
McCall, Davin (2016) Novice Programmer Errors - Analysis and Diagnostics.
 Doctor of Philosophy (PhD) thesis, University of Kent,.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/61340/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/61340/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

NOVICE PROGRAMMER ERRORS –

ANALYSIS AND DIAGNOSTICS

A THESIS SUBMITTED TO

THE UNIVERSITY OF KENT

IN THE SUBJECT OF COMPUTER SCIENCE

FOR THE DEGREE OF PHD.

By

Davin McCall

December 2016

ABSTRACT

All programmers make errors when writing program code, and for novices the difficulty of

repairing errors can be frustrating and demoralising. It is widely recognised that compiler error

diagnostics can be inaccurate, imprecise, or otherwise difficult for novices to comprehend, and

many approaches to mitigating the difficulty of dealing with errors are centered around the

production of diagnostic messages with improved accuracy and precision, and revised wording

considered more suitable for novices. These efforts have shown limited success, partially due to

uncertainty surrounding the types of error that students actually have the most difficulty with –

which has most commonly been assessed by categorising them according to the diagnostic message

already produced – and a traditional approach to the error diagnosis process which has known

limitations.

In this thesis we detail a systematic and thorough approach both to analysing which errors that are

most problematic for students, and to automated diagnosis of errors. We detail a methodology for

developing a category schema for errors and for classifying individual errors in student programs

according to such a schema. We show that this classification results in a different picture of the

distribution of error types when compared to a classification according to diagnostic messages. We

formally define the severity of an error type as a product of its frequency and difficulty, and by

using repair time as an indicator of difficulty we show that error types rank differently via severity

than they do by frequency alone.

Having developed a ranking of errors according to severity, we then investigate the contextual

information within source code that experienced programmers can use to more accurately and

precisely classify errors than compiler tools typically do. We show that, for a number of more

severe errors, these techniques can be applied in an automated tool to provide better diagnostics

than are provided by traditional compilers.

II

Table of Contents

 1 Introduction..1

 1.1 Hypotheses..3

 1.2 Summary of Contributions..5

 1.3 Thesis Outline...6

 2 Background...8

 2.1 Introduction...8

 2.2 Novice Programmers and Errors...8

 2.3 Terminology..9

 2.4 Relationship of concepts...10

 2.5 Diagnostic Messages...12

 2.5.1 Accuracy and Precision...13

 2.5.2 Generation of Diagnostic messages..14

 2.6 Expert Diagnosis of Errors...15

 2.7 Categorisation of Errors and Determining Severity...16

 2.8 Background Summary..18

 3 Literature Review...20

 3.1 Introduction...20

 3.2 The Difficulty of Syntax...20

 3.3 Programming Difficulties that are not Syntax-Related...21

 3.4 Issues with and Considerations for Diagnostic Messages..24

 3.5 Identifying Errors Made by Novice Programmers...28

 3.5.1 Diagnostic Messages Encountered by Novice Programmers..28

 3.5.2 Categorisation of Logic Errors using Goal-and-Plan Deviation.....................................29

 3.6 Improving Programming Diagnostics...30

 3.6.1 General Automatic Diagnostic Generation...30

 3.6.2 Semi-automated Generation of Diagnostic Messages...33

 3.6.3 Crowd-sourcing Suggestions for Dealing with Errors..33

 3.6.4 Diagnosing Errors by Goal and Plan Difference...34

 3.6.5 Visualisation of Grammatical Structure and Rules...35

 3.6.6 Static Analysis...35

 3.7 Other Approaches to Mitigating the Syntax Problem...35

III

 4 Methodology...41

 4.1 Methodology – Part I..41

 4.1.1 Initial Data Collection...41

 4.1.2 Large-Scale Data Collection...43

 4.1.3 Development of a Category Hierarchy...44

 4.1.3.1 Thematic Analysis...45

 4.1.3.2 Application of Thematic Analysis to Error Category Development.......................47

 4.1.3.3 Validation of Error Categories...49

 4.1.3.4 Deviations from standard Thematic Analysis..50

 4.1.4 Error Categorisation..51

 4.1.4.1 Multiple Errors in a Single Event..52

 4.1.4.2 Error Recurrence...52

 4.1.5 Categorisation Analysis...53

 4.2 Methodology – Part II...54

 4.2.1 Data Collection...54

 4.2.2 Refinement and Validation of Category Hierarchy...54

 4.2.3 Analysis...56

 4.3 Diagnosis Tool Prototype..60

 5 Results and Discussion - I..62

 5.1 Results of Analysis..62

 5.1.1 Error Categories..62

 5.1.1.1 Syntax error categories..62

 5.1.1.2 Semantic error categories..62

 5.1.2 Intercoder reliability..63

 5.1.3 Frequency of Error Categories..64

 5.1.4 Frequency of Diagnostic Messages...64

 5.1.5 Category Coverage..65

 5.2 Discussion...65

 5.2.1 Diagnostic Message Frequencies..65

 5.2.2 Error Category Frequency Compared to Diagnostic Message Frequency......................66

 5.2.3 Coverage Levels of Error Categories..67

 5.3 Summary...67

IV

 6 Results and Discussion – II..68

 6.1 Results of Analysis..68

 6.1.1 Error Categories..68

 6.1.2 Frequency of Error Categories..69

 6.1.3 Error Difficulty..71

 6.1.3.1 Resolution Status...71

 6.1.3.2 Resolution Time..72

 6.1.3.3 Adjusted Resolution Time...74

 6.1.3.4 Error Severity..78

 6.1.3.5 Error coverage of most frequent categories..82

 6.1.3.6 Intercoder Reliability...82

 6.2 Sensitivity to Design Choices...82

 6.2.1 Alternative Error Resolution Threshold Values..83

 6.2.2 Alternative Formulations for Severity...86

 6.3 Discussion...90

 6.3.1 Coverage Level of Error Categories...90

 6.3.2 Severity of Error Categories...91

 6.3.2.1 Variable Use...94

 6.3.2.2 Variable Declaration..96

 6.3.2.3 Method Call...97

 6.3.2.4 Method Declaration...99

 6.3.2.5 Constructor Call..101

 6.3.2.6 Constructor Declaration..101

 6.3.2.7 Use of Class or Type..102

 6.3.2.8 Simple Syntactical...103

 6.3.2.9 Semantic Error...104

 6.3.3 Risks and Limits to Validity..105

 7 Error Diagnosis Tool..106

 7.1 Expert Diagnosis of Errors...106

 7.2 Selection of Error Types for Diagnosis...108

 7.2.1 Misspelled and undeclared variables..109

 7.2.2 Unresolved method calls...110

V

 7.2.3 Final selection of errors for diagnosis...110

 7.3 Details of Prototype Design..111

 7.3.1 Diagnosis of unresolved variables...112

 7.3.2 Diagnosis of unresolved methods...113

 7.4 Example output...113

 7.4.1 Variable not declared...113

 7.4.2 Variable name written incorrectly...115

 7.4.3 Incorrect variable declaration..116

 7.4.4 Method call targeting wrong type...118

 7.4.5 Method not declared..119

 7.5 Evaluation of Prototype..119

 7.5.1 Variable not declared...121

 7.5.2 Variable name written incorrectly...122

 7.5.3 Incorrect variable declaration..123

 7.5.4 Method call targeting wrong type...124

 7.5.5 Method not declared..124

 7.5.6 Overall Summary of Evaluation...125

 7.5.7 Risks and Limits to Validity..125

 8 Future Work and Conclusions..126

 8.1 Summary...126

 8.2 Recommendations for Future Work..127

 8.2.1 Longitudinal Study of Error Severity..127

 8.2.2 Further Development and Evaluation of Diagnostic Tool..127

 8.2.3 Extension to Other Programming Languages...129

 8.3 Conclusion..129

References..130

Appendix A List of Error Categories..137

Appendix B List of Revised Error Categories..144

Appendix C Category Hierarchy..147

Appendix D Evaluation of Diagnostic Tool Prototype...150

Appendix E Publications..200

VI

 1 Introduction

Programming is a fundamental part of computer science, and learning to effectively write and

debug computer programs forms a significant part of any comprehensive computer science course.

However, programming language compilers have historically tended to produce diagnostic

messages – commonly referred to as error messages – that are not suitable for novice programmers.

The nature of this unsuitability is well understood; the messages are sometimes poorly worded; they

make reference to technical terms and they use language related to the task of translating the source

code into a more machine-level form (be it bytecode or processor instructions) – tasks which are

well outside the scope of introductory programming studies; they often diagnose errors based

primarily on the point in that process at which the error is detected, leading to inaccurate

descriptions of the error; they are often terse and imprecise. In brief, they do not succinctly provide

accurate information to the novice programmer regarding what they did wrong and how they can fix

it in a manner that is comprehensible to them.

As well as being unhelpful to novices, the imprecision and inaccuracy of compiler diagnostics are

problematic for educators who wish to determine the types of error that their students encounter.

Automated logging of diagnostic messages is often a relatively straightforward matter, but the

diagnostics are often too limited to be useful in helping teachers to adjust their teaching by, for

instance, focussing on problem areas; many logically different errors – leading from different

misconceptions on the part of the novice – can potentially produce the same diagnostic message.

Furthermore, frequency counts of diagnostic messages do not reveal which of the errors related to

those messages presented the most difficulty to the novices tasked with resolving them.

Certainly many of the shortcomings of a compiler's diagnostic capabilities can cease to be a

significant impediment as the user gains experience, but in dealing with novices, it would be

beneficial to improve the situation. It can be argued even experienced programmers can benefit

from improved diagnostic messages when, for instance, they are learning a new programming

language.

Over a span of many years, various efforts have been made to produce automated diagnostics that

are more suitable for novices, for a variety of programming languages (Schorsch 1995, Hristova et

al. 2003, Flowers et al. 2004, Dy and Rodrigo 2010). While these past efforts have, in general,

claimed at least limited success, they do not appear to have had a significant ongoing impact on the

teaching and learning of computer programming. After all these years, error messages are still

problematic: students are still getting stuck, error messages are still known to be imperfect.

Complaints today of teachers are the same as they were “then”. While it’s impossible to have a

message always be precise and correct, there is a general feeling among educators that improvement

can be made.

The question arises, then, why previous work to improve diagnostics has failed to have a lasting

effect on the quality of diagnostics produced by software tools such as compilers. We posit two

reasons as to why this is the case:

1. The production of a compiler is a significant endeavour. It is often undertaken by

commercial organisations, though there are exceptions to this, and normally the product is

targeted primarily at experienced programmers whose need for precise diagnostics is

somewhat less than that of a novice; furthermore, other aspects of the compiler – such as

performance of compilation and of the produced object code – are normally prioritised,

since these are generally more important to most users.

2. The approach to improving diagnostics often appears to have been somewhat ad hoc. Rather

than modify or produce a compiler, it has often revolved around a separate analysis/pre-

processing tool which identifies and reports a limited number of errors. It is often not clear

from the relevant literature how the decision of which particular errors should be diagnosed

was reached, nor of how the diagnosis procedure itself operated (and whether it was indeed

sufficiently able to diagnose errors with greater accuracy and precision that methods

traditionally used in compilers).

The first point remains pertinent to some degree, but as languages evolve and become more

complex, the need for better diagnostics also increases, even for experienced programmers. Also,

increases in computing power mean that the cost in terms of compiler performance of providing

more accurate and precise diagnostics is less of a concern than it formerly was.

It is this second point which we shall address in this thesis. The first key issue is the development of

a method for identifying high-impact errors for which good diagnosis is particularly important. A

number of prior studies (Ahmadzadeh et al. 2005, Jadud 2005, Tabanao et al. 2011) have

categorised errors by the diagnostic message generated by a compiler, and the frequency of the

presentation of different diagnostics has been used as an indicator of the impact of the error

category. This approach is potentially flawed in two ways: firstly, use of diagnostic message as a

classifier for errors limits the accuracy and precision of error categorisation due to the limited

diagnostic capabilities of the compiler, as already discussed; secondly, the frequency of an error

 1 . INTRODUCTION 2

category may not directly correlate to its real severity, which should be considered as a combination

of the frequency with which a type of error is encountered as well as the actual difficulty that it

presents to novices in their attempts to resolve these errors (the notion of error severity will be

discussed in more detail in the following chapter).

This work provides two key contributions. First, the development of a categorisation scheme for

errors which provides greater accuracy and precision of error classification than that achieved using

diagnostic messages, together with a study measuring the severity (including the frequency) of

errors in the different categories as made by novices. The study applies manual categorisation to

avoid the pitfalls presently associated with automated diagnosis. The category scheme is applicable

to the Java programming language, and the methodology used to develop it could equally be applied

to other programming languages. This study and others based on similar methodology could be

useful in identifying areas of programming that students most struggle with, guiding development

of instructional material to better prepare students for their encounters with particularly high-

severity errors, or to help them avoid making such errors in the first place by emphasising

instruction in problematic topics.

In addition to its benefits as a guide for pedagogy, a severity ranking for error types should be

considered essential for the design of tools designed to diagnose errors in novice code. The second

key contribution of this work is a prototype implementation of a tool designed to diagnose high-

severity errors, designed to illustrate the feasibility of developing tools with more accurate and

precise diagnostics of high-severity errors than is normally performed by a compiler. The tool

performs more sophisticated analysis than has been seen in many previous efforts, and is designed

to diagnose errors using heuristics based on reasoning and experience of code structure and

patterns.

 1.1 Hypotheses

We have discussed the use of logical error categories which provide a distinct classification

compared to the compiler-generated diagnostic message. This leads to our first hypothesis:

Hypothesis 1 : Measuring the frequency of logical error categories will yield different results

than diagnostic message frequency.

By “different results” we mean that there will be no marked one-to-one correlation between

categories in a categorisation relying on diagnostic message when compared to a categorisation

 1 . INTRODUCTION 3

relying applying a category scheme developed to describe errors by their logical nature as

ascertained by a suitably experienced programmer.

In Chapter 4.1, we describe the methodology for a study to determine the feasibility of applying

manual categorisation of errors using a category scheme developed with a methodology based on

the established principles of Thematic Analysis (Braun and Clarke 2006). The results (Chapter 5)

show a markedly different distribution of the frequency of manual error categorisations and

diagnostic messages.

Since a different distribution between two categorisation schemes does not automatically imply a

greater level of accuracy of either, we also wish to demonstrate that the logical categorisation

scheme can be considered accurate. This leads to a sub-hypothesis:

Sub-hypothesis 1.1 : A suitably experienced human can reliably recognise the cause of an

error in many cases, even when the compiler gives a misleading error message.

By “suitably experienced human” we mean a person with several years of frequent programming

experience and who would self-describe as an experienced programmer. By “reliably recognise the

cause of an error” we mean that several such experienced programmers should show a good level

of agreement (80% or more) when categorising the cause of errors.

We have also already posited that frequency of an error category does not necessarily indicate its

severity, which also takes the difficulty of error resolution into account. This leads to a second

hypothesis:

Hypothesis 2 : Error frequency tables are misleading in the sense that they do not accurately

represent the most difficult to handle errors; with a different measure, where a severity

calculation is made, a different result will ensue.

In Chapter 2.7 we discuss error severity and formally define severity as a product of frequency and

difficulty. In Chapter 4.2.3 we discuss the calculation of difficulty as an approximate average error

resolution time, making severity of an error category a relative indicator of the proportion of time

spent resolving errors belonging to the category. The results of analysis, including both error

category frequency and severity scores, are presented and discussed in Chapter 6.

Our final hypothesis is centred around the idea of generalising human reasoning about error cause

 1 . INTRODUCTION 4

so that it can be applied in an automated tool:

Hypothesis 3 : in some cases reasoning that humans make to decide error cause can be

implemented as a heuristic in an automated tool to produce more useful diagnostic

messages.

In Chapter 2.6 we discuss human reasoning in error diagnosis and provide examples of error

diagnosis using expert reasoning. In Chapter 7 we present the design, development and evaluation

of a proof-of-concept tool prototype which uses comprehensive analysis and heuristics derived from

reasoning and understanding of program structure to diagnose certain categories of high-severity

error.

 1.2 Summary of Contributions

The two primary contributions of the thesis were mentioned previously:

• The development of a categorisation scheme for errors which provides greater accuracy and

precision of error classification than that achieved using diagnostic messages, and a related

study which identifies and ranks the most severe errors encountered by novice Java

programmers. This study and related methodology may lead to a better understanding of

programming errors by novice programmers.

• A proof-of-concept implementation of a tool for diagnosing a range errors in categories

which were found to be of high severity, using heuristics derived from reasoning about the

natural diagnosis of these error categories.

Other contributions include:

• The formulation of error category severity as a product of its frequency and difficulty;

• The representation of error category severity as a point on a 2-dimensional plane with axes

of frequency and difficulty, allowing the factors determining severity to be visualised;

• A methodology for development of an error category scheme, suitable for adaptation to any

programming language;

• A method for approximating the average resolution time of error categories, based on the

classification of individual errors to various resolution statuses and estimating individual

error resolution time based on the effect of source code changes to the generated compiler

diagnostic;

 1 . INTRODUCTION 5

• A number of heuristic techniques that can be used for the differentiation, in an automated

diagnosis, between several categories of error that can occur in the Java programming

language; and

• The proposal of a declaration-use match score, for assessing the appropriateness of

matching a declaration with a definition (where the spelling of the identifier does not match

exactly) as part of the heuristics.

 1.3 Thesis Outline

In this chapter we have briefly discussed the context as well as the motivation behind and

contributions of the work presented in this thesis.

In the next chapter, we will discuss in more detail some background to the issues which this work

addresses, serving as a more thorough exploration of both context and motivation, and define some

terminology that will be used throughout the remainder of the thesis.

In Chapter 3, we present a review of literature relevant to the work presented in this thesis.

In Chapter 4, we present the methodology used for the development of a category scheme for

programming errors (including a validation of this scheme), the categorisation of a large number of

errors from sources known or highly likely to be novice programmers, and the analysis data after

categorisation. This was performed in two distinct phases, the first both as a viability study for the

method and to compare the frequency results of manual error categorisation with automated

categorisation using standard compiler diagnostics, the second as a larger-scale study which also

measured error severity.

In Chapter 5, we present and discuss results from the first phase of the study, showing that manual

error categorisation could be performed with high level of agreement between separate suitably-

experienced individuals, and that manual categorisation of errors can be more precise and accurate

than classification via compiler diagnostic.

Chapter 6 details the results of the error severity study. We show that an error severity ranking of

error categories produces a markedly different ordering than a ranking by frequency alone.

In Chapter 7, we discuss the design and evaluation of a prototype tool for automatic error diagnosis

of several high-severity errors categories, intended to serve as a study of feasibility for diagnosing

 1 . INTRODUCTION 6

such errors using more advanced techniques than what are typically employed in such tools and

using heuristics developed by reasoning about diagnosis of the relevant errors.

Finally, in Chapter 8, we discuss future work and offer concluding remarks regarding the evidence

gathered in support of the hypotheses presented earlier in this chapter.

 1 . INTRODUCTION 7

 2 Background

 2.1 Introduction

The work presented in this thesis is centred around two distinct but related themes: identification

and categorisation of errors made by novice programmers, and use of expert-identified aspects of

error context to enable accurate and precise error diagnosis. In this chapter, an overview of

important related concepts will be presented; terminology will be defined, and the notion of an

error as distinct from a diagnostic message and other key concepts will be discussed. Extant

problems with diagnostic messages issued by current compilers will be highlighted together with

novice responses to these messages that demonstrate a need for improvement of diagnostic

capability and reporting in these tools.

We also discuss some aspects of typical compiler design that result in poor diagnostic capability,

and briefly examine how an experienced programmer is often able to make a more informed error

diagnosis than that performed by a compiler. Finally, we discuss categorisation of errors, and why

the diagnostic message is an unsuitable proxy for the underlying error, as well why the frequency of

an error category alone is not always a good indicator of how much of a problem errors in a

particular category are for novices.

 2.2 Novice Programmers and Errors

It has been widely recognised in literature that novice programmers in the early stages of

programming courses often struggle with language syntax rules when they write code; similarly,

certain misunderstandings of semantics – whether of particular constructs, or of a more general

nature – are known to occur amongst novices, and these misunderstandings lead to code which fails

to work correctly or which fails to compile. For example, Shackelford and Badre (1993) observed a

high rate of failure for students asked to produce code implementing simple calculation tasks,

asking why can’t smart students solve simple programming problems? Similarly, Flowers et al.

(2004) noted that in a Java course conducted at a military academy:

Many cadets are challenged by the complexity of the assignments and the difficulties of

understanding the syntax of the Java programming language. Instructors noted that

students made the same mistakes and became frustrated trying to understand the error

messages and correct their code, often wasting hours of time on a simple error.

 2 . BACKGROUND 8

The identification of diagnostic (“error”) messages as being problematic for students is a recurring

theme, as is the difficulty in understanding language syntax. These issues are not unrelated, since

diagnostic messages have the potential to assist a programmer in correcting the syntax in their

programs – a task that otherwise consumes the time of the novice programmer and, indirectly, their

instructors, and which potentially causes much frustration to both.

The potential benefits of improved error diagnostics are broadly recognised; a significant number of

prior work exists that attempts to improve the diagnostic messages given to the novice programmer

when an error is detected within their code (Flowers et al. 2004, Dy and Rodrigo 2010, Hristova et

al. 2003). Often the approach has involved an ad-hoc (or at least undescribed) design attempting to

address a somewhat arbitrarily selected set of errors that are perceived to be problematic, and while

many have shown some positive results, it is feasible that a more rigorous approach to the selection

of an error set and to the method of diagnoses of those errors would yield significant further

improvement.

 2.3 Terminology

It is helpful at this point to discuss terminology and to distinguish diagnostic messages from actual

errors as well as programmer misconceptions. The term error has taken on multiple common

meanings, including both “the diagnostic message produced by the system when it encounters an

error” (also often referred to as an error message) and “the nature of the problem with the code”

(often characterised by the nature of the mistake made by the programmer); to avoid ambiguity, the

term “error message” shall be avoided in this work, and the following precise terms shall be used as

now defined:

Error – the nature of the problem in source code which causes compilation or execution

failure

Diagnostic Message – the human-readable message produced by a compiler when it

encounters an error (syntactic, semantic or logical) in source code which prevents

compilation.

Programmer Misconception – the nature of the misunderstanding or lack of comprehension

(of the programmer) which resulted in the erroneous code being written.

 2 . BACKGROUND 9

Using these terms according to their definitions above greatly simplifies the discussion that follows.

In this thesis the term “error” should always be considered to refer to the nature of the problem

rather than to a message produced by a compiler or interpreter.

 2.4 Relationship of concepts

As defined in the previous section, the programmer misconception is the nature of the

misunderstanding of the programmer which caused the erroneous code to be written. The latter can

be divided into two categories:

1. Syntactical, in which the programmer does not understand the syntax required to express the

desired construct; an example would be where the programmer omits the parentheses around

the condition in a Java 'if' statement.

2. Semantic, being a misunderstanding of the effect of some syntactical construct. This

includes cases where the programmer has a flawed or incomplete mental model of the

notional machine on which their program will execute. An example is failing to understand

that a method-local variable does not retain its value between successive calls to the method.

Note that the occurrence of an error may not necessarily be due to a misconception on the part of

the programmer; it may instead be caused by a simple typographical error or misspelling, and there

also logical errors which may result from an incorrectly implemented algorithm or other mistake

not directly caused by a fundamental misconception.

An error always has some manifestation in the source code of the program. Often only a small part

of the source code may be truly relevant to the error, but strictly speaking, the error manifestation

consists of the entire source code (which of course may contain multiple errors).

An individual error is most easily distinguishable by its fix, that is, the change or changes to the

source code that must be made to remove the error; note that several possible changes may allow

code to compile, but not all correspond to a correct fix of the original error.

Any diagnostic messages are produced by the compiler based purely on the error manifestation (the

source code); it is possible that a single error may cause one compiler to produce multiple

diagnostic messages, and it is also possible that different compilers will produce different diagnostic

messages from the same source code. The relationship between these concepts is illustrated in

 2 . BACKGROUND 10

Figure 2.1.

Figure 2.1: Relationship between an error and other concepts

For example, consider the snippet of Java code presented in Figure 2.2, which is intended to define

a method. Assume the code was written by a novice programmer.

For the code in Figure 2.2, the javac compiler produces the following diagnostic message:

missing method body, or declare abstract

The message, which is poorly worded, offers one possible error cause – that the method body is

missing – and one unrelated possible solution (declare the method as abstract); the actual error is

that there is an extraneous semi-colon between the method header and the opening curly brace

which marks the beginning of the method body. The fix for the error is to remove the extraneous

semi-colon. The programmer misconception is indeterminable; possibly this was just a

typographical error, or possibly the programmer does not have a correct grasp on the syntax and in

particular does not understand the significance of the semi-colon.

Note that not all errors need be caused by misconceptions on the part of the programmer. In general,

the programmer misconception is indeterminable; the error in Figure 2.2 might have been caused by

a misunderstanding of the grammar rules regarding method declaration and in particular the use of

 2 . BACKGROUND 11

int getValue();
{
 return value;
}

Figure 2.2: Example of erroneous code. There is a superfluous
semicolon between the method header and method body.

Programmer
misconception Error Error

manifestation
Diagnostic
messages

Fix

0
+

semi-colons, but might also have been a simple typographical error that was overlooked by the user

before they attempted compilation. Similarly, misspelling a keyword or an identifier might cause a

compilation error without being caused by a misunderstanding of any language rules or

programming concepts.

Also, not all programmer errors result in compile-time errors – a semantic misconception may result

in code which compiles, but does not perform as intended when executed. Errors may also be

logical in nature – they may not be due to any conceptual misunderstanding regarding syntax or

semantics, and may not cause the compiler to produce an error message, but will have the effect of

causing the program to behave in a way that was not intended. All errors have a manifestation –

they exist in some form in the source code – but two different errors might have the same

manifestation. The most obvious occurrence of this is when a complete program source code

(manifestation) contains multiple distinct errors; an example is given in Chapter 4.1.4.1. It is also

logically possible that two subtly distinct but correct programs could both have an error introduced

which resulted in identical erroneous source code, requiring a different fix in each case, though we

have not observed this occurring in practice and cannot conceive of a likely example.

Ideally, a diagnostic message makes a reasonable determination of the likely error, and offers an

appropriate fix where possible. In practice, as has been shown, this is not always the case.

 2.5 Diagnostic Messages

In an ideal world, after a compilation failure, the diagnostic message given to the programmer

would neatly explain the conceptual misunderstanding or mistake that they had made, and offer

straightforward advice on how to fix the resulting problem. In practice, though, this seems to be the

exception rather than the rule; far from being generally helpful, diagnostic messages produced by

compilers have a tendency to be confusing or misleading, especially for novices (Marceau et al.

2011, Pears et al. 2007).

Typical diagnostic messages may:

• contain technical terms with which the novice is unfamiliar;

• be inaccurate (state an incorrect error cause);

• be imprecise (fail to give sufficient detail about the error); or

• suggest an incorrect solution (potentially resulting in further errors).

 2 . BACKGROUND 12

An experienced programmer may learn to distinguish inaccuracies in diagnostics (and indeed may

reach a point where the diagnostic message itself is hardly needed – it is enough to be told “an error

was detected here”, which is all that an expert programmer may need to quickly fix an error in their

code). However, it has been observed (Marceau et al. 2011) that novices sometimes assume a

compiler diagnostic message is correct, and follow its suggestions, even when it it appears patently

not so to a more experienced programmer; the same study also noted that other students seem to

blithely ignore the message provided by the compiler, a behaviour also observed by Kummerfeld

and Kay (2003), who suggest that it may be due to messages being incomprehensible to the

students. This shows that when presented with an error message from a compiler, a novice may:

• consider the message to be true and correct, even though it may in fact be incorrect or

misleading; or

• disregard the message entirely, perhaps not reading it at all, believing either that it is

incorrect or otherwise unhelpful.

For novices in the first category at least, it is clear that improving accuracy of diagnostic messages

could be helpful. The precision of the diagnostics is also a factor, however; a vague description of

an error will not suggest a useful solution. Schneiderman (1982) reported that, in one experiment,

increasing the specificity of messages in a Cobol compiler led to an improvement of 28 percent in

the repair scores of novice undergraduate users.

 2.5.1 Accuracy and Precision

There is in general a trade-off between accuracy and precision of diagnostic messages. The more

precise a given diagnostic, the less likely it is to be an accurate and correct description of the error.

Ideally, of course, a diagnostic message has both a high level of precision and accuracy. The most

general form of a diagnostic - “there is an error” - can never be inaccurate (barring compiler bugs),

but is of no help to a novice programmer due to its lack of precision. On the other hand a more

precise diagnostic, such as the “missing method body, or declare abstract” response for the code in

Figure 2.2, runs of the risk of being inaccurate (as in that example) and thereby also unhelpful; an

inaccurate message may lead to a novice making an erroneous change in their source code, leading

to further compilation errors or unwanted behaviour at runtime.

It is not possible to give an accurate and precise diagnosis of an error with total certainty without

knowing the intended purpose of a program – or at least without knowing the possible correct

program structures, as in the work of (Spohrer et al. 1985) – but an experienced programmer can

 2 . BACKGROUND 13

often do so with a high degree of confidence even when presented with code “from the wild”, using

clues in the structure and other context provided in the code itself, together with a knowledge of

common errors. Referring again to Figure 2.2, it can be seen that there is an extraneous semicolon

after the method header by observing that a valid method body does occur after the semicolon; thus

the message that there is a “missing method body” is incorrect, and the suggested fix - “declare

abstract” - would in fact lead to another error.

As stated, there can be a trade-off between accuracy and precision of diagnostic messages. Novice

behaviour (Marceau et al. 2011) suggests that accuracy and precision are both important; novices

may benefit from messages that correctly identify the problem and suggest how to resolve it. While

it has been shown that increasing precision of error messages is beneficial (Schneiderman 1982), it

is logical that more specific messages would be helpful only if they are accurate.

 2.5.2 Generation of Diagnostic messages

Many of the problems with inaccuracy or imprecision of diagnostic messages may be attributed to

the manner in which errors are detected by the compiler (particularly in the case of syntactical

errors). A compiler is tasked with converting a program written in a human-readable programming

language into a form more directly understood by the machine. The programming language is

defined by a formal grammar, and syntax errors are detected during the process of parsing the input

source code to form an Abstract Syntax Tree (AST) representing the structure of the program, as a

failure of the input to match any production of the language grammar.

Parsing is a complicated though well-studied problem, however, the primary focus of parsers is

usually the translation of correctly structured input. Tools for generating a parse from a grammar

description (a set of production rules), such as yacc (Johnson n.d.) and ANTLR (Parr n.d.), do exist,

but do not automate the generation of diagnostics beyond the identification of simple grammatical

failures. Usually, the production rules for the grammar need to be manually augmented with at least

one additional rule for each point-of-failure for which a unique diagnostic is desired, or the

diagnostic must be generated from a combination of parse state and lexical token lookahead, which

in either case requires significant additional development effort; for example, Jeffery (2003) noted

that in the Java grammar used by the GCC compiler ('GCC, the GNU Compiler Collection' n.d.),

“150 error productions were added to approximately 350 nonerror grammar rules”.

 2 . BACKGROUND 14

Development of useful error diagnostics tends to be relegated to a lower priority than other

concerns such as compilation speed and optimisation of the output (Traver 2010). Typical compiler

design theory (Grune et al. 2012) focuses on compilation as purely a process of converting a textual

source program into a series of lexical tokens, an abstract syntax tree and finally into target code;

there is scant attention paid to the mechanism for reporting of errors – Grune et al. (2012, pp.121)

comment that “Some advanced error handling methods consider the entire program when producing

error messages, but after 30 years these are still experimental, and are hardly ever found in

compilers”. Accordingly, most compilers report errors at the point of detection, and naturally refer

to the detected deviation from the language grammar or semantic rules. It is common to see

diagnostics of the form “token-list expected”, where a set of lexical tokens that would have been

legal at a certain point in the source program are listed when a token not in that list was present;

however, the real error may manifest as an incorrect token prior to the point of detection.

Similar to the way in which syntax diagnostics tend to assume that previous syntax was correctly

specified, semantic errors detected by compilers may be diagnosed based on the assumption that the

syntax was used correctly. That is, if the source code appears valid grammatically, then it is

assumed that the intended semantics match those implied by the grammar. In Java, for example, a

method call is differentiated from a variable use by the presence of a parenthesised argument list; if

the argument list is missing, the code is still grammatically correct, and can be parsed as a variable

reference, potentially resulting in misdiagnosis as a reference to an undeclared variable by a

compiler with typical design.

 2.6 Expert Diagnosis of Errors

In Figure 2.2 we showed a small code fragment which resulted in an unsatisfactory diagnostic

message from the compiler. The notion that the diagnostic is unsatisfactory stems from our own

ability, as experienced programmers who are familiar with the programming language, to make an

educated assessment of the likely nature of the error. In some cases this nature may not be clear; the

error may be undiagnosable, or may be diagnosable as a set of possible error types (an imprecise

diagnosis). In other cases, such as in the code in the example, the error seems unambiguous to an

experienced programmer, as various contextual clues in source code to assist with diagnosis of

possible errors.

In the example, the method declaration in the first line would be valid in a Java interface, but is

 2 . BACKGROUND 15

missing the “abstract” keyword that is required if it were a declaration of an abstract method in a

Java class. There is a complete method body below the method header, however; we can reason that

it is a method body, and not a static initialiser block, because it contains a “return” statement which

is valid only in the former. The presence of a method body almost immediately trailing the method

header suggests that the two are associated, and that the semicolon after the method header (which

acts as a separator) should not be present. This reasoning relies on slightly broader context than the

parse state / lookahead combination from which a compiler may decide a diagnosis.

Another example of using broader context to provide better diagnostics is identification of

misspelled variable and method names. If a reference is made to an undefined variable or method

with a name that almost matches that of an existing variable or method, then misspelling should be

identified as a potential cause of the error. Consider the Java class shown in Figure 2.3.

The source code shown in Figure 1.1 does not compile, due to the variable 'vallue' not being defined

in the scope within which it is referenced. However, there is a variable with a very similar name –

'value' – and it is reasonable to think that the programmer intended to refer to this variable instead.

A compiler could suggest this misspelling as a possible error cause. The Gauntlet system (Flowers

et al. 2004) does this in at least some cases, as do the BlueJ (Kölling et al. 2003) and Greenfoot

(Kölling 2010) environments.

The diagnostic reasoning outlined in the two cases above are not definitive, but serves as examples

of potential reasoning that might be used by an expert to diagnose an error; in chapter 4 we discuss

the collection of data pertaining to the expert reasoning for diagnosis of a large number of errors.

 2.7 Categorisation of Errors and Determining Severity

For pedagogical guidance and for the development of tools to be used in a pedagogical

 2 . BACKGROUND 16

class A {
public int value = 5;
public int getValue()
{

 return vallue;
}

}

Figure 2.3: Example of mis-spelt variable name. The variable is declared as
‘value’ and then referred to as ‘vallue’.

environment, it is useful to have an understanding of the types of error that students make most

often and have the most difficulty with. This requires the categorisation of errors according to some

category schema. Several prior studies (Ahmadzadeh et al. 2005, Jadud 2005, Tabanao et al. 2011)

have relied on diagnostic messages to categorise errors; however, relying on diagnostic messages as

a categorisation of errors is prone to problems due to their potential inaccuracy and imprecision, as

well as the variation of diagnostic messages between compilers and compiler versions. To

summarise the potential issues:

• Messages may be inaccurate – they may suggest an incorrect error cause and/or corrective

action;

• Different diagnostic messages might be generated for conceptually identical errors occurring

in different contexts within the program source;

• Diagnostic messages are compiler dependent; different compilers (including different

versions of the same compiler) may produce different messages for the same erroneous

source code, as demonstrated in the discussion of the studies above; and

• Even by the a single compiler, The same diagnostic message might be generated for

conceptually different errors.

Inaccuracy of diagnostic messages is a significant issue when collating information on novice

errors; messages often give an incorrect error cause. In fact, a compiler might not even correctly

determine whether an error is syntactic, semantic or logical in nature, since a misunderstanding of

syntax rules on the part of the programmer could lead to an error which the compiler perceives as a

semantic error, for instance; as an example of this, using the wrong delimiter between multiple

arguments in a method call might lead the compiler to interpret them as a single argument,

generating an error due to the number of supplied arguments being incorrect.

Furthermore, different compilers produce different diagnostic messages for the same source code.

The wording of what is essentially the same diagnostic may differ, but more importantly, there can

be errors which one compiler will diagnose as one particular type of error while another compiler

would diagnose the same errors as another type of error.

In general, there is a many-to-many mapping between conceptual error and diagnostic message; the

frequency of different messages cannot be used to reliably determine the frequency or range of

conceptual errors. For this reason, statistics on diagnostics do not necessarily give a good indication

 2 . BACKGROUND 17

of the types of error that novices actually encounter.

It is also important to note that the frequency of an error type does not by itself necessarily indicate

the severity of that error type, in terms of the overall impact on student programmer workload and

throughput. Certain types of error might be encountered frequently by novices, but be repaired by

them easily in most cases; other error types might be less common, but be far more difficult for the

novice to resolve. The severity of an error category can be considered as a product of both

frequency and difficulty:

severity = frequency × difficulty

Defining severity this way is useful because this formula gives desirable output for particular ranges

of input values: an error type which does not occur has zero frequency and so zero severity; an error

type that occurs frequently and has a high difficulty will have a higher severity than another error

type with the same difficulty that occurs less frequently, or with the same frequency but lower

difficulty, Importantly, if difficulty is an approximation of the average time spent resolving each

occurrence of an error type (as we do in our analysis, described in Chapter 4.2.3), then severity of

different error types can indicate the relative time spent resolving errors of each type. A novice is

more likely to become frustrated when dealing with errors of a type that require more total time to

resolve, whether because these errors are encountered very frequently or because they require time

to resolve.

To avoid the problems of error categorisation using diagnostic messages as outlined above, in this

thesis we will present a methodology (chapter 4) for development of error categories which requires

manual classification of errors, allowing for more accurate, though more time-consuming,

categorisation, and a method for measuring error difficulty to allow the severity calculation

described above.

 2.8 Background Summary

Previously in this chapter we discussed the relationship between errors and diagnostic messages,

and made a clear distinction between the two; we showed an example where an existing diagnostic

was unsatisfactory, and unrelated to the likely error as determined by human reasoning, possibly

leading to the confusion of a novice programmer. We showed some examples of human reasoning

that lead to better error diagnosis than that given by a compiler. We also discussed the trade-off

 2 . BACKGROUND 18

between accuracy and precision of diagnostic messages and why typical compiler design often leads

to inaccurate or imprecise diagnostics. Finally, we discussed why categorisation of errors using

diagnostic messages, and why measuring error category frequency without also measuring severity,

can paint an imperfect impression of the types of error that most impact novice programmers.

In the next chapter, we will investigate more thoroughly the literature related to these issues, and

attempts to address them.

 2 . BACKGROUND 19

 3 Literature Review

 3.1 Introduction

In this chapter we will review the literature and previous studies related to the topic of this thesis.

This includes material related to the difficulty novice programmers have with understanding

programming language syntax and semantics, their interaction with diagnostics, studies on the

frequency and kinds of different errors as encountered by novices, the effectiveness of different

forms of diagnostic message, and various efforts to provide improved diagnostic messages. We will

also discuss various efforts aimed at alleviating the problems of syntax

 3.2 The Difficulty of Syntax

One aspect of programming that causes a lot of trouble for beginners is dealing with language

syntax. Denny et al. (2011) note that “writing syntactically correct code is a challenge that regularly

confronts the novice programmer”, also observing that students who have difficulty understanding

syntax may also struggle to understand algorithms and examples that are presented in the pertinent

programming language. They conducted a study on students in an introductory Java programming

course at University level, which showed that the students who were most able to correctly

complete a series of programming exercises were likely to encounter less syntax errors during their

attempts to do so than less able students. Also observed was that students who struggled to write

compilable code tended to perform poorly in the course, which presents the possibility that making

it easier for students to produce compilable code may allow them to perform better.

Kummerfeld and Kay (2003) make a specific claim which lends itself to arguments for both simpler

language syntax and better diagnostic messages: that students using a programming language which

is unfamiliar to them “waste considerable time correcting syntax errors”. They had a small group of

participants with a range of programming experience and familiarity with the language (C)

complete a series of exercises. In each of the exercises, participants had to correct one or more

syntax errors in a program which was provided to them; in each case the error message provided by

the compiler was considered to be unintuitive or likely to cause problems. They found that

programmers with more experience in the language showed familiarity with error messages and had

strategies for dealing with them; that both experienced and inexperienced programmers sometimes

randomly tinkered with the source code when a solution was not obvious to them, that code

examples in a reference guide for various error messages were generally helpful to the participants,

 3 . LITERATURE REVIEW 20

and that correcting the errors was a time consuming process, sometimes even for experienced

programmers.

Regarding specific features of language grammar and meaning, du Boulay (1986) notes some of the

syntax (and semantics) in BASIC and Pascal which causes issues for beginners. Some of these can

be generalised; for instance, semicolons are used as separators in some Pascal constructs,

sometimes in places where the program structure seems to obviate the need for them – the same is

true in other programming languages, for instance the semicolons that terminate statements in Java

most typically occur at the end of a line of code.

All in all, existing literature makes it clear that language syntax presents a significant problem for

novices, and that accurate and comprehensible diagnostic messages are important.

 3.3 Programming Difficulties that are not Syntax-Related

Mastering syntax is not the only challenge for the novice programmer. Not only must the correct

syntax for various constructs be understood, but the semantics of those constructs must be

comprehended as well. Furthermore the programmer must have a good understanding of the

underlying notional machine (du Boulay 1986); in an imperative programming language for

instance, they must understand various concepts such as variables (and how they change or retain

value), method calls and control flow; misunderstanding these concepts can cause students to write

erroneous code.

Sorva (2013) delivers a review of relevant literature to the concept of the notional machine, and

serves as a good introduction to the topic. Amongst other things, a notional machine is an “idealised

abstraction of computer hardware and other aspects of the runtime environment of programs”,

which is particular to a programming paradigm or even language. Misconceptions about the

notional machine can occur as students construct their own mental model during the learning

process; these misconceptions carry through to the production of errors in code that a student writes.

Identifying student misconceptions, then, potentially plays a part in developing appropriate

automated diagnosis.

du Boulay (1986) offered a range of common misunderstandings that novice programmers may

stumble over. They outlined several kinds of mistake – misapplication of analogies, over-

generalisations and misunderstanding of interactions between program parts – and then gave

 3 . LITERATURE REVIEW 21

examples of specific mistakes, largely focused on the BASIC and Pascal programming languages.

Some of the specific misconceptions identified (for Pascal and BASIC) include:

– Conceiving variables as “boxes” which are initially empty. Additionally the novice may

believe that the variable-box can hold multiple values, that the initially empty state is

equivalent to a value of 0 (or an empty string), and/or that assignment transfers a value from

one variable to another (leaving the first empty);

– Belief that assignment creates a link between the left-hand-side and right-hand-side

expressions, as in mathematics; the right-hand-side is not evaluated when the assignment is

executed; that changing a value of a variable mentioned on one side of the assignment

operator will simultaneously affect the value of the variable(s) on the other side;

– Not understanding flow of control. Du Boulay notes cases where students do not understand

that one statement affects the environment in which the next executes, expect that the

system will jump around blocks of code that are reachable via other means (particularly in

BASIC with its GOTO instruction), or fail to comprehend that a statement reading input

from a terminal causes execution of the rest of the program to be suspended until such input

is provided;

– Mixing up array indices and cell values, that is, treating a variable that holds an index as if it

holds the cell value indicated by the index; and

– Belief that a 'while' loop will be terminated immediately once the control condition becomes

false (i.e. a failure to understand that the condition is tested only when the loop body begins

or repeats).

Many of the misconceptions listed above could also apply to programming languages other than

Pascal and BASIC.

Fleury (2000) conducted interviews with students, asking them to compare two Java programs,

determine whether they would produce the same output, and explain their reasoning; a

constructivist theoretical framework, as described by Ben-Ari (1998), was assumed for the study. It

was found that different students had constructed several incorrect rules regarding Java semantics:

– Identically named methods in different classes can only be distinguished if they have

different parameter lists;

 3 . LITERATURE REVIEW 22

– Constructors are invoked only to initialise object variables (not to create the object);

– Only numeric constants or literals can be used as arguments when the formal parameter is of

integral type;

– The dot operator can only be used to access methods of an object or class.

Madison (1995) interviewed college students enrolled in an introductory programming course, and

reported that several students had developed incorrect models of the mechanism of parameter

passing in Pascal; in particular, several believed that common variable parameter (i.e. pass-by-

reference parameter) names in different procedures established some fundamental connection

between those parameters; they also incorrectly believed that formal parameter names and actual

parameter names must not match, perhaps due to overzealous cautions from their instructor

regarding style.

Ragonis and Ben-Ari (2005) investigated the understanding of object-oriented programming

concepts by high-school students learning to program in Java. They identified a large range of

misconceptions in different categories, including confusion between the concepts of object and

class, the mechanics of object instantiation and its relationship to constructors, various aspects of

class composition, program control flow and data flow, and more. Specific examples of

misconceptions include:

– That methods are executed in the order in which they are declared within a class;

– That the attributes (fields) of a composed class contain the attributes of a component class,

as well as the contained object itself;

– That methods declared in a component class need to redeclared in the containing composed

class.

Holland et al. (1997) also discuss several misconceptions observed in students learning about object

concepts in object-oriented programming. These include:

– Conflation of the concepts of object and variable;

– Conflation of the concepts of object and class;

– That work in methods is performed exclusively via assignment to variables;

– Identity/attribute confusion (where an instance variable called “name” is confused with the

identity of the object of which it is part).

The number of potential misconceptions is clearly great, and the occurrence of these

 3 . LITERATURE REVIEW 23

misconceptions in the mental models of novices is a well-studied problem. A number of

visualisation tools have been produced to aid novices in their understanding of particular notional

machines for various programming languages; a survey of such tools is produced by Sorva et al.

(2013). They note in particular the trouble caused to learners by hidden behaviours in a notional

machine which students may have difficulty in inferring and incorporating into their mental models

without assistance; tools which visual behaviour can make these hidden behaviours apparent,

enhancing learning and in some cases aiding in the debugging or understanding of erroneous code.

While visualisation tools are undoubtedly of significant benefit to novice programmers, they can not

completely prevent errors from being made. It can be seen that a significant number of

misconceptions underlying novice programmer errors have been identified; diagnostic messages

which sufficiently explain an error could also help to correct these misconceptions.

 3.4 Issues with and Considerations for Diagnostic Messages

In the previous two sections, we discussed the difficulty that understanding syntax presents to

novice programmers, and listed several misconceptions that are not strictly syntactical in nature; we

suggested that improving compiler diagnostics for these errors would help to overcome these issues.

In this section we will discuss literature which discusses problems observed with diagnostic

messages in compilers, and provides insights into what makes a “good” diagnostic message for

novices – that is, what constitutes a message that is effective in helping a novice to understand and

resolve the problem.

Brown (1983) conducted an analysis of the error messages produced by a range of Pascal compilers,

and notes a dearth of compilers producing a helpful diagnostic for an error in a simple test program.

Brown mentions the use of syntax-directed editing and enhanced visual display of diagnostic

information (the latter of which has since become common in IDEs) to improve the effectiveness of

error message or prevent the need for them, by preventing the possibility of the error occurring in

the first place. Although dated, Brown's observations on the quality of error messages still hold true,

and his work serves as a good introduction to the relevant issues.

A key observation made by Brown is that error diagnostic production is often an after-thought of

compiler design:

“... errors are artificially classified according to the time at which the compiler detects

 3 . LITERATURE REVIEW 24

them. This is a wrong approach, since the internal workings of the compiler should be

of no concern to the user.”

Brown also remarks on the problem of inaccurate messages – error messages which state a cause of

the error which is different from the true nature of the error – and the compromise that compiler

developers tend to make between specificity and accuracy of errors. In other words, making a

diagnostic message more general may prevent it from being incorrect in certain cases. While this is

superficially true, reducing the precision of messages also reduces their utility; the possibility of

developing techniques to improve correctness without sacrificing specificity is left open.

Flowers et al. (2004) also look at the weaknesses of diagnostic message production in an existing

compiler. In particular they discuss the “cannot resolve symbol” error produced by the Javac

compiler, and showed that it could be caused by several different logical errors: the variable being

declared but not initialised before being used, the variable name being misspelled when used, or the

variable being declared and initialised in a conditional block but referred to from outside that block.

The situation seems to have improved since; the current Javac compiler produces a more specific

message in the case of using a declared but not initialised variable, at least, but fails to distinguish

the other highlighted cases.

Traver (2010) looks at the issue of compiler diagnostic messages, noting that

“Error messages shown by compilers are, more often than not, difficult to interpret,

resolve, and prevent in the future.”

Traver identifies five different factors affecting the ability of a novice programmer to effectively

deal with diagnostic messages received from a compiler: limitations in training, experience and

habits, environment, and in the human cognitive system, and in compilers (including both technical

limitations due to the typical implementation of the compilation process, and in a general lack of

awareness of the designers of compilers of what constitutes a good diagnostic message). Some

principles for diagnostic message development are suggested, based on usability heuristics

developed by Molich and Nielsen (1990), including:

– clarity and brevity

– specificity

– context insensitivity

 3 . LITERATURE REVIEW 25

– locality

– proper phrasing

– consistency

– suitable visual design

– extensible help.

A range of diagnostic messages produced by several different compilers are evaluated according to

these principles.

The most interesting of Traver’s principles (Traver 2010) in regards to the work presented in this

thesis are specificity (providing specific rather than generic information about the problem –

because too-general messages make it difficult to know exactly what has gone wrong), context

insensitivity (ideally, the same logical error should produce the same or similar error message even

when it occurs in a different context), and locality (diagnostics should correctly identify the location

of the error, thus guiding the user on where to apply the fix). These principles relate directly to the

process of generating diagnostics, rather than their presentation.

Marceau et al. (2011) engaged in dialogue with novices as they encountered diagnostic messages

during a formal study involving hour-long talk-aloud sessions. They noticed that the subjects tended

to believe that the location of an error highlight accurately indicated the part of the code that needed

to be changed in order to fix the associated error, and that they tended to be weak with technical

vocabulary (and thus unable to understand what messages using such vocabulary were telling

them). To counter these problems, they suggest highlighting multiple parts of the code which

correspond to constructs mentioned in the error messages, and using simplified vocabulary in the

message text.

Tackling another aspect of diagnostic messages, Nienaltowski et al. (2008) performed a study

attempting to evaluate how different forms of message presentation affect their efficacy when

presented to novices. They define a “short form” (displayed separately from the source and

including a source file name and line number, with a brief error message and code snippet), “visual

form” (error indicated “in-line”, i.e. by highlighting part of the source code and displaying a short

message separately) and “long form” (essentially, the same as the short form, but supplemented

with additional information and suggestions on how to fix the error); the three forms were evaluated

by presenting code samples with different types of errors to students and asking them to choose

 3 . LITERATURE REVIEW 26

(from several options) a correct description of the error. Participants were presented with errors of

different types together with a diagnostic message in one of the three forms; each error type was

represented once in each of the forms during the questionnaire. It was found that the visual form led

to students diagnosing the error with greater speed but less accuracy; the results were weak

however, and the limitations of having only a single error of each type in each form, and of having a

limited number of error types represented, was noted.

Lee and Ko (2011) experimented with changing the tone and some aspects of the visual presentation

of diagnostic messages, declaring that:

“... [beginners] may view the cold, terse, and often judgemental errors from compilers

as a sign of personal failure.”

They implemented a system where the user programs the behaviour of a simulated robotic character

using a special-purpose programming language, where diagnostic messages were presented either

using an impersonal style, or as speech bubbles from a friendly robot face which generally phrased

the problem as a failure of the robot rather than the programmer – in contrast to the suggestions of

Traver (2010), who warns mildly against anthropomorphic messages. Drawing on theory in

educational psychology, they argue that messages which could be taken as a critique of the

programmer may be de-motivational. They found a significant increase in the number of tasks

completed by novices when the messages were presented in the unconventional “friendly robot”

style, despite no significant difference in time spent on the activity. The game-like nature of the

programming tasks may be relevant to the results, however; they report that subjects with the

friendly error messages were significantly more likely to want to “help Gidget succeed.” It is not

certain that re-phrasing diagnostic messages shown during more conventional programming tasks in

the same way would deliver any benefit.

It is clearly widely recognised that diagnostic messages are an important aspect of a novice

programmer’s interaction with a programming system. The works and studies presented in this

section should guide the development of systems designed to provide program diagnostics to novice

programmers.

 3.5 Identifying Errors Made by Novice Programmers

Knowledge of what kinds of error students make would be beneficial as a guide for pedagogy and

 3 . LITERATURE REVIEW 27

for development of systems producing diagnostic messages. Errors have been categorised according

to various schemes and using several different methods, which will be discussed in the following

sections.

 3.5.1 Diagnostic Messages Encountered by Novice Programmers

One approach to categorisation of errors has been to collect data on the compiler-generated

diagnostic messages which are produced for each error; the category schema for errors then

corresponds to the set of diagnostic messages that the compiler can produce. Methods using this

approach benefit from being highly automatable, since compilers or development environments can

be instrumented to collect data during novice programming activity.

Ahmadzadeh et al. (2005) instrumented the Jikes compiler ('Jikes' n.d.) to record source code and

compiler diagnostic message for student errors made during the completion of exercises set across a

term in an introductory programming module; they tabulated the frequency of different diagnostic

messages in exercises related to certain core Java programming concepts. Messages were divided

into three categories – lexical, syntactic and semantic – according to the type of error they

suggested. Diagnostics suggesting a semantic error were found to be most common, amongst which

“Field Not Found” was the most prevalent message. However, the study focussed largely on novice

debugging behaviour when presented with code containing logical errors (which do not necessarily

cause a diagnostic to be generated).

Jadud (2005) also counted frequency of diagnostic messages during student programming exercises,

using BlueJ (Kölling et al. 2003). The most common diagnostic message was “semicolon missing”,

followed by “unknown variable”; the latter likely equates roughly to the “field not found” message

from the Jikes compiler. The primary purpose of the study was to examine novice behaviour on

encountering an error. Tabanao et al. (2011) later performed a similar study, in the hope of being

able to identify at-risk students; they reported the highest occurring diagnostics as “cannot find

symbol – variable” and “; expected”, which seem to describe the same two most prevalent errors

(though they have swapped position in the frequency ranking).

Jackson et al. (2005) performed a count of diagnostic message frequencies (with a different

programming environment) at the United States Miltary Academy at West Point, finding that

“cannot resolve symbol” and “';' expected” were the two most frequently generated diagnostics;

though the text is slightly different, these do seem to match the messages from the aforementioned

 3 . LITERATURE REVIEW 28

studies.

While there are several studies of the relative occurrence of different diagnostic messages and they

show some agreement in regards to the most commonly encountered diagnostics – once differences

in wording are taken into account – using frequency of diagnostics as an indicator of which types of

error students most frequently encounter is problematic, for several reasons (as discussed in chapter

2.7); indeed, the studies cited above – with the exception of that of Jackson et al. (2005) – are not

primarily concerned with identifying the most frequent errors.

 3.5.2 Categorisation of Logic Errors using Goal-and-Plan Deviation

The work presented in this thesis is concerned primarily with the categorisation and diagnosis of

syntactical and semantic errors in novice programs. Programs may also contain logical errors,

however, which may result in the program compiling successfully but not behaving as intended. The

work of Spohrer et al. (1985) examines the use of Goal-and-Plan (GAP) trees to represent potential

problem solutions. A GAP Tree identifies the goals that must be fulfilled to solve a problem, and the

various plans that might be used to achieve each goal; plans may have sub-goals, and so on. Various

plan subcomponents (input, output, initialisation, update, guard, syntax) can be matched directly to

lines of code in an attempted solution, and a GAP tree inferred from a solution attempt (with one

plan chosen for each goal) can be matched with and compared to a solution sub-tree.

Spohrer et al. (1985) show that bugs can be categorised by the nature of a difference between

between an attempted and correct solution tree: plan components, or whole plans, can be missing,

malformed, spurious or misplaced. Each condition can occur with each type of plan subcomponent

(including entire plans), giving a total 28 bug categories in a problem-independent categorisation

scheme. A problem-dependent scheme can further categorise according to which top-level goal the

mismatch is associated with. The authors note that the production of GAP trees has not been

automated and that “developing GAP trees is still an art”; regardless, the technique can give insight

into the misconceptions underlying bugs in novice programs.

 3.6 Improving Programming Diagnostics

 3.6.1 General Automatic Diagnostic Generation

A number of approaches have been taken in trying to improve the diagnostic messages – by

increasing precision and accuracy, and altering wording – that are presented to novice programmers

 3 . LITERATURE REVIEW 29

when they produce erroneous code. Several past efforts, which we will discuss shortly, developed

tools which use traditional techniques such as error detection during parsing (as discussed in chapter

2.5.2) and limited semantic analysis to detect and identify errors, or rely on the diagnostic generated

by the compiler to identify an error, before providing a crafted diagnostic which is generally less

terse and more informative than of the compiler. These tools are general in the sense that they work

with any body of code in the supported programming language, which means that they do not

require additional preparation to be useful when used with new exercise material, for example.

Schorsch (1995) produced CAP, a tool to check for errors and style problems in Pascal programs.

The target errors were based on an informal study of frequent errors encountered during laboratory

exercises and in assessments. The tool is limited to a subset of the language, as used in the

programming class at the United States Air Force Academy. It identifies errors via a limited static

analysis, with syntax error recovery during parsing, making it usable even when the code is not

compilable. The diagnostic messages are parameterised (with relevant identifiers, operators or other

details).

On a technical level, CAP appears unremarkable by modern standards, however, it provides much

more detailed messages than typical compilers, attempts to “[describe] the problem in a user-

friendly way”, and offers advice on potential solutions. It also detects various logical errors by

scanning for certain problematic code patterns. The tool received generally positive ratings in a

survey given to students. The technical limitations (support for a limited language subset and

limited recognition of built-in Pascal modules or “units”) are considerable, but it serves as an early

example of a tool specifically created to provide better diagnostics for students.

A tool set to pre-scan and identify potential problems in Java code is described by Lang (2002).

Examples of problems detected by the tool set include mixing of upper/lower case in keywords and

having numeric literals begin with '0' (which in Java denotes a literal in octal rather than decimal,

though a novice may not realise this). The tools also assist with tasks such as correctly indenting

code. Unfortunately there is no data to show whether novices found the tool set useful, nor any

description of the internal design; one of the errors it detects is instance shadowing (where a local

variable is defined with the same name as a field), which would require parsing to identify variable

or field scope.

Hristova et al. (2003) developed the Expresso system as a multiple-pass pre-processor to provide

 3 . LITERATURE REVIEW 30

error diagnosis for Java code. The source is reduced to a vector of lexical tokens (with whitespace

and comments removed) before various error diagnostic passes are run. Further details of the design

are not reported, but from analysing the tool’s own source code1, it can be seen that the diagnostic

passes rely on detecting lexical patterns to detect grammatical constructs such as variable and

method declarations, rather than parsing according to the formal language grammar; this has the

benefit of being able to identify constructs in the presence of grammatical errors, though does not

applying scoping rules which could lead to misdiagnosis (in the worst case, identifying an error

where there is one), and limits the reliability of semantic analysis which is used to detect

mismatched parameter types for example. Despite these limitations, the tool performed well when

run against a test suite of erroneous programs assembled by the developers.

Flowers et al. (2004) developed the Gauntlet system to diagnose Java errors; a series of errors was

identified by the faculty as common or problematic and “checkers” for various of these errors were

implemented as part of the system. The diagnostic messages produced by Gauntlet checkers are

more detailed than the compiler messages, identifying multiple possible errors where appropriate,

and occasionally introduce elements of humour. The details of the design of the system are not

reported. The system reportedly improved the quality of work produced by students, though the

authors later acknowledge that “the Gauntlet system was not deciphering the most common errors

that the students were encountering” (Jackson et al. 2005), perhaps due to a discrepancy between

the errors identified as most common by the faculty – which guided the development of the system

– and the errors students actually produced.

Another tool, developed by Dy and Rodrigo (2010), was developed to diagnose errors identified as

causing the compiler to produce particularly unhelpful diagnostic messages (“non-literal errors”). It

works as a post-compiler, using the diagnostic provided by the compiler in junction with the source

code and line number of the error to produce a “more descriptive or targeted error message”. It was

tested by assessing the output compared to other compilers when run on a corpus of source files

containing non-literal errors which had been assembled for this purpose, and found to correctly

identify the error in most cases. The use of the diagnostic originally produced by the compiler for

purposes of producing an enhanced diagnostic has some drawbacks, however; it is not certain what

diagnostic will produced for a particular error (as discussed in chapter 2.5) and the diagnostic may

change with newer versions of the compiler.

1 The source code for the Expresso tool is archived at (seen 21/9/2016):

 https://web.archive.org/web/20150623044422/http://www.cs.princeton.edu/~amisra/expresso/expresso.cpp

 3 . LITERATURE REVIEW 31

In the work of Denny et al. (2014), development of enhanced diagnostic messages for the

CodeWrite tool (Denny et al. 2011) is discussed and their effectiveness evaluated. The approach,

similar to that of Dy and Rodrigo (2010), was to use the compiler diagnostic as well as the

corresponding erroneous source code as input to generate an enhanced diagnostic message.

Evaluation in an empirical study showed that the use of CodeWrite with enhanced diagnostics did

not reduce the number of consecutive non-compiling submissions, nor the total number of non-

compiling submissions, made by students during completion of laboratory exercises when

compared to the use of the same tool when it displayed the original compiler messages; neither did

it reduce the number of attempts to resolve errors corresponding to the most frequently generated

compiler diagnostic messages.

The results of Denny et al. (2014) appear to conflict with the notion that improving diagnostics may

benefit novices, but the limitations of their approach (as already discussed) should be noted.

Furthermore, another study, by Becker (2016), uses a similar technique to provide enhanced

diagnostics in a tool called Decaf, but reports a contrasting result. Though the author acknowledges

that “in some cases, matching of the source code and compiler error message does not result in

information which can be used to create a usable enhanced error message”, the tool was reported to

reduce both the number of overall errors and the number of repeated errors per compiler message in

a controlled empirical study.

The number of attempts to improve compiler diagnostics indicate a widespread belief that doing so

would be of benefit – and the evaluations, bar that of Denny et al. (2014), support this position.

However, none of these efforts have provided a solution that has gained widespread use. There may

be various reasons for this outside of efficacy, though it is notable that these efforts either rely on

existing compiler diagnostic capabilities, or have technical limitations. They also target errors

which were identified via surveys of teaching staff and/or students, or by collating the frequency of

diagnostic messages from an extant compiler. While the tools discussed here are certainly of

interest, there is room for improvement by better guiding the types of error which are the most

severe – that is, which require the most effort for novices to overcome – and by formalising an

approach to diagnosis which does not rely purely on traditional techniques.

 3.6.2 Semi-automated Generation of Diagnostic Messages

In the previous section, we discussed various systems developed to provide improved diagnostic

 3 . LITERATURE REVIEW 32

messages to novice programmers. In general, in cases where the implementation details were

reported, these systems have been implemented either by using a compiler-generated diagnostic as

input, or by lexical pattern matching techniques. Since compiler-generated diagnostics regarding

syntax errors are usually generated during the parsing process, and since lexical pattern matching is

limited in the errors it can diagnose due to lack of real semantic analysis, it is worth examining the

possibility of enhancing diagnostics produced during parsing.

Jeffery (2003) describes a software tool, Merr, to generate accurate diagnostics based on language

grammar, for LR-parseable grammars. A set of example errors and suitable error messages are

provided to the tool, along with the language grammar; the tool then generates code which maps

parse-state together with lookahead token to a suitable error message. This eliminates or reduces the

need to manually derive the parser logic necessary to produce particular diagnostic messages, and

provides a separation – to some degree – of the concerns of parsing and syntax error diagnosis.

The use of tools such as Merr may lead to improvements in diagnostic messages, due to the reduced

effort required to develop and maintain parsers which is achieved by automating the translation of

parse state to message. However, the essential mechanism of producing the diagnostics remains the

same as with a manually coded error-diagnosing parser, and has the same limitations; it will not

take broader context (i.e. outside the immediate parser state) into account when producing an error

diagnosis.

 3.6.3 Crowd-sourcing Suggestions for Dealing with Errors

An alternative to offering an alternative diagnostic message text to that produced by the compiler is

to annotate the compiler’s own diagnostic with solutions that have worked for other users. This is

the approach employed by Hartmann et al. (2010), who developed a system called HelpMeOut to

collect data on code changes that resolved errors corresponding to particular diagnostic messages,

and to present matching solutions to users who later encounter the same diagnostic message.

Solutions are matched based on both the compiler diagnostic and a lexical token-pattern match

between the source codes, which also enables for automatic application of a selected solution.

Explanations for solutions in the database can be added manually, and will then be presented to the

user alongside the solution when they encounter a similar error. The system can be used for errors

detected both compile-time and run-time.

An evaluation of HelpMeOut showed that it was able to produce useful suggestions (leading to a

 3 . LITERATURE REVIEW 33

direct solution or providing a clarification leading to a solution) to 47 percent of the errors

encountered by student participants. Hartmann et al. (2010) identify the lexical nature and lack of

semantic analysis (for instance, all user-defined types are considered equivalent) in the matching

process as being limitations which may contribute to this statistic.

 3.6.4 Diagnosing Errors by Goal and Plan Difference

Johnson (1990) implemented a system, PROUST, which enumerates predicted implementations for

a set of goals, specified in a formal language, in terms of the plan pattern that may be used;

essentially this is an automated generated of the GAP trees discussed by Spohrer et al. (1985) based

on a root-level set of goals and a database of goal-plan matches. Predicted implementations include

implementations generated by common (but incorrect) goal reformulations that have been

discovered via extensive empirical analysis of novice code. These predicted implementations are

matched against student code (in the Pascal programming language) to find the best match, and

differences which match a database of plan-difference rules representing common logical errors are

reported, together with any goal reformulations necessitated by the match.

In their motivation for the development of PROUST, Johnson (1990) make an argument for

thorough error diagnosis:

“Our empirical studies of how students debug programs indicate that novice

programmers tend to correct the surface manifestations of bugs rather than the bugs

themselves; thus proper descriptions of bugs are crucial.”

The approach taken in PROUST allows for precise and problem-specific automated diagnosis of

logical errors, the availability of which is undoubtedly beneficial for novice programmers. The main

drawback of this approach is the requirement for a goal set to be specified for each problem, and for

a database of candidate goal reformulations and plan-difference rules. The system identifies logic

errors, but not syntactic or semantic errors; it operates on source code that is already in a compilable

state.

 3.6.5 Visualisation of Grammatical Structure and Rules

SyntaxTrain (Moth et al. 2011) takes a novel approach to diagnosing syntax errors in Java code by

displaying a syntax diagram, generated by parsing code up to the point of a syntax error and

 3 . LITERATURE REVIEW 34

representing syntax rules for the offending construct as well as containing constructs in an easy-to-

understand graphical diagram, allowing the novice to determine exactly where and how their own

code does not conform to the language grammar. A benefit of this approach may be the repeated

exposure to formal grammar rules in a digestible form. The technique is applicable only to syntax

errors.

 3.6.6 Static Analysis

The FindBugs tool (Hovemeyer and Pugh 2004) uses static analysis techniques, including control

flow and data flow analysis, to identify a range of common bug patterns. Bug patterns detected

include null check after use, use of null value, and unconditional self recursion, as well as a range of

style problems. This is useful for detecting logical errors, but cannot detect diagnose syntactic or

semantic issues. FindBugs makes trade-offs in that it can produce false positives and false

negatives: warnings for pieces of code that function correctly, or no warning in a case where a

problem does exist.

Static analysis is certainly a useful technique for identifying problems in real source code, and the

FindBugs tool was used to identify many real bugs in various pieces of software which see

widespread use. It could certainly be used with novice code, however, it is restricted to operating on

code that is already compilable.

 3.7 Other Approaches to Mitigating the Syntax Problem

We have discussed the difficulty that syntax causes to novice programmers (chapter 3.2) and

approaches to mitigating this and other conceptual difficulties by providing better diagnostics

(chapter 3.6). There are, however, other approaches to helping novices overcome or avoid problems

with syntax.

One technique to reduce the burden of syntax is to delay its introduction. Gaspar et al. (2008)

remark on the syntactical difficulties that novices may encounter when using the Java programming

language; they used a system called Raptor, which allows creating programs by expressing them in

the form of flowcharts rather than via a purely textual representation, before moving on to Java. The

authors claim that measurements of syntax error occurrence and of the number of different types of

question asked in a programming forum support the notion that “syntax doesn't really matter” in the

education of novice programmers (though their methodology fails to take into account that syntax

familiarity increases over time and their conclusions are weak). Avoiding syntax allows focusing on

 3 . LITERATURE REVIEW 35

other elements of programming such as program design, but the student must battle with syntax at

some point.

Dillon et al. (2012) look at whether what they term moderately assistive environments –

environments supporting features such as syntax highlighting, error highlighting, integrated

compilation/execution, and auto-completion – are helpful compared to low assistive environments

(those without such features). They show that students are able to use a moderately assistive

environment more effectively. Code auto-completion, in particular, can be considered a tool which

specifically helps students with syntax by supplying well-formed code snippets (such as a method

call with parentheses and place-holders for argument values) although Dillon et al. (2012) do not

attempt to determine the benefit of this or similar features on their own.

Several pedagogical programming environments have taken on board the idea of allowing the

programmer to construct their programs visually, via drag-and-drop interfaces. Scratch (Maloney et

al. 2010) does so; the designers strove to avoid the need for error messages by making it impossible

to construct a syntactically invalid program. Language constructs (including control flow

constructs, commands and functions) have a visual representation and will “snap together” as

appropriate when dragged near each other. The designers note that “a program that runs, even if it is

not correct, feels closer to working than a program that does not run (or compile) at all.” The

indivisible control blocks prevent the problem of missing or misplaced closing delimiters which can

occur in many text-based languages.

The Alice environment (Cooper et al. 2003), incorporates a similar program-editing technique to

that of Scratch. Dann et al. (2012) report on their experiences using Alice as part of a mediated

transfer designed to guide students in the process of transferring knowledge between Alice 3 and a

regular Java programming environment. They developed a plugin allowing students to open an

Alice 3 project directly from within NetBeans, a feature-rich open-source development environment

('NetBeans IDE' n.d.). They found that their approach of using a mediated transfer led to

consistently higher exam scores when compared to the previous approach in the course, which

incorporated exposure to Alice 2 and a Java development environment but which did not

incorporate mediated transfer and did not support the automatic import of code from Alice.

An advantage of having a graphical representation, together with a suitably-developed “structured

editor” – as in both Scratch and Alice – is that it removes the possibility of a range of syntactical

 3 . LITERATURE REVIEW 36

errors that could otherwise occur. Structured editing does not however specifically require a

graphical program representation; a program might be displayed using a textual representation

inside an editor that is not a general-purpose text editor, but rather is crafted to limit the

grammatical errors that can be produced during editing, or at least to make it difficult to produce

them (which serves to guide the user in the editing process). Such an arrangement is often referred

to in literature as “syntax-guided editing”; the user is guided by the tool towards the correct syntax,

but the visual interface may closely resemble a text editor.

Syntax-guided editing is not a new idea; Lang (1986) describes a system called Mentor, a syntax-

guided editor for Pascal (and other languages) on which development began in 1974. Although the

system was used to teach Pascal in several universities with some anecdotal success, they claim

that:

“Even with a good user interface, the syntax directed paradigm is too complex and

bothersome for inputting programs or for performing simple editing tasks.”

A well-designed syntax-guided editor need not be so “complex and bothersome” as Mentor,

however. Kölling et al. (2015) introduces Frame-Based Editing, which aims to combine the

beneficial aspects of block-based editing systems (such as Scratch and Alice) with those of more

conventional text-based program editing. The system allows insertion of various program constructs

using single keystrokes, and presents the user program as a series of nested frames, which

essentially correspond to block scopes (selection/iteration blocks, methods, classes, etcetera).

Of course, a text editor that doesn't use the syntax-directed approach can still provide some

functionality beyond that of a generic editor, in order to increase productivity when editing a

program in the supported programming language; for instance, many professional Integrated

Development Environments, such as Eclipse ('Eclipse' n.d.) and Netbeans ('NetBeans IDE' n.d.),

provide a “code completion” feature which suggests method and/or variable names that might be

accessible from a particular point in the program code; an editor may also provide syntax-related

hints during editing, such as highlighting errors or indicating the range of particular scopes within

the program. Such features may also be useful to novices.

Other “syntax light” approaches use a text-based programming language with (arguably) lower

syntactical complexity than rival languages. Grandell et al. (2006) argue that Python, with its

“simple and flexible” syntax, is a good choice for use in teaching novices, particularly in

 3 . LITERATURE REVIEW 37

combination with its dynamic typing and interpreted nature (which allows for immediate feedback).

They found that grades were generally higher in a high school programming course using Python

compared to a very similar course using the Java language. It is not clear what, if any, supporting

tools (such as development environments) were used nor whether this may have had an impact;

however, it is certainly true that Python has a simple syntax for certain tasks (such as list and

dictionary creation and manipulation) that are somewhat more complex in Java.

Warren (2001) makes a similar argument to Grandell et al: dynamic typing removes some of

cognitive overhead of understanding the typing system of C++/Java; those two languages also have

gratuitous complexity (too many primitive types, and high syntactical overhead for a small

program), inconsistency (reals and integers as separate types, pass-by-reference versus pass-by-

value semantics), and expose irrelevant implementation details (such as arrays being dense and of

fixed size). Warren suggests Javascript as a viable alternative to C++/Java as a language to

introduce programming to novices with.

The notion that it is better to start teaching novices with simpler languages seems quite common.

Bloch (2000) suggests choosing a language which has as few language constructs as possible, and

which allows (where practical) introducing them one by one; using this principle he chooses

Scheme as a language to teach initial programming concepts (switching later to Java). He perceived

that students had less trouble with the syntax of Scheme than previous students had with the syntax

of Java at the same stage. Many concepts were introduced earlier than in the previous year, but

effects on grades were inconclusive.

Rather than choose an existing language for teaching novices, some instructors have chosen to

implement a new one. McIver and Conway (1996) provide a list of language design principles for

introductory programming languages. Among these, they note several syntactical/semantic issues

with existing languages; they suggest avoiding syntactic synonyms (different ways of expression

the same construct), syntactic homonyms (similar syntax yielding different semantics depending on

context), elision (allowing the omission of redundant syntactical elements), and violation of

expectation. For an example of the latter in C, an assignment to an “int” variable yields a value

which can be converted to a boolean as context demands, so that a statement such as:

if (x = 0) { /* conditional code block */ }

 3 . LITERATURE REVIEW 38

… will compile, but fail to produce the expected behaviour (of comparing the current value of the

variable to zero without modifying it) at runtime.

As an alternative to changing to or creating a new programming language altogether, one approach

to alleviate students' struggles with syntax is to remove some constructs from an existing language.

This helps to eliminate accidental usage of more advanced language features, and simplifies syntax

error diagnosis, since it reduces the number of constructs that might validly appear in certain

contexts. The DrScheme system (Felleisen et al. 1998) uses the notion of “language levels” to help

catch common beginner mistakes such as attempted use of infix notation for expressions (the

system specifically recognises certain such errors). The idea is to have the compiler or interpreter

understand a configurable subset of the full programming language, and be able to produce better

diagnostic messages as a result. ProfessorJ (Gray and Flatt 2003), built on DrScheme, applies the

same theory to the Java language. DePasquale et al. (2004) introduced language levels in a C++

environment in order to assess their impact on student performance, and claim that it has no adverse

impact, though their data shows no positive impact either. Hasker (2002) found that students using

an environment that compiled a subset of C++ and was designed to produce “more specific” error

messages (than commercially available compilers) were able to complete lab tasks slightly faster

than those using regular C++.

Moving away from programming languages altogether, Fidge and Teague (2009) attempt to remove

the syntax problem by asking participants in their study to construct solutions to a problem in

structured English; they show that common logic errors were made with a frequency similar to

when programming using a formal programming language, implying that understanding syntax is

certainly not the only issue facing novices. However, they found only a small difference between

performance of participants in a task using structured English and performance in a similar task

when using Python.

Constructing or choosing the programming language to simplify syntax, using graphical program

representation, or limiting syntactical problems by constricting the editor are all attempts to

overcome or mitigate the difficulty that novice programmers have in dealing with programming

syntax, and have met with varying degrees of success. However, novices will undoubtedly move on

to more regular program editing environments and languages at some stage; at this point, such

techniques are unavailable, and some of the problems that they have helped to avoid may surface.

 3 . LITERATURE REVIEW 39

 4 Methodology

In this chapter we will present and discuss the methodology and describe the methods used in an

attempt to answer the research questions outlined in the first chapter. The research presented in this

thesis is divided into three parts. In the first part, a category scheme for categorising programmer

errors was developed, and novice errors were categorised accordingly, to ascertain the viability of

manual error categorisation on a large number of errors.

In the second part of the research, a larger data set was similarly categorised using a slightly

modified method, and an analysis of the severity of different errors was undertaken.

In the third part of the research, a prototype tool for the accurate and precise automated diagnosis of

high-severity errors was developed and evaluated by comparing its output with that from the javac

compiler.

 4.1 Methodology – Part I

 4.1.1 Initial Data Collection

Two separate data collections were performed by implementing an extension for the BlueJ

environment (Kölling et al. 2003) to collect data from programmers using it for coursework. The

extension captured snapshots of the students' source code at compilation times as they performed

their coursework in a university course. Participants were students of one of two introductory Java

programming modules – CO320 at University of Kent, UK, and CSCU161 at the University of

Puget Sound in Washington, USA – during their respective spring terms of the 2012 academic year.

The CO320 module (“Introduction to Object-Oriented Programming”) at the University of Kent

provides an introduction to software development using the Java programming language and the

BlueJ development environment. It is a first year module and is designed to be suitable for students

who have no prior experience with programming.

At the University of Puget Sound, the CSCI161 module (“Introduction to Computer Science”) is

similar to CO320 at the University of Kent in terms of entry requirements and goals. It also teaches

programming using Java and BlueJ.

Participation in the data collection was voluntary. Overall approximately 240 students participated

 4 . METHODOLOGY 40

in the data collection (determining the exact number is not possible since the data was anonymised,

and some participants may have received two or more anonymous identification numbers if they

installed the extension on more than one system).

Students of both CO320 and CSCI161 during their respective Spring Term, 2012, worked on

several exercises over the course of the respective modules, each of which involved modifying a

project provided to them as a starting point. Students who chose to participate in this study did so

by using an alternative starting-point project, identical to the original except for the addition of a

BlueJ extension which was loaded automatically upon the project being opened.

The BlueJ extension provided to participants transmitted data to a central server, where it was then

stored in a database. Data was transmitted whenever a code compilation was triggered in BlueJ

(either by using the “compile” button in the main interface or the similar button in an editor

window, or the “rebuild package” menu item in the “tools” menu). The following items are

transmitted upon each such event:

• A unique numeric identifier to distinguish the participant, for the purpose of associating

events and source code belonging to a single user. The identifier is randomly generated and

then stored locally, on the participant's machine, so that multiple sessions (where BlueJ is

terminated and restarted) remain associated via the identifier.

• A project identifier string, being the folder name within which the project files are stored

(i.e. the project name). The full path to the project was not transmitted as this would

potentially compromise anonymity; projects often reside within a home folder which is

named for the user's login identifier.

• The names (including the project-relative paths) of any source files within the project that

were modified since the previous event data was transmitted, together with the contents of

those files at the time of the event. In the case of the first transmission for a particular

participant, the contents of all files within the project are transmitted. Contents were

anonymised, by replacing the contents of comments within the source code, before

transmission.

• The diagnostic message produced by the compiler during the compilation, if any. This is the

same message as was presented to the user via the BlueJ interface. If multiple diagnostics

are produced by the compiler, only the first is recorded (in-line with BlueJ's behaviour of

presenting only this single diagnostic to the user).

 4 . METHODOLOGY 41

• The line number associated with the diagnostic message (if any)

• The project-relative path to the file associated with the diagnostic message (if any)

Because the contents of changed files are transmitted on any compilation event, it is possible to

reconstruct the entire project state as it was when the event occurred.

Although it is not transmitted, the time at which the data for each event is received is also recorded

in the database by the data collection server, giving a good approximation of the time at which the

event was generated. Overall, 37,432 compilation events were recorded, with 21,623 of these

associated with a compilation error (the remainder being successful compilations). 197 of these

were subsequently analysed as part of the category development phase, which will be described in

Chapter 4.1.3.

 4.1.2 Large-Scale Data Collection

During the period of the data collection just described and the subsequent development of a

category scheme, we also contributed (as part of the BlueJ group at the University of Kent) to the

development of the Blackbox Data Collection Project (Brown et al. 2014), which effectively

extended the ability to collect similar data from all BlueJ users on an opt-in basis. Blackbox

conducts on a world-wide scale a data collection similar in nature to that performed at the

Universities of Kent and Puget Sound, as discussed in the previous section, but also collects

information on a broader range of events occurring within the BlueJ system, including use of certain

parts of the environment such as the unit test tool and the debugger. The data collected is made

available to researchers from academic institutions for purposes of research.

Whereas the initial data collection required a BlueJ extension, Blackbox directly incorporates the

collection process into the BlueJ environment. This has been implemented (by the author of this

thesis and other members of the BlueJ team) as of BlueJ version 3.1.0, which was officially released

on the 10th June 2013, and the data collection has been running since that time.

Participants in Blackbox give their consent by choosing to do so when they start BlueJ for the first

time. They are presented with a dialog (Figure 4.1) which gives information regarding the Blackbox

project and the nature of the data it collects, and explains that, if should they choose to take part,

their source code will be anonymised before transmission. It also gives a link to a web page

providing further information regarding how the data is collected, how data collection can be

 4 . METHODOLOGY 42

disabled, and who the data will be made available to.

Since the amount of data and the cohort it related to were significantly larger than in the prior

collection, data from Blackbox project was incorporated into the next phase of analysis, involving

the categorisation of a large number of errors. 23 sessions, comprising a total of 136 events

recorded between 2013-06-11 and 2014-01-01, were selected and retrieved from the Blackbox

database for analysis. The selection was made randomly in order to avoid any bias in the nature of

programming errors within the data due to particulars of course structure or stage, as well as other

factors such as gender, age, and socio-economic background, which would have been difficult to

control for given the limited information recorded in the database. This dataset in conjunction with

the first dataset forms the basis for the categorisation phase, described in Chapter 4.1.4.

 4.1.3 Development of a Category Hierarchy

The data collected during the initial data collections (from participants who opted in to the study,

from two programming modules at different universities, as described in Chapter 4.1.1) was

analysed for the purpose of developing a category scheme for categorising programming errors.

Specifically, the aim was to develop a category hierarchy where top-level categories divide errors

broadly and sub-categories allow more specific error categorisation.

The analysis method used for analysing the collected data (consisting of source code snapshots

produced whenever a subject compiles their code) for purposes of error category hierarchy

development is grounded in the Thematic Analysis methodology described by Braun and Clarke

(2006), with variations due to the nature of the data in and purpose of this analysis. The subsections

that follow will give an overview of Thematic Analysis, and how the analysis method used in this

 4 . METHODOLOGY 43

Figure 4.1: Participation consent dialog for the Blackbox project. This dialog is presented to

users when they launch BlueJ for the first time.

research relates to the Thematic Analysis methodology as well as details of ways in which this

analysis necessarily differs from that methodology.

 4.1.3.1 Thematic Analysis

Thematic Analysis is a methodology for analysis of qualitative data; it is formally described by

Braun and Clarke (2006), using concepts from earlier work such as Attride-Stirling (2001). Braun &

Clarke focus on its use in the field of Psychology, however the methodology is generally applicable

to analyses of qualitative data in other fields, and has been adapted for use in this work. A brief

introduction to and outline of Thematic Analysis methodology will now be given. Following this, its

relation to the analysis method presented in this thesis to form a category scheme for programming

errors described.

Thematic Analysis:

• Identifies themes and patterns in the data via an iterative process

• Places emphasis on making explicit any assumptions that the researcher makes; and

• Describes the qualitative data set in rich detail by developing codes for themes and patterns

and annotating data items with the codes.

Thematic Analysis is designed for quantitative analyses which seek to identify themes, that are

broad categorisations of terms and concepts found during the early phases of analysis and are

related to the research questions being considered, occurring in a data set usually comprised of

material regarding or related to a particular subject of study (such as published media, or

transcriptions of interviews conducted by the researcher). By contrast, in this work the data items

are complete programs written in a computer programming language, and the intention is not to

identify and codify themes arising in the subject matter, but rather to identify the (likely) nature of

errors found within the programs (by applying expert knowledge and experience to draw on

contextual information within the source code). The techniques used in Thematic Analysis to

identify themes are instead applied for this purpose; in applying its methodology to a data set

consisting of student code containing errors, we treat the occurrence of a type of error as analogous

to the presence of some particular theme.

Braun and Clarke (2006) identify a number of decisions to be made when undertaking Thematic

Analysis, before the analysis phase begins:

 4 . METHODOLOGY 44

1. What counts as a theme?

2. Is the desired outcome a rich description of the data set, or a detailed account of one

particular aspect?

3. Is this a 'theoretical' instance of thematic analysis, or an 'inductive' instance?

4. Are the themes semantic or latent?

5. What is the epistemology: essentialist/realist versus constructionist thematic analysis?

Once the questions above have been answered, the analysis itself is performed in a series of phases:

Phase 1: Familiarisation with data. This requires repeated reading of the data set, and taking

notes when finding anything of interest that will help in generation of the initial codes.

Phase 2: Generation of initial codes. “Codes identify a feature of the data … that appears

interesting to the analyst” Braun and Clarke (2006, pp.88). Collate all extracts together within each

code; thus each code is associated with a set of extracts.

Phase 3: Search for themes. Sort the codes into potential themes; consider how different codes

might be combined into a theme. Themes may have sub-themes. Some codes may be discarded if

they bear no relevance to the themes of interest. The phase ends with a collection of candidate

themes and sub-themes.

Phase 4: Review themes. Read the collated extracts for each theme, and determine whether they

form a coherent pattern; if not, re-work the theme or re-locate problematic extracts to another

theme, or discard them from consideration. Then, re-read the entire data set, to ascertain whether the

chosen themes adequately cover and suitably categorise the data set (if not, the coding must be

refined, and new themes may be added as necessary). The output of this phase is a thematic map or

thematic network (Attride-Stirling 2001) showing the relationship between the main themes and any

sub-themes.

Phase 5: Define and name themes. For the individual themes, conduct a detailed analysis,

essentially with a view to explaining how the theme relates to the research questions. Ensure that

the themes are distinct and distinguishable in this regard, and that there is “not too much overlap

between themes” (Braun and Clarke 2006, pp.92).

 4 . METHODOLOGY 45

Phase 6: Production of report. Make arguments related to the research questions using examples

and extracts from the data which are clearly associated with the relevant theme(s).

The five pre-analysis decisions and the six analysis phases form the essential basis of Thematic

Analysis.

 4.1.3.2 Application of Thematic Analysis to Error Category Development

As discussed in the previous section, Braun and Clarke (2006) identify a number of decisions to be

made when undertaking Thematic Analysis. The determination for each question in regards to the

category development process .

1. What counts as a theme?

The goal of the relevant analysis in this thesis is to categorise novice programmer errors. Thus,

themes are considered analogous to the kinds of error that are present in the data set. These error

categories should be specific enough to describe the error usefully, so that it could be understood by

an experienced programmer, though the categories may form a hierarchy with less specific error

categories potentially having more specific subcategories.

2. Is the desired outcome a rich description of the data set, or a detailed account of one

particular aspect?

The desired outcome is a rich description of the data set, in terms of the types of error seen

throughout the set, rather than a detailed account of particular types of error.

3. Is this a 'theoretical' instance of thematic analysis, or an 'inductive' instance?

The analysis of novice errors presented in this thesis is an inductive instance, since the error

categories (themes) are induced from the data set.

4. Are the themes semantic or latent?

While Thematic Analysis typically looks at data items representing some form of communication

(media samples, interviews, etc.), in the work presented in this thesis the data items are computer

programs which are not directly written for the purpose of expression of information or ideas. The

code itself is not intended as a communication, or at least, it is not useful for our purposes to

analyse it as such. If we consider the communication expressed by the data to be that a programmer

made a particular error, at this time, in this source code, then the themes could be considered

 4 . METHODOLOGY 46

semantic; however, we do not believe that classifying the themes as semantic or latent is useful in

this instance.

5. What is the epistemology: essentialist/realist versus constructionist thematic analysis?

If, as for the previous question, we take the communication in the data items to be regarding the

presence of an error in code, the analysis is conducted within an essentialist/realist paradigm: there

are no underlying contexts being considered and we are seeking to show, empirically, the types of

error being encountered.

A determination for each of the five pre-analysis decisions identified by Braun and Clarke (2006)

has been made and described above, although in doing so it is evident that the analysis presented

here differs in some ways from the types of analyses that they have considered, due to the specific

nature of the data and goals of the analysis.

For development of a category hierarchy, the data to be analysed was stored as records relating to

compilation events, when a participant had compiled the code in their project, successfully or not;

each record included a time stamp and a set of source code files (names and contents) belonging to

the relevant project, as well as the text and associated line number of any diagnostic message

produced by the compiler when attempting to the compilation. A web-based tool was developed (in

Ruby, using the Ruby-on-Rails web application framework) to allow browsing the stored data. The

tool organises the records according to the anonymous participant identifier they were associated

with; for each participant, it is possible to browse all collected events, including the state of the

source code in each file in the project at the time of the event, and, in cases where an error is

present, the associated compiler diagnostic; in these cases, the lines of code surround the line

identified in the diagnostic are presented immediately (the content of all other files can be viewed

by following a hyperlink). The tool also allowed for creation, deletion and editing of error

categories, and the assignment or re-assignment of one or more error categories to each compilation

event corresponding to a compilation failure.

We used the web-based tool to browse and achieve familiarisation with the data, for phase one of

Thematic Analysis (Braun and Clarke 2006). We did not browse the entire data set, but selected

events at random to observe the manifestation of a variety of errors and to discover the approximate

distribution of different kinds of error. We proceeded to create initial categories describing errors

that were found in the data set (phase two); categories were created in this way until the set of

 4 . METHODOLOGY 47

categories appeared to have stabilised, with new categories no longer being regularly created, and it

was deemed that the categories covered a significant majority of errors recorded within the data set.

The categories were reviewed and organised in a hierarchy, with several categories being placed

together in a newly-created high-level category when considered appropriate; some categories were

discarded if they were considered too specific to be useful (phase three). The previously assigned

categories were then reviewed and revised (phase four).

The fifth phase of Thematic Analysis, definition and naming of themes, was not necessary for this

analysis, since the themes corresponded exactly to error categories which were already suitably

defined. The sixth phase of Thematic Analysis is the production of a report; for this work, the

category hierarchy developed is used for ongoing analysis. In particular, the hierarchy is validated

(as discussed shortly) and then used for categorisation of a large number of data records.

 4.1.3.3 Validation of Error Categories

Once the category system stabilised, the category system was validated. The premise of manual

error categorisation is only useful if the identification of errors achieves a high degree of reliability

and objectivity.

The validation of the categories was performed by calculating inter-coder reliability (the degree

with which two researchers categorising the same set of error events independently agree on the

category assignment).

To check inter-coder reliability, three researchers who were experienced Java programmers were

recruited from the School of Computing at the University of Kent to independently code a

combined total (accounting for overlap) of 150 error events, and a percent agreement calculation

(Lombard et al. 2002) was performed. The researchers were instructed briefly in the use of the web

interface for categorisation, and were instructed specifically on the following points:

• They should favour accuracy and precision of categorisation over speed; quality of results

was considered more important than quantity.

• They should focus on the error or errors at the site of the compilation as identified by the

compilation diagnostic.

• They should choose a single category for each individual error; if they believed that there

were multiple errors present at the same location, they should make multiple category

selections – one for each error.

 4 . METHODOLOGY 48

• They should provide a brief explanation of why they made the category selections that they

did, in terms of contextual clues within the source code, when applicable.

Since multiple categories could be assigned to a single event (as will be discussed in Chapter

4.1.4.1), the calculation of pairwise agreement required handling of cases where multiple categories

were assigned by one researcher, and another researcher or researchers assigned fewer categories.

Pairwise agreement in these cases was counted according to the following method:

1. Let N be the number of researchers who have categorised an event

2. Let Rn be the set of categories assigned to a particular event by researcher n (for each n

in 1..N)

3. Let C be the vector containing all the elements {R1, …, Rn), ordered by size (smallest to

largest).

4. For each element of C, as Ci:

a. For each further element of C, as Cj (j > i)

i. Count one agreement for each element of Ci that also appears in Cj, and one

disagreement for each element of Ci that does not appear in Cj.

Use of this method effectively treats an event that has been multiply categorised by one or more

researchers as multiple data points (each representing a logically distinct error) that have been

categorised separately, and assumes that equivalent categorisations from multiple researchers are

referring to the same data point.

Note that the analysis (which will be described in 4.1.5) was based on our own categorisations, not

those performed by other researchers for purpose of category scheme validation.

 4.1.3.4 Deviations from standard Thematic Analysis

Thematic Analysis is designed as a formal set of techniques for the analysis of qualitative data, but

the nature of the data obtained for this work, and the desired outcomes of the analysis, require some

minor deviation from the standard methodology outlined by Braun and Clarke (2006). The

fundamental difference between Thematic Analysis as described and what is being undertaken for

this research is that the data being used is not typical qualitative data – that is, it is not media

extracts on a particular topic, or answers to survey questions, but rather source code produced in

trying to solve some problem. The patterns or themes which are identified in this study are not in

 4 . METHODOLOGY 49

what is directly expressed by the data records, but in the errors in those expressions.

A notable deviation between the analysis for this work and Thematic Analysis as outlined is that the

distinction between codes and themes is less pronounced. In Thematic Analysis, codes are

combined to form themes (phase 3), and the themes becomes the focus of further analysis phases; in

this work, where the codes may correspond to categories concerning the conceptual nature of errors;

these code types are important enough to this analysis that over-generalising them would be

detrimental to its value (for instance, it is desirable to know specifically which errors are

problematic for the participants; a “missing comma” error and a “missing semi-colon” are both

cases of a “missing token” but may occur in very different contexts, so it would be unsuitable to

combine them into this broader category). Therefore, the themes should be narrow rather than

broad. This close alignment between codes and themes makes analysis easier and removes some of

the subjectivity from the analysis, as determination of how to combine codes to themes is

simplified.

To remove subjectivity from the coding phase of the analysis, multiple researchers performed the

coding, and a test for a reasonable level of agreement between the analysts was conducted (as

discussed in Chapter 4.1.3.3). This is not a part of Thematic Analysis as described by Braun and

Clarke (2006), although in principle it could be applied to to other analyses based on the Thematic

Analysis methodology. Similar strategies have been employed previously in other qualitative

studies; for example, Amabile and Kramer (2011, pp.205).

Despite the difference in subject material and purpose of the analysis, the phases of Thematic

Analysis map well to the method for category hierarchy development that we have described, as

shown in the discussion in Chapter 4.1.3.2.

 4.1.4 Error Categorisation

We have discussed the development of a category scheme for the categorisation of programmer

errors (Chapter 4.1.3). Once error categories were defined and validated, 136 additional error events

from the second data set, selected from the Blackbox Project database (Chapter 4.1.2), were coded

using these categories, bringing the total number of categorised events to 333. The categories at this

stage were mostly stable, with only a small number of new categories introduced to cover errors not

seen in the initial data set.

 4 . METHODOLOGY 50

This categorisation, together with the categorisation performed on the first data set during the

category development process, forms the basis of the analysis described in Chapter 4.1.5.

During the process of categorisation, we also recorded short notes (entered via the web tool used for

categorisation) detailing any specific considerations that had led to a particular categorisation.

 4.1.4.1 Multiple Errors in a Single Event

In some instances, multiple errors were present in or near the same location in a single error event.

An extreme – but real – example from the data illustrates this:

answer=this.getuserinput

This code includes four separate errors: the method name is misspelled, parentheses are missing

after the method call, a semicolon is missing at the end of the statement, and the variable used in the

assignment is undefined.

Finding four errors at an error event may be rare, but the occurrence of two concurrent errors is

reasonably frequent. In these cases, we multiply-categorised the event to reflect each of the errors

observed.

 4.1.4.2 Error Recurrence

Another situation that requires consistent handling during analysis is the recurrence of the same

error multiple times, in a very short space of time. Sometimes, students recompile erroneous code

without editing the segment that caused the error – either making other changes or, occasionally, not

making any changes at all. Just compiling the same error multiple times should not count as

multiple errors, as this would invalidate the error frequency count.

Three easily identifiable variations of the recurrence phenomenon were noticed during the initial

category development (Chapter 4.1.3). First, there were cases where the exact same source had been

recompiled (either immediately, or with an intervening change or changes that were then reverted);

secondly, there were cases where a minor edit was performed to the single line which was identified

as erroneous by the diagnostic message produced by the compiler, which did not resolve the

original error and which usually resulted in the same diagnostic message being produced again;

finally, edits were sometimes made elsewhere in the source, rather than on the line identified as

 4 . METHODOLOGY 51

erroneous by the diagnostic message, which was left unchanged (leaving the error intact and

causing the same diagnostic to be produced again).

Therefore, recurrence was defined as any of:

• Compilation of the exact same source file as had previously been compiled (at any stage in

the session), resulting in the same diagnostic message being produced by the compiler

• Compilation where the only source line changed from the previously recorded event was the

one identified by the diagnostic message as containing an error, and where the diagnostic

message was the same as for the previous event.

• Compilation where the source line identified as containing an error for the previous event

has not been changed, and for which the diagnostic message is the same as for the previous

event.

Recurring error events were detected automatically and omitted from further analysis.

 4.1.5 Categorisation Analysis

Once error categorisation was performed, the following analyses were made on the data:

1. Frequency of errors

The frequency of errors was calculated by counting the relative occurrence of each category (from

all data points included in the categorisation). A list of errors ranked by frequency was produced.

2. Number and frequency of diagnostic messages

The diagnostic messages associated with the categorised errors were collated and counted. This had

to be performed manually, due to diagnostic messages often containing variable elements (such as

user identifiers).

3. Coverage level of the most frequent error categories

The coverage (relative number of analysed events) of the top N most frequent error categories was

measured, for N=5 through 30 in increments of 5. The coverage expresses what proportion of actual

error events falls into the top N categories. This analysis is useful when devoting effort on

improving pedagogical interventions or error diagnostics: It is useful to judge the actual impact of

 4 . METHODOLOGY 52

an intervention targeting particular categories of error, or to identify potential improvements to

diagnosis of particular categories of error.

 4.2 Methodology – Part II

The second part of the work presented in this thesis extends the methodology of the first part

(Chapter 4.1). We have shown that it is possible to produce a category hierarchy enabling a reliable

categorisation of programmer errors, and performed an analysis of the relative frequency of errors

in the different categories; in the second part, we extend this analysis to make a determination of the

severity of different error categories, rather than just their frequency, and we apply this to a much

larger data set, comprising 1000 different error manifestations.

 4.2.1 Data Collection

For this second study, data was taken from the Blackbox Data Collection Project Brown et al.

(2014), as in the secondary data collection in the first study (Chapter 4.1.2). A total of 1000

compilation events corresponding to a compilation error, corresponding to 199 user sessions and

recorded in the period from 2013-06-11 to 2015-05-30, were randomly selected and extracted from

the Blackbox database and made accessible via the same web interface that was developed for the

previous part of the study (Chapter 4.1.3.2).

To recap, the Blackbox data is from users of BlueJ (Vee et al. 2006) globally who choose to allow

data on their use of the environment to be recorded. Data pertinent to this study are the source code

for each source file in the user’s project at the time of a compilation, and any compiler diagnostic

generated (which is not used directly for analysis, but acts as an aid to categorisation). All

compilation events are associated with a session belonging to a particular user (distinguished by a

numeric identifier for purpose of anonymity).

 4.2.2 Refinement and Validation of Category Hierarchy

In Chapter 4.1.3 we discussed the development and validation of a category hierarchy for

categorising programming errors. For this second study, we used the category hierarchy developed

at that stage as the basis for a refined category hierarchy; refinement of this hierarchy was

performed during the categorisation of 1000 error events. Categories were added when, during

categorisation, it was noticed that the addition of a new category would allow more precise

categorisation of several error events. Once categorisation was complete the revised category

 4 . METHODOLOGY 53

hierarchy was reviewed to improve consistency of phrasing in category names and descriptions, and

eliminate redundant categories.

The validation of error categories was again performed by testing inter-coder reliability. In this

instance, five researchers with experience in Java programming were recruited from the School of

Computing at the University of Kent; each was assigned starting point within the data set of 1000

compilation events and asked to categorised as many errors as they could within the time available

to them.

During investigation of disagreements in categorisation between researchers in the first study, we

noticed that some categorisations may have been made without regard to certain factors within the

source code. For example, in some cases, an error was classified as a misspelling of a variable name

by one researcher, and as use of an undeclared variable by another researcher. We considered it

likely that in this instance, one of the researchers had overlooked the existing declaration of a

similarly-named variable, leading to categorisation as an undeclared variable use, whereas the other

researcher had noticed this declaration and considered it likely that the two similar variable names

were intended to refer to the same variable. To overcome problems of this nature, we ran a second

phase of categorisation where each participating researcher was shown each event they had

categorised, together with the categorisations made by other researchers and the explanation that

they had provided for their choices; researchers were then permitted to keep their original

categorisation choice, or switch their choice to match that of another researcher (the categorisations

and reasoning were presented without revealing the identity of the researcher who had made them).

This gave the researchers access to the reasoning of the other researchers, with the intention that

they could make use of information that they had overlooked during their initial category selection.

Once category selections had been revised, pairwise agreement level was calculated. Allowing

revision of selections produces a more accurate indication of the viability of the category scheme

than the single selection as used in the first study (Chapter 4.1.3), since it alleviates the issue of

overlooked details resulting in errors being miscategorised as described above. In Chapter 4.1.3.3

we describe an algorithm for calculating pairwise agreement in the presence of multiple error

categorisations, which does not count absence of any categorisation by one member of any pair

combination as disagreement, based on the perception that some researchers had focussed on a

single error without regarding or detecting a second; with the ability to revise selections based on

insight provided by others performing the categorisation, this assumption no longer holds, and so

 4 . METHODOLOGY 54

the algorithm for calculating pairwise agreement was adjusted accordingly:

1. Let N be the number of researchers who have categorised an event

2. Let Rn be the set of categories assigned to a particular event by researcher n (for each n

in 1..N)

3. Let C be the vector containing all the elements {R1, …, Rn), ordered by size from largest

to smallest (previously: smallest to largest).

4. For each element of C, as Ci:

a. For each further element of C, as Cj (j > i)

i. Count one agreement for each element of Ci that also appears in Cj, and one

disagreement for each element of Ci that does not appear in Cj.

The difference from the algorithm used previously is underlined. This alteration causes an excess of

categorisations made by one researcher when compared to another to be counted as disagreement,

rather than to be counted as neither disagreement nor agreement.

 4.2.3 Analysis

The following analyses were performed over the categorisations we made over a total of 1000

compilation events from 199 user sessions, after the category revision process already described

(categorisations made by other researchers for purpose of category validation were not considered

during these analyses):

1. Frequency of error categories

As in the prior study, the frequency of errors was calculated by counting the relative occurrence of

each category (from all data points included in the categorisation), and a list of errors ranked by

frequency was produced.

2. Coverage level of the most frequent error categories

Again as in the prior study, the coverage (relative number of analysed events) of the top N most

frequent error categories was measured, for N=5 through 30 in increments of 5.

3. Error Difficulty

In Chapter 2.7 the concept of error severity as a product of frequency and difficulty was introduced.

While counting occurrences to determine the frequency of an error category is straightforward, a

 4 . METHODOLOGY 55

suitable metric for estimating difficulty is required. In the analysis presented of this second study,

time-to-fix was used as the metric for difficulty – an error that is difficult to resolve should generally

take more time to fix than an error that is easy to resolve. In addition, errors remaining unresolved

were taken into account. A time-to-fix estimate for different errors was made using an automated

analysis run on the categorised errors in the in the data set. For any given error event, the resolution

status was also classified by this analysis into one of the following categories:

• Reverted – the error had been removed by changing the code back to the state it was in

before the error was introduced;

• Resolved – changes made in a a later event removed the error from the source code, without

simply reverting the source code to the state prior to the introduction of the error;

• Unresolved – the error remained present in subsequent recorded events, up to the point that

the programmer ended their session, or began working on a different area in the code;

• Uncertain – the resolution status was not established as either Resolved or Reverted, but it

was not possible to ascertain the continued presence of the error in later events.

The resolution time of a resolved error was approximated by the time between the recorded event

where the error is first observed and categorised, and the recorded event where the error is classified

as resolved. The error may have been introduced by editing the source code before the recorded

event where it was observed, since events are recorded only upon compilation and not on edit;

likewise an error may have been fixed earlier than the event in which it can be seen as resolved.

However, the size of the measurement error is bounded in the presence of preceding and succeeding

events, and furthermore, evidence exists that novices tend to compile immediately after making

edits (Jadud 2005).

An error is considered unresolved if code is reverted to a prior, error-free state, or if a period of 300

seconds (5 minutes) elapses with no compilation events recorded while the error is present. Given

novice programmer tendency to make rapid changes while attempting to resolve an error and to

compile after a small number of changes (Jadud 2005), a period without compilation of this length

of time indicates that the novice may not be able to resolve the error themselves; it is also possible

that they are waiting for assistance from a tutor, have moved on to another task, or have gone for a

break. Because the cut-off is 5 minutes, we also clamped resolution time (in cases where there is

continue compilation activity and the error is apparently resolved) to 5 minutes. While this

 4 . METHODOLOGY 56

clamping certainly has an effect on our calculated severity value, it is likely that an error taking

longer than this to resolve has been problematic, and the majority of errors should take significantly

less time to resolve if the student understands the nature of the error (or is able to solve it with

assistance from the compiler-generated diagnostic); clamping should reduce the possibility for

outliers to skew the results.

For each user session in which an error had been categorised, the resolution classification procedure

examined recorded compilation events in turn, ordered by their timestamps. The algorithm used for

classification relied on the previous identification of recurring errors, as described in Chapter

4.1.4.2. It operated as follows:

1. Let the active error be the first error encountered in the session, as decided by the error

categorisation (note that in a few cases this is actually more than a single error category

selection – in this case actions applied to the active error are applied to each selected

category).

2. Examine the next event in sequence:

1. If more than 5 minutes elapse since the previous event, assume that the programmer has

taken a break during the session and mark the active error as unresolved. Let the active

error become the error category selected in next event containing an error (which is

possibly the event being examined currently).

2. Otherwise, if the event is in a different project than the previous event, mark the active

error as unresolved. Let the active error be taken from the next event with an error

(possibly the even being examined currently) and continue from that event.

3. Otherwise, if the event does not contain an error, check if the source code has been

reverted to the state it was in immediately prior to the active error.

1. If the source code has been reverted, mark the active error as reverted. Let the active

error be taken from the next event with an error and continue from that event.

2. Otherwise, mark the active error as resolved, and record the resolution time as that

between the active error and current even, clamped to a maximum of 5 minutes. Let

the active error become the next event with an error and continue from that event.

4. Otherwise, if the event is marked as recurring, check whether this marking is due to the

source being reverted to an earlier state. If so:

1. If the active earlier state to which the source was reverted precedes the active error,

mark the active error as reverted. Let the active error be the error from the reverted-

 4 . METHODOLOGY 57

to-event.

2. Otherwise, consider the reversion to be part of the process of attempting to solve the

error. Repeat step 2 with the next even in the sequence.

5. Otherwise, if the event is marked as recurring (but does not represent a source code

reversion), repeat step 2 with the next event in the sequence.

6. Otherwise, if the diagnostic issued for the error indicates the same source file and the

same or earlier line number than the active error, assume that a new error was introduced

by the programmer. Mark the active error as uncertain resolution, and then let the active

error be taken from the event being currently examined.

7. Otherwise, the diagnostic indicates a different source file or a later line in the same

source file. Mark the active error as resolved, and then let the active error be the error in

the current event.

3. Repeat step 2 until all events in the session have been processed.

The time (clamped to 5 minutes) between the origin even of a resolved error and its resolution event

was used as the estimate of time-to-fix for the error. For each error category, the time-to-fix of each

resolved instance was summed and recorded as the total resolution time for the category. Also

recorded for each category were the count of unresolved and reverted instances and of instances

where resolution was uncertain.

The algorithm to classify resolution status of errors, as outlined above, accounts to an extent for the

reversion behaviour which is sometimes observed in the data set and which with a more naive

approach would be interpreted as error resolution. Although the results cannot be completely

accurate, they give an approximate indication of the relative difficulty (and thereby severity) of

different kinds of error.

4. Error Severity

The total resolution time of errors in each error category is calculated during the determination of

error difficulty, as described above. An adjusted total resolution time, intended to factor unresolved

errors into the difficulty metric, is then produced by adding five minutes to the total resolution time

for each unresolved or reverted instance of each error category (five minutes is the maximum

allowed for resolution of error according to the resolution status process outlined previously). This

calculation is intended to produce a value which reflects the time spent attempting to resolve an

error, whether it was resolved successfully or not; it is based on the assumption that an error

 4 . METHODOLOGY 58

classified as unresolved occupied at least 5 minutes of the subject’s time as they attempted to solve

it – which is likely if the error was marked unresolved due to remaining present in the source code

for the threshold period, though is difficult to ascertain one way or the other for other cases where

errors may be marked unresolved, such as when an error is removed by means of reverting the

source code to a prior state.

The adjusted average resolution time for a category is calculated by dividing the adjusted total

resolution time by the total number of resolved, unresolved, and reverted instances. The resulting

value is used as an estimation of average time-to-fix, and therefore difficulty, of the error categories;

when expressed as a value in seconds, this allows a calculation of severity, using the simple formula

proposed in Chapter 2.7:

severity = frequency × difficulty

Using this calculation produces a severity value which can be used to assess the relative severity of

different error categories. With frequency expressed as a proportion of the events in which an error

occurs, the severity is in the range of 0 to 300 due to the 5 minute resolution limit (a difficulty

metric of 300 seconds). A list of error categories was produced, ranking them by severity.

 4.3 Diagnosis Tool Prototype

The identification of the most severe error categories may be useful for development of pedagogical

practice and material related to programming, and also to the development of tools (such as

compilers and development environments) designed for use by novice programmers. Having

produced a ranking of error category severity, and gathered examples of reasoning used by

experienced programmers to diagnose novice errors, we then designed and implemented a prototype

tool to assess the feasibility of producing accurate and precise diagnosis of several of the more

severe errors, and proceeded with an evaluation of this tool.

Errors to be diagnosed were chosen based on their severity, and their ability to be diagnosed using

contextual clues present in the source code that would not typically be used by a compiler in

making an error diagnosis, but which could be used by an experienced programmer or an automated

system to perform an accurate and precise diagnosis.

The tool was developed by making additions and modifications to the BlueJ open-source

 4 . METHODOLOGY 59

development environment (Kölling et al. 2003).

Evaluation of the tool was performed by comparing its diagnosis with the standard compiler-

generated diagnosis on a number of source code snapshots taken from the data set of novice code

gathered for the process of error category severity determination (Chapter 4.2.1). The source code

snapshots used for this purpose had been categorised with high-severity errors that had been

selected during the tool design as targets for automated diagnosis. For each snapshot, the compiler

diagnostic was compared to that from the tool; for each diagnostic a judgement regarding the

accuracy was made (as a binary result of either accurate or not accurate), and in cases where both

the compiler and the tool had produced an accurate diagnostic, the precision of the diagnostic

generated by the tool was judged in comparison to that produced by the compiler, as either more

precise, equivalent in precision, or less precise.

Details of the design of the tool and results of its evaluation are presented in Chapter 7, and a record

of the code snapshots used for judgement together with the judgements regarding accuracy and

precision of the diagnostics is included in Appendix D.

 4 . METHODOLOGY 60

 5 Results and Discussion - I

In this chapter the results of the first part of the research introduced in this thesis (Chapter 4.1) is

presented and discussed. The results include a set of programming error categories and a frequency

distribution of the occurrence of errors in those categories across the data set. We also show the

coverage level of the most frequent N categories for various values of N, the frequency of

diagnostic messages, and the level of intercoder reliability calculated during validation of the

category scheme.

 5.1 Results of Analysis

 5.1.1 Error Categories

A total of 80 error categories were identified during the category development phase of the research

(described in Chapter 4.1.3). Broadly, errors can be divided into syntactic, semantic, and logic

errors; logic errors do not usually cause compilation failure, and since the analysis focussed on

errors detected during compilation, logic errors are not represented in the resulting error categories.

We will now discuss some of the errors that were identified; a full list of the error categories is

provided in Appendix A.

 5.1.1.1 Syntax error categories

A variety of common syntax errors were identified. One of these, “semicolon missing”, corresponds

closely to the javac diagnostic message “’;’ expected”. In general, however, the identified syntax

error categories do not correspond well with any particular diagnostic messages that can be

produced by javac. Examples include “keyword written incorrectly”, “method call: missing comma

between parameters”, “method call: parameter types included”, “method call: semicolon in place of

comma”, and “mismatched parentheses in or around expression”. A general category, “invalid

syntax”, was created as a super-category for all syntax errors (and was used to categorise errors that

did not fit into any of the identified subcategories).

 5.1.1.2 Semantic error categories

As well as syntax error categories, a broad range of semantic error categories were identified.

Semantic error categories showed a greater tendency to correspond with compiler diagnostic

messages than did the syntax error categories. Examples include “type mismatch in assignment”

(javac: “Incompatible types”) and “variable not declared” (javac: “cannot find symbol – variable”).

More precise sub-categories were identified in some cases – for instance, “variable name written

 5 . RESULTS AND DISCUSSION - I 61

incorrectly” is a sub-category of “variable not declared”, applicable when it is apparent the

programmer intended to refer to a particular variable but wrote the name incorrectly, due to

misspelling or wrong capitalisation (for example). The compiler’s diagnostic message in these cases

does not change, showing that the categorisation scheme can achieve a higher precision in

describing these errors.

Another example of the category scheme allowing for higher precision than the compiler diagnostic

message presently does is for method calls with the wrong number of parameters. While javac does

identify this error (“method xyz in class Abc cannot be applied to given types; […] reason: actual

and formal argument lists differ in length”), the compiler makes no distinction between incorrect

method calls and declarations; a researcher performing categorisation, on the other hand, may be

able to use certain clues to allow such a distinction; for instance, with a call to library method that is

part of the standard Java API, it can generally be assumed that the call must be at fault since the

declaration is known to be correct.

 5.1.2 Intercoder reliability

After three separate researchers performed categorisation of the same error set, the average pairwise

agreement was calculated (as discussed in Chapter 4.1.3.3). The agreement across all events and all

categories was 70.06%. This figure could be considered an indicator of a modest level of

agreement. However, agreement is not uniformly distributed over all error categories. Agreement

tended to be higher in more common categories, and lower in less frequent, more obscure cases.

Since it is likely that future work (both pedagogical or in tool improvements) will concentrate on

the most frequent errors, it is interesting to investigate agreement levels separately for this group.

Where all categorisations outside the top 10 most frequent categories were excluded from the

agreement calculation, pairwise agreement was 92.5%. For the top 20 categories, agreement is

87.4%. This indicates a good level of researcher agreement in classification of the errors.

To allow simplified calculation, pairwise agreement did not take the category hierarchy into

account. A selection by one researcher of a category which was a subcategory of that selected by

another researcher was counted as disagreement, whereas in fact this would be indicative of partial

agreement. The impact of this is potentially quite significant. For the “Class name written

incorrectly” category for example, all three researchers agreed on the category for exactly 50% of

the events for which this category was selected. For the remaining 50%, two researchers chose this

 5 . RESULTS AND DISCUSSION - I 62

category and the third chose the “Class not defined” super-category. Thus, at the higher category

level for this particular category, there is 100% agreement. As a result, the agreement levels

reported above represent a conservative lower bound.

 5.1.3 Frequency of Error Categories

A total of 368 categorisations were applied to 333 events. The frequency of the top 10 error

categories is shown in Table 5.1.

The most frequently occurring error is “Variable not declared”. This error alone accounts for 11.1%

of all error instances.

Category Frequency
Variable not declared 11.1%
; missing 10.3%
Variable name written incorrectly 8.4%
Invalid Syntax 7.9%
Method name written incorrectly 4.9%
Missing parentheses for constructor call 4.1%
Unhandled exception 3.0%
Class name written incorrectly 2.7%
Method call: parameter type mismatch 2.4%
Type mismatch in assignment 2.4%

Table 5.1: The top 10 most frequent error categorisations

 5.1.4 Frequency of Diagnostic Messages

Each of the 333 compilation events analysed had an associated compiler diagnostic message. To

judge whether the manual classification provides an improvement over classification of diagnostic

messages, it is useful to compare Table 5.1 to the equivalent table if diagnostic messages are used

for classification. The messages often incorporate variable, contextual text such as user identifiers

(variable, method and class names); the general form of such messages was manually extrapolated.

The frequency of the top 10 messages is shown in Table 5.2.

 5 . RESULTS AND DISCUSSION - I 63

Diagnostic message form Frequency
cannot find symbol - variable {variablename} 24.0%
';' expected 14.7%
cannot find symbol - method {method (…)} 8.7%
')' expected 5.4%
cannot find symbol - class {classname} 4.8%
illegal start of expression 3.6%
'(' or '[' expected 3.3%
{method(…)} in {class} cannot be applied to ({parameter types}) 3.3%
unreported exception {classname}; must be caught or declared to be thrown 3.3%
reached end of file while parsing 2.4%

Table 5.2: Diagnostic message frequency. Variable parts of the messages are shown as text

in curly braces.

 5.1.5 Category Coverage

Coverage levels for the top N categories were calculated for N=5, 10, 15, 20, 25 and 30. The

coverage level represents the relative number of events that are categorised by at least one of top N

categories. The results are presented in Table 5.3.

The results show that, for instance, the top 10 error categories encompass nearly 59% of all error

events that students encounter. Thus, a significant impact could be achieved if reporting or

understanding of just these errors could be improved.

N (number of categories) Coverage level

5 44.1%
10 58.9%

15 66.4%
20 73.0%

25 78.7%
30 82.3%

Table 5.3: Coverage levels of top N categories for N=5,10,...,30

 5.2 Discussion

 5.2.1 Diagnostic Message Frequencies

Although we have argued that diagnostic messages do not provide a satisfactory means of

 5 . RESULTS AND DISCUSSION - I 64

identifying errors, they are not completely disconnected, and comparing the frequency of diagnostic

messages in our study with those reported elsewhere shows similarities which suggest that the error

frequencies (as determined by categorisation) may be representative of that encountered in other

cohorts.

Jadud (2005) published a distribution of diagnostic messages encountered by novices. He finds the

“missing semicolon” message to be the most frequent at 18%, with “unknown symbol – variable”

next at 12%. “bracket expected”, “illegal start of expression” and “unknown symbol: class” follow

at 12%, 9% and 7% respectively.

Jackson et al. (2005) found a somewhat different distribution in their own study, also based on

diagnostic messages: they list “cannot resolve symbol” (which possibly includes both “unknown

variable” and “unknown class” errors) as the most frequent at 14.6%, with “; expected” next at

8.5%. “illegal start of expression” and “) expected” also feature in the top 6 most frequent

diagnostic messages, with “class or interface expected” and “<identifier> expected” both appearing

in the top 5 (they appear in Jadud’s distribution at position 8 and 9 respectively).

Although the frequencies vary, there are several diagnostics that appear in both the Jadud and

Jackson-Cobb-Carver top 10 lists. The diagnostic message frequencies in our results show a

relatively high incidence of “cannot find symbol”, “’;’ expected”, “’)’ expected” and “illegal start of

expression” diagnostics, similar to the other two studies, showing at least a moderate level of

consistency between the three studies.

There are several factors that could explain some of the differences in the observed distributions

across the three studies: different compiler versions may have been used, and different cohorts

participated. Neither Jadud (2005) nor Jackson et al. (2005) describe any attempt to eliminate

recurrent errors from their results as was performed in the work presented in this thesis (Chapter

4.1.4.2).

 5.2.2 Error Category Frequency Compared to Diagnostic Message Frequency

The top 8 categories (Table 5.1) cover just over 50% of events; in contrast, the top 4 diagnostic

messages cover roughly the same amount (52.8%). This fact alone demonstrates that the categories

 5 . RESULTS AND DISCUSSION - I 65

described here are in general more precise than the compiler’s diagnostics. While each category

describes an error that will cause a diagnostic message to be generated by javac, the diagnostic

message does not in general reflect the same precision as the category (see examples in Section

5.1.1).

There are also categories for which the associated diagnostic messages are not just imprecise, but

are inaccurate. The “keyword written incorrectly” category, for instance, corresponds to the

following diagnostic messages in the data set used for analysis:

cannot find symbol - variable flase

cannot find symbol - variable True

These occurred due to misspelling and incorrect capitalisation of the literals ‘false’ and ‘true’,

respectively. The compiler message, however, refers to the lack of definition of a variable. While it

is true that no variable defined as ‘flase’ or ‘True’ existed, it is unlikely that a variable reference was

being attempted in either case.

 5.2.3 Coverage Levels of Error Categories

The category coverage analysis shows that a small proportion of the categories cover a significant

portion of errors (Table 5.3). The top 10 categories cover well over 50% of errors; as more

categories are added, the coverage increases, but the increase diminishes as N increases (where N is

the number of categories). This implies that pedagogical interventions (or error diagnostic tools)

would be effective by focusing on a select number of the most frequent types of error.

 5.3 Summary

The method used for production and application of a category hierarchy for programming errors has

been shown to be viable. When considering the 10 most common categorisations, covering

approximately 60 percent of the error events, a pairwise agreement level of over 90 percent was

achieved. We have also demonstrated that this categorisation often provides a more specific, and in

some cases more accurate, means of classifying novice errors than does performing such

classification using the diagnostic message from a compiler.

 5 . RESULTS AND DISCUSSION - I 66

 6 Results and Discussion – II

In this chapter the results of the second study conducted as part of the work introduced in this thesis

(4.2) is presented and discussed. The results include a set of programming error categories, revised

from those presented in the previous chapter, and a frequency distribution of the occurrence of

errors in those categories across the data set. We show the coverage level of the most frequent N

categories for various values of N, and the level of intercoder reliability calculated during validation

of the category scheme. Finally, we will show the average resolution time, and resolution rate, and

how they are combined to form an adjusted average resolution time; this is used as a metric for the

difficulty component in a severity calculation for each of the categories (where severity is a product

of difficulty and frequency, as discussed in Chapter 2.7). The resulting severity of the error

categories, grouped by top-level category, is presented.

 6.1 Results of Analysis

 6.1.1 Error Categories

A total of 90 error categories were identified during the category development phase described in

Chapter 4.2.2. In comparison to the first study, the categories were formally organised into a

hierarchy and during category selection were presented in a tree representing this hierarchy rather

than a flat list. Broadly speaking, errors can be divided into three overall categories – syntactical,

semantic and logical; these three overall categories could have been used as the top-level categories

in the complete category hierarchy. However, a finer-grained selection is more useful even at the

high level of categorisation to allow for better analysis of problem areas for the novices, and to

simplify the process of category selection by limiting the tree depth (which reduces the amount of

navigation required to locate the suitable low-level category). For this reason, the top-level

categories were chosen as follows:

• Variable: Incorrect attempt to use variable

• Variable: Incorrect variable declaration

• Method: Incorrect method call

• Method: Incorrect method declaration

• Constructor: Incorrect constructor call

• Constructor: Incorrect constructor declaration

• Incorrect attempted use of class or type

 6 . RESULTS AND DISCUSSION – II 67

• Semantic error

• Simple syntactical error

• Statement outside method/block

• Uncategorised

Problems involving variables, method calls and constructors were thus distinguished at a high level

and were separated at the same level between problems of use and declaration. Problems involving

use of types were assigned another category. Errors not involving any of these constructs could be

divided amongst the high-level divisions of semantic error or simple syntactical error.

Errors of a logical nature were not observed in the data set and so no category was created for such

errors. A possible explanation for lack of logical errors is that such errors might not produce a

compilation failure (instead causing program malfunction at execution time). Logical errors may

also require a more involved analysis to diagnose; manual classification of a large data set does not

lend itself to such detailed analysis, since it would require significantly more time and effort.

The category defined as statement outside method/block perhaps seems oddly precise when

compared to the other high-level categories, but this error was observed in the data set and did not

neatly fit into any other high-level category, so remained as a category in its own right – although it

is arguably always a syntactic error, since it runs against grammatical rules, it also appears to

represent a misconception of the semantics of relevant language constructs.

The remaining top-level category, uncategorised, allows for a selection to be made when an

appropriate category cannot otherwise be decided. A selection of uncategorised counts as a category

selection for purposes of analysis; for the pair-wise agreement calculated for purposes of category

scheme validation, disregarding uncategorised selections would not properly count a disagreement

where one researcher thought the error belonged to a particular category but another felt that no

category was applicable, for example.

A complete list of the error categories (ordered by frequency of occurrence) is given in Appendix B,

and the category hierarchy is shown in Appendix C.

 6.1.2 Frequency of Error Categories

A total of 1011 error categorisations were made for the 1000 source code snapshots making up the

 6 . RESULTS AND DISCUSSION – II 68

data set (the difference in number being due to multiple errors being categorised for a small number

of events, as discussed in 4.1.4.1) The most frequent error was “Variable not declared”, accounting

for approximately 8.4% of all errors. In the first study, the same category was also the most

frequent, in that case accounting for 11.1% of the recorded errors.

Table 6.1 shows the relative frequency of the top 10 errors in this study.

Error category Frequency

Variable not declared 8.4%

Variable name written incorrectly 7.4%

; missing 7.3%

Simple syntactical error 6.5%

Semantic error 4.8%

Variable: Incorrect variable declaration 4.7%

Variable: Incorrect attempt to use variable 4.6%

Method name written incorrectly 4.6%

Method: Incorrect method declaration 4.5%

Class or type name written incorrectly 4.4%

Table 6.1: Frequency of error categories. The frequency is expressed in terms of the number of

categorisations per error.

There is a high level of concordance between the most frequent error categories in this study and

the first study (Chapter 5.1.3). “Variable not declared”, “Variable name written incorrectly” and “;

missing” are again the three most frequent error categories (though in the first study the latter two

are in reversed order); The “Invalid syntax” category which places fourth in the first study matches

neatly with the “Simply syntactical error” from this study; “Class or type name written incorrectly”

and “Method name written incorrectly” also feature in the top 10 in both studies. The differences

that do exist can be attributed partially to the refined category hierarchy, though there is likely also a

level of variability in the data.

The categories of “Simple syntactical error”, “Semantic error”, “Variable: Incorrect variable

declaration”, “Variable: Incorrect attempt to use variable” and “Method: Incorrect method

declaration”, which all appear in the top 10 categories by frequency (Table 6.1), are top-level

categories in the category hierarchy. Their presence in the top 10 is not surprising, since a top-level

category offers a broad categorisation which satisfies errors not belonging to a more specific

subcategory, though not all of the top 10 categories were top-level. In Table 6.2, the frequency

 6 . RESULTS AND DISCUSSION – II 69

counts for subcategories were folded into the top-level category counts for a better comparison

between all the top-level categories.

Top-level category Total occurrences

Variable: Incorrect attempt to use variable 220 (21%)

Simple syntactical error 201 (19%)

Method: Incorrect method call 199 (19%)

Semantic error 119 (11%)

Uncategorized 94 (9%)

Method: Incorrect method declaration 87 (8%)

Incorrect/attempted use of class or type 66 (6%)

Variable: Incorrect variable declaration 58 (5%)

Constructor: Incorrect constructor call 9 (1%)

Constructor: Incorrect constructor declaration 4 (< 1%)

Statement outside method/block 2 (< 1%)

Table 6.2: Error frequency by top-level category. Subcategory frequencies have been folded into

the top-level to provide a direct comparison between the top-level categories.

Table 6.2 shows that errors involving use of variables or method calls, as well as simple syntactical

errors, have a similar frequency that is relatively high compared to other top-level error categories.

The next most frequent top-level category, “Semantic error”, occurs at a significantly lower rate.

 6.1.3 Error Difficulty

As described in Chapter 4.2.3 the resolution status of errors was determined and (for cases where

the error was resolved) the average time-to-fix for each error category was calculated. Of the 91

error categories, 63 had fewer than 10 observed occurrences within the data set. 51 error instances

were marked as unresolved due to a gap of more than 5 minutes between recorded events. 6

instances of resolved errors had a resolution time greater than 5 minutes (the value was clamped for

calculating the time-to-fix in severity calculation).

 6.1.3.1 Resolution Status

Error instances were classified as resolved, unresolved, uncertain or reverted (where reverted is a

special case of unresolved). Table 6.3 shows the 10 error categories with the highest percentage of

unresolved error instances (including reverted instances), out of those categories with 10 or more

occurrences.

 6 . RESULTS AND DISCUSSION – II 70

Error

O
ccu

rren
ces

R
esolved

U
n

resolved

R
everted

A
verage T

im
e-

to-fix (secon
d

s)

%
 u

n
resolved

Missing ‘return’ statement 23 13 6 0 65 26%
Uncategorised 94 56 18 1 48 21%
Type error 38 25 7 0 34 18%
Method call: parameter number mismatch 27 19 2 2 33 15%
Variable: Incorrect variable declaration 48 27 6 1 41 15%
Method not declared 29 20 3 1 47 14%
Use of non-static method from static
context

16 13 2 0 60 13%

Method call targeting wrong type 25 18 2 1 80 12%
Semantic error 49 34 5 0 52 10%
Method call: parameter type mismatch 10 8 1 0 84 10%

Table 6.3: Resolution failure: The top 10 precise error categories by frequency of failure to resolve the error.

 6.1.3.2 Resolution Time

Table 6.4 shows the top 10 error categories by average resolution time. As before, error categories

with fewer than 10 occurrences were excluded.

Error

O
ccu

ren
ces

R
esolved

U
n

resolved

R
everted

A
verage T

im
e-to-fix

(secon
d

s)

%
 un

resolved

Method call: parameter type mismatch 10 8 1 0 84 10%
Method call targeting wrong type 25 18 2 1 80 12%
Method declaration: missing return type 10 6 0 0 74 0%
(d) Method: Incorrect method declaration 46 24 3 0 70 7%
Missing 'return' statement 23 13 6 0 65 26%
Class from other package used without
'import'

13 5 0 0 61 0%

Use of non-static method from static
context

16 13 2 0 60 13%

Semantic error 49 34 5 0 52 10%
(c) Method: Incorrect method call 20 15 0 1 51 5%
Uncategorised 94 56 19 1 48 21%

Table 6.4: Time-to-fix: top 10 error categories when ordered by average resolution time.

A scatter-plot of all error categories showing number of occurrences against average resolution time

is shown in Figure 6.1. Different symbols are used to represent the different top-level categories.

 6 . RESULTS AND DISCUSSION – II 71

The pink highlight area corresponds to more than 10 occurrences and an average resolution time of

more than 10 seconds. Thus, the highlight area identifies more severe errors: those errors that either

occur relatively rarely, or that are usually quickly fixed, are in the graph area with white background

along the axes, while the more severe errors are towards the top right quadrant of the graph. The

plot excludes error categories with no recorded resolutions.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Variable use Variable declaration Method call Method declaration

Constructor call Constructor declaration Type use Semantic error

Simple syntax

Average resolution time (seconds)

O
cc

ur
re

nc
es

Figure 6.1: Resolution time and frequency of occurrence of error categories

 6.1.3.3 Adjusted Resolution Time

Average time-to-fix gives an indication of the difficulty of different error categories. The time-to-fix

value for an error category is the average resolution time in seconds, after clamping all resolution

 6 . RESULTS AND DISCUSSION – II 72

times to a maximum of 300 seconds (as discussed in Chapter 4.2.3). The resolution rate is, however,

also an important consideration; a particular error category might exhibit a low average time-to-fix

but simultaneously a low resolution rate – that is, errors belonging to such a category are often

unresolved, arguably a worse outcome than being resolved slowly. Such errors should not

necessarily be considered low-severity when compared to another error category with a higher

average time-to-fix but significantly better resolution rate.

To produce a single value usable as a metric for estimating overall resolution difficulty of the

different error categories, an unresolved error (including a reverted error) was treated as an error

with a 5-minute resolution time (5 minutes was the maximum recorded resolution time beyond

which an error would automatically be determined as unresolved, as described in Chapter 4.2.3.

Thus the adjusted resolution time for an error is the observed resolution time capped at 5 minutes,

or 5 minutes if no resolution was observed (errors whose resolution status is uncertain do not have

an adjusted resolution time).

For each error category, the adjusted average resolution time was produced by dividing the total

adjusted resolution time by the number of resolved and unresolved errors (including reverted errors,

but not including errors with “uncertain” resolution status). The adjusted resolution time of all error

categories with 10 or more occurrences is shown in Table 6.5.

Category

O
ccu

rred

R
esolved

 (total)

U
n

certain
 resolu

tion
s

U
n

resolved

R
everted

A
verage resolu

tion
(secon

d
s)

T
otal resolu

tion
 tim

e

P
en

alty

A
d

ju
sted

 total

A
d

ju
sted

 average

Missing 'return' statement 23 13 4 6 0 65 1495 1800 3295 173
Class from other package
used without 'import'

13 5 8 0 0 61 793 0 793 159

Method: Incorrect method
declaration

46 24 19 3 0 70 3220 900 4120 153

Uncategorised 94 56 18 19 1 48 4512 6000 10512 138
Method call targeting
wrong type

25 18 4 2 1 80 2000 900 2900 138

 6 . RESULTS AND DISCUSSION – II 73

Category

O
ccu

rred

R
esolved

 (total)

U
n

certain
 resolu

tion
s

U
n

resolved

R
everted

A
verage resolu

tion
(secon

d
s)

T
otal resolu

tion
 tim

e

P
en

alty

A
d

ju
sted

 total

A
d

ju
sted

 average

Method call: parameter
type mismatch

10 8 1 1 0 84 840 300 1140 127

Method declaration:
missing return type

10 6 4 0 0 74 740 0 740 123

Variable: Incorrect
variable declaration

48 27 14 6 1 41 1968 2100 4068 120

Method not declared 29 20 5 3 1 47 1363 1200 2563 107
Type error 38 25 6 7 0 34 1292 2100 3392 106
Use of non-static method
from static context

16 13 1 2 0 60 960 600 1560 104

Semantic error 49 34 10 5 0 52 2548 1500 4048 104
Type mismatch in
assignment

12 9 1 2 0 40 480 600 1080 98

Method call: parameter
number mismatch

27 19 4 2 2 33 891 1200 2091 91

Simple syntactical error 66 48 13 3 2 46 3036 1500 4536 86
Method: Incorrect method
call

20 15 4 0 1 51 1020 300 1320 83

Mismatched parentheses
in or around expression

10 4 5 1 0 10 100 300 400 80

Variable: Incorrect attempt
to use variable

47 29 15 1 2 27 1269 900 2169 68

Variable not declared 85 63 16 4 2 33 2805 1800 4605 67
Class or type name written
incorrectly

44 25 16 2 1 20 880 900 1780 64

Method name written
incorrectly

47 35 12 0 0 47 2209 0 2209 63

Variable name written
incorrectly

75 47 25 2 1 26 1950 900 2850 57

Missing operator between
expression elements

12 9 3 0 0 41 492 0 492 55

Extraneous closing curly
brace

21 14 5 2 0 13 273 600 873 55

Wrong return type
declared

15 12 3 0 0 41 615 0 615 51

Missing parentheses for
method call

21 18 2 1 0 29 609 300 909 48

; missing 74 50 21 3 0 14 1036 900 1936 37
Missing closing curly
brace at end of class

12 11 1 0 0 33 396 0 396 36

 6 . RESULTS AND DISCUSSION – II 74

Table 6.5: Adjusted average resolution times. Errors are ordered by adjusted resolution time, which

combines resolution times and unresolved errors. For unresolved errors, a nominal resolution time of 300

seconds was assigned.

A plot of adjusted average resolution time versus occurrence count for all categories (excluding

those with only uncertain resolutions) is given in Figure 6.2. The pink shaded area shows error

categories with more than 10 occurrences and more than 10 seconds adjusted average resolution

time. The average adjusted resolution time for all errors falling under each top-level category is

shown in Figure 6.3.

0.00 25.00 50.00 75.00 100.00 125.00 150.00 175.00 200.00
0

10

20

30

40

50

60

70

80

90

Variable use Variable declaration Method call Method declaration

Constructor call Constructor declaration Type use Semantic error

Simple syntax

Adjusted average resolution time (seconds)

O
cc

ur
re

nc
es

Figure 6.2: Adjusted resolution time and frequency of occurrence of error categories (all categories)

 6 . RESULTS AND DISCUSSION – II 75

25 50 75 100 125
0

50

100

150

200

250

Variable use Variable declaration Method call Method declaration

Constructor call Constructor declaration Type use Semantic error

Simple syntax

Adjusted average resolution time (seconds)

O
cc

ur
re

nc
es

Figure 6.3: Adjusted resolution time and frequency of occurrence: mean values of the nine top-level

categories

 6.1.3.4 Error Severity

The average adjusted resolution time of an error category gives an indication of the difficulty of the

category, in terms of the time spent dealing with each occurrence of the error. A category with a

high level of difficulty may however have a low frequency, and therefore not require as much

overall effort on the part of the programmer as another category with lower difficulty but

significantly higher frequency.

 6 . RESULTS AND DISCUSSION – II 76

As discussed in Chapter 2.7, we have defined the severity of an error type as a product of frequency

and difficulty:

severity = frequency × difficulty

Since the difficulty is expressed as a time, the severity is an indicator of the relative amount of time

spent on resolving (or attempting to resolve) errors in each error category. The severity of each error

category is shown (in descending order) in Table 6.6.

Category

O
ccu

rred

R
esolved

 (total)

U
n

resolved
 +

R

everted

U
n

certain

resolu
tion

s

A
verage

resolu
tion

 (sec.)

A
d

ju
stm

en
t

A
d

ju
sted

 T
otal

resolu
tion

 tim
e

A
d

ju
sted

 avg.
resolu

tion
 tim

e

S
everity

Variable not declared 85 63 6 16 33 1800 3879 56 4.8

Simple syntactical error 66 48 5 13 46 1500 3708 70 4.6

Variable: Incorrect variable declaration 48 27 7 14 41 2100 3207 94 4.5

Method: Incorrect method declaration 46 24 3 19 70 900 2580 96 4.4

Semantic error 49 34 5 10 52 1500 3268 84 4.1

Type error 38 25 7 6 34 2100 2950 92 3.5

Missing 'return' statement 23 13 6 4 65 1800 2645 139 3.2

Variable name written incorrectly 75 47 3 25 26 900 2122 42 3.2

Method call targeting wrong type 25 18 3 4 80 900 2340 111 2.8

Method not declared 29 20 4 5 47 1200 2140 89 2.6

Variable: Incorrect attempt to use
variable

47 29 3 15 27 900 1683 53 2.5

; missing 74 50 3 21 14 900 1600 30 2.2

Method name written incorrectly 47 35 0 12 47 0 1645 47 2.2

Class or type name written incorrectly 44 25 3 16 20 900 1400 50 2.2

Method call: parameter number
mismatch

27 19 4 4 33 1200 1827 79 2.1

Use of non-static method from static
context

16 13 2 1 60 600 1380 92 1.5

Method: Incorrect method call 20 15 1 4 51 300 1065 67 1.3

Method call: parameter type mismatch 10 8 1 1 84 300 972 108 1.1

 6 . RESULTS AND DISCUSSION – II 77

Category

O
ccu

rred

R
esolved

 (total)

U
n

resolved
 +

R

everted

U
n

certain

resolu
tion

s

A
verage

resolu
tion

 (sec.)

A
d

ju
stm

en
t

A
d

ju
sted

 T
otal

resolu
tion

 tim
e

A
d

ju
sted

 avg.
resolu

tion
 tim

e

S
everity

Type mismatch in assignment 12 9 2 1 40 600 960 87 1.0

Extraneous closing curly brace 21 14 2 5 13 600 782 49 1.0

Missing parentheses for method call 21 18 1 2 29 300 822 43 0.9

Incorrect/attempted use of class or
type

5 3 2 0 79 600 837 167 0.8

Class from other package used without
'import'

13 5 0 8 61 0 305 61 0.8

Method declaration: missing return
type

10 6 0 4 74 0 444 74 0.7

Mismatched parentheses in or around
expression

10 4 1 5 10 300 340 68 0.7

'=' used in place of '==' 6 4 1 1 57 300 528 106 0.6

Keyword written incorrectly 4 1 1 2 14 300 314 157 0.6

Missing closing curly brace after
control stmt body

6 4 1 1 55 300 520 104 0.6

Wrong return type declared 15 12 0 3 41 0 492 41 0.6

Method declaration: missing method
body

2 0 2 0 N/A 600 600 300 0.6

Constructor parameter number
mismatch

5 4 1 0 67 300 568 114 0.6

Use of variable from another class 4 2 1 1 45 300 390 130 0.5

Missing operator between expression
elements

12 9 0 3 41 0 369 41 0.5

Variable needs a unique name 9 8 0 1 51 0 408 51 0.5

Constructor: Incorrect constructor
declaration

4 2 1 1 14 300 328 110 0.4

Missing closing curly brace at end of
method

7 5 1 1 8 300 340 57 0.4

Missing closing curly brace at end of
class

12 11 0 1 33 0 363 33 0.4

Class does not implement required
method

2 1 1 0 87 300 387 194 0.4

Class not defined 4 3 1 0 18 300 354 89 0.4

Constructor parameter type mismatch 1 0 1 0 N/A 300 300 300 0.3

: in place of ; 1 0 1 0 N/A 300 300 300 0.3

Invalid type cast 1 0 1 0 N/A 300 300 300 0.3

 6 . RESULTS AND DISCUSSION – II 78

Category

O
ccu

rred

R
esolved

 (total)

U
n

resolved
 +

R

everted

U
n

certain

resolu
tion

s

A
verage

resolu
tion

 (sec.)

A
d

ju
stm

en
t

A
d

ju
sted

 T
otal

resolu
tion

 tim
e

A
d

ju
sted

 avg.
resolu

tion
 tim

e

S
everity

Use of non-static variable from static
context

5 5 0 0 32 0 160 32 0.2

Method call: Parameter types included 4 3 0 1 39 0 117 39 0.2

Unhandled exception 7 7 0 0 17 0 119 17 0.1

Extra opening curly brace '{' 2 2 0 0 58 0 116 58 0.1

Method duplicated exactly 2 2 0 0 56 0 112 56 0.1

Wrong variable used 4 3 0 1 28 0 84 28 0.1

Array used in place of array element 8 4 0 4 13 0 52 13 0.1

Method declaration: Wrong number of
parameters

5 2 0 3 18 0 36 18 0.1

Missing opening curly brace after
method header

2 1 0 1 39 0 39 39 0.1

Method declaration: Semicolon at end
of method header

1 1 0 0 71 0 71 71 0.1

Constructor: Incorrect constructor call 2 2 0 0 31 0 62 31 0.1

Missing closing curly brace 2 2 0 0 22 0 44 22 <0.1

Statement outside method/block 2 1 0 1 14 0 14 14 <0.1

Method declaration: return type should
be void

2 2 0 0 14 0 28 14 <0.1

Extraneous or misplaced ')' 2 1 0 1 8 0 8 8 <0.1

Missing parentheses for constructor
call

1 1 0 0 5 0 5 5 <0.1

Table 6.6: Error Category Severity. The severity is calculated as a product of adjusted average resolution

time and occurrence count. The adjusted average resolution time is the average of all resolution times when

unresolved errors are considered as resolved in 300 seconds (i.e. the upper limit for resolution); instances

with uncertain resolution do not take part in the calculation. Categories with occurrences all having

uncertain resolution status are excluded.

 6.1.3.5 Error coverage of most frequent categories

For a given set of categories, the coverage is the percentage of all individual error events falling into

one of the categories in the set. The coverage level for the N most prevalent error categories, for

various values of N, is presented in Table 6.7.

 6 . RESULTS AND DISCUSSION – II 79

Number of categories (N) Coverage level
5 39%
10 60%
15 74%
20 82%
25 87%
30 91%

Table 6.7: Error coverage for most frequent categories: The coverage level shows the percentage of error

instances covered by the most frequent N categories (e.g. the 5 most frequent error types represent 39% of

all encountered error events)

 6.1.3.6 Intercoder Reliability

As detailed in Chapter 4.2.2, inter-coder reliability was assessed using a modified pairwise

agreement calculation. The original calculation as used in the first study, shown only for reference,

is optimistic in the sense that a difference in the number of error categories tagged by participants in

the categorization process is not considered a disagreement; The revised calculation (pessimistic)

was performed in which such a discrepancy does count as disagreement.

The agreement levels were as follows:

All categories: 84% (optimistic) 80% (pessimistic)

Top 10 categories: 83% (optimistic) 80% (pessimistic)

Top 20 categories: 88% (optimistic) 82% (pessimistic)

 6.2 Sensitivity to Design Choices

The severity values presented in Chapter 6.1.3 are calculated as a simple product of frequency and

difficulty, where difficulty is expressed as an adjusted average resolution time, which clamps

resolution times to a threshold value of 5 minutes and counts unresolved errors as having a

resolution time of that same threshold value. Some reasoning for this choice of formula and

threshold value have been discussed in Chapter 2.7 and Chapter 4.2.3. We believe that the proposed

formulation of severity is useful and that the 5 minute threshold for error resolution is suitable;

however, other formulations for severity are possible; similarly, a differing threshold value might

well be used in an analysis of error severity. In this chapter we present a lightweight sensitivity

analysis of these experimental design choices.

 6 . RESULTS AND DISCUSSION – II 80

 6.2.1 Alternative Error Resolution Threshold Values

Tables 6.8 and 6.9 show severity rankings of the top 20 error categories when the threshold value

for error resolution is changed from 5 minutes to 2 minutes and 10 minutes, respectively, and can be

compared with the ranking shown for the original threshold value in Table 6.6.

Note that severity values scale with the threshold; a 5-minute threshold implies a theoretical

maximum possible severity score of 300, whereas the maximum severity is 120 for a 2-minute

threshold and 6000 for a 10-minute threshold. However, it is not useful to normalise the severity

since it depends on measured error resolution time which is the same (bar the effect of clamping)

across different threshold values.

The resolution threshold value affects the classification of error resolution status, as explained in

Chapter 4.2.3. Tables 6.8 and 6.9 include the count of resolved, unresolved/reverted and uncertain-

resolution instances in each error category when the corresponding resolution threshold (2 minutes

or 10 minutes) is applied..

Variable not declared remains the highest severity error category in all three cases. Table 6.10

shows the ten most severe error categories with a threshold value of 5 minutes, and their

corresponding severity rank when the threshold is selected instead as 2 or 10 minutes. Although

there are some minor differences, there is a good level of similarity between the rankings; 8 of the

top 10 are common between the 2-minute threshold ranking and 5-minute threshold ranking, and 9

of the top 10 are common between the 5-minute threshold ranking and the 10-minute threshold

ranking. 7 error categories are common in the top 10 of all three rankings.

The similarity in severity rankings across the three threshold values indicates that results are largely

insensitive to threshold value selection. A larger threshold may give slightly more accuracy in the

determination of time-to-fix by avoiding clamping, but may also increases the noise due to large

outliers (which could be caused by factors other than difficulty, such as the subject becoming

distracted while in the process of solving an error). We believe that the chosen threshold of 5

minutes has been shown to be useful for the purpose of ranking error categories by severity.

 6 . RESULTS AND DISCUSSION – II 81

O
ccu

rred

R
esolved

 (total)

U
n

resolved
 +

 R
everted

U
n

certain

A
verage resolu

tion

(secs)

A
d

j. A
vg. resolu

tion

tim
e (secs)

S
everity

Variable not declared 85 61 12 12 26 41 3.5
Method: Incorrect method
declaration 46 20 13 13 37 70 3.2

Semantic error 49 32 9 8 42 59 2.9
Simple syntactical error 66 43 11 12 24 44 2.9

Variable: Incorrect variable
declaration 48 23 14 11 16 55 2.7
Variable name written incorrectly 75 44 7 24 16 30 2.3

Type error 38 24 8 6 27 50 1.9
Method name written incorrectly 47 32 4 11 29 39 1.8

Variable: Incorrect attempt to use
variable 47 29 4 14 27 38 1.8

Method not declared 29 19 5 5 39 56 1.6
Missing 'return' statement 23 12 9 2 31 69 1.6

Method call targeting wrong type 25 15 7 3 33 61 1.5
; missing 74 49 6 19 8 20 1.5

Class or type name written
incorrectly 44 24 5 15 15 33 1.5
Method call: parameter number
mismatch 27 17 7 3 20 49 1.3

Method: Incorrect method call 20 14 3 3 44 57 1.1
Class from other package used
without 'import' 13 4 2 7 43 69 0.9

Use of non-static method from static
context 16 11 4 1 31 55 0.9
Method call: parameter type
mismatch 10 6 3 1 53 75 0.8

Type mismatch in assignment 12 9 2 1 40 55 0.7

Table 6.8: Severity ranking for error resolution threshold of 2 minutes (120 seconds)

 6 . RESULTS AND DISCUSSION – II 82

O
ccu

rred

R
esolved

 (total)

U
n

resolved
 +

 R
everted

U
n

certain

A
verage resolu

tion

(secs)

A
d

j. A
vg. resolu

tion

tim
e (secs)

S
everity

Variable not declared 85 63 6 16 33 82 7.0
Variable: Incorrect variable
declaration 48 27 6 15 41 143 6.8

Simple syntactical error 66 48 5 13 46 98 6.5
Method: Incorrect method
declaration 46 24 3 19 70 129 5.9

Type error 38 27 5 6 60 144 5.5
Semantic error 49 34 4 11 52 110 5.4

Missing 'return' statement 23 15 3 5 123 203 4.7
Variable name written incorrectly 75 48 2 25 38 60 4.5

Method call targeting wrong type 25 18 3 4 80 154 3.9
Variable: Incorrect attempt to use
variable 47 29 3 15 27 81 3.8

Class or type name written
incorrectly 44 25 3 16 20 82 3.6
Method call: parameter number
mismatch 27 20 3 4 58 129 3.5

Method not declared 29 21 2 6 68 114 3.3
; missing 74 51 2 21 23 45 3.3

Method name written incorrectly 47 35 0 12 47 47 2.2
Extraneous closing curly brace 21 14 2 5 13 86 1.8

Use of non-static method from static
context 16 15 0 1 109 109 1.7
Method: Incorrect method call 20 15 1 4 51 85 1.7

Type mismatch in assignment 12 9 2 1 40 142 1.7
Incorrect/attempted used of class or
type 5 3 2 0 79 287 1.4

Table 6.9: Severity ranking for error resolution threshold of 10 minutes (600 seconds)

 6 . RESULTS AND DISCUSSION – II 83

Rank: 2
minutes

Rank: 5
minutes

Rank: 10
minutes

Variable not declared 1 1 1

Simple syntactical error 4 2 3

Variable: Incorrect variable declaration 5 3 2

Method: Incorrect method declaration 2 4 4

Semantic error 3 5 6

Type error 7 6 5

Missing ‘return’ statement 11 7 7

Variable name written incorrectly 6 8 8

Method call targeting wrong type 12 9 9

Method not declared 10 10 13

Table 6.10: Severity rank of selected error categories with an error resolution threshold of 2, 5, and 10

minutes. Categories shown are the ten most severe with a 5 minute resolution threshold.

 6.2.2 Alternative Formulations for Severity

Severity has been expressed as the product of frequency and difficulty, where difficulty of an error

category has been expressed as the adjusted average resolution time (Chapter 4.2.3) for the

category. Tables 6.11, 6.12 and 6.13 show the 20 most severe error rankings when the difficulty is

instead expressed as the natural logarithm, square root, or square of the adjusted average resolution

time, respectively.

Variable not declared remains the highest severity error category across the three alternative

formulations of severity, and Simple syntactical error remains in the 2nd position except in one case

(difficulty as logarithm of the adjusted average resolution time) where it moves to the 3 rd position.

In Table 6.14 we present the ranking of the 10 most severe errors (with the original severity

formulation) after the severity formulation is changed to each of the three alternatives. Note that for

each alternative formulation, the 5 most severe categories in the original ranking remain within the

top 7 in the revised ranking, and the 6 most severe categories in the original ranking remain within

the top 11 in the revised ranking. In general, the alternative severity formulations have limited

impact in assessing the most severe error categories. Because of this, and by reasoning discussed in

Chapter 4.2.3, we maintain that the severity formulation used in our analysis is suitable for the

purpose of this thesis.

 6 . RESULTS AND DISCUSSION – II 84

Category Severity
(log t • f)

Variable not declared 342

Variable name written incorrectly 281

Simple syntactical error 280

; missing 252

Variable: Incorrect variable declaration 218

Semantic error 217

Method: Incorrect method declaration 210

Variable: Incorrect attempt to use variable 186

Method name written incorrectly 181

Class or type name written incorrectly 172

Type error 172

Method not declared 130

Method call: parameter number mismatch 118

Method call targeting wrong type 118

Missing 'return' statement 114

Method: Incorrect method call 84

Extraneous closing curly brace 82

Missing parentheses for method call 79

Use of non-static method from static context 72

Wrong return type declared 56

Table 6.11: Top 20 errors by severity when difficulty is calculated as the natural logarithm of the adjusted

average resolution time.

 6 . RESULTS AND DISCUSSION – II 85

Category Severity
(√t • f)

Variable not declared 637

Simple syntactical error 552

Variable name written incorrectly 489

Variable: Incorrect variable declaration 466

Method: Incorrect method declaration 450

Semantic error 449

; missing 407

Type error 365

Variable: Incorrect attempt to use variable 341

Method name written incorrectly 322

Class or type name written incorrectly 311

Method not declared 274

Missing 'return' statement 271

Method call targeting wrong type 264

Method call: parameter number mismatch 241

Method: Incorrect method call 163

Use of non-static method from static context 153

Extraneous closing curly brace 147

Missing parentheses for method call 138

Type mismatch in assignment 112

Table 6.12: Top 20 errors by severity when difficulty is calculated as the square root of the adjusted average

resolution time.

 6 . RESULTS AND DISCUSSION – II 86

Category Severity (t2 • f)

Variable not declared 1940877632

Simple syntactical error 1407211963

Variable: Incorrect variable declaration 983929084

Method: Incorrect method declaration 888761798

Semantic error 826081929

Variable name written incorrectly 759861675

Type error 466331621

; missing 369303467

Variable: Incorrect attempt to use variable 287185064

Missing 'return' statement 235791236

Method name written incorrectly 229345007

Class or type name written incorrectly 212960000

Method call targeting wrong type 194005102

Method not declared 193909487

Method call: parameter number mismatch 124197460

Method: Incorrect method call 35444531

Use of non-static method from static context 34668544

Extraneous closing curly brace 22122358

Missing parentheses for method call 17333821

Type mismatch in assignment 13161362

Table 6.13: Top 20 errors by severity when difficulty is calculated as the square of the adjusted average

resolution time,

Rank: s =
t • f

Rank: s =
log t • f

Rank: s =
√t • f

Rank: s =
t2 • f

Variable not declared 1 1 1 1

Simple syntactical error 2 3 2 2

Variable: Incorrect variable declaration 3 5 4 3

Method: Incorrect method declaration 4 7 5 4

Semantic error 5 6 6 5

Type error 6 11 8 7

Missing ‘return’ statement 7 15 13 10

Variable name written incorrectly 8 2 3 6

Method call targeting wrong type 9 14 14 13

Method not declared 10 12 12 14

Table 6.14: Severity rank of selected error categories with alternative formulations of difficulty (and thereby

 6 . RESULTS AND DISCUSSION – II 87

severity). . Categories shown are the ten most severe with the original formulation (t • f).

 6.3 Discussion

 6.3.1 Coverage Level of Error Categories

One of the primary sources of motivation of this work was to provide a basis for improving both

pedagogy of programming education and tools to support the teaching and learning of

programming. For pedagogical interventions it is helpful to know the kinds of errors students most

struggle with, so that increased time and effort might be targeted specifically on those areas. For

advances in programming tools, such as improved presentation of error messages presented to

students, it is helpful to know which problems to concentrate on, and what impact an improvement

in messaging for specific kinds of errors may have.

As with the first study (see Chapter 5.2.3), a small number of error categories accounted for the

majority of errors seen in the data set. The coverage table (Table 6.7) shows that the top ten logical

errors account for almost 60% of all error occurrences. This indicates that, if error diagnostics could

be improved for only these ten types of error, students would benefit from improved feedback 60%

of the time they see a diagnostic message. If better messages could be produced for the top twenty

error types, feedback would be improved for 80% of all errors experienced. Even if only the top

five logical errors were detected and reported accurately, students would benefit in nearly 40% of

all error instances. This data suggests that efforts to design an automated diagnosis of novice errors

need focus on a small number of carefully selected errors in order to be effective at improving the

diagnosis given for the majority of errors actually encountered.

 6 . RESULTS AND DISCUSSION – II 88

Figure 6.4: Adjusted resolution time and frequency of occurrence by top-level category.

The shaded/outlined areas identify apparent spatial grouping of error categories

underneath various of the top-level categories as named in the legend of the graph

(choice of shading or outline is purely for legibility). Frequency is shown as occurrences

per 1000 error-containing compilations events.

 6.3.2 Severity of Error Categories

Although frequency of error categories gives an indication of the error types that students encounter

most often, it does not give any indication of how much of a problem these errors present for

students overall. An error may be encountered frequently but be solved, in general, quite easily;

conversely, a less-frequently occurring error may require substantially more effort to resolve each

time it occurs.

 6 . RESULTS AND DISCUSSION – II 89

0.00 25.00 50.00 75.00 100.00 125.00 150.00 175.00 200.00
0

10

20

30

40

50

60

70

80

90

Variable use Variable declaration Method call Method declaration

Constructor call Constructor declaration Type use Semantic error

Simple syntax

Adjusted average resolution time (seconds)

O
cc

ur
re

nc
es

The severity of errors, as depicted in Figure 6.2 as a combination of frequency and adjusted

resolution time, allows some interesting observations not only about the impact of single error

types, but also about areas of concepts in programming that cause difficulties for students. Figure

6.4 depicts the same data, but areas representing top-level error categories are highlighted to

encompass the data points of the individual errors they contain (either by shading or in some cases,

to reduce clutter where many regions overlap, a coloured outline). Figure 6.3 depicts top-level

categories only, with occurrence and resolution time from subcategories folded in to the top-level

category. Errors and error categories towards the top right quadrant of each graph are more severe

than those at the left and bottom. Errors along the x-axis are less severe because they do not occur

very often, while errors near the y-axis are less severe because they are typically resolved quickly.

In Chapter 2.7 we discussed error severity as a product of the frequency of the error type and the

difficulty in resolving the error. We have used the adjusted average resolution time (Chapter 4.2.3)

as the sole metric for deciding error difficulty in this work, and the error categories are ranked

(Table 6.6) by severity calculated on this basis.

The most severe error category is Variable not declared (severity score 4.8), which is also the most

frequently occurring category with 85 categorised instances. The adjusted average resolution time is

just over 56 seconds, which shows that substantial time is expended on resolving errors in this

category. The next four categories – Simple syntactical error (severity score 4.6), Incorrect variable

declaration (4.5), Incorrect method declaration (4.4) and Semantic error (4.1) – all have a slightly

higher adjusted average resolution time, extending up to 95 seconds in the case of Incorrect method

declaration, though with a corresponding lower frequency of occurrence.

Other than the first (Variable not declared), each of the top 5 error categories as ranked by severity

are top-level categories which correspond to a broad error description and that have a number of

sub-categories, which provide a finer-grained error description. Partly this is due to these top-level

categories generally having a significantly higher occurrence count than the subcategories (with

some exceptions – in particular, Variable name written incorrectly with 75 occurrences, and

Semicolon missing with 74 occurrences); this in turn is indicative of difficulty in providing a precise

diagnosis for errors from amongst the available (sub-)categories. Variable not declared is a clear

stand-out in this regard, since it is both a precise subcategory and the highest occurring

categorisation overall (as well as having the highest severity score).

 6 . RESULTS AND DISCUSSION – II 90

The cause of the apparent difficulty in precisely categorising errors is difficult to determine without

further investigation. The method used to develop the category hierarchy (Chapter 4.2.2) was

designed to provide suitable categories for commonly occurring errors, rendering it doubtful that

lack of availability of appropriate categorisations was to blame. The possibility that it is innately

difficult to precisely categorise a significant portion of novice programmer errors needs to be

considered (though this does not imply that attempting such categorisation is a worthless endeavour,

since some types of error can be clearly identified, and since information on error severity even at

the broad level can be useful for improving programming pedagogy and tools). If it is difficult to

precisely diagnose a novice error – perhaps because the novice’s intention, or the nature of the

misconception that caused the error, are unclear – then a case can be made that any diagnostic

information provided to the student (such as messages from a compiler or other development tool)

should be similarly imprecise, while still being broadly accurate.

In the following subsections we will look at each of the top-level categories in turn and discuss the

relevant severity results for both the top-level category and its subcategories.

 6 . RESULTS AND DISCUSSION – II 91

Figure 6.5: Severity of errors in the ‘Variable Use’ top-level category. The individual

errors are: (1) Wrong variable used (2) Use of non-static variable from static context (3)

Variable name written incorrectly (4) Variable use (top-level) (5) Variable not declared

(6) Use of variable from another class

 6.3.2.1 Variable Use

The top-level category ‘Variable Use’ consists of six data points with a wide spread over the

severity landscape (Figure 6.5). The fact that the individual errors do not cluster in a single area

shows that ‘variable use’ cannot meaningfully treated as a single concept for the purposes of

pedagogical interventions; it is not uniformly easy or difficult, but rather encompasses some errors

at either end of the scale. Some errors (such as (1) and (2)) are not problematic: they are infrequent

and—when encountered—fixed relatively quickly. Other errors, however, are of more concern:

Errors (3) and (5) occur very frequently and error (6) seems to cause students problems in fixing it.

Errors (3) and (5) can be interpreted as more shallow: (3), Variable name written incorrectly, will

include simple typing errors that are easily fixed and (5), Variable not declared, will also be a

combination of slips (students merely forgetting to declare) and actual lack of understanding. Even

 6 . RESULTS AND DISCUSSION – II 92

0 25 50 75 100 125 150 175 200 225
0

10

20

30

40

50

60

70

80

90

Incorrect variable use Other

Adjusted average resolution time (seconds)

O
cc

ur
re

nc
es

(1) (2)

(3)

(4)

(5)

(6)

though these errors are fixed more quickly than some others (they are just under the mean resolution

time) the time to fix is not trivial. Students spend on average almost a minute fixing these types of

error, indicating that some more serious issues exist in this area than mere typing mistakes.

Note that error (3) Variable name written incorrectly does not necessarily imply a common spelling

mistake, but rather that the variable name in a particular use did not match the name of the intended

variable in its declaration; an identifier mis-spelling that is applied consistently will not result in a

compilation error. However, nearly identical spelling in variable use and declaration can be an

indicator of this error; this fact is used in mechanisms employed by our prototype diagnosis tool to

diagnose this error (Chapter 7.3.1).

Error (6), Use of variable from another class, does not occur very frequently, but when it does, it

causes trouble. This points to a lack of understanding of underlying concepts and may identify an

area of instruction that would benefit from attention.

Looking at the mean values of all errors in this top-level category (Figure 6.3) we can see that the

errors in this category are among the most frequent errors, but are also the most quickly fixed.

 6 . RESULTS AND DISCUSSION – II 93

Figure 6.6: Severity of errors in the ‘Variable Declaration’ top-level category. The

individual errors are: (1) Variable needs a unique name (2) Variable declaration (top

level)

 6.3.2.2 Variable Declaration

The ‘Variable Declaration’ category, shown in Figure 6.6, includes only one sub-category ((1)

Variable needs a unique name); all other related errors were categorised under the top-level

category. While this makes it impossible to identify more specific problems students might have

with variable declarations, we can see that this is an area of significant concern. Variable declaration

problems are frequent and take a long time to be resolved, pointing to significant lack of mastery in

an important area. Both pedagogical interventions and better support from software tools may be

ways to address this problem.

 6 . RESULTS AND DISCUSSION – II 94

0 25 50 75 100 125 150 175 200 225
0

10

20

30

40

50

60

70

80

90

Incorrect variable declaration Other

Adjusted average resolution time (seconds)

O
cc

ur
re

nc
es

(1)

(2)

Figure 6.7: Severity of errors in the ‘Method Call’ top-level category. The individual

errors are: (1) Parameter types included (2) Missing parentheses (3) Method name

written incorrectly (4) Method call (top level) (5) Parameter number mismatch (6)

Method not declared (7) Use of non-static method from static context (8) Parameter type

mismatch (9) Method call targeting wrong type.

 6.3.2.3 Method Call

The ‘Method Call’ category (Figure 6.7) forms a cluster of a number of related problems in the area

of the graph representing significant severity. Again, this indicates that this concept is one that poses

significant challenges to students.

In this case we have a number of more precise sub-categories that give us some clues about specific

aspects that are particularly troublesome. While none of the errors is typically resolved in trivial

time (all take more than 30 seconds on average), we again find the more syntactic problems at the

easier-to-fix end, while errors concerning semantic (often type-related) problems take longer to

resolve. The syntactic problems include writing a parameter type in the method call and leaving out

 6 . RESULTS AND DISCUSSION – II 95

0 25 50 75 100 125 150 175 200 225
0

10

20

30

40

50

60

70

80

90

Incorrect method call Other

Adjusted average resolution time (seconds)

O
cc

ur
re

nc
es

(1)

(2)

(3)

(4)

(5) (6)

(7) (8)

(9)

the parenthesis of a call. Semantic problems, on the other hand, are represented by trying to call

non-static methods from a static context, and using the wrong type of either the receiver or a

parameter of a method call.

Error (3) Method name written incorrectly – which specifies that a method name in an expression

was written differently than in its declaration – occurs with a higher frequency than other errors in

this category, although with a relatively low average resolution time which reduces its severity. It is

comparable in this regard to the Variable name written incorrectly error in the Variable use category

(Chapter 6.3.2.1). This error category represents the only type of error that the BlueJ environment

attempts to diagnose itself, using a string-edit-distance metric to find candidate matches between

declarations and calls, similar to the matching of variable declaration and use employed by our

diagnostic tool and described in Chapter 7.3.1. Since BlueJ already performs this diagnosis and

because the technique is so similar to that used for variable names, we opted not to implement a

similar check for mis-spelled method names, in favour of focusing effort on other high-severity

errors.

In this case, even the syntactic problems (such as including a type in a method call parameter list)

are likely to not be mere typing slips, but indicative of a lack of understanding of a fundamental

concept. Overall, the area of method calls seems to be a deeply problematic area causing problems

for many students. This is confirmed by the mean severity across this top-level category, as

presented in Figure 6.3.

 6 . RESULTS AND DISCUSSION – II 96

Figure 6.8: Severity of errors in the ‘Method declaration’ top-level category. The

individual errors are: (1) Return type should be void (2) Wrong number of parameters (3)

Missing opening curly brace (4) Wrong return type declared (5) Method duplicated

exactly (6) Semicolon at end of header (7) Missing return type (8) Method declaration

(top level)

 6.3.2.4 Method Declaration

The ‘Method Declaration’ data points (Figure 6.8) look less severe at first glance, since many of

them are positioned along the x-axis, making them too infrequent to be considered severe. This first

impression is somewhat misleading, however, since the one clearly severe error type, number (8), is

the top category.

This simply tells us that only a relatively small number of the Method Declaration errors could be

categorised more precisely, while a large number of problems in this area were so varied or defied

any attempt at conclusively interpreting the author’s intent that they could not be further sub-

categorised. They do, however, exist, and in significant numbers.

 6 . RESULTS AND DISCUSSION – II 97

0 25 50 75 100 125 150 175 200 225
0

10

20

30

40

50

60

70

80

90

Incorrect method declaration Other

Adjusted average resolution time (seconds)

O
cc

ur
re

nc
es

(1)
(2)

(3)

(4)

(5) (6)

(7)

(8)

The only area within this category that can be identified as a distinct sub-problem is the handling of

return types. Both errors (4) and (7) show problems with return types, and these are the only sub-

categories with more significant frequency.

In the actual code analysed, method declarations were often so fundamentally wrong that the error

could not be assigned to a precise sub-category, resulting in the large number of top-level errors.

This is indicative of more fundamental problems than a larger number of sub-category errors, where

the code is often nearer to a correct solution.

It is also interesting to compare Figure 6.3, which shows the mean of the top-level categories,

including all sub-categories. It is evident that method declarations, while not the worst category in

either frequency or difficulty, are still an area of significant concern.

Figure 6.9: Severity of errors in the ‘Constructor Call’ top-level category. The individual

errors are: (1) Missing parentheses (2) Constructor call (top-level) (3) Parameter

number mismatch

 6 . RESULTS AND DISCUSSION – II 98

0 25 50 75 100 125 150 175 200 225
0

10

20

30

40

50

60

70

80

90

Incorrect constructor call Other

Adjusted average resolution time (seconds)

O
cc

ur
re

nc
es

(1) (2) (3)

 6.3.2.5 Constructor Call

The ‘Constructor Call’ category (Figure 6.9) has two sub-categories, one of which ((3) Parameter

number mismatch) shows significantly longer resolution times than the others. However, the

frequency of all categories is low, so the severity is limited.

This is also visible in the mean values of the top-level category, compared to the other categories

(Figure 6.3). While constructor parameters occasionally cause problems for some students, the

overall severity of this category is low.

Figure 6.10: Severity of errors in the ‘Constructor Declaration’ top-level category. The

category shown (1) is the top-level category.

 6.3.2.6 Constructor Declaration

Constructor declaration errors (Figure 6.10) occurred infrequently, and only the top-level category

was selected. The resolution time is relatively high, but the low frequency of this error category

 6 . RESULTS AND DISCUSSION – II 99

0 25 50 75 100 125 150 175 200 225
0

10

20

30

40

50

60

70

80

90

Incorrect constructor declaration Other

Adjusted average resolution time (seconds)

O
cc

ur
re

nc
es

(1)

gives it a low overall severity. In the comparison of mean adjusted resolution time (Figure 6.3) the

category appears to have a distinctly high resolution time when compared to the other categories,

but due to the low number of occurrences the statistical accuracy of this data point is diminished; in

any case, the severity (calculated as a product of frequency and resolution time) is low.

Figure 6.11: Severity of errors in the ‘Use of class or type’ top-level category. The

individual errors are: (1) Name written incorrectly (2) Used without being imported (3)

Class not defined (4) Use of class or type (top level)

 6.3.2.7 Use of Class or Type

The ‘Use of class or type’ category (Figure 6.11) has error instances in three subcategories. The top-

level category (4) has a noticeably higher resolution time, but a lower number of occurrences than

the subcategories (indicating that in most cases, a more precise categorisation was able to be made),

and a low severity.

The (3) Class not defined subcategory also maintains a low frequency of occurrence and a mid-

 6 . RESULTS AND DISCUSSION – II 100

0 25 50 75 100 125 150 175 200 225
0

10

20

30

40

50

60

70

80

90

Incorrect use of class or type Other

Adjusted average resolution time (seconds)

O
cc

ur
re

nc
es

(1)

(2)

(3)
(4)

range resolution time. The (2) Used without being imported subcategory occurs slightly more

frequently, but is still dwarfed in terms of severity by the (1) Name written incorrectly subcategory.

In the comparison of mean adjusted resolution time (Figure 6.3) the category is clearly among the

less severe of the top-level categories, with a moderate frequency and resolution time.

Figure 6.12: Severity of errors in the ‘Simple syntactical’ top level category. The

individual errors are: (1) Extra/misplaced ‘(‘ (2) Missing closing curly (3) ‘;’ missing (4)

Missing closing curly (class) (5) Missing operator (6) Extra closing curly (7) Missing

closing curly (method) (8) Extra opening curly (9) Simple syntactical error (top level)

(10) Mismatched parentheses (11) Missing closing curly (control statement) (12) ‘=’ used

in place of ‘==’ (13) Keyword written incorrectly

 6.3.2.8 Simple Syntactical

The ‘Simple syntactical’ category is the most frequently occurring top-level category (Figure 6.3)

and has numerous subcategories (Figure 6.12). Unsurprisingly, missing semicolons represent the

most frequently occurring sub-category.

 6 . RESULTS AND DISCUSSION – II 101

0 25 50 75 100 125 150 175 200 225
0

10

20

30

40

50

60

70

80

90

Simple syntactical error Other

Adjusted average resolution time (seconds)

O
cc

ur
re

nc
es

(1) (2)

(3)

(4)
(5)

(6)

(7)

(8)

(9)

(10)

(11) (12) (13)

Overall, the severity of this top-level category is moderated by its low resolution time: errors in this

category are, on average, among the most quickly fixed. The typical syntactical errors that we see

frequently in student code – unbalanced curly brackets or parentheses, missing semicolons – all

have lower-than-average resolution times, while misspelled keywords take longest to fix.

While individual frequency is not high for many subcategories, the large number of categories

results in the combined count for the top level category being high. The fact that the top-level

category accounts for over 30% of the occurrences within the category as a whole shows that many

errors seen in this category were difficult to categorise more precisely

.

Figure 6.13: Severity of errors in the ‘Semantic Error’ top-level category. The individual

errors are: (1) Array used in place of element (2) Unhandled exception (3) Semantic

error (top level) (4) Type mismatch in assignment (5) Type error (6) Missing ‘return’

statement (7) Class doesn’t implement required method

 6.3.2.9 Semantic Error

The ‘Semantic error’ category includes, in its subcategories, some of the most severe errors found in

 6 . RESULTS AND DISCUSSION – II 102

0 25 50 75 100 125 150 175 200 225
0

10

20

30

40

50

60

70

80

90

Semantic error Other

Adjusted average resolution time (seconds)

O
cc

ur
re

nc
es

(1)
(2)

(3)

(5)

(4)

(6)

(7)

the data set (Figure 6.13). The aggregate data (Figure 6.3) also places this top level category as the

most severe.

Error (7), Class doesn’t implement required method, is the most difficult for students to fix of all

errors observed. Its frequency, however, is low. Three other errors in this group, (3), (5) and (6), are

at the edge of the most severe errors in our graph, being both relatively frequent and difficult to

resolve. Overall, it is clear that semantic errors pose a significantly greater problem to students than

other error types.

 6.3.3 Risks and Limits to Validity

There are several factors imposing risks and limits to the interpretation of data presented in this

work.

The data comprising the student source code within which errors were categorised was sampled

from data maintained by the Blackbox Data Collection project (Brown et al. 2014), which collects

anonymised data from BlueJ users. The programming background, age, and other factors that may

affect programming ability or behaviour of participants in this data collection are not known,

though it is expected most are in the first year of university study.

While a large amount of data was processed, some error categories manifested only a very small

number of times. The calculation of average resolution time for such error categories is prone to

significant statistical error; however, the low frequency also reduces the severity of such error

categories, so that such categories are necessarily also low in the severity rankings, which for

purposes of this work makes them less interesting and this uncertainty less important.

The determination of resolution time for an individual error instance uses heuristics to decide when

(and if) the error has been resolved, and is subject to the limitation that only compilation triggers an

assessment of resolution. The time measurements therefore include any time between the

compilation event that was considered to resolve the error and the previous compilation event; in

some cases this could include time spent editing other parts of code after solving the error (but

before choosing to compile) or while being distracted from the coding task, for example. It is

expected that such an effect applies to all error categories similarly, and thus may not strongly effect

ranking of errors. Absolute time data, however, may be affected by this effect.

 6 . RESULTS AND DISCUSSION – II 103

 7 Error Diagnosis Tool

In the previous chapter we discussed results which show that certain categories of error have

considerably higher severity than others. These high-severity errors have a high combination of

frequency and difficulty, and consume a large total amount of time to resolve when compared to

less severe error categories; accordingly, it is prudent to focus assistive measures on these types of

error.

The categorisation of errors used for the determination of error severity was performed manually

(Chapter 4.2) and the human reasoning used to diagnose the errors was recorded. This reasoning

includes examples of diagnosis logic that could also be implemented in an automatic system.

In this chapter we present details of the design, development and evaluation of a prototype tool to

demonstrate the feasibility of using a more thorough automated analysis to diagnose high-severity

errors than what is typically performed by compilers or by other tools developed to provide

enhanced diagnostics, to enable a more accurate and precise diagnosis. We first discuss an overall

approach to the diagnosis of errors as a logical sequence of steps which can be performed by an

experienced human programmer and which can be potentially be automated. We then recap the

most severe errors, and discuss which of these are suitable for diagnosis in such a prototype tool,

along with an overview of the technique chosen for doing so in each case; we then provide a more

detailed discussion of the design of the tool, and show examples of its output. Finally, we show

results of an evaluation of the diagnostics generated by the tool compared to those generated by the

standard javac compiler for a number of errors from our dataset.

 7.1 Expert Diagnosis of Errors

During categorisation of errors for the research presented in Chapter 4, we recorded a short

statement of our reasoning for choosing a particular categorisation. Other researchers who

performed categorisation for the category validation phase (Chapter 4.1.3.3) were also asked to

submit such statements of reasoning.

We have not used the reasoning statements directly for the development of the diagnostic tool

prototype, but examining them has suggested a general approach for making error diagnoses which

can be broken down into a short sequence. We do not claim that all experienced human

programmers necessarily evaluate all errors in this precise sequence, but that it is a logical sequence

which may be used to produce a diagnosis for a range of errors that is more accurate and precise

 7 . ERROR DIAGNOSIS TOOL 104

than that which would be produced by a typical compiler in at least some cases. The sequence is as

follows:

1. Look where the compiler diagnostic positions the error, and determine a fundamental reason

for the error case, given existing knowledge of how the compiler identifies errors, and

experience of why it generates certain diagnostics for various types of error. As an example

of a fundamental reason behind an error, consider the case of misspelled variable name used

in an expression; the javac compiler will typically report this kind of error as an unresolved

symbol - variable. The fundamental reason for the error is that an identifier is used in an

expression context and there is no visible declaration for a variable with the exact same

identifier. Note that the fundamental reason is related to the manner in which the error was

detected by the compiler.

2. Based on the fundamental reason for the error, determine a set of candidate error types that

may stem from that fundamental reason. For the example in the previous step, such a

candidate set might include:

• Misspelling of the identifier in the expression;

• Misspelling of the identifier in the declaration;

• Attempt to use a variable from a scope in which it is not visible;

• Missing variable declaration; and perhaps others.

3. Look for evidence in the source code surrounding the error, and in some cases more broadly

(the program as a whole, and the standard library classes), which supports the diagnosis of a

particular error type. To continue the present example, we might look for a declaration with

an identifier with spelling similar but not identical to the identifier used in the expression in

which the error was detected; the existence of such a declaration supports the diagnosis of

the error as either a misspelling in either the declaration of the expression. Further evidence

might then be sought in order to differentiate which of these two cases should be considered

more likely.

This sequence of steps can potentially be automated, and doing so forms the basis of the approach

for the design of our prototype tool. Detection of the error and determination of the fundamental

reason for the error is performed using an analysis step which functions similarly to certain

compilation phases (including parsing and symbol resolution); a number of further analyses are then

 7 . ERROR DIAGNOSIS TOOL 105

used to decide a diagnosis from one of several possible options.

 7.2 Selection of Error Types for Diagnosis

To show the feasibility of improved automated error diagnosis for high-severity errors, we selected

a small number of high-severity error categories for which a suitable diagnosis strategy could easily

be devised.

Table 6.6 shows the error categories ranked according to severity. The ten most severe errors are

shown again in Table 7.1. The most severe error category is “Variable not declared”; this is related

to another high-severity error category, “Variable name written incorrectly”. Both of these types of

error typically result in a symbol resolution failure in the compiler, leading to a common diagnosis

for each; however, the high severity of these error types suggest that it is worth the effort to

distinguishing them if possible. A straight-forward strategy to differentiate these error types is, upon

the detection of an unresolvable symbol used in a context requiring a value, to look for other

variables which are declared with a similar but not identical name in the assumption that the

presence of such a declaration indicates a likely misspelling.

In a similar vein, the high-severity error categories “Method call targeting wrong type” and

“Method not declared” could lead to a common error diagnosis in a typical compiler, since both

manifest in symbol resolution failure. The existence of an identically named method defined in a

different receiver type can be used as a strong indicator however that the error in question does

result from an attempt to call such a method and that for instance the receiver expression is

incorrect or has the wrong type declaration.

 7 . ERROR DIAGNOSIS TOOL 106

Category

O
ccu

rred

R
esolved

 (total)

U
n

resolved
 +

R

everted

U
n

certain

resolu
tion

s

A
verage

resolu
tion

 (sec.)

A
d

ju
stm

en
t

A
d

ju
sted

 T
otal

resolu
tion

 tim
e

A
d

ju
sted

 avg.
resolu

tion
 tim

e

S
everity

Variable not declared 85 63 6 16 33 1800 3879 56.22 4.778

Simple syntactical error 66 48 5 13 46 1500 3708 69.96 4.618

Variable: Incorrect variable declaration 48 27 7 14 41 2100 3207 94.32 4.528

Method: Incorrect method declaration 46 24 3 19 70 900 2580 95.56 4.396

Semantic error 49 34 5 10 52 1500 3268 83.79 4.106

Type error 38 25 7 6 34 2100 2950 92.19 3.503

Missing 'return' statement 23 13 6 4 65 1800 2645 139.21 3.202

Variable name written incorrectly 75 47 3 25 26 900 2122 42.44 3.183

Method call targeting wrong type 25 18 3 4 80 900 2340 111.43 2.786

Method not declared 29 20 4 5 47 1200 2140 89.17 2.586

Table 7.1: The ten most-severe error categories. The highlight indicates the error categories selected for

automated diagnosis in the diagnosis tool prototype.

Other high-severity errors in the top-ten list are either too broad to be useful (“Simple syntactical

error”, “Semantic error”, “Type error”), or were considered too difficult to diagnose automatically

to justify the effort in a prototype tool (“Incorrect variable declaration”, “Incorrect method

declaration”). One high-severity category in this list, “Missing ‘return’ statement”, is unique in that

it appears in general to be correctly diagnosed by the standard compiler; for this reason no attempt

was made to diagnose this particular error in the prototype tool.

 7.2.1 Misspelled and undeclared variables

Upon detection of an unresolved identifier used in a context for which a value is valid or required,

we can examine variable declarations visible within the scope containing the unresolved symbol

and check for declared names which have a low edit distance to the unresolved identifier. If there

are no such names, we may assume the variable is simply lacking a declaration (though there are

also some other possibilities, such as that the programmer was attempting to refer to a variable that

is declared elsewhere but is not visible in the current scope).

If a declaration is found of a variable name with a sufficiently low edit distance to the unresolved

 7 . ERROR DIAGNOSIS TOOL 107

identifier, there are at least two distinct possibilities: firstly, the variable name may have been

misspelled on use, and secondly, the declaration itself may have been misspelled. To attempt to

disambiguate these cases, we look for an additional clue: whether the declared variable is accessed

elsewhere using its declared name. If that is the case, it is less likely that the declaration is

misspelled, since it would mean that the variable had been identically misspelled in two different

locations.

If no declaration is found of a variable name with sufficiently low edit distance, we instead assume

that the declaration is missing. Since we aim to give a precise as well as accurate diagnosis, we

designed the tool to give an indication of where the declaration should be. A decision is made that

either the declaration should be at the method level (that is, within and local to the method that the

identifier was used in) or should be as a field at the class level. This determination is made by

checking the location of any other unresolved uses of the same identifier; if they all occur within the

same method, then the diagnosis suggests declaration within that method; otherwise, diagnosis

suggests declaration at the class level.

 7.2.2 Unresolved method calls

The errors “Method call targeting wrong type” and “Method not declared” both result in failure to

resolve a method name to a suitable method (“Method call targeting wrong type” denotes an

attempt to call a method on a receiver, where the type of the receiver does not match the type of

which the method is a member). To distinguish between the two, the tool looks for declarations of

methods with a name identical to the unresolved identifier in a number of other types (as discussed

below); if it finds any such methods, it diagnoses the method call as targeting the wrong receiver.

In looking for candidate methods to match the name used in a method call expression, the tool

searches for methods defined in other classes and interfaces within the same package. Because

apparent confusion was noticed in the use of String methods on other classes within some of the

captured code snapshots in our dataset, the tool was also designed to match methods in the String

class (“java.lang.String”). Other commonly-used Java API classes could be considered for similar

treatment in a further development of the tool, but we did not consider this necessary for

development of the prototype.

 7.2.3 Final selection of errors for diagnosis

Taking into account the considerations outlined previously, the following four errors from the list in

 7 . ERROR DIAGNOSIS TOOL 108

Table 7.1 were chosen for automated diagnosis in the prototype:

• Variable not declared;

• Variable name written incorrectly;

• Method call targeting wrong type; and

• Method not declared.

The prototype also diagnoses some limited cases of the “Incorrect variable declaration” –

specifically, it can make a diagnosis that a variable name in a declaration is misspelled.

 7.3 Details of Prototype Design

The prototype diagnostic tool was developed as a modification of the BlueJ environment (Kölling et

al. 2003). BlueJ is an integrated development environment which allows development and

execution of Java projects; it features a code editor with syntax and scope highlighting and code

auto-completion, a “codepad” (REPL) facility in which statements can be executed and expressions

evaluated, and a graphical debugger; for compilation it relies on the standard javac compiler, which

also generates any diagnostics that BlueJ displays.

Internally, for its scope highlighting and code completion functionality, BlueJ implements a full

Java parser which generates a reduced Abstract Syntax Tree (AST) from Java source code. The

parser is a hand-written recursive descent parser which has been designed to have good error

recovery in the case of grammatical errors in the source. With some modification it was possible to

use this parser and the resultant AST to perform symbol resolution for methods and variables, which

is the basis of the method for detecting the errors that were targeted for diagnosis (7.2.3). An

analyse function was implemented in BlueJ to perform an automated diagnosis of these errors,

completely without the use of the javac compiler, for a single class within the current project.

The first stage of the analysis function is to parse the source code of the class using the modified

parser. This produces a reduced AST representing the logical structure of the parsed source code,

and a list of symbols which are not resolved during the parsing process. Symbols are separated

according to their nature; Java’s grammar rules dictate certain contexts in which a symbol must

represent a type, a value, or a method – for instance, in the expression “xyz.class”, the identifier

“xyz” must resolve to a type. Once the initial parse phase is complete, resolution of all value and

method symbols is attempted; resolution failure signals an error which can then be diagnosed.

Successful resolution of a variable marks the variable declaration as referenced.

 7 . ERROR DIAGNOSIS TOOL 109

 7.3.1 Diagnosis of unresolved variables

Unresolved “value context” symbols can be diagnosed into one of three cases:

• Variable not declared;

• Variable name written incorrectly in use; or

• Variable name written incorrectly in declaration.

In some cases, where there is an apparent spelling mismatch between the variable name in use and

in declaration but there are no other uses with either spelling, the tool is not able to distinguish the

2nd and 3rd case above and gives a diagnosis which accordingly states that either the use or

declaration may be incorrect.

The tool attempts only to diagnose local variable references, and not qualified field accesses using

the “dot” member-access operator, in order to simplify design.

For diagnosis, a multi-map is constructed mapping all unresolved identifiers to their location in the

source code (this groups identically spelt unresolved symbols). For each such identifier, the

diagnosis procedure proceeds as follows:

1. Each instance of the unresolved symbol is matched to one or more declarations with a

similar (low edit-distance) name. Each such match is given a score based on the edit

distance and the number of scopes “outwards” that the declaration lies from the unresolved

identifier (this favours matching to the innermost declarations, following the logic that a

declaration with a narrower scope is more likely to be accessed from within that scope. For

instance, a local variable declared within a method should certainly be used within that

method; a class instance variable might only be used within some methods of that class).

2. For each unresolved symbol the highest scoring declaration match is retained and the others

discarded. Thus each symbol is matched to a single declaration.

3. A diagnosis given for each symbol. If the declaration is marked as correctly referenced

elsewhere, the unresolved symbol is diagnosed as a misspelling of the declared variable. If

the declaration is matched by multiple identically-spelled symbols, the declaration is

diagnosed as a misspelling. Otherwise, a diagnosis is offered that gives both alternatives;

either the declaration, or the usage, is likely misspelled.

The maximum string edit distance for identifier matches was selected as one-quarter the length of

the unresolved identifier. The score for each match, which we term the declaration-use match score

 7 . ERROR DIAGNOSIS TOOL 110

(d), was calculated as:

d=10−4 e2

l
+s

Where e is the edit distance, l is the length of the unresolved symbol, and s is the scope score

(calculated as five minus the number of scopes “outwards” that the declaration lies from the

symbol, to a minimum of zero).

 7.3.2 Diagnosis of unresolved methods

Unresolved methods are diagnosed by the prototype into one of two categories:

• Method call targeting wrong type; or

• Method not declared.

Upon detection of an unresolved method call, the diagnosis tool looks for a declaration of a method

with the same name in other types: all the classes and interfaces declared in the same package as the

analysed source, and the “java.lang.String” class. If there is such a method declared in one or more

other classes, the tool suggests that the method call is targeting the wrong type; otherwise, it

diagnoses as an undeclared method.

 7.4 Example output

We will now present short examples of erroneous code together a diagnosis for each of the possible

diagnoses produced by the prototype.

 7.4.1 Variable not declared

The “Variable not declared” error category is diagnosed with an appropriate message which also

suggests a location for a declaration to be added in order to resolve the error. In Figure 7.1 we show

some example code where an undeclared variable is diagnosed, and the suggested location for the

declaration is the method.

 7 . ERROR DIAGNOSIS TOOL 111

public class A1
{
 int foo(int b)
 {
 return undec + b;
 }
}

Diagnosis:
Reference to undeclared variable:
There seems to be use of a variable called
"undec", but the variable is not declared.

The name is used on line 5 (in the "foo" method).
I suggest that a declaration should be inserted
in the "foo" method.

Standard message:
cannot find symbol – variable undec

Figure 7.1: Example of erroneous code for “variable not
declared” diagnosis. The “foo” method makes reference to an
undeclared variable, “undec”.

In Figure 7.2 an example of an undeclared identifier being used in two different methods is shown;

in this case, the declaration is suggested to be added at the class level.

 7 . ERROR DIAGNOSIS TOOL 112

public class A2
{
 int foo1(int b)
 {
 return undec + b;
 }

 void foo2()
 {
 undec = 6;
 }
}

Diagnosis:
Reference to undeclared variable:
There seems to be uses of a variable called
"undec", but the variable is not declared.

The name is used:
- on line 10 (in the "foo2" method)
- on line 5 (in the "foo" method)

I suggest that a declaration should be inserted
at the class level.

Standard message:
cannot find symbol – variable undec

Figure 7.2: Second example of erroneous code for “variable note
declared” diagnosis. The “foo1” and “foo2” methods both make
reference to an undeclared identifier, “undec”.

In both cases, the message produced by the standard compiler is “cannot find symbol – variable

undec”. The prototype tool generates a diagnostic that is more accurate and informative.

 7.4.2 Variable name written incorrectly

The “Variable name written incorrectly” error category is diagnosed by the tool in the case of an

unrecognised variable name closely matching a declared variable name. The tool assumes the use

and not the declaration is incorrect if the declaration also has an existing correct reference.

 7 . ERROR DIAGNOSIS TOOL 113

public class A3
{
 int value;

 int foo1(int b)
 {
 return volue + b;
 }

 void foo2()
 {
 value = 6;
 }
}

Diagnosis:
line 7: Possible misspelling of value as volue

Standard message:
cannot find symbol – variable volue

Figure 7.3: Example of erroneous code for “variable name written
incorrectly” diagnosis. The “foo2” method refers to the “value”
variable; the “foo1” method misspells the variable name as
“volue”.

In Figure 7.3 an example is presented where a variable (“value”) is referenced both correctly and

incorrectly (as “volue”) within the same source. The tool makes a diagnosis that “volue” is a

misspelling. The standard compiler on the other hand issues the same “cannot find symbol”

diagnostic that it gives for undeclared variables.

 7.4.3 Incorrect variable declaration

When there appear to be multiple identical spellings in the usage of a variable, but only a non-

identically spelled declaration, the tool diagnoses the error as a case of an incorrect variable

declaration. An example is shown in Figure 7.4.

 7 . ERROR DIAGNOSIS TOOL 114

public class A4
{
 int volue;

 int foo1(int b)
 {
 return value + b;
 }

 void foo2()
 {
 value = 6;
 }
}

Diagnosis:
line 3: Likely mis-spelling of declaration of
volue; should be value?

Standard message:
cannot find symbol – variable value

Figure 7.4: Example of erroneous code for “incorrect variable
declaration” diagnosis. The “foo1” and “foo2” methods refer to
the “value” variable; the declaration misspells the variable name
as “volue”.

Once again, the standard compiler issues a “cannot find symbol” diagnostic for the example. The

prototype tool suggests that the declaration is misspelled.

public class A5
{
 int volue;

 int foo1(int b)
 {
 return value + b;
 }
}

Diagnosis:
line 7: Possible misspelling of volue as value
(or vice-versa)

Standard message:
cannot find symbol – variable value

Figure 7.5: Example of erroneous code for ambiguous “incorrect
variable declaration” / “variable name written incorrectly”
diagnosis. The “foo1” method refers to the “value” variable; the
declaration spells the variable name instead as “volue”.

 7 . ERROR DIAGNOSIS TOOL 115

If a declaration can be matched with a single use that has non-identical spelling, and the declared

identifier is not used with the same (declared) spelling elsewhere, the prototype tool does not make

a judgement regarding whether the declaration or usage is incorrect, and offers an alternative

diagnosis, as shown in the example in Figure 7.5.

 7.4.4 Method call targeting wrong type

When a method call uses the name of a method name not declared in the receiver – which may be

the implicit “this” object reference – the tool searches for declarations of the method name in other

classes within the package, as well as Java’s standard “java.lang.String” class. If a declaration

exists, the prototype tool diagnoses the error as a method call targeting the wrong receiver type. An

example is shown in Figure 7.6.

public class B1
{
 Object o = "hello";

 public int getLength()
 {
 return o.length();
 }
}

Diagnosis:
Line 7: Call to method 'length' on a receiver of
type java.lang.Object, which does not have a
method with that name:
A method with that name is declared in the
following types: java.lang.String
Perhaps the method should be called on a
different receiver, or the receiver's type
should be declared to be one of the above types.

Standard message:
cannot find symbol – method length()

Figure 7.6: Example of erroneous code for “method call targeting
wrong type” diagnosis. The expression “o.length()” has a receiver
type of Object, which declares no “length” method.

For the example in Figure 7.6, the prototype tool’s diagnostic suggests that the “length” method be

called on a different receiver or that the type of the receiver be changed (in this case, the latter is

arguably the correct solution, since the receiver will hold an object of “String” type at run-time).

The standard compiler instead issues a message indicating that the “length” method symbol cannot

be found.

 7 . ERROR DIAGNOSIS TOOL 116

 7.4.5 Method not declared

In cases where an unresolved method name cannot be matched to a declaration in another type, the

prototype tool issues a diagnostic for the “method not declared” error category. An example is

presented in Figure 7.7.

public class B2
{
 public int foo()
 {
 return bar();
 }
}

Diagnosis:
Line 5: Call to method 'bar' on a receiver of
type B2, which does not have a method with that
name:
That method does not seem to be declared.

Standard message:
cannot find symbol – method bar()

Figure 7.7: Example of erroneous code for “method not declared”
diagnosis. The method “bar” is called with the implicit “this”
receiver, but is not declared in B2 or any other class whose
declarations are searched.

In this example, the diagnostic message generated by the tool is more informative, but semantically

similar to the message generated by the compiler, which gives the same diagnostic as for the

previous example (“method call targeting wrong type” category).

 7.5 Evaluation of Prototype

We will now discuss the method and results of evaluation of the prototype. The aim of the

evaluation is to determine how the accuracy and precision of the diagnostics generated by the

prototype tool compared to the diagnostics generated by the standard compiler.

Evaluation was performed by running the diagnostic tool on code snapshots corresponding to

compilation events that had been captured for purposes of error categorisation and severity

calculation (Chapter 4.2). For each of the five error categories that the tool was designed to

diagnose, we selected up to ten recorded events that had been categorised accordingly, and ran the

tool on the corresponding source code snapshot. The events selected were the first appropriately

categorised event in each recorded user session, up to a limit of 10 sessions, ordered by time. A

small number of sessions were skipped over as they appeared to be using external code libraries

 7 . ERROR DIAGNOSIS TOOL 117

which were not available to us; when this was done, the next suitable session (if any) was used

instead. For two of the selected categories, “method targeting wrong type” and “method not

declared”, the number of recorded sessions containing events categorised accordingly was less than

ten (nine and six respectively).

Snapshots used for evaluation were taken from different sessions as we felt that using multiple

snapshots from a single session could skew the results; a novice programmer might produce the

same type of error repeatedly in a similar form which might lend itself to a particular diagnosis

using the compiler or the prototype tool.

For each code snapshot used for evaluation, the tool was run to produce diagnostics and the

diagnostic (if any) corresponding to the source line identified by the recorded compiler diagnostic

as containing an error. In some cases the recorded compiler diagnostic was in a language other than

English and in these cases the English-language diagnostic was produced by also compiling the

code in the snapshot with the standard compiler (from within the modified BlueJ environment).

The diagnostic message produced by the tool, and the recorded (or regenerated) diagnostic from the

compiler, were both assessed for accuracy as a binary choice of either accurate or inaccurate. A

message was considered accurate if it was factually correct in the context of the categorisation

recorded and without being dependent on internal compiler/tool state (an assessment of accuracy

that required the diagnostic to match the specific categorisation closely would have lead to the

standard compiler’s diagnostic being judged inaccurate in the majority of cases; the requirement for

not being dependent on internal state allows diagnostics that pertain to parse state, for example, to

be classified as inaccurate if they do not otherwise appropriately describe the error as categorised).

If both compiler and prototype tool were assessed to have produced accurate diagnostic messages, a

further judgement assessing the precision of the diagnostic produced by the tool as compared to that

of the compiler was made. The precision of the tool’s diagnostic could be designated as higher,

equivalent, or lower than that of the compiler.

In the following sections, we will discuss the results of this evaluation for each of the five error

categories that the tool was designed to diagnose in turn, in each case ending with a summary of the

accuracy and precision judgements.

The recorded compilation event snapshots used for evaluation, and the judgement regarding

accuracy and relative precision of the compiler diagnosis and the prototype diagnosis, are included

 7 . ERROR DIAGNOSIS TOOL 118

in Appendix D.

 7.5.1 Variable not declared

For the ten code snapshots used for evaluation of the diagnosis of the “Variable not declared” error

category, the compiler diagnostic was assessed as accurate in all ten cases. The tool was accurate in

nine cases; in the remaining case, it did not produce a diagnostic, because the undeclared variable

was used in a method-call receiver context and might therefore have referred to a value or type (the

latter in the case of a static call, i.e. class-member method call) and the tool only attempts to resolve

value references occurring in a strict value context.

The compiler diagnostic, for each compilation event snapshot in this category, is of the form:

cannot find symbol – variable x

In comparison, an example of a diagnostic generated by the tool (and showing the usual form of

diagnostic messages generated by the tool for snapshots in this category) is:

Reference to undeclared variable:

There seems to be use of a variable called "ergebnis", but the variable is not declared.

The name is used on line 6 (in the "main" method).

I suggest that a declaration should be inserted in the "main" method.

Note that the compiler diagnostic includes a line number not included as part of the message show

above, however, the diagnostic from the tool (which appeared in the above form in eight cases) is

more informative, and was judged more precise, particularly as it suggests a suitable location for

correction. In the one remaining case, the tool and compiler diagnostic diagnosed two logically

distinct errors appearing on the same line of source code, and so comparison of the precision of the

diagnostics was not appropriate.

Summary:

Compiler accuracy: 10/10

Tool accuracy: 9/9, with no diagnosis given in one case

Precision: The tool gave higher precision diagnostics in 8 cases; one case not assessed.

 7 . ERROR DIAGNOSIS TOOL 119

 7.5.2 Variable name written incorrectly

Ten distinct code snapshots with errors categorised as “Variable name written incorrectly” were

used to evaluate the prototype’s diagnostics of errors in this category. The standard compiler

diagnostic message was considered accurate in nine out of the ten cases; the tool produced accurate

diagnostics in six cases, and did not diagnose the remaining four cases.

The error causing the compiler to produce an inaccurate diagnostic was found in the following line

of source code:

Word Count ++;

Here, the “wordCount” variable name had been written incorrectly as “Word Count”, which

contains whitespace that confuses the compiler’s parser. The compiler diagnostic for this error

indicates “; expected”, a message that is clearly a result of the parser state and which is inaccurate

in this context. The tool did not produce a diagnosis in this case; the parse failure prevented any

relevant symbols being added to the unresolved symbol set.

The three remaining cases where the tool did not produce a diagnosis were those in which the

incorrect variable name was qualified (referencing a variable defined in another type). The tool

design was limited to resolve only unqualified symbols, and so it did not detect these errors or

provide diagnoses. That this occurred in three of ten cases suggests that proper handling of qualified

variables is essential for a fully-developed diagnosis tool; we believe that this would be a straight-

forward extension to the existing design.

In all cases the compiler diagnostic was in the form of “cannot find symbol – variable x”, except the

case discussed above, and a single other case in which the diagnostic was in the form of “cannot

find symbol – method x()”. In contrast, the prototype diagnostic tool produced three distinct forms

of diagnostic: in three cases, the “variable not declared” form shown in Chapter 7.4.1; in two cases,

the “variable xxx possibly misspelled as yyy” form shown in Chapter 7.4.2; and, one single case of

the “method not declared” form which is shown in Chapter 7.4.5.

The “cannot find symbol – method” and “method not declared” diagnostic messages generated by

the compiler and prototype tool respectively correspond to a single event snapshot which appears to

have been miscategorised and do not reflect a failure of either to produce an accurate diagnostic.

 7 . ERROR DIAGNOSIS TOOL 120

The tool’s diagnostic was judged equivalently precise in this case, as both diagnostics convey the

same essential information.

When the prototype tool’s diagnosis was of either the “variable not declared” or “variable xxx

possibly misspelled as yyy” form, the corresponding compiler diagnostic was of the “cannot find

symbol – variable x” form. The first of the tool’s diagnostic forms was judged equally precise as the

compiler’s, and the second (issues in two cases) was judged more precise.

Summary:

Compiler accuracy: 9/10

Tool accuracy: 6/6, with no diagnosis given in 4 cases

Precision: Tool higher in 2 cases, equivalent in 4 cases, and lower in no case.

 7.5.3 Incorrect variable declaration

Ten code snapshots with errors categorised as “Incorrect variable declaration” were used to

compare the prototype’s diagnostics of errors in this category with those of the standard compiler.

The standard compiler diagnostic message was considered accurate all cases; the tool produced

accurate diagnostics in five cases, and did not produce a diagnostic for the remaining five cases.

Note that the error category is broad and the tool was designed to diagnose a special case of the

category (Chapter 7.2.3).

The tool did not produce “perfect” diagnostic form (Figure 7.4), which assesses the declaration of a

variable to have used incorrect spelling, in any case. It did however produce the secondary form

(Figure 7.5), which states that either the declaration or use is incorrect, in one instance. In all other

cases, it produced the “variable not declared” form of diagnostic (Figure 7.1), which may still be

accurate in the presence of an incorrect variable declaration but is less precise.

The compiler diagnosis was judged accurate in all cases. The tool diagnostic was accurate in all

cases where it gave a diagnosis (although borderline in one case). In all but one of those cases, the

tool’s diagnostic was assessed as more precise than that produced by the compiler.

In the one case where the compiler diagnostic was assessed to be of higher precision than the

prototype-produced diagnostic, there was a syntactical error in the statement declaring the relevant

variable. This caused a parse error and led to the declaration not being recognised by the prototype,

so that it diagnosed an undeclared variable rather than an issue with the declaration, which is strictly

 7 . ERROR DIAGNOSIS TOOL 121

accurate (since a statement containing a syntax error cannot declare anything) although clearly

imprecise. This suggests that a fully developed diagnosis tool should perhaps not perform diagnoses

involving symbol resolution upon detection of a syntax error, or be better able to process

declarations with incorrect syntax.

Summary:

Compiler accuracy: 10/10

Tool accuracy: 5/5, with no diagnosis in 5 cases.

Precision: The tool produced a higher-precision diagnostic in 4 cases, lower-precision in 1 case.

 7.5.4 Method call targeting wrong type

Nine sessions usable for evaluation were categorised with this error; several sessions which were

otherwise usable had code which appeared to use external libraries that were not available to us,

which could interfere with symbol resolution.

The tool did not detect or diagnose one case, which on inspection appeared to be a

miscategorisation. In 7 of the remaining 8 cases, it reported the possibility of an attempt to call a

method declared in a type different to that of the receiver; in the final case, it reported an undeclared

method. In all 9 cases where the tool provided a diagnosis, the diagnosis was judged to be more

precise than that of the compiler.

Summar:

Compiler accuracy: 9/9

Tool accuracy: 8/9 (one case of no diagnosis).

Precision: The tool produced a higher-precision diagnostic in all 8 cases.

 7.5.5 Method not declared

Six sessions usable for evaluation were categorised with this error; a single snapshot from each of

these sessions was used for evaluation. In all cases, both the compiler diagnostic and the tool

diagnostic were accurate, and followed the same form. For the compiler diagnostic, the form of

each diagnostic was (where “xyz” is the name of the relevant method):

cannot find symbol - method xyz()

If the method lookup requires a method with certain argument types, these are included in the

 7 . ERROR DIAGNOSIS TOOL 122

method signature. For the prototype tool, diagnostic messages took the following form:

Line 73: Call to method 'xyz' on a receiver of type Student,

which does not have a method with that name:

That method does not seem to be declared.

The latter form provides some additional information over that of the equivalent compiler

diagnostic, though it does not include method parameter types; for this reason, the two forms were

judged as equivalently precise. However, it should be noted that the compiler form is almost

invariably used when the method is declared in another class (but not in the receiver), whereas the

diagnostic tool uses a different form of diagnostic in that case. In this sense, the diagnosis of the

tool is more precise than that of the compiler.

Summary:

Compiler accuracy: 6/6

Tool accuracy: 6/6

Precision: Equivalent in all cases.

 7.5.6 Overall Summary of Evaluation

The prototype was able to accurately diagnose the errors in the majority of code snapshots used for

evaluation, in many cases with a higher-precision diagnostic message than that produced the

standard compiler, and with equivalent precision in the clear majority of all other cases. This is an

impressive result given the limitations in the design of the prototype, and strongly suggests that the

approach taken to its design may be worth further exploration.

 7.5.7 Risks and Limits to Validity

The evaluation relied on personal judgements regarding accuracy and precision of diagnostics for

errors. While we have strived for objectivity, and provided reasoning where appropriate, this should

be considered when interpreting the results of the evaluation.

The evaluation was performed on a limited number of code samples, which had already manually

been categorised as containing errors relevant to the diagnostic capabilities of the tool. This is

suitable for assessing the feasibility of approach, but the results should not be considered for

determining the suitability of using the prototype tool for diagnosis of arbitrary errors.

 7 . ERROR DIAGNOSIS TOOL 123

 8 Future Work and Conclusions

 8.1 Summary

This thesis has presented work to develop a methodology for categorisation of programming errors,

providing categorisation more accurate and precise than previous attempts found in literature. The

ability of such a categorisation to properly distinguish novice errors has been established, and the

importance of measuring error category severity rather than merely frequency has been

demonstrated. In the introduction to this work, several hypotheses were proposed:

Hypothesis 1 : Measuring the frequency of logical error categories will yield different results

than diagnostic message frequency.

Sub-hypothesis 1.1 : A suitably experienced human can reliably recognise the cause of an

error in many cases, even when the compiler gives a misleading error message.

Hypothesis 2 : Error frequency tables are misleading in the sense that they do not accurately

represent the most difficult to handle errors; with a different measure, where a severity

calculation is made, a different result will ensue.

Hypothesis 3 : in some cases reasoning that humans make to decide error cause can be

implemented as a heuristic in an automated tool to produce more useful diagnostic

messages.

In Chapter 4.1 we described a methodology for categorising errors using logically distinct error

categories rather than by the diagnostic message produced by a compiler, as had been done in

previous work; the results, in Chapter 5, affirm Hypothesis 1: categorisation by suitably refined

logical categories provides a more accurate and precise determination of the frequency with which

different errors are encountered. Further, the validation of the category scheme also described in

Chapter 4.1 affirms the sub-hypothesis, by showing that multiple human coders who were

experienced programmers were able to manually categorise errors with a high level of agreement.

In Chapter 4.2, we extended the methodology devised in Chapter 4.1 to measure the severity of

errors in different categories. The results (Chapter 6) affirm the second hypothesis: a ranking of

error categories by severity results in a markedly different ordering than using frequency alone,

which as a measure of the impact of an error category can therefore be misleading.

 8 . FUTURE WORK AND CONCLUSIONS 124

Finally, in Chapter 7, we presented the design of a prototype-level, proof-of-concept tool for

performing sophisticated error diagnosis with heuristic-based reasoning derived from human

reasoning regarding several high-severity errors. We evaluated the tool by comparing its diagnoses

of a number of code snapshots, that had formed part of the dataset for the research described in

Chapter 4.2, with the diagnoses produced by the javac compiler for those same snapshots. The

results of evaluation affirm the final hypothesis, showing that this approach is indeed viable.

 8.2 Recommendations for Future Work

 8.2.1 Longitudinal Study of Error Severity

The error severity study (Chapter 4.2) relied on data selected at random from the Blackbox project

(Brown et al. 2014). Blackbox collects data including anonymised code snapshots from users of

BlueJ, who are expected for the most part to be novice programmers. However, the data selected for

the study would have represented programmers at various stages of learning and experience. While

this was useful for capturing an overall representation of error severity across different stages, it

would also be beneficial to (for example) the development of course material and structure if

educators could obtain information regarding the severity of different categories of error at different

stages of development.

A longitudinal study would require a large sample of program errors (in the form of code snapshots)

taken over a period of time, preferably a complete year or more, from participants at a known stage

of learning. This would preclude using data sampled completely at random from the Blackbox

database, although Blackbox supports a mechanism to allow identification of groups of participants

which could enable such a study using a known cohort.

Collecting a sample of errors from different known stages of learning would make it possible to

make a determination of the severity of different error categories at different stages. The most

problematic aspect of such a study would be the error categorisation, which is a tedious manual

process. We have shown that using compiler diagnostic messages for categorisation is not suitable

for developing an accurate picture of error severity distribution, however, meaning that manual

categorisation is essential at this point in time; however, it remains an open question whether

automated error diagnosis could be improved to the point where this was no longer necessary.

 8.2.2 Further Development and Evaluation of Diagnostic Tool

The tool developed as described in Chapter 7 is a prototype, intended for assessing the feasibility of

 8 . FUTURE WORK AND CONCLUSIONS 125

applying reasoning to develop heuristic techniques for error diagnosis. With a simple self-conducted

evaluation, we showed that it was possible to improve on the precision of diagnosis of a number of

errors that had been classified under high-severity categories. The approach to the design of the tool

was to develop a number of heuristic techniques for refinement of error diagnosis once an error had

been detected.

The techniques developed rely in some cases on using a scoring system to decide between two

possibilities forming part of a diagnosis. In Chapter 7.3.1 we outlined the concept of a declaration-

use match score, and described how it could be used to decide on a suitable match between an

unresolved variable identifier and any number of potentially matching declarations. The formula

derived for the declaration-use match score using straight-forward reasoning but its suitability for

choosing the best match has not been evaluated; a future study could perform such an evaluation

and assess the effects of modifying the formula in various ways, such by differently weighting the

difference in scope level between declaration and usage compared to string edit distance.

Since the prototype tool relies on post-parse analysis, it is not as reliable in the presence of

syntactical errors in the code. It is possible that the error recovery in the parser could be improved

in order to allow it to recognise, for instance, variable declarations with minor syntax issues.

More generally, the tool could be further developed in order to allow it to be suitable for diagnosing

a larger range of errors. Although it could diagnosis at least some cases of five out of the ten most

severe error categories, the remaining five were broad and considered likely to be too difficult to

diagnose for this feasibility study. However, this certainly warrants further investigation; broad

error categories may have specific cases for which it is possible to automate diagnosis, and the

severity of these error categories would justify such efforts. It may also be straight-forward to

diagnose some of the error categories not within the top-ten severity list.

While better automated error diagnosis has been shown to be possible, there remains the question of

whether and how much a tool designed around the techniques we have presented would actually

benefit novice programmers. A study to assess this would ideally have two groups of participants

with equal ability and prior experience, one of which (the control group) would use a conventional

compiler, and the other of which would use an improved compiler or additional tool with enhanced

diagnostic capability, to complete a number of programming tasks. Performance during these tasks

would be analysed to compare the effectiveness of the tool.

 8 . FUTURE WORK AND CONCLUSIONS 126

 8.2.3 Extension to Other Programming Languages

The research presented in this thesis applies to the Java programming language, however the

methodology used should be equally applicable to other programming languages. A comparison

between the distribution of error severity amongst the error categories applicable to two or more

different programming languages could give insights into particular aspects of the different

languages that make them more or less difficult for novices to learn and understand. This, in turn,

could guide the design of new programming languages, especially those designed specifically for

the teaching of programming.

 8.3 Conclusion

This work has affirmed the hypotheses set out in the introduction. A methodology for the

development of logical error categories, and for approximating the difficulty of resolution of errors

in the different categories, has been developed and applied; the notion of error severity as a product

of frequency and difficulty has been formulated, and a ranking of error categories by severity has

been produced relevant for novices using the Java programming language. Error severity has been

show both in tabular form and using plots showing severity as a combination of the two factors,

frequency and difficulty.

We have produced a prototype tool for automated diagnosis of a number of high severity errors, and

shown via an evaluation that it can typically diagnose errors with equal or better precision than a

standard compiler, demonstrating the feasibility of the design approach used for production of the

tool and establishing a basis for further development and study of the techniques employed. A

number of possible areas for future work on this topic have been outlined.

 8 . FUTURE WORK AND CONCLUSIONS 127

References

Ahmadzadeh, M., Elliman, D. and Higgins, C. (2005). An Analysis of Patterns of Debugging

among Novice Computer Science Students. ACM SIGCSE Bulletin, vol. 37, no. 3, pp. 84-88

Amabile, T. and Kramer, S. (2011). The Progress Principle: Using Small Wins to Ignite Joy,

Engagement and Creativity at Work. Harvard Business Press.

Attride-Stirling, J. (2001). Thematic networks: an analytic tool for qualitative research. Qualitative

Research, vol. 1, no. 3, pp. 385-405

Becker, B.A. (2016). An Effective Approach to Enhancing Compiler Error Messages. Proceedings

of the 47th ACM Technical Symposium on Computing Science Education, pp. 126-131

Ben-Ari, M. (1998). Constructivism in Computer Science Education. ACM SIGCSE Bulletin, vol.

30, no. 1, pp. 257-261

Bloch, S.A. (2000). Scheme and Java in the First Year. Journal of Computing Sciences in Colleges,

vol. 15, no. 5, pp. 157-165

du Boulay, B. (1986). Some Difficulties of Learning to Program. Journal of Computing Education

Research, vol. 2, no. 1, pp. 57-73

Braun, V. and Clarke, V. (2006). Using Thematic Analysis in Psychology. Qualitative Research in

Psychology, vol. 3, no. 2, pp. 77-101

Brown, N.C., Kölling, M., McCall, D. and Utting, I. (2014). Blackbox: A Large Scale Repository of

Novice Programmer's Activity. Proceedings of the 45th ACM technical symposium on

Computer Science Education, pp. 223-228

Brown, P.J. (1983). Error Messages: The Neglected Area of the Man/Machine Interface.

Communications of the ACM, vol. 26, no. 4, pp. 246-249

Cooper, S., Dann, W. and Pausch, R. (2003). Teaching Objects-first in Introductory Computer

Science. ACM SIGCSE Bulletin, vol. 35, no. 1, pp. 191-195

Dann, W., Cosgrove, D., Slater, D., Culyba, D. and Cooper, S. (2012). Mediated Transfer: Alice 3 to

Java. Proceedings of the 43rd ACM technical symposium on Computer Science Education, pp.

REFERENCES 128

141-146

DePasquale, P., Lee, J.A. and Pérez-Quiñones, M.A. (2004). Evaluation of Subsetting Programming

Language Elements in a Novice's Programming Environment. ACM SIGCSE Bulletin, vol. 36,

no. 1, pp. 260-264

Denny, P., Luxton-Reilly, A. and Carpenter, D. (2014). Enhancing Syntax Error Message Appears

Ineffectual. Proceedings of the 2014 conference on Innovation & Technology in Computer

Science Education, pp. 273-278

Denny, P., Luxton-Reilly, A., Tempero, E. and Hendrickx, J. (2011). Understanding the Syntax

Barrier for Novices. Proceedings of the 16th annual joint conference on Innovation and

Technology in Computer Science Education, pp. 208-212

Denny, P., Luxton-Reilly, A., Tempero, E. and Hendrickx, J. (2011). CodeWrite: Supporting

Student-Driven Practice of Java. Proceedings of the 42nd ACM technical symposium on

Computer Science Education, pp. 471-476

Dillon, E., Anderson, M. and Brown, M. (2012). Comparing Feature Assistance Between

Programming Environments and their Effect on Novice Programmers. Journal of Computing

Sciences in Colleges, vol. 27, no. 5, pp. 69-77

Dy, T. and Rodrigo, M. (2010). A Detector for Non-Literal Java Errors. Proceedings of the 10th

Koli Calling International Conference on Computing Education Research, pp. 118-122

Eclipse. (n.d.). [Online], Available from: <http://www.eclipse.org/> [September 2016]

Felleisen, M., Findler, R.B., Flatt, M. and Krishnamurthi, S. (1998). The DrScheme Project: An

Overview. ACM Sigplan Notices, vol. 33, no. 6, pp. 17-23

Fidge, C. and Teague, D. (2009). Losing Their Marbles: Syntax-Free Programming for Assessing

Problem-Solving Skills. Proceedings of the Eleventh Australasian Conference on Computing

Education, vol. 95, pp. 75-82

Fleury, A.E. (2000). Programming in Java: Student-constructed Rules. ACM SIGCSE Bulletin, vol.

32, no. 1, pp. 197-201

. REFERENCES 129

Flowers, T., Carver, C.A. and Jackson, J. (2004). Empowering Students and Building Confidence in

Novice Programmers through Gauntlet. FIE 2004

GCC, the GNU Compiler Collection. (n.d.). [Online], Available from: <https://gcc.gnu.org>

[September 2016]

Gaspar, A., Langevin, S. and Boyer, N. (2008). Redundancy and Syntax-late Approaches in

Introductory Programming Courses. Journal of Computing Sciences in Colleges, vol. 24, no.

2, pp. 204-212

Grandell, L., Peltomäki, M., Back, R. and Salakoski, T. (2006). Why Complicate Things?

Introducing Programming in High School using Python. Proceedings of the 8th Australasian

Conference on Computing Education, vol. 52, pp. 71-80

Gray, K.E. and Flatt, M. (2003). ProfessorJ: A Gradual Introduction to Java through Language

Levels. Companion of the 18th annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages and applications, pp. 170-177

Grune, D., van Reeuwijk, K., Bal, H.E., Jacobs, C.J. and Langendeon, K. (2012). Modern Compiler

Design. Springer.

Hartmann, B., MacDougall, D., Brandt, J. and Klemmer, S.R. (2010). What Would Other

Programmers Do? Suggesting Solutions to Error Messages. Processings of the SIGCHI

Conference on Human Factors in Computing Systems, pp. 1019-1028

Hasker, R.W. (2002). HiC: A C++ Compiler for CS1. Journal of Computing Sciences in Colleges,

vol. 18, no. 1, pp. 56-64

Holland, S., Griffiths, R. and Woodman, M. (1997). Avoiding Object Misconceptions. ACM

SIGCSE Bulletin, vol. 29, no. 1, pp. 131-134

Hovemeyer, D. and Pugh, W. (2004). Finding Bugs is Easy. ACM Sigplan Notices, vol. 39, no. 12,

pp. 92-106

Hristova, M., Misra, A., Rutter, M. and Mercuri, R. (2003). Identifying and Correcting Java

Programming Errors for Intro CS Students. ACM SIGCSE Bulletin, vol. 35, no. 1, pp. 153-156

. REFERENCES 130

Jackson, J., Cobb, M. and Carver, C. (2005). Identifying Top Java Errors for Novice Programmers.

Frontiers in Education Conference, vol. 35, no. 1, p. 0

Jadud, M.C. (2005). A First Look at Novice Programmer Behaviour using BlueJ. Computer Science

Education, vol. 15, no. 1, pp. 25-40

Jeffery, C.L. (2003). Generating LR Syntax Error Messages from Examples. ACM Transactions on

Programming Languages and Systems (TOPLAS), vol. 25, no. 5, pp. 631-640

Jikes. (n.d.). [Online], Available from: <http://jikes.sourceforge.net/> [September 2016]

Johnson, S.C. (n.d.). yacc. [Online], Available from: <http://dinosaur.compilertools.net/yacc/>

[September 2016]

Johnson, W.L. (1990). Understanding and Debugging Novice Programs. Artificial Intelligence, vol.

42, no. 1, pp. 51-97

Kummerfeld, S.K. and Kay, J. (2003). The Neglected Battlefield of Syntax Errors. Proceedings of

the fifth Australasian Conference on Computing Education, vol. 20, pp. 105-111

Kölling, M. (2010). The Greenfoot Programming Environment. ACM Transactions on Computing

Education (TOCE), vol. 10, no. 4, p. 14

Kölling, M., Brown, N.C. and Altadmri, A. (2015). Frame-Based Editing: Easing the Transition

from Blocks to Text-Based Programming. Proceedings of the Workshop in Primary and

Secondary Computing Education, pp. 29-38

Kölling, M., Quig, B., Patterson, A. and Rosenberg, J. (2003). The BlueJ System and its Pedagogy.

Journal of Computer Science Education, vol. 13, no. 4, p. 0

Lang, B. (1986). On the Usefulness of Syntax Directed Editors. Advanced Programming

Environments, pp. 47-51

Lang, B. (2002). Teaching New Programmers: A Java Tool Set as a Student Teaching Aid.

Proceedings of the inaugural conference on the Principles and Practice of programming, pp.

95-100

. REFERENCES 131

Lee, M.J. and Ko, A.J. (2011). Personifying Programming Tool Feedback Improves Novice

Programmers' Learning. Proceedings of the seventh international workshop on Computing

Education Research, pp. 109-116

Lombard, M., Snyder-Duch, J. and Bracken, C.C. (2002). Content Analysis in Mass

Communication: Assessment and Reporting of Intercoder Reliability. Human Communication

Research, vol. 28, no. 4, pp. 587-604

Madison, S.K. (1995). A Study of College Students' Construct of Parameter Passing Implications

for Instruction. Doctoral Dissertation, University of Wisconsin

Maloney, J., Resnick, M., Rusk, N., Silverman, B. and Eastmond, E. (2010). The Scratch

Programming Language and Environment. ACM Transactions on Computing Education

(TOCE), vol. 10, no. 4, p. 16

Marceau, G., Fisler, K. and Krishnamurthi, S. (2011). Mind Your Language: On Novices'

Interactions with Error Messages. Proceedings of the 10th SIGPLAN symposium on new

ideas, new paradigms, and reflections on programming and software, pp. 3-18

McIver, L. and Conway, D. (1996). Seven Deadly Sins of Introductory Programming Language

Design. Software Engineering: Education and Practice, 1996. Proceedings. International

Conference., pp. 309-316

Molich, R. and Nielsen, J. (1990). Improving a Human-Computer Dialogue: What Designers Know

about Traditional Interface Design. Communications of the ACM, vol. 33, no. 3, pp. 338-348

Moth, A.L., Villadsen, J. and Ben-Ari, M. (2011). SyntaxTrain: relieving the pain oof learning

syntax. Proceedings of the 16th annual joint conference on Innovation and technology in

computer science education, p. 387

NetBeans IDE. (n.d.). [Online], Available from: <https://netbeans.org/> [September 2013]

Nienaltowski, M., Michael, P. and Bertrand, M. (2008). Compiler Error Messages: What Can Help

Novices. ACM SIGCSE Bulletin, vol. 40, no. 1, pp. 168-172

Parr, T. (n.d.). ANTLR. [Online], Available from: <http://www.antlr.org/> [September 2016]

. REFERENCES 132

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M. and Paterson,

J. (2007). A Survey of Literature on the Teaching of Introductory Programming. ACM

SIGCSE Bulletin, vol. 39, no. 4, pp. 204-223

Ragonis, N. and Ben-Ari, M. (2005). A Long-term Investigation of the Comprehension of OOP

Concepts by Novices. Computer Science Education, vol. 15, no. 3, pp. 203-221

Schneiderman, B. (1982). Designing Computer System Messages. Communications of the ACM,

vol. 25, no. 9, pp. 610-611

Schorsch, T. (1995). CAP: An Automated Self-Assessment Tool to Check Pascal Programs for

Syntax, Logic and Style Errors. ACM SIGCSE Bulletin, vol. 27, no. 1, pp. 168-172

Shackelford, R.L. and Badre, A.N. (1993). Why Can't Smart Students Solve Simple Programming

Problems?. International Journal of Man-Machine Studies, vol. 38, no. 6, pp. 985-997

Sorva, J. (2013). Notional Machines and Introductory Programming Education. ACM Transactions

on Computing Education (TOCE), vol. 12, no. 2

Sorva, J., Karavirta, V. and Malmi, L. (2013). A Review of Generic Program Visualization Systems

for Introductory Programming Education. ACM Transactions on Computing Education

(TOCE), vol. 13, no. 4, pp. 1-64

Spohrer, J.C., Soloway, E. and Pope, E. (1985). A Goal/Plan Analysis of Buggy Pascal Programs.

Human Computer Interactions, vol. 1, no. 2, pp. 163-207

Tabanao, E.S., Rodrigo, M.T. and Jadud, M.C. (2011). Predicting At-Risk Novice Java

Programmers Through the Analysis of Online Protocols. Proceedings of the seventh

international workshop on Computing Education Researech, pp. 85-92

Traver, V.J. (2010). On Compiler Error Messages: What They Say and What They Mean. Advances

in Human-Computer Interaction

Vee, M.N., Meyer, B. and Mannock, K.L. (2006). Empirical Study of Novice Errors and Error Paths

in Object-Oriented Programming. 7th Annual HEA-ICS conference, p. 0

Warren, P. (2001). Teaching Programming using Scripting Languages. Journal of Computing

. REFERENCES 133

Sciences in Colleges, vol. 17, no. 2, pp. 205-216

. REFERENCES 134

Appendix A List of Error Categories

In this appendix, the error categories created during the initial category development phase of the

research presented in this thesis (Chapter 4.1) are listed in full, with category name, long description

(not present for some categories), and number of occurrences found in the data set after

categorisation.

Error category Long description #

Variable not declared

A variable was used or assigned to, but not declared at all (see also:

"Variable name written incorrectly", "Use of variable from another

class")

41

; missing semicolon missing at end of statement 38

Variable name written

incorrectly

A name of an existing variable was either mis-spelt, or the wrong

word was used (slip of the mind, not misunderstanding about

variables). The student seemed to know what the variable was, and

it was declared. See also "Wrong variable used".

31

Invalid syntax An invalid syntactical construct that we cannot otherwise categorise 29
Method name written

incorrectly
simple typo, or wrong word used 18

Missing parentheses

for method call
A method call was missing the required parentheses. 15

Unhandled exception
A method is called which throws an exception; that exception is

neither caught nor specified as thrown by the calling method.
11

Class name written

incorrectly
Class name misspelled or otherwise not written correctly. 10

Method call:

parameter type

mismatch

A value is used as a method call parameter; a value of another type

is needed.
9

Missing parentheses

for constructor call
a "new XYZ()" expression without the required parentheses. 9

Type mismatch in

assignment

A value was assigned to a variable, but the value type and variable

type are not compatible. (See also "Value from raw collection must

be cast")

9

Mismatched

parentheses in or

around expression

One two many or one two few parentheses in an expression (or

around it, eg in 'if' statement condition).
7

Array used in place of An array itself was used where an element of the array was 6

APPENDIX A . LIST OF ERROR CATEGORIES 135

array element
probably needed. Essentially '[x]' is missing from the expression,

for some unknown x.
Missing '.' between

names in qualified

name

 6

Variable needs a

unique name

A variable was declared twice, however the intent appears to be

declaration of two separate variables (rather than re-assignment to

an existing variable).

6

Extraneous closing

curly brace
Extraneous '}'. See also "misplaced curly brace" 5

Keyword written

incorrectly
A language keyword was mistyped or misspelled 5

Missing closing curly

brace after control

stmt body

Missing curly brace at end of statement block after "if" or "while"

etc.
5

Uncategorised
Errors that - for whatever reason - were not categorised. Most likely

undecidable.
5

Class does not

implement required

method

The class is declared to implement an interface, but doesn't appear

to implement the required method at all.
4

Constructor call to

non-existent copy

constructor

A constructor call with a single parameter matching the type being

constructed, where it appears the intention was to create a copy of

the original object, however no such constructor is defined.

4

Method call:

parameter number

mismatch

A method call to an existing method has too many or two few

parameters.
4

Method call:

parameter number

mismatch; call

incorrect

A method call to an existing method has too many or two few

parameters, and it seems that the call is wrong rather than the

declaration.

4

Method declaration:

no type specified for

parameter

In a method declaration, no type is specified for one or more

parameters (the type specifier is omitted).
4

Misplaced closing

curly brace

A closing curly brace '}' should be in a different location than

where it was placed.
4

Assignment to a Assignment to an element of a collection retrieved by get(...) or 3

APPENDIX A . LIST OF ERROR CATEGORIES 136

collection element
similar method, with the apparent intention of storing to the

collection.
Class should be

declared to implement

interface

A class should be declared to implement some interface.

(implements ...).
3

Extra closing

parenthesis

An extra closing parenthesis - ')' - at the end or in the middle of an

expression or other location requiring parentheses.
3

Method call:

Parameter types

included

types were included in a method call (as in method definition). See

also "Method call: parameter doubles as declaration"
3

Method declaration:

Semicolon at end of

method header

spurious semicolon at the end of a non-abstract method header 3

Missing 'return'

statement

A method declared to return a value does not have a return

statement at all.
3

Missing closing curly

brace at end of method
3

Use of non-static

method from static

context

3

Wrong variable used
A variable name (identifying an existing variable) was used in some

context, but a different variable was intended.
3

: in place of ; colon instead of semicolon 2

Method call targeting

wrong type

A method call was made that does not exist in the class of the

method call target, but exists in another class. (eg: in expression

"xyz.abc()", "xyz" is of type String, but the "abc" method is defined

in another class).

2

Missing closing

parenthesis in

constructor call

missing or misplaced closing parenthesis 2

Missing operator

between expression

elements

A missing operator between two values in an expression 2

Missing space after

'new'

In a constructor call, the whitespace between the 'new' keyword and

the class name is missing.
2

Type mismatch in The 'return' statement returns the wrong type (not the declared 2

APPENDIX A . LIST OF ERROR CATEGORIES 137

'return' statement return type for the method).
Use of variable in

context requiring a

type

In a context requiring a type (class or interface name), a variable

name was used instead. See also "Constructor call attempted using

variable name"

2

'=' used in place of

'=='
Equality check using wrong operator 1

Call to 'super' in

constructor not first

statement

There is a 'super' call in a constructor, but it is not the first

statement in the constructor.
1

Class not defined A class was referenced by name, but not defined. 1
Collection used in

place of element

A collection was used when an element of the collection was most

likely intended.
1

Comment incorrectly

written

It appears that a comment was intended, but it is not written in the

correct syntax.
1

Constructor call

attempted using

variable name

A constructor call was intended, but the intended destination

variable name was used instead of the appropriate class name.
1

Constructor call

without using 'new'

An attempted constructor call (object creation) lacks the 'new'

keyword
1

Constructor is

declared to return

'void'

A constructor was incorrectly specified to return 'void'. 1

Constructor parameter

type/number mismatch
1

Extraneous '(' between

'else' and 'if'
1

Extraneous opening

curly brace
There was an extraneous opening curly brace 1

Local variable

declaration with

illegal modifier

A declaration for a local variable includes a modifier such as

'private' or 'static' which is not allowed for local variables.
1

Method call attempted

using variable name

A variable name was treated as a method name (eg. argument list

was applied). It appears that a method call was intended.
1

Method call: missing

comma between

parameters

1

Method call: A method parameter type is included in the method call parameters, 1

APPENDIX A . LIST OF ERROR CATEGORIES 138

parameter doubles as

declaration

together with a name, in such a way that it appears a declaration of

a variable may be intended.
Method call:

parameter number

mismatch; declaration

incorrect

A method call where the supplied arguments don't match the

declaration, and it appears that the declaration is wrong. More

specific than: "Method call: parameter number mismatch"

1

Method call:

semicolon in place of

comma

A semicolon separates method call parameters 1

Method declaration:

Missing comma in

parameters

A missing comma between parameters in a method declaration 1

Method declaration:

missing method body

The method body is missing for a method declaration (and the

method is not abstract). See also "Method declaration: Semicolon at

end of method header"

1

Method declaration:

missing return type
1

Method declaration:

return type should be

void

A method is declared with a return type, but should be declared to

return void.
1

Method duplicated

exactly
A method is declared twice, exactly duplicated. 1

Missing closing curly

brace - ambiguous

There is a missing closing curly brace, and no clear indication of

where the brace is really missing.
1

Missing closing curly

brace at end of class
1

Missing opening curly

brace after method

header

1

Object instantiation

uses variable name

An apparent object instantiation is attempted, but using a variable

name rather than a class name as the type to instantiate.
1

Object instantiation

uses variable name;

intends variable

access

A "new xyz()"-type expression where 'xyz' is actually a variable,

and it appears that the intention is to access the value of the variable

rather than construct a new object.

1

Parenthesis in wrong A parenthesis is in the wrong location. 1

APPENDIX A . LIST OF ERROR CATEGORIES 139

location
Statement outside

method/block

A statement appears in an invalid context outside of a method body

or initialiser block.
1

Type doesn't exist
A reference to a type (class or interface) was made, but the named

type does not appear to exist.
1

Type mismatch:

arithmetic performed

on String; use length

Arithmetic operator applied to a String, most likely the string

length should be taken.
1

Use of non-static

variable from static

context

1

Use of variable from

another class
A field or local variable declared in another class was used. 1

Value from raw

collection must be cast

A value is pulled from a 'raw' collection (List, Map etc) and not cast

to the appropriate type.
1

Variable access used

as statement

An expression accessing a variable value is being used as a

standalone statement.
1

Variable declaration:

name and type in

wrong order

1

Variable declaration:

name missing
A variable declaration occurs without a variable name 1

Variable declaration:

variable name

contains whitespace

1

Class from other

package used without

'import'

0

Constructor call:

invalid syntax

A constructor call was intended, but the syntax used was wrong.

(There are more specific categories which may be more appropriate

for some errors).

0

Invalid type cast
A type cast was used but is illegal due to type hiearchy or eg

casting a primitive type to a reference type
0

Method declaration:

semicolon in place of

comma

A method declaration has a semicolon (;) in place of comma (,) in

the parameter list.
0

APPENDIX A . LIST OF ERROR CATEGORIES 140

Method not declared 0

APPENDIX A . LIST OF ERROR CATEGORIES 141

Appendix B List of Revised Error Categories

This appendix contains a list of all error categories, ordered by number of occurrences of errors of

this category within the data set (comprising 1000 events), as created during the category

development prior to severity calculation and ranking (4.2.2) . A small number of categories were

not found within the data set and so have 0 recorded occurrences. Top-level categories in the

hierarchy are marked “(*)”.

Category Occurrences
Uncategorized (*) 94
Variable not declared 85
Variable name written incorrectly 75
; missing 74
Simple syntactical error (*) 66
Semantic error (*) 49
Variable: Incorrect variable declaration (*) 48
Variable: Incorrect attempt to use variable (*) 47
Method name written incorrectly 47
Method: Incorrect method declaration (*) 46
Class or type name written incorrectly 44
Type error 38
Method not declared 29
Method call: parameter number mismatch 27
Method call targeting wrong type 25
Missing 'return' statement 23
Extraneous closing curly brace 21
Missing parentheses for method call 21
Method: Incorrect method call (*) 20
Use of non-static method from static context 16
Wrong return type declared 15
Class from other package used without 'import' 13
Missing closing curly brace at end of class 12
Missing operator between expression elements 12
Type mismatch in assignment 12
Method call: parameter type mismatch 10
Method declaration: missing return type 10
Mismatched parentheses in or around expression 10
Variable needs a unique name 9
Array used in place of array element 8
Missing closing curly brace at end of method 7
Unhandled exception 7
'=' used in place of '==' 6
Missing closing curly brace after control stmt body 6
Incorrect/attempted use of class or type (*) 5

APPENDIX B . LIST OF REVISED ERROR CATEGORIES

142

Constructor parameter number mismatch 5
Method declaration: Wrong number of parameters 5
Use of non-static variable from static context 5
Constructor: Incorrect constructor declaration (*) 4
Class not defined 4
Keyword written incorrectly 4
Method call: Parameter types included 4
Use of variable from another class 4
Wrong variable used 4
Constructor: Incorrect constructor call (*) 2
Class does not implement required method 2
Extra opening curly brace '{' 2
Extraneous or misplaced ')' 2
Method declaration: missing method body 2
Method declaration: no type specified for parameter 2
Method declaration: return type should be void 2
Method duplicated exactly 2
Missing closing curly brace 2
Missing opening curly brace after method header 2
Statement outside method/block (*) 2
: in place of ; 1
Comment incorrectly written 1
Constructor parameter type mismatch 1
Invalid type cast 1
Local variable declaration with illegal modifier 1
Method declaration: Semicolon at end of method header 1
Missing parentheses for constructor call 1
Assignment to a collection element 0
Call to 'super' in constructor not first statement 0
Class should be declared to implement interface 0
Collection used in place of element 0
Constructor call attempted using variable name 0
Constructor call to non-existent copy constructor 0
Constructor call without using 'new' 0
Constructor is declared to return 'void' 0
Extra closing parenthesis 0
Extraneous '(' between 'else' and 'if' 0
Method call attempted using variable name 0
Method call: missing comma between parameters 0
Method call: parameter doubles as declaration 0
Method declaration: Missing comma in parameters 0
Method declaration: semicolon in place of comma 0
Missing '.' between names in qualified name 0
Missing closing parenthesis in constructor call 0
Missing space after 'new' 0
Object instantiation uses variable name 0
Object instantiation uses variable name; intends variable access 0

APPENDIX B . LIST OF REVISED ERROR CATEGORIES

143

Type mismatch: arithmetic performed on String; use length 0
Use of variable in context requiring a type 0
Value from raw collection must be cast 0
Variable access used as statement 0
Variable declaration: name and type in wrong order 0
Variable declaration: name missing 0
Variable declaration: variable name contains whitespace 0

APPENDIX B . LIST OF REVISED ERROR CATEGORIES

144

Appendix C Category Hierarchy

This appendix contains the complete category hierarchy developed prior to the severity calculations

(Chapter 4.2). Each category name is followed by (x; y), where x is the total number of occurrences

of the error category and all its subcategories, and y is the number of occurrences within the

category (excluding occurrences in subcategories).

 Variable: Incorrect attempt to use variable (220; 47)

o Object instantiation uses variable name; intends variable access (0; 0)

o Use of non-static variable from static context (5; 5)

o Use of variable from another class (4; 4)

o Variable name written incorrectly (75; 75)

o Variable not declared (85; 85)

o Wrong variable used (4; 4)

 Variable: Incorrect variable declaration (58; 48)

o Local variable declaration with illegal modifier (1; 1)

o Variable declaration: name and type in wrong order (0; 0)

o Variable declaration: name missing (0; 0)

o Variable declaration: variable name contains whitespace (0; 0)

o Variable needs a unique name (9; 9)

 Method: Incorrect method call (199; 20)

o Method call attempted using variable name (0; 0)

o Method call targeting wrong type (25; 25)

o Method call: missing comma between parameters (0; 0)

o Method call: parameter doubles as declaration (0; 0)

o Method call: parameter number mismatch (27; 27)

o Method call: parameter type mismatch (10; 10)

o Method call: Parameter types included (4; 4)

o Method name written incorrectly (47; 47)

o Method not declared (29; 29)

o Missing parentheses for method call (21; 21)

o Use of non-static method from static context (16; 16)

 Method: Incorrect method declaration (87; 46)

o Method declaration: Missing comma in parameters (0; 0)

APPENDIX C . CATEGORY HIERARCHY 145

o Method declaration: missing method body (2; 2)

o Method declaration: missing return type (10; 10)

o Method declaration: no type specified for parameter (2; 2)

o Method declaration: return type should be void (2; 2)

o Method declaration: Semicolon at end of method header (1; 1)

o Method declaration: semicolon in place of comma (0; 0)

o Method declaration: Wrong number of parameters (5; 5)

o Method duplicated exactly (2; 2)

o Missing opening curly brace after method header (2; 2)

o Wrong return type declared (15; 15)

 Constructor: Incorrect constructor call (9; 2)

o Constructor call attempted using variable name (0; 0)

o Constructor call to non-existent copy constructor (0; 0)

o Constructor call without using 'new' (0; 0)

o Constructor parameter number mismatch (5; 5)

o Constructor parameter type mismatch (1; 1)

o Missing closing parenthesis in constructor call (0; 0)

o Missing parentheses for constructor call (1; 1)

o Missing space after 'new' (0; 0)

o Object instantiation uses variable name (0; 0)

 Constructor: Incorrect constructor declaration (4; 4)

o Call to 'super' in constructor not first statement (0; 0)

o Constructor is declared to return 'void' (0; 0)

 Incorrect/attempted use of class or type (66; 5)

o Class from other package used without 'import' (13; 13)

o Class not defined (4; 4)

o Class or type name written incorrectly (44; 44)

o Use of variable in context requiring a type (0; 0)

 Semantic error (119; 49)

o Assignment to a collection element (0; 0)

o Class does not implement required method (2; 2)

o Class should be declared to implement interface (0; 0)

o Missing 'return' statement (23; 23)

APPENDIX C . CATEGORY HIERARCHY 146

o Type error (59; 38)

 Array used in place of array element (8; 8)

 Collection used in place of element (0; 0)

 Invalid type cast (1; 1)

 Type mismatch in assignment (12; 12)

 Type mismatch: arithmetic performed on String; use length (0; 0)

 Value from raw collection must be cast (0; 0)

o Unhandled exception (7; 7)

o Variable access used as statement (0; 0)

 Simple syntactical error (201; 66)

o '=' used in place of '==' (6; 6)

o : in place of ; (1; 1)

o ; missing (74; 74)

o Comment incorrectly written (1; 1)

o Extra closing parenthesis (0; 0)

o Extra opening curly brace '{' (2; 2)

o Extraneous '(' between 'else' and 'if' (0; 0)

o Extraneous closing curly brace (21; 21)

o Extraneous or misplaced ')' (2; 2)

o Keyword written incorrectly (4; 4)

o Mismatched parentheses in or around expression (10; 10)

o Missing '.' between names in qualified name (0; 0)

o Missing closing curly brace (27; 2)

 Missing closing curly brace after control stmt body (6; 6)

 Missing closing curly brace at end of class (12; 12)

 Missing closing curly brace at end of method (7; 7)

o Missing operator between expression elements (12; 12)

 Statement outside method/block (2; 2)

 Uncategorised (94; 94)

APPENDIX C . CATEGORY HIERARCHY 147

Appendix D Evaluation of Diagnostic Tool Prototype

This appendix contains a log of judgements made during evaluation of the diagnostic tool

prototype.

For each of the five error types that can be diagnosed by the tool, ten different code snapshots

corresponding to compilation events with errors which had been categorised with the error type in

question were selected for purpose of evaluating the diagnostic tool prototype; these corresponded

to the first such event from each of the first ten suitable recorded sessions (ordered by time).

However for some error types there were less than ten (suitable) sessions, and so fewer snapshots

were used for evaluation of the tool’s ability to diagnose these error types.

For each selected snapshot, both the compiler diagnostic and tool diagnostic is judged as either

accurate or inaccurate; if both the compiler diagnostic and tool are diagnostic are judged as

accurate, then the tool diagnostic’s precision is judged against the compiler diagnostic (as higher,

equivalent, or lower).

Accuracy is judged according to whether the text of the diagnostic is correct, rather than whether it

matches the selected categorisation for the error. Therefore a compiler diagnostic such as “cannot

resolve symbol” is nearly always considered accurate, though it may be judged to have low

precision compared to the tool.

The following log is divided into five sections (one for each error type that the tool was designed to

diagnose). In each section, the snapshots used for evaluation are presented: first, the corresponding

event number from the database is listed, a sample of the source code surrounding the error location

identified by the compiler diagnostic is presented, followed by the diagnostic produced by the

compiler and the prototype. The two diagnostics are separately judged as accurate or not, and if

both are considered accurate, a judgement regarding the precision of the tool’s diagnostic compared

to that of the compiler is made and recorded.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

148

D.1 Variable Not Declared

Event #25

This snapshot was skipped due to the code using an external library that was not available to us.

Event #75

Code sample:

80 {

81 if (ptr == 0)

82 return true;

83 return false;

84 }

85

86 // Test de pile pleine

87 public boolean estPleine()

88 {

89 assertEquals(true, p.estPleine());

90 System.out.println(this.ptr);

91 if (this.ptr==this.zone.length)

92 return true;

93

94 return false;

95 }

96

97 // Taille de la pile

98 public int taille()

Compiler diagnostic: cannot find symbol - variable p

Accurate: Yes

Tool diagnostic:

Line 89: Call to method 'assertEquals' on a receiver of type question1.Pile,

which does not have a method with that name:

That method does not seem to be declared.

Accurate: Yes

Precision: (N/A)

Comment: The compiler and diagnostic tool have each correctly identified a different error. A

comparison of precision does not therefore make sense.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

149

Event #180

Code sample:

1 public class main

2 {

3 public static void main(String[]args)

4 {

5 Eingabe text = new Eingabe();

6 ergebnis = text.eigeben("Wie heißt du?");

7 }

8 }

Compiler diagnostic: cannot find symbol - variable ergebnis

Accurate: yes

Tool diagnostic:

Reference to undeclared variable:

There seems to be use of a variable called "ergebnis", but the variable is not

declared.

The name is used on line 6 (in the "main" method).

I suggest that a declaration should be inserted

in the "main" method.

Accurate: yes

Precision: Higher

Comment: the tool diagnostic is more precise and informative.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

150

Event #305

Code sample:

74 result = result * (i + 1);

75 }

76 return result;

77 }

78 public static void fib(int n)

79 {

80 int f1, f2 =0, f3=1;

81 for (int i = 1; i<=n; i++)

82 {

83 f = f + g;

84 g = f - g;

85 }

86 System.out.println(n);

87 }

88 }

Compiler diagnostic: cannot find symbol - variable f

Accurate: Yes

Tool diagnostic:

There seems to be uses of a

variable called "f", but the variable is not declared.

The name is used:

- on line 84 (in the "fib" method)

- on line 83 (in the "fib" method)

- on line 83 (in the "fib" method)

I suggest that a declaration should be inserted

in the "fib" method.

Accurate: Yes

Precision: Higher

Comment: Again the tool's diagnostic is more precise and informative.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

151

Event #329

Code sample:

29 //devuelve cierto si la pila está vacía o falso en caso contrario (empty).

30 public boolean vacia(){

31 return this.isEmpty();

32 }

33

34 public void imprime()

35 {

36 for(int i=0;i<=2;i++)

37 {

38 dato=this.get(i);

39 System.out.println();

40 }

41 }

42 }

Compiler diagnostic: cannot find symbol - variable dato

Accurate: Yes

Tool diagnostic:

Reference to undeclared variable:

There seems to be use of a

variable called "dato", but the variable is not declared.

The name is used on line 38 (in the "imprime" method).

I suggest that a declaration should be inserted

in the "imprime" method.

Accurate: Yes

Precision: Higher

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

152

Event #609

Code sample:

24 public void addChoice(String choice, boolean correct)

25 {

26 // TODO: Add choice to choices.

27 // Ignore the "correct" parameter for now

28 }

29

30 public void display()

31 {

32 // For now, just print the choices

33 System.out.println(choices);

34 }

35 }

36

Compiler diagnostic: cannot find symbol - variable choices

Accurate: Yes

Tool diagnostic:

Reference to undeclared variable:

There seems to be use of a

variable called "choices", but the variable is not declared.

The name is used on line 33 (in the "display" method).

I suggest that a declaration should be inserted

in the "display" method.

Accurate: Yes

Precision: Higher

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

153

Event #756

Code sample:

19

20 JPanel pn3 = new JPanel(new BorderLayout());

21 c.add(pn3, "Center");

22

23

24

25 JPanel pn1 = new JPanel();// 运算界面

26

27 pn1.setLayout(new GridLayout(4, 2, 1, 1));

28 pn2.setLayout(new GridLayout(4, 2, 1, 1));

29 pn3.add(pn1);

30

31 // 设置按钮

32 JButton b = new JButton("1");

33

34 b = new JButton("1");// add butten 1

35 b.addActionListener(this);

36 pn1.add(b);

37 b = new JButton("2");// add butten 2

Compiler diagnostic (recorded): 找不到符号 符号： 变量 pn2 位置： 类 Calculator

(reproduced): cannot find symbol – variable pn2

Accurate: Yes

Tool diagnostic: (none).

Accurate: No

Precision: -

Comment: The undeclared “pn2” is used in a receiver context, meaning that it could theoretically be

either a value or type. The diagnostic tool does not attempt to resolve such symbols.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

154

Event #818

Code sample:

332

333 public Dienblad getDienblad()

334 {

335 return dienblad;

336 }

337

338 public Iterator<Artikel> getIteratorArtikel()

339 {

340 getIteratorArtikel();

341 return it;

342 }

343 }

344

345

Compiler diagnostic: cannot find symbol - variable it

Accurate: Yes

Tool diagnostic:

Reference to undeclared variable:

There seems to be use of a variable called "it", but the variable is not

declared.

The name is used on line 341 (in the "getIteratorArtikel" method).

I suggest that a declaration should be inserted

in the "getIteratorArtikel" method.

Accurate: Yes

Precision: Higher

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

155

Event #865

This code snapshot was not used for evaluation because it uses an external library which is not

available to us.

Event #890

Code sample:

3 {

4 private ArrayList<Integer> I;

5 public Stats()

6 {

7 I = new ArrayList<Integer>();

8 }

9

10 public Stats(int[] nums)

11 {

12 list = new ArrayList<Integer>();

13 for(int i = 0; i < I.size(); i++)

14 {

15 list.add(nums[i]);

16 }

17 I = list;

18 }

19

20 public void insert(int num)

21 {

Compiler diagnostic: cannot find symbol - variable list

Accurate: Yes

Tool diagnostic:

Reference to undeclared variable:

There seems to be uses of a variable called "list", but the variable is not

declared.

The name is used:

- on line 17 (in the "Stats" method)

- on line 12 (in the "Stats" method)

I suggest that a declaration should be inserted

in the "Stats" method.

Accurate: Yes

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

156

Precision: Higher

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

157

Event #943

Code sample:

8 #### ## # ####### ######## ## ##### # #### ##### ## ### ###### ## ##########

9 */

10 public class Foolin

11 {

12 public static void main(String[] args){

13 Scanner scanner = new Scanner(System.in);

14 System.out.print("Enter your word ");

15 String word = scanner.nextLine();

16 System.out.println("Your word is " + word.length() + " characters");

17 for(i = word.length(); i >= 0; i--){

18 System.out.println(word);

19 }

20

21 }

22 }

Compiler diagnostic: cannot find symbol - variable i

Accurate: Yes

Tool diagnostic:

Reference to undeclared variable:

There seems to be uses of a variable called "i", but the variable is not

declared.

The name is used:

- on line 17 (in the "main" method)

- on line 17 (in the "main" method)

- on line 17 (in the "main" method)

I suggest that a declaration should be inserted

in the "main" method.

Accurate: Yes

Precision: Higher

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

158

Event #980

Code sample:

117

118 public void makeGreyscale() {

119 int width = red.length;

120 int height = red[0].length;

121

122 // Average the red channel.

123 for (int h=0;h<height;h++) {

124 for (int w=0;w<width;w++) {

125 int average = (red[w][h] + green[w][h] + blue[w][h])/3;

126 temp[w][h] = red[w][height-h-1];

127 }

128 }

129 }

130 }

Compiler diagnostic: cannot find symbol - variable temp

Accurate: Yes

Tool diagnostic:

Reference to undeclared variable:

There seems to be use of a

variable called "temp", but the variable is not declared.

The name is used on line 126 (in the "makeGreyscale" method).

I suggest that a declaration should be inserted

in the "makeGreyscale" method.

Accurate: Yes

Precision: Higher

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

159

D.2 Variable Name Written Incorrectly

Event #2.

Code sample:

9 File lear = new File("lear.txt");

10 Scanner learScan = new Scanner(lear);

11 String current;

12 int wordCount = 0;

13 int charCount = 0;

14 while (nameScan.hasNext())

15 {

16 current = nameScan.next();

17 charCount += current.length();

18 Word Count ++;

19 }

20 }

21 catch (FileNotFoundException ex)

22 {

23 System.out.println("File not found, dawg");

24 }

25 }

26

27 public String wordCounter(File f)

Compiler diagnostic: ';' expected

Accurate: No

Tool diagnostic: (none).

Accurate: No

Precision: -

Comment: This is a case of “variable name written incorrectly” that the tool is not designed to

handle (the name is written with internal whitespace). Parse failure prevents “Word” and “Count”

from being recognised as variable references.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

160

Event #123

Code sample:

10 /**

11 * Constructor for objects of class Asterix

12 */

13 public Asterix()

14 {

15 System.out.println("Height Of Table : ");

16 Scanner in = new Scanner(System.in);

17 int x = in.nextInt();

18 System.out.print("Width Of Table : ");

19 Scanner in1 = new Scanner(System.in1);

20 int y = in.nextInt();

21 System.out.println();

22 for(int i=1; i<=x; i++)

23 {

24 for(int j=1; j<=x-1; j++)

25 {

26 System.out.print("\t" + "*");

27 }

28 System.out.println("\t" + "*");

Compiler diagnostic: cannot find symbol - variable in1

Accurate: Yes

Tool diagnostic: (none)

Accurate: No

Precision: -

Comment: the tool does not attempt to resolve qualified variables, and so misses this case of

“System.in” being written as “System.in1”.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

161

Event #270

Code sample:

26 }

27

28 public void setId_destino(int id_destino)

29 {

30 this.id_destino=id_destino;

31 }

32

33 public int getId_destino()

34 {

35 return Id.destino;

36 }

37

38 public void setDestino(String Destino)

39 {

40 this.destino = destino;

41 }

42

43 public String getDestino()

44 {

Compiler diagnostic: cannot find symbol - variable Id

Accurate: Yes

Tool diagnostic: (None)

Accurate: No

Precision: -

Comment: The tool does not attempt to resolve the qualified “Id.destino” value.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

162

Event #295

Code sample:

557 int area;

558 int perimeter;

559 public void input(int l,int b)

560 {

561 length=l;

562 breadth=b;

563 }

564 public int calc_area()

565 {

566 area=l*b;

567 return area;

568 }

569 public int calc_perimeter()

570 {

571 perimeter=2*(length+breadth);

572 return perimeter;

573 }

574 public static void main(String args[])

575 {

Compiler diagnostic: cannot find symbol - variable l

Accurate: Yes

Tool diagnostic:

Reference to undeclared variable:

There seems to be use of a

variable called "b", but the variable is not declared.

The name is used on line 566 (in the "calc_area" method).

I suggest that a declaration should be inserted

in the "calc_area" method.

Accurate: Yes

Precision: Equivalent.

Comment: the variable names ‘b’ and ‘breadth’ differ too much to be considered as a match by the

tool’s edit-distance based heuristic.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

163

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

164

Event #301

Code sample:

18 }

19

20 public void Naam(String biersoort)

21 {

22 System.out.println("De naam van de biersoort is: " + biersoort);

23 }

24

25
 public void Prijs(double volume, double statiegeld, double

prijsPerLiter)

26 {

27 double prijs = volume * statiegeld * prijsperLiter;

28
 System.out.println("De prijs van dit vat bier bedraagt: " + prijs +

" euro");

29 }

30 }

Compiler diagnostic: cannot find symbol - variable prijsperLiter

Accurate: Yes

Tool diagnostic:

Reference to undeclared variable:

There seems to be use of a variable called "prijsperLiter", but the variable is

not declared.

The name is used on line 26 (in the "Prijs" method).

I suggest that a declaration should be inserted

in the "Prijs" method.

Accurate: Yes

Precision: Equivalent.

Comment: The tool does not recognise method parameter declarations, and so does not in this case

match “prijsperLiter” with the “prijsPerLiter” paramter.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

165

Event #370

Code sample:

8 /**if(dato != null){

9 this.add(dato);

10 }else{

11 System.out.println("Introduzca un dato no nulo");

12 } **/

13 Object datoAuxiliar1 = null;

14 Object datoAuxiliar2 = null;

15 for(int i=0;i<=10;i++)

16 {

17 datoAuxiliar = c1.get(i);

18 }

19 for(int i=0;i<=10;i++)

20 {

21 datoAuxiliar2 = c2.get(i);

22 }

23 for(int i=0;i<=10;i++)

24 {

25 this.add(datoAuxiliar, datoAuxiliar2);

26 }

Compiler diagnostic: cannot find symbol - variable datoAuxiliar

Accurate: Yes

Tool diagnostic:

line 17: Possible misspelling of datoAuxiliar2 as datoAuxiliar

Accurate: Yes

Precision: Higher

Comment: There are two equally likely misspellings in this sample; the tool correctly identifies one

of them.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

166

Event #420

Code sample:

2 public class PilaP1 extends ArrayList{

3 public String arr[]=new String[10];

4

5

6 //se añade un elemento a la pila.(push)

7 public PilaP1(){}

8

9

10 public void apilar(Object dato){

11 for(int i=0;i<arr.legth;i++)

12 {

13 arr.add(dato);

14 }

15 }

16

17 //se elimina el elemento frontal de la pila.(pop)

18 public boolean desapilar(){

19 if(size() > 0){

20 //Object dato= this.get(this.size()-1);

Compiler diagnostic: cannot find symbol - variable legth

Accurate: yes

Tool diagnostic: (none)

Accurate: no

Precision: -

Comment: Another case of the tool not resolving qualified names.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

167

Event #573

This event was not considered for evaluation, since it used classes from a library which were not

available to us.

Event #600

Code sample:

12 }

13 media=(numeros[4] +numeros[5]);

14 for(i=0; i<=10; i++){

15 if(numeros[i]>mayor){

16 mayor=numeros[i];

17 }

18 }

19 for(i=0; i<10; i++){

20 if(numeros[i]<menor){

21 menor=numero[i];

22 }

23 }

24
 System.out.println("La suma de datos es: "+ suma +" la media es:"+

media +" el numero mayoer es: "+ mayor +" el numero es: "+ menor);

25 }

26 }

Compiler diagnostic: cannot find symbol - variable numero

Accurate: yes

Tool diagnostic:

line 21: Possible misspelling of numeros as numero

Accurate: yes

Precision: Higher

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

168

Event #744

Code sample:

8 double d1, d2;

9 JFrame jf = new JFrame("Calculator");

10 JLabel jl = new JLabel("Answer");

11 JTextField tf = new JTextField();

12

13 public void init() { // 实现计算器界面

14 Container c = jf.getContentPane();

15 tf.setHorizontalAlignment(JTextField.RIGHT);// 文本框

16 c.add(tf, "North");

17 tl.setHorizontalAlignment(JLabel.RIGHT);// 文本框

18 c.add(tl, "North");

19 JPanel pn3 = new JPanel(new BorderLayout());

20 c.add(pn3, "Center");

21

22

23

24 JPanel pn1 = new JPanel();// 运算界面

25

26 pn1.setLayout(new GridLayout(4, 2, 1, 1))

Compiler diagnostic: cannot find symbol – variable tl

(reproduced in English; recorded diagnostic: 找不到符号 符号： 变量 tl 位置： 类 Calculator)

Accurate: yes

Tool diagnostic:

Reference to undeclared variable:

There seems to be use of a

variable called "tl", but the variable is not declared.

The name is used on line 18 (in the "init" method).

I suggest that a declaration should be inserted

in the "init" method.

Accurate: yes

Precision: Equivalent.

Comment: The variable name “tl” is too short to be considered by the prototype as a match for the

declaration of “jl”, which is a likely candidate.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

169

Event #902

Code sample:

6 {

7 I = new ArrayList<Integer>();

8 }

9

10 public Stats(int[] nums)

11 {

12 I = new ArrayList<Integer>();

13 for(int i = 0; i < I.size(); i++)

14 {

15 this.add(nums[i]);

16 }

17 }

18

19 public void insert(int num)

20 {

21 int index = 0;

22 for(int i = 0; i < I.size(); i++)

23 {

24 if(I.get(index).compareTo(num) < 0)

Compiler diagnostic: cannot find symbol - method add(int)

Accurate: yes

Tool diagnostic:

Line 15: Call to method 'add' on a receiver of type Stats,

which does not have a method with that name:

That method does not seem to be declared.

Accurate: yes

Precision: Higher

Comment: This is arguably a miscategorisation; the variable name is not written correctly, but

rather, the wrong value is used. The prototype gives a slightly more precise diagnostic by virtue of

explicating the receiver type.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

170

D.3 Incorrect Variable Declaration

Event #10

Code sample:

29

30 public static String lineCounter(File f)

31 {

32 Scanner Scan = new Scanner(f);

33 int lineCount = 0;

34 String currrent;

35 while(Scan.hasNextLine())

36 {

37 lineCount++;

38 current = Scan.nextLine;

39 }

40 return ("Number of Lines: " + lineCount-1);

41 }

42 }

Compiler diagnostic: cannot find symbol - variable current

Accurate: yes

Tool diagnostic:

line 37: Possible misspelling of currrent as current (or vice-versa)

Accurate: yes

Precision: Higher

Comment: The tool recognizes “current” and “currrent” (line 34) as likely matches and gives an

appropriate diagnostic.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

171

Event #125

Code sample:

10 /**

11 * Constructor for objects of class Asterix

12 */

13 public Asterix()

14 {

15 System.out.println("Height Of Table : ");

16 Scanner in = new Scanner(System.in);

17 int x = in.nextInt();

18 System.out.print("Width Of Table : ");

19 Scanner in = new Scanner(System.in);

20 int y = in.nextInt();

21 System.out.println();

22 for(int i=1; i<=x; i++)

23 {

24 for(int j=1; j<=x-1; j++)

25 {

26 System.out.print("\t" + "*");

27 }

28 System.out.println("\t" + "*");

Compiler diagnostic: variable in is already defined in constructor Asterix()

Accurate: yes

Tool diagnostic: (none given)

Accurate: no

Precision: -

Comment: Arguably a miscategorisation. In any case, re-declaration of a variable with the same

name is not a form of the error category that the tool is designed to detect.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

172

Event #206

Code sample:

51 sun.changeColor("yellow");

52 sun.moveHorizontal(180);

53 sun.moveVertical(-10);

54 sun.changeSize(60);

55 sun.makeVisible();

56 }

57

58 public void sunset()

59 {

60 sunny = 100;

61

62 while(sunny > 1){

63 sun.slowMoveVertical(100);

64 draw();

65 sunny--;

66 }

67

68 }

69

Compiler diagnostic: cannot find symbol - variable sunny

Accurate: yes

Tool diagnostic:

Reference to undeclared variable:

There seems to be uses of a variable called "sunny", but the variable is not

declared.

The name is used:

- on line 64 (in the "sunset" method)

- on line 61 (in the "sunset" method)

- on line 59 (in the "sunset" method)

I suggest that a declaration should be inserted

in the "sunset" method.

Accurate: yes

Precision: Higher

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

173

Comment: tool diagnosis is clearly more precise and informative.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

174

Event #238

Code sample:

7 */

8 public class Factorial

9 {

10

11 /**

12 * Constructor for objects of class Factorial

13 */

14 public void getFactorial(int number)

15 {

16 tempTerm = 1;

17 for(int i = number; i >= 1; i--)

18 {

19 tempTerm = tempTerm*i;

20 }

21 system.out.println(tempTerm);

22 }

23

24 public static void main(String[] args)

25 {

Compiler diagnostic: cannot find symbol - variable tempTerm

Accurate: yes

Tool diagnostic:

Reference to undeclared variable:

There seems to be uses of a variable called "tempTerm", but the variable is not

declared.

The name is used:

- on line 19 (in the "getFactorial" method)

- on line 16 (in the "getFactorial" method)

- on line 21 (in the "getFactorial" method)

- on line 19 (in the "getFactorial" method)

I suggest that a declaration should be inserted

in the "getFactorial" method.

Accurate: yes

Precision: Higher

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

175

Event #442

Code sample:

13 private Team teamName2;

14 private boolean secondPlayer;

15 private String choicePlayer1;

16 private String choicePlayer2;

17

18 public Play(Team team1, Team team2)

19 {

20 player1 = team1.getPlayer();

21 player2 = team2.getPlayer();

22 teamName1 = team1.getTeamName();

23 teamName2 = team2.getTeamName();

24 secondPlayer = false;

25 }

26

27 /**

28 *

29 */

30 private void figure(String choice,String teamColor,boolean whichPlayer){

31 int xPos;

Compiler diagnostic: incompatible types

Accurate: yes

Tool diagnosis: (none)

Accurate: no

Precision: -

Comment: categorisation notes explain that teamName1 and teamName2 should be defined as

String; their declarations are incorrect. The tool is not designed to detect the resulting error.

Notes: The variable type for teamName1 and teamName2 should probably be 'String'. This would

match the right-hand-side of the assigment. Also 'Name' within the variable name suggests a string.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

176

Event #468

Code sample:

1 /**

2 * ##### ###### ######### ### #################.

3 */

4 public class Pruefungsergebnis {

5 private String student;

6 private double note;

7 private boolean pruefungBestanden;

8 private HashMap <String,double,String,boolean> studentMitNote;

9

10 /**

11 * Erzeugt ein Pruefungsergebnis.

12 *

13 * @param student Name des Studierenden.

14 * @param note Note des Studierenden.

15 */

16 public Pruefungsergebnis(String student, double note) {

17 this.student = student;

18 this.note = note;

19 istPruefungBestanden(note);

Compiler diagnostic: cannot find symbol - class HashMap

Accurate: yes

Tool diagnostic: (none)

Accurate: no

Precision: -

Comment: the HashMap class is not imported, which results in the “cannot find symbol” diagnostic

from the compiler. Also, too many type parameters are required (HashMap needs two and there are

four given). The tool is not designed to diagnose either form of error.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

177

Event #628

Code sample:

1 import java.util.*;

2 public class Grades{

3 private double myGPA;

4 public Grades(){

5 }

6 public void input()

7 {

8 Scanner in = new Scanner(System.in);

9 System.out.print("Enter a letter grade: ");

10 char grade = in.nextLine();

11 grade.toLowerCase();

12
 while (grade.equals("a") || grade.equals("b") || grade.equals("c")

|| grade.equals("d") || grade.equals("f"))

13 {

14 System.out.print("Enter a letter grade: ");

15 grade = in.nextLine();

16 grade.toLowerCase();

17 int letter = grade;

18 }

19 }

Compiler diagnostic: incompatible types

Accurate: yes

Tool diagnostic: (none)

Accurate: no

Precision: -

Comment: The type in the declaration is incorrect; the tool is not designed to diagnose this form of

error.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

178

Event #822

Code sample:

331 }

332

333 public Dienblad getDienblad()

334 {

335 return dienblad;

336 }

337

338 public Iterator<Artikel> getIteratorArtikel()

339 {

340 Artikel it = getIteratorArtikel();

341 return it;

342 }

343 }

344

345

Compiler diagnostic: incompatible types

Accurate: yes

Tool diagnostic: (none)

Precision: -

Comment: similar to case in #628

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

179

Event #953

Code sample:

1 import java.io.*;

2 class kaprekar

3 {

4 public static void main(String args[])throws IOException

5 {

6 InputStreamReader read=new InputStreamReader(System.in);

7 BufferedReader br=new BufferedReader(read);

8 System.out.println("Enter a number");

9 int n=Integer.parseInt(br.readLine());

10 int a=n*n,c=0,int e,f;

11 for(int i=a;i>0;i=i/10)

12 {

13 int d=i%10;

14 c=c+1;

15 }

16 if(c%2==0)

17 {

18 int e=c%((int)(Math.pow(10,c/2)));

19 int f=c/((int)(Math.pow(10,c/2)));

Compiler diagnostic: <identifier> expected

Accurate: yes

Tool diagnostic:

Reference to undeclared variable:

There seems to be uses of a

variable called "e", but the variable is not declared.

The name is used:

- on line 10 (in the "main" method)

- on line 26 (in the "main" method)

I suggest that a declaration should be inserted

in the "main" method.

Accurate: yes

Precision: Lower

Comment: syntax error means that declaration of 'e' is invalid, therefore the tool diagnostic is

strictly accurate. However, it does not give a precise description of the error.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

180

Event #1106

Code sample:

140 }

141 }

142

143 public String DvdList()

144 {

145 String DvdLis = "";

146 if(isEmpty())

147 {

148

149 dvd = "The System is empty nothing to display";

150

151 }

152

153 else

154 {

155

156

 dvd = "Dvd Id: " + list[i].getDvdId() + "Dvd Title: " +

list[i].getDvdTitle() + "Dvd Age Class: " + list[i].getAgeClass() + "Dvd

Category: " + list[i].getCategory() + "Dvd Rating: " + list[i].getRating()

+ " Dvd Id: " + list[i].getnumMins() + "Dvd Length of Time in Shop: " +

getLengthOfTime();

157

158 }

Compiler diagnostic: cannot find symbol - variable dvd

Accurate: Yes

Tool diagnostic:

Reference to undeclared variable:

There seems to be uses of a variable called "dvd", but the variable is not

declared.

The name is used:

- on line 159 (in the "DvdList" method)

- on line 156 (in the "DvdList" method)

- on line 149 (in the "DvdList" method)

I suggest that a declaration should be inserted

in the "DvdList" method.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

181

Accurate: Yes

Precision: Higher

Comment: The tool does not match the declaration of “DvdLis” with its various apparent uses as

“dvd”, however it still gives a diagnostic that is more precise and information than the compiler.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

182

D.4 Method call targeting wrong type

Event #46

This event will not be used for evaluation because it uses an external library to which we do not

have access.

Event #372

Code sample:

16 {

17 datoAuxiliar1 = c1.get(i);

18 }

19 for(int i=0;i<=10;i++)

20 {

21 datoAuxiliar2 = c2.get(i);

22 }

23 for(int i=0;i<=10;i++)

24 {

25 this.add(datoAuxiliar1.concat(datoAuxiliar2));

26 }

27

28 }

29

30 public Object frente(){

31 Object datoAuxiliar = null;

32 if(this.size() > 0){

33 datoAuxiliar = this.get(0);

34 }

Compiler diagnostic: cannot find symbol - method concat(java.lang.Object)

Accurate: Yes

Tool diagnostic:

Line 25: Call to method 'concat' on a receiver of type java.lang.Object,

which does not have a method with that name:

A method with that name is declared in the following types: java.lang.String

Perhaps the method should be called on a different receiver, or the receiver's

type should be declared to be one of the above types.

Accurate: Yes

Precision: Higher

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

183

Event #537

Code sample:

31 /**

32
 * affichage d'un message dans la zone de texte ce message est de la

forme

33
 * observateur this.nom : clic du bouton nom_du_bouton exemple :

observateur

34 * jbo1 : clic du bouton A, voir la méthode getActionCommand()

35 *

36 * @param à

37 * compléter

38 */

39 public void actionPerformed(ActionEvent e) {

40

 String message = "observateur " +

e.getSource().getText(); // à compléter, inspirez-vous de l'applette de

l'énoncé

41 contenu.append(message + "\n");

42 }

43

44 }

45

Compiler diagnostic: cannot find symbol - method getText()

Accurate: Yes

Tool diagnostic:

Line 40: Call to method 'getText' on a receiver of type java.lang.Object,

which does not have a method with that name:

That method does not seem to be declared.

Accurate: Yes

Precision: Higher

Comment: prototype tool does not categorise as “method call on wrong target type”, but the

message is accurate and more precise than that of the compiler

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

184

Event #1173

Code sample:

208 if(newDvd == null)

209 {

210

211 System.out.println("No such Dvd id exists");

212

213 }

214 else

215 {

216

217 System.out.println("Dvd Id: " + getDvdId());

218 System.out.println("Dvd Name: " + getDvdTitle());

219 System.out.println("Dvd Age Clasification: " + getAgeClass());

220 System.out.println("Dvd Category: " + getCategory());

221 System.out.println("Dvd Rating: " + getRating());

222 System.out.println("Dvd Run Time: " + getNumMins());

223 System.out.println();

224 }

225 }

226

Compiler diagnostic: cannot find symbol - method getDvdId()

Accurate: Yes

Tool diagnostic:

Line 217: Call to method 'getDvdId' on a receiver of type DvdTester,

which does not have a method with that name:

A method with that name is declared in the following types: Dvd, DVD

Perhaps the method should be called on a different receiver, or the receiver's

type should be declared to be one of the above types.

Accurate: Yes

Precision: Higher

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

185

Event #1505

Code sample:

12 JLabel results;

13 public DeleteRecordPanel(){

14 dSearch = new JTextField(4);

15 results = new JLabel(".....");

16 dSearch.addActionListener(new TempListener());

17 add(dSearch);

18 }

19 private class TempListener implements ActionListener{

20 public void actionPerformed (ActionEvent event){

21 if ((deleteRecord(dSearch.getText()))==1){

22 results.setText("Records Deleted!");

23 }else{

24 results.setText("No Records Found!");

25 }

26 }

27 }

28 }

Compiler diagnostic: cannot find symbol - method deleteRecord(java.lang.String)

Accurate: yes

Tool diagnostic:

Line 21: Call to method 'deleteRecord' on a receiver of type

DeleteRecordPanel.TempListener,

which does not have a method with that name:

A method with that name is declared in the following types: OrgCRUD,

AbstractCRUD

Perhaps the method should be called on a different receiver, or the receiver's

type should be declared to be one of the above types.

Accurate: yes

Precision: Higher

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

186

Event #1690

Code sample:

27 return first + " " + middle + " " + last;

28 }

29 public String lastFirstMiddle()

30 {

31 return last + ", " + first + " " + middle;

32 }

33 public boolean equals(Name objectname)

34 {

35 String object = objectname.firstMiddleLast();

36 if(this.equalsIgnoreCase(object))

37 {

38 return true;

39 }

40 else

41 {

42 return false;

43 }

44 }

45 public String initials()

Compiler diagnostic: cannot find symbol - method equalsIgnoreCase(java.lang.String)

Accurate: Yes

Tool diagnostic:

Line 36: Call to method 'equalsIgnoreCase' on a receiver of type Name,

which does not have a method with that name:

A method with that name is declared in the following types: java.lang.String

Perhaps the method should be called on a different receiver, or the receiver's

type should be declared to be one of the above types.

Accurate: Yes

Precision: Higher

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

187

Event #1721

Code sample:

13 int side2 = input.nextInt();

14 //Ask user for hypotenuse and store it

15 System.out.println("Input hypotenuse :");

16 double hypot = input.nextDouble();

17 //Check if it is a right triangle

18 if(side1 * side1 + side2 * side2 == hypot * hypot){

19 System.out.println("This is a right triangle!");

20 //Find the angles of this triangle

21 System.out.println("The first angle is 90 degrees");

22
 System.out.println("The second angle is " + tan(side1/side2) +

" degrees!");

23
 System.out.println("The third angle is " + tan(side2/side1) + "

degrees!");

24

25 } else{

26 System.out.println ("Not a right triangle");

27 System.out.print ("End of Program.");

28 }

29 }

30 }

Compiler diagnostic: cannot find symbol - method tan(int)

Accurate: Yes

Tool diagnostic:

Line 22: Call to method 'tan' on a receiver of type Triangle,

which does not have a method with that name:

That method does not seem to be declared.

Accurate: Yes

Precision: Higher

Comment: The prototype tool does not search java.lang.Math for matching method declarations and

so does not the “tan” method declared there. However, it provides a more precise and informative

diagnostic than the compiler.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

188

Event #2075

Code sample:

12 gallery.add(new Picture("monet1.jpg"));

13 gallery.add(new Picture("monet2.jpg"));

14 gallery.add(new Picture("renoir1.jpg"));

15

16 for (Picture pic : gallery)

17 {

18 // TODO: Move the first picture to offset 10,

19 // the second picture ten pixels to the right of the first one,

20 // and so on

21 pic.translate(getMaxX()+10,0);

22 }

23

24 for (Picture pic : gallery)

25 {

26 pic.draw();

27 }

28 }

29 }

Compiler diagnostic: cannot find symbol - method getMaxX()

Accurate: Yes

Tool diagnostic:

Line 21: Call to method 'getMaxX' on a receiver of type ListOfPictures,

which does not have a method with that name:

A method with that name is declared in the following types: Picture

Perhaps the method should be called on a different receiver, or the receiver's

type should be declared to be one of the above types.

Accurate: Yes

Precision: Higher

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

189

Event #2122

This event is not used for evaluation as the code appears to use an external library which is not

available to us.

Event #2203

Code sample:

234 case "7":

235 clearScreen();

236 luckyDipMachine.addNewPrize();

237
 System.out.print("\nPlease press enter to

continue!");

238 userInput.nextLine();

239 break;

240

241 case "8":

242 clearScreen();

243 writePrizeFile();

244 System.out.println("Thank you for playing!!");

245 System.out.println("\nSee you next time!!");

246 break;

247

248 default:

249
 System.out.println("\nInvalid option

selected, \nplease select an option between 1 and 8!");

250
 System.out.print("\nPlease press enter to

continue!");

251 userInput.nextLine();

252 break;

Compiler diagnostic: cannot find symbol - method writePrizeFile()

Accurate: Yes

Tool diagnostic:

Line 243: Call to method 'writePrizeFile' on a receiver of type Game,

which does not have a method with that name:

A method with that name is declared in the following types: LuckyDipMachine

Perhaps the method should be called on a different receiver, or the receiver's

type should be declared to be one of the above types.

Accurate: Yes

Precision: Higher

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

190

Event #2818

Code sample:

5 {

6
 BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));

7 System.out.println("Enter a string");

8 String n = br.readLine();

9 int l = n.length();

10 String g = "";

11 for(int i = 0;i<l;i++)

12 {

13 char ch = n.charAt(i);

14 if(ch.isUpperCase.equals(true))

15 {

16 ch = ch.toLowerCase();

17 }

18 else if(ch.isLowerCase.equals(true))

19 {

20 ch = ch.toUpperCase();

21

22 }

23 g = g+ch;

Compiler diagnostic: char cannot be dereferenced

Accurate: Yes

Tool diagnostic: (none)

Precision: -

Comment: this is a miscategorisation; the recorded categorisation comment indicates that the ‘==’

operator should be used instead of a method call in this instance.

Note: there are no more sessions with the “method call targeting wrong type” categorisation.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

191

D.5 Method not declared

Event #729

This event snapshot is unsuitable for evaluation, as the code appears to refer to an external library

that is not available to us.

Event #1004

Code sample:

108 else{

109

110 return list[i];

111

112 }

113 }

114

115 public String upDatelengthOfTime()

116 {

117 Dvd.setLengthOfTime(1);

118

119 return "DVD information updated";

120

121 }

122

123

Compiler diagnostic: cannot find symbol - method setLengthOfTime(int)

Accurate: Yes

Tool diagnostic:

Line 117: Call to method 'setLengthOfTime' on a receiver of type Dvd,

which does not have a method with that name:

That method does not seem to be declared.

Accurate: Yes

Precision: Equivalent

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

192

Event #1435

Code sample:

20 * @param y ein Beispielparameter für eine Methode

21 * @return die Summe aus x und y

22 */

23 private int einloggen()

24 {

25 int y = -1;

26 int ergebnis = 0;

27 for(int x = 0; x > y; ++x)

28 {

29 ergebnis += eimloggen();

30 }

31 return ergebis;

32 }

33 }

Compiler diagnostic: cannot find symbol - method eimloggen()

Accurate: Yes

Tool diagnostic:

Line 29: Call to method 'eimloggen' on a receiver of type Passwort,

which does not have a method with that name:

That method does not seem to be declared.

Accurate: Yes

Precision: Equivalent

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

193

Event #1517

Code sample:

12 JLabel results;

13 public DeleteRecordPanel(){

14 dSearch = new JTextField(4);

15 results = new JLabel(".....");

16 dSearch.addActionListener(new TempListener());

17 add(dSearch);

18 }

19 private class TempListener implements ActionListener{

20 public void actionPerformed (ActionEvent event){

21 interdelete(dSearch.getText());

22 }

23 }

24

Compiler diagnostic: cannot find symbol - method interdelete(java.lang.String)

Accurate: Yes

Tool diagnostic:

Line 21: Call to method 'interdelete' on a receiver of type

DeleteRecordPanel.TempListener,

which does not have a method with that name:

That method does not seem to be declared.\

Accurate: Yes

Precision: Equivalent

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

194

Event #1863

Code sample:

58 switch(zufall-20)

59 {

60

 case '0': mKarte4= new Karte(5,"Herz"); mKarte1 = new

Karte(5,"Kreuz"); mKarte3 = new Karte(9,"Herz"); mKarte2 = new

Karte(9,"Kreuz"); break;

61

 case '1': mKarte4= new Karte(5,"Herz"); mKarte2 = new

Karte(5,"Kreuz"); mKarte1 = new Karte(9,"Herz"); mKarte3 = new

Karte(9,"Kreuz"); break;

62

 case '2': mKarte4= new Karte(5,"Herz"); mKarte2 = new

Karte(5,"Kreuz"); mKarte3 = new Karte(9,"Herz"); mKarte1 = new

Karte(9,"Kreuz"); break;

63

 case '3': mKarte4= new Karte(5,"Herz"); mKarte3 = new

Karte(5,"Kreuz"); mKarte1 = new Karte(9,"Herz"); mKarte2 = new

Karte(9,"Kreuz"); break;

64

 case '4': mKarte4= new Karte(5,"Herz"); mKarte3 = new

Karte(5,"Kreuz"); mKarte2 = new Karte(9,"Herz"); mKarte1 = new

Karte(9,"Kreuz"); break;

65 }

66 }

67 mKarte4.getZeichen();

68

 // return mKarte1(int pZahl, String pMuster); mKarte2(int pZahl,

String pMuster); mKarte3(int pZahl, String pMuster); mKarte4(int pZahl,

String pMuster);

69
 // mKarte1 = new Karte(5,"Herz"); mKarte2 = new Karte(5,"Kreuz");

mKarte3 = new Karte(9,"Herz"); mKarte4 = new Karte(9,"Kreuz");

70 }

71 //public AufnahmeStapel(byte pAnzahl)

72 {

73 // zAnzahl = pAnzahl;

74 }

75 public void mischeStapel()

76 {

Compiler diagnosis: cannot find symbol - method getZeichen()

Accurate: Yes

Tool diagnosis:

Line 67: Call to method 'getZeichen' on a receiver of type Karte,

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

195

which does not have a method with that name:

That method does not seem to be declared.

Accurate: Yes

Precision: Equivalent

Event #1990

Code sample:

72 break;

73 case 4 : System.out.print ("Sorting Records");

74 break;

75 case 5 : System.out.println ("Searching Records");

76 break;

77

78 case 6 : System.out.println ("Displaying Records");

79 System.out.println ("------ -- ----");

80 System.out.println ();

81 DisplayDetails(Record);

82 break;

83

84 }

85 }

86 }

87

Compile diagnosis: cannot find symbol - method DisplayDetails(java.util.ArrayList<SetGet>)

Accurate: Yes

Tool diagnosis:

Line 81: Call to method 'DisplayDetails' on a receiver of type MainMenu,

which does not have a method with that name:

That method does not seem to be declared.

Accurate: Yes

Precision: Equivalent

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

196

Event #2543

Code sample:

64

65

66

67

68 //no work required below this point

69

70 //just assigned the partner for the current lab

71 public void setPartnerID(int partnerID)

72 {

73 int labID = getNumLabs();

74 labs.setPartnerID(labID, partnerID);

75 hasPartner = true;

76 }

77

78
 public char computeFinalGrade(double[] grade_constants) //the constants

to achieve each letter grade

79 {

80 if (!active)

81 {

82 return 'W'; //student has withdrawn from the class

Compiler diagnostic: cannot find symbol - method getNumLabs()

Accurate: Yes

Tool diagnostic:

Line 73: Call to method 'getNumLabs' on a receiver of type Student,

which does not have a method with that name:

That method does not seem to be declared.

Accurate: Yes

Precision: Equivalent

Event #20392

This event’s code snapshot was not suitable for analysis as the code appeared to use an external

library which was not available to us.

APPENDIX D . EVALUATION OF DIAGNOSTIC TOOL PROTOTYPE

197

Appendix E Publications

Brown, N. C. C., Kölling, M., McCall, D., & Utting, I. (2014, March). Blackbox: a large scale

repository of novice programmers' activity. In Proceedings of the 45th ACM technical

symposium on Computer science education (pp. 223-228). ACM.

McCall, D., & Kölling, M. (2014, October). Meaningful categorisation of novice programmer

errors. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings (pp. 1-8). IEEE.

Submitted for publication and awaiting response:

McCall, D., & Kölling, M. (n.d.). Frequency is not Severity – A New Look at Novice Programmer

Errors. Submitted to ACM Transactions on Computing Education (TOCE).

APPENDIX E . PUBLICATIONS 198

	1 Introduction
	1.1 Hypotheses
	1.2 Summary of Contributions
	1.3 Thesis Outline

	2 Background
	2.1 Introduction
	2.2 Novice Programmers and Errors
	2.3 Terminology
	2.4 Relationship of concepts
	2.5 Diagnostic Messages
	2.5.1 Accuracy and Precision
	2.5.2 Generation of Diagnostic messages

	2.6 Expert Diagnosis of Errors
	2.7 Categorisation of Errors and Determining Severity
	2.8 Background Summary

	3 Literature Review
	3.1 Introduction
	3.2 The Difficulty of Syntax
	3.3 Programming Difficulties that are not Syntax-Related
	3.4 Issues with and Considerations for Diagnostic Messages
	3.5 Identifying Errors Made by Novice Programmers
	3.5.1 Diagnostic Messages Encountered by Novice Programmers
	3.5.2 Categorisation of Logic Errors using Goal-and-Plan Deviation

	3.6 Improving Programming Diagnostics
	3.6.1 General Automatic Diagnostic Generation
	3.6.2 Semi-automated Generation of Diagnostic Messages
	3.6.3 Crowd-sourcing Suggestions for Dealing with Errors
	3.6.4 Diagnosing Errors by Goal and Plan Difference
	3.6.5 Visualisation of Grammatical Structure and Rules
	3.6.6 Static Analysis

	3.7 Other Approaches to Mitigating the Syntax Problem

	4 Methodology
	4.1 Methodology – Part I
	4.1.1 Initial Data Collection
	4.1.2 Large-Scale Data Collection
	4.1.3 Development of a Category Hierarchy
	4.1.3.1 Thematic Analysis
	4.1.3.2 Application of Thematic Analysis to Error Category Development
	4.1.3.3 Validation of Error Categories
	4.1.3.4 Deviations from standard Thematic Analysis

	4.1.4 Error Categorisation
	4.1.4.1 Multiple Errors in a Single Event
	4.1.4.2 Error Recurrence

	4.1.5 Categorisation Analysis

	4.2 Methodology – Part II
	4.2.1 Data Collection
	4.2.2 Refinement and Validation of Category Hierarchy
	4.2.3 Analysis

	4.3 Diagnosis Tool Prototype

	5 Results and Discussion - I
	5.1 Results of Analysis
	5.1.1 Error Categories
	5.1.1.1 Syntax error categories
	5.1.1.2 Semantic error categories

	5.1.2 Intercoder reliability
	5.1.3 Frequency of Error Categories
	5.1.4 Frequency of Diagnostic Messages
	5.1.5 Category Coverage

	5.2 Discussion
	5.2.1 Diagnostic Message Frequencies
	5.2.2 Error Category Frequency Compared to Diagnostic Message Frequency
	5.2.3 Coverage Levels of Error Categories

	5.3 Summary

	6 Results and Discussion – II
	6.1 Results of Analysis
	6.1.1 Error Categories
	6.1.2 Frequency of Error Categories
	6.1.3 Error Difficulty
	6.1.3.1 Resolution Status
	6.1.3.2 Resolution Time
	6.1.3.3 Adjusted Resolution Time
	6.1.3.4 Error Severity
	6.1.3.5 Error coverage of most frequent categories
	6.1.3.6 Intercoder Reliability

	6.2 Sensitivity to Design Choices
	6.2.1 Alternative Error Resolution Threshold Values
	6.2.2 Alternative Formulations for Severity

	6.3 Discussion
	6.3.1 Coverage Level of Error Categories
	6.3.2 Severity of Error Categories
	6.3.2.1 Variable Use
	6.3.2.2 Variable Declaration
	6.3.2.3 Method Call
	6.3.2.4 Method Declaration
	6.3.2.5 Constructor Call
	6.3.2.6 Constructor Declaration
	6.3.2.7 Use of Class or Type
	6.3.2.8 Simple Syntactical
	6.3.2.9 Semantic Error

	6.3.3 Risks and Limits to Validity

	7 Error Diagnosis Tool
	7.1 Expert Diagnosis of Errors
	7.2 Selection of Error Types for Diagnosis
	7.2.1 Misspelled and undeclared variables
	7.2.2 Unresolved method calls
	7.2.3 Final selection of errors for diagnosis

	7.3 Details of Prototype Design
	7.3.1 Diagnosis of unresolved variables
	7.3.2 Diagnosis of unresolved methods

	7.4 Example output
	7.4.1 Variable not declared
	7.4.2 Variable name written incorrectly
	7.4.3 Incorrect variable declaration
	7.4.4 Method call targeting wrong type
	7.4.5 Method not declared

	7.5 Evaluation of Prototype
	7.5.1 Variable not declared
	7.5.2 Variable name written incorrectly
	7.5.3 Incorrect variable declaration
	7.5.4 Method call targeting wrong type
	7.5.5 Method not declared
	7.5.6 Overall Summary of Evaluation
	7.5.7 Risks and Limits to Validity

	8 Future Work and Conclusions
	8.1 Summary
	8.2 Recommendations for Future Work
	8.2.1 Longitudinal Study of Error Severity
	8.2.2 Further Development and Evaluation of Diagnostic Tool
	8.2.3 Extension to Other Programming Languages

	8.3 Conclusion

	References
	Appendix A List of Error Categories
	Appendix B List of Revised Error Categories
	Appendix C Category Hierarchy
	Appendix D Evaluation of Diagnostic Tool Prototype
	Appendix E Publications

