates

w bytes of the heap into a single vector as follows:

Hw
paq =

#

tKuw if K P a

Hpa+4 w −4 1q : ¨ ¨ ¨ : Hpaq otherwise

where the operations +4 and −4 denote addition and subtraction in 4 byte bit-

vector arithmetic, and 1 denotes a 4 byte bit-vector. Note that if the address

supplied to Hw is uninitialised (contains K) then an unknown value (tKuw) is

returned. This is one way in which uninitialised values can cause K to propagate.

It is also worth noting that accesses to the heap can wrap, for example by reading 4

bytes from address a = 232−1. This does not match the semantics of x86, where a

bus error would occur due to the unaligned read, but exceptions are orthogonal to

the type reconstruction problem and therefore not (currently) pertinent to MinX.

4.2.2 Syntax

The syntax of MinX programs consists of four syntactic categories. The first, w ::=

2 | 4, denotes the width, in bytes, of the primitive data objects that are supported
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λx; ~R $ xH,R, by
b
ÝÑ xH 1, R1, b1

y

x-seq
~R $ xH,R, ιy

ι
ÝÑ xH 1, R1y

λx; ~R $ xH,R, ι; by
b
ÝÑ xH 1, R1, by

x-goto

λx; ~R $ xH,R, goto ay
b
ÝÑ xH,R, λxpaqy

x-if-true
K R R0:wpriq R0:wpriq ‰ 0

λx; ~R $ xH,R, pifw ri goto aq; by
b
ÝÑ xH,R, λxpaqy

x-if-false
K R R0:wpriq R0:wpriq = 0

λx; ~R $ xH,R, pifw ri goto aq; by
b
ÝÑ xH,R, by

Figure 13: Structured Operational Semantics of MinX blocks (b)

by the instruction set. The second, ι, defines the instructions themselves:

ι ::= movw r, c | movw ri, rj

| movw ri, rrjs | movw rris, rj

| movw ri, rrj + cs | movw rri + cs, rj

| eqw ri, rj, rk | op‘
w ri, rj ∗ c

| opb
w ri, rj | opb

w ri, c

| alloc ri, rj | alloc ri, rj ∗ c
| call ru, a, ~rv

where c denotes a numeric constant and a P Word is the location of the function

that is to be invoked. (A Harvard architecture is assumed throughout). Square

brackets indicate indirection. The instructions op‘
w and opb

w are themselves param-

eterised by the categories ‘ P t+,−u and b P t+,−, ∗, {,&, |, ...u, and the width

w of their operands. The third category, b, defines blocks:

b ::= ι; b | pifw ri goto aq; b | goto a | ret

Observe that blocks are terminated by control instructions, but conditional jumps

only arise within a block. The final category, dx, defines how functions are declared:

dx ::= xÝÝÑrarg, rret,ÝÑrloc, λx, a0y

where λx : Word á b is a partial mapping from addresses to blocks. Moreover, if
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labelsxpbq =

$

’

’

’

’

&

’

’

’

’

%

tau if b = goto a

tau Y labelsxpb
1q else if b = pifw ri goto aq; b

1

labelsxpb
1q else if b = ι; b1

H otherwise

it is required that
Ť

tlabelsxpbq | a ÞÑ b P λxu Ď dompλ1
xq so that jump targets

are contained within λx. Finally, ÝÝÑrarg and ÝÑrloc denote vectors of (distinct) registers

and a0 P dompλxq.

4.2.3 Structured Operational Semantics

The SOS for MinX are manifested in two related judgements: λx; ~R $ xH,R, by
b
ÝÑ

xH 1, R1, b1y and ~R $ xH,R, ιy
ι
ÝÑ xH 1, R1y. The former, presented in Figure 13,

details the behaviour of blocks, and the latter, presented in Figure 14, of single

instructions. Both are parameterised by a vector ~R of register assignments (needed

solely in the proofs) to state that data accessible from these (shadowed) registers

is not mutated by a call. The rules for blocks are straightforward, but note that

x-if-true and x-if-false will get stuck if the decision register contains an uninitialised

byte.

As noted previously, the arithmetic/logical and move instructions operate on

a variable number of bytes w, and this manifests in a few different ways in the

semantics. In the rule x-mov-rr the least significant w bytes of the register ri are

mutated while the remaining 4−w bytes are left intact. x-mov-ir copies the lowest

w bytes from rj into the w consecutive bytes at the heap address contained in

ri. Note that all four bytes of ri must be initialised with an address, otherwise

the computation will get stuck. Other rules must also account for uninitialised

data; for example x-mov-ri dereferences rj and copies the result into ri, therefore,

if rj contains a single unintialised value, ri must be set to four unitialised values.

The instruction x-‘-r* is included to support pointer arithmetic, and takes an

additional operand c, holding the size of the data objects. In this rule and others

utilising constants, c denotes a vector of bytes, but the arrow is omitted for brevity.

Observe how x-alloc sets allocated memory to K, to indicate unitialised mem-

ory. If the size operand, register rj, itself contains an uninitialised byte, then rule
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~R $ xH,R, ιy
ι
ÝÑ xH 1, R1

y

x-mov-rc
R1 = R ˝w tri ÞÑ cu

~R $ xH,R,movw ri, cy
ι
ÝÑ xH,R1y

x-mov-rr
R1 = R ˝w tri ÞÑ R0:wprjqu

~R $ xH,R,movw ri, rjy
ι
ÝÑ xH,R1y

x-mov-ir

K R H4pRpriqq
H 1 = H ˝ tH4pRpriqq+4 n ÞÑ Rn:n+1prjqu

w−1
n=0

~R $ xH,R,movw rris, rjy
ι
ÝÑ xH 1, Ry

x-mov-ri
R1 = R ˝w tri ÞÑ HwpRprjqqu

~R $ xH,R,movw ri, rrjsy
ι
ÝÑ xH,R1y

x-mov-r+
R1 = R ˝w tri ÞÑ HwpRprjq+4 cqu

~R $ xH,R,movw ri, rrj + csy
ι
ÝÑ xH,R1y

x-mov-+r

K R H4pRpriqq
H 1 = H ˝ tH4pRpriqq+4 c+4 n ÞÑ Rn:n+1prjqu

w−1
n=0

~R $ xH,R,movw rri + cs, rjy
ι
ÝÑ xH 1, Ry

x-eq-true

R0:wprjq = R0:wprkq
R1 = R ˝w tri ÞÑ 1u

~R $ xH,R, eqw ri, rj, rky
ι
ÝÑ xH,R1y

x-eq-false

R0:wprjq ‰ R0:wprkq
R1 = R ˝w tri ÞÑ 0u

~R $ xH,R, eqw ri, rj, rky
ι
ÝÑ xH,R1y

x-‘-r*
R1 = R ˝w tri ÞÑ R0:wpriq ‘w pR0:wprjq ∗w cqu

~R $ xH,R, op‘
w ri, rj ∗ cy

ι
ÝÑ xH,R1y

x-b-rc
R1 = R ˝w tri ÞÑ R0:wpriq bw cu

~R $ xH,R, opb
w ri, cy

ι
ÝÑ xH,R1y

x-b-rr
R1 = R ˝w tri ÞÑ R0:wpriq bw R0:wprjqu

~R $ xH,R, opb
w ri, rjy

ι
ÝÑ xH,R1y

x-alloc

K R Rprjq tl, l +4 1, ... , l +4 Rprjq−4 1u X dompHq = H R1 = R ˝ tri ÞÑ lu
H 1 = H ˝ tl ÞÑ tKu4, l +4 1 ÞÑ tKu4, ... , l +4 Rprjq−4 1 ÞÑ tKu4u

~R $ xH,R, alloc ri, rjy
ι
ÝÑ xH 1, R1y

x-alloc-bot
K P Rprjq R1 = R ˝ tri ÞÑ tKu4u

~R $ xH,R, alloc ri, rjy
ι
ÝÑ xH,R1y

x-alloc-*

K R Rprjq tl, l +4 1, ... , l +4 Rprjq ∗4 c−4 1u X dompHq = H R1 = R ˝ tri ÞÑ lu
H 1 = H ˝ tl ÞÑ tKu4, ... , l +4 pRprjq ∗4 cq−4 1 ÞÑ tKu4u

~R $ xH,R, alloc ri, rj ∗ cy
ι
ÝÑ xH 1, R1y

x-alloc-*-bot
K P Rprjq R1 = R ˝ tri ÞÑ tKu4u

~R $ xH,R, alloc ri, rj ∗ cy
ι
ÝÑ xH,R1y

x-call

φxpaq = xÝÝÑrarg, rret,ÝÑrloc, λx, a0y R1 = tÝÝÑrarg ÞÑ ÝÑrj , rret ÞÑ tKu4,ÝÑrloc ÞÑ tKu4u

λx; ~R,R $ xH,R
1, λxpa0qy

b
ÝÑ∗xH 1, R2, rety

~R $ xH,R, call ri, a,ÝÑrj y
ι
ÝÑ xH 1, R ˝ tri ÞÑ R2prretquy

Figure 14: Structured Operational Semantics of MinX instructions (ι)
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x-alloc-bot must also set the destination register (ri) to be uninitialised. The rule

x-alloc-* is employed to allocate an array of objects, each of size c.

The x-call rule is worthy of note, as it is particularly unusual. To copy argu-

ments to the callee function’s register set, four bytes of each of the registers ÝÑrj are

copied to ÝÝÑrarg, which is abbreviated to ÝÝÑrarg ÞÑ ÝÑrj in the judgement. The callee’s

local registers ÝÑrloc and return register, rret, are set to uninitialised values. The

entry block λxpa0q is executed, and any subsequent block that leads on from it,

until ret is encountered, whereupon the register values are restored and register

rj updated with the return value.

4.3 The MinC Language

MinC (Minimal C) is the language of witness programs and the target of the

decompilation. Even though C is expressive enough to capture the semantics of

machine instructions, it lacks one crucial ingredient: type safety. In contrast,

MinC is designed to be type-safe, while remaining close enough to C to recover

MinX programs.

4.3.1 Syntax

MinC features three different kinds of types:

t ::= short | long θ ::= t | τ∗ τ ::= θ | θrs | N

A primitive type t is either a short or a long integer. A compact type θ is a type

that can be assigned to a program variable, it is either a primitive type t or a

pointer type τ∗. Finally, a general type τ is either a compact type θ, an array

type θrs or a struct type identified by its name N .

Structs are declared using their name and a list of types for the fields, ~θ, and

may also be forward declared provided that they are fully defined elsewhere. The

syntax for these declarations is given by decl:

decl ::= struct N | struct Np~θq
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Rules for defining structs, including resolving forward references in mutually re-

cursive structures using a placeholder mapping in decl, are detailed in Figure 15.

Note that by construction arrays and structs may only exist on the heap, and may

only encapsulate other structs and arrays by holding pointers to them, since their

elements and fields must be in θ.

MinC programs themselves are defined in terms of the categories of statements

s, expressions e and lvalues ` as follows:

s ::= p` := eq; s

| pif e goto lq; s

| goto l

| return

` ::= x

| ∗x
| xÑ c

| xres

e ::= ` | c | fp~eq

| new θ | new θres

| new struct N

| pe1 ‘ e2q | pe1 b e2q

where ‘ and b are defined as in MinX. Function declarations,

dc ::= fp
ÝÝÑ
x : θqx

ÝÝÝÑ
y : θ1, l, λc, jy

include a vector of arguments and their types
ÝÝÑ
x : θ, a vector of locals and their

types
ÝÝÝÑ
y : θ1, an entry label l P Labels , a partial mapping of labels to statements,

λc : Labels á s, and an index j into y indicating which local variable holds

the return value. Labels must be contained within dompλcq, analogously to the

definition given for λx in MinX.

Σ $ θ
Σ $ short Σ $ long

Σ $ τ
Σ $ τ∗

N P Σ
Σ $ N

Σ $ decls
d
ÝÑ Σ1

Σ $ ε
d
ÝÑ Σ

N R dompΣq Σ1 = Σ ˝ tN ÞÑ Ku Σ1 $ decls
d
ÝÑ Σ2

Σ $ struct N ; decls
d
ÝÑ Σ2

ΣpNq = K _N R dompΣq Σ1 = Σ ˝ tN ÞÑ ~θu @θi P ~θ.pΣ
1 $ θiq Σ1 $ decls

d
ÝÑ Σ2

Σ $ struct Np~θq; decls
d
ÝÑ Σ2

Figure 15: Well-formed type declarations of MinC programs
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Σ $ d t-def
Γ = t

ÝÝÑ
x : θ,

ÝÝÝÑ
y : θ1

u l P dompλcq yj P ~y @l1 P dompλcq : Γ; Σ $ λcpl
1q

Σ $ fp
ÝÝÑ
x : θqx

ÝÝÝÑ
y : θ1, l, λc, jy

Γ; Σ $ s t-assn

Γ; Σ $ ` : θ1 Γ; Σ $ e : θ2

Σ $ θ2 <: θ1 Γ; Σ $ s

Γ; Σ $ p` := eq; s
t-if

Γ; Σ $ e : θ
Γ; Σ $ s

Γ; Σ $ pif e goto lq; s

t-goto
Γ; Σ $ goto l

t-ret
Γ; Σ $ return

Γ; Σ $ ` : θ t-var
x : θ P Γ

Γ; Σ $ x : θ
t-ptr

Γ; Σ $ x : τ∗
Γ; Σ $ ∗x : τ

t-fld

Γ; Σ $ x : N∗
ΣpNq = xθ0, ... , θn−1y

Γ; Σ $ xÑ i : θi
t-ar

Γ; Σ $ x : θrs∗
Γ; Σ $ e : t

Γ; Σ $ xres : θ

Γ; Σ $ e : θ t-l
Γ; Σ $ cl : long

t-s
Γ; Σ $ cs : short

t-null
Γ; Σ $ 0∗ : τ∗

t-new
Γ; Σ $ new θ : θ∗ t-new-str

Γ; Σ $ new struct N : N∗

t-new-ar
Γ; Σ $ e : t

Γ; Σ $ new θres : θrs∗
t-b

Γ; Σ $ e1 : t Γ; Σ $ e2 : t

Γ; Σ $ pe1 b e2q : t

t-ptr-‘
Γ; Σ $ e1 : θrs∗ Γ; Σ $ e2 : t

Γ; Σ $ pe1 + e2q : θrs∗
t-+-ptr

Γ; Σ $ e1 : t Γ; Σ $ e2 : θrs∗
Γ; Σ $ pe1 + e2q : θrs∗

t-call

φcpfq = fp
ÝÝÑ
x : θqx

ÝÝÝÑ
y : θ2, l, λc, jy

@ei P ~e, θ
1
i P

~θ1 : Γ; Σ $ ei : θ1
i Σ $ ~θ1 <: ~θ Σ $ θ2

j <: θj

Γ; Σ $ fp~eq : θj

Figure 16: Type-correct MinC programs

4.3.2 Type System

Figure 16 defines the MinC type system as well-typing judgements Σ $ d, Γ; Σ $

s, Γ; Σ $ ` : θ and Γ; Σ $ e : θ for the four syntactic sorts. As well as the variable

type environment Γ, the judgements make use of Σ, which maps struct names N

to vectors ~θ of their field types. A global environment φc that contains all function

definitions is also assumed.
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Σ $ θ1 <: θ2 sub-refl
Σ $ θ <: θ

sub-trans
Σ $ θ1 <: θ2 Σ $ θ2 <: θ3

Σ $ θ1 <: θ3

sub-ptr
Σ $ θ1 <: θ2

Σ $ θ1∗ <: θ2∗
sub-arr

Σ $ θ1 <: θ2

Σ $ θ1rs∗ <: θ2rs∗

sub-elm
Σ $ θrs∗ <: θ∗

sub-fld
ΣpNq = xθ0, ... , θn−1y

Σ $ N∗ <: θ0∗

Figure 17: Subtyping relations of MinC programs

Because it admits type safety, the type system is stricter than that of C. For

example, C allows any integer to be added to the address of a primitive type, which

is not permitted in MinC. Unlike C, arrays are first-class types, which means that

it is possible to pass them as arguments to functions and return them, without

demoting them to simple pointers. The upshot of this is that in MinC it is possible

to distinguish between θ∗ and θrs∗.
To regain some of C’s flexibility, without compromising on type safety, MinC’s

type system is equipped with subtyping (see Figure 17). For instance, an array

θrs∗ is a subtype of θ∗, which allows the assignment of an array to a compatible

pointer.

As evident in the rules t-s and t-l, MinC literals are tagged: short values are

denoted cs and long values cl. Although in general pointer literals do not exist in

MinC, an exception is the special value 0∗, equivalent to NULL in C, and therefore

0∗ has its own typing rule t-null.

4.3.3 Semantics

Figure 18 presents the semantics of MinC. The environment and store maps have

signatures ρ : Var ÞÑ N and σ : NK á ValK where Var is a set of program

variables and N is assumed to exclude 0. In addition, a set of non-empty ranges

πĎtrl, us | 0 ď l ď u ď 232− 1u is included to represent a set of (disjoint) memory

regions to which arrays or structs have been allocated.

The set π enables memory safe pointer arithmetic on arrays, by use of some

auxiliary functions: The functions untagtpntq = n and tagtpnq = nt remove and

add a tag t from a value n. Addition of an address v and a short u is then defined
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using +π as follows:

v +π u =

$

’

’

’

’

&

’

’

’

’

%

K if v = K _ u = K

tag∗psq if Dr P π.runtag∗pvq, ss Ď r

where s = untag∗pvq+4 untagspu)

err otherwise

This checks that the interval runtag∗pvq, ss, which starts at the address of the

original pointer and ends at the result of the addition, is a subset of some existing

interval (allocated memory range) r in π. This ensures that the result must fall

within the same range of π as v, otherwise an error state occurs. Note that if v or

u is unitialised (K) this is propagated. Addition of short/address, address/long,

and long/address are analogously defined. The sum of two longs is simply defined:

u+π v =

#

K if u = K _ v = K

taglpuntaglpuq+4 untaglpvqq otherwise

The sum of two shorts is defined likewise, to cumulatively give the partial map

+π : Val2
á Val , where Val is the set of all tagged values. Subtraction is defined

likewise in a piecewise manner.

The SOS is structured according to the three syntactic categories: ` resolves

lvalues to addresses, e resolves expressions to values, and statements s.

The rules l-ptr, l-fld and l-ar check ρpxq ‰ 0 since location 0 is reserved as a

sentinel. If these checks fail then auxiliary rules, l-ptr-err, l-fld-err and l-ar-err,

trigger an err state. For instance:

l-ptr-err
ρpxq = 0

Σ; ~ρ; ρ $ xσ, π, ∗xy `
ÝÑ err

Rules l-fld-err and l-ar-err are defined analogously. Moreover, the rules l-fld and

l-ar check a P Yπ1 to ensure the computed address a stays within an allocated

memory region. Further complementary rules trigger err if this does not hold,

indeed many rules have many error modes. The e-call rule is an extreme case: it

has one error mode for the evaluation of each expression ei passed as a function

parameter, and execution of the block labelled λcplq can itself trigger an err.
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Σ; ~ρ; ρ $ xσ, π, `y
`
ÝÑ xσ1, π1, ay+ err

l-var

Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ xσ, π, ρpxqy

l-ptr
ρpxq ‰ 0

Σ; ~ρ; ρ $ xσ, π, ∗xy `
ÝÑ xσ, π, σpρpxqqy

l-fld
ρpxq ‰ 0 a = σpρpxqq+K c a P Yπ

Σ; ~ρ; ρ $ xσ, π, xÑ cy
`
ÝÑ xσ, π, ay

l-ar

Σ; ~ρ; ρ $ xσ, π, ey
e
ÝÑ xσ1, π1, vy

ρpxq ‰ 0 a = σpρpxqq+K v a P Yπ1

Σ; ~ρ; ρ $ xσ, π, xresy
`
ÝÑ xσ1, π1, ay

Σ; ~ρ; ρ $ xσ, π, ey
e
ÝÑ xσ1, π1, vy+ err e-const

Σ; ~ρ; ρ $ xσ, π, cy
e
ÝÑ xσ, π, cy

e-lval
Σ; ~ρ; ρ $ xσ, π, `y

`
ÝÑ xσ1, π1, ay

Σ; ~ρ; ρ $ xσ, π, `y
e
ÝÑ xσ1, π1, σ1paqy

e-op

Σ; ~ρ; ρ $ xσ, π, e1y
e
ÝÑ xσ1, π1, v1y

Σ; ~ρ; ρ $ xσ1, π1, e2y
e
ÝÑ xσ2, π2, v2y

v1 bπ2 v2 = v

Σ; ~ρ; ρ $ xσ, π, pe1 b e2qy
e
ÝÑ xσ2, π2, vy

e-new

a R dompσq Y t0u
σ1 = σ ˝ ta ÞÑ Ku

Σ; ~ρ; ρ $ xσ, π, new θy
e
ÝÑ xσ1, π, ay

e-str

ta, ... , a+ |ΣpNq| − 1u X pdompσq Y t0uq = H

π1 = π Y tra, a+ |ΣpNq| − 1su
σ1 = σ ˝ ta ÞÑ K, ... , a+ |ΣpNq| − 1 ÞÑ Ku

Σ; ~ρ; ρ $ xσ, π, new struct Ny
e
ÝÑ xσ1, π1, ay

e-ar

Σ; ~ρ; ρ $ xσ, π, ey
e
ÝÑ xσ1, π1, vy ta, ... , a+ v − 1u X pdompσ1q Y t0uq = H

σ2 = σ1 ˝ ta ÞÑ K, ... , a+ v − 1 ÞÑ Ku π2 = π1 Y tra, a+ v − 1su

Σ; ~ρ; ρ $ xσ, π, new θresy
e
ÝÑ xσ2, π2, ay

e-call

φcpfq = fp
ÝÝÑ
x : θqx

ÝÝÝÑ
y : θ1, l, λc, jy @ei P ~e : Σ; ~ρ; ρ $ xσi−1, πi−1, eiy

e
ÝÑ xσi, πi, viy | ~x |= n

t~a, ~a1u X pdompσnq Y t0uq = H ρ1 = tÝÝÝÝÑx ÞÑ a,
ÝÝÝÝÑ
y ÞÑ a1

u σ1 = σn ˝ tÝÝÝÑa ÞÑ v,
ÝÝÝÝÑ
a1
ÞÑ Ku

Σ;λc; ~ρ, ρ; ρ1 $ xσ1, πn, λcplqy
s
ÝÑ∗xσ2, π1, returny

Σ; ~ρ; ρ $ xσ0, π0, fp~eqy
e
ÝÑ xσ2, π1, σ2pρ1pyjqqy

Σ;λc; ~ρ; ρ $ xσ, π, sy
s
ÝÑ xσ1, π1, s1

y+ err s-assn

Σ; ~ρ; ρ $ xσ, π, `y
`
ÝÑ xσ1, π1, ay

Σ; ~ρ; ρ $ xσ1, π1, ey
e
ÝÑ xσ2, π2, vy

σ3 = σ2 ˝ ta ÞÑ vu

Σ;λc; ~ρ; ρ $ xσ, π, p` := eq; sy
s
ÝÑ xσ3, π2, sy

s-goto
l P dompλcq

Σ;λc; ~ρ; ρ $ xσ, π, goto ly
s
ÝÑ xσ, π, λcplqy

s-if-true
l P dompλcq v ‰ K v ‰ 0 Σ; ~ρ; ρ $ xσ, π, ey

e
ÝÑ xσ1, π1, vy

Σ;λc; ~ρ; ρ $ xσ, π, pif e goto lq; sy
s
ÝÑ xσ1, π1, λcplqy

s-if-false
l P dompλcq v ‰ J v = 0 Σ; ~ρ; ρ $ xσ, π, ey

e
ÝÑ xσ1, π1, vy

Σ;λc; ~ρ; ρ $ xσ, π, pif e goto lq; sy
s
ÝÑ xσ1, π1, sy

Figure 18: Structured Operational Semantics of MinC programs
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Of particular note is e-op: if v1 is tagged as a pointer and v2 as an integer,

the binary operation v1 ‘π2 v2 itself will err if the resulting pointer falls outside

the region enclosing v1. This is trapped by a rule that complements e-op so as to

propagate err in the expected way.

Finally note how freshly allocated memory is marked as uninitialised in rules

e-new, e-ar and e-str.

4.3.4 Type Safety

MinC is a type-safe variant of C. This means that well-typed MinC programs do

not get stuck. We can be formally precise about this property in the usual way,

stating preservation and progress properties for the syntactic sorts of MinC.

Type safety depends on the notion of a store typing Ψ that associates a type θ

with every address a in the store σ. A store σ is well-typed, denoted Σ; Ψ $ σ; π,

iff

@pa : θq P Ψ . Σ; Ψ;σ; π $ a : θ

Figure 19 defines the auxiliary judgements for well-typed addresses and values.

Similar to a store, an environment ρ is well-typed, denoted Γ; Σ; Ψ $ ρ, iff

@px : θq P Γ . Σ; Ψ $ ρpxq : θ ∗^ ρpxq ‰ 0

Proposition 2 below asserts preservation of type safety for MinC expressions.

To be precise, it states that, given a consistent local environment ρ, store σ; π,

expression e, and a store typing Ψ, the evaluation of e to yield v will preserve type

safety. That is, under a new store typing Ψ1, the environment ρ and new store

σ1; π1 are well typed, as is the result of the evaluation, v.

Proposition 2 (Preservation of MinC Expressions). If Γ; Σ; Ψ $ ρ, Σ; Ψ $ σ; π,

Γ; Σ $ e : θ and Σ; ~ρ; ρ $ xσ, π, ey
e
ÝÑ xσ1, π1, vy then for some Ψ1 Ě Ψ:

Γ; Σ; Ψ1
$ ρ ^ Σ; Ψ1

$ σ1; π1
^ Σ; Ψ1

$ v : θ

Proposition 3 asserts that well-typed MinC expressions make progress. If the local

environment ρ, store σ; π, and expression e are well typed, then evaluating e will
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Σ; Ψ;σ; π $ a : τ st-comp
Σ; Ψ $ σpaq : θ

Σ; Ψ;σ; π $ a : θ

st-fld

ΣpNq = xθ0, ... , θn−1y

ra, a+ n− 1s P π
@i P r0, n− 1s.Σ; Ψ $ σpa+ iq : θi

Σ; Ψ;σ; π $ a : N
st-ar

ra− n, a+ms P π
@i P r−n,ms.Σ; Ψ $ σpa+ iq : θ

Σ; Ψ;σ; π $ a : θrs

Σ; Ψ $ v : θ vt-bot
Σ; Ψ $ K : θ

vt-s
Σ; Ψ $ cs : short

vt-l
Σ; Ψ $ cl : long

vt-null
Σ; Ψ $ 0l : τ∗ vt-addr

pa : τq P Ψ

Σ; Ψ $ a : τ∗ vt-subt
Σ; Ψ $ v : θ1 Σ $ θ1 <: θ2

Σ; Ψ $ v : θ2

Figure 19: Well-typed addresses and values

either produce a value v and new state σ1; π1 or an error err:

Proposition 3 (Progress of MinC Expressions). If Γ; Σ; Ψ $ ρ, Σ; Ψ $ σ; π and

Γ; Σ $ e : θ then Σ; ~ρ; ρ $ xσ, π, ey
e
ÝÑ xσ1, π1, vy or Σ; ~ρ; ρ $ xσ, π, ey

e
ÝÑ err.

Due to the big-step nature of the MinC semantics, it is not possible to guarantee

that non-terminating programs do not get stuck. Non-termination is subsumed by

the err case of Proposition 9, for progress of functions:

Proposition 9 (Progress for MinC functions).

If

• Σ $ fp
ÝÝÑ
x : θqx

ÝÝÝÑ
y : θ1, l, λc, jy

• Σ;λc; ~ρ; ρ $ xσ, π, λcplqy
s
ÝÑ∗xσ1, π1, returny

• Γ = t
ÝÝÑ
x : θ,

ÝÝÝÑ
y : θ1

u

• Γ; Σ; Ψ $ ρ

• Σ; Ψ $ σ; π

then

1. Σ;λc; ~ρ; ρ $ xσ, π, λcplqy
s
ÝÑ∗xσ1, π1, returny or
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2. Σ;λc; ~ρ; ρ $ xσ, π, λcplqy
s
ÝÑ∗err (assuming this subsumes divergence).

Similar Propositions for preservation and progress of lvalues, statements and func-

tions appear alongside all proofs in appendix A.1.1.

4.4 Decompilation Relation

This section relates MinX and MinC programs through a decompilation relation.

The relation is spread out over three judgements, one for each of the three main

syntactic categories of MinX.

Instruction Decompilation Figures 20 and 21 define the decompilation judge-

ment µΓ; Γ; Σ $ ι
ι
 ` := e which explains how to decompile a MinX instruction

ι into a MinC assignment ` := e. Figure 20 details mov instructions, and Fig-

ure 21 other instructions. Additional parameters to the judgement are a variable

mapping µΓ that relates MinX registers to MinC local variables, a MinC typing

environment Γ for those local variables, and a set of MinC struct definitions Σ.

The judgement is defined by syntax-directed rules, as is usually the case for

compilation relations. The main difference is that, as the latter usually define

(partial) functions; they are deterministic with typically one rule per syntactic

construct. In contrast the decompilation judgement is non-deterministic and fea-

tures multiple rules per syntactic construct, one for each distinct typing that can

be assigned to the instruction. For instance, the three rules tr-mov-ri1, tr-mov-ri2

and tr-mov-ri3 decompile instruction movw ri, rrjs into either x := ∗y, x := yr0s or

x := y Ñ 0 depending on whether y has type θ∗, θrs∗ or N∗.
The instruction widths w play an important role in restricting the possibilities

for the recovered MinC types. For instance, rule tr-‘-rc ensures that the width w

of the arithmetic operation opb
w is identical to the size of the recovered primitive

type t. Hence, a width of 4 gives rise to long and a width of 2 to short. An

auxilliary function sizeof pθq gives the size of an object of type θ in bytes:

sizeof pshortq = 2 sizeof plongq = 4 sizeof pτ∗q = 4

On several occasions the rules must make up for the difference in memory granu-

larity between MinX and MinC. In particular, in MinC the stride between array
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elements is always 1. However, in MinX, the stride depends on the size of the el-

ements. Hence, rules such as tr-‘-rc for array pointer arithmetic convert between

a MinX stride of c = m ∗ sizeof pθq and a corresponding MinC stride of m.

When allocating a statically known amount of memory the rules tr-alloc-rc1,

tr-alloc-rc2 and tr-alloc-rc3 also exploit the sizes of types to determine whether a

primitive type, a particular struct or an array is allocated. The decompilation of

dynamic memory allocation is only supported for arrays (rule tr-alloc-r∗), where

it can be statically verified that the amount of allocated memory is a multiple of

the size of the array elements. This rule, amongst others, make the decompilation

relation conservative and incomplete. It is a price gladly paid in order to provide

strong guarantees about the validity of the recovered types.

Basic Block Decompilation The top half of Figure 22 defines the judgement

µλ;µΓ; Γ; Σ $ b
b
 s for decompiling MinX basic blocks b into MinC statements

s. This judgement has one additional parameter compared to the judgement for

instructions: the label map µλ relates MinX labels to the corresponding MinC

labels. This map is used for decompiling goto and if. As the rules preserve the

basic control flow from MinX to MinC and do not affect the types directly, they

are deterministic and syntax-directed.

Function Definition Decompilation The bottom half of Figure 22 defines

the judgement Σ $ dx  dc that decompiles a MinX function definition dx into

a MinC definition dc. The single rule sets up the variable and label maps, and

decompiles the basic blocks with respect to an appropriate typing environment.

4.4.1 Meta-Theoretical Properties

The decompilation relation satisfies two strong properties that justify its relevance:

1) the produced MinC witness program is well-typed, and 2) the witness has the

same operational semantics as the original MinX program. Taken together these

two properties give meaning to the statement that the original MinX program

inhabits the recovered types.
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µΓ; Γ; Σ $ ι
ι
 ` := e

tr-mov-rc

pri : xqw P µΓ px : tq P Γ
Γ; Σ $ c : t sizeof ptq = w

µΓ; Γ; Σ $ movw ri, c
ι
 x := c

tr-mov-r0
pri : xq4 P µΓ px : τ∗q P Γ

µΓ; Γ; Σ $ mov4 ri, 0
ι
 x := 0

tr-mov-rr

pri : xqw P µΓ prj : yqw P µΓ px : θ1q, py : θ2q P Γ
sizeof pθ1q = sizeof pθ2q = w Σ $ θ2 <: θ1

µΓ; Γ; Σ $ movw ri, rj
ι
 x := y

tr-mov-ri1

pri : xqw, prj : yq4 P µΓ px : θ1q, py : θ2∗q P Γ
Σ $ θ2 <: θ1 sizeof pθ1q = sizeof pθ2q = w

µΓ; Γ; Σ $ movw ri, rrjs
ι
 x := ∗y

tr-mov-ri2

pri : xqw, prj : yq4 P µΓ px : θ1q, py : θ2rs∗q P Γ
Σ $ θ2 <: θ1 sizeof pθ1q = sizeof pθ2q = w

µΓ; Γ; Σ $ movw ri, rrjs
ι
 x := yr0s

tr-mov-ri3

pri : xqw, prj : yq4 P µΓ px : θq, py : N∗q P Γ
ΣpNq = xθ0, ... , θn−1y Σ $ θ0 <: θ sizeof pθ0q = sizeof pθq = w

µΓ; Γ; Σ $ movw ri, rrjs
ι
 x := y Ñ 0

tr-mov-ir1

pri : xq4, prj : yqw P µΓ px : θ1∗q, py : θ2q P Γ
Σ $ θ2 <: θ1 sizeof pθ1q = sizeof pθ2q = w

µΓ; Γ; Σ $ movw rris, rj
ι
 ∗x := y

tr-mov-ir2

pri : xq4, prj : yqw P µΓ px : θ1rs∗q, py : θ2q P Γ
Σ $ θ2 <: θ1 sizeof pθ1q = sizeof pθ2q = w

µΓ; Γ; Σ $ movw rris, rj
ι
 xr0s := y

tr-mov-ir3

pri : xq4, prj : yqw P µΓ px : N∗q, py : θq P Γ
ΣpNq = xθ0, ... , θn−1y Σ $ θ <: θ0 sizeof pθ0q = sizeof pθq = w

µΓ; Γ; Σ $ movw rris, rj
ι
 xÑ 0 := y

tr-mov-ri+1

pri : xqw, prj : yq4 P µΓ px : θ1q, py : θ2rs∗q P Γ Σ $ θ2 <: θ1

sizeof pθ1q = sizeof pθ2q = w c = m ∗ w Γ; Σ $ m : t

µΓ; Γ; Σ $ movw ri, rrj + cs
ι
 x := yrms

tr-mov-ri+2

pri : xqw, prj : yq4 P µΓ px : θq, py : N∗q P Γ Σ $ θm <: θ

sizeof pθmq = sizeof pθq = w ΣpNq = xθ0, ... , θn−1y c =
řm−1
k=0 sizeof pθkq

µΓ; Γ; Σ $ movw ri, rrj + cs
ι
 x := y Ñ m

tr-mov-i+r1

pri : xq4, prj : yqw P µΓ px : θ1rs∗q, py : θ2q P Γ Σ $ θ2 <: θ1

sizeof pθ1q = sizeof pθ2q = w c = m ∗ w Γ; Σ $ m : t

µΓ; Γ; Σ $ movw rri + cs, rj
ι
 xrms := y

tr-mov-i+r2

pri : xqq4, prj : yqw P µΓ px : N∗q, py : θq P Γ Σ $ θ <: θm
sizeof pθmq = sizeof pθq = w ΣpNq = xθ0, ... , θn−1y c =

řm−1
k=0 sizeof pθkq

µΓ; Γ; Σ $ movw rri + cs, rj
ι
 xÑ m := y

Figure 20: Decompilation of mov instructions
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µΓ; Γ; Σ $ ι
ι
 ` := e

tr-‘-r*1

pri : xq4, prj : yq4 P µΓ px : θrs∗q, py : longq P Γ
c = m ∗ sizeof pθq Γ; Σ $ m : long

µΓ; Γ; Σ $ op‘
4 ri, rj ∗ c

ι
 x := x‘ py ∗mq

tr-‘-r*2

pri : xqw P µΓ prj : yqw P µΓ

px : tq P Γ py : tq P Γ Γ; Σ $ c : t

µΓ; Γ; Σ $ op‘
w ri, rj ∗ c

ι
 x := x‘ py ∗ cq

tr-‘-rc

pri : xq4 P µΓ px : θrs∗q P Γ
c = m ∗ sizeof pθq Γ; Σ $ m : t

µΓ; Γ; Σ $ op‘
4 ri, c

ι
 x := x‘m

tr-b-rc

pri : xqw P µΓ px : tq P Γ
sizeof ptq = w Γ; Σ $ c : t

µΓ; Γ; Σ $ opb
w ri, c

ι
 x := xb c

tr-b-rr

pri : xqw P µΓ prj : yqw P µΓ

px : tq P Γ py : tq P Γ sizeofptq = w

µΓ; Γ; Σ $ opb
w ri, rj

ι
 x := xb y

tr-alloc-r∗

pri, xq4 P µΓ prj, yqsizeof ptq P µΓ Γ; Σ $ m : t
px : θrs∗q P Γ py : tq P Γ c = sizeof pθq ∗m
µΓ; Γ; Σ $ alloc ri, rj ∗ c

ι
 x := new θry ∗ms

tr-alloc-rc3

pri, xq4 P µΓ px : θrs∗q P Γ
c = m ∗ sizeof pθq Γ; Σ $ m : t

µΓ; Γ; Σ $ alloc ri, c
ι
 x := new θrms

tr-alloc-rc1
pri, xq4 P µΓ sizeof pθq = c px : θ∗q P Γ

µΓ; Γ; Σ $ alloc ri, c
ι
 x := new θ

tr-alloc-rc2
pri, xq4 P µΓ sizeof pNq = c px : N∗q P Γ

µΓ; Γ; Σ $ alloc ri, c
ι
 x := new struct N

tr-call

φcpfq = fp
ÝÝÑ
x : θqx

ÝÝÝÑ
y : θ1, l, λc, jy pru : uqsizeof pθuq P µΓ

ÝÝÝÝÝÝÝÝÝÝÑ
prv : vqsizeof pθvq P µΓ

pu : θuq P Γ
ÝÝÝÝÑ
pv : θvq P Γ Σ $ θ1

j <: θu Σ $ ~θv <: ~θ

µΓ; Γ; Σ $ call ru, f,ÝÑrv
ι
 u := fp~vq

Figure 21: Decompilation of op‘, opb, alloc and call instructions
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µλ;µΓ; Γ; Σ $ b
b
 s

tr-ret

µλ;µΓ; Γ; Σ $ ret
b
 return

tr-goto
µλpaq = l

µλ;µΓ; Γ; Σ $ goto a
b
 goto l

tr-if

µλpaq = l µΓpriq = x px : θq P Γ

sizeofpθq = w µλ;µΓ; Γ; Σ $ b
b
 s

µλ;µΓ; Γ; Σ $ pifw ri goto aq; b
b
 pif x goto lq; s

tr-instr

µΓ; Γ; Σ $ ι
ι
 ` := e

µλ;µΓ; Γ; Σ $ b
b
 s

µλ;µΓ; Γ; Σ $ ι; b
b
 ` := e; s

Σ $ dx  dc

tr-def

µΓ = tÝÝÝÝÑrx ÞÑ x,ÝÝÝÝÑry ÞÑ yu Γ = t
ÝÝÑ
x : θ,

ÝÝÝÑ
y : θ1

u ryj P
ÝÑry a P dompλxq

µλ = tdompλxq ÞÑ dompλcqu µλpaq = l @pa ÞÑ lq P µλ : µλ;µΓ; Γ; Σ $ λxpaq
b
 λcplq

Σ $ xf,ÝÑrx ,ÝÑry , a, λx, jy fp
ÝÝÑ
x : θqx

ÝÝÝÑ
y : θ1, l, λc, jy

Figure 22: Decompilation of basic blocks and function definitions

4.4.1.1 Well-Typing

The first claim states that the recovered witness program is well-typed. This is

asserted as three Propositions, one for each of the judgements.

Proposition 10 (Well-Typed Instruction Decompilation).

If µΓ; Γ; Σ $ ι
ι
 ` := e, then for some θ1 and θ2:

Γ; Σ $ ` : θ1 ^ Γ; Σ $ e : θ2 ^ Σ $ θ2 <: θ1

Proposition 11 (Well-Typed Block Decompilation).

If µλ;µΓ; Γ; Σ $ b
b
 s then Γ; Σ $ s.

Proposition 12 (Well-Typed Definition Decompilation).

If Σ $ dx  dc then Σ $ dc.

For the proofs of these propositions, refer to appendix A.1.2. Due to the type

safety of MinC, it follows that the witness program is operationally well-behaved.



CHAPTER 4. SEMANTICS-DRIVEN DECOMPILATION

OF RECURSIVE DATATYPES

75

µa $ ~b ú v
µa $ 04 ú 0∗

pa : n∗q P µa
µa $ a ú n∗

µa $ K
4 ú Ka µa $ n2 ú ns µa $ K

2 ú Ks

µa $ n4 ú nl µa $ K
4 ú Kl

Figure 23: Value correspondence

4.4.1.2 Memory Correspondence

The main semantic effect of both MinX and MinC programs is a transforma-

tion of program memory. However, because MinX and MinC programs act on

very different memory structures, the semantic correspondence is not readily ex-

pressed. First it must be defined how low-level and high-level memory structures

correspond. Then semantics preservation can be expressed as the preservation of

this correspondence. There are three types of memory correspondence to consider:

MinX versus MinC values, MinX heaps versus MinC stores, and MinX registers

versus MinC local variables.

Value Correspondence Figure 23 defines the judgement µa $ ~b ú v that

states the basic correspondence between a MinX byte sequence ~b and a MinC

value v. This judgement is parameterised by an address map µa that relates

MinX and MinC addresses. The rules are obvious, relating 0 pointers, addresses,

bottoms, and numeric values of the appropriate byte sizes.

Registers versus Local Variables The following relation denotes that MinX

register banks ~R and MinC local variables ~ρ are pair-wise related:

µa; ~µΓ;σ $ ~R ú ~ρ
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The relation is parameterized by an address map µa, register-variable maps ~µΓ

and a store σ. The relation stands for:

@pr : xqw P µΓ,i : Dn∗ : px : n∗q P ρi :

Dv : pn∗ : vq P σ ^ D~b : ~b = Ri,0:wprq ^ µa $ ~b ú v

This expresses that any related register r and local variable x have associated

values ~b and v that are related. The main complication is that the local variables

are store-mapped whereas the registers are not.

Heaps versus Stores The MinX heap H and MinC store σ are related with:

µa; νa; π; ~ρ $ H ú σ

This relation summarises six different properties addressing four concerns. Firstly,

as in the previous cases, this relation is parameterised by an address map µa that

relates addresses in H with addresses in σ. Obviously, these related addresses

point to related values.

@pa, n∗qw P µa : D~b, v : ~b = H0:wpaq ^ v = σpaq ^ µa $ ~b ú v

Secondly, we have to contend with the difference in granularity between MinX and

MinC: While values can only be addressed as a whole in MinC, MinX addresses

individual bytes and can point into the middle of a value. To bridge this gap, the

address map µa only covers the addresses in H that point at the first byte of a

value. The complementary header map νa relates each address in H (especially

those pointing into the middle of a value) to the address of the first byte of the

value and its width.

@a P dompHq : Da1, w : νapaq = xa1, wy ^ pa1 + wq ě a

These header addresses are fixpoints of νa:

@xa, wy P rangepνaq : νapaq = xa, wy
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Moreover, they are covered by µa:

@xa, wy P rangepνaq : Dn∗ : pa : n∗qw P µa

Thirdly, not all addresses in σ are related to an address in H. This is a consequence

of the discrepancy between registers and local variables: the store-mapped local

variables (i.e., those tracked in ~ρ or ρ) have no counterpart in H. Hence, they

need not have a counterpart in the relation.

@n∗ P pdompσq− rangep~ρ, ρqq : Da, w : pa : n∗qw P µa

Finally, adjacent MinC addresses in a range tracked by π must be related to

adjacent addresses in MinX (taking into account the width w of the value).

@rn, n+ cs P π : @i P r0, c− 1s : Da, a1, w, w1 :

a+ w = a1
^ pa, n+ iqw P µa ^ pa

1, n+ i+ 1qw1 P µa

4.4.1.3 Semantics Preservation

With the memory relations in place one important aspect of semantics preservation

can be stated as: the original MinX program and the corresponding decompiled

MinC program take related memories to related memories.

Proposition 13 (Preservation of Related Memory for Instructions). If

• µΓ; Γ; Σ $ ι
ι
 ` := e

• Γ; Σ; Ψ $ ρ

• Σ; Ψ $ σ; π

• µa; νa; π; ~ρ, ρ $ H ú σ

• µa; ~µΓ, µΓ;σ $ ~R,R ú ~ρ, ρ

• ~R $ xH,R, ιy
ι
ÝÑ xH 1, R1y,

• Σ; ~ρ; ρ $ xσ, π, `y
`
ÝÑ xσ1, π1, ay, and
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• Σ; ~ρ; ρ $ xσ1, π1, ey
e
ÝÑ xσ2, π2, vy

then for some µ1
a Ě µa and ν 1

a Ě νa:

• µ1
a; ~µΓ, µΓ;σ1 ˝ ta ÞÑ vu $ ~R,R ú ~ρ, ρ

• µ1
a; ν

1
a; π

1; ~ρ, ρ $ H 1 ú σ1 ˝ ta ÞÑ vu

A second aspect of the semantics preservation is that, if the MinX program does

not get stuck, the MinC program may get stuck only through a violation of mem-

ory that is guarded by π, or by non-termination.

Proposition 14 (Preservation of Progress for Instructions). If

• µΓ; Γ; Σ $ ι
ι
 ` := e

• Γ; Σ; Ψ $ ρ

• Σ; Ψ $ σ; π

• µa; νa; π; ~ρ, ρ $ H ú σ

• µa; ~µΓ, µΓ;σ $ ~R,R ú ~ρ, ρ, and

• ~R $ xH,R, ιy
ι
ÝÑ xH 1, R1y

then

• Σ; ~ρ; ρ $ xσ, π, `y
`
ÝÑ err or

• Σ; ~ρ; ρ $ xσ, π, `y
`
ÝÑ xσ1, π1, ay and Σ; ~ρ; ρ $ xσ1, π1, ey

e
ÝÑ err, or

• Σ; ~ρ; ρ $ xσ, π, `y
`
ÝÑ xσ1, π1, ay and Σ; ~ρ; ρ $ xσ1, π1, ey

e
ÝÑ xσ2, π2, vy.

There are similar such propositions for basic blocks and for function definitions.

Again, proofs can be found in the appendix (A.1.3).
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4.5 Implementation

The decompilation relation is a conceptual device, literally a relation, which de-

tails what it means for a MinX program to be in correspondence with a MinC

program. An algorithm, however, can be derived for solving a problem by adding

control to Horn clauses that specify the problem [78]. Following this methodol-

ogy, the decompilation relation was translated rule-for-rule (almost verbatim) into

Horn clauses, programming the control using Constraint Handling Rules (CHR)

[45], which is an extension to Prolog. Control defaults to leftmost goal selec-

tion, with the exception of predicates annotated as CHR. These are interpreted

as constraints, which reside in a constraint store, and interact with one another

to realise propagation, delay non-deterministic choice, and thereby avoid need-

less backtracking. As an illustration, consider the struct(N,c,m,θ) constraint

which holds iff ΣpNq = xθ0, ... , θn−1y, c =
řm−1
i=0 sizeofpθiq and θ = θm. Two such

constraints in the store that share the same N can be combined into one provided

they share the same byte offset c, an action that both simplifies the store and

performs propagation. This can be specified in CHR as:

struct(N,C,M1,Ty1) \ struct(N,C,M2,Ty2) <=>

M1 = M2, Ty1 = Ty2.

Furthermore, given a CHR constraint sizeOf(θ,w) that holds iff w = sizeofpθq,

and two constraints struct(N,c,m,θ) and struct(N,c + w,m1,θ1) it follows

m1 = m+ 1. This form of propagation can be realised in CHR using:

struct(N,C1,M1,Ty1), struct(N,C2,M2,_Ty2) ==>

nonvar(C1), nonvar(C2), sizeOf(Ty1,W),

nonvar(W), C2 =:= C1 + W

|

M2 #= M1 + 1.

CHR rules are likewise used to express the subtyping relation. In all, this gives

a solver for computing a witness and its type, in less than 900 LOC, but more

importantly, derives one that is faithful to the rules of the decompilation relation.
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minxcc
Decompiler

(Horn clauses with CHR) MinC translatorC C
MinX MinC

gcc MinX interpreter MinC type checker gcc

Figure 24: The MinX to MinC toolchain

To generate input for the solver, the self-hosting ANSI C89 compiler ucc [120]

was retargeted to generate MinX. The resulting derivative, dubbed minxcc, sup-

ports the core features of C89. To stay within MinX, minxcc applies some rather

unusual transformations. Each constant string, which is normally encoded as a

global pointer literal, is converted into a function that returns a pointer to newly

allocated heap memory, that contains the string. malloc (and its friends) are re-

placed by the alloc instruction, while calls to free are removed completely. Mem-

ory thus grows as execution proceeds, exactly as specified in Fig 18. Mathematical

operations such as =< and logical operations such as xor are reduced to MinX

operations using equivalences taken from Hacker’s Delight [72].

As a sanity check, a Haskell interpreter was written for MinX, following the

SOS semantics of Figures 13 and 14. For each benchmark, the results of interpret-

ing the MinX code, on various inputs, were then checked against those obtained by

executing the benchmark after compilation using gcc (which was taken as ground

truth). For the satisfaction of going full circle, a translator was written in Haskell

to convert MinC witness programs into C, and each witness was then compiled

and checked again with gcc. The complete toolchain for compiling a C program

to MinX, decompiling to MinC, and finally converting back to C is shown in

Figure 24. The dotted lines point to checks that were performed on various inputs

and outputs of the toolchain components.

The solver requires input to be pre-processed and presented in the MinX lan-

guage. The left pane of Figure 25 lists (pretty-printed) MinX code for summing

the elements of a linked list (the same example used in Sections 1.1 and 2.1). The

arguments, return register and locals, denoted ÝÝÑrarg, rret,ÝÑrloc in Section 4.2, corre-

spond to (r1), r0 and (r2) respectively in the code listing. The mapping λ1
x
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iterative_sum {

mov4 r0, 0 ;

goto .BB1

.BB0:

mov4 r2, [r1] ;

add4 r0, r2 ;

mov4 r1, [r1 + 4] ;

.BB1:

if4 r1 goto .BB0 ;

ret

} <(r1), r0, (r2)>

struct struct1 {

long;

struct1*;

};

iterative_sum(struct1* x) {

long y1, y2

0: y1 = 0;

goto 2

1: y2 = x->0;

y1 = y1 + y2;

x = x->1;

2: if x goto 1;

return y1

}

Figure 25: Iterative summation of a linked list in MinX (left) and MinC (right)

is represented using the .BB0 and .BB1 labels to directly tag their corresponding

block. Note that blocks can overlap. The label of the entry block, a0, is implicit,

adopting the convention that the first block is always the entry block.

The right pane of Figure 25 presents the MinC witness program generated

by the solver, again pretty-printed for human comprehensibility since the solver

represents the witness as an abstract syntax tree. The local variables, denoted
ÝÝÝÑ
y : θ1 in Section 4.3, are given immediately before the entry block. The mapping

λc is represented, again by using labels to tag the blocks. The index j, used to

identify which local variable is returned in Section 4.3, is identified by printing

each return statement with the variable yj.

4.6 Evaluation

The solver was deployed on a suite of textbook [122] programs, chosen because of

their use of data-structures. Figure 5 lists the benchmarks, complete with LoC for

the C and MinX assembly files. The solns column records the number of type

assignment and witness program pairs generated by the solver. The original structs

columns indicates the number of struct types defined in the benchmark, whereas
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LoC original recovered time structure
benchmark C MinX structs solns structs (s) type
aatree 315 2,734 1 1 1 6.543 binary tree
avltree 269 2,188 1 1 2 2.041 binary tree
binheap 184 2,558 2 2 2/1 0.109 binary tree
binomial 303 3,732 2 2 5/4 0.249 binary tree
hashsep 256 1,017 2 4 6/5/6/5 0.077 linked list
hashquad 260 977 2 4 2/3/2/2 0.049 array
kdtree 112 891 1 1 1 1.527 binary tree
leftheap 182 762 1 1 1 0.825 binary tree
list 262 829 1 2 2/1 1.054 linked list
mergesort 135 664 1 1 1 0.628 linked list
pairheap 298 3,216 1 1 2 3.316 tree/doubly

linked list
queue 188 1,960 1 1 1 0.886 array
redblack 317 2,918 1 2 3/2 0.193 binary tree
sets 120 355 0 1 0 0.276 array
skip 239 2,616 1 1 1 2.089 linked list
sort 364 2,339 0 1 0 2.904 array
splay 332 2,648 1 1 2 4.975 binary tree
stackar 161 1,680 1 1 1 0.640 array
stackli 140 1,270 1 2 2/2 0.464 linked list
treap 288 2,580 1 1 2 3.834 binary tree
tree 208 1,104 1 1 2 2.158 binary tree

Table 5: Solutions and Recovered Structures

recovered structs records the number of struct definitions in each of the solutions.

Thus 6/5/6/5, for example, indicates that the first solution has 6 recovered structs,

the second has 5, the third 6, and the fourth 5; backtracking enabling all solutions

to be enumerated. The time column indicates the time required to recover all

solutions for a given benchmark. Finally, the structure type column indicates the

general type of the datastructures used in the benchmark; array, binary tree, tree,

linked list, or doubly linked list. Note that there are no benchmarks that use

mutually recursive structures, however since there is no theoretical reason why

the system could not recover such types further testing would be worthwhile.

The benchmarks were run on a single core Intel Atom Z540 at 1.86GHz with
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2GB of RAM. The benchmarks, assembly files, and witnesses (which embed the

recovered types) are all available in an on-line appendix, that is available at http:

//kar.kent.ac.uk/51448/.

Observe that some benchmarks have more than one solution and some solutions

have a different number of struct definitions than the original program. This is

due to several factors: Homogeneous structs, where every (accessed) field has the

same type, cannot be distinguished from arrays, and therefore can be typed either

as an array or a struct. This issue is exhibited by the binheap benchmark.

When the same struct type is used in separate parts of a program (e.g., in func-

tions that are never called) the decompiler generates distinct copies of the struct.

In most cases the definitions are identical (as in the tree benchmark), however

a function may not access every field of a struct, leading to an under-constrained

type assignment problem and a struct definition that omits the unaccessed fields,

as in the treap and avltree benchmarks. Combining these issues can result in

multiple solutions that differ in their types and number of structs, which arises in

the binomial benchmark.

The key point, however, is not visible from the table: in every case there exists

one witness program whose regenerated types are identical to those of the original

benchmark. Moreover, for benchmarks with multiple solutions, every witness has

types compatible with those of the original program (in the sense that arrays are

compatible with homogeneous structs). In addition, all recursive types in every

witness are present in the original, and every recursive type present in the original

appears in every witness. Furthermore, when translated back into C, each witness

behaves as the original benchmark.

4.7 Summary
This chapter has answered the fundamental question of how to derive types from

a binary executable that truly have semantic meaning. The solution is both prin-

cipled and unique in that it derives a high-level witness program in concert with

the types (provided one exists). By proving that the witness inhabits the inferred

types, and that the witness and binary are memory consistent, it has been demon-

strated unequivocally that the binary conforms to the inferred types. Apart from

establishing type correctness, the construction also yields a type-based decompiler.

http://kar.kent.ac.uk/51448/
http://kar.kent.ac.uk/51448/
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The decompiler was evaluated on more than 20 textbook programs and, for all,

recovered a witness program in a type-safe dialect of C, complete with the original

recursive datatypes.



Chapter 5

Simple and Efficient Algorithms

for Octagons

While the previous chapters were most directly concerned with type reconstruction

from binaries, this chapter focuses on improving the principal operations of the oc-

tagon domain, improvements that were discovered during the development of the

SMT solver framework (originally designed for type recovery) detailed in Chap-

ters 2 and 3. As detailed previously (in the introductory chapter, Section 1.3),

the octagon domain has many applications in static program analysis. Moreover,

because octagons can express relationships between program variables, the domain

can ultimately be used to determine possible values of variables (or machine code

registers/memory) when employed within an abstract interpretation framework,

such as that required to perform control-flow recovery from binaries [77].

The chapter begins with a primer on octagons. The primer first explains how

octagonal constraints can be translated into paths in a weighted graph, which per-

mits octagonal systems to be represented using difference bound matrices (DBMs)

which are widely used for integer differences (as detailed in Section 3.3.1). Focus

is then on the principal operation of the domain: closure. Closure makes explicit

all entailed unary and binary constraints in a system. For example, from the

constraints xi − xj ď c1 and xj − xk ď c2 closure derives the entailed inequality

xi − xk ď c1 + c2. Once all entailed constraints have been derived, the octagonal

system is closed. Closure is central to octagons because it reveals the satisfiability

85
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of an octagonal system and a closed system is a canonical form. Moreover, all

other key operations of the domain (join and projection) are easily reduced to it.

The core of the chapter introduces a new algorithm for incremental closure

(i.e. adding a single new constraint to an already closed system), and proves its

correctness. Classically, closure is computed using shortest path algorithms [43].

Minè demonstrated [93] that incremental closure can be computed more efficiently

by virtually rearranging the columns and rows of a matrix so that only the last

two columns and rows need to be recomputed. The new algorithm presented in

this chapter stems from the observation that introducing a new constraint can

only reduce the distance between existing variables in a limited number of ways.

This leads to an algorithm that is conceptually simple, and provides a greater per-

formance benefit over existing approaches. Subsequently, the chapter will present

straightforward and concise correctness proofs for non-incremental closure. Fi-

nally, the new algorithm is evaluated against the existing approaches, and the

performance demonstrated and discussed.

5.1 Preliminaries

This section serves as a self-contained introduction to the definitions and concepts

required in subsequent sections. For more details, please consult the seminal [93,

94] and subsequent [3] works on octagons.

5.1.1 The Octagon Domain and its Representation

An octagonal constraint is a two variable inequality of the form ˘xi ˘ xj ď d

where xi and xj are variables and d is a constant. An octagon is a set of points

satisfying a system of octagonal constraints. The octagon domain is the set of all

octagons that can be defined over the variables x0, ... , xn−1.

Implementations of the octagon domain reuse the machinery developed for

solving difference constraints of the form xi − xj ď d. Minè [94] showed how to

translate octagonal constraints to difference constraints over an extended set of

variables x1
0, ... , x

1
2n−1. A single octagonal constraint translates into a conjunction
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x0 ď 3
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2 8 6 8 4
x1
3 5 8 8 8

fi

ffi

ffi

fl

»

—

—

–

x1
0 x1

1 x1
2 x1

3

x1
0 0 6 11 5
x1
1 6 0 5 5
x1
2 5 5 0 4
x1
3 5 11 16 0

fi

ffi

ffi

fl

Figure 26: Example of an octagonal system and its DBM representation

of one or more difference constraints as follows:

xi − xj ď d ù x1
2i − x1

2j ď d ^ x1
2j+1 − x1

2i+1 ď d

xi + xj ď d ù x1
2i − x1

2j+1 ď d ^ x1
2j − x1

2i+1 ď d

−xi − xj ď d ù x1
2i+1 − x1

2j ď d ^ x1
2j+1 − x1

2i ď d

xi ď d ù x1
2i − x1

2i+1 ď 2d

−xi ď d ù x1
2i+1 − x1

2i ď 2d

A common representation for difference constraints is a difference bound matrix

(DBM) which is a square matrix of dimension n ˆ n, where n is the number of

variables in the difference system. The value of the entry d = mi,j represents the

constant d of the inequality xi − xj ď d where the indices i, j P t0, ... , n− 1u. An

octagonal constraint over n variables translates to a difference constraint over 2n

variables, hence a DBM representing an octagon has dimension 2nˆ 2n.

Example 1. Figure 26 serves as an example of how an octagon translates to a

system of differences. The entries of the upper DBM correspond to the constants

in the difference constraints. Note how differences which are (syntactically) absent

from the system lead to entries which take a symbolic value of 8. Observe too how

the DBM represents an adjacency matrix for the illustrated graph where the weight

of a directed edge abuts its arrow.

The interpretation of a DBM representing an octagon is different to a DBM rep-

resenting difference constraints. Consequently there are two concretisations for
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DBMs: one for interpreting differences and another for interpreting octagons, al-

though the latter is defined in terms of the former:

Definition 1. Concretisation for rational pQnq solutions:

γdiffpmq = txv0, ... , vn−1y P Qn | @i, j.vi − vj ď mi,ju

γoctpmq = txv0, ... , vn−1y P Qn | xv0,−v0, ... , vn−1,−vn−1y P γdiffpmqu

where the concretisation for integer pZnq solutions can be defined analogously.

Example 2. Since octagonal inequalities are modelled as two related differences,

the upper DBM of Figure 26 contains duplicated entries, for instance, m0,2 = m3,1.

Operations on a DBM representing an octagon must maintain equality between

the two entries that share the same constant of an octagonal inequality. This

requirement leads to the definition of coherence:

Definition 2 (Coherence). A DBM m is coherent iff @i.j.mi,j = m̄,̄ı where

ı̄ = i+ 1 if i is even and i− 1 otherwise.

Example 3. For the upper DBM of Figure 26 observe m0,3 = 5 = m2,1 = m3̄,0̄.

Coherence holds in a degenerate way for unary inequalities, note m3,2 = 4 =

m3,2 = m2̄,3̄.

Care should be taken to preserve coherence when manipulating DBMs, by either

using carefully designed algorithms or a data structure that maintains coherence

automatically [93, Section 4.5]. One final property is necessary for satisfiability:

Definition 3 (Consistency). A DBM m is consistent iff @i.mi,i ě 0.

5.1.2 Definitions of Closure

Closure properties define canonical representations of DBMs, and can decide satis-

fiability and support operations such as join and projection. Bellman [11] showed

that the satisfiability of a difference system can be decided using shortest path

algorithms on a graph representing the differences. If the graph contains a nega-

tive cycle then the difference system is unsatisfiable. The same applies for DBMs
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representing octagons. Closure propagates all the implicit (entailed) constraints

in a system, leaving each entry in the DBM with the sharpest possible constraint

entailed between the variables. Closure is formally defined below:

Definition 4 (Closure). A DBM m is closed iff

• @i.mi,i = 0

• @i, j, k.mi,j ď mi,k + mk,j

Example 4. The top right DBM in Figure 26 is not closed. By running an all-

pairs shortest path algorithm we get the following DBM:

»

—

—

—

—

–

x1
0 x1

1 x1
2 x1

3

x1
0 11 6 11 6

x1
1 6 11 5 9

x1
2 9 6 11 4

x1
3 5 11 16 11

fi

ffi

ffi

ffi

ffi

fl

Notice that the diagonal values have non-negative elements implying that the con-

straint system is satisfiable. Running shortest path closure algorithms propagates

all constraints and makes explicit all constraints implied by the original system.

Once satisfiability has been established, we can set the diagonal values to zero to

satisfy the definition of closure.

Closure is not enough to provide a canonical form for DBMs representing octagons.

Minè defined the notion of strong closure in [93, 94] to do so:

Definition 5 (Strong closure). A DBM m is strongly closed iff

• m is closed

• @i, j.mi,j ď mi,̄ı{2 + m̄,j{2

The strong closure of DBM m can be computed by Strpmq, the code for which is

given in Figure 28. The algorithm propagates the property that if x1
j−x1

̄ ď c1 and

x1
ı̄−x1

i ď c2 both hold then x1
j−x1

i ď pc1+c2q{2 also holds. This sharpens the bound
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x−

x+

y+

y−

x−

x+

y+

y−

4 8 4 8

3

3

Figure 27: Intuition behind strong closure: Two closed graphs representing the same
octagon: x ď 2 ^ y ď 4

on the difference x1
j − x1

i using the two unary constraints encoded by x1
j − x1

̄ ď c1

and x1
ı̄ − x1

i ď c1, namely, 2x1
j ď c1 and −2x1

i ď c2. Note that this constraint

propagation is not guaranteed to occur with a shortest path algorithm since there

is not necessarily a path from mi,̄ı to m̄,j. An example in Figure 27 shows such

a situation: the two graphs represent the same octagonal system, but a shortest

path algorithm will not propagate constraints on the left graph; hence we need

strengthening to bring the two graphs to the same normal form. Strong closure

yields a canonical representation: there is a unique strongly closed DBM for any

(non-empty) octagon [94]. Thus any semantically equivalent octagonal constraint

systems are represented by the same strongly closed DBM. Strengthening is the

act of computing strong closure.

Example 5. The lower right DBM in Figure 26 represents the strong closure of

the example octagon system. The strengthen step is run after the shortest path

algorithm.

5.1.3 High-level Overview

Strong closure computation begins with application of a closure algorithm to a

DBM. Next, consistency is checked by observing the diagonal has non-negative en-

tries indicating the octagon is satisfiable. If satisfiable, then the DBM is strength-

ened, resulting in a strongly closed DBM. Note that consistency does not need to

be checked again after strengthening.

Figure 28 lists the algorithms required to perform these steps for non-incremental

strong closure. A Floyd-Warshall all-pairs shortest path algorithm [43, 121] can
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1: function Close(m)
2: for k P t0, ... , 2n− 1u do
3: for i P t0, ... , 2n− 1u do
4: for j P t0, ... , 2n− 1u do
5: m1

i,j Ð minpmi,j,mi,k + mk,jq

6: end for
7: end for
8: end for
9: return m1

10: end function

1: function Str(m)
2: for i P t0, ... , 2n− 1u do
3: for j P t0, ... , 2n− 1u do
4: m1

i,j Ð minpmi,j, pmi,̄ı + m̄,jq{2q
5: end for
6: end for
7: return m1

8: end function

1: function CheckConsistent(m)
2: for i P t0, ... , 2n− 1u do
3: if mi,i < 0 then
4: return false
5: else
6: mi,i = 0
7: end if
8: end for
9: return true

10: end function

Figure 28: Non-incremental closure and strengthening

be applied to a DBM to compute closure, which is cubic in n. The check for con-

sistency involves a pass over the matrix diagonal to check for a strictly negative

entry, as illustrated in the figure. (Note that the consistency check does not reset

a positive diagonal entry to zero as in [3, 94], since the incremental algorithms

presented in this chapter never relax a zero diagonal entry to a strictly positive

value.) This is linear in n. Strong closure can be additionally obtained by follow-

ing closure with a single call to strengthen, the code for which is also listed in the

Figure. This is quadratic in n.

5.2 Incremental Closure

This chapter is concerned with the specific use case of adding a new octagonal con-

straint to an existing octagon. Minè designed an incremental algorithm for this

very task, which can be refactored into computing closure and separately strength-

ening. His incremental algorithm, and a refinement, are discussed in Section 5.2.1.

Section 5.2.2 presents a new incremental algorithm with better performance.
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1: function MinéIncClose(m, x1
a − x1

b ď d)
2: ma,b Ð minpma,b, dq;
3: mb̄,ā Ð minpmb̄,ā, dq;
4: for k P t0, ... , 2n− 1u do
5: for i P t0, ... , 2n− 1u do
6: for j P t0, ... , 2n− 1u do
7: if ti, j, ku X ta, ā, b, b̄u ‰ H then
8: mi,j Ð minpmi,j,mi,k + mk,jq

9: end if
10: end for
11: end for
12: end for
13: return m
14: end function

Figure 29: Minè’s Incremental Closure Algorithm

5.2.1 Classical Incremental Closure

Minè designed an incremental algorithm based on the observation that a new con-

straint will not affect all the variables of the octagon [93, Section 4.3.4]. Without

loss of generality, suppose the inequality x1
a− x1

b ď d is added to the DBM (unary

constraints are supported by putting b = ā). Adding x1
a − x1

b ď d implies that the

equivalent constraint x1

b̄
− x1

ā ď d is added too, and the entries ma,b and mb̄,ā are

strengthened to d to reflect this.

Figure 29 presents a version of Minè’s incremental algorithm, specialised for

adding x1
a − x1

b ď d to a closed DBM. The algorithm relies on the observation

that updating ma,b and mb̄,ā will only (initially) mutate the rows and columns

for the x1
a, x

1
b, x

1
ā, x

1

b̄
variables. Since m was closed, despite the updates, it still

follows that mi,j ď mi,k + mk,j if ti, j, ku X ta, ā, b, b̄u = H. To restore closure

it only remains to enforce mi,j ď mi,k + mk,j for ti, j, ku X ta, ā, b, b̄u ‰ H. The

incremental algorithm thus applies Floyd-Warshall closure but only updates an

entry mi,j when ti, j, ku X ta, ā, b, b̄u ‰ H (lines 7 and 8).

Note that the check ti, j, ku X ta, ā, b, b̄u ‰ H can be decomposed into three

separate checks i P ta, ā, b, b̄u, j P ta, ā, b, b̄u or k P ta, ā, b, b̄u. Then k P ta, ā, b, b̄u

can be hoisted outside the two inner loops, and likewise i P ta, ā, b, b̄u can be

hoisted outside the inner loop. Furthermore, i P ta, ā, b, b̄u can be reduced to four
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x1
i

x1
a x1

b

x1
j

x1

b̄ x1
ā

c

c1 c2

c1
2c1

1

d

d

pi, aq and pb, jq are not
affected by new constraints

x1
i

x1
a x1

b

x1
j

x1

b̄ x1
ā

c

c1 c2

c1
2c1

1

d

d

pi, b̄q and pā, jq are not
affected by new constraints

x1
i

x1
a x1

b

x1
j

x1

b̄ x1
ā

c

c1 c2

c1
2c1

1

d

d

pi, aq shortened by pi, b̄q+ d+ pā, aq
or pā, jq shortened by pā, aq+ d+ pb, jq

x1
i

x1
a x1

b

x1
j

x1

b̄ x1
ā

c

c1 c2

c1
2c1

1

d

d

pi, b̄q shortened by pi, aq+ d+ pb, b̄q
pb, jq shortened by pb, b̄q+ d+ pā, jq

Figure 30: Four ways to reduce the distance between x1
i and x1

j

constant-time equality checks pi = aq _ pi = āq _ pi = bq _ pi = b̄q. These strength

reductions mitigate against overhead of the check ti, j, ku X ta, ā, b, b̄u ‰ H itself.

This guard reduces the number of min operations from 8n3 to 8n3−p2n−4q3 =

48n2−96n+64 (notwithstanding those in Str), but at the overhead of 8n3 checks.

Thus the incremental algorithm is quadratic in the number of min operations but

cubic in the number of checks (even with code hoisting).

5.2.2 Improved Incremental Closure

To give the intuition behind the new incremental closure algorithm, consider

adding the constraint x1
a − x1

b ď d, and thus x1

b̄
− x1

ā ď d, to the closed DBM

m. The four diagrams given in Figure 30 illustrate how the path between vari-

ables x1
i and x1

j can be shortened. The distance between x1
i and x1

j is c (mi,j = c),
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1: function IncClose(m, x1
a − x1

b ď d)
2: for i P t0, ... , 2n− 1u do
3: for j P t0, ... , 2n− 1u do

4: m1
i,j Ð min

¨

˚

˚

˚

˚

˝

mi,j,
mi,a + d+ mb,j,
mi,b̄ + d+ mā,j,
mi,b̄ + d+ mā,a + d+ mb,j,
mi,a + d+ mb,b̄ + d+ mā,j

˛

‹

‹

‹

‹

‚

5: end for
6: end for
7: if CheckConsistent(m1) then
8: return m1

9: else
10: return false
11: end if
12: end function

Figure 31: Incremental Closure

the distance between x1
i and x1

a is c1 (mi,a = c1), etc. The wavy lines denote

the new constraints x1
a − x1

b ď d and x1

b̄
− x1

ā ď d and the heavy lines indicate

short-circuiting paths between x1
i and x1

j.

The bottom left path of the figure illustrates how the distance between x1
i and

x1
a can be reduced from c1 by the x1

b̄
−x1

ā ď d constraint. The same path illustrates

how to shorten the distance between x1
ā and x1

j from c1
2 using the x1

a − x1
b ď d

constraint. The bottom right path of the figure gives two symmetric cases in

which c1
1 and c2 are sharpened by the addition of x1

a − x1
b ď d and x1

b̄
− x1

ā ď d

respectively. Note that we cannot have the two paths from x1
i to x1

a and from x1
b to

x1
j both shortened: at most one of them can change. The same holds for the two

paths from x1
i to x1

b̄
and x1

ā to x1
j. These extra paths lead to the following strategy

for updating m1
i,j:

m1
i,j Ð min

¨

˚

˚

˚

˚

˚

˚

˝

mi,j,

mi,a + d+ mb,j,

mi,b̄ + d+ mā,j,

mi,b̄ + d+ mā,a + d+ mb,j

mi,a + d+ mb,b̄ + d+ mā,j

˛

‹

‹

‹

‹

‹

‹

‚
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1: function IncCloseHoist(m, x1
a − x1

b ď d)
2: t1 Ð d+ mā,a + d;
3: t2 Ð d+ mb,b̄ + d;
4: for i P t0, ... , 2n− 1u do
5: t3 Ð minpmi,a + d,mi,b̄ + t1q;
6: t4 Ð minpmi,b̄ + d,mi,a + t2q;
7: for j P t0, ... , 2n− 1u do
8: m1

i,j Ð minpmi,j, t3 + mb,j, t4 + mā,jq

9: end for
10: if m1

i,i < 0 then
11: return false
12: end if
13: end for
14: return m1

15: end function

Figure 32: Incremental Closure with code hoisting

This leads to the incremental closure algorithm listed in Figure 31. Quintic min

can be realised as four binary min operations, hence the total number of binary

min operations required for IncClose is 16n2, which is quadratic in n. The listing

in Figure 32 shows how commonality can be factored out so that each iteration

of the inner loop requires a single ternary min to be computed. Factorisation

reduces the number of binary min operations to 2np2 + 4nq = 8n2 + 4n in Inc-

CloseHoist. Furthermore, like IncClose, IncCloseHoist is not sensitive to

the specific traversal order of the DBM, hence has potential for parallelisation. In

addition, both IncClose and IncCloseHoist do not incur any checks.

What is intriguing is that the incremental closure algorithms proposed in [23]

(upon which this chapter is based) omitted the last two cases of the quinary min

operation, and yet this was not exposed by fuzz testing against non-incremental

closure. The problem was only exposed in an attempt to justify [23] with simple

proofs. The following counter-example demonstrates the oversight:
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x0

x1

x0 + x1 ď 7
x1 ď 0

x0 − x1 ď 7

x0 ď 7

x0

x0 + x1 ď 0

x1 ď 0

x0 − x1 ď 0

x0 ď 0

Figure 33: Before and after adding x0 − x1 ď 0

Example 6. To illustrate how the incremental closure algorithm of [23] omits a

form of propagation, consider adding x0 − x1 ď 0 to the system on the left

x0 ď 7 ^

x1 ď 0 ^

x0 − x1 ď 7 ^

x0 + x1 ď 0

»

—

—

—

—

–

x1
0 x1

1 x1
2 x1

3

x1
0 0 14 7 7

x1
1 8 0 8 8

x1
2 8 7 0 0

x1
3 8 7 8 0

fi

ffi

ffi

ffi

ffi

fl

whose DBM m is given on right. The system is illustrated spatially on the left

hand side of Figure 33; the right hand side of the same figure shows the effect of

adding the constraint x0 − x1 ď 0. Adding x0 − x1 ď 0 using the incremental

closure algorithm from [23] gives the DBM m1; IncClose gives the DBM m2:

m1 =

»

—

—

—

—

–

x1
0 x1

1 x1
2 x1

3

x1
0 0 7 0 0

x1
1 8 0 8 8

x1
2 8 0 0 0

x1
3 8 0 8 0

fi

ffi

ffi

ffi

ffi

fl

m2 =

»

—

—

—

—

–

x1
0 x1

1 x1
2 x1

3

x1
0 0 0 0 0

x1
1 8 0 8 8

x1
2 8 0 0 0

x1
3 8 0 8 0

fi

ffi

ffi

ffi

ffi

fl

The DBM m1 represents the constraint x ď 7
2

but m2 encodes the tighter constraint

x ď 0. The reason for the discrepancy between entries m1
0,1 and m2

0,1 is shown
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by the following calculations:

m1
0,1 = min

¨

˚

˝

m0,1

m0,0 + 0 + m2,1

m0,̄2 + 0 + m̄0,1

˛

‹

‚

= min

¨

˚

˝

14,

0 + 0 + 7

7 + 0 + 0

˛

‹

‚

= 7

m2
0,1 = min

¨

˚

˚

˚

˚

˚

˚

˝

m0,1

m0,0 + 0 + m2,1

m0,̄2 + 0 + m̄0,1

m0,0 + 0 + m2,̄2 + 0 + m̄0,1

m0,̄2 + 0 + m̄0,0 + 0 + m2,1

˛

‹

‹

‹

‹

‹

‹

‚

= min

¨

˚

˚

˚

˚

˚

˚

˝

14

0 + 0 + 7

7 + 0 + 0

0 + 0 + 0 + 0 + 0

7 + 0 +8+ 0 + 7

˛

‹

‹

‹

‹

‹

‹

‚

= 0

The entry at m1
0,1 is calculated using m2,1, but this entry will itself reduce to 0;

m1
0,1 must take into account the change that occurs to m2,1. More generally, when

calculating m1
i,j, the min expression of [23] overlooks how the added constraint can

tighten mi,a, mi,b, mi,b̄ or mā,j. This is remedied in IncClose whose correctness

is asserted in Theorem 1.

The new incremental algorithm is justified by Theorem 1 which, in turn, is sup-

ported by Lemma 1. Lemma 1 justifies a quick way to check if a given octagonal

constraint o will result in a DBM m being inconsistent, by checking if any of four

paths are non-zero. This is used by the function CheckConsistent, which is

used in Figures 31 and 32.

Lemma 1 (Correctness of CheckConsistent). Suppose m is a closed DBM, m1

= IncClosepm, oq and o = px1
a − x1

b ď dq. If m1 is consistent then

• mb,a + d ě 0

• mā,b̄ + d ě 0

• mā,a + d+ mb,b̄ + d ě 0

• mb,b̄ + d+ mā,a + d ě 0

The corresponding proof of Lemma 1 is deferred to appendix A.2.
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Theorem 1 (Correctness of IncClose). Suppose m is a closed DBM, m1 =

IncClosepm, oq and o = px1
a − x1

b ď dq. Then m1 is either closed or it is not

consistent.

Proof. Here a proof is outlined. For a complete proof refer to appendix A.2.

Suppose m1 is consistent. Because m is closed 0 = mi,i ě m1
i,i ě 0 hence m1

i,i = 0.

It therefore remains to show @i, j, k.m1
i,k + m1

k,j ě A where:

A = min

¨

˚

˚

˚

˚

˚

˚

˝

mi,j,

mi,a + d+ mb,j,

mi,b̄ + d+ mā,j,

mi,b̄ + d+ mā,a + d+ mb,j,

mi,a + d+ mb,b̄ + d+ mā,j

˛

‹

‹

‹

‹

‹

‹

‚

There are 5 cases for m1
i,k and 5 for m1

k,j giving 25 in total. The following cases

are illustrative:

1-1. Suppose m1
i,k = mi,k and m1

k,j = mk,j. Because m is closed:

m1
i,k + m1

k,j = mi,k + mk,j ě mi,j ě A

1-4. Suppose m1
i,k = mi,k and m1

k,j = mk,b̄ + d+ mā,a + d+ mb,j. Because m is

closed:

m1
i,k + m1

k,j = mi,k + mk,b̄ + d+ mā,a + d+ mb,j

ě mi,b̄ + d+ mā,a + d+ mb,j ě A

3-5. Suppose m1
i,k = mi,b̄ + d + mā,k and m1

k,j = mk,a + d + mb,b̄ + d + mā,j.

Because m is closed and by Lemma 1:

m1
i,k + m1

k,j = mi,b̄ + d+ mā,k + mk,a + d+ mb,b̄ + d+ mā,j

= mi,b̄ + d+ mā,a + d+ mb,b̄ + d+ mā,j

= mi,b̄ + d+ mā,j ě A
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As a final remark on the new algorithm, it is interesting to see that in some

circumstances unsatisfiability can be detected without applying any min operations

at all. This is justified by the following corollary of Lemma 1:

Corollary 1. Suppose m is a closed DBM, m1 = IncClosepm, oq and o = px1
a−

x1
b ď dq. If

• mb,a + d < 0 or

• mā,b̄ + d < 0 or

• mā,a + d+ mb,b̄ + d < 0 or

• mb,b̄ + d+ mā,a + d < 0

then m1 is not consistent.

5.3 Simpler Proofs for Classical Strong Closure

The proof of Theorem 1 is compelling since it follows from basic definitions of

DBMs and closure. A similar approach can be applied to obtain more direct

proofs for the classical strong closure defined in [3].

5.3.1 Classical Strong Closure

The classical strong closure by Minè strengthens repeatedly within the main

Floyd-Warshall loop, but it was later shown [3] that this is equivalent to applying

strengthening just once after the main loop. The following Theorem [3] justifies

this tactic, alongside a more direct proof.

Theorem 2 (Correctness of Strong Closure). Suppose m is a closed, coherent

DBM and m1 = Strpmq. Then m1 is a strongly closed DBM.

Proof. Observe that m1
i,̄ı = minpmi,̄ı, pmi,̄ı + mi,̄ıq{2q = mi,̄ı and likewise m1

j,̄ =

mj,̄. Therefore m1
i,j ď pmi,̄ı + m̄,jq{2 = pm1

i,̄ı + m1
̄,jq{2.

Because m is closed 0 = mi,i ď mi,̄ı + mı̄,i and thus

m1
i,i = minpmi,i, pmi,̄ı + mı̄,iq{2q = minp0, pmi,̄ı + mı̄,iq{2q = 0
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To show m1
i,j ď m1

i,k + m1
k,j we proceed by case analysis:

• Suppose m1
i,k = mi,k and m1

k,j = mk,j. Because m is closed:

m1
i,j ď mi,j ď mi,k + mk,j = m1

i,k + m1
k,j

• Suppose m1
i,k ‰ mi,k and m1

k,j = mk,j. Because m is closed and coherent:

2m1
i,k + 2m1

k,j = mi,̄ı + mk̄,k + 2mk,j ě mi,̄ı + mk̄,j + mk,j

= mi,̄ı + m̄,k + mk,j ě mi,̄ı + m̄,j ě 2m1
i,j

• Suppose m1
i,k = mi,k and m1

k,j ‰ mk,j. Symmetric to the previous case.

• Suppose m1
i,k ‰ mi,k and m1

k,j ‰ mk,j. Because m is closed:

2m1
i,k + 2m1

k,j = mi,̄ı + mk̄,k + mk,k̄ + m̄,j

ě mi,̄ı + mk̄,k̄ + m̄,j = mi,̄ı + 0 + m̄,j ě 2m1
i,j

5.4 Experiments

OCaml implementations have been developed to test the closure algorithms pre-

sented in this chapter. Specifically, the prototype randomly generates a satisfiable

octagonal constraint system with a specific number of variables and constraints,

closes it, then adds a single constraint and performs strong closure. The DBM

entries were IEEE 754 standard precision floats. The randomly generated DBM

is always satisfiable because constraints are generated around a point using a ran-

dom pair of variables from the set, if a constraint is unsatisfiable it is ”flipped” by

negating the left hand side. Note however that when adding the final constraint

the resulting DBM may be infeasible, short-circuiting a call to Str. The following

algorithms were implemented and tested:

• NIC: Close followed by CheckConsistent and Str;
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• MIC: MinéIncClose followed by CheckConsistent and Str;

• MICH: MinéIncClose followed by CheckConsistent and Str, but with

loop-invariant code motion [99, Section 13.2] applied to hoist constant DBM

expressions to minimise reads and writes to the DBM;

• ICH: IncCloseHoist (with its own consistency check) followed by Str, and

an additional check for rapidly detecting unsatisfiability using Corollary 1;

The resulting DBMs were then all checked for equality against Close (using

a tolerance threshold to handle the floats). For each problem instance (number of

variables and number of constraints), the experiments were repeated 5000 times

and the timings averaged. The experiments were run on a 32-core Intel Xeon

workstation with 128GB of memory, using the OCaml forkwork library to run

multiple experiments together.

The results of the experiments are summarised in Figures 34, 35 and 36. The

labels on the horizontal axis give the number of variables n and the number of

constraints m for each experiment, abbreviated to n−m. The vertical axis gives

average time, in seconds, taken for each experiment. A log scale is used on the

vertical so that the timings for the new incremental algorithms are discernible.

5.5 Discussion

Minè’s incremental closure algorithm (MIC) is faster than non-incremental closure

(NIC) and thus the additional overhead of checking the guard at line 7 of Fig-

ure 29 does not negate the saving gained in the min operations. However the key

difference between MIC and MICH is that the guard in MICH is decomposed into

three separate checks to permit loop-invariant code motion. This suggests that the

incremental algorithm of Minè is sensitive to how the check at line 7 of Figure 29

is realised, no doubt because it is applied Opn3q times. The new ICH algorithm

is Opn2q and is uniformly faster than MICH, approaching or achieving an order of

magnitude faster in most cases. Interestingly, none of the algorithms appear to be

very sensitive to the number of constraints, m. The running time increases with

m for small m, as the likelihood of writing a DBM entry increases as the DBM
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Figure 34: Experiments with strong closure algorithms on 40, 50 and 60 variables
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Figure 35: Experiments with strong closure algorithms on 100 and 120 variables
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Figure 36: Experiments with strong closure algorithms on 120 constraints

becomes more populated. However, once the DBM is densely populated, which

happens when m is large, the running times stabilise, demonstrating that the key

parameter is the number of variables n, rather than m.

5.6 Summary

The widespread use of the octagon domain means that any computational im-

provement could impact on many areas of analysis and verification. A new incre-

mental closure algorithm has been presented, geared towards the popular DBM

representation of octagons [94]. The simplicity of the algorithm paired with its

computational efficiency makes it an attractive choice for any implementor. Fur-

ther improvements to incremental closure have been proposed, pending review [24].

Future work will focus on exploiting incrementality to accurately model machine

arithmetic [111].



Chapter 6

Related work

6.1 Type recovery

A self-contained introduction to type recovery is given in [119, Chapter 5], which

summarises the problem as “The . . . problem for a decompiler is to associate each

piece of data with a high-level type”. The author, like others [37, 118], introduces

a dataflow analysis over a type lattice of primitive types, but accepted wisdom is to

formulate type inference as constraint solving because dataflow analysis classically

deals with unidirectional flows.

Dynamic type recovery Dynamic techniques have been suggested for type

recovery [84], in which types are reconstructed from an execution trace. Each

memory location accessed by the program is tagged with a timestamp because the

same location can store values of different types over its lifetime. Each location

and timestamp pair is then assigned a type, in either the on-line or off-line phases

of the type recovery algorithm. In the on-line phase known types are propagated

to the pairs, as a value which inhabits a type, is stored in a location. However, the

type may remain unknown until the control encounters a system call or a library

call, or some machine instruction, whose arguments or operands expose the type.

The on-line phase is thus augmented with an off-line phase which propagates a

type assignment against the control to resolve any unassigned pair. The method

requires an oracle to supervise the selection of the trace, and an examination of

105
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one trace will fail to infer types that hold universally across the whole program.

Somewhat surprisingly, Bayesian unsupervised learning has been applied to

recognise structure in memory images [31]. The memory image is scanned, looking

for all pointers, which are then used to locate the positions of objects and their

size, which are bounded by the distance to the next object. Unsupervised learning

is then used to classify malware according to its memory layout, a technique that

could be taken further with static type recovery.

Recursive datatypes Mycroft [100] recognised that type reconstruction could

rule out inconsistent decompilation steps and thereby aid program reconstruction.

This link is formalised in the decompilation relation that is the centrepiece of

the formalisation of Chapter 4. His work was inspired by the desire to synthesise

datatypes from register transfer language (RTL) code generated from BCPL, which

itself is untyped, not distinguishing between arrays and structures. He discussed

the issue of padding, which arises when some of the fields of a structure, but not all,

can be inferred, as well as proposing a type unification algorithm for synthesising

a recursive datatype when a type variable is unified with a term containing it.

SecondWrite [42] extends work on variable recovery [4, 5] with so-called best

effort pointer analysis [42, Section 5.2] to infer some datatypes: they “dig into the

points-to set to discover if it is pointing to an address which is declared as the

starting point of a structure”. Generic types are used for symbols for which they

cannot infer types, and type casts are introduced to convert the generic type to

the actual types used in an operation.

Following the idea that “well-typed programs cannot go wrong” [91], type re-

covery has been muted as a check for the validity of low-level code [105]. Recursive

types are recovered using a rational-tree solver from the low-level typeless template

code of a graph reduction machine. If the solver fails, the code is judged unsafe.

Shape analysis Shape analysis [123] aims to determine the shape of objects

in the heap by creating a map of how heap memory cells relate to one another.

This is achieved by building a summary of the heap structures that can arise

at each program point. Shape analysis can detect cycles within heap objects,

categorise objects as pertaining to a given shape (trees, lists etc), identify data
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sharing/aliasing between objects, and track object lifetime and reachability. The

technique is normally applied statically for verification of source code, however

there are a number of works on shape analysis of execution traces ([18, 51, 73])

which bear similarities to binary type reconstruction (as noted elsewhere [19]).

Shape analysis can provide richer results than type reconstruction: for example

the work presented in this thesis is able to derive recursive linked list types, while

shape analysis may also be able to determine whether a program creates cycles in

the heap from linked list nodes. Berdine et al. have even shown [12] that static

shape analysis can recover mutually recursive data structures from source code.

However, recursive object recovery thus far eludes static binary shape analysis,

with all existing approaches utilising execution traces [19]. Static binary shape

analysis faces a scalability issue, as it is expensive even on source code.

Verified decompilation and disassembly Decompilation is not always to C:

Java bytecode has been decompiled into recursive functions, based on type theory

[75], which is amenable to formal reasoning. Worthy of particular note, is the

decompilation of machine code into the language of HOL4 [101]. With a view to

proving full functional correctness, machine code is decompiled into tail-recursive

functions. These functions describe the effect of the machine code, yet offer a layer

of abstraction above it. Properties proved for the function are, by an automatically

derived theorem, related to the original machine code, so the decompiler does not

need to be proved correct. Recursive predicates could be defined in HOL4 to assert

that memory conforms to a recursive datatype, but for the purposes of engaging

with the reverse engineer, it seems more natural to decompile to a type-safe dialect

of C.

Disassembly, the act of decoding the bit patterns of machine instructions

into a textual representation, is itself non-trivial for self-modifying code. Self-

modification is used to disguise malware but also arises in JIT compilation. In

general, disassembly requires indirect jump targets to be computed, which can be

approximated by abstract interpretation [77]. In the case of self modifying code,

each memory write needs to be checked to determine how it modifies the code

base. Modifications to the code base themselves entail a form of abstract decoding

in which the analyser does not recover the exact instruction, but a collection of



CHAPTER 6. RELATED WORK 108

applicable instructions. Nevertheless disassembly of self-modifiying code has been

formalised [16], though the topic is beyond the scope of this thesis.

Trusted compilation Further afield, is the wide body of work on trusted com-

pilation, most notably represented by the CompCert project that produced a fully

certified optimising C compiler [82]. The CompCert compiler transforms source

code into machine code incrementally through a large number of intermediate lan-

guages, each of which is designed to handle a specific compilation stage such as

common subexpression elimination, register allocation or control flow linearisa-

tion. Correctness is verified at each successive level of transformation with proofs

created using a proof assistant. Where CompCert aims at proving semantic cor-

rectness of these optimisations, the interest of Chapter 4 is in type preservation

and any witness, no matter how closely it mirrors the binary, is sufficient for the

type correctness argument.

Typed Assembly Language (TAL) [96] represents another approach to trusted

compilation, where the aim is to prove that type consistency is maintained through

compilation to an assembly language that can be type checked to prove safety

properties of the executable code. The limitation is that no machine exists that can

execute TAL, so as a compromise the code is type checked either when assembled

to machine code or by a runtime loader that recognises its special typed object

format. In contrast Chapter 4 provides a type inference algorithm for assembler

that allows type checking without the presence of any explicit type information in

the binary.

6.2 Satisfiability Modulo Theories

To briefly recap, Satisfiability Modulo Theories (SMT) [103] describes a class of

problems that consist of formulae in a given first-order theory, composed with

Propositional connectives. Each theory formula is thus an atom in the Boolean

satisfiability (SAT) [34] problem formed by the Propositional connectives. And so

a solution to an SMT instance must satisfy both the skeleton of the SAT problem

and the underlying theory problem, given by the entailed theory formulae.
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SAT is perhaps the best exemplar of an NP-complete problem, and is encom-

passed by SMT, therefore it is of no surprise that SMT problems may have even

greater worst-case complexity [9]. Yet DPLL(T ) [46, 103], which provides a general

scheme for SMT solving by augmenting the DPLL algorithm for SAT solving [34]

with a solver for a theory T, has shown that it is indeed possible to solve many

practical SMT problems. Further, since the conception of DPLL(T ) there have

been many refinements.

Conflict Driven Clause Learning (CDCL) [103] is one of the primary heuristics

used by most DPLL SAT and DPLL(T ) SMT solvers. However, an alternative that

is more suited to implementation in a logic programming setting is lookahead [83].

Lookahead can be considered the dual of clause learning since the former seeks to

avoid inconsistency by considering assignments that are still to be made, whereas

the latter diagnoses an inconsistency from an assignment that has previously been

made. The case for lookahead versus learning has been studied [83], but in a

declarative context, particularly one where backtracking is supported, lookahead

is very simple to implement.

Rational trees are commonly employed to type-check recursive types, as well as

being a primary component of logic programming languages. Disjunctive rational

tree constraints were employed by Mycroft’s seminal work on type recovery [100]

(though it is not explained how to solve such systems), and Demoen’s work [36]

shows how type inference for ad-hoc polymorphism is reduced to the same problem,

and demonstrates a CLP solver that is similar (in principle at least) to that of

Chapter 4. However, solving disjunctive systems of rational trees as part of an

SMT solving framework (as in Chapter 3) is entirely novel.

6.3 The Octagon domain

There is arguably no better exemplar of a weakly relational abstract domain than

octagons. Minè defined the octagon domain in his thesis [93] and subsequent

journal paper [94] and developed an open source implementation [69]. By using

DBMs, Minè was able to exploit existing algorithms for solving difference con-

straints. However the encoding of octagonal constraints into differences requires

some conditions, encapsulated in the notion of strong closure, to define a canonical
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representation of octagons using DBMs. Minè [93, 94] showed that strong closure

was cubic and that, by swapping rows and columns in the DBM, an incremental

version of the algorithm could be derived. Independently a faster algorithm for

strong closure was discovered [3], based on the observation that strong closure

could be decomposed into two separate algorithmic phases. The incremental algo-

rithm presented in Chapter 5 was inspired by a refinement to the Floyd-Warshall

algorithm that was suggested for disjunctive spatial reasoning for solving constraint

satisfaction problems [10], and the research question of whether, when adapted to

DBMs and octagons, the refinement could improve on Minè ’s incremental algo-

rithm. The solver proposed in [10] resembles another independently proposed [55]

for incrementally solving integer unit two-variable constraints. Though incremen-

tal, the integer solver [55] does not decompose constraint solving into the layers

of closure, strengthening and consistency checking, which appears to be impor-

tant for overall efficiency [3]. The work presented in Chapter 5 can be viewed as

bringing incrementality to a decomposed solver architecture for DBMs.



Chapter 7

Conclusions

In summary, this thesis has demonstrated how solvers for Satisfiability Modulo

Theories (SMT) and Constraint Handling Rules (CHR) can be applied to solve

the problem of machine code type reconstruction, and answered the question of

how types can be recovered that truly have semantic meaning (by the incidental

construction of the first semantics preserving decompiler). Along the way, it has

been shown that the logic programming setting garners many benefits for an SMT

framework, enabling rapid implementation of solvers that are both concise and

efficient. Furthermore, the implementation of a solver for the theory of Quantifier

Free Integer Difference Logic (QF IDL) led to an interesting contribution to the

octagon abstract domain in the form of an improved incremental closure algorithm,

which has further applications in machine code analysis.

7.1 Reflection upon Chapters 2 and 3

Chapter 2 introduced an SMT solving framework for Prolog based on reification.

The motivation was the problem of type reconstruction, and it was demonstrated

that the type reconstruction problem can be expressed as an SMT instance over

the theory of rational-tree unification, a theory not available in existing SMT

solvers. Rational-tree unification is a core Prolog language feature, so Prolog was

a natural fit for type reconstruction. Reification in Prolog is equally suited to SMT

solving, because it affords entirely automatic synchronisation of unit and theory
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propagation, alleviating the programmer of the need to algorithmically orchestrate

the interleaving of the two processes (as in classic DPLL(T ) algorithms).

Chapter 3 demonstrated the instantiation of the framework with solvers for

three theories – rational-tree unification, linear arithmetic and integer difference

constraints. The effectiveness of the approach was demonstrated by the successful

application of the solver to a suite of type recovery and integer difference logic

problems. The performance of the QF IDL solver was particularly pleasing.

A complementary algorithm for finding an unsatisfiable core of an SMT prob-

lem was also presented in Chapter 2, and its correctness argued. Notably, the

new algorithm is more aggressive at pruning the search space than the related

QuickXplain algorithm [74].

The framework could be extended by providing decision procedures for further

theories. Finite domain solvers, such as SICStus CLP(FD), often allow reified

constraints [21], hence finite domain constraints might appear a good candidate to

incorporate into the DPLL(T ) framework. Unfortunately, finite domain constraint

solvers typically maintain stores that are potentially inconsistent, hence without

labelling (an unattractive step) a decision procedure for conjunctions of theory

constraints is not readily available. That said, finite domain techniques have been

applied to infer typings for the predicates of logic programs that are disjunctive

[36]. Like the work of Chapters 2 and 3, this approach avoids the need for fixpoint

computation, and its use of propagator constraints echoes theory propagation.

However, this work assumes type definitions are prescribed up-front and recasting

type recovery as SMT, with use of the core algorithm, can in principle resolve

inconsistencies by applying MaxSMT.

The performance of the solver on the type recovery problems might be further

improved by tailoring the search heuristics to the structure of these problems.

One approach to this might be to incorporate learning. However, although [64]

demonstrated how this can be realised in a Prolog based solver, learning is not a

natural fit with the current approach.
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7.2 Reflection upon Chapter 4

Chapter 4 demonstrated that strong guarantees of the validity of types recovered

from machine code programs can be provided through a semantically founded

approach. The solution also derives a high-level witness program alongside the

types, and thus provides a type-based decompiler. By providing the witness in a

type-safe language, and proving it preserves the semantics of the binary (in terms

of memory consistency), it has been demonstrated irrefutably that the binary is

faithful to the inferred types. The decompiler was evaluated on two dozen textbook

datastructure manipulation programs and, for all, recovered a witness program in

a type-safe dialect of C, complete with the original recursive datatypes.

Leading on from this work, the next logical step is to machine verify the proofs.

Further than that, the type system, languages and formalisation could be expanded

to support more machine code constructs exhibited by real binaries, for example

those produced by C unions or casts, implicit sign and zero extension, and by

C++ objects. MinX could also be dropped in favour of, for example, LLVM

bitcode, which shares many similarities with MinX and would enable evaluation

directly against real world binaries, without the need for a compiler from C to

MinX. Interestingly, it should also be possible to derive higher level types than

those present in the original source code, for example dependent types might be

inferred from programs originally written in C.

7.3 Reflection upon Chapter 5

Chapter 5 introduced a new algorithm for computing incremental closure, that

offers a significant performance improvement over prior algorithms. The chapter

also shows that the clarity of the new algorithm lends itself to a simpler proof

strategy, and how that strategy can be applied to the classic non-incremental

closure algorithm. The improved performance of the new algorithm is backed up

by extensive testing.

Further work has already been undertaken, which demonstrates further speed-

ups for incremental closure (but is pending review) [24]. The octagon domain is

used for many applications due to its expressiveness and ease of implementation,
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relative to other relational abstract domains. Future work will be to demonstrate

the use of the domain to model modulo arithmetic. The octagon domain is ideally

suited to this application, since wrapping can be handled by repeatedly adding

single constraints to linear systems [111].

7.4 Closing remark

The question of whether real world reverse engineering problems can be solved

using principled tools and advanced constraint solvers has not been fully answered

by this thesis. However, it can be hoped that through the novelties found herein,

a worthwhile contribution has been made.
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Proof Appendix

A.1 Semantics-Driven Decompilation

A.1.1 Type Safety

We write Σ; Ψ $ σ; π to signify that the store is type consistent:

@pa : θq P Ψ . Σ; Ψ;σ; π $ a : θ

We write Γ; Σ; Ψ $ ρ to signify that the local environment is type consistent:

@px : θq P Γ . Σ; Ψ $ ρpxq : θ ∗^ ρpxq ‰ 0

Moreover, we write Γ; Σ $ λc to signify that statements in λc are type consistent:

@s P rangepλcq. Γ; Σ $ s

Proposition 2 (Preservation of MinC Expressions).

If

• Γ; Σ; Ψ $ ρ

• Σ; Ψ $ σ; π

• Γ; Σ $ e : θ

115
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• Σ; ~ρ; ρ $ xσ, π, ey
e
ÝÑ xσ1, π1, vy

then, for some Ψ1 Ě Ψ

1. Γ; Σ; Ψ1 $ ρ

2. Σ; Ψ1 $ σ1; π1

3. Σ; Ψ1 $ v : θ

Proposition 3 (Progress of MinC Expressions).

If

• Γ; Σ; Ψ $ ρ

• Σ; Ψ $ σ; π

• Γ; Σ $ e : θ

then

1. Σ; ~ρ; ρ $ xσ, π, ey
e
ÝÑ xσ1, π1, vy or

2. Σ; ~ρ; ρ $ xσ, π, ey
e
ÝÑ err.

Proposition 4 (Preservation of MinC lvalues).

If

• Γ; Σ; Ψ $ ρ

• Σ; Ψ $ σ; π

• Γ; Σ $ ` : θ

• Σ; ~ρ; ρ $ xσ, π, `y
`
ÝÑ xσ1, π1, ay

then, for some Ψ1 Ě Ψ

1. Γ; Σ; Ψ1 $ ρ

2. Σ; Ψ1 $ σ1; π1
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3. Σ; Ψ1 $ a : θ∗

Proposition 5 (Progress of MinC lvalues).

If

• Γ; Σ; Ψ $ ρ

• Σ; Ψ $ σ; π

• Γ; Σ $ ` : θ

then

1. Σ; ~ρ; ρ $ xσ, π, `y
`
ÝÑ xσ1, π1, ay or

2. Σ; ~ρ; ρ $ xσ, π, `y
`
ÝÑ err.

Proposition 6 (Preservation for MinC statements).

If

• Γ; Σ $ s

• Σ;λc; ~ρ; ρ $ xσ, π, sy
s
ÝÑ xσ1, π1, s1y

• Γ; Σ; Ψ $ ρ

• Σ; Ψ $ σ; π

then for some Ψ1 Ě Ψ

1. Γ; Σ; Ψ1 $ ρ

2. Σ; Ψ1 $ σ1; π1

3. Γ; Σ $ s1

Proposition 7 (Progress for MinC statements).

If

• Γ; Σ; Ψ $ ρ

• Σ; Ψ $ σ; π
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• Γ; Σ $ s

• Γ; Σ $ λc

then

1. Σ;λc; ~ρ; ρ $ xσ, π, sy
s
ÝÑ xσ1, π1, s1y or

2. Σ;λc; ~ρ; ρ $ xσ, π, sy
s
ÝÑ err or

3. s = return.

Proposition 8 (Preservation for MinC functions).

If

• Σ $ fp
ÝÝÑ
x : θqx

ÝÝÝÑ
y : θ1, l, λc, jy

• Σ;λc; ~ρ; ρ $ xσ, π, λcplqy
s
ÝÑ∗xσ1, π1, returny

• Γ = t
ÝÝÑ
x : θ,

ÝÝÝÑ
y : θ1

u

• Γ; Σ; Ψ $ ρ

• Σ; Ψ $ σ; π

then, for some Ψ1 Ě Ψ

1. Γ; Σ; Ψ1 $ ρ

2. Σ; Ψ1 $ σ1; π1

Proposition 9 (Progress for MinC functions).

If

• Σ $ fp
ÝÝÑ
x : θqx

ÝÝÝÑ
y : θ1, l, λc, jy

• Σ;λc; ~ρ; ρ $ xσ, π, λcplqy
s
ÝÑ∗xσ1, π1, returny

• Γ = t
ÝÝÑ
x : θ,

ÝÝÝÑ
y : θ1

u

• Γ; Σ; Ψ $ ρ
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• Σ; Ψ $ σ; π

then

1. Σ;λc; ~ρ; ρ $ xσ, π, λcplqy
s
ÝÑ∗xσ1, π1, returny or

2. Σ;λc; ~ρ; ρ $ xσ, π, λcplqy
s
ÝÑ∗err (we assume this subsumes divergence).

Proof. Propositions 2 to 9 are proved together by mutual structural induction on

the typing judgements for `, e, s and dc.

• By case analysis on Γ; Σ $ e : θ in Figure 16. To show that either 3.2 or

conversely 3.1, 2.1, 2.2 and 2.3 hold. Observe that 2.1 holds if Ψ1 Ě Ψ.

1. Let e : θ = cl : long. By rule e-const Σ; ~ρ; ρ $ xσ, π, cly
e
ÝÑ xσ, π, cly.

Hence 3.1.

Let Ψ1 = Ψ. By rule vt-l Σ; Ψ $ cl : long. Hence 2.3. Also 2.2.

2. Let e : θ = cs : short. By rule e-const Σ; ~ρ; ρ $ xσ, π, csy
e
ÝÑ xσ, π, csy.

Hence 3.1.

Let Ψ1 = Ψ. By rule vt-s Σ; Ψ $ cs : short. Hence 2.3. Also 2.2.

3. Let e : θ = 0l : τ∗. By rule e-const Σ; ~ρ; ρ $ xσ, π, 0ly
e
ÝÑ xσ, π, 0ly.

Hence 3.1.

Let Ψ1 = Ψ. By rule vt-null Σ; Ψ $ cs : τ∗. Hence 2.3. Also 2.2.

4. Let e : θ = new τ : τ∗. By rule e-new Σ; ~ρ; ρ $ xσ, π, new τy
e
ÝÑ xσ1, π, ay

where σ1 = σ ˝ ta ÞÑ Ku. Hence 3.1.

Let Ψ1 = Ψ˝ta ÞÑ τu. By rule vt-addr Σ; Ψ $ a : τ∗ hence 2.3. Also by

rule vt-bot Σ; Ψ1 $ K : τ by and rule st-comp Σ; Ψ1;σ1; π $ a : τ hence

Σ; Ψ1 $ σ1; π and 3.2 holds.

5. Let e : θ = new struct N : N∗ and n = |ΣpNq|. By rule e-str Σ; ~ρ; ρ $

xσ, π, new struct Ny
e
ÝÑ xσ1, π1, ay where σ1 = σ ˝ ta ÞÑ K, ... , a+n−1 ÞÑ

Ku and π1 = π Y tra, a + n − 1su. Put Ψ1 = Ψ Y ta : N, a + 1 :

θ1, ... , a+n−1 : θn−1u. By rule vt-addr Σ; Ψ1 $ a : N∗ hence 2.3 holds.

Let i P r0, n − 1s. Then σ1pa + iq = K hence Σ; Ψ1 $ σ1pa + iq : θi by

rule vt-bot therefore Σ; Ψ1;σ1; π1 $ a+i : θi. By rule st-fld Σ; Ψ1;σ1; π1 $

a : N hence 2.2 holds.
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6. Let e : θ = new θres : θrs∗. By rule t-new-ar Γ; Σ $ e : t hence by

induction:

– Either Σ; ~ρ; ρ $ xσ, π, ey
e
ÝÑ err. By rule e-ar-err Σ; ~ρ; ρ $ xσ, π, new θresy

e
ÝÑ

err. Hence 3.2.

– Or Σ; ~ρ; ρ $ xσ, π, ey
e
ÝÑ xσ1, π1, vy. By rule e-ar Σ; ~ρ; ρ $ xσ, π, new θresy

e
ÝÑ

xσ2, π2, ay where σ2 = σ1 ˝ ta ÞÑ K, ... , a+ v − 1 ÞÑ Ku. Hence 3.1.

By induction there exists Φ1 Ě Φ such that Σ; Ψ1 $ σ1; π1. Put

Ψ2 = Ψ1 ˝ ta ÞÑ θrs, ... , a+ v − 1 ÞÑ θrsu. By rule vt-addr it follows

Σ; Ψ2 $ a : θrs∗ hence 2.3. By rule vt-bot it follows Σ; Ψ2 $ K : θrs

and by st-comp it follows Σ; Ψ2;σ2; π2 $ a+i : θrs for all i P r0, v−1s

hence 2.2.

7. Let e : θ = pe1 ‘ e2q : t. By rule t-b Γ; Σ $ e1 : t and Γ; Σ $ e2 : t.

Hence by induction:

– Either Σ; ~ρ; ρ $ xσ, π, e1y
e
ÝÑ err. By rule e-op-err1 Σ; ~ρ; ρ $ xσ, π, pe1‘

e2qy
e
ÝÑ err. Hence 3.2.

– Or Σ; ~ρ; ρ $ xσ1, π1, e2y
e
ÝÑ err. Like previous case.

– Or Σ; ~ρ; ρ $ xσ, π, e1y
e
ÝÑ xσ1, π1, v1y and Σ; ~ρ; ρ $ xσ1, π1, e2y

e
ÝÑ

xσ2, π2, v2y.

∗ Either v1 ‘π v2 = err. By rule e-op-err3 Σ; ~ρ; ρ $ xσ, π, pe1 ‘

e2qy
e
ÝÑ err. Hence 3.2.

∗ Or v1 ‘π v2 = v. By rule e-op Σ; ~ρ; ρ $ xσ, π, pe1 ‘ e2qy
e
ÝÑ

xσ1, π, vy. Hence 3.1.

By induction Σ; Ψ2 $ v1 : t and Σ; Ψ2 $ v2 : t. If t = short

then v = K or v = ns where n P r−215, 215 − 1s. If v = K then

Σ; Ψ2 $ v : short. by rule vt-bot. Otherwise if v = ns then

Σ; Ψ2 $ v : short by rule vt-s. An analgous argument holds if

t = long hence 2.3. Also 2.2 trivially by induction.

8. Let e : θ = pe1 ‘ e2q : τ rs∗. Similar to previous case.

9. Let e : θ = fp~eq : θj. By rule t-call Γ; Σ $ ei : θ1
i where φcpfq =

fp
ÝÝÑ
x : θqx

ÝÝÝÑ
y : θ2, l, λc, jy and Σ $ ~θ1 <: ~θ. With respect to ei there are

two possibilities:
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– Either for some i: Σ; ~ρ; ρ $ xσi−1, πi−1, eiy
e
ÝÑ err. Then by rule

e-call-err it follows that 3.2 holds.

– Or for all i: Σ; ~ρ; ρ $ xσi−1, πi−1, eiy
e
ÝÑ xσi, πi, viy and by the

inductive hypothesis Σ; Ψi $ θi : vi and Σ; Ψi $ σi; πi. Let

Ψ1 = Ψn Y t
ÝÝÑ
a : θ,

ÝÝÝÑ
a1 : θ1

u. Then it is easy to verify Σ; Ψ1 $ σ1; πn

and Γ; Σ; Ψ1 $ ρ1. By the progress induction hypothesis we then

have for s:

∗ Either Σ;λc; ~ρ, ρ; ρ1 $ xσ1, πn, λcplqy
s
ÝÑ ∗xσ2, π1, returny. Hence

3.1.

∗ Otherwise 3.2.

Preservation follows from the induction hyptheses for all ei and s.

• By case analysis on Γ; Σ $ ` : θ in Figure 16. To show 5.2 or conversely 5.1,

4.1, 4.2 and 4.3 hold. Observe that 4.1 holds if Ψ1 Ě Ψ.

1. Let ` = x. By rule l-var Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ xσ, π, ay where a = ρpxq

hence 5.1 holds. Put Ψ1 = Ψ. Since Γ; Σ; Ψ $ ρ it follows Σ; Ψ1 $ ρpxq :

θ∗ and 4.3 holds. Moreover Σ; Ψ1 $ σ; π and 4.2 holds.

2. Let ` : θ = ∗x : τ . Since Γ; Σ; Ψ $ ρ it follows a = ρpxq ‰ 0. By

rule l-ptr Σ; ~ρ; ρ $ xσ, π, ∗xy `
ÝÑ xσ, π, σpaqy thus 5.1 holds. Put Ψ1 = Ψ.

By rule t-ptr Γ; Σ $ x : τ∗ and by Γ; Σ; Ψ $ ρ it follows Σ; Ψ $ a : τ ∗∗.
By rule vt-addr pa : τ∗q P Ψ and by Σ; Ψ $ σ; π it follows Σ; Ψ;σ; π $

a : τ∗. By rule st-comp Σ; Ψ $ σpaq : τ∗ thus Σ; Ψ1 $ σpaq : τ∗ and 4.3

holds. Moreover Σ; Ψ1 $ σ; π and 4.2 holds.

3. Let ` : θ = x Ñ c : θc. Since Γ; Σ; Ψ $ ρ let a = ρpxq ‰ 0 and let

v = σpaq+K c. If ρpxq = 0 or v R Yπ then 5.2 holds. Otherwise Σ; ~ρ; ρ $

xσ, π, xÑ cy
`
ÝÑ xσ, π, vy and 5.1 holds. Put Ψ1 = Ψ. By rule t-fld Γ; Σ $

x : N∗ and by rule t-var px : N∗q P Γ and by Γ; Σ; Ψ $ ρ it follows

Σ; Ψ $ ρpxq : N ∗∗. By rule vt-addr pρpxq : N∗q P Ψ and by Σ; Ψ $ σ; π

it follows Σ; Ψ;σ; π $ ρpxq : N∗ and by rule st-comp Σ; Ψ $ σpρpxqq :

N∗. By rule vt-addr pσpρpxqq : Nq P Ψ and by Γ; Σ; Ψ $ ρ it follows

Σ; Ψ;σ; π $ σpρpxqq : N and by rule st-fld Σ; Ψ $ σpσpρpxqq+cq : θc. By

rule st-comp Σ; Ψ;σ; π $ σpρpxqq + c : θc and by Γ; Σ; Ψ $ ρ it follows
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pσpρpxqq+ c : θcq P Ψ and by rule vt-addr Σ; Ψ $ σpρpxqq+ c : θc∗ and

4.3 holds since Ψ1 = Ψ. Moreover Σ; Ψ1 $ σ; π and 4.2 holds.

4. Let ` = xre1s. By rule t-ar Γ; Σ $ e1 : t hence by mutual induction:

– Either Σ; ~ρ; ρ $ xσ, π, e1y
e
ÝÑ err. By rule e-lval-err Σ; ~ρ; ρ $ xσ, π, xre1sy

e
ÝÑ

err. Hence 5.2.

– Or Σ; ~ρ; ρ $ xσ, π, e1y
e
ÝÑ xσ1, π1, vy. If ρpxq = 0 then 5.1 holds by

rule e-lval-err. Otherwise let a = σ1pρpxqq +K v. If a R Yπ1 then

5.1 holds. Otherwise by rule l-ar Σ; ~ρ; ρ $ xσ, π, xre1sy
`
ÝÑ xσ1, π1, ay.

Hence 5.1 holds.

By induction there exists Ψ1 Ě Ψ such that Σ; Ψ1 $ σ1; π1. By

rule t-ar Γ; Σ $ x : θrs∗ and by rule t-var px : θrs∗q P Γ and by

Γ; Σ; Ψ1 $ ρ it follows Σ; Ψ1 $ ρpxq : θrs ∗ ∗. By rule vt-addr pρpxq :

θrs∗q P Ψ1 and by Σ; Ψ1 $ σ1; π1 it follows Σ; Ψ1;σ1; π1 $ ρpxq :

θrs∗ and by rule st-comp Σ; Ψ1 $ σ1pρpxqq : θrs∗. By rule vt-addr

pσ1pρpxqq : θrsq P Ψ1 and by Γ; Σ; Ψ1 $ ρ it follows Σ; Ψ1;σ1; π1 $

σ1pρpxqq : θrs and by rule st-ar Σ; Ψ1 $ σ1pσ1pρpxqq + vq : θ. By

rule st-comp Σ; Ψ1;σ1; π1 $ σ1pρpxqq + v : θ and by Γ; Σ; Ψ1 $ ρ

it follows pσ1pρpxqq + v : θq P Ψ1 and by rule vt-addr Σ; Ψ1 $

σ1pρpxqq + v : θ∗ and 4.3 holds. Moreover Σ; Ψ1 $ σ; π and 4.2

holds.

• By case analysis on Γ; Σ $ s in Figure 16. To show that either 7.2 or

conversely 7.1 or 7.3, and 6.1, 6.2 and 6.3 hold. Observe that 6.1 holds if

Ψ1 Ě Ψ.

1. Let Γ; Σ $ p` := eq; s. From the induction hypothesis for `, either

Σ; ~ρ; ρ $ xσ, π, `y
`
ÝÑ err, and hence 7.2, or Σ; ~ρ; ρ $ xσ, π, `y

`
ÝÑ xσ1, π1, ay.

In the latter case, we have either Σ; ~ρ; ρ $ xσ1, π1, ey
e
ÝÑ err, and hence

7.2, or Σ; ~ρ; ρ $ xσ1, π1, ey
e
ÝÑ xσ2, π2, vy. By s-assn we then have

Σ;λc; ~ρ; ρ $ xσ, π, p` := eq; sy
s
ÝÑ xσ3, π2, sy where σ3 = σ2 ˝ ta ÞÑ vu

and hence 7.1.

We get Γ; Σ $ s from t-assn. Hence 6.3. From the induction hypotheses

for ` and e we get type preservations Σ; Ψ2 $ a : θ1∗ and Σ; Ψ2 $ v : θ2
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and type consistency Σ; Ψ2 $ σ2; π2. Hence, through rule vt-addr we

know that pa : θ1q P Ψ2. From rule t-assn we know Σ $ θ2 <: θ1. Hence,

through rule vt-subt we have Σ; Ψ2 $ v : θ1. Since σ3paq = v we have

hence by rule st-comp Σ; Ψ2;σ3; π2 $ a : θ1. Hence Σ; Ψ2 $ σ3; π2.

Thus 6.2.

2. Let Γ; Σ $ pif e goto lq; s. Then

– Either Σ; ~ρ; ρ $ xσ, π, ey
e
ÝÑ err. Hence 7.2.

– Or Σ; ~ρ; ρ $ xσ, π, ey
e
ÝÑ xσ1, π1, vy. Then

∗ Either v = K. Hence 7.2.

∗ Or v = 0. Then by rule s-if-false Σ;λc; ~ρ; ρ $ xσ, π, pif e goto lq; sy
s
ÝÑ

xσ1, πs,1 y. Hence 7.1. We call this scenario 1.

∗ Or v ‰ 0^ v ‰ K. Then

· Either l R dompλcq. Then 7.2.

· Or s1 = λcplq. Then by rule s-if-true Σ;λc; ~ρ; ρ $ xσ, π, pif e goto lq; sy
s
ÝÑ

xσ1, πs1,1 y. Hence 7.1. We call this scenario 2.

In scenario 1 we have from t-if Γ; Σ $ s. Hence 6.3. In scenario 2 we

have that s1 P rangepλcq. Hence Γ; Σ $ s1. Hence 6.3. In both scenarios

we have from the induction hypthesis for e that Σ; Ψ1 $ σ1; π1. Hence

6.2.

3. Let Γ; Σ $ goto l. Then either l R dompλcq and thus Σ;λc; ~ρ; ρ $

xσ, π, goto ly
s
ÝÑ err. Hence 6.2. Alternatively λcplq = s. Then by rule

s-goto Σ;λc; ~ρ; ρ $ xσ, π, goto ly
s
ÝÑ xσ, π, sy. Hence 7.1.

From Γ; Σ $ λc it follows that Γ; Σ $ s. Hence 6.3. Let Ψ1 = Ψ. Then

6.2.

4. Let Γ; Σ $ return. Hence 7.3. Also vacuously 6.3 and 6.2.

• Propositions 8 and 9 follow by the repeated application of Propositions 6

and 7, combining progress and preservation at every step.

Besides the givens of Proposition 8, Proposition 6 also requires Γ; Σ $ λc.

This is given by rule t-def which is the only possible way that the well-typing

of the function definition could have been constructed.
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A.1.2 Well-Typed Decompilation

Proposition 10 (well-typed instruction decompilation). If µΓ; Γ; Σ $ ι
ι
 ` := e

then for some θ1 and θ2

1. Γ; Σ $ ` : θ1

2. Γ; Σ $ e : θ2

3. Σ $ θ2 <: θ1

Proposition 11 (well-typed block decompilation). If µλ;µΓ; Γ; Σ $ b
b
 s then

Γ; Σ $ s.

Proposition 12 (well-typed definition decompilation). If Σ $ dx  dc then

Σ $ dc.

Proof. Propositions 10 through 12 are proved together through mutual structural

induction over the judgements of the translation relation (Figures 20 through 22).

This necessity is induced by the circularity of call instructions, which require a

valid function definition for the target of the call.

• By case analysis on the inference rules of the instruction translation relation

(Figures 20 and 21).

1. Case tr-‘-r*1. Let θ1 = θ2 = θrs∗. From tr-‘-r*1 we have px : θrs∗q P Γ.

Then by rule t-var Γ; Σ $ x : θrs∗. Hence 10.1. From tr-‘-r*1 we have

Γ; Σ $ m : long. From tr-‘-r*1 we have py : longq P Γ. Then by

rule t-var Γ; Σ $ y : long. From both of these we get by rule t-b

Γ; Σ $ y ∗m : long. From that and the type of x we get through rule

t-ptr-‘ Γ; Σ $ x‘ py ∗mq : θrs∗. Hence 10.2. From rule sub-refl 10.3.

2. Case tr-‘-r*2. Let θ1 = θ2 = t. From tr-‘-r*2 we have px : tq P Γ.

Then by rule t-var Γ; Σ $ x : t. Hence 10.1. From tr-‘-r*2 we have

Γ; Σ $ c : t. From tr-‘-r*1 we have py : tq P Γ. Then by rule t-var

Γ; Σ $ y : t. From both of these we get by rule t-b Γ; Σ $ y∗c : t. From

that and the type of x we get through rule t-b Γ; Σ $ x ‘ py ∗ cq : t.

Hence 10.2. From rule sub-refl 10.3.
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3. Case tr-b-rc. Let θ1 = θ2 = t. From tr-b-rc we have px : tq P Γ.

Then by rule t-var Γ; Σ $ x : t. Hence 10.1. From tr-b-rc we have

Γ; Σ $ c : t. From that and the previous Γ; Σ $ x : t we have by rule

t-b Γ; Σ $ xb c : t. Hence 10.2. From rule sub-refl 10.3.

4. Case tr-b-rr. Let θ1 = θ2 = t. From tr-b-rr we have px : tq P Γ. Then

by rule t-var Γ; Σ $ x : t. Hence 10.1. From tr-b-rr we have py : tq P Γ.

Then by rule t-var Γ; Σ $ y : t. From that and the previous Γ; Σ $ x : t

we have by rule t-b Γ; Σ $ x b y : t. Hence 10.2. From rule sub-refl

10.3.

5. Case tr-‘-rc. Let θ1 = θ2 = θrs∗. From tr-‘-rc we have px : θrs∗q P Γ.

Then by rule t-var Γ; Σ $ x : θrs∗. Hence 10.1. From tr-‘-rc we have

Γ; Σ $ m : t. From that and the previous Γ; Σ $ x : θrs∗ we have by

rule t-ptr-‘ Γ; Σ $ x‘m : θrs∗. Hence 10.2. From rule sub-refl 10.3.

6. Case tr-mov-rc. Let θ1 = θ2 = t. From tr-mov-rc we have px : tq P Γ.

Then by rule t-var Γ; Σ $ x : t. Hence 10.1. From tr-mov-rc we have

Γ; Σ $ c : t. Hence 10.2. From rule sub-refl 10.3.

7. Case tr-mov-r0. Let θ1 = θ2 = τ∗. From tr-mov-r0 we have px : τ∗q P Γ.

Then by rule t-var Γ; Σ $ x : τ∗. Hence 10.1. From t-null we have

Γ; Σ $ 0 : τ∗. Hence 10.2. From rule sub-refl 10.3.

8. Case tr-mov-rr. From tr-mov-rr we have px : θ1q P Γ. Then by rule

t-var Γ; Σ $ x : θ1. Hence 10.1. From tr-mov-rr we have py : θ2q P Γ.

Then by rule t-var Γ; Σ $ y : θ2. Hence 10.2. From tr-mov-rr we have

Σ $ θ2 <: θ1. Hence 10.3.

9. Case tr-mov-ri1. From tr-mov-ri1 we have px : θ1q P Γ. Then by rule

t-var Γ; Σ $ x : θ1. Hence 10.1. From tr-mov-ri1 we have py : θ2∗q P Γ.

Then by rule t-var Γ; Σ $ y : θ2∗. Then by rule t-ptr Γ; Σ $ ∗y : θ2.

Hence 10.2. From tr-mov-ri1 we have Σ $ θ2 <: θ1. Hence 10.3.

10. Case tr-mov-ir1. From tr-mov-ir1 we have px : θ1∗q P Γ. Then by rule

t-var Γ; Σ $ x : θ1∗. Then by rule t-ptr Γ; Σ $ ∗x : θ1. 10.Hence 1.

From tr-mov-ir1 we have py : θ2q P Γ. Then by rule t-var Γ; Σ $ y : θ2.

Hence 10.1. From tr-mov-ir1 we have Σ $ θ2 <: θ1. Hence 10.3.
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11. Case tr-mov-ri2. From tr-mov-ri2 we have px : θ1q P Γ. Then by rule

t-var Γ; Σ $ x : θ1. Hence 10.1. From tr-mov-ri2 we have py : θ2rs∗q P Γ.

Then by rule t-var Γ; Σ $ y : θ2rs∗. Also by rule t-l Γ; Σ $ 0 : long.

Then by rule t-ar Γ; Σ $ yr0s : θ2. Hence 10.2. From tr-mov-ri2 we

have Σ $ θ2 <: θ1. Hence 10.3.

12. Case tr-mov-ir2. From tr-mov-ir2 we have px : θ1rs∗q P Γ. Then by rule

t-var Γ; Σ $ x : θ1rs∗. Also by rule t-l Γ; Σ $ 0 : long. Then by rule

t-ar Γ; Σ $ xr0s : θ1. Hence 10.1. From tr-mov-ir2 we have py : θ2q P Γ.

Then by rule t-var Γ; Σ $ y : θ2. Hence 10.2. From tr-mov-ir2 we have

Σ $ θ2 <: θ1. Hence 10.3.

13. Case tr-mov-ri3. From tr-mov-ri3 we have px : θq P Γ. Then by rule

t-var Γ; Σ $ x : θ. Hence 10.1. From tr-mov-ri3 we have py : N∗q P Γ.

Then by rule t-var Γ; Σ $ y : N∗. Then by rule t-fld Γ; Σ $ y Ñ 0 : θ0.

Hence 10.2. From tr-mov-ri3 we have Σ $ θ0 <: θ. Hence 10.3.

14. Case tr-mov-ir3. From tr-mov-ir3 we have px : N∗q P Γ. Then by rule

t-var Γ; Σ $ x : N∗. Then by rule t-fld Γ; Σ $ x Ñ 0 : θ0. Hence 10.1.

From tr-mov-ir3 we have py : θq P Γ. Then by rule t-var Γ; Σ $ y : θ.

Hence 10.2. From tr-mov-ir3 we have Σ $ θ <: θ0. Hence 10.3.

15. Case tr-mov-ri+1. From tr-mov-ri+1 we have px : θ1q P Γ. Then by rule

t-var Γ; Σ $ x : θ1. Hence 10.1. From tr-mov-ri+1 we have py : θ2rs∗q P
Γ. Then by rule t-var Γ; Σ $ y : θ2rs∗. Also from tr-mov-ri+1 we have

Γ; Σ $ m : t. Then by rule t-ar Γ; Σ $ yrms : θ2. Hence 10.2. From

tr-mov-ri+1 we have Σ $ θ2 <: θ1. Hence 10.3.

16. Case tr-mov-i+r1. From tr-mov-i+r1 we have px : θ1rs∗q P Γ. Then by

rule t-var Γ; Σ $ x : θ1rs∗. Also from tr-mov-i+r1 we have Γ; Σ $ m : t.

Then by rule t-ar Γ; Σ $ xrms : θ1. Hence 10.1. From tr-mov-i+r1 we

have py : θ2q P Γ. Then by rule t-var Γ; Σ $ y : θ2. Hence 10.2. From

tr-mov-i+r1 we have Σ $ θ2 <: θ1. Hence 10.3.

17. Case tr-mov-ri+2. From tr-mov-ri+2 we have px : θq P Γ. Then by rule

t-var Γ; Σ $ x : θ. Hence 10.1. From tr-mov-ri+2 we have py : N∗q P Γ.

Then by rule t-var Γ; Σ $ y : N∗. Then by rule t-fld Γ; Σ $ y Ñ m : θm.

Hence 10.2. From tr-mov-ri+2 we have Σ $ θm <: θ. Hence 10.3.



APPENDIX A. PROOF APPENDIX 128

18. Case tr-mov-i+r2. From tr-mov-i+r2 we have px : N∗q P Γ. Then by

rule t-var Γ; Σ $ x : N∗. Then by rule t-fld Γ; Σ $ x Ñ m : θm.

Hence 10.1. From tr-mov-i+r2 we have py : θ2q P Γ. Then by rule t-var

Γ; Σ $ y : θ2. Hence 10.2. From tr-mov-i+r2 we have Σ $ θ <: θm.

Hence 10.3.

19. Case tr-alloc-r∗. From tr-alloc-r∗ we have px : θrs∗q P Γ. Then by rule

t-var Γ; Σ $ x : θrs∗. Hence 10.1. From tr-alloc-r∗ we have Γ; Σ $ m : t.

From tr-alloc-r∗ we have py : tq P Γ. Then by rule t-var Γ; Σ $ y : t.

From both of these we get by rule t-b Γ; Σ $ y ∗ m : t. Then from

t-new-ar we get Γ; Σ $ new θry ∗ ms : θrs∗. Hence 10.2. From rule

sub-refl 10.3.

20. Case tr-alloc-rc1. From tr-alloc-rc1 we have px : θ∗q P Γ. Then by rule

t-var Γ; Σ $ x : θ∗. Hence 10.1. From t-new we get Γ; Σ $ new θ : θ∗.
Hence 10.2. From rule sub-refl 10.3.

21. Case tr-alloc-rc2. From tr-alloc-rc2 we have px : N∗q P Γ. Then by rule

t-var Γ; Σ $ x : N∗. Hence 10.1. From t-new-str we get Γ; Σ $ new N :

N∗. Hence 10.2. From rule sub-refl 10.3.

22. Case tr-alloc-rc3. From tr-alloc-rc3 we have px : θrs∗q P Γ. Then by

rule t-var Γ; Σ $ x : θrs∗. Hence 10.1. From tr-alloc-rc3 we have

Γ; Σ $ m : t. Then from rule t-new-ar we have Γ; Σ $ new θrms : θrs∗.
Hence 10.2. From rule sub-refl 10.3.

23. Case tr-call. From tr-call we have pu : θuq P Γ. Then by rule t-var

Γ; Σ $ u : θu. Hence 10.1. We have:

– From tr-call and by Proposition 12 we have φcpfq = fp
ÝÝÑ
x : θqx

ÝÝÝÑ
y : θ1, l, λc, jy.

– From tr-call we have
ÝÝÝÝÑ
pv : θvq P Γ. Then by rule t-var Γ; Σ $ ~v : ~θv.

– From tr-call we have Σ $ ~θv <: ~θ.

– By rule sub-refl we have Σ $ θ1
j <: θ1

j.

Hence by rule t-call we have Γ; Σ $: θ1
j. Hence 10.2. From tr-call we

have Σ $ θ1
j <: θu. Hence 10.3.

• By structural induction on the block translation relation (Figure 22).
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1. Case tr-instr. From tr-instr we have µΓ; Γ; Σ $ ι
ι
 ` := e. Hence, by

Proposition 10 we have Γ; Σ $ ` : θ1, Γ; Σ $ e : θ2 and Σ $ θ2 <: θ1.

Also by rule tr-instr we have µλ;µΓ; Γ; Σ $ b
b
 s. Hence by the

induction hypothesis we have Γ; Σ $ s. Then by rule t-assn we have

Γ; Σ $ ` := e; s

2. Case tr-if. From tr-if we have px : θq P Γ. Then by rule t-var Γ; Σ $

x : θu. Also from tr-if we have µλ;µΓ; Γ; Σ $ b
b
 s. Hence, from the

induction hypothesis we have Γ; Σ $ s Then the Proposition follows

from rule t-if.

3. Case tr-goto. This follows from rule t-goto.

4. Case tr-ret. This follows from rule t-ret.

• By showing that the four preconditions to rule t-def (Figure 22) are satisfied:

1. From rule tr-def we know that Γ = t
ÝÝÑ
x : θ,

ÝÝÝÑ
y : θ1

u.

2. From rule tr-def we know that a P dompλxq and l = µλpaq. Hence

l P rangepµλq. From the rule we also know that rangepµλq = dompλcq.

Hence l P dompλcq.

3. From rule tr-def we know that ryj P
ÝÑry . We also know that yj = µΓpryjq

and that ÝÑy = µΓp
ÝÑry q. Hence yj P ÝÑy .

4. From rule tr-def we know that @pa ÞÑ lq P µλ : µλ;µΓ; Γ; Σ $ λxpaq
b
 

λcplq. From Proposition 11 we then know that @l P rangepµλq : Γ; Σ $

λcplq. From rule tr-def we know that rangepµλq = dompλcq. Hence

@l P dompλcq : Γ; Σ $ λcplq.

Hence by rule t-def we conclude Σ $ fp
ÝÝÑ
x : θqx

ÝÝÝÑ
y : θ1, l, λc, jy.

A.1.3 Semantics Preservation

A.1.3.1 Instructions

Proposition 13 (Preservation of Related Memory for Instructions). If



APPENDIX A. PROOF APPENDIX 130

• µΓ; Γ; Σ $ ι
ι
 ` := e

• Γ; Σ; Ψ $ ρ

• Σ; Ψ $ σ; π

• µa; νa; π; ~ρ, ρ $ H ú σ

• µa; ~µΓ, µΓ;σ $ ~R,R ú ~ρ, ρ

• ~R $ xH,R, ιy
ι
ÝÑ xH 1, R1y,

• Σ; ~ρ; ρ $ xσ, π, `y
`
ÝÑ xσ1, π1, ay, and

• Σ; ~ρ; ρ $ xσ1, π1, ey
e
ÝÑ xσ2, π2, vy

then for some µ1
a Ě µa and ν 1

a Ě νa:

• µ1
a; ~µΓ, µΓ;σ1 ˝ ta ÞÑ vu $ ~R,R ú ~ρ, ρ

• µ1
a; ν

1
a; π

1; ~ρ, ρ $ H 1 ú σ1 ˝ ta ÞÑ vu

Proposition 14 (Preservation of Progress for Instructions). If

• µΓ; Γ; Σ $ ι
ι
 ` := e

• Γ; Σ; Ψ $ ρ

• Σ; Ψ $ σ; π

• µa; νa; π; ~ρ, ρ $ H ú σ

• µa; ~µΓ, µΓ;σ $ ~R,R ú ~ρ, ρ, and

• ~R $ xH,R, ιy
ι
ÝÑ xH 1, R1y

then

• Σ; ~ρ; ρ $ xσ, π, `y
`
ÝÑ err or

• Σ; ~ρ; ρ $ xσ, π, `y
`
ÝÑ xσ1, π1, ay and Σ; ~ρ; ρ $ xσ1, π1, ey

e
ÝÑ err, or

• Σ; ~ρ; ρ $ xσ, π, `y
`
ÝÑ xσ1, π1, ay and Σ; ~ρ; ρ $ xσ1, π1, ey

e
ÝÑ xσ2, π2, vy.
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We prove Propositions 13 and 14 together.

Proof. The proof proceeds by case analysis on the derivation of the judgement

µΓ; Γ; Σ $ ι
ι
 ` := e.

1. Case tr-‘-r*1. Then ι = pop‘
4 ri, rj ∗ cq, ` = x and e = x‘ py ∗mq.

(a) This case is not possible. Rule x-‘-r* always applies.

(b) In this case rules x-‘-r* is used for progress on ι: ~R $ xH,R, op‘
4 ri, rj ∗

cy
ι
ÝÑ xH,R1y. Here R1 = R ˝4 tri ÞÑ ~bi ‘4 p

~bj ∗4 cqu where ~bi = R0:4priq

and ~bj = R0:4prjq.

Similarly, through rule l-var Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ xσ, π, ay with a =

ρpxq. Also through rules e-op, e-lval, l-var and e-const we obtain

Σ; ~ρ; ρ $ xσ, π, px ‘ py ∗ mqqy e
ÝÑ xσ, π, vy where v = vx ‘π pvy ∗π mq,

vx = σpaq, a1 = ρpyq and vy = σpa1q.

From rule tr-‘-r*1 we know pri : xq4 P µΓ. Hence from the related

registers we know µa $ ~bi ú vx. Similarly, we know µa $ ~bj ú

vy. Then from px : θrs∗q P Γ and the store typing of σ it follows

that vx = n∗ and from the success of the addition, it also follows that

rn∗, n∗‘ pvy ∗mqs ĎP π. Hence, also from the store typing all m values

at the addresses in this range have type θ. From the related heaps

it then follows with c{m = sizeof pθq that µa $ p~bi ‘4 p
~bj ∗4 cqq ú

pv ‘π pvy ∗mqq. Hence, the update registers are still related.

2. Case tr-‘-r*2. Then ι = pop‘
w ri, rj ∗ cq, ` = x and e = x‘ py ∗ cq.

(a) This case is not possible. Rule x-‘-r* always applies.

(b) In this case rules x-‘-r* is used for progress on ι: ~R $ xH,R, op‘
w ri, rj ∗

cy
ι
ÝÑ xH,R1y. Here R1 = R ˝w tri ÞÑ ~bi‘w p~bj ∗w cqu where ~bi = R0:wpriq

and ~bj = R0:wprjq.

Similarly, through rule l-var Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ xσ, π, ay with a =

ρpxq. Also through rules e-op, e-lval, l-var and e-const we obtain

Σ; ~ρ; ρ $ xσ, π, px ‘ py ∗ mqqy e
ÝÑ xσ, π, vy where v = vx ‘π pvy ∗π mq,

vx = σpaq, a1 = ρpyq and vy = σpa1q.
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From rule tr-‘-r*2 we know pri : xqw P µΓ. Hence from the related

registers we know µa $ ~bi ú vx. Similarly, we know µa $ ~bj ú vy.

It then follows that µa $ p~bi ‘w p~bj ∗w cqq ú pv ‘π pvy ∗ cqq. Hence,

the update registers are still related.

3. Case tr-b-rc. Then ι = popb
w ri, cq, ` = x and e = xb c.

(a) This case is not possible. Rule x-b-rc always applies.

(b) In this case rules x-b-rc is used for progress on ι: ~R $ xH,R, opb
w ri, cy

ι
ÝÑ

xH,R1y. Here R1 = R ˝w tri ÞÑ ~bbw cu where ~b = R0:wpriq.

Similarly, through rule l-var Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ xσ, π, ay with a =

ρpxq. Also through rules e-op, e-lval, l-var and e-const we obtain

Σ; ~ρ; ρ $ xσ, π, pxb cqy
e
ÝÑ xσ, π, v1y where v1 = v bπ c and v = σpaq.

From rule tr-b-rc we know pri : xqw P µΓ. Hence from the related

registers we know µa $ ~b ú v. Then from px : tq P Γ and w =

sizeof ptq it follows that µa $ p~bbw cq ú pv bπ cq. Hence, the update

registers are still related.

4. Case tr-‘-rc. Then ι = pop‘
4 ri, cq, ` = x and e = x‘m.

(a) This case is not possible. Rule x-b-rc always applies.

(b) In this case rules x-b-rc is used for progress on ι: ~R $ xH,R, op‘
4 ri, cy

ι
ÝÑ

xH,R1y. Here R1 = R ˝4 tri ÞÑ ~b‘4 cu where ~b = R0:4priq.

Similarly, through rule l-var Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ xσ, π, ay with a =

ρpxq. Also through rules e-op, e-lval, l-var and e-const we obtain

Σ; ~ρ; ρ $ xσ, π, px‘mqy
e
ÝÑ xσ, π, v1y where v1 = v ‘π m and v = σpaq.

From rule tr-‘-rc we know pri : xq4 P µΓ. Hence from the related

registers we know µa $ ~b ú v. Then from px : θrs∗q P Γ and the

store typing of σ it follows that v = n∗ and from the success of the

addition, it also follows that rn∗, n∗ ‘ ms ĎP π. Hence, also from

the store typing all m values at the addresses in this range have type

θ. From the related heaps it then follows with c{m = sizeof pθq that

µa $ p~b ‘4 cq ú pv ‘π mq. Hence, the update registers are still

related.
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5. Case tr-b-rr. Then ι = popb
w ri, rjq, ` = x and e = xb y.

(a) This case is not possible. Rule x-b-rr always applies.

(b) In this case rules x-b-rc is used for progress on ι: ~R $ xH,R, opb
w ri, rjy

ι
ÝÑ

xH,R1y. Here R1 = R ˝w tri ÞÑ ~bi ‘w ~bju where ~bi = R0:wpriq and
~bj = R0:wprjq.

Similarly, through rule l-var Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ xσ, π, ay with a =

ρpxq. Also through rules e-op, e-lval and l-var we obtain Σ; ~ρ; ρ $

xσ, π, pxb yqy
e
ÝÑ xσ, π, vy where v = vx bπ vy, vx = σpaq, a1 = ρpyq and

vy = σpa1q.

From rule tr-b-rr we know pri : xqw P µΓ. Hence from the related

registers we know µa $ ~bi ú vx. By similar reasoning we know

µa $ ~bj ú vy. Then from px : tq P Γ, py : tq P Γ and w = sizeof ptq it

follows that µa $ p~bibw~bjq ú pvxbπ vyq. Hence, the update registers

are still related.

6. Case tr-mov-rc. Then ι = pmovw ri, cq, ` = x and e = c.

(a) This case is not possible. Rule x-mov-rc always applies.

(b) In this case rules x-mov-rc is used for progress on ι: ~R $ xH,R,movw ri, cy
ι
ÝÑ

xH,R1y. Here R1 = R ˝w tri ÞÑ cu.

Similarly, through rule l-var Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ xσ, π, ay with a =

ρpxq. Also through rule e-const we obtain Σ; ~ρ; ρ $ xσ, π, cy
e
ÝÑ xσ, π, cy.

We know that µa $ c ú c. Hence, the update registers are still

related.

7. Case tr-mov-r0. Then ι = pmov4 ri, 0q, ` = x and e = 0.

(a) This case is not possible. Rule x-mov-rc always applies.

(b) In this case rules x-mov-rc is used for progress on ι: ~R $ xH,R,mov4 ri, 0y
ι
ÝÑ

xH,R1y. Here R1 = R ˝4 tri ÞÑ 0u.

Similarly, through rule l-var Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ xσ, π, ay with a =

ρpxq. Also through rule e-const we obtain Σ; ~ρ; ρ $ xσ, π, 0y
e
ÝÑ xσ, π, 0y.
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We know that µa $ 0 ú 0. Hence, the update registers are still

related.

8. Case tr-mov-rr. Then ι = pmovw ri, rjq, ` = x and e = y.

(a) This case is not possible. Rule x-mov-rr always applies.

(b) In this case rules x-mov-rr is used for progress on ι: ~R $ xH,R,movw ri, rjy
ι
ÝÑ

xH,R1y. Here R1 = R ˝w tri ÞÑ ~bu where ~b = R0:wprjq.

Similarly, through rule l-var Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ xσ, π, ay with a =

ρpxq. Also through rules e-lval and l-var we obtain Σ; ~ρ; ρ $ xσ, π, yy
e
ÝÑ

xσ, π, vy where v = σpa1q and a1 = ρpyq.

From rule tr-mov-rr we know prj : yqw P µΓ. Hence from the related

registers we know µa $ ~b ú v. Also from rule tr-mov-rr we know

pri : xqw P µΓ. Hence, the registers are related. After the update we

can see that they are still related.

9. Case tr-mov-ri1. Then ι = pmovw ri, rrjsq, ` = x and e = ∗y.

(a) This case is possible iff Rprjq = 0 or Rprjq = K. Because of the

related registers and, from rule tr-mov-ri1, prj : yq4 P µΓ, we have

µa $ Rprjq ú σpρpyqq. In either of the cases for Rprjq we also have

Σ; ~ρ; ρ $ xσ, π, yy
e
ÝÑ err.

(b) In this case rules x-mov-ri is used for progress on ι: ~R $ xH,R,movw ri, rrjsy
ι
ÝÑ

xH,R1y. Here R1 = R ˝w tri ÞÑ ~b2u where ~b2 = Hwp~b1q and ~b1 = Rprjq.

Similarly, through rule l-var Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ xσ, π, ay with a =

ρpxq. Also through rules e-lval , l-ptr and l-var we obtain Σ; ~ρ; ρ $

xσ, π, ∗yy e
ÝÑ xσ, π, v2y where v2 = σpv1q, v1 = σpa1q and a1 = ρpyq.

From rule tr-mov-ri1 we know prj : yq4 P µΓ. Hence from the related

registers we know µa $ ~b1 ú v1. From related stores, we also know

µa $ ~b2 ú v2. Also from rule tr-mov-ri1 we know pri : xqw P µΓ.

Hence, the registers are related. After the update we can see that they

are still related.

10. Case tr-mov-ri2. Then ι = pmovw ri, rrjsq, ` = x and e = yr0s.
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(a) This case is possible iff Rprjq = 0 or Rprjq = K. Because of the

related registers and, from rule tr-mov-ri2, prj : yq4 P µΓ, we have

µa $ Rprjq ú σpρpyqq. In either of the cases for Rprjq we also have

Σ; ~ρ; ρ $ xσ, π, yy
e
ÝÑ err.

(b) In this case rules x-mov-ri is used for progress on ι: ~R $ xH,R,movw ri, rrjsy
ι
ÝÑ

xH,R1y. Here R1 = R ˝w tri ÞÑ ~b2u where ~b2 = Hwp~b1q and ~b1 = Rprjq.

Similarly, through rule l-var Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ xσ, π, ay with a =

ρpxq. Also through rules e-lval , l-ar and e-const we obtain Σ; ~ρ; ρ $

xσ, π, yr0sy
e
ÝÑ xσ, π, v2y where v2 = σpv1q, v1 = σpa1q and a1 = ρpyq.

From rule tr-mov-ri2 we know prj : yq4 P µΓ. Hence from the related

registers we know µa $ ~b1 ú v1. From related stores, we also know

µa $ ~b2 ú v2. Also from rule tr-mov-ri2 we know pri : xqw P µΓ.

Hence, the registers are related. After the update we can see that they

are still related.

11. Case tr-mov-ri3. Then ι = pmovw ri, rrjsq, ` = x and e = y Ñ 0.

(a) This case is possible iff Rprjq = 0 or Rprjq = K. Because of the

related registers and, from rule tr-mov-ri3, prj : yq4 P µΓ, we have

µa $ Rprjq ú σpρpyqq. In either of the cases for Rprjq we also have

Σ; ~ρ; ρ $ xσ, π, yy
e
ÝÑ err.

(b) In this case rules x-mov-ri is used for progress on ι: ~R $ xH,R,movw ri, rrjsy
ι
ÝÑ

xH,R1y. Here R1 = R ˝w tri ÞÑ ~b2u where ~b2 = Hwp~b1q and ~b1 = Rprjq.

Similarly, through rule l-var Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ xσ, π, ay with a =

ρpxq. Also through rules e-lval and l-fldwe obtain Σ; ~ρ; ρ $ xσ, π, y Ñ

0y
e
ÝÑ xσ, π, v2y where v2 = σpv1q, v1 = σpa1q and a1 = ρpyq.

From rule tr-mov-ri3 we know prj : yq4 P µΓ. Hence from the related

registers we know µa $ ~b1 ú v1. From related stores, we also know

µa $ ~b2 ú v2. Also from rule tr-mov-ri3 we know pri : xqw P µΓ.

Hence, the registers are related. After the update we can see that they

are still related.

12. Case tr-mov-ir1. Then ι = pmovw rris, rjq, ` = ∗x and e = y.
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(a) This case is possible iff Rpriq = 0 or Rpriq = K. Because of the

related registers and, from rule tr-mov-ir1, pri : xq4 P µΓ, we have

µa $ Rpriq ú σpρpxqq. In either of the cases for Rpriq we also have

Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ err.

(b) In this case rules x-mov-ir is used for progress on ι: ~R $ xH,R,movw rris, rjy
ι
ÝÑ

xH 1, Ry. Here H 1 = H ˝ t~b1, ... ,~b1 + pw − 1q ÞÑ ~b2u where ~b1 = Rpriq

and ~b = R0:wprjq.

Similarly, through rule l-ptr Σ; ~ρ; ρ $ xσ, π, ∗xy `
ÝÑ xσ, π, v1y with v1 =

σpaq and a = ρpxq. Also through rules e-lval and l-varwe obtain Σ; ~ρ; ρ $

xσ, π, yy
e
ÝÑ xσ, π, v2y where v2 = σpa1q and a1 = ρpyq.

From rule tr-mov-ir1 we know prj : yqw P µΓ. Hence from the related

registers we know µa $ ~b2 ú v2. From related stores, we also know

µa $ ~b2 ú v2. Also from rule tr-mov-ir1 we know pri : xqw P µΓ.

Hence, µa $ ~b1 ú v1. Since px : θ1∗q P Γ, we know that v1 is

an address. Because of related heaps, we then know that p~b1, v1qinµa.

After the update we can see that they are still related.

13. Case tr-mov-ir2. Then ι = pmovw rris, rjq, ` = xr0s and e = y.

(a) This case is possible iff Rpriq = 0 or Rpriq = K. Because of the

related registers and, from rule tr-mov-ir2, pri : xq4 P µΓ, we have

µa $ Rpriq ú σpρpxqq. In either of the cases for Rpriq we also have

Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ err.

(b) In this case rules x-mov-ir is used for progress on ι: ~R $ xH,R,movw rris, rjy
ι
ÝÑ

xH 1, Ry. Here H 1 = H ˝ t~b1, ... ,~b1 + pw − 1q ÞÑ ~b2u where ~b1 = Rpriq

and ~b = R0:wprjq.

Similarly, through rule l-ar and e-const Σ; ~ρ; ρ $ xσ, π, xr0sy
`
ÝÑ xσ, π, v1y

with v1 = σpaq and a = ρpxq. Also through rules e-lval and l-varwe

obtain Σ; ~ρ; ρ $ xσ, π, yy
e
ÝÑ xσ, π, v2y where v2 = σpa1q and a1 = ρpyq.

From rule tr-mov-ir2 we know prj : yqw P µΓ. Hence from the related

registers we know µa $ ~b2 ú v2. From related stores, we also know

µa $ ~b2 ú v2. Also from rule tr-mov-ir2 we know pri : xqw P µΓ.

Hence, µa $ ~b1 ú v1. Since px : θ1rs∗q P Γ, we know that v1 is
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an address. Because of related heaps, we then know that p~b1, v1qinµa.

After the update we can see that they are still related.

14. Case tr-mov-ir3. Then ι = pmovw rris, rjq, ` = xÑ 0 and e = y.

(a) This case is possible iff Rpriq = 0 or Rpriq = K. Because of the

related registers and, from rule tr-mov-ir3, pri : xq4 P µΓ, we have

µa $ Rpriq ú σpρpxqq. In either of the cases for Rpriq we also have

Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ err.

(b) In this case rules x-mov-ir is used for progress on ι: ~R $ xH,R,movw rris, rjy
ι
ÝÑ

xH 1, Ry. Here H 1 = H ˝ t~b1, ... ,~b1 + pw − 1q ÞÑ ~b2u where ~b1 = Rpriq

and ~b = R0:wprjq.

Similarly, through rule l-fld Σ; ~ρ; ρ $ xσ, π, x Ñ 0y
`
ÝÑ xσ, π, v1y with

v1 = σpaq and a = ρpxq. Also through rules e-lval and l-varwe obtain

Σ; ~ρ; ρ $ xσ, π, yy
e
ÝÑ xσ, π, v2y where v2 = σpa1q and a1 = ρpyq.

From rule tr-mov-ir3 we know prj : yqw P µΓ. Hence from the related

registers we know µa $ ~b2 ú v2. From related stores, we also know

µa $ ~b2 ú v2. Also from rule tr-mov-ir3 we know pri : xqw P µΓ.

Hence, µa $ ~b1 ú v1. Since px : N∗q P Γ, we know that v1 is

an address. Because of related heaps, we then know that p~b1, v1qinµa.

After the update we can see that they are still related.

15. Case tr-mov-ri+1. Then ι = pmovw ri, rrj + cs, ` = x and e = yrms.

(a) This case is possible iff Rprjq = 0, Rprjq = K or pRprjq+ cq R dompHq.

Because of the related registers and heaps, and from rule tr-mov-ri+1prj :

yq4 P µΓ, we have µa $ Rprjq ú σpρpyqq. In either of the first two

cases for Rprjq we also have Σ; ~ρ; ρ $ xσ, π, yrmsy
`
ÝÑ err. In the last case,

because of related heaps, it also has to be that Σ; ~ρ; ρ $ xσ, π, yrmsy
`
ÝÑ

err.

(b) In this case rules x-mov-r+ is used for progress on ι: ~R $ xH,R,movw ri, rrj+

csy
ι
ÝÑ xH,R1y. Here R1 = R ˝w tri ÞÑ ~bu where ~b = Hwp~b1q and

~b = Rprjq+4 c.
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Similarly, through rule l-var Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ xσ, π, ay with a =

ρpxq. Also through rules e-lval , l-arand e-const we obtain Σ; ~ρ; ρ $

xσ, π, yrmsy
e
ÝÑ xσ, π, vy where v = σpa2 +mq, a2 = σpa1q and a1 = ρpyq.

From rule tr-mov-ri+1 we know prj : yq4 P µΓ. Hence from the related

registers we know µa $ ~b1 ú a2. From the translation rule we also

have py : θrs∗q P Γ. Because of the progress, it means that ra2, a2 +

ms ĎP π. Because of the related heaps and well-typed store it follows

that µa $ ~b ú v. Also from rule tr-mov-ri+1 we know pri : xqw P µΓ.

After the update we can see that they are still related.

16. Case tr-mov-ri+2. Then ι = pmovw ri, rrj + cs, ` = x and e = y Ñ m.

(a) This case is possible iff Rprjq = 0, Rprjq = K or pRprjq+ cq R dompHq.

Because of the related registers and heaps, and from rule tr-mov-ri+2prj :

yq4 P µΓ, we have µa $ Rprjq ú σpρpyqq. In either of the first two

cases for Rprjq we also have Σ; ~ρ; ρ $ xσ, π, yrmsy
`
ÝÑ err. In the last

case, because of related heaps, it also has to be that Σ; ~ρ; ρ $ xσ, π, y Ñ

my
`
ÝÑ err.

(b) In this case rules x-mov-r+ is used for progress on ι: ~R $ xH,R,movw ri, rrj+

csy
ι
ÝÑ xH,R1y. Here R1 = R ˝w tri ÞÑ ~bu where ~b = Hwp~b1q and

~b = Rprjq+4 c.

Similarly, through rule l-var Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ xσ, π, ay with a =

ρpxq. Also through rules e-lval and l-fld we obtain Σ; ~ρ; ρ $ xσ, π, y Ñ

my
e
ÝÑ xσ, π, vy where v = σpa2 +mq, a2 = σpa1q and a1 = ρpyq.

From rule tr-mov-ri+2 we know prj : yq4 P µΓ. Hence from the related

registers we know µa $ ~b1 ú a2. From the translation rule we also

have py : N∗q P Γ and ΣpNq = xθ0, ... , θny. Because of the progress, it

means that ra2, a2 + ms ĎP π. Because of the related heaps and well-

typed store it follows that µa $ ~b ú v. Also from rule tr-mov-ri+1

we know pri : xqw P µΓ. After the update we can see that they are still

related.

17. Case tr-mov-i+r1. Then ι = pmovw rri + cs, rj, ` = xrms and e = y.
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(a) This case is possible iff Rpriq = 0, Rpriq = K or pRpriq+ cq R dompHq.

Because of the related registers and heaps, and from rule tr-mov-i+r1pri :

xq4 P µΓ, we have µa $ Rpriq ú σpρpxqq. In either of the first two

cases for Rpriq we also have Σ; ~ρ; ρ $ xσ, π, xrmsy
`
ÝÑ err. In the last case,

because of related heaps, it also has to be that Σ; ~ρ; ρ $ xσ, π, xrmsy
`
ÝÑ

err.

(b) In this case rules x-mov-+r is used for progress on ι: ~R $ xH,R,movw rri+

cs, rjy
ι
ÝÑ xH 1, Ry. Here H 1 = H ˝tHpRpriqq+4 c+4n ÞÑ Rn:n+1prjqu

w−1
n=0 .

Similarly, through rule l-ar Σ; ~ρ; ρ $ xσ, π, xrmsy
`
ÝÑ xσ, π, ay with a =

a1 + m and a1 = ρpxq. Also through rules e-lval and l-var we obtain

Σ; ~ρ; ρ $ xσ, π, yy
e
ÝÑ xσ, π, vy where v = σpa2q and a2 = ρpyq.

From rule tr-mov-i+r1 we know pri : xq4 P µΓ. Hence from the related

registers we know µa $ Rpriq ú a1. From the translation rule we

also have px : θrs∗q P Γ. Because of the progress, it means that ra1, a1 +

ms ĎP π. Because of the related heaps and well-typed store it follows

that pRpriq + c, a1 + mq P µa. Also from rule tr-mov-ri+1 we know

prj : yqw P µΓ. Hence, µa $ R0:wprjq ú v. After the update we can

see that pRpriq+ cq and a1 +m are still related.

18. Case tr-mov-i+r2. Then ι = pmovw rri + cs, rj, ` = xÑ m and e = y.

(a) This case is possible iff Rpriq = 0, Rpriq = K or pRpriq+ cq R dompHq.

Because of the related registers and heaps, and from rule tr-mov-i+r2pri :

xq4 P µΓ, we have µa $ Rpriq ú σpρpxqq. In either of the first two

cases for Rpriq we also have Σ; ~ρ; ρ $ xσ, π, x Ñ my
`
ÝÑ err. In the last

case, because of related heaps, it also has to be that Σ; ~ρ; ρ $ xσ, π, xÑ

my
`
ÝÑ err.

(b) In this case rules x-mov-+r is used for progress on ι: ~R $ xH,R,movw rri+

cs, rjy
ι
ÝÑ xH 1, Ry. Here H 1 = H ˝tHpRpriqq+4 c+4n ÞÑ Rn:n+1prjqu

w−1
n=0 .

Similarly, through rule l-ar Σ; ~ρ; ρ $ xσ, π, x Ñ my
`
ÝÑ xσ, π, ay with

a = a1 +m and a1 = ρpxq. Also through rules e-lval and l-var we obtain

Σ; ~ρ; ρ $ xσ, π, yy
e
ÝÑ xσ, π, vy where v = σpa2q and a2 = ρpyq.

From rule tr-mov-i+r2 we know pri : xq4 P µΓ. Hence from the related
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registers we know µa $ Rpriq ú a1. From the translation rule we

also have px : N∗q P Γ. Because of the progress, it means that ra1, a1 +

ms ĎP π. Because of the related heaps and well-typed store it follows

that pRpriq + c, a1 + mq P µa. Also from rule tr-mov-ri+1 we know

prj : yqw P µΓ. Hence, µa $ R0:wprjq ú v. After the update we can

see that pRpriq+ cq and a1 +m are still related.

19. Case tr-alloc-r∗. Then ι = palloc ri, rj ∗ c, ` = x and e = new θry ∗ms.

(a) Rule x-alloc-* only fails iff Rprjq = K. Similarly, while rules l-var,

e-const and e-op do not fail, rule e-ar fails iff σpρpyqq = K. Since

prj : yq P µΓ, both failures coincide.

(b) This case is similar to that of tr-alloc-rc2.

20. Case tr-alloc-rc1. Then ι = palloc ri, c, ` = x and e = new θ.

(a) Rule x-alloc cannot fail. Similarly, rules l-var and e-new do not fail.

(b) In this case rules x-alloc is used for progress on ι: ~R $ xH,R, alloc ri, cy
ι
ÝÑ

xH 1, R1y. Here R1 = R ˝4 ri ÞÑ a. Also H 1 = H ˝ ta+ i ÞÑ Ku
c−1
i=0 .

Similarly, through rule l-var Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ xσ, π, a1y where a1 =

ρpxq. Also through rule e-new we obtain Σ; ~ρ; ρ $ xσ, π, new θy
e
ÝÑ

xσ1, π, a2y where σ1 = σ ˝ ta2 ÞÑ Ku.

Then choose µ1
a = µa ˝ tpa : a2qcu. Since µa $ K ú K these fresh

addresses are related. Also pick ν 1
a = νa ˝ ta+ i ÞÑ pa, cquc−1

i=0 .

21. Case tr-alloc-rc2. Then ι = palloc ri, c, ` = x and e = new struct N .

(a) Rule x-alloc cannot fail. Similarly, rules l-var and e-str do not fail.

(b) In this case rules x-alloc is used for progress on ι: ~R $ xH,R, alloc ri, cy
ι
ÝÑ

xH 1, R1y. Here R1 = R ˝4 ri ÞÑ a. Also H 1 = H ˝ ta+ i ÞÑ Ku
c−1
i=0 .

Similarly, through rule l-var Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ xσ, π, a1y where a1 =

ρpxq. Also through rule e-str we obtain Σ; ~ρ; ρ $ xσ, π, new struct θy
e
ÝÑ

xσ1, π, a2y where σ1 = σ ˝ ta2 + i ÞÑ Ku
n−1
i=0 with n is the number of fields

in the struct.

The new memory relations are straightforward.
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22. Case tr-alloc-rc3. Then ι = palloc ri, c, ` = x and e = new θrms.

(a) Rule x-alloc cannot fail. Similarly, rules l-var,e-str and e-const do not

fail.

(b) In this case rules x-alloc is used for progress on ι: ~R $ xH,R, alloc ri, cy
ι
ÝÑ

xH 1, R1y. Here R1 = R ˝4 ri ÞÑ a. Also H 1 = H ˝ ta+ i ÞÑ Ku
c−1
i=0 .

Similarly, through rule l-var Σ; ~ρ; ρ $ xσ, π, xy
`
ÝÑ xσ, π, a1y where a1 =

ρpxq. Also through rule e-ar we obtain Σ; ~ρ; ρ $ xσ, π, new θrmsy
e
ÝÑ

xσ1, π, a2y where σ1 = σ ˝ ta2 + i ÞÑ Ku
m−1
i=0 .

The new memory relations are straightforward.

23. Case tr-call. This case follows coinductively.

A.1.3.2 Basic Blocks

The two Propositions for basic blocks are the following.

Proposition 15 (Preservation of Progress for Basic Blocks). If

• µλ;µΓ; Γ; Σ $ b
b
 s

• @pa : lq P µλ : µλ;µΓ; Γ; Σ $ λxpaq
b
 λcplq

• Γ; Σ; Ψ $ ρ

• Σ; Ψ $ σ; π

• µa; νa; π; ~ρ, ρ $ H ú σ

• µa; ~µΓ, µΓ;σ $ ~R,R ú ~ρ, ρ

• λx; ~R $ xH,R, by
b
ÝÑ xH 1, R1, b1y

then

• Σ;λc; ~ρ; ρ $ xσ, π, sy
s
ÝÑ err or

• Σ;λc; ~ρ; ρ $ xσ, π, sy
s
ÝÑ xσ1, π1, s1y.
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Proposition 16 (Preservation of Related Memory for Basic Blocks). If

• µλ;µΓ; Γ; Σ $ b
b
 s

• @pa : lq P µλ : µλ;µΓ; Γ; Σ $ λxpaq
b
 λcplq

• Γ; Σ; Ψ $ ρ

• Σ; Ψ $ σ; π

• µa; νa; π; ~ρ, ρ $ H ú σ

• µa; ~µΓ, µΓ;σ $ ~R,R ú ~ρ, ρ

• λx; ~R $ xH,R, by
b
ÝÑ xH 1, R1, b1y

• Σ;λc; ~ρ; ρ $ xσ, π, sy
s
ÝÑ xσ1, π1, s1y

then for some µ1
a Ě µa and ν 1

a Ě νa:

• µ1
a; ~µΓ, µΓ;σ1 $ ~R,R ú ~ρ, ρ

• µ1
a; ν

1
a; π

1; ~ρ, ρ $ H 1 ú σ1

Proof. The proof is straightforward.

A.1.3.3 Function Definitions

The two Propositions for function definitions are the following.

Proposition 17 (Preservation of Progress for Function Definitions). If

• Σ $ xf,ÝÑrx ,ÝÑry , a, λx, jy fp
ÝÝÑ
x : θqx

ÝÝÝÑ
y : θ1, l, λc, jy

• µΓ = tÝÝÝÝÑrx ÞÑ x,ÝÝÝÝÑry ÞÑ yu

• Γ = t
ÝÝÑ
x : θ,

ÝÝÝÑ
y : θ1

u

• Γ; Σ; Ψ $ ρ

• Σ; Ψ $ σ; π
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• µa; νa; π; ~ρ, ρ $ H ú σ

• µa; ~µΓ, µΓ;σ $ ~R,R ú ~ρ, ρ

• λx; ~R $ xH,R, λxpaqy
b
ÝÑ xH 1, R1, b1y

then

• Σ;λc; ~ρ; ρ $ xσ, π, λcplqy
s
ÝÑ err or

• Σ;λc; ~ρ; ρ $ xσ, π, λplqy
s
ÝÑ xσ1, π1, s1y.

Proposition 18 (Preservation of Related Memory for Function Definitions). If

• µλ;µΓ; Γ; Σ $ b
b
 s

• µΓ = tÝÝÝÝÑrx ÞÑ x,ÝÝÝÝÑry ÞÑ yu

• Γ = t
ÝÝÑ
x : θ,

ÝÝÝÑ
y : θ1

u

• Γ; Σ; Ψ $ ρ

• Σ; Ψ $ σ; π

• µa; νa; π; ~ρ, ρ $ H ú σ

• µa; ~µΓ, µΓ;σ $ ~R,R ú ~ρ, ρ

• λx; ~R $ xH,R, λxpaqy
b
ÝÑ xH 1, R1, b1y

• Σ;λc; ~ρ; ρ $ xσ, π, λplqy
s
ÝÑ xσ1, π1, s1y.

then for some µ1
a Ě µa and ν 1

a Ě νa:

• µ1
a; ~µΓ, µΓ;σ1 $ ~R,R ú ~ρ, ρ

• µ1
a; ν

1
a; π

1; ~ρ, ρ $ H 1 ú σ1

Proof. The proof is straightforward.
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A.2 Simple and Efficient Algorithms for Octagons

Lemma 1 (Correctness of CheckConsistent). Suppose m is a closed DBM, m1

= IncClosepm, oq and o = px1
a − x1

b ď dq. If m1 is consistent then

• mb,a + d ě 0

• mā,b̄ + d ě 0

• mā,a + d+ mb,b̄ + d ě 0

• mb,b̄ + d+ mā,a + d ě 0

Proof. Since m1 is consistent m1
ā,ā ě 0 hence

min

¨

˚

˚

˚

˚

˚

˚

˝

mā,ā,

mā,a + d+ mb,ā,

mā,b̄ + d+ mā,ā,

mā,b̄ + d+ mā,a + d+ mb,ā,

mā,a + d+ mb,b̄ + d+ mā,ā

˛

‹

‹

‹

‹

‹

‹

‚

= m1
ā,ā ě 0

Therefore mā,b̄ + d + mā,ā ě 0 and mā,a + d + mb,b̄ + d + mā,ā ě 0. Since m is

closed mā,ā = 0 hence mā,b̄ + d ě 0 and mā,a + d+ mb,b̄ + d ě 0.

Repeating the argument m1
b,b ě 0 hence

min

¨

˚

˚

˚

˚

˚

˚

˝

mb,b,

mb,a + d+ mb,b,

mb,b̄ + d+ mā,b,

mb,b̄ + d+ mā,a + d+ mb,b,

mb,a + d+ mb,b̄ + d+ mā,b

˛

‹

‹

‹

‹

‹

‹

‚

= m1
b,b ě 0

Therefore mb,a + d+ mb,b ě 0 and mb,b̄ + d+ mā,a + d+ mb,b ě 0. Since mb,b = 0

it follows that mb,a + d ě 0 and mb,b̄ + d+ mā,a + d ě 0.

Theorem 1 (Correctness of IncClose). Suppose m is a closed DBM, m1 =

IncClosepm, oq and o = px1
a − x1

b ď dq. Then m1 is either closed or it is not

consistent.
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Proof. Suppose m1 is consistent. Because m is closed 0 = mi,i ě m1
i,i ě 0 hence

m1
i,i = 0. It therefore remains to show @i, j, k.m1

i,k + m1
k,j ě A where

A = min

¨

˚

˚

˚

˚

˚

˚

˝

mi,j,

mi,a + d+ mb,j,

mi,b̄ + d+ mā,j,

mi,b̄ + d+ mā,a + d+ mb,j,

mi,a + d+ mb,b̄ + d+ mā,j

˛

‹

‹

‹

‹

‹

‹

‚

There are 5 cases for m1
i,k and 5 for m1

k,j giving 25 in total:

1-1. Suppose m1
i,k = mi,k and m1

k,j = mk,j. Because m is closed:

m1
i,k + m1

k,j = mi,k + mk,j ě mi,j ě A

1-2. Suppose m1
i,k = mi,k and m1

k,j = mk,a + d+ mb,j. Because m is closed:

m1
i,k + m1

k,j = mi,k + mk,a + d+ mb,j ě mi,a + d+ mb,j ě A

1-3. Suppose m1
i,k = mi,k and m1

k,j = mk,b̄ + d+ mā,j. Because m is closed:

m1
i,k + m1

k,j = mi,k + mk,b̄ + d+ mā,j ě mi,b̄ + d+ mā,j ě A

1-4. Suppose m1
i,k = mi,k and m1

k,j = mk,b̄ + d+ mā,a + d+ mb,j. Because m is

closed:

m1
i,k + m1

k,j = mi,k + mk,b̄ + d+ mā,a + d+ mb,j

ě mi,b̄ + d+ mā,a + d+ mb,j ě A

1-5. Suppose m1
i,k = mi,k and m1

k,j = mk,a + d+ mb,b̄ + d+ mā,j. Because m is

closed:

m1
i,k + m1

k,j = mi,k + mk,a + d+ mb,b̄ + d+ mā,j

ě mi,a + d+ mb,b̄ + d+ mā,j ě A
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2-1. Suppose m1
i,k = mi,a + d+ mb,k and m1

k,j = mk,j. Symmetric to case 1-2.

2-2. Suppose m1
i,k = mi,a + d+ mb,k and m1

k,j = mk,a + d+ mb,j. Because m is

closed and by Lemma 1:

m1
i,k + m1

k,j = mi,a + d+ mb,k + mk,a + d+ mb,j

ě mi,a + d+ mb,a + d+ mb,j ě mi,a + d+ mb,j ě A

2-3. Suppose m1
i,k = mi,a + d+ mb,k and m1

k,j = mk,b̄ + d+ mā,j. Because m is

closed:

m1
i,k + m1

k,j = mi,a + d+ mb,k + mk,b̄ + d+ mā,j

ě mi,a + d+ mb,b̄ + d+ mā,j ě A

2-4. Suppose m1
i,k = mi,a + d + mb,k and m1

k,j = mk,b̄ + d + mā,a + d + mb,j.

Because m is closed and by Lemma 1:

m1
i,k + m1

k,j = mi,a + d+ mb,k + mk,b̄ + d+ mā,a + d+ mb,j

ě mi,a + d+ mb,b̄ + d+ mā,a + d+ mb,j

ě mi,a + d+ mb,j ě A

2-5. Suppose m1
i,k = mi,a + d + mb,k and m1

k,j = mk,a + d + mb,b̄ + d + mā,j.

Because m is closed and by Lemma 1:

m1
i,k + m1

k,j = mi,a + d+ mb,k + mk,a + d+ mb,b̄ + d+ mā,j

ě mi,a + d+ mb,a + d+ mb,b̄ + d+ mā,j

ě mi,a + d+ mb,b̄ + d+ mā,j ě A

3-1. Suppose m1
i,k = mi,b̄ + d+ mā,k and m1

k,j = mk,j. Symmetric to case 1-3.

3-2. Suppose m1
i,k = mi,b̄ + d+ mā,k and m1

k,j = mk,a + d+ mb,j. Symmetric to

case 2-3.

3-3. Suppose m1
i,k = mi,b̄ + d+ mā,k and m1

k,j = mk,b̄ + d+ mā,j. Because m is
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closed and by Lemma 1:

m1
i,k + m1

k,j = mi,b̄ + d+ mā,k + mk,b̄ + d+ mā,j

ě mi,b̄ + d+ mā,b̄ + d+ mā,j

ě mi,b̄ + d+ mā,j ě A

3-4. Suppose m1
i,k = mi,b̄ + d + mā,k and m1

k,j = mk,b̄ + d + mā,a + d + mb,j.

Because m is closed and by Lemma 1:

m1
i,k + m1

k,j = mi,b̄ + d+ mā,k + mk,b̄ + d+ mā,a + d+ mb,j

ě mi,b̄ + d+ mā,b̄ + d+ mā,a + d+ mb,j

ě mi,b̄ + d+ mā,a + d+ mb,j ě A

3-5. Suppose m1
i,k = mi,b̄ + d + mā,k and m1

k,j = mk,a + d + mb,b̄ + d + mā,j.

Because m is closed and by Lemma 1:

m1
i,k + m1

k,j = mi,b̄ + d+ mā,k + mk,a + d+ mb,b̄ + d+ mā,j

= mi,b̄ + d+ mā,a + d+ mb,b̄ + d+ mā,j

= mi,b̄ + d+ mā,j ě A

4-1. Suppose m1
i,k = mi,b̄ + d+ mā,a + d+ mb,k and m1

k,j = mk,j. Symmetric to

case 1-4.

4-2. Suppose m1
i,k = mi,b̄ + d + mā,a + d + mb,k and m1

k,j = mk,a + d + mb,j.

Symmetric to case 2-4.

4-3. Suppose m1
i,k = mi,b̄ + d + mā,a + d + mb,k and m1

k,j = mk,b̄ + d + mā,j.

Symmetric to case 3-4.

4-4. Suppose m1
i,k = mi,b̄+d+mā,a+d+mb,k and m1

k,j = mk,b̄+d+mā,a+d+mb,j.
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Because m is closed and by Lemma 1:

m1
i,k + m1

k,j = mi,b̄ + d+ mā,a + d+ mb,k + mk,b̄ + d+ mā,a + d+ mb,j

ě mi,b̄ + d+ mā,a + d+ mb,b̄ + d+ mā,a + d+ mb,j

ě mi,b̄ + d+ mā,a + d+ mb,j ě A

4-5. Suppose m1
i,k = mi,b̄+d+mā,a+d+mb,k and m1

k,j = mk,a+d+mb,b̄+d+mā,j.

Because m is closed and by Lemma 1:

m1
i,k + m1

k,j = mi,b̄ + d+ mā,a + d+ mb,k + mk,a + d+ mb,b̄ + d+ mā,j

ě mi,b̄ + d+ mā,a + d+ mb,a + d+ mb,b̄ + d+ mā,j

ě mi,b̄ + d+ mā,a + d+ mb,b̄ + d+ mā,j

ě mi,b̄ + d+ mā,j ě A

5-1. Suppose m1
i,k = mi,a + d+ mb,b̄ + d+ mā,k and m1

k,j = mk,j. Symmetric to

case 1-5.

5-2. Suppose m1
i,k = mi,a + d + mb,b̄ + d + mā,k and m1

k,j = mk,a + d + mb,j.

Symmetric to case 2-5.

5-3. Suppose m1
i,k = mi,a + d + mb,b̄ + d + mā,k and m1

k,j = mk,b̄ + d + mā,j.

Symmetric to case 3-5.

5-4. Suppose m1
i,k = mi,a+d+mb,b̄+d+mā,k and m1

k,j = mk,b̄+d+mā,a+d+mb,j.

Symmetric to case 4-5.

5-5. Suppose m1
i,k = mi,a+d+mb,b̄+d+mā,k and m1

k,j = mk,a+d+mb,b̄+d+mā,j.

Because m is closed and by Lemma 1:

m1
i,k + m1

k,j = mi,a + d+ mb,b̄ + d+ mā,k + mk,a + d+ mb,b̄ + d+ mā,j

ě mi,a + d+ mb,b̄ + d+ mā,a + d+ mb,b̄ + d+ mā,j

ě mi,a + d+ mb,b̄ + d+ mā,j ě A
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Theorem 2 (Correctness of Strong Closure). Suppose m is a closed, coherent

DBM and m1 = Strpmq. Then m1 is a strongly closed DBM.

Proof. Observe that m1
i,̄ı = minpmi,̄ı, pmi,̄ı + mi,̄ıq{2q = mi,̄ı and likewise m1

j,̄ =

mj,̄. Therefore m1
i,j ď pmi,̄ı + m̄,jq{2 = pm1

i,̄ı + m1
̄,jq{2.

Because m is closed 0 = mi,i ď mi,̄ı + mı̄,i and thus

m1
i,i = minpmi,i, pmi,̄ı + mı̄,iq{2q = minp0, pmi,̄ı + mı̄,iq{2q = 0

To show m1
i,j ď m1

i,k + m1
k,j we proceed by case analysis:

• Suppose m1
i,k = mi,k and m1

k,j = mk,j. Because m is closed:

m1
i,j ď mi,j ď mi,k + mk,j = m1

i,k + m1
k,j

• Suppose m1
i,k ‰ mi,k and m1

k,j = mk,j. Because m is closed and coherent:

2m1
i,k + 2m1

k,j = mi,̄ı + mk̄,k + 2mk,j ě mi,̄ı + mk̄,j + mk,j

= mi,̄ı + m̄,k + mk,j ě mi,̄ı + m̄,j ě 2m1
i,j

• Suppose m1
i,k = mi,k and m1

k,j ‰ mk,j. Symmetric to the previous case.

• Suppose m1
i,k ‰ mi,k and m1

k,j ‰ mk,j. Because m is closed:

2m1
i,k + 2m1

k,j = mi,̄ı + mk̄,k + mk,k̄ + m̄,j

ě mi,̄ı + mk̄,k̄ + m̄,j = mi,̄ı + 0 + m̄,j ě 2m1
i,j
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[45] T. Frühwirth. Constraint Handling Rules. CUP, 2009.

[46] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.

DPLL(T): Fast Decision Procedures. In Computer Aided Verification, pages

175–188. Springer, 2004.
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Polytechnique, 2004. http://www.di.ens.fr/~mine/these/these-color.

pdf.
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