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V Abstract 
The world population is predicted to rise from 7 to 9 billion in the next 30 years and per capita 
meat consumption is predicted to rise by 20% in this time. This places a demand on current 
food producers globally (particularly pork producers as 40% of global meat consumption is 
pig meat) that is not sustainable unless sufficient innovations are implemented. Livestock 
production also contributes 18% of the earth’s global warming and this is also set to 
increase. Solving these problems necessitates producing increased amounts of meat from 
fewer animals in a shorter amount of time. UK companies lead the world in developing 
livestock with superior genetic traits that drive increased productivity through greater feed 
conversion efficiencies, improved disease resistance and greater fertility. Disseminating and 
applying these advances into herds around the world however presents unique problems. 
That is, for female line genetics, (male line genetics can be disseminated via sperm samples) 
producers are left with no other choice but to transport live animals for establishing nucleus 
farms overseas (e.g. In East and Southeast Asia). This can be expensive; energy 
consuming, environmentally unfriendly, and carries significant animal welfare and disease 
transmission concerns. One possible solution is to preserve and transport superior genetics 
in the form of preimplantation embryos (preferably pre-genotyped for sex and desirable 
production trait). To date however pig IVF and production (henceforth termed “IVP”) has not 
been successfully implemented. The purpose of this thesis was to contribute to an ongoing 
effort to improve pig IVP through fundamental studies of porcine reproduction.  Specifically, 
the work focussed on boar sperm production and on the human system (IVF clinic data) to 
provide clues as to the likely effects of embryo biopsy – an essential precursor to genotyping 
a preimplantation embryo as follows:  The first aim was to produce a working classification 
system for boar sperm morphology and test the hypothesis that there are differences 
between high quality and poor quality boars.  A number of hitherto unreported features of 
sperm morphology were established as significantly different in the poor-quality boar seen 
group. The second was to assess the effects of stimulants (e.g. caffeine and adenosine) on 
capacitation and fertilization rates and ask whether there was a correlation between 
capacitation and fertilization.  Here, the utility of caffeine was established and correlations 
were observed between sperm morphology and capacitation rates.  The third aim involved 
establishing whether novel markers of correct sperm chromatin packaging (CMA3 stain, 
nuclear organization, sperm aneuploidy) were indicative of reduced fertility in boars.  Here 
a significant association between the poor-quality boars and level of CMA3 staining was 
observed indicating that this test may be implemented in the future as a means of identifying 
poor quality boars. No significant association with nuclear organization nor sperm 
aneuploidy was observed however. Finally, attention turned to human IVF data to test the 
hypothesis that embryo biopsy adversely affected subsequent embryo development.  Using 
state of the art time lapse imaging no evidence was found to indicate that biopsy had an 
adverse effect in humans suggesting that, if performed correctly, this may also be the case 
in pigs. Taken together, the results provide evidence for the potential of significant advances 
in pig IVP by adapting protocols already commonplace in humans. Indeed, during the 
project, and in part because of it, IVP success rates in the laboratory increased dramatically. 
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1 Introduction 

 

1.1 Reproduction in mammals 

Sexual reproduction is defined as the ability of an organism to generate haploid 

gametes (oocyte or spermatozoa) by meiosis during gametogenesis (Thibault et al., 

2001) Following fusion with another gamete of the opposite sex, this process includes 

the successive rounds of mitosis in order to generate a biochemically self-sustaining 

living form, itself capable of meiosis. 

1.1.1 Mitosis 

Mitosis is the most common form of cell division in most species and is the source of 

cellular growth and repair. During mitosis, two daughter cells with a diploid chromosome 

complement ensue with identical chromosomes and genetic materials as the parent 

cell. Each chromosome is copied during the S-phase (DNA synthesis and chromosome 

duplication step) to generate identical sister chromatids. Mitotic division occurs in 

somatic cells, and consists of several stages such as prophase as chromosomes begin 

to condense, then pro-metaphase followed by metaphase (middle stage) and 

anaphase. At anaphase stage, condensed chromosomes are transferred to the poles 

leading to telophase then cytokinesis (O'Connor et al, 2008) 

1.1.2 Meiosis 

Meiosis involves two cellular divisions that result in the generation of four genetically 

different haploid products arising from one diploid cell (Kleckner et al, 1996).  

The first meiotic division (meiosis I) results in generating half the genetic complement 

of the mother cell, and is therefore called the reductional division. The second meiotic 

division (meiosis II) is described as equational division and this phase is similar to 
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mitosis. Cellular division in this way results in the inheritance of a random combination 

of genes in the offspring, via the shuffling of maternal and paternal genomes by 

random segregation, crossing over and random mating (Terasawa et al., 2007)  The 

prophase stage during the first meiotic division is sub-divided into four separate 

stages such as: leptotene, zygotene, pachytene, diplotene and diakinesis (Kleckner, 

1996,Roeder et al., 1997) .These prophase sub-divisions are demonstrated in figure 

1.1, and figure 1.2, which indicates the meiotic process. 

 

 

Figure 1.1. The stages of prophase I. Chromosomes start to condense in the Leptotene, 
then in the zygotene stage chromosome pairing occurred and synaptonemal complex 
formed in this stage. A bivalent has formed and crossing over occurred in the Pachytene 
stage. The chiasmata remain through the following stages of diplotene, and the 
synaptonemal complex starts to disappear at diplotene and chromosomes begin to align 
along the equator. Finally, chromosomes are fully aligned at the equator, the 
synaptonemal complex completely disappears and the nuclear envelop begins 
fragmentation. Image taken from https://www.quora.com/Genetics-and-Heredity. 
 
 
 

https://www.quora.com/Genetics-and-Heredity
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Figure 1.2. The whole meiotic process (meiosis I and II). During prophase I chromosomes 
begin to pair and decondense and the meiotic spindle starts to form. During metaphase I 
chromosomes align along the equator and attach to the spindle fibres. Then chromosomes 
are separated in the anaphase I stage. Homologous chromosomes are migrated to 
opposite poles in the telophase I stage, and two daughter cells are generated. Telophase I 
is the final stage of meiosis I and after that, meiosis II begins and it is quite similar to the 
meiosis I, while at the end of meiosis II, the telophase II stage, sister chromatids migrate to 
opposite poles resulting in four genetically different daughter cells. Image taken from 
https://staffweb.psdschools.org 

 

1.1.3 Spermatogenesis 

There are several distinguishable stages in the development of a mature sperm, such 

as the proliferative stage, the meiotic and the differentiation stages. In the proliferative 

stage, diploid spermatogonia go through mitotic divisions to generate diploid primary 

spermatocytes. Then primary spermatocytes develop into two secondary 

spermatocytes following meiosis I, and each of them then generate two haploid round 

spermatids after meiosis II. Round spermatids go through the differentiation stage and 

during this phase, involving the tight packaging of DNA, acrosome formation, 

elimination of excess cytoplasm and unnecessary organelles and formation of the 
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sperm tail (Robles 2016, Clermont 1972; Russell et al., 1993). In males, the 

production of gametes occurs continuously from the onset of puberty. Therefore, 

meiosis I and II occur immediately successive to one another (Hilscher et al., 1974). 

Figure 1.3 illustrates the stages that are involved in producing mature sperm during 

spermatogenesis.    

 

Figure 1.3. Schematic of spermatogenesis. This image was taken from 
http://www.repropedia.org/spermatogenes 
 

 

Before fertilisation, the sperm needs to undergo capacitation however this is covered in a 

subsequent section (when discussing animal IVF).  

 

 
 
 

http://www.repropedia.org/spermatogenes
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1.1.4 Oogenesis 

The female gamete is produced during oogenesis and it is a fundamentally complex 

procedure. Maturation of oocytes commences before birth as primordial germ cells 

undergo mitotic division to generate oogonia in weeks four to eight of gestation. During 

the next few months, the number of oogonia increases quickly, then the whole number 

of germ cells in the ovary reaches its maximum, approximately by seven million by the 

fifth month of prenatal development. At this period, cell death begins and many oogonia 

as well as primary oocytes degenerate. Therefore, by the seventh month most of 

oogonia have degenerated except a few of them located near the surface. All surviving 

primary oocytes have entered the prophase of meiosis I by this stage, and most of them 

are surrounded by a layer of follicular epithelial cells; the primary oocyte with the 

epithelial cells is called primordial follicle. Oocyte maturation continues at puberty, as 

near the time of birth all primary oocytes arrest at diplotene stage of prophase I at least 

until puberty. The whole number of primary oocytes at birth is estimated to be 

approximately 600000 to 800000. During childhood, most oocytes become atretic; nearly 

only 40000 remain by the beginning of the puberty, however only 500 of them will be 

ovulated. A group of growing follicles is found at puberty, so at the beginning of the 

puberty, each month 15-20 follicles chosen from this group of follicles to begin the 

maturation process, although most of these follicles die, while the remaining follicles start 

to build up fluid in the place known as antrum, thus they go through to the antral or 

vesicular stage. Fluid accumulation continue constantly prior to ovulation, follicles are 

swollen and are called mature vesicular follicles or Graafian follicles. The mature 

vesicular phase occurs 37 hours prior to ovulation. As oogenesis process resumes in 

the Graafian follicle and meiosis I is completed, two unequal size daughter cells are 
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formed. One of those cells is the secondary oocyte that retains most of the cytoplasm, 

and the other cell is polar body which receives none. The secondary oocyte immediately 

enters meiosis II, but it is arrested at metaphase II until fertilisation happens.  

The process of ovulation occurs at around day 13, when the oocyte (now called the 

ovum) is evicted from the Graafian follicle with a complement of cumulus cells. When 

fertilisation takes place, meiosis II is completed (Ohno, 1962; Sadler et al., 2011) 

 

Figure 1.4. Oogenesis. Five stages are involved in the oogenesis process. First, epithelial 
germinal cells divide constantly to develop many diploid oogonia. In the next stage, oogonia 
grow to generate primary oocyte which surrounded by a layer of follicular cells. Then, 
oocytes go through the first meiotic division, but it arrests in meiosis I until puberty. After 
ovulation, meiosis I is completed, resulting in generating two unequal sizes of daughter cells. 
One cell is secondary oocyte and the other is polar body. The secondary oocytes enter 
meiosis II but it arrests at metaphase II stage until fertilisation happens. The image taken 
from the http://sharonap-cellrepro-p3.wikispaces.com/ 

 

1.2  Overview of fertilisation 

The process of combining two gametes is known as fertilisation. This process occurs when 

mammalian eggs and sperm contact with each other in the female oviduct (Wassermann et 

al., 2001). Firstly, sperm with intact acrosome interact and attach to the zona pellucida (ZP), 

http://sharonap-cellrepro-p3.wikispaces.com/
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and sperm go through the acrosome reaction or extracellular exocytosis. Five steps are 

involved in the fertilisation process: Step one occurs when mammalian sperm attractants 

the egg by a chemo attractant. During this procedure, heat-stable peptides are emitted by 

follicle cells surrounding the egg (known as chemotaxis) (Eisenbach et al, 1999). Step two 

happens when zona pellucida (ZP) attachment occurs. During this step the sperm 

undertakes the acrosome reaction, or cellular exocytosis. Step three begins when the 

spermatozoon penetrates the ZP. Next, step four occurs when the sperm binds to the 

plasma membrane in order to reach the privitelline space between the egg ZP and the 

plasma membrane.  Finally, the fertilisation completes with, the appearance of fusion in step 

five. The action of this fusion event between the egg plasma membrane and a single 

spermatozoon prevents the egg plasma membrane from fusing with other spermatozoa that 

have penetrated the ZP. At this stage, the fertilised egg becomes a zygote, and as a result 

of this, other free swimming spermatozoa are not able to bind to the ZP. Figure 1.5 indicates 

a sperm with an intact acrosome binding to the zona pellucida (ZP) of the egg (Wassarman 

et al., 2001). 
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Figure 1.5. Binding of the sperm to the egg zona pellucida. Light photomicrograph of 
unfertilised mouse in vitro. The image taken from (Wassarman et al, 2001) 
 
 

1.3 Preimplantation human embryo development 

Human embryo development is a biological process which is still not well understood 

although remarkable similarities observed among other mammals, that is, all or most 

developmental stages observed in other mammals are distinguishable in humans (Niakan 

et al., 2012) The fertilised oocyte divides in two cells, followed by 4-cell and 8-cell stages 

known as cleavage stages. After that embryos undergo compaction process which the 

blastomeres maximise their contact with each other by adhesion, forming a compact ball 

that is held together by tight junctions. The next stage is morula (32 cell stage) that develops 

in to early and full blastocyst where inner cell mass and trophectoderm can be differentiated. 

The inner cell mass goes on to form the foetus and the trophectoderm goes on to form the 

placenta (Merton 2002, Cockburn et al, 2010). While the development of blastocyst 

progresses, cells in the two regions divide and the fluid cavity (blastocoel) enlarges. Figure 

1.6 indicates the stages of human pre-implantation embryo development. 
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Figure 1.6. Stages of human pre-implantation embryo development. Images of human 
embryo development from day 0 to day 7 have been indicated. The arrow in day 0 and day 
1 depicts pronuclei. Day 2 to day 3 consider as cleavage stage and around day 4, embryos 
begin to compact and then morula stage forms that consists of blastomeres in a compact 
cluster contained with ZP. Blastocyst forms on day 5 consider as a fluid-filled structure that 
consists of inner cells mass (it is indicated by white arrow in the image) and trophectoderm 
(it is indicated by gray arrow). On day 6 embryos go through hatching process which 
blastocyst hatches from the ZP, and embryo is ready to implant in uterine wall on day 
7(Desai  et al., 2000). 
 
 

 

1.4 Infertility in humans 

Infertility is defined as the inability to achieve pregnancy after one year of regular 

unprotected intercourse and affects approximately 15%-20% couples of reproductive ages 

(Allersma et al., 2013). Infertility can be indicated as male and female factor in adults and 

can have several causes such as environmental, infections, disease and genetic factors. 

For instance, the lack of sperm production in some men (azoospermia) (Carrell et al., 2008) 

and abnormal sperm morphological features are considered as important factors which 
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impact on fertilisation potential. Some clinical causes of infertility in women are associated 

to physiological predispositions, uterine/pelvis area abnormalities, blocked fallopian tubes, 

endometriosis, polycystic ovarian syndrome, premature ovarian failure, hormonal 

imbalances and lifestyle. It has been reported that fertilisation potential in both females and 

males decrease significantly in the last century, which can be associated with lifestyle 

options such as smoking, alcohol consumption, poor diet, drug abuse, infections and lack of 

exercise.  The genetic factor can be considered as an important factor that affects fertility 

potential; genetic factors that can be involved in infertility may include single gene, 

polygenetic/multifactorial causes chromosomal abnormalities as discussed in section 1.1.3 

and 1.1.4 (Tempest et al , 2004)  

 

1.5 Origin of aneuploidy 

1.5.1 Aneuploidy and infertility 

Normal human beings have 23 pairs of chromosomes, although in several cases abnormal 

chromosome copy number can be observed, as chromosomal errors can happen at different 

stages of the development, which can affect the health of the developing embryo. For 

instance, in some cases patients have an extra copy of a particular chromosome like 

chromosome 21 that could cause pregnancy loss or Down syndrome, or the abnormality in 

chromosome copy number can be observed among sex chromosomes which can lead to 

pregnancy loss or Turner syndrome (Munné et al., 2004). It has been reported that 

chromosome abnormality can be considered as an important factor that contributes to 

decreased fertility in human (Wong 2008; Wilton 2005; Hassold et al., 2001). 

 

Aneuploidy is referred to an abnormal number of chromosomes in a cell. For instance, 

having 45 or 47 chromosomes when 46 chromosomes are expected in human cells. When 
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whole chromosomes in meiosis I or chromatids in meiosis II and mitosis separate equally to 

opposite poles (disjunction), errors in chromosome separation (non-disjunction) is resulted 

in formation of abnormal chromosome numbers in the daughter cells. It has been reported 

that humans have the highest level of chromosomal aberrations among of any known animal 

species (Delhanty 1997, Daphnis 2005; Thomas 2003; Fragouli et al., 2008). These 

phenomena are still not well understood although various researches have been performed 

in this field. Previously, it has been reported that there is a correlation between chromosomal 

abnormalities in humans and infertility. Some of these common chromosomal abnormalities 

are known as trisomy (presence of one extra chromosome) of the sex chromosomes. 

Several factors impact on frequency of aneuploidy rate such as the maternal age, Y 

chromosome deletion, and different forms of translocations, inversions, increased rate of 

sperm disomy (Munné et al., 1998). Advanced maternal age has been introduced as a risk 

factor for forming chromosome number abnormality. 

1.5.2 Advanced maternal age 

Most chromosome abnormalities originate from female meiosis (mainly meiosis I) and it 

age-related reduction of meiotic recombination (Sherman et al., 1994). 

The correlation between maternal age and aneuploidy was reported in 1930s for the first 

time (Penrose et al., 1933) and reviewed by Hassold in 2001 (Hassold et al., 2001). 

Hassold and colleagues suggested that the frequency of trisomy in advanced maternal 

age patients are as high as 15 times greater as females in their twenties. It has been 

suggested that chromosomal abnormalities, particularly trisomies, have been observed in 

in vitro fertilisation (IVF) for mothers above the age of 35 years. As maternal age impacts 

on the frequency of chromosome abnormalities, it leads to infertility problems, because 

older women are more likely to generate abnormal chromosome embryos which cannot 

develop to full term and aneuploidy causes pre-implantation embryo loss (Munné et al., 
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1998). It has been reported that more than 40% of spontaneous abortions observed 

among women with advanced maternal age, and most of these spontaneous abortions 

result from embryos with trisomies (Robinson et al., 2001) 

Van voorhis suggested that decreasing fertility in older females is mainly because of poor 

oocyte quality, as successful pregnancies increase significantly in advanced maternal age 

women when donor oocytes obtained from young females (Van Voorhis et al., 2007). It was 

previously reported that aneuploid oocytes indicate more poor quality, and there is a 

correlation between oocyte aneuploidy and advanced maternal age, mostly because of 

chromosome segregation errors in meiosis I (Hassold et al., 2001). As described in section 

1.1.4, oocytes enter meiosis during embryonic development and they arrest in prophase I 

until puberty time, and then when ovulation occurs meiosis I is completed as homologous 

chromosomes are segregated, after that oocytes arrest again at metaphase II until 

fertilisation occurs. If fertilisation occurs, meiosis II is completed by separation of sister 

chromatids. It can be concluded that when primordial follicles activate to grow in the woman 

with advanced maternal age contains an oocyte which was arrested at prophase I for 

decades (Duncan et al., 2012). Several molecular mechanisms have been suggested to 

explain the meiotic origins of aneuploidy including errors in recombination, abnormal spindle 

formation, and microtubule-kinetochore interactions, and fault in the spindle assembly 

checkpoint reviewed by (Hunt et al., 2008). More recent findings in mouse suggest that 

deteriorating chromosome cohesion that occurs during the extended prophase I arrest is 

also likely a significant cause of age-associated aneuploidy reviewed in (Jessberger et al., 

2012).   
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1.6   Assisted reproductive technology (ART) 

Assisted reproductive technology includes all fertility treatments. This technology mainly 

belongs to the field of reproductive endocrinology (Coughlan et al., 2008) and includes in 

vitro fertilisation (IVF), intracytoplasmic sperm injection (ICSI), and embryo freezing 

(Glujovsky et al., 2012). Approximately 15%-20% couples of reproductive ages suffer from 

sub fertility in the UK, and nearly half of them will undertake some form of assisted 

reproductive treatments (Coughlan et al., 2008). The use of assisted reproductive 

technology has improved significantly and it is generally considered to be highly successful 

technique for the treatment of sub fertility (Shevell et al., 2005) 

1.6.1  In vitro fertilisation (IVF) 

The first successful human live birth from IVF was performed in the late 1970s (Steptoe et 

al., 1978). IVF is mostly applied to patients with advanced maternal age, repeated 

miscarriages and implantation failures (Thornhill et al., 2005). 

 

In IVF treatment, the oocyte is fertilised outside the body and the embryo is cultured in vitro 

usually until the blastocyst stage when it is introduced to the uterus. IVF treatment occurs in 

three stages: First, Follicle Stimulating Hormone is used to stimulate the production of a 

higher number of oocytes than would naturally occur. During this treatment, vaginal 

ultrasound scans and blood tests are used to monitor the progress of ovulation. In the 

second stage oocyte collection is performed by using ultrasound guided aspiration of follicles 

using a needle. Finally, in the third stage, oocytes are combined with the semen sample in 

vitro and fertilisation is allowed to occur. The fertilised oocytes are then allowed to develop 

for 16-20 hours. The crucial part of in vitro fertilisation is stimulation of the ovaries in order 

to produce sufficient eggs to fertilise (Verhaak et al., 2007)   
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Figure 1.7. The main steps of IVF technique. Oocytes retrieved after hormonal stimulation 
are fertilised and incubated in vitro for a few days. The resulting hatching blastocyst stage 
embryo(s) can be transferred in utero image taken from 
http://www.nowpublic.com/health/ivf-diagram. 
 

1.6.2 Intracytoplasmic sperm injection (ICSI) 

ICSI was introduced as a new reproductive technology in 1992 as treatment for male 

factor infertility including low sperm count, low sperm motility, or acrosome dysfunction (or 

a combination of these) (Hodes-Wertz 2012, Jakab et al., 2005). As illustrated in figure 

1.8, ICSI involves the use of a small needle (called a micropipette) that is used to inject a 

single sperm into the centre of the egg. A study by Hiraoka and colleagues (2014) 

indicated injecting both the head and the tail shows no difference in results in comparison 

to only injecting the head (Hiraoka et al., 2014). Morphology of the sperm is considered as 

an important factor to improve pregnancy rates (Bartoov, 2003; Berkovitz, 2005;Berkovitz, 

2006;Berkovitz, 2006;Hazout et al., 2006 ), and therefore ICSI includes the selection of 

morphologically superior spermatozoa. This can be achieved within the limits of the 

conventional ICSI inverted microscope (magnification of x400) (Bartoov et al., 2001), 

http://www.nowpublic.com/health/ivf-diagram
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however use of higher magnification and a differential interference contrast optic (x1500 

optical magnification) has been shown to additionally allow researchers and embryologists 

to select motile sperm with a morphologically normal nucleus and a normal nuclear 

content.  

 

 

Figure 1.8. Intracytoplasmic sperm injection (ICSI). A single sperm cell is sucked in to the 
end of the needle. Then, this needle penetrated the oocyte zona pellucida, and the sperm 
cell is injected in to the oocyte to fertilise it. This image is taken from 
http://www.ivf.com/ivf_icsi.html. 
 

1.7 Improving Assisted Reproductive Technology outcomes 

The success of ART is essential for the selection of an embryo for transfer (Hardarson et 

al., 2008). Single embryo transfer is considered to be important for decreasing the risk of 

neonatal complications and pregnancy-related health problems, associated with multiple 

pregnancies (Pickering et al., 1995). This is now standard practice in all UK IVF labs for 

women under the age of 35 Precise criteria for early embryo assessment after in vitro 

fertilization (IVF) is a main factor for selecting the best embryo to transfer to the uterus in 

order to increase the implantation potential rate, successful IVF and high pregnancy rate 

(Beuchat,2008;Ebner,2003;Gardner1998;Garello,1999;Gianaroli,2003;Murber, 2009;Kilani, 

2009;Scott et al., 2007).There are several techniques which aim to promote single embryo 

http://www.ivf.com/ivf_icsi.html
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transfer to increase pregnancy rates; these include embryo morphology assessment, 

investigation of additional markers of viability (Racowsky et al., 2010) . Preimplantation 

genetic diagnosis (PGD) is a technique used in reproductive medicine for the diagnosis of 

single gene defects and chromosomal rearrangements like translocations prior to 

implantation (Frumkin et al., 2008) and preimplantation genetic screening (PGS) can be 

considered as a technique to select suitable embryo for transfer. PGS offers a chance to 

select the most chromosomally normal embryos as discussed in section (1.4) chromosome 

abnormalities, particularly aneuploidy considered as a factor risk to increase pregnancy loss. 

Embryo morphology assessment has been introduced as another appropriate technique to 

select high quality embryo for transfer (Racowsky et al., 2010).  

1.7.1 Preimplantation genetic diagnosis (PGD) 

As previously mentioned, the main aim of PGD is to produce a healthy baby that is 

unaffected by genetic disorders, therefore this technique is commonly performed in couples 

who are at risk of passing on a specific inherited disease (Harper 2012; Ehrich et al., 2012). 

PGD allows the selection and transfer of an unaffected embryo and it is recommended in 

patients at high risk of transmitting of a single gene disorder, in patients with advanced 

maternal age, repeated IVF failure (RIF), or in couples with recurrent miscarriages 

(Kanavakis, 2002; Ehrich, 2012; Ehrich, 2012; Ugajin, 2010; Lim et al., 2008). PGD also has 

application for gender selection. The first clinical PGD was performed in 1989 in couples 

who were at high risk of transmitting a sex-linked disease to their children (Handyside et 

al.,1990). Polymerase chain reaction was applied in order to identify a segment of the Y 

chromosome, therefore the absence of the band on gel indicated a female, unaffected 

embryo. Since this time, fluorescence in situ hybridisation (FISH) has been introduced in the 

early 1990s as a more robust method to perform embryo sexing over use of PCR to amplify 

a Y chromosome sequence (Griffin, 1994;Munné et al., 1993 ),however use of PCR 
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continued for the detection of single gene disorders (Harper, 2010 Spits et al., 2009) 

Furthermore, the use of FISH was extended with the emergence of probes for other 

chromosomes in order to diagnose inherited chromosome abnormalities and aneuploidies 

(Fridström, 2001; Mackie et al.,2002).  

1.7.2 Preimplantation genetic screening (PGS) 

PGS is a technique for the selection of chromosomally normal embryos with the best chance 

of achieving a pregnancy and a live birth. In couples where infertility or sub-fertility is 

diagnosed, PGS is recommended in order to improve the chances of a successful outcome. 

Oocytes or embryos are selected following polar body, blastomere or TE biopsy and genetic 

analysis ensues (Ehrich et al., 2012)  

 

Despite the anticipated advantages of PGS however, it remains a controversial topic, and 

many studies report no benefits of using the technique. Several studies carried out on 

PGS at cleavage and blastocyst stage using FISH to examine aneuploidy have been 

unable to show an increased delivery rate. Conversely, some of those studies indicated a 

significant decrease in delivery rates, raising some concerns over the safety of PGS. In 

addition, there is no evidence to suggest that routine PGS is beneficial for patients with 

advanced maternal age (Staeesen2004; Mastenbroek, 2007; Meyer 2009; 

Stevens, 2004; Debrock, 2010; Schoolcraft, 2009; Jansen, 2008; Harper et al., 2010) 

 Use of FISH in preimplantation genetic diagnosis  

The main part of the FISH technique is designing an appropriate probe which is a small 

piece of DNA of known sequence that is complementary on particular chromosome of 

interest (Wilton et al., 2003). After labelling process, the probe is hybridised with a 

metaphase or interphase cell and visualised under a florescence microscope (it is shown in 

figure 1.9). When the FISH was tested on metaphase cell in order to make sure about 
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accuracy of technique, it can be performed on biopsied blastomeres in order to determine 

chromosome abnormalities. During this process, Biopsied blastomere cells should be fixed, 

the probes are added and after that the sample undergoes hybridisation process and 

incubation process and finally post hybridisation procedure and after that sample can be 

visualised under florescence microscope (Harper et al., 2012). FISH has been used for the 

controversial PGS and it is discussed in a later section. 

 

 

Figure 1.9. Dual colour FISH has been performed on normal human cell (lymphocyte).  
The left image is chromosome at metaphase and the right image represents an interphase 
nucleus. Image was taken from http://www.abnova.com/products 
 

 

Array comparative genomic hybridisation (aCGH) is another important technique applied in 

both PGD and PGS. aCGH in basic principles is similar to FISH, but they have some 

differences. In FISH, normally up to five or six chromosomes are detected at a time, however 

the experiment may be repeated several times until all chromosomes have been detected, 

therefore this technique can be considered as a time-consuming process. While in the aCGH 

technique, all chromosomes are detected in one test, so it is very speedy technique (Ioannou 

& Griffin 2010), aCGH requires whole genome amplification of biopsied single cells, then 

fluorescence labelling process begins as the test DNA sample is mainly labelled green and 
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a reference DNA sample is labelled mostly red (De Ravel et al., 2007). These samples then 

go through a hybridisation process to choose spots of genomic fragments (an array), and 

the colour ratio is distinguished to identify copy number of whole chromosome or specific 

sequences within the test sample. So aCGH is applied for screening aneuploidy and 

recognition of deletions and duplications of specific genes in PGS (Fishel et al., 2010)  

1.7.3 PGD limitations 

Although PGD has many advantages as discussed in the previous section, while this 

technique has some disadvantages such as; technical, financial and ethical aspects 

(Kanavakis et al., 2002). Patients that are recommended to use PGD must first undergo IVF 

treatment, which can be a stressful and costly experience. This is added to with the costs 

and stresses involved in undertaking PGD (Harper et al., 2012). Secondly, as with any 

diagnostic test, there is a possibility that DNA contamination may have occurred during 

sample processing leading to false positive or false negative results (Kanavakis et al., 2002). 

Furthermore, there is a well-documented problem of chromosomal mosaicism(a situation in 

which different cells in the same individual have different numbers or arrangement of 

chromosomes) in developing embryos which makes clinical diagnosis more difficult 

(Kanavakis et al., 2002 ).With regards to FISH in particular, it is necessary to first spread 

nuclei on a glass slide, which results in the possibility of loss of nuclear integrity and 

morphology, and difficulty in interpreting results (Gutierrez-Mateo et al., 2004 ).  

 

1.8 Embryo morphology assessment  

Embryo morphology evaluation, as mentioned in section 1.7 is another tool that has impact 

on improving ART treatments. Embryo morphology assessment is done in two ways; 

traditional method by light microscope and the modern technique using time-lapse 

technology (see section 1.10). Pronuclear scoring according to Scott was based on three 
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morphological features including the size and location of the nuclei, the appearance of the 

cytoplasm, the numbers, size and distribution patterns of the nucleolar precursor bodies 

(NPBs) in the nuclei as described in figure 1.6 (Scott et al., 2000). According to this system, 

when NPBs are aligned at the pronuclear junction with equal number and size, they scored 

as Z1 (the best group). This section covers traditional ways to assess embryo morphology. 

Morphological features that are typically assessed in the analysis of embryo quality include: 

presence of multi-nucleation; the number, size and symmetry of blastomeres at cleavage 

stage; quality assessment of morula and blastocyst stage, as well as the degree of embryo 

fragmentation at each stage of development (Holte et al., 2007). In addition to reducing the 

number of embryos required for transfer, and in turn the risk of multiple pregnancy, embryo 

scoring in this way has provided an opportunity to evaluate several different culture media 

in order to optimise culture conditions, and allowing the opportunity to study embryo 

development in more detail (Ziebe, 1997; Sakkas et al., 1998). Currently however, embryo 

scoring systems differ among different laboratories, as each laboratory has its own embryo 

morphology assessment criteria. In the following section, however, the main procedures for 

embryo morphology evaluation which is used in the majority of IVF laboratories is 

summarised.  

 

1.8.1 Morphological evaluation of zygote (16-18 hours post fertilisation) 

Evaluating zygote or pronuclear quality is considered as the first step of embryo scoring. 

The fertilised zygote is categorised based on its morphological features, such as the number 

of pronuclei, the time of pronuclear appearance and disappearance, the size and alignment 

of pronuclei, and the size, symmetry and distribution of nucleoli. Scott and Smith (Scott et 

al., 1998) and Tesarik (Tesarik et al, 2000) were among the first to suggest systems for the 

assessment of pronuclear morphology. It should also be noted that this stage of evaluation 
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using traditional light microscopy is technically challenging and sometimes impossible, 

therefore use of a time-lapse device for scoring this stage is necessary (see section 1.10). 

Pronuclear scoring according to Scott was based on three morphological features including 

the size and location of the nuclei, the appearance of the cytoplasm, the numbers, size and 

distribution patterns of the nucleolar precursor bodies (NPBs) in the nuclei as described in 

figure 1.6 (Scott et al., 2000). According to this system, when NPBs are aligned at the 

pronuclear junction with equal number and size, they scored as Z1 (the best group).  Z2 

Zygotes are scored upon visualisation of equal number and size of nucleoli which are evenly 

spread into two nuclei. Alternatively, the zygote is scored as Z3 if unequal numbers or sized 

nucleoli are found in separate nuclei, or when the pronuclei are located at the periphery. If 

the pronuclei are scattered with unequal sizes, they were scored as Z4.  

 

An alternative, more simplified classification model system was introduced subsequently by 

Brezinova (Brezinova et al., 2009). Here zygotes are scored according to the number, 

alignment and position of NPBs (Tesarik 2000; Łukaszuk, 2003; James, 2006 Brezinova et 

al., 2009). According to this scoring system, two different patterns (O or Other) are assigned 

based on pronuclei morphology of the zygote and early cleavage rate. Based on this system, 

pattern O is considered as a zygote with the same number of NPBs distributed in the nucleus 

or large NPBs distributed between two pronuclei. A zygote with unequal size of NPBs and 

non-symmetrical alignment was considered as Other (Brezinova et al., 2009). Wright and 

colleagues also indicated that PN morphology has a positive correlation with pregnancy and 

implantation rate, and additionally revealed that PN morphology was an accurate predictor 

of embryo developmental potential to blastocyst stage. 
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Figure 1.10. Zygote or pronuclear classification model according to Scott (Scott et al., 1998). 
Z1 zygote (equal numbers of nucleolar precursor bodies (NPBs) located at the pronuclear 
junction) (A), Z2 zygote (equal number and size of nucleoli which were spread equally in the 
two nuclei) (B), Z3 zygote (zygotes with unequal numbers or size of nucleoli in just one 
nucleus and equal number and size of nucleoli in another nucleus) (C) and Z4 zygote (the 
pronuclei are located in the periphery or are separated with different sizes) (D) (Nasiriet al., 
2015) 
 

 

1.8.2 Morphological assessment of cleavage stage embryo  

The most commonly used criteria for selecting the best embryos for transfer have been cell 

number and morphology (Cummins et al., 1986). Many studies have been performed in 

order to establish an appropriate criterion to grade embryos at cleavage stage, however the 

most notable of these have been presented by Gerris (Gerris et al., 1999) and Van Royen 

(Van Royen et al., 1999). According to Gerris’ established criteria, high quality embryos 

possess the following characteristics: four or five blastomeres on day two and at least seven 

blastomeres on day 3 after insemination, with less than 20% fragmentation rate on day 2 

and absence of multinucleation on day 2 and day 3 post fertilisations (Gerris, 1999; Van 

Royen et al., 1999). Alternatively, another criterion for embryo scoring was established by 

Depa-Martynow (Depa-Martynow et al., 2008) their classification model was created to 

score day three embryos   based on four grades, A to D. Based on this grading system, 

grade A embryo is considered as an embryo with at least seven blastomeres (7-9 

A B 

C D 
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blastomeres) and with a maximum of 20% cytoplasmic fragmentation rate. Grade B embryos 

are considered as embryos with 7-9 blastomeres with more than 20% cytoplasmic 

fragmentation. Grade C embryos are identified as embryos with 4-6 blastomeres and more 

than 20% fragmentation and Grade D embryos are considered as a poor-quality embryo 

with 4-6 blastomeres and over 20% cytoplasmic fragmentation (Depa-Martynow et al., 

2008).  

 

Similarly, the embryo grading classification method introduced by Desai and colleagues was 

also based on cell number and cytoplasmic fragmentation rate, but additionally included 

observations on cytoplasmic pitting, compaction, symmetry of blastomeres, blastomere 

expansion and presence/absence of vacuoles. According to Desai, the cell number and 

fragmentation rate were the most important factor in predicting pregnancy outcomes (Desai 

et l., 2000). Several embryo grading criteria have been established since the mentioned 

early models, with various subtle changes.  More recent studies have suggested that the 

amount of fragmentation, as determined by the percentage volume of the embryo that is 

occupied by fragmentation, may have less importance than the pattern of fragmentation, 

that is, the size and spatial distribution of fragments (Alikani et al., 2000).  As such, a 

classification model established by Stensen and colleagues (2010) was based on the 

amount of fragmentation as well as blastomere size. This is illustrated in Table 1.1 (Stensen 

et al., 2010) On the other hand, however, Pelinck and colleagues argued in 2010 that in 

similarity to Scott’s early system, the cleavage rate plays a more prominent role in 

determining quality evaluation of a pre-implantation embryo prior to transfer. According to 

their findings, the most optimal embryo morphological characteristic is identified as the 

presence of 4 cells on day 2, 8 cells on day 3, with less than 10% fragmentation and no 

presence of multinucleation on both day 2 and 3 (Pelinck et al., 2010). 
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Score Description 

3 Even or uneven blastomeres and with 10%-20% fragmentation 

2 Even or uneven blastomeres with 20%-50% fragmentation 

1 High fragmentation that prevents counting of blastomere numbers 

0 Cleavage arrest or morphologically abnormal embryo 

Table 1.1. Morphological grading and embryo classification according to fragmentation and 
blastomere size based on Stensen’s grading system (Stensen et al., 2010). 
 

1.8.3 Morphological evaluation of blastocyst stage 

It has been reported that day 3 embryo morphology is inadequate for the accurate prediction 

of implantation rate (Graham et al., 2000). Nowadays, most IVF clinics transfer embryos at 

the blastocyst stage, and therefore the blastocyst scoring system established by Gardener 

is used to select the best embryos (Gardner et al., 2000). This is described in table 1.2 and 

is based on 6 stages of blastocyst development, such as the start of blastulation (formation 

of blastula from morula), emergence of the early blastocyst, emergence of the full blastocyst, 

emergence of the expanded blastocyst, the onset of hatching and finally the emergence of 

the hatched blastocyst. 
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Expansion 

grade 

Description 

1 Blastocyst development and stage status 

2 Blastocoel cavity more than half the volume of the embryo 
 

3 Full blastocyst, cavity completely filling the embryo 

4 Expanded blastocyst, cavity larger than the embryo, with 
thinning of the shell 

5 Hatching out of the shell 

6 Entirely hatched out of the shell 

Table 1.2.  Blastocyst scoring according to blastocyst expansion grade (taken from (Gardner 
et al., 2000) 
 

 In addition, a separate grading system was established to score ICM (Inner cell mass) and 

TE (Trophectoderm) independently (Gardner et al., 2000), as described in table 1.3 and 

table 1.4. Previous research that provides insights into the correlation between ICM or TE 

morphology on implantation rate remains contradictory and therefore it is difficult to ascertain 

a true definitive conclusion. While Richter and colleagues found that a larger ICM was more 

predictive of implantation rate as no difference in TE cell number was found between 

implanting and non-implanting embryos (Richter et al., 2001). Ahlstrom and colleagues 

reported that TE morphology is the most important predictive of live birth outcome (Ahlström 

et al., 2011) in agreement with Ahlstrom, Thompson and colleagues suggested that TE 

morphology was able to predict live birth outcome (Thompson et al., 2013). Moreover, others 

have shown that TE morphology is correlated with aneuploidy in the embryo. A study of 194 

euploid embryos and 238 aneuploidy embryos revealed a 2.5-fold increase in aneuploidy in 

embryos with poor trophectoderm morphology (Alfarawati et al., 2011). 
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ICM grade ICM quality 

A Many cells, tightly packed 

B Several cells, loosely packed 

C Very few cells 

Table 1.3. Summary of the morphological grading classification at blastocyst stage to score 
the inner cell mass (ICM) (Gardner, 2000; Nasiri et al., 2015) 
 

 

 

TE grade TE quality 

A Many cells, forming cohensive layer 

B Few cells with a loose epithelium 

C Very few large cells 

Table 1.4. Summary of the morphological grading classification at blastocyst stage to score 
the trophoectoderm (TE) (Gardner, 2000; Nasiri et al., 2015)  
 

To the best of my knowledge, there have been very few studies that have applied strict 

morphological criteria to ask the question of whether embryo biopsy adversely affects 

subsequent development.  

 

1.9 Embryo biopsy 

The removal of cells from an embryo for PGD or PGS is known as biopsy. In early studies, 

acid Tyrodes was used to make a hole in the zona pellucida and blastomeres were removed 

by aspiration. Nowadays however, it is more common to use a laser in order to produce a 

hole in the zona pellucida. Biopsy can be performed on three different stages such as on 

zygote (polar bodies biopsy), cleavage stage biopsy and trophectoderm biopsy at the 

blastocyst stage (Harper et al., 2012). 
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1.9.1 Polar body biopsy 

Polar body (PB) biopsy is performed by aspiration for both first and second polar bodies. 

Performing polar body biopsy requires making a hole in the ZP to have access to perivitelline 

space and also a small bevelled micropipette is required to aspirate the PB slowly (Montag 

et al., 2009). It has been suggested that timing of the PB (polar body) procedure depends 

on whether first PB biopsy or second PB biopsy is required. For instance, for performing first 

PB biopsy, aspiration is performed shortly after oocyte retrieval, while second PB is required 

to perform aspiration simultaneously or sequentially, so the second PB is aspirated 6-14 

hours post fertilisation (Strom et al., 1998). PBs derived for maturing oocyte and biopsied 

PB can be helpful in order to diagnosis genetic status, as first PB genetic status diagnosis 

can be performed before insemination and it is referred to as Pre-Conception Genetic 

Diagnosis (PCGD) (Verlinsky et al., 1990). PB biopsy has an advantage for couples who 

have ethical objections to embryo biopsy. Furthermore, embryo biopsy is prohibited in some 

parts of the world. PB biopsy can be useful for these groups (Fiorentino et al., 2008) 

However, PB biopsy has its own limitation. As PBs has different morphology, the first PB 

normally has crinkly appearance whereas the second PB is smooth, proper distinction can 

be difficult. In order to overcome this problem, sequential aspiration is often suggested 

(Sermon et al., 2002). 

1.9.2 Cleavage stage biopsy 

Hardy and colleagues (1990) were the first group to report that cleavage stage biopsy does 

not affect embryo development, as embryonic blastomeres are totipotent. Therefore, 

removing one or two cells do not impact on the ability of the remaining cells to differentiate 

into all the cell lineages which is essential for embryo development (Hardy et al., 1990). 

Cleavage stage biopsy is performed three days after fertilisation, when embryos are at 16 

cells stage. According to previous study, the blastomere numbers are quite important at the 
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time of biopsy. For instance, if biopsy is performed at four cell stage, the ICM to TE cells 

may be altered additionally, if biopsy is carried out at compaction cell stage, cell removal will 

be very difficult and can result in cell lysis (DuMoulin et al., 1998).  

Several techniques have been established for performing cleavage stage biopsy and all of 

them are require the making of a hole in the zona in order to access the perivitelline space. 

The most used common techniques are blastomere aspiration, alternative techniques such 

as extrusion technique and flow displacement have been established as well (Muggleton-

Harris et al., 1995). There are some advantages to cleavage stage biopsy as performing 

biopsy on day three give adequate times for cell genetic diagnosis as embryo transferred 

can be performed at blastocyst stage (Tarín et al., 1993). Removing two cells from an eight-

cell embryo may also cause damage to the embryo and affect implantation (Cohen et al., 

2007). However, this has not yet been fully assessed. In brief, selecting the appropriate 

blastomere for biopsy can play an important role in the outcome of the biopsy, as the size, 

orientation, shape and volume of the blastomere can significantly impact on the outcome of 

the biopsy (Hardy et al., 1990).   

 

1.9.3 Blastocyst biopsy 

Blastocyst biopsy has been developed gradually, and it is now performed in one of two ways. 

Either a hole can be made on a day three embryos which is then left in culture, allowing 

some cells of the trophectoderm to herniate and enable biopsy on day five or six. 

Alternatively, the hole is made on the morning of day 5. This means that in contrast to making 

the hole on day three, it is guaranteed that the hole will be at the TE as opposed to risking 

that the hole will be made at the ICM. Since the ICM will form the foetus, it is considered to 

be safer to biopsy from the TE. Once the hole is made on day 5, the blastocyst is returned 

to culture for a few hours to allow herniation of the TE and then several cells are aspirated. 
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(Kokkali et al., 2005). The advantage of blastocyst biopsy is that it enables the removal of 

several cells and therefore an increased chance of an accurate diagnosis. However, the 

disadvantage of blastocyst biopsy is that since the embryo is transferred on day 6, there is 

a very limited time frame for diagnosis, compared to 24-48 hours diagnosis time at cleavage 

stage biopsy.  This problem was solved by the introduction of vitrification, where embryos 

are frozen until a diagnosis can be made (Youssry et al., 2008). 

 

1.9.4 Impact of embryo biopsy on embryo morphology 

As embryo biopsy, has become commonplace in the IVF lab (Harper et al., 2010), several 

groups have investigated its impact on embryo development. Using conventional 

microscopy techniques, several groups have observed a reduction in embryo quality and 

developmental rate and potential (Malter 2004; Cohen 1991; Schmoll, 2003; Duncan et al., 

2009). In the mouse model, blastomere biopsy has resulted in increased blastocyst 

contraction and expansion movements (Ugajin et al., 2010). With the emergence of time-

lapse technology, one group has re-visited the impacts of biopsy on embryo morphokinetics. 

This study suggested that the duration of the cell stage at which biopsy was carried out was 

extensively delayed in biopsied embryos compared to non-biopsied embryos. However, 

there was no significant difference in the duration of compaction, morula and early blastocyst 

stage in the biopsied versus the non-biopsied group. In fact, it was revealed that the duration 

of blastocyst stage was shortened in the biopsied embryos (Kierkegaard et al., 2012). 
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1.10  Time lapse imaging 

Morphological assessment of the embryo based on classical method of embryo evaluation 

(section 1.8.1, 1.8.2 and 1.8.3) requires removal from the incubator and examination outside 

of the controlled environment, exposing the embryo to sudden, potentially detrimental 

changes in essential parameters such as temperature, humidity and pH (Zhang et al., 2010). 

However, a revolutionary technique known as time-lapse monitoring overcomes the 

problems associated with traditional embryo morphology assessment in this way (Arav et 

al., 2008). Instead, a time-lapse device allows the live study of human embryos in real time 

and in more detail in comparison to classical methods (Meseguer et al., 2011). Time-lapse 

technology has been considered a non-invasive tool to select better quality embryos for 

transfer. Using a non-invasive method of morphology analysis reduces risk to the developing 

embryos and in so doing promotes a safer environment for the embryo to grow and develop 

(Montag et al., 2013)  

 

However, the first time-lapse studies in the field of embryology were not performed until 

1929 when Lewis and Gregory studied the development of rabbit embryos. With 

advancements in the field of human IVF, it was another 55 years before time-lapse imaging 

was extended to monitor human embryo development in 1984 (Edwards et al., 1984).  Since 

then, modern day time-lapse devices have been rapidly developed, and time-lapse systems 

are now considered to be the ideal tool for the observation of living cells. Several studies 

have suggested that time-lapse systems are ideal for the study of the dynamic biological 

processes of embryo development, as they are capable of providing morphological, dynamic 

and quantitative timing data in a non-invasive environment (Wong et al., 2010).The 

maintenance of constant culture conditions and data evaluation has been improved not only 

by developing technological advances in new devices but also by improving culture media 
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alongside the development of bioinformatics. This section therefore covers a comparison 

between time-lapse devices that are currently used in a clinical setting and discusses 

whether time-lapse systems can be useful predictive markers of embryo development and 

morphological assessment. Several time-lapse devices are available for monitoring embryo 

development, including Tokai-hit, Primo-vision, Auxogyn-Eeva, Genea-Geri, Esco-Mirli® 

Time-lapse and Embryoscope. It is important to note that time-lapse devices vary quite 

significantly in their design; The Tokai-hit time-lapse device consists of an incubator which 

is built around an inverted microscope (Payne, 1997; Mio et al., 2008), whereas the Primo-

vision has a microscope inside a conventional incubator (Pribenszky et al., 2010). Recently 

the Embryoscope time-lapse device has been developed further to include all the necessary 

items such as microscope and incubator integrated into a single piece of equipment (Cruz, 

2011; María, 2012; Meseguer, 2012; Cruz et al., 2012). In all cases, several different time 

points are recorded in the time-lapse images. These include: Disappearance of PN, timing 

of the first cleavage and appearance of nuclei in each of the two blastomeres, timing of the 

second cleavage and finally re-appearance of nuclei in all blastomeres. Thus, the use of 

time-lapse devices has several advantages and disadvantages. These are outlined in the 

following sub-headings.  

1.10.1 Incubation chambers built in to microscopes (Tokai-Hit) 

Several companies such as Tokai-hit (Sanyo) from Japan designed incubation chambers 

built around an inverted microscope, and a black Plexiglas incubator box adjusted by an air 

temperature controller around the stage (Hardarson et al., 2002). This time-lapse imaging is 

analysed by image analysis software contains a small humidified three gas mixture in vitro 

culture chamber with a glass top and bottom placed over the culture dish. The time-lapse 

imaging is analysed by image analysis software. Images of each group are recorded 

sequentially in minimal light at intervals of 30 minutes throughout culture. The embryos were 
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moved out of the light field between recordings (Holm et al., 1998). The advantage of this 

device is the production of high image quality and flexibility.  

1.10.2 Primo Vision time-lapse device 

The Primo Vision (Cryolnnovations, Hungary) is inserted in to a commercially available 

incubator (Pribenszky et al., 2010) which allows for constant culture conditions in an optimal 

environment (Hlinka et al., 2008). The Primo-Vision time-lapse system monitors embryos in 

real time throughout the whole embryo culture period. The Primo Vision is composed of a 

compact digital inverted microscope, placed inside an incubator and connected to a 

controlling unit that can be composed of up to 6 microscopes outside the incubator for 

continuous embryo monitoring. Primo Vision has Hoffmann contrast integration for improved 

image analysis, thus enabling the precise, non-invasive observation of embryo 

developmental dynamics (Gábor Vajta et al., 2012), from polar body extrusion, pronuclear 

formation, time points of cleavages, cleavage intervals, blastocoels pulsation and the exact 

identification of fragmentation and cleavage patterns (Pribenszky et al., 2010). It is 

composed of both a capture and analysis software, allowing embryologists to create 

personalised reports and videos about embryonic development to share with colleagues and 

patients. Primo Vision time-lapse also has the additional benefit of remote access which 

allows embryo evaluations to be performed outside of the laboratory, making online 

assessment with colleagues or other professionals possible (Gábor Vajta et al., 2012;Santos 

Filho et al., 2010). The culture dish designed for use with the Primo Vision machine (either 

9 or 16 well) permits all embryos to be viewed in the 2.5mmx2.5mm exposure area of the 

Primo Vision microscope (Rienzi et al., 2011). The dishes are based on the well of the well 

(WOW) technology; embryos are placed in individual wells but they still benefit from group 

culturing.  
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1.10.3 Early embryo viability assessment test (EevaTM) time-lapse 

The Early Embryo Viability Assessment Test (Eeva) time-lapse system (Auxygen) was 

created by scientists from the Stanford University, who indicated the first link between 

embryo development, details of cell division as well as the molecular health of the embryo. 

The Eeva time-lapse device is composed of a microscope, which fits in to most standard 

IVF incubators and also offers automatic dark-field image capture and cell division pursuing 

without involvement by the embryologist; there is also no extreme light exposure to the 

embryos. Eeva is equipped with a scope screen which fits on the outside of the incubator, 

allowing embryologists to observe the latest images of embryos without opening the 

incubator and disturbing the embryos in terms of temperature and PH. EevaTM analyses 

embryo development and cell division timing parameters to enable embryologists to predict 

the future viability of each embryo by day 2. The EevaTM station provides images and videos 

for each patient; all information can be easily reviewed and all images and videos from this 

device are downloadable (Chen 2012; Ingerslev 2012; Cruz et al., 2013). The main benefit 

of using Eeva time-lapse is that, this system has a sophisticated software which be able to 

select the best embryo automatically based on embryo morphology (Cruz et al., 2012) 

1.10.4 Embryoscope Time-lapse device 

The Embryoscope is known to be an advanced device used in a clinical setting and it was 

approved for clinical use in the European Union in June 2009. It is composed of high quality 

Hoffman modulation contrast optics that allow the observation of morphological features 

(Gábor Vajta et al., 2012). The time-lapse microscope is equipped with high quality Specific 

Leica optics, designed for red light at 635 nm and used to eliminate high energy light 

exposure (Azzarello et al., 2012). The system provides a safe culture environment while also 

providing images and videos every 20 minutes and videos for up to 72 embryos. It uses a 

tri-gas system to permit fast and accurate regulation of CO2 and O2 with minimal gas 
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consumption and direct heat transfer temperature control by individual wells. The 

concentration of CO2 and O2 is recovered in less than 5 and 15 minutes respectively after 

closing and there is a continuous circulation and purification of the air supply. The fact that 

the Embryoscope utilises dry incubation without water pans eliminates problems with water 

condensation and fungal growth on surfaces in high humidity (Azzarello 2012; Azzarello et 

al., 2012). It is equipped with embryo viewer software that can annotate and compare 

development of selected embryos (Meseguer et al., 2012). When comparing all three time-

lapse devices, the Embryoscope time-lapse system has been suggested as the best choice 

to monitor embryo development, mainly because the incubator is built into the device 

avoiding embryo exposure to a changing environment (Meseguer et al., 2012).The 

Embryoscope device also permits embryologists to analyse embryo morphokinetics, 

monitoring the dynamics of embryo development, in addition to traditional qualitative 

morphological observations, referred to as morphokinetics, provides surplus information on 

the development of individual embryos, and development in more detail when compared to 

other non-embryoscope time lapse systems (Campbell et al., 2013).  Moreover, another two 

integrated time-lapse systems have been developed recently; Geri (Genea, Australia) and 

Miri® time-lapse (Esco, Singapore). Both of these time-lapse devices can be installed in any 

clinic; they are both small and compact and each chamber contains heated-lid which allows 

for constant temperature regulation; additionally, Miri Time-lapse system has a larger 

capacity (84 embryos) than any other time-lapse device.  Table 1.5 summaries the technical 

characteristics of these devices. 
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Time-lapse 

devices 

Tokai-

Hit 

Primo-

vision 

EevaTM EmbryoscopeTM Ger-

Genea 

MiriTM 

Integrated 

incubator 

No No No Yes Yes Yes 

Optics Bright 

field 

Bright 

field 

Dark field Bright field Bright 

field 

Bright field 

Frequency 

of images 

 Every 10 

minute 

Every 5 

minutes 

Every 15 

minutes 

Every 10 

minutes 

Every 5 

minutes 

Focal 

planes 

 1 1 7 7 7 

Capacity of 

patients 

1 1 1 6 6 6 

Number of 

embryos 

 16 group 

cultures 

12 group 

culture 

12 individual 

culture 

 14 

individual 

culture 

Automatic 

diagnostic 

tool 

No No Yes No No No 

Operator 

dependent 

 Yes No Yes Yes Yes 

Time 

consuming 

analysis 

Yes Yes Automatic Yes Yes Yes 

Selection 

algorithm 

 User 

defined 

Yes User defined User 

defined 

User 

defined 

Table 1.5. Summary of individual time-lapse Characteristic: Tokai-hit, Primo-vision, EEvaTM, 
EmbryoscopeTM, Ger-Genea, MiriTM 
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1.10.5 Time-lapse devices comparison studies in embryo research 

Time-lapse video cinematography was developed by Payne and colleagues in 1997 the 

main aim of developing this new device was to overwhelm the restrictions of observing 

embryos by conventional microscope. The key advantage of using cinematography was 

producing high resolution, continuous imaging, and also with this system the different 

components of the cell can be discriminated and screened during the recording period 

(Payne, 1997; Payne et al., 1997). Nevertheless, the disadvantage of using this system 

was limitation to an observation time of 17-20 hours. This study revealed formation of PN 

in human oocytes which were obtained from ICSI. Nine years later, Mio and colleagues 

developed more sophisticated device for time-lapse monitoring. This device was the 

Tokai-hit (Japan). The major difference between this device and the one was developed 

previously was maintain optimal culture conditions on the microscope stage for long 

periods (Mio 2006; Mio et al., 2008). Standard interval of image in these devices was 2 

minutes. These devices can be used for longer period compare to previous studied 

device. In this study the morphological procedure of fertilisation, cleavage timing and 

embryo behaviour during development was studied. The result of this study was similar to 

recent finding by recent time-lapse devices. The main advantage of using Tokai-hit 

(Japan) time-lapse device was the high image quality and flexibility make it suitable tool 

for research purposes. Nevertheless, this device disadvantage is that it cannot maintain 

the stability of the embryo culture environment (Hardarson et al., 2002) and using this 

system is difficult and complicated to set up and time consuming to activate and only 

handle single patient at a time, therefore is quite difficult to monitor large sample size of 

embryos, and extensive exposure to light from the standard microscope theoretically can 

damage embryo development. As a result of this outcome, this system has not been 
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suggested for clinical using IVF (Hegele-Hartung et al., 1991). Such systems have been 

used only for research purposes. Few years later the Primo-vision system 

(CryoInnovations, Hungary) was developed, in this device the microscope is inserted in to 

a commercially available incubator (Pribenszky et al., 2010). This device is less flexible 

than Tokai-hit but offers more stable culture condition. Another advantage of using this 

device is its well-of-well (WOW) group culture dish which has a beneficial impact on 

Fancsovits and colleagues compared in . , 2010)et al. (Pribenszky embryo development

ested that embryos from 2013 conventional dish with Primo culture dish and they sugg

pregnancy rate, embryo quality is improved,  highersignificantly ulture dish reach Primo c

and also 12% higher clinical pregnancy rate compare to conventional dish (Vitrolife,2011). 

off entirely between image  edis switch systemthe that nother advantage of this device is A

in order to prevent exposure to electromagnetic radiation, as it has been  theringga

suggested that electromagnetic radiant impact in vitro embryo development by varying the 

ymatic activity of embryos of different speed of cleavages, gene expression and enz

vision culture dish is -. Primo, 2010)et al.(Pribenszky species to decrease embryo viability 

16 wells. Embryos in this system are covered by -well and this culture dish contains 9-multi

rimo Vision device monitor up to 16 embryos from the a drop of culture medium. The P

) illumination and also 550 nmsame patient. This system uses low intensity green LED (

is  . There), 2014et al. (Kovacse embryos up to 11 focal planes this device assesses th

sh, so for research purposes more embryos are required one camera for each culture di

and maximum can have 6 cameras. Massive incubator is required for monitoring more 

lapse device is -embryos; therefore maximum 96 embryos can be monitored. Another time

microscope is  ). The(USA Companyfrom Auxygen Embryo early viability assessment 

-vision. This time-inserted in to any standard incubator in this device the same as Primo

, TMvar outline the cell membranes (Eelapse device uses dark field illumination to bette
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automatic software to analyse embryos.  its devicethis  2010). The big advantage of using

Wong  .2010) ,et al. (Wong Its software automatically select suitable embryo for transfer

and colleagues in 2010 developed a method in order to predict blastocyst formation by 

developed for automated tracking of cell divisions up to 4 cell ; an algorithm was TMEeva

stage. According to this group results, an automated prediction of blastocyst formation can 

. As this system produces an , 2010)et al. (Wong cell stage-be achieved as early as the 4

ark field image to analyse quantitative information on embryo development, automatic d

some embryo morphological characterise like multinucleation is not possible to observe by 

lapse device is the integrated -More recent time. ), 2013et al. (Swain dark field devices

stem which is known as the Embryoscope (Unisense Fertilitech, Denmark). This device sy

has been designed for clinical purposes. A main advantage of this device is its incubator 

s it because there is no need to remove embryo culture dish during embryo development a

lapse devices embryos will be -is an integrated system, compare to previous time

 6 days-out opening the incubator for 5maintained in very stable culture condition with

os . It can provide images of 72 individual embryos at a time. Embry, 2011)et al. (Cruz

culture individually in microwells which are moved one by one in to the field of view, being 

in a good focus of the inbuilt microscope at each of the image acquisitions. The 

itored Embryscope has capacity of 6 of these dishes, so in total 72 embryos can be mon

20 minutes, and embryos can be evaluated in 7 focal planes in -by taking images every 15

) with <0.5 635 nmthis system. This device used low intensity red LED illumination (

-r timesecendom per image light exposure. It has been suggested that compare to othe

lapse devices, Embryoscope seems to be the most user friendly, therefore better embryo 

selection based on kinetic parameters precise cleavage timing are considered as a 

lapse -imeAll these mentioned t. , 2012)et al. (Freourconsiderable benefit of this system 

devices have different design and have different way of observation of embryos and all of 
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them have some limitations (Kovacs et al., 2014). For instance, In the Embryoscope time- 

lapse device , the culture dishes are hold by a tray and this tray under continuous 

movement put each embryo individually in to the field of view. While the tray is filled (72 

embryos), it takes 20 minutes until the next image of given embryo is taken. This 20 

minutes gap does not let embryologists to distinguish rapid changes precisely, for 

example, S1 (t2-tPNf) (time interval between two cell stages and pronuclear formation) 

last approximately <30-35 minutes (Kovacs et al., 2014). As a result of continuous 

movement. Electromagnetic effects, heat and unstable organic compounds released from 

the Embryoscope device, it seems that this system has the potential to apply adverse 

outcomes, although no such negative outcome has been reported so far (Kovacs et al., 

2014). While, this technology allows the system to boost resolution, Primo-Vision system 

needs notably less regular image acquisitions because this device monitors maximum 16 

embryos at the same time without moving them; thus, the exposure to light, 

electromagnetic effects are less than those with Embryoscope. However, the Primo Vision 

system does not provide the image resolution as good as Embryoscope  blastomere 

membrane can be observed by Eeva time-lapse device more precise than other time- 

lapse devices because Eeva uses dark field illumination; so, divisions can be 

demonstrated precisely by this system but there is a disadvantage by using Eeva system 

which is it does not give enough information about intracellular morphology and has 

limited capability to follow embryos after 2 days, as cell number increases after that. By 

the Eeva system is more difficult to distinguish large fragments with blastomeres, which 

could affect accurate embryo selection. Embryos are exposed to considerably higher light 

field.  lapse devices with bright-by the dark field system compared to other time 
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The EEVA device has software that can predict which embryo is most likely to reach 

blastocyst stage according to observations of early markers by day 2 of development 

(Conaghan et al., 2013). 

 

1.10.6 Advantages of time-lapse systems 

Time-lapse imaging systems offer many benefits compared to traditional time-point 

microscopy, as they are able to photographs of the embryos at defined intervals over a 

defined period of time. Captured images are then subsequently processed into a time-lapse 

sequence, thereby allowing morphological, dynamic and quantitative data to be recorded in 

a time-lapse sequence. Producing embryo images using this system provides intricate detail 

regarding embryo morphology and indicates the exact timing of different cleavage events. 

This provides a valuable tool in embryo selection thereby leading to single embryo transfer 

in order to avoid multiple pregnancies as mentioned before (Meseguer et al., 2011) 

Secondly, all time-lapse microscopy images are analysed using specifically designed 

software packages. This image capture software is invaluable for the automated analysis of 

images, enabling quantitative assessment of embryo development from time-lapse videos. 

Whole embryo and blastomere parameters such as; area, perimeter, diameter, degree of 

fragmentation and changes in these parameters over time, can all be monitored by such 

packages (Meseguer et al., 2012). Finally, and arguably most important, time-lapse imaging 

systems permit the analysis of embryo development in an optimal environment, which is 

maintained throughout the duration of the entire period of acquisition. Culture pH and 

temperature changes can cause a stress response and damage to the embryos and 

therefore many studies of time-lapse systems have highlighted that the maintenance of 

embryos in optimal culture conditions improves normal embryo development (Kierkegaard 

et al., 2012). 
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1.10.7 Disadvantages of time-lapse systems 

The disadvantages associated with the use of time-lapse devices are largely attributed to 

technical challenges. These include the maintenance of samples in the culture dish, as well 

as ensuring that the embryos remain within the field of view of the microscope (Lemmen et 

al., 2008). Since embryos are non-adherent, there is the possibility they may move in culture 

dishes, particularly use of a motorised system to continuously move different embryos into 

the field of view during time lapse microscopy observations (Meseguer et al., 2011) 

alternatively, embryos may be cultured in micro wells within the culture dish. Secondly, time-

lapse imaging introduces the potential for phototoxic effects on the embryos. Indeed, 

previous research has confirmed that light can cause DNA damage, localized heating as 

well as production of free radical species within blastomeres (Frigault et al., 2009). Time-

lapse microscopy utilizes visible light in both bright field imaging and dark field imaging. 

However, light exposure in time-lapse microscopy is significantly less than that used in 

classical time-point analysis. Visible light is also less disruptive than high energy light such 

as fluorescence or ultraviolet light (Meseguer et al., 2011). In support of this, a previous 

study Sugimura and colleagues found that in both human and mammalian preimplantation 

embryos, time-lapse microscopy did not cause any considerable differences in the 

developmental potential of high quality embryos, blastocyst viability, blastocyst formation 

(Kierkegaard et al., 2012 ) or pregnancy rate (Sugimura et al., 2010 ),It is important to note 

however, that in some cases, not all events can be assessed in all embryos, as it is possible 

that some nuclei may be out of focus after the first cleavage (Lemmen 2008; Hlinka et al., 

2012).  

Time lapse application in IVF 

Time-lapse technology allows embryologists to identify abnormal embryo cleavage which is 

not possible to observe using classical embryo evaluation methods. Abnormal cleavage is 
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defined by a direct or rapid cleavage to three cells in less than five hours (Rubio et al., 2012). 

This research group reported that the implantation rate will reduce when such embryos are 

transferred compared to embryos that did not display such abnormal behavior, and also 

confirmed that time-lapse devices have the ability to distinguish abnormal cleavage stage. 

There are numerous applications for time-lapse monitoring in the IVF laboratory. These 

applications include validation of conventional static assessment methodologies, prediction 

of embryo viability, investigation of the impact of variables such as culture media, O2 

concentration and drug regimens on embryo morphokinetics, investigation of embryo 

morphology and its impact on implantation and pregnancy rates, quality control and 

improving flexibility and working patterns. This section covers practical aspects of time-lapse 

imaging, developing embryo selection algorithms based on morphokinetic data and 

discusses how time-lapse systems can be integrated into the IVF laboratory to increase 

outcomes for patients.  

1.10.8 Time-lapse methodology to select/deselect morphokinetic criteria 

Time-lapse monitoring of embryo development, in addition to traditional qualitative 

morphological evaluations, provides morphokinetic information on individual embryos. 

These data are produced by the manual or automatic recording (annotation) of the embryo 

images, precise embryo developmental time is recorded and this timing can be analysed 

against outcome variables such as implantation, ploidy or live birth. This kind of analysis 

provides opportunity for embryologists to recognize the preferential selection for embryo 

transfer and cryopreservation. During embryo annotation by time-lapse system, if some 

embryos indicate very poor morphology according to defined criteria for morphological 

evaluation these embryos can be deselected for transfer.  
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1.10.9 Time-lapse algorithm designed for embryo selection 

Time-lapse algorithms designed for embryo selection differ among different groups and type 

of time-lapse device (Aparicio, Cruz, & Meseguer, 2013). Parameters defined in each case 

are not precisely the same. Wong and colleagues in 2010 established an algorithm for 

EevaTM time-lapse device in order to have more appropriate embryo selection. The main aim 

of this group was to perform a large study to show that successful development to the 

blastocyst stage can be predicted by the 4-cell stage, before embryonic genome activation. 

According to this study three parameters introduced as an indicator of embryo implantation. 

These parameters are: duration of first cytokinesis, time period between the end of first 

mitosis and the beginning of the second mitosis and period between second and third 

mitosis. These parameters were validated by EevaTM time-lapse automated analysis. This 

group developed an algorithm for automated tracking of cell divisions up to 4 cell stage. This 

tracking algorithm utilises a probabilistic model estimation method according to Monte Carlo 

methods (Wong et al., 2010). Wang and colleagues (2013) developed another algorithm by 

Eeva time-lapse in order to recognise the number of cells at every time point of a time-lapse 

microscopy of early human embryo development. Authors in this study mentioned that the 

accurately measuring mentioned timing parameters in embryo development (Wong et al., 

2010) requires an automated algorithm that can recognise number of cells at any stage 

during the time-lapse monitoring process. Three level classification method was used to 

categorise embryo stages (Wang, Moussavi, & Lorenzen, 2013). Another recent study by 

Conaghan and colleagues (2013) was performed to evaluate the first computer automated 

model in order to predict blastocyst formation and to establish how time-lapse screening 

data can aid the embryologist on day 3 embryo selection and transfer. According to this 

study, the probability of predicting high quality blastocyst is significantly increased by adding 

EevaTM with traditional day three embryo morphology and using this new technique 
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alongside the existing embryo grading procedure improves day three embryo transfer 

(Conaghan et al., 2013). Primo-vision time-lapse device do not have automated tracking of 

cell divisions, while all parameters (PN formation and disappearance, 1st, 2nd, 3rd 

cleavages, multinucleation, fragmentation, compaction, morula and blastocyst) need to be 

entered manually. Pribenszky introduced first, second and third cleavage timing as an 

indicator for blastocyst formation in mouse embryos , Primo-vision time-lapse was used in 

this study (Pribenszky et al., 2010). The key findings using the Primo-vision time-lapse were 

the correlation between embryonic health and mitotic process, selecting better quality 

embryos compare to previous devices, Introducing non-invasive embryo cleavage rate 

(ECR) as a separate diagnostic method in order to provide  an efficient detection of viable 

early embryos (Hlinka et al., 2008) .Meseguer and colleagues (2011) developed a 

multivariable model by Embryoscope time-lapse designed in order to classify embryos 

according to their probability of implantation rate. They designed an algorithm in order to 

select high quality embryo for transfer (Meseguer et al., 2011). The main difference between 

this study and previous designed algorithm by the Wong group was that in the Meseguer 

group investigation, all embryos were transferred and found morphokinetic parameters to 

predict embryo implantation but in Wong group study, none of embryos were transferred 

and their end point was blastocyst formation. Also, research was done only on 

cryopreserved embryos which could impact on research outcomes (Wong 2010; Meseguer 

et al., 2011). The Meseguer group also found a correlation between embryo morphological 

characteristics (blastomere evenness, fragmentation and multinucleation) and implantation 

in addition to cleavage timing (Meseguer et al., 2011). One year later, the Hashimoto group 

reported that embryos which spend shorter time to complete the second and third cell 

division, can lead to significantly better quality blastocysts (Kierkegaard et al., 2012). It has 

been confirmed that shorter cleavage time from 2 cell to 8 cell can lead to higher expanded 
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blastocyst and implantation rate (Basile et al., 2014). Kierkegaard and colleagues suggested 

that shorter second mitotic division <5hr can be considered as an indicator of predicting high 

quality blastocyst (Bronet et al., 2014), this finding was in accordance with result of (Wong 

et al, 2010), but Kierkegaard findings indicated that duration of second mitotic division 

predict only blastocyst formation not pregnancy. PN disappearance, multinucleation at 2 cell 

stage and appearance of nuclei after first division were not significantly different between 

implanted and non-implanted embryos (Bronet et al., 2014). This group finding was not in 

accordance with result of (Meseguer, 2011; Chawla et al., 2015). It can be concluded that 

the differences between these two group results can be as a result of sample size, as the 

Meseguer (2011) group used larger sample size; Kierkegaard group had only 84 embryos 

for their investigation. Campbell and her group designed a model to identify euploid embryos 

from aneuploidy. This group performed an experiment to identify whether morphokinetic 

parameters are different in aneuploidy and euploid embryos (Campbell et al., 2013). They 

performed this research on 64 embryos and all of these ICSI embryos were cultured in the 

embryoscope and were annotated, then embryos were biopsied on day 5 and 

preimplantation genetic screening (PGS) was done via array comparative genomic 

hybridisation in order to identify aneuploidy embryos. Campbell and colleagues designed an 

algorithm using non-invasive morphokinetic parameters to identify aneuploidy and euploid 

embryos. According to their model, embryos were classified in three groups of aneuploidy 

risk: low, medium and high risk. It was found that tsb and tb were significantly different 

between euploid and aneuploid embryos. These variables were used for classification of 

aneuploidy risk. According to Campbell (2013) model, if tsb (start of blastulation) <96.2 hpi 

(post insemination) and tb<122.9 hpi, identified as low risk of aneuploidy, if tb (formation of 

full blastocyst) <122.9 hpi and tsb≥96.2 hpi is in medium risk and embryo is classifies as high 

risk of aneuploidy if tb≥122.9 hpi. It was the first published paper determining a correlation 
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between time-lapse morphokinetic parameters and embryo ploidy (Campbell et al., 2013). 

An earlier study indicated that there is a very weak correlation between blastocyst 

morphology and aneuploidy while this study was done without the benefit of time-lapse 

devices (Alfarawati et al., 2011). Campbell and colleagues performed another study to 

estimate the efficiency of their recent aneuploidy risk classification model. In this study, they 

evaluate their new developed model on patients who underwent ICSI treatment (88 

blastocyst embryos transferred) without biopsy and pre-implantation genetic screening 

(PGS).  The fetal heart beat (FHB) and live birth (LB) of transferred blastocysts compared 

based on calculated aneuploidy risk groups (low, medium, and high). It was found that there 

is a significant difference for FHB and LB rates between embryos categorised as low and 

medium risk of aneuploidy. This study introduced their developed aneuploidy risk 

classification model as an alternative method to increase live birth outcome when PGS is 

unavailable, although a larger data set is required to verify the efficiency of this model 

(Campbell et al., 2013). Ottolini and colleagues did not agree with the Campbell group 

conclusions, as they indicated that there was no difference in aneuploidy rate between fast 

developing blastocysts and slower developing ones.  The Campbell group (2014) came to 

the conclusion that faster developing blastocysts have a lower aneuploidy rate and are 

therefore more likely to result in higher implantation rate compared to slower developing 

blastocysts. Also, the Ottolini group analysed 956 biopsied embryos and indicated that there 

is a positive association between maternal age and delay in blastocyst development 

(Capalbo unpublished data), so this group believed that the Campbell group designed 

aneuploidy risk model is predictive of maternal age alone. The previous group analysed 

embryos from maternal age range of 25-47 and therefore this large maternal range could 

lead to biased results  (Ottolini, Rienzi, & Capalbo, 2014). However Campbell and 

colleagues in a published paper mentioned that ploidy was the main factor which impacts 
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on blastulation morphokinetics rather than maternal age (Campbell, Fishel, & Laegdsmand, 

2014) performed a study to determine if Campbell (2013) aneuploidy risk classification 

models are predictive of aneuploidy/euploidy among all IVF clinics and this group suggested 

that time-lapse morphokinetic parameters do not approach the accuracy of preimplantation 

genetic screening (PGS) with array comparative genomic hybridisation. Another study was 

done by Basile and colleagues (2014) in order to select chromosomally normal embryos by 

time-lapse devices. They designed a larger study (504 embryos were analysed) than the 

Campbell group study. They also established another algorithm in order to select 

chromosomally normal embryos without performing PGS. According to their data which was 

provided by logistic regression, they established a hierarchical model and categorised 

embryos in four groups (A-D). This classification was made according to binary variables t5-

t2 and cc3. It was suggested that if the value of t5-t2 was inside the optimal range, the embryo 

was classified in group A or B. If the value of t5-t2 was outside the optimal range, the embryo 

was placed in group C or D, the classifying of embryos in A-D group according to cc3 variable 

was similar to t5-t2. A significant decrease in the percentage of chromosomally normal 

embryos from group A-D was observed, so this new model can increase the probability of 

selecting chromosomally normal embryos without PGS (Basile et al., 2014). The main 

difference between this study and previous one with Campbell group was that in this recent 

research a very large data set was analysed and also chromosomally normal embryos can 

be identified by day 2 and may be this way can be considered as a tool to incubate embryos 

by day 3 instead of extending embryo culture to day 5.  Also in this research day 3 biopsies 

were done but in the Campbell study day 5 biopsy was performed. A more recent study 

reported that the mean time duration for Pronuclei disapearance,t2,t3,t4,t5,t5-t2,cc2 (duration 

of second cell cycle) and cc3 (duration of third cell cycle) significantly differ between 

chromosomally normal and abnormal embryos, so this recent research introduced more 
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time-lapse variables in order to distinguish chromosomally normal and abnormal embryos 

(Chawla et al., 2015).  

1.10.10 Time-lapse system, morphokinetics and treatment outcome 

In the field of assisted reproduction time-lapse has been used for more than 40 years in both 

animals and humans (Payne, 1997; Mio, 2008; Wong, 2010; Nagy, 2003; Montag et al., 

2011). Time-lapse technology results have indicated that the timing and coordination of 

events during early development is very important and has a positive correlation with embryo 

developmental potential and implantation. There are several studies in the literature that 

have focused on specific events during embryo development and how these may correlate 

with treatment outcome. To summaries, these have found that there is a correlation between 

PN morphology, appearance and disappearance on the timing of the first cleavage event, 

the number of blastomeres on day two and day three embryo quality (Payne 1997, Lemmen 

2008).  Following on from these observations, it was also found that the duration of the first 

cleavage (14.3 ± 6 minutes), the time period between the first and second mitotic division, 

the time period between second and third mitotic division, and cleavage synchronization 

were all accurate predictors of blastocyst formation and implantation rate (Wong et al., 

2010). More specifically, it has been shown that embryos that cleave from two to three cells 

in less than 5 hours have statistically significantly lower implantation potential than embryos 

with a normal cell cycle length. Interestingly, the most abnormal short cell cycle (1.8 hours) 

was identified by Rubio and colleagues in 2012 was the strongest predictor of blastocyst 

formation are t5 (five cell formation 48.8-56.6 hours) and cc2 (time interval between t3 and 

t2) ≤ 11.5 h. Interestingly some research groups have also defined negative predictive 

factors correlated with limited implantation rate, including; direct cleavage from one cell to 

three cells stage, uneven blastomere size at two-cell stage and the presence of 

multinucleation at the four cell stage (Meseguer et al., 2011) by combining these findings 
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with positive factors an algorithm was established for embryo selection based on embryo 

morphokinetics and also embryos were classified into 10 groups overall however, not all 

studies are in agreement with one another and therefore the exact morphokinetic 

parameters which may result in a higher success rate are not clear-cut. For example, while 

one study found that early PN disappearance was associated with good embryo quality 

(Lemmen et al., 2008), others found that late disappearance of PN was associated with 

higher live birth rates (Azzarello et al., 2012), or that PN distribution was not associated with 

outcome (Mesequer 2011; Chamayou 2013; Kirkegaard et al., 2013). In addition, while one 

study showed that the timing of the first cleavage was associated with a positive outcome 

(Lemmen et al., 2008), another found that early cleavage was not associated with higher 

implantation rates (Mesequer et al., 2011). Similarly, some studies showed that the time to 

blastulation was indicative of implantations rate (Campbell et al., 2013) whereas others 

showed that that the time taken to morula compaction and blastocyst formation was not 

associated with outcome. 

  

1.11 Assisted reproductive technologies in farm animals 

After humans, the most common ART application has been observed in cattle and porcine. 

Cattle and pig IVF play an important role in industry as exporting breeds of each of them is 

very expensive presents the risk of diseases transmission, therefore by performing IVF on 

cattle or pig, many embryos have obtained and transporting embryos can be safer and 

cheaper (Mapletoft and Hasler et al.,2005). The second part of this thesis is focused on 

porcine IVF technology.  

 

Pig breeding is of significant commercial importance, with worldwide figures suggesting that 

approximately 44% of total meat consumption (pork, beef and poultry) is pork, (United States 
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Census Bureau, 2012). The overall pork consumption increase has been largely stimulated 

by a remarkable growth of Chinese demand for meat while developed countries 

considerably maintained a steady trend (Bruinsma et al., 2003). The pig is an important 

biomedical model for human disease. There are numerous field of biomedical research that 

have benefited from the use of porcine models, for example research in areas such as cystic 

fibrosis (Rogers, et al., 2008), Parkinson’s disease (Swanson et al., 2004), spinal muscle 

trophy obesity, female health, cardiovascular disease and nutritional studies reviewed in 

(Tumbleson and Schook et al., 1996) .First of all, some breeds have similar body size to 

humans allowing for an easy technology transfer. Secondly, the main advantage of 

preferring pig as a model organism in numerous biomedical researches is that the pigs reach 

sexual maturity earlier the other large animals and a good sized litter farrowed after a 

relatively short pregnancy. Finally, pig anatomy, genetics, pharmacokinetics and 

pathophysiology mimic those of the human body more precisely than other organisms such 

as rodents (Walters et al., 2012).  Similarities are such that the pig can be a donor for 

xenotransplantation (Ekser et al., 2012). Also, availability of several well-defined cell lines, 

representing a broad range of tissues, will help with testing gene expression and drug 

susceptibility. Regarding genomics, the pig genome has high sequence and chromosome 

structure homology with humans, and pig gene sequencing technology has advanced 

significantly in order to assist with improving genetics and proteomics tools for pigs (Lunney 

et al., 2007). Pigs have been introduced as an accurate model of human embryo culture, as 

this part of research was mainly based on murine model. Several advantages that make pig 

as a suitable embryology models consist of that porcine oocytes can be easily retrieved from 

abattoir material, recent improvements have been achieved in their gamete/embryo 

manipulation in vitro (Nguyen et al., 2011). It has been suggested in comparison with murine, 

porcine and human embryos, porcine embryo has the most similarity with human embryos 
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(Vajta et al., 2010). The comparisons are summarised in Table 1.6. The main difference 

between human and porcine embryos is that porcine oocyte/embryos have much more lipid 

than humans (McEvoy et al., 2010); this may suggest different metabolic patterns in early 

development. It has been suggested that high lipid content cause some difficulties in 

performing accurate microscopy and molecular assay as well as Cryopreservation (Sturmey 

et al., 2009).  

1.11.1 ARTs in pig industry 

ART technology has been introduced in section (1.6, 1.6.1 and 1.6.2). Common applications 

of this technology in farm animals industry include artificial insemination (AI) and in vitro 

fertilisation (IVF). These technologies in this section are discussed in pig industry. 

1.11.1.1 AI 

AI has been considered as the simplest of ARTs and the first one used in farm animal 

breeding. This technique is performed by injecting sperm in to female’s uterus or cervix by 

an artificial tool such as a catheter in order to achieve a pregnancy in vivo by ways of other 

than sexual intercourse. AI has become a standard technique in pig production because it 

allows for increased selection potentials and servicing of a large number of females by most 

desirable sires (Roca et al., 2004). At least 70% of sows and gilts are mated in porcine 

industry in the United States, using the AI technique. Semen used for AI is normally collected 

from boars housed at off-site studs and semen is diluted in commercially available 

extenders, these extenders contain buffers and nutrients that preserve the spermatozoa 

viability for three or more days of post collection (Kuster at al., 1999).   

1.11.1.2 Commercial application of pig IVF 

As the demand for pork is increasing an efficient pig selection and breeding process is 

essential. The safety and quality of meat, animal welfare and environmental impact of 

breeding and transport process are paramount (Kenias et al., 2005). Application of pig IVF 
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technology in pig breeding industry is beneficial to the industry as this technology allows 

transporting embryos instead of piglets which reduces shipping cost, minimises the 

environmental impact of shipping and reduces animal welfare issues. Furthermore, embryos 

can be screened for required features such as gender (Sembon et al., 2008) and other 

genetic linked commercial characteristic like fertility and fat accumulation by using 

preimplantation genetic screening (PGS) methodologies (Foster et al., 2010) The 

commercial application of pig IVF and the advantages of pig as suitable biomedical model 

organism altogether attracted an interest in adopting IVF technique to the porcine model 

(Abeydeera, 2002; Gil et al., 2010). 
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Characteristic Mouse Embryo Pig Embryo Human Embryo 

Zygote’s metabolic 

reserves  

5-8 times smaller 

than humans 

Similar to humans - 

Cytoplasmic lipid 

content 

Low Extremely high Moderate 

Development to 

blastocyst 

Day 4-5 Day 5-6 Day 5-6 

Embryo genome 

activation  

2-cell stage 4-8-cell stage 4-8-cell stage 

Amino acid 

metabolism  

Different from 

humans 

Similar to humans - 

Pyruvate/lactate 

versus glucose 

metabolism  

Switches to 

glucose at 48h 

No strict need for 

glucose until 

hatching 

No strict need for 

glucose until 

hatching 

Overall sensitivity 

in vitro 

Low Very high High 

Genome structure  Different from 

humans 

Similar to humans - 

Methylation/ 

demethylation in 

early development  

Extensive Moderate Probably 

moderate 

Timing and 

location of embryo 

transfer  

Exact match 

required 

Flexible Flexible 

Developmental 

abnormalities after 

in vitro culture 

Occasional Very rare Very rare 

Table 1.6. Summary of the differences and similarities between human, pig and mouse 
embryos. Both mouse and pig have been introduced as a suitable model of human embryo 
research, while the pig appears to have more similarities with human and is therefore 
considered to be an accurate model in reproductive biology and embryo research. This table 
is adopted from (Vajta et al., 2010). 
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1.11.2 Porcine IVF challenges 

Several research papers reported high live birth rates of IVF porcine embryos by using in 

vitro matured oocytes (IVM) (Yoshioka et al., 2003; Somfai et al. 2009), but porcine IVF is 

still faced with some techniques challenges such as polyspermy, oocyte maturation issues 

and fertilisation issues. This section covers these mentioned challenges 

1.11.2.1 Polyspermy 

The major unsolved issue in porcine IVF is polyspermy: penetration of two or sometimes 

more spermatozoa in to a single oocyte resulting in a polyploidy embryo. It has been 

reported that the incidence of polyspermy in vitro has been observed in approximately 50% 

of cases, which is significantly higher than the polyspermy frequency in vivo (Wang 1991; 

Abeydeera et al, 1997). Hunter and colleagues (1990) suggested that in vivo conditions, the 

oviduct microenvironment contributes in completion of oocytes to block polyspermic 

fertilisation (Hunter et al., 1990). Many approaches have been considered to decrease 

polyspermic rate in in vitro conditions including pre-incubation of spermatozoa or oocytes 

with cultured oviduct epithelial cells (Nagai et al., 1990) or follicle somatic cells (Wang et al., 

1992) or incubation of oocytes in collected oviduct fluid (Kim et al., 1996), however the 

polyspermy issue is still unresolved (Yang-Hai et al., 2003). Some factors impact on 

polyspermy rate during porcine IVF such as high concentration of spermatozoa for 

performing fertilisation, insufficient IVM oocytes, and suboptimal fertilisation conditions 

(Hunter 1990; Niwa 2001; Wang et al., 2003). There is the possibility that reducing 

spermatozoa concentration can decrease the polyspermy frequency, but it can also 

decrease sperm penetration rate (Abeydeera 1997; Wang 1991; Niwa 2001; Wang 2003; 

Funahashi 1993; Barbo et al., 2003). In 1992, ICSI was performed to decrease polyspermy 

incidence (Nakai et al., 2003), although this solution was not very successful because the 
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procedure led to failures in the oocyte activation, sperm head decondensation, and Zona 

Pellucida (ZP) breaks (Catt 1995; Flaherty 1995; Hewitson 2000; Li 1999; Shirazi et al., 

2009). Another tested approach to decrease polyspermy was zygote centrifugation to assist 

pronuclei visualisation and selection of monospermic embryos, although the technique is 

affected by a significant error rate (5-20%) (Gil et al., 2008). The sperm to oocyte ratio is 

close to unity when the first sperm penetrate, and only increases after the zona reaction has 

occurred, as the frequency of polysmery is correlated with the number of sperm per oocyte 

at fertilisation (Hunter et al., 1993; Rath et al., 1992).  However, reducing the sperm to oocyte 

ratio could not overcome polyspermy problem, because decreasing this ratio results in 

decreasing the sperm penetration rate. It has been found that supplementing IVF media with 

specific oviduct factors such as oviduct-specific glycoprotein, hyaluronan play an important 

role in increasing fertilisation rate by decreasing polyspermy frequency (Kouba 2000; Suzuki 

2000; Hao et al., 2006). Coy and colleagues (2008) found that exposing oocytes to oviduct 

fluid makes their ZP resistant to sperm penetration. This resistance happens first through 

the binding of an oviduct-specific glycoprotein to ZP glycoprotein, then through the 

stabilisation of the ZP complex by the binding of glycosaminoglycan, such as heparin. Also, 

some other methods have been developed to decrease the number of sperm reaching the 

oocyte. These methods are known as biometric microchannel IVF system, straw IVF, 

modified swim up technique, and microfluidic sperm sorter (Clark 2005; Li 2003; Park 2009; 

Sano et al., 2010). These approaches can reduce the polyspermy rate, but do not abolish 

the problem completely. The Funahashi and Romer research group reported in 2004, that 

brief gamete incubation in the supplemented fertilisation media with caffeine, revealed a 

reduced rate of polyspermy, however this finding depends on the sperm to oocyte ratio 

(Funahashi et al., 2004), and it should be optimised according to the impact of boar or 

storage on sperm fertilisation potential (Gil 2008; Alminnana et al., 2005). However, using a 
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caffeine supplement may induce spontaneous acrosome reaction which may cause 

polyspermy (Gil et al., 2008). Other studies have suggested that compounds such as 

adenosine and fertilisation promoting peptides have the ability to induce fertilisation without 

significantly increasing the frequency of polyspermy (Funahashi et al., 2000).  

 

1.11.2.2 Oocyte maturation issues 

Immature pig oocytes can be retrieved from abattoir material and cultured until maturity, with 

an oocyte maturation rate of 75%-85% or higher reported in most laboratories (Yuan & 

Krisher, 2010). Complete oocyte maturation includes the nuclear and cytoplasmic element. 

Nuclear maturation can be achieved by standard IVM protocol, but cytoplasmic maturation 

rate is not satisfactory using this method. This can have considered as co factor of high 

polyspermic rate and low embryo development rate after IVF of IVM oocytes (Gil et al., 2008) 

(Gil et al., 2010). Development of a suitable medium plays an essential role in improving 

oocyte maturation and numerous supplements have been examined in maturation medium, 

for example: calf serum, porcine follicular fluid (pFF), gonadotrophin and epidermal, 

cysteine, cystamine, glutamine, beta-mercaptoethanol, 9-cis retinoic acid, hormones and 

growth factor (Abeydeera 2002; Grupen 1995; Day 2000; Aminana et al.,2008). Most of 

these chemicals are included in common maturation media: NCSU23, NCSU37 and 

TCM199. pFF suggested as an important factor in protecting oocyte from oxidative stress 

and its supplementations resulted in the best maturation rate, although its detailed function 

is not understood well yet (Tatemoto et al., 2004). Moreover, using matured oocytes in a 

chemically defined media can be resulted in successful piglet production in IVF treatment 

(Yoshioka 2008; Mito et al., 2009).  In addition, important factors which impact on oocyte 

maturation rate include selecting appropriate oocytes; they are normally aspirated from 

ovaries of slaughtered animals, as oocytes from different phases are mixed together. 
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Marchal and colleagues indicated that oocytes which were obtained from large follicles 

(more than 5mm in diameter) have more potential to develop to embryos than oocytes 

generated from smaller follicles (less than 3mm in diameter), although controlling follicular 

size is quite difficult and in pig and cattle follicle size is seasonal. For instance, follicle size 

was significantly larger during winter, while follicle size considerably small during summer 

(Marchal et al., 2002; Zeron, 2001; Bertoldo et al., 2011). After oocyte aspiration from 

appropriate follicle, oocytes are selected for maturation based on their morphology. Oocyte 

morphology is evaluated according to criteria which includes the number of cumulus cell 

layers and assessment of the granulation of the cytoplasm, while morphological criteria differ 

among investigators (Marchal et al., 2002). Kewak and colleagues in 2014, for the first time 

reported that oocytes generated from large follicles showed reduced IVM time, their 

maturation time changed from 40-44 hours to 18 hours (Kewak et al., 2014). Reduced IVM 

time on obtained oocyte from large follicles can result in decreasing oxidative stress level in 

cumulus-oocyte complex (CCOs, and therefore the reacted oxidative stress (ROS) will be 

less in matured oocytes from large follicles. It also results in higher oocyte maturation rate, 

as high level ROS is harmful for oocyte and can damage the cell membrane affecting embryo 

development and causing early embryo death (You et al., 2010). 
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Figure 1.11. Ovary classification based on follicle size. This image taken from (Kewak et al., 
2012). 
 

1.12 Boar semen quality and its impact on porcine IVF 

Apart from obtaining good quality porcine embryos in order to get higher IVF success rates, 

semen quality should be evaluated. Pig production in AI and IVF is highly correlated with 

semen fertilising capacity. Quality of boar semen’s one of the most important variables in 

pig IVF. The effect of boar quality on IVF efficiency has been reported (Gil et al., 2008). Boar 

semen sub fertility causes economic losses for breeder and also semen quality play an 

important role in IVF success (Broekhuijse et al., 2011). Boar semen fertility potential varies 

according to breed line and genetic factors (Wimmers 2005; Lin et al., 2006). Also, boar 

semen quality can change over a short period of time because of seasonal patterns (Sancho 

et al., 2004), environmental effects (Murase et al., 2007) and infections (Bussalleu et al., 

2011). Semen quality variables include semen concentration, sperm motility, semen 

morphology, capacitation rate, DNA damage and chromosomal factors. Semen parameters 

which are important for fertile boar is presented in table 1.7. 

 

 

 

 



Maryam Sadraie ART in Porcine IVP 

 

59 

 

 

Parameter Requirement  

Ejaculate Volume 150-250 ml 

Sperm 
concentration 

150x106 sperm/ml 

Motility 70% progressive 
motility 

Morphology 85% typical forms 

 

Table 1.7. Parameters required for identification of fertile boar semen. This table is based 
on data from Orsztynowicz et al., 2011. 
 

1.12.1 Techniques to evaluate boar semen quality 

Evaluating boar semen quality based on breeding tests is costly and time consuming, 

therefore, several techniques are used to assess semen quality. The following sections 

discuss the approaches used to select better quality semen samples. 

1.12.1.1 Motility assessment 

Sperm motility is one of the important parameters in semen quality evaluation; this technique 

has been considered as the most commonly tested parameters for artificial insemination (AI) 

purposes because this test is simple, quick and inexpensive (Sancho et al., 2004). Motility 

evaluation is performed by determining the proportion of progressive, non-progressive and 

immotile sperm by microscopy examination. It has been suggested that motility can be an 

indicator of the intactness of the membrane and functionality (Gadea et al., 2005). Motility 

has been suggested as a capable seminal parameter because there is considerable 

correlation between motility and piglets farrowing rate (Gadea, 1998; Gadea, 2004; Sellés 

et al., 2003). Several studies indicated that the correlation between sperm motility and 

fertility are conflicting (Tardif 1999; Xu, et al. 1998). It has been reported that assessing 
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sperm motility by microscope is not very accurate (Foote et al.,2003). An approach to 

overcome this problem was the development of a computer assisted sperm analyser device 

(CASA) which resulted in a significant correlation between fertility and motility, although this 

technique had some limitations, because the accuracy of the CASA device depends on the 

training of staff, on the calibration, validation, and standardisation of the device  

(Holt, 1997; Verstegen, 2002; Broekhuijse et al., 2012).  

 

Other factors can affect boar sperm motility. For example, changing temperature can 

influence boar sperm motility (Lopez Rodriguez et al,. 2012), although this problem can be 

solved by incubating sperm at 37Cº for 15 or 20 minutes ., Also motility can be increased by 

adding caffeine as a supplement to fertilisation media  It is important to note that there can 

be a massive variation between different breed of boars and also from the same individual 

with semen collected at different times (Quintero-Moreno 2004;Ramió 2008;RamióǦLluch, 

et al.,2011) .Bacterial contamination has been suggested as another important factor that 

can affect sperm motility and other kinetic parameters. It was reported that verotoxigenic 

and enterotoxigenic strains of Escherichia coli significantly reduce the progressive motility 

of sperm (Bussalleu, et al. 2011).  

1.12.1.2 Boar sperm morphology 

The morphological features of boar spermatozoa were examined by Retzius 1909 for the 

first time, but they did could not distinguish boar spermatozoa morphological features in 

depth. The reason was that the detailed description given by Retzius was based on 

material collect at autopsy and might not apply to spermatozoa in ejaculated semen. 

Therefore In this classical research, there was confusion about boar sperm morphological 

features (McKenzie, 1938; Rao, 1949 Holst, 1949; Lasley et al., 1944). Hancock and 

colleagues in 1956 continued studying boar sperm morphological features in more detail 
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compare to previous studies, and the difference was, this group studied sperm 

morphological features of ejaculated semen (Hancock et al., 1956). Hancock group (1956) 

could examine the boar sperm morphological features, particularly acrosome morphology 

in more details. They distinguished outer acrosome and inner acrosome. They described   

that outer acrosome is larger which covers the posterior third of the head. The inner 

acrosome has a creasentic structure.  His group introduced the equatorial segment which 

is an area surrounded by the hollow posterior border of the inner acrosome and by the 

straight posterior boundary of the outer acrosome. The equatorial segment described as 

the area of overlap between the larger outer acrosome and the smaller inner acrosome.   

The information was given about the structure of midpiece and tail by Hancock research 

group agreed with previous research group results (Hancock et al., 1956). Hancock group 

reported that the cytoplasmic droplet is attached to the distal end of the middle piece.  It 

was found that the acrosome morphological feature is quite depends on boar spermatozoa 

storage in vitro. Pursel and colleagues in 1966 studied on the impact of temperature on 

boar sperm acrosome morphology. It was reported that sperm acrosome morphology 

changed by cold shock at at 0, 5, 10 and 15 C for 10 minutes and this group indicated that 

sperm acrosome developed cold shock resistance during 2.5 and 4.5 hours’ incubation at 

30 C (Pursel et al.,1966). Another study indicated that the osmolarity of the staining 

solution and the duration of sperm exposure to the staining solution before smearing or air 

fixation suggested as a key element affecting acrosomal morphology. Also, another group 

suggested that Sperm acrosomal morphology of extended frozen or thawed semen was 

more vulnerable to these factors than was that of fresh semen (Bamba et al., 1973). 

Research in boar sperm morphological features did not perform for a long time as traditional 

researches achieved reasonable description in terms of boar sperm morphological features 

and factors that impact on morphological features. The impact off boar sperm morphological 
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features on fertility potential became important as the breeds fertilisation potential play an 

important role on farm industry. Therefore, Bonet and colleagues in 1991 suggested that 

many boar sperm morphological abnormalities have been associated with infertility (Bonet 

and Briz et al., 1991). Other studies found no correlation between sperm morphological 

abnormality and fertility potential (Gadea 1998; Martinez 1986; Xu, 1998; Waberski, 1990; 

Zeuner et al., 1992). Hirai and colleagues reported correlation between sperm head 

morphology and fertility, sperm morphology was evaluated by automated sperm analyser 

(ASA) technique in this research (Hirai et al., 2001). In 2005, the German Umbrella 

Association for pig production (ZDS-Zentralverband der Deutschen Schweineproduktion) 

explained that if boar semen exhibits up to 25% morphological abnormal characteristics it 

can be considered as morphological normal semen (Schulze et al., 2014). Thundathill and 

colleagues in 2001, found that bull sperm with proximal cytoplasmic droplet abnormalities 

are not able to bind to the ZP, this group found lower fertility rates, as it has been reported 

that incidence of proximal cytoplasmic droplet in sperm is associated with sperm immaturity 

and has an impact on litter size rate as well (Thundathill et al.,2001). However, another study 

from a different group a few years later reported no correlation between proximal 

cytoplasmic droplet and bull sperm fertility potential (Quintero-Moreno et al., 2004). Previous 

studies indicated that there is positive correlation between acrosome morphology and sperm 

fertility potential (Galli and Bosisio et al., 1988). It has also been demonstrated that only 

sperm with an intact acrosome initially can bind to the ZP of the pig oocyte (Fazeli et 

al.,1997). Lovercamp and colleagues suggested that boars with lower fertility and farrowing 

rates had a significantly lower amount of morphologicaly normal features (Lovercamp et 

al.,2007). It has been reported that morphology of head and tail considerably impact on 

sperm motility (Gil et al., 2009). A more recent study confirmed that there is a correlation 

bettween boar sperm head morphology, retained cytoplasmic droplet and litter size rate 
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(McPherson et al., 2014). Furthermore, sperm membrane intactness is crucial for proper 

sperm metabolism and function (Harrison et al., 1996). Numerous authors reported that the 

membrane structure is not strongly associated with boar sperm fertility potential  (Gadea, 

1998; Gadea 2004; Tardif et al., 1999),  although some other authors achieved inverse 

outcomes regarding correlation between boar sperm acrosome morphology and fertility 

potential compared to previous studies. They found that a large number of abnormal 

acrosomes is correlated with infertility; however no significant correlation between normal 

acrosome region (NAR) and fertility was indicated (Hammitt, 1989; Sellés, 2003; Perez-

Llano, 2001; Flowers et al., 1996).  

Therefore, sperm membrane can be considered a marker of sperm vitality and it plays an 

essential role to maintain sperm function, some handling procedures such as dilution, type 

of semen extender, storage of sperm in unsuitable temperature (boar semen should be 

stored at 17°C) can damage the membrane and can result in reduced fertility po tential 

(Leahy, 2011; Waberski et al., 2011). 
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1.12.1.3 Techniques used to evaluate boar sperm morphological features 

Semen morphology can be assessed using different commercially available stains. 

Microscopy observation at 1,000x magnification allows distinguish between normal and 

abnormal spermatozoon (Bonet et al., 2012). Table 1.8 describes the typical forms of boar 

spermatozoon morphometric parameters, and table 1.9 demonstrates abnormalities. 

 

 

Parameter  Size (µm) 
Head Length 9 
Head width 4.7 
Flagellum Length 45 
Total Length 54.5 

Table 1.8. Boar spermatozoon morphometrical parameters (WysokiMska et al., 2009). 
 
 
 

 
 

Figure 1.12. Typical morphologically normal boar spermatozoa. As was observed at 1,000X 
magnification and stained by Sperm Blue®. Different parts of spermatozoa were indicated 
as: acrosome region (A), occupies nearly 60% of head volume; Midpiece (M) can be 
differentiated from Tail (T) as it has greater thickness. 
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Type Classification 
Mature spermatozoon Normal 
Immature spermatozoon Proximal droplet 

Distal droplet 
 

Abnormal Head Head size /shape 
Isolated head 
Multiple head 

Abnormal Tail Folded tail 
Coiled tail 
Multiple tails  

Abnormal acrosome Absent acrosome 
Acrosome shape/size 
Lifted acrosome 
Detached acrosome 
 

Other Midpiece abnormality 
Vacuolisation 

 
Table 1.9. Classification of common boar semen morphologically abnormal features. 

Taken from (Bonet et al., 2012) 

 

 

The first evaluation of sperm morphology was determined by monitoring unstained sperm 

sample under contrast light microscopy. Several staining techniques are available to 

evaluate sperm morphology in details. These staining techniques are known as:  

Papanicolaou, Eosin-nigrosine, Trypan Blue, Giemsa, Diff-Quick, and more recently 

SpermBlue® (Kruger, 1996 Shipley, 1999; Van der Horst et al., 2010). Papanicolaou 

staining was considered to be a suitable technique to assess sperm morphology for many 

years according to the world health organisation criteria (WHO) (Organization, 

1999;Menkveld et al.,1990) and also this staining can be used for automated sperm 

morphology analysis (ASMA) (Coetzee et al., 2001). Papanicolaou staining does however 

have some limitations, as it is very time consuming technique because it includes more than 
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20 steps and in addition, more than 12 various chemical solutions are involved in performing 

this staining. The other negative point of using this staining was that as alcohol fixation and 

xylene dehydration are the main part of the procedure these two steps can cause cell 

shrinkage (Ross et al., 1953). Clinics and research laboratories required simpler, quicker 

and safer technique to assess sperm morphology, therefore other staining techniques were 

introduced by researchers, such as: Diff-Quik, Hemacolor and Giemsa. These staining 

techniques compared to Papanicolaou staining, are quicker and fewer steps are involved, 

as they include fixative step followed by staining step with two staining solutions. Diff Quick 

staining was proposed to be a fast technique as it had only one fixative solution and one 

staining solution, but this technique had a number of difficulties because it was found that 

this staining causes sperm swelling and background staining (Kruger, 1988; Organization et 

al., 1999). A few years later Eosin-nigrosine staining was introduced and was suggested for 

animal use as well as human. The difficulty with this staining is that it does not discriminate 

the different components of the sperm (Björndahl, et al. 2003; Van der Horst et al., 200). 

More recently, sperm blue staining was introduced as an appropriate staining to evaluate 

sperm morphology much more accuracy than previous techniques with the potential to stain 

the different components of sperm like the acrosome, head, midpiece and flagellum. This 

staining technique works very well in both human and animal sperm. The whole procedure 

takes only 25 minutes and morphology evaluation can be performed accurately in a much 

shorter period of time compare to previous staining techniques (Van der Horst et al., 2010).    

 

Other techniques to evaluate sperm morphology include techniques the application of 

fluorescent dyes to stain intact or damaged spermatozoa. These dyes are quantified by 

counting sperm cells under fluorescent microscope or by a flow cytometer (Ericsson, 1993; 

Althouse, 1995; Christensen et al., 2004). The most commonly used fluorescent dye in 
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porcine andrology laboratories is the SYBR14-PI stain that allows discrimination of live and 

dead or moribund spermatozoa (Garner et al., 1995). Various probes have been developed 

to assess membrane, acrosome integrity and mitochondrial function De Andrade, et al. 

2007). However, to obtain accurate results by applying fluorescent dyes, a large number of 

sperm cells should be counted under a fluorescent microscope, making it very time 

consuming. Instead, use of a flow cytometer has been suggested to resolve this problem, 

as thousands of sperm can be counted under a fluoresent microscope, making it very time 

consuming. Instead, use of a flow cytometer has been suggested to resolve this problem, 

as thousands of sperm can be counted in a short period of time (Petrunkina et al., 2010). 

 

1.13  Boar sperm cryopreservation 

Exchanging genetic material among breeding populations with liquid stored semen is difficult 

as a result of the short life-span of liquid stored spermatozoa (Wagner et al., 2000) a 

workaround could be boar sperm cryopreservation. Semen cryopreservation can also be 

useful to the pig industry for a number of reasons such as: preserving of superior gene pools, 

increasing genetic improvement, spreading specific lines across countries and decreasing 

the need for boar transportation (Almlid, 1995; Johnsonet al., 1998). Sperm cryopreservation 

has proven quite successful in humans and cattle but not in pigs and it has been suggested 

that boar sperm might be more sensitive to cryopreservation than other species’ (Guthrie et 

al., 2005). The cryopreservation process is made of three steps: cooling, freezing and 

thawing all of which can damage the membrane’s structure and function (Hammerstedt, 

1990; Guthrie et al., 2005). Leboeuf and colleagues reported that the freezing process 

causes biochemical and functional damages to spermatozoa, and results in decreased 

sperm motility, viability and fertility potential (Leboeuf et al., 2000). Indeed, boar sperm is 

very sensitive to the temperature changes occurring during cryopreservation (Holt et al., 
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2000) as it is particularly vulnerable to temperatures below 15OC  which can trigger the cold 

shock process (Gilmore, et al. 1996). This sensitivity to cold shock is correlated to the lipid 

composition of the boar sperm membrane the main fatty acid components of which are 

docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) .It was found that plasma 

membrane damage can be caused by changes in the arrangement of the membrane 

phospholipids (Medeiros, et al. 2002). During cryopresevation, polyunsaturated fatty acids 

(PFAs) decrease considerably because of lipid peroxidation, therefore to decrease the 

formation of reactive oxygen species and protect the plasma membrane’s function, 

antioxidants and fatty acids are commonly added to the semen in preparation to 

cryopreservation. Pursel and colleagues in 1972 suggested that boar spermatozoa can 

acquire cold shock resistance by keeping them at room temperature in seminal plasma for 

1-5 hours (Pursel et al., 1975) .In 1988, it was found that keeping boar sperm at 15 OC for 

more than three hours before cryopreservation can result in improved sperm motility and  

fertility potential (Almlid, 1988; Eriksson et al., 2002). When the freezing stage of the 

cryopreservation procedure is performed, the temperature decreases from -15 OC to -60 OC, 

which causes sperm damage because of the formation of intracellular ice and cellular 

dehydration. The spermatozoa will lose water rapidly to prevent intracellular ice formation, 

however this will lead to both cell and plasma membrane dehydration (Mazur, 1970; Parks 

et al., 1992). Intracellular ice formation and dehydration are considered as the main factors 

that impact on boar sperm fertility potential after cryopreservation and may lead to sub 

fertility (Roca, 2004 Roca et al., 2005).  
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1.14 Sperm capacitation 

Natural fertilisation can only occur when the sperm acquires the ability to penetrate the ZP 

and after its full maturation. During this process, the acrosome goes through the activation 

process and acquires the ability to penetrate the ZP. This biological change is known as 

capacitation (Chang et al., 1958). In vivo, capacitation occurs in the female reproductive 

tract while in vitro it is stimulated by the incubation of sperm and oocytes in an appropriate 

capacitation medium which needs to contain bicarbonate, calcium and serum albumin 

(Yanagimachi et al.,1994).Sperm capacitation includes several steps such as: 

reorganisation of the membrane proteins, regulation of membrane phospholipids, reduction 

of membrane cholesterol levels, changes in the sperm motility and ability to go through the 

acrosome reaction (Rathi et al., 2001).  

Calcium concentration, protein phosphorylation, acrosome and membrane reorganisation 

and can be influenced by the changes in the uterine and oviduct fluid resulting from the 

different stages of the oestrous cycle (Hunter, 1974; Brown et al., 1973). The average time 

for the completion of capacitation in boar spermatozoa is two hours in vivo (De Lamirande, 

et al. 1997; Harrison 1996; Yanagimachi et al.,1994). In vivo boar spermatozoa are 

deposited in the female genitalia well a head of ovulation, gathered in the uterotubal junction 

(UTJ), where a functional sperm reservoir (SR) is established. This phenomena ensure that 

an appropriate number of viable, potentialy fertile spermatozoa are available to fertilise the 

ovulated spermatozoa at the upper amppularly junction(AIJ) (Rodriguez-Martinez et al, 

2007). According to in vitro sudies, it has been suggested that capacitation occure in the SR 

but it is not yet clear how capacitation or sperm release are regulated by the porcine SR 

(Hunter et al, 1998).  However, most studies on capacitation have been done in vitro. As this 

step is quite essential for fertilisation, and a better understanding of sperm capacitation could 

lead to better fertilisation outcomes in vitro. Sperm capacitation in vitro can be assessed by 
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several techniques. Fluorescently labelled lectin has been employed to flag the acrosome 

reaction (AR) as lectin it binds specifically to the acrosome content (Cross, et al. 1986). 

Although lectin staining is supposedly relaiable and simple, monitoring the degree of 

capacitation proved challanging with this staining because of the difficulty in controlling the 

exposure interval to solubilised ZP and the time required for the spermatozoa to be 

permeabilised and fixed. Therefore, to evaluate acrosome reaction, another technique was 

adopted which was much more reliable and quick: chlortetracycline (CTC) staining (Saling 

et al., 1979). CTC staining assesses the distribution of fluorescence on the sperm head to 

identify capacitated spermatozoa. This staining technique first was developed for mouse 

spermatozoa and then applied gradually to human and boar spermatozoa (Endo, 1988; 

Fraser, 1990; Saling, 1979; Ward, 1984; DasGupta, 1993; Lee, 1992; Varner, 1987; Barboni 

et al., 1995).  

Several factors affect boar sperm capacitation. For instance, the capacitation rate is affected 

by the presence of progesterone which stimulates boar sperm capacitation and can result 

in higher fertility potential (Barboni, et al. 1995). The capacitation culture media used can 

also be considered as another important facttor which influences the capacitation rate under 

IVF conditions. Dapino and colleagues (2005) introduced heparin as an effective 

supplement for capacitation and suggested that adding 10mM heparin in the capacitation 

media can induced the acrosome reaction and results in increased capacitation rates 

(Dapino et al., 2005). Also, the same research group reported that calcium and bicarbonate 

are required components for capacitation but their combination with heparin stimulates 

capacitation even further (Dapino et al., 2006). 

Caffeine and adenosine were also introduced as an effective supplement to improve the 

sperm motility and the capacitation rate in porcine IVF systems (Harrison, 1993; Funahashi 

et al., 2000). Caffeine stimulates an increase in intracellular levels of 3’, 5’-cyclic adenosine 
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monophosphate. However, caffeine also stimulates spontaneous acrosome reaction which 

in turn might cause polyspermy in porcine IVF, therefore carefully regulating the amount of 

supplemented caffeine is very important (Funahashi et al., 2001). 

Song and colleagues in 2008 reported the possible role of chondroitin sulphate in the 

induction of capacitation in boar spermatozoa following the observation that porcine follicular 

fluid includes a variety of glycosaminoglycan, mainly chondroitin sulphate, generated by the 

granulosa cells (Song et al., 2008). De Oliveira and colleagues (2011) indicated that 

chondroitin sulphate increases fertilisation rates but does not increase blastulation rates and 

therefore cautioned that chondroitin sulphate might inhibit embryo development, that is why 

it is not very common to use it in fertilisation media (de Oliveira et al., 2011). 

Approximately 15% of couples suffer from infertility and a male factor is likely contributing in 

half of these cases (Oehninger et al., 2001). Tipically, sperm motility, morphology and 

capaciation assessment were used in most andrology laboratories to determine diagnose a 

male factor. Although an accurate diagnosis of male infertility can be achieved by these 

techniques (Centola and Ginsburg et al., 2004), they also have some limitaions. For 

instance, when a sperm quality parameter falls short in a particular male, that individual’s 

fertility potential can somettimes be compensated by regulating the quantity of sperm used 

in IVF. Thus more information is required at cellular and molecular level to discriminate fertile 

and subfertile males in order to recognise more factors that are possibily correlated with 

uncompensable charachteristics (Salisbury, 1961; Pace et al.,1981; Saacke et al.,2000; 

Sackee et al.,1994).  
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1.15 Mammal sperm chromatin structure 

Recently, research has focused on abnormalities in the male genome that can impact on 

fertility and are caused by DNA damage and abnormal chromatin packaging (Lopes, 1998; 

Sakkas et al., 1999). Chromatin organisation and packaging differ between gametes and 

somatic cells (Helen et al. 2005). In particular, sperm chromatin packaging is characterised 

by the presence of protamine in place of histones, which are observed in other cell types 

(Dadoune et al., 1995). Histones are proteins that specifically bind DNA and play an 

essential role to condense the DNA into a smaller organised structure called chromatin. 

Histones are rich in positively charged amino acids, particularly arginine, and in cysteine 

residues form disulphide cross links which ensures high stability of the chromatin structure 

(Bianchi et al. 1996). Thanks to protamines, the DNA in mammalian sperm is nearly six 

times more condensed than in any other cell type (Ward and Coffey et al., 1991). The 

chromatin content of sperm contributes to 50% of a zygote’s genomic material and pre-

implantation development (Tavalaee et al., 2014). Thus, evaluation of sperm chromatin 

integrity may assist to predict sperm fertility potential . During spermatogenesis, round 

spermatids go through remarkable changes, including loss of most (not all) of the cytoplasm 

and the development of a motile tail. During these stages, a highly condensed sperm 

nucleus is produced with reduced replicative, translational and DNA repair activities. This 

process encompasses various complicated steps during which histone and non-histones 

chromatin proteines are substitued with one or more protamine types in the process known 

as condensation (Loir et al.,1978). In rat, mouse and sheep this replacement is assisted by 

a set of proteins known as transition proteins. Histone substitution with protamines causes 

a very significant change of the chromatin structure which is important for nuclear 

organisation (Fuentes et al.,2000). Protamines are half the size of histones. It is known that 

arginine is the most common aminoacid in histones which palys a crucial role in creating 



Maryam Sadraie ART in Porcine IVP 

 

73 

 

very strong DNA binding. Instead, cysteine is the most common aminoacid in protamines 

and that has an essential role during the final stages of nuclear maturation as cysteine 

contributes to chromatin compaction by establishing multiple inter- and intra-protamine 

disulphide cross-links (Loir et al., 1984).  

All these changes give mammalian sperm a unique structure providing it with the most 

condensed eukaryotic DNA (Ward et al., 1984). The condensation procedure plays an 

important role in appropriate sperm function, and the decondensation process is important 

as well. When the sperm nucleus is delivered into the ooplasm before fertilisation, the 

condensed sperm nucleus should go through decondensation immediately in order to 

release the DNA for the formation of the paternal pronucleus. Therefore, decondensation is 

a crucial step for the transcription of the paternal genome, and is an important part of the 

fertilisation process. Decondensation is known as the chromosomal remodelling step and it 

happens before the sperm penetrates the ZP. Two steps are involved in the chromosomal 

remodelling: first of all, reduction of the disulphide bonds and secondly replacement of 

protamine by histones (Yanagimachi et al., 1994). The mechanism by which protamine are 

replaced by histones is still unclear. Protamine removal initiates when the sperm begins to 

penetrate the ZP (Perreault 1992), while it is very unknown when the decondensation 

process exactly happens (Nonchev and Tsanev et al., 1990). It has been suggested that 

compacted chromatin is less vulnerable to DNA damage as comapred to less compacted 

chromatin (Aoki et al.,2005). It has been found that protamines has a possible role in 

silencing the paternal genome and on imprinting (Aoki and Carrell et al., 2003).  Previous 

research suggested that abnormal histone replacement can affected male fertility potentials 

(Ward et al., 2010).  
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Figure 1.13. Protamination procedure in sperm. During spermatogenesis, histones are 
replaced by protamines to achieve high sperm nucleus condensation. The image was taken 
from http://www.slideshare.net/sandroesteves/sperm-dna-fragmentation-in-male-infertility. 
 
 

In addition, zinc (Zn) is considered important for sperm chromatin integrity. During 

spermatogenesis, at the stage when the sperm nucleus compaction has started, Zn 

deficiency can result in the lack of elongated spermatozoa and severe Zn deficiency blocks 

the formation of spermatozoa (Barney et al., 1968). The human sperm chromatin contains 

one Zn ion for each turn of DNA and for each protamine molecule. It can be concluded that 

zinc is required for DNA-protamine as illustrated in figure 1.16 (Bench 2000; Kjellberg et al., 

1993). 
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Figure 1.14. Sperm chromatin packaging. The DNA double helix in sperm chromatin and its 
correlation with protamines is shown, demonstrating the probable role of Zn in connection 
with protamines. There is one Zn per protamine molecule for every 10 pairs of nucleotides. 
The image was taken from (Björndahl et al., 2014). 
 
 
 

1.15.1 Correlation between sperm chromatin packaging and fertility potential 

It has been suggested that sperm chromatin packaging abnormalities can occur because of 

defective protamination (Balhorn 1988; Yebra et al., 1993) and existence of DNA breaks. 

Many studies highlighted a correlation between decreasing fertility potential and decreasing 

normal sperm chromatin packaging (Hoshi 1996; Bianchi 1996; Sakkas 1996; sun 1997; 

Lopes et al., 1998). 

In the breeding industry, the assessment of boar sperm chromatin structure is one of 

techniques that can be used to estimate a boar’s fertility potential, therefore the impact of 

protamination on the epigenetics of mature sperm cell attracted much attention (Carrel 2010; 

Jenkins et al., 2011). That is why different staining techniques for assessing sperm 

chromatin packaging and measuring the quantity of protamines are currently under 

investigation (Iranpour 2000; Kazerooni et al., 2009). It has been reported that protamine 

deficiency and sperm DNA damage can cause male infertility or sub fertility in both natural 

and assisted conception (Tarrozi et al., 2009). Cooper and colleagues reported that sub 
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fertility in males could be correlated with incomplete replacement of histones by protamines 

(Cooper et al., 2009). Reduction in protamine expression is quite common in infertile men, 

while it is uncommon in males with proven fertility (Carrell et al., 2006). It has been 

suggested that men with protamine deficiency display low sperm count, poor sperm motlity, 

poor morphology and low sperm penetration rates (Aoki 2003; Carell 2001; Aoki et al., 2005). 

It is not clear whether there is a correlation between protamine deficiency and defects of 

spermatogenesis, and no protamine level thresholds has been established yet to determine 

impact on semen quality. However, determining sperm protamine levels may assist in 

selecting better sperm for use in ICSI and other assisted reproduction techniques (Allen and 

Reardon et al., 2005). 

1.15.2 Techniques for the determination of sperm chromatin packaging  

Protamines can be isolated and sperm protamine content can be quantified by 

electrophoresis (de Yebra, 1998; Aoki, 2005; Balhorn et al., 1988), although this technique 

is time consuming for routine diagnosis (McKay1986; Yelick et al. 1987). Chromomycin A3 

(CMA3) staining has been introduced as an appropriate technique for protamine detection 

and can applied to human, mouse, bull and boar sperm (Bianchi, 1996; Zubkova et al., 

2005). 

1.15.2.1 Chromomycin A3 (CMA3) 

CMA3 is an antibiotic generated by Streptomyces griseus which was known previously in 

nuclear medicine as Toyomycin. CMA3 is an anthraquinone antibiotic with florescent 

properties which inhibits RNA synthesis. It has been reported that CMA3 has antibacterial, 

antifungal and anti-neoplastic abilities (Chakrabarti et al. 2000). CMA3 binds as a Mg2+ co-

ordinated dimer at the minor groove of GC- rich DNA regions and stimulates a 

conformational disturbance in the DNA helix (Chakrabarti 2000, Berman et al., 1985). This 

makes the CMA3 a strong competitor to protamines (Nijs et al., 2009).  A positive CMA3 
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staining indicates protamine deficiency while a negative CMA3 result suggests no protamine 

deficiency (Iranpour et al., 2000). CMA3 has been used to evaluate protamine deficiency in 

both human and boar sperm and it is a very quick technique to determine sub fertility in 

males (Simoes et al., 2009).  

1.16 Sperm aneuploidy 

Spermatozoa are the end product of spermatogenesis; spermatocytes go through two 

meiotic divisions during spermatogenesis before haploid spermatids are generated, then 

spermatids develop into mature spermatozoa during a series of molecular and cellular 

events (De Jonge et al., 2000). In humans, a mature spermatozoon has 22 autosomes and 

one sex chromosome while boar spermatozoa contain 18 autosomes and one sex 

chromosome. Incorrect chromosome segregation during the first or second meiotic divisions 

results in chromosomally abnormal spermatozoa with an improper chromosome number 

(aneuploidy) or spermatozoa with additional or deleted chromosomal material (unbalanced 

spermatozoa). Fertilisation with chromosomally abnormal spermatozoa can result in 

chromosomally abnormal embryos (Carrell et al., 2006) and it has been suggested that 

chromosomal abnormalities in embryos are the main cause of pregnancy loss and foetal 

malformations (Hassold et al., 2001) .The proportion of paternally inherited aneuploidy is 

small compared to the maternal factor (Pacchierotti et al., 2007).  

 

1.16.1 Aneuploidy in boar spermatozoa 

High rates of chromosomal abnormalities in boar semen may lead to decreased fertility but 

not necessarily to decreased fertilising potential (Orsztynowicz et al., 2011). Recently, new 

attempts have been made to optimise fluorescence in situ hybridisation (FISH) to evaluate 

semen for chromosomal abnormality levels. Currently, only a limited number of studies have 

been performed in order to estimate aneuploidy in boar sperm. When this testing has been 
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performed on chromosome 1, 10 and Y no significant difference was observed among 

breeds in terms of aneuploidy (Massip 2009; Massip 2010; Pinton 2009; Bonnet-Garnier et 

al., 2009). FISH has been reported as an appropriate tool to identify chromosome 

abnormalities, particularly aneuploidy, so this technique could be used to asses sperm 

fertility by complementing morphological and functional assessments with a genomic 

screening. In order to use FISH to estimate aneuploidy rates in sperm, the first step needed 

is decondensing the tightly packed sperm nucleus (E Downie et al., 1997). 

1.16.1.1 Evaluating sperm aneuploidy 

Two techniques are available to determine aneuploidy in sperm cells. One of these 

techniques is the analysis of the sperm karyotype after the in vitro fusion of a hamster egg 

and a human sperm (Rudak et al., 1978), while the other technique is multicolour FISH, 

which allows screening sperm chromosomes in interphase nuclei (Holmes & Martin et al., 

1993). Both these techniques have restrictions, as only a small number of cells can be 

examined with the hamster technique and a limited number of chromosomes can be 

screened by FISH. Another difficulty with FISH is that it tends to detect artificially high levels 

of nulliosomy due to artefactual loss of chromosomes during slide preparation. Despite its 

limitations, FISH is still the most commonly used technique as it can be performed quickly 

and a large cohort of spermatozoa can be analysed in one experiment therefore increasing 

the accuracy of outcomes. 

It has been found that infertile men with normal karyotypes have an increased risk of sperm 

aneuploidy (Palermo et al., 1992). The correlation between sperm concentration and sperm 

aneuploidy rates have been studied and a strong and inverse correlation has been found 

between sperm concentration and sex chromosome aneuploidy (Castro 2009; McAuliffe et 

al., 2012b). Sarrate and colleagues reported a threefold increase of chromosome 21 disomy 

in patients with oligozoospermia (low sperm count), and a two to threefold increase in sex 
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chromosome disomy in these patients compared with the control group (Sarrate 2010; 

Mougou-Zerelli 2011; Durak Aras et al., 2012). The correlation between chromosome 

abnormality and sperm motility is quite controversial. The majority of research studies 

indicate no significant correlation between sperm motility and disomy incidence (Sarrate 

2010; Mougou-Zerelli et al., 2011). However, other groups reported an increase in 

aneuploidy rates in patients with asthenoteratozoospermia (poor sperm motility and 

morphology) but normal sperm concentration (Hristova 2002; Templado   2002; Collodel et 

al., 2007a). Moreover, Zeyneloglu and colleagues (2000) suggested that immotile 

spermatozoa with morphologically normal features do not correlate with increased 

aneuploidy incidence, while a high incidence of aneuploidy (mainly diploidy and sex 

chromosomal aneuploidy) was observed among patients with dysplasia of the fibrous sheath 

(DFS), a flagellar pathology causing severe sperm immotility (chemes   1987, Torikata 1991; 

Rawe et al., 2001). 

The correlation between sperm morphology and aneuploidy is still not entirely obvious. 

Several studies demonstrated a higher risk of aneuploidy among patients with 

teratozoospermy (presence of high levels of sperm with abnormal morphology) (Kahraman 

2004; Dubey et al., 2008). Furthermore, several research studies investigated whether 

sperm morphology is a viable indicator for the selection of chromosomally normal sperm 

(Gole 2001; Templado 2002; Brahem   2011a, 2012; Mougou-Zerelli et al., 2011). Diploidy, 

triploid and tetraploidy rates were found to be significantly increased in patients with 

macrocephalic multiflagellated sperm syndrome compared to control samples (Perrin   2008; 

Brahem et al., 2011a).  

In comparison with humans, data on the frequency of chromosomal abnormalities in farm 

animals are much more limited because there is no precise monitoring of embryos during 

development and samples from miscarriages and abnormal animals are only occasionally 
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sent to perform further cytogenetic tests. However, numerical chromosomal abnormalities 

such as trisomy of particular chromosomes, monosomy of chromosome X, polyploidy and 

also structural chromosome abnormalities like reciprocal and Robertsonian translocations, 

inversions or insertions have all been found in farm animals (King et al., 2008). The results 

obtained in farm animals in terms of types of chromosomal abnormalities are quite similar 

to humans’, while the frequency of chromosomal abnormalities is variable among gametes 

or embryos of different species (Zuccotti 1998; King et al., 2008).  

 

1.16.2 Nuclear organisation (chromosome positioning) 

The hypothesis of non-random nuclear organisation was suggested by Carl Rabl and 

Theodor Boveri for the first time at the end of the 19th. It is now well understood that 

chromosomes occupy discrete territories (Cremer 1993; Lichter 1988; Manuelidis and 

Borden et al., 1988), the exact chromosome distribution depends on the stage of the cell 

cycle and on the cell type (Funabiki 1993; Mayer et al., 2005). Nuclear organisation and its 

functional roles are highly conserved in eukaryotes (Neusser 2007; Tsend-Ayush et al., 

2009). It has been suggested that chromosome territories (CTs) have a radial organisation 

and the most gene-rich chromosomes are located in the centre of the nucleus while gene-

poor chromosomes are in the more peripheral regions of the nucleus (Boyle 2001, Cremer 

et al., 2003). Furthermore, the radial organisation plays a protective role for the genome. 

Chromatin, which is located in the periphery of the nucleus, can be considered as a shield 

that absorbs mutagens as they enter the nucleus and protects the central part of the nucleus 

from damage (Hsu 1975; Tanabe et al., 2002). Several studies have indicated that nuclear 

organisation plays a crucial role in ensuring that suitable regions of the genome are 

positioned by replication and transcription cues. Moreover, it has been reported that nuclear 

organisation plays an essential role in maintaining the correct orientation of chromosomes 
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within the nucleus, which is important during cell division, so that appropriate nuclear 

organisation can assist in regulating the normal function of genome (Cremer et al., 2001). 

Alterations in nuclear organisation can result in pathologies such as: cancer (Kurodo et al., 

2004), laminopathies (Mewborn et al., 2010) and X-linked EmeryDreifuss muscular 

dystrophy (Boyle et al., 2001).  A number of studies reported the dynamic plasticity of 

chromatin and suggested that while interphase chromosomes clearly occupy restricted 

nuclear domains, the folding of chromatin within these domains has substantial flexibility 

(Shopland et al., 2006). This plasticity of chromatin is adequate to form the intra and inter 

chromosomal interaction that play an essential role in shaping the nuclear prospect (Fraser 

2007; Schoenfelder 2010; Groudine et al., 2011).  

1.16.3 Sperm nuclear organisation 

It has been reported that CT positioning in human sperm cells is non-random (Gurevitch 

2001; Hazzouri 2000; Sbracia 2002; Tilgen et al., 2001). CT localisation can be performed 

by using chromosome (usually centromere) specific probes or using whole chromosome 

paints (Hazzouri et al. 2000; Zalenskaya and Zalensky 2004; (Mudrak et al. 2005; 

Zalenskaya and Zalensky 2004; Manvelyan et al. 2008). Some differences in CT positioning 

has been observed between studies, however this is likely to be due to variation in 

decondensation procedure used. As sperm nuclei in many mammals have a polarised shape 

with two poles: apical (acrosome) and basal (tail attachment), it is possible to assess the 

longitudinal positioning of CTs. This has been done for human (Manvelyan 2008; Mudrak 

2005; Zalenskaya and Zalensky et al., 2004) and boar spermatozoa (Foster et al., 2005). 

Furthermore, the radial positioning of CTs has been observed. Results showed an 

association between the radial positioning and chromosome size in human sperm, however 

no correlation was observed between CT size and distribution in boar sperm (Foster et al., 

2005). Overall however, most studies agree that mammalian sperm demonstrate a 
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chromocentric model of nuclear organisation, with centromeres localised deep in the nuclear 

interior and telomeres clustered at the nuclear periphery. This is thought to be highly 

important during gametogenesis, fertilisation and embryo development (Zalenskaya e al., 

2004). 

1.16.3.1 Telomere distribution during spermatogenesis 

During spermatogenesis, telomeres lead the ‘bouquet’ formation of chromosomes during 

the leptotene stage of prophase I. In mice, rats and humans interior telomeres move to 

peripheral positions following preleptotene (Prophase I stage), then at the end of 

preleptotene, telomeres become completely localised at the nuclear envelope. From 

leptotene to zygote stage, peripheral telomeres develop tight clusters as chromosomes 

adopt the bouquet formation. By mid of zygotene telomeres of some cells stay clustered, 

although at this stage telomere begin to diffuse. In pachytene telomeres remain fully 

dispersed at the nuclear periphery (Meyer-Ficca 1998; Scherthan et al., 1996). Interestingly 

in cattle telomeres stay clustered in the bouquet formation until late zygotene (Pfeifer et al., 

2001). 

 

Based on mouse studies, SUN1 (a specific protein expressed during meiosis) has been 

shown to be an important protein in attaching telomere clusters to the nuclear periphery and 

in ensuring homologous chromosome alignment, synapsis and recombination. Ding and 

colleagues reported that the deletion of SUN1 result in disruption of bouquet development 

during meiosis and can cause infertility in males and females (Ding et al., 2007). It has been 

suggested that during maturation, telomere distribution in the sperm appears to alter from 

peripheral in spermatocytes to more central clustering around the nucleolus in round 

spermatids, then after the elongating spermatid stage telomeres redistribute back to the 

nuclear periphery (Tanemura et al., 2005) .This is thought to play a functional role in 
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anchoring chromosome territories in place, to provide replication and transcriptional cues 

during fertilisation and embryogenesis  (Zalenskaya et al., 2004) . 
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1.17 Thesis aims 

The specific aims of this thesis were as follows: 

1. To produce a working classification system for boar sperm morphology and to test the 

hypothesis that there are differences in sperm morphological features between fertile 

and sub fertile boar, and also to investigate the impact of sperm freezing technique on 

sperm morphology. 

2. To investigate that whether sperm concentration impacts on fertility rate in porcine IVF 

procedure, and also to determine the capacitation time for both fertile and sub fertile 

groups. To investigate the impact of adenosine and caffeine supplements in capacitation 

rate and also find out wither there is correlation between fertilisation rate and 

capacitation proportion in order to introduce capacitation as an appropriate predictor for 

fertilisation. To test the hypothesis that there is correlation between capacitation rate and 

sperm morphology.  

3. To test the hypothesis if chromatin packaging is different in both fertile and sub fertile 

groups. To test the hypothesis that decondensation process is different in fertile and sub 

fertile groups. To estimation sperm aneuploidy for autosome chromosomes and also to 

study the telomeres distribution in both fertile and sub fertile group and test the 

hypothesis that the telomeres distribution is non-random. 

4. To test the hypothesis that the embryo biopsy impact on embryo morphology and also 

determine the best biopsy stage (cleavage stage or blastocyst stage). To investigate 

whether advanced maternal age impact on biopsy outcomes. To predict blastocyst 

quality and pregnancy rate based on time-lapse parameters. 

 

 

 

.  
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2 Materials and methods 

2.1 Materials 

All pig semen samples for the methods described in this section were received from JSR 

Genetics Ltd (Deified, UK). Porcine fertile and sub fertile samples were obtained from four 

different breeds: Hampshire, Large white, Landrace and Pietrain. Samples with a motility 

score of > 60% and normal morphology score of > 50% were classified as fertile and those 

with motility of < 60% and morphology of < 50% were classified as sub fertile. Abattoir 

derived porcine ovaries were also provided by JSR Genetics Ltd (Deified, UK).     

For studying the impact of biopsy on human embryo morphology (see section 3.1.1), 

samples were obtained from the Assisted Conception Unit in the Reproductive Centre at 

Guy’s and St Thomas hospital (London, UK). Data for this research was obtained 

retrospectively from 110 couples that undertook intra cytoplasmic sperm injection (ICSI) 

treatment from August 2012 to August 2014. Biopsy on day three and day five was 

performed for patients undergoing preimplantation genetic diagnosis. ICSI and biopsy 

procedures were performed by trained embryologists and were all incubated in an 

Embryoscope time-lapse device (Unisense Fertilitech, Denmark) and subsequent 

annotation was performed using the Embryo viewer software (Unisons Fertilitech, 

Denmark). All protocols were performed under the human fertilisation and embryology 

authority (HFEA) licence 0700/L700-18-c awarded to the Reproductive Centre at Guy’s and 

St Thomas’ hospital. Use of this pre-existing data for research purposes was approved by 

the Research Ethics Committee of the University of Kent. 
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2.2 Methods   

2.2.1 Sperm sample preparation 

 Boar semen samples were collected by the gloved hand method as was described by King 

and Macpherson (King et al., 1973) at a JSR Genetics farm. TRIXcell PLUS® solution (IVM 

technologies, L’Aigle France) was heated to 20°C and used to extend the semen (2:1 

extender to semen ratio). Samples were delivered to our laboratory at the University of Kent 

and kept at 17°C until use either the same or the next day.  

2.2.2 Sperm concentration and motility assessment 

Boar semen concentration analysis was performed using a Makler chamber (Sefi medical 

instruments, Haifa, Israel). The chamber depth is 10µm and the coverslip bears an 

impressed counting grid divided into 100 0.1 mm2 squares. When a drop of semen sample 

was placed on the chamber, the number of motile spermatozoa heads which swim 

completely or partially in 10 squares is equal to the sperm concentration in millions per ml. 

The Makler chamber is indicated in Figure 2.2. Semen samples were gently mixed to avoid 

imprecision caused by spontaneous sedimentation and a 10 µl drop was placed on the 

centre of the Makler chamber with the coverslip placed over the top. Sperm counting was 

performed under 200 x magnification using a Zeiss Primo Star optic microscope. The 

protocol for his experiment was adopted from (Xu et al., 1995). 
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Figure 2.1: The Makler chamber and the process of spermatozoa counting in order to 
calculate correct spermatozoa concentration. Each of the 100 small squares has surface of 
0.1 mm2. Spermatozoa concentration is evaluated by counting sperm cells in 10 random 
squares; sperm heads outside of the square were ignored total number of spermatozoa was 
multiplied by 106 to obtain the required sperm concentration of one million per ml for 
fertilisation protocols. 
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2.2.3 Sperm Motility evaluation 

Motility evaluation was performed by adding 10µl of semen onto slide. A total of 250 

spermatozoa were counted on each slide and were classified into three groups; progressive, 

non-progressive and immotile. This motility classification was established according to 

World Health Organisation (WHO) procedures. Table 2.2 indicates these criteria for sperm 

motility assessment. This experiment procedure was adopted from (Sancho et al., 2004) 

 

Motility Description of motility 

Progressive Fast and straight movement of sperm 

with full tail flexion 

Non-progressive Limited movement without significant 

progression 

Immotile No movement at all, spermatozoa 

presumed dead 

Table 2.1: Classification for sperm motility evaluation. 250 spermatozoa were counted for each slide. 
The percentage of total motility was based on the formula: ((progressive+ non-progressive)/250) x 
100 
 

2.2.4 Boar sperm morphology evaluation 

To produce a working classification system for boar sperm morphology, sperm blue staining 

was performed. Morphology assessment was undertaken for 4 breeds for both high quality 

and poor quality semen groups (see table 2.3 for breed information). 10 µl of a fresh semen 

sample was smeared on a standard microscopy slide and left to air dry. Slides were placed 

in Sperm Blue® fix solution for 10 minutes (Microptic, Barcelona, Spain) and allowed to run 

off the slide onto absorbing paper. Following this, the slide was immersed in Sperm Blue® 

stain for 20 minutes. Excess stain was removed by dipping into distilled water for 3 seconds; 
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it was important not to leave slides in distilled water for longer than this to avoid loss of 

sperm cells. Slides were left to air dry at an angle, allowing the excess stain to run off. Finally, 

slides were mounted with DPX mounting medium under a 24x50 mm coverslip. For each 

breed four replicates were prepared, and from each slide at least 250 spermatozoa were 

examined; as a result, 1,000 spermatozoa were assessed for each boar. Spermatozoa were 

categorised as either good or poor quality according to their motility and morphological 

features. Poor morphological features of semen samples were divided into several sub-

groups (summarised in Table 2.2). Spermatozoa with multiple abnormalities were scored 

according to the one with the most severe grade. Observation was performed under 1,000X 

magnification with standard immersion oil under a Leica DMRB microscope equipped with 

a Leica DC300 camera and its dedicated software.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Maryam Sadraie ART in Porcine IVP 

 

90 

 

Absence of acrosome cap 

Lifted acrosome 

Detached acrosome 

No acrosome at all or acrosome area 

occupied more or less than 75% of sperm 

head 

Coiled or folded tail 

2-tails 

2-heads 

Cytoplasmic droplet (proximal and distal) 

Abnormal midpiece 

Vacuolated acrosome 

Vacuolated head 

Table 2.2: Boar semen morphological abnormal categories assessed in this thesis. 
 

2.2.5 Impact of freezing on boar sperm morphology    

In order to assess the impact of freezing on sperm morphology, samples from two white 

Duroc pigs were obtained and analysed both before and after freezing. The freezing 

procedure was performed at JSR Genetics Ltd (Driffield, UK).  Morphology was assessed 

by sperm blue staining as mentioned in section 2.2.4. Four slides per animal were prepared 

and 250 sperm cells per slide were evaluated.  

2.2.5.1 Semen freezing and thawing procedure 

Shortly after semen collection, the semen was diluted (1:1 v/v) with extender I (ModenaTM, 

swine Genetics International, Ltd., Iowa, USA). The diluted samples were transferred to 

50ml falcon tubes, and equilibrated at 15ºC for 120 minutes, followed by centrifugation at 
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800xg for 10 minutes. After this, the supernatant was discarded and the sperm pellet was 

re-suspended with extender II (80ml of 11% lactose solution and 20ml egg yolk) to a final 

concentration of 3.5x109 spermatozoa/ml and cooled at 5Cº for 90 minutes. Subsequently, 

extender III (89.5% of extender II with 9% of glycerol and 1.5% Equex-STM®) was added. 

The final concentration was approximately 3X109 spermatozoa/ml contained in 3% glycerol 

which was loaded into to 0.5ml straws (Bio-Vet, Z.I. Le Berdoulet, France). The straws were 

sealed with PVC powder before placing in an expandable polystyrene box where the straws 

were in contact with nitrogen vapour (3cm above the liquid nitrogen level) for 20 minutes. 

The straws were sunk in to liquid nitrogen at -196ºC. Cryopreserved semen samples were 

kept in liquid nitrogen for 6 months. 

For assessing sperm morphology following freezing, straws were thawed by immersing them 

in water for 12 seconds. Immediately after thawing, the sperm was diluted (1:10) with PBS 

and after loading slides, and sperm blue staining was used to assess morphological features 

of semen samples as mentioned previously in section 2.2.4. This experiment was performed 

at JSR Genetics Ltd (Driffield, UK) based on their developed protocol.  

2.2.5.2 Statistical analysis    

To statistically analyse the impact of freezing on boar sperm morphology, a chi-squared test 

was used. Results were considered significant for p ≤ 0.05. 

2.2.6 Optimising boar sperm capacitation medium in vitro  

Fresh semen samples that had been stored for 1-4 days in a commercial extender TRIXcell 

PLUS® solution (IVM technologies, L’Aigle, France) were used for these experiments. 

Sperm wash (10mM NaCl, 10mM TRIS pH 7.0, 0.58g NaCl/1.21g Tris per 1L) and pre-

incubation medium (ingredients shown in table 2.5) were prepared with osmolarity of 0.260-

0.280 Ocm/L and left in the incubator (37°C, 5% CO2, 20% O2) overnight with loose lids in 

order to adjust pH. The pH of both medium was checked on the following day, and their pH 
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was adjusted to 7.4. Caffeine and adenosine was added to 10 ml of pre-incubation medium 

(2mM caffeine or adenosine per 10 ml capacitation medium) in order to compare 

capacitation rate. 5 ml of sperm wash media was added to 2ml of fresh semen and 

centrifuged at 800 x g for 5 minutes. The supernatant was removed leaving the pellet in a 

residual 2ml of solution for resuspension. Another 5ml of sperm wash medium was added 

to the sample and the previous step was repeated. Then semen concentration was checked 

using a Makler chamber as described in section 2.2.1. Following this, semen samples were 

added to the three-different medium such as capacitation, capacitation caffeine and 

capacitation adenosine and were incubated at 38二C in the incubator for 240 minutes. 

Samples were collected every 30 minutes and 50µl sample was added to 50µl of 750µM 

chlortetracycline hydrochloride (CTC) (Sigma, UK) solution (0.2mg CTC, 20µM Tris, 130µM 

NaCl, 5µM cycteine, pH: 7.8). CTC solution was made fresh for each new experiment and 

kept in the fridge until use, in the dark as it is very light sensitive. After 20 seconds, the 

reaction was stopped by the addition of 10µl Sperm Blue fixative solution. Samples were 

stored in fix for between 3min-1hour, after which they were loaded onto a standard 

microscopy slide with Dabco (Sigma, UK) mounting medium. All slides were assessed within 

24 hours of preparation. Samples were observed with an Olympus BX61 microscope under 

epifluorescence illumination using UV BP 425 and 450-490/LP 515 excitation/emission 

filters. Spermatozoa were categorised as follows: A; incapacitated (bright fluorescence is 

identified over the sperm head), B; capacitated (fluorescence over acrosome region with 

dark post acrosome), C; acrosome reacted (spermatozoa show a mottled fluorescence over 

the head, fluorescence only in post acrosomal region or no fluorescence on the head). Two 

slides per sample were evaluated, with at least 100 spermatozoa per slide. This experiment 

procedure was adopted from (Mattioli et al., 1996), but the CTC concentration was optimised 

in the laboratory based on our used boar breeds in this experiment. A t-test was used in 
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order to determine the optimum time for sperm capacitation and ANOVA was used to 

compare three different capacitation media together. A value of P<0.05 was considered 

statistically significant. 

 

Compound Final concentration 

Sodium chloride 116.36mM 

BSA (FAF) mg/ml 2mg/ml 

D-glucose 10mM 

Trisma base 19.98mM 

Calcium chloride 

dehydrate 

7.55mM 

Sodium pyruvate 4.91mM 

Kanamycin monosulphate 2.1mM 

Potassium chloride 2.98mM 

Water  

Carbohydrate 20mM 

Table 2.3: Components of capacitation medium. 
 

2.2.7 Sperm chromatin packaging 

In order to evaluate chromatin packaging in boar sperm and determine whether there is any 

correlation between boar sperm morphology and chromatin packaging, chromomycin A3 

(CMA3) staining was performed to test for protamine deficiency in sperm (a measure of 

chromatin packaging). The protocol for this experiment was adopted from (Iranpour et al., 

2014). 
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2.2.7.1 Preparation of fixed sperm samples 

Boar semen samples were prepared for performing all relevant experiments by firstly 

washing in sperm wash (10mM NaCl, 10mM TRIS pH 7.0, 0.58g NaCl/1.21g Tris per 1L), 

followed by centrifugation at 1,900 rpm for 5 minutes. The supernatant was removed without 

disturbing the pellet, and the pellet was resuspended in sperm buffer, and repeated three 

times. Following the final centrifugation, sperm samples were fixed by adding 6ml of ice cold 

3:1 methanol: acetic acid drop wise and fixed samples were stored at -20ºC.  For FISH slide 

preparation, samples were centrifuged at 1,900 rpm for 5 minutes and 10µl of sample of an 

appropriate concentration was loaded on a standard microscopy slide following the addition 

of 10µl of fixative solution. 5ml of fixative solution was added to the semen sample for 

storage at -20ºC. 

2.2.7.2 Slide preparation 

 Superfrost microscope slides (Thermos Fisher Scientific, USA) were cleaned by immersion 

in methanol and the underside of each slide was marked with a diamond marker to indicate 

the location of the sample. The slide was labelled properly, before loading samples onto the 

slide. The slide was steamed and then 10µl off the sample was dropped onto the marked 

area, and at the same time 10µl of fresh fixative was added. Then the slide was left to air 

dry for 1 hour.  

2.2.7.3 Chromomycin A3 staining 

The positive control used in this experiment were sperm cells decondensed by the 

immersion of slides in 10mM freshly made DTT (Melford) and 0.4 gr Papain (Sigma, UK) 

made up in 0.2M tris pH8.6. Slides were immersed for 3 minutes followed by washing in 

PBS for 5 minutes, before rinsing in dH2O briefly and air drying.  
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Chromomycin A3 from Streptomyces griseus was dissolved in Mcllvane’s solution (0.2M 

disodium orthophosphate heptahydrate, 0.1M citric acid, 10mM magnesium chloride pH 7) 

at a final concentration of 0.25mg/ml of CMA3. 100µl of this CMA3 solution was added to 

each slide and before incubation in the dark for 25 minutes, washing in McIlvane’s solution 

for 30 seconds and air drying in the dark. One drop of Vectashield (without DAPI) was added 

to each slide and a 24X50 mm cover slip was placed on each slide. Slides were observed 

using a BX61 Olympus microscope equipped with CCD camera and appropriate filter (460-

470nm) under 100 x magnification. Smart Capture software (Digital Scientific) was used to 

capture images. For each slide 100 nuclei were captured and the percentage of positively 

stained nuclei was calculated (staining was indicated by bright yellow staining).  

Decondensation process on boar sperm nuclei 

In order to optimise the decondensation process on boar sperm for performing fluorescence 

in situ hybridisation experiments and to compare the decondensation process between 

fertile and sub-fertile groups, several decondensing agents were used. These included; DL-

Dithiothreitol (DTT) (Melford), sodium hydroxide (NaOH) and DTT mixed with (0.320g) 

Papain (Sigma, UK). Two different concentrations of DTT (10mM, 25mM) were dissolved in 

0.1M Tris-HCL (pH8) and one slide for high quality boar semen group and one slide of poor 

quality semen group was immersed for three time periods; 20, 40 and 60 minutes for each 

concentration of DTT. After this step, slides were washed in 2xSSC for three minutes twice. 

Subsequently, slides were washed in a cold ethanol series (70%, 85% and 100%) for 2 

minutes each in order to dehydrate. Slides were allowed to dry, mounted with Vectashield 

mounting medium with DAPI (Vector, UK) and covered with a cover slip. Boar sperm 

decompensation procedure was adopted from (Orsztynowicz et al., 2011) 
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2.2.7.4 DTT with papain  

Slides were immersed in 40ml of 0.2M Tris-HCL (pH8) with 10mM DTT containing 0.320g 

Papain (Sigma, UK) for three minutes. Slides were then washed with 2XSSC and cold 

ethanol series as explained in the previous section and left to dry counterstaining with 

Vectashield mounting medium with DAPI (Vector, UK) (Orsztynowicz et al., 2011) 

2.2.7.5 Fluorescence in situ hybridisation (FISH)   

Dual colour fluorescence in situ hybridisation (FISH) was performed to estimate aneuploidy 

rate on boar sperm.  FISH probes for all chromosomes were prepared at the University of 

Kent, and also all FISH procedure was performed in this experiment was developed at the 

Kent University. This process is described in the following sections. 

2.2.7.5.1 LB Agar preparation 

20g of LB Broth (Invitrogen) and 20 g agar (Gibco) were added to 1 litre of ddH2O, 

autoclaved at 120ºC and left to cool to 50ºC. 600µl of the antibiotic chloramphenicol 

(25mg/ml) (Fluka Biochemika) was added to give a final concentration of 15µg/ml and 

approximately 10ml of cooled agar was poured into sterile plastic Petri dishes and allowed 

to set overnight before storage at 4ºC. 

2.2.7.5.2 LB Broth preparation 

20g of LB broth was added to 1 litre of ddH2O, autoclaved at 120ºC and left to cool to 50ºC. 

600 µl of the antibiotic chloramphenicol (25mg/ml) was added to give a final concentration 

of 15µg/ml. After that, the Broth was used to inoculate the starter culture for the mini-prep 

(Qiagen) (see section 2.4.1.4) 

2.2.7.5.3 Preparation of BACs  

A disposable sterile pipette tip was inserted into each agar stab containing the BAC clone 

and transferred to separate 50ml falcon tubes containing 20 ml of prepared LB Broth 

(containing chloramphenicol) and then left to culture overnight in the shaker at 37ºC at 
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140rpm. A sterile disposable pipette was used to streak 10µl of each sample from falcon 

tubes into agar plates and left to culture overnight at 37ºC. On the following day, two colonies 

were taken from the agar plate with a sterile disposable tip and were transferred to 20ml 

universal tubes including 5ml of LB Broth in glycerol solution (7% glycerol). After that, the 

tube was left to culture overnight at 37ºC in a shaker at 140rpm. 1ml of each culture was 

taken and stored at -20ºC. 

2.2.7.5.4 Plating out of BACs   

A sterile disposable pipette was inserted into the glycerol stock of the BAC clone and used 

to streak an LB agar plate. Following incubation at 37oC overnight, agar plates were washed 

with PBS and colonies were scrapped with a plaster pipette. The solution obtained was 

centrifuged at 8000 rpm for 3 minutes in order to isolate clones for BAC isolation. 

2.2.7.5.5 BAC DNA isolation (Qiagen plasmid mini kit) 

After centrifuging as described in the previous section, the remaining pellet was 

resuspended in 250µl of buffer PI (containing RNase A and lyse blue) to lyse the cells, 

followed by addition of 250µl of buffer P2 and inverting 4-6 times. Then 350µl of buffer N3 

was added to neutralise lysis and samples were instantly inverted again 4-6 times. After this 

step, samples were centrifuged for 10 minutes at 13000 rpm. The supernatant was removed 

to a QIAprep spin column and was centrifuged for 60 seconds. Then, 500µl of buffer PB was 

added to the sample and centrifuged for 60 seconds, and then 750µl of buffer PE was added 

and centrifuged again for 60 seconds. The flow through was discarded into Virkon and the 

samples were centrifuged again for a further 60 seconds to remove residual wash buffer. 

After that the column was transferred to a clean 1.5 micro centrifuge tube. Next, 50µl of EB 

buffer was added to the column to elute the DNA and left to stand for minute before a further 

60 seconds in the centrifuge. Samples were kept at -20ºC in preparation for labelling. 
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2.2.7.5.6 Probe DNA amplification     

DNA concentration was first measured by a spectrophotometer (Nano Drop 8000, Thermo 

Scientific). 3 µl of each DNA sample were mixed with 27 µl of sample buffer (Genomifi V2, 

UK) and pulse centrifuged up to 6 rpm. Then the solution was incubated at 95°C for 3 

minutes on a PCR block and immediately placed on ice. In a fresh 1.5ml tube, 

enzyme/reaction buffer was made up and kept on ice; enzyme volume calculated at a ratio 

of 3µl x the number of tubes x 1.2, and the reaction buffer volume was calculated at 9 x the 

volume of enzyme. 30µl of this solution was mixed with cooled probe DNA, and after that 

pulse centrifuging was performed. Then, sample was incubated at 30°C for 1. 5 hours in a 

dry incubator. After incubation, the sample was put in a water bath at 65°C for 10 minutes 

to inactivate the enzyme and then placed on ice. 60µl of Microbiological Growth water (MBG) 

was transferred to a fresh 1.5ml tube, then 12µl of sodium acetate/EDTA buffer (50ml of 3M 

sodium acetate (pH8) and 50ml of 0.5M EDTA (pH8) was added. 300µl of 100% ethanol 

was added to the sample and mixed gently by inversion. Next the samples were centrifuged 

for 15 minutes at 11,000rpm, before discarding the supernatant and adding 500µl of 70% 

ethanol. After that the sample was centrifuged at 11,000 rpm for 2 minutes.  Supernatant 

was discarded again, and the pellet was pulsed in the centrifuge and any remaining ethanol 

was removed. The tube lid was left open for 2-3 minutes in order to help the evaporation of 

residual ethanol. 60µl of 10mM Tris-HCl buffer (10mM pH8) was added to resuspend the 

DNA overnight at 4°C. 

2.2.7.5.7 Nick translation 

After leaving the sample overnight, DNA concentration was measured and probe DNA was 

diluted with 10mM Tris-HCl buffer to a volume of 166.5µg/µl. After this stage, DNAse1 

(Sigma, UK) from powder stock was dissolved in 1ml MBG H2O and aliquoted into 100µl 

stocks to freeze at -20°C. Serial dilution (by t aking 1たl DNAse1 stock solution and diluting 
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in 999たl MBG H20) was done. 12µl of sample DNA probe was transferred to a fresh 1.5ml 

tube on ice, and after that 10µl 10xNT buffer, 10µl 10mMDTT, 8µl NucMixA, 1.5µl Texas 

Red/FTCI, 4µl DNA polymerase I, 1µl DNAse1, 12µl DNA sample and 50.5µl MBG H2Owere 

mixed and pulsed, then incubated for 1 hour and 40 minutes at 15°C in a water bat h. After 

that, they were heat inactivated for 10 minutes at 65°C in the water bath, and t hen it was 

pulsed centrifuged in preparation for loading onto an agarose gel. 

2.2.7.5.8 Agarose gel preparation: 

1.4% of agarose gel was made with 0.42 g agarose, 30ml 1xTAE/TBE and 1µl SYBR safe 

(Life technology), and was left to set with a comb in. The comb was removed and 

1XTAE/TBE was poured to cover the gel. 4µl loading buffer was mixed with 4µl DNA probe 

sample, and then 8µl of each mixed sample was loaded into wells alongside a 3µl 100bp 

DNA ladder (with 4µl loading buffer). The gel was running for 23 minutes at 90 volts. Smears 

were checked under a UV lamp to confirm fragment sizes < 500bp. After that probe 

purification was performed as follows. 

2.2.7.5.9 Probe purification 

Probe purification was done using a QIAquick nucleotide removal kit (QIAGEN). The column 

could hold up to 1ml. To each probe volume, 10 volumes of buffer PNI (including 

isopropanol) was added and mixed. After that step, 800µl of solution was transferred to the 

quick spin column and was centrifuged at 6,000 rpm for 1 minute, and the flow through was 

discarded. After that, the remaining probe was added to the column and centrifuged for 1 

minute at 6,000 rpm. The column was washed with 750µl of PE buffer (containing ethanol) 

and was centrifuged for 1 minute at 6,000 rpm and the flow through discarded. One further 

centrifugation at 13,000 rpm for 1 minute was performed. Then the column was moved in to 

a new 1.5ml centrifuge tube and 100µl MBG water was added and left to stand for 5 minutes 
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before spinning at 13,000 rpm for 1 minute. Columns were discarded and purified probes 

were stored at 4ºC. 

2.2.8 Fluorescence in situ hybridisation (FISH) 

In order to estimate aneuploidy rate in boar sperm, dual colour FISH was performed. Sample 

and slide preparation are described in sections 2.2.3.4 and 2.2.3.2. 

2.2.8.1 Pre-hybridisation washes 

After preparing slides, they went through decondensing process as optimised previously. 

Slides were immersed in decondensing solution (0.320 g Papain, 0.155gr DTT (10mM) per 

100ml, Tris 0.2 M pH 8.6) for 3 minutes at room temperature. After the decondensing stage, 

slides were washed briefly in 2xSSC and left to air dry. Slides were washed in 70%, 85% 

and 100% ethanol for 2 minutes each, air dried and in the meantime, 10µl hybridisation mix 

was prepared (4µl MBG water, 2µl porcine hyblock, 2µl FITC labelled FISH probe and 2µl 

Texas red labelled FISH probe), and loaded onto slides on a hot plate at 37ºC with 10µl 

hybridisation buffer (Cytocell, Cambridge, UK). A 24x50mm cover slip was placed on each 

slide and sealed with rubber cement. Slides were heated on a Hybrite (Thermobrite, UK) 

for 5 minutes at 75ºC (probe denaturation step), then slide were stored overnight in moist 

chamber at 37ºC.  

2.2.8.1.1 Post hybridisation washes and detection 

On the following day, the rubber cement was carefully removed using tweezers and slides 

were incubated in 0.4xSSC in order to permit the cover slips to float off. They were then 

transferred to pre-warmed 0.4xSSC at 72ºC for 2 minutes. After this slides were immersed 

in 2xSSC with 0.05% tween 20 for 30 seconds, then 10µl Vectashield with DAPI (Vectors, 

UK) was added on each slide and a cover slip (24x50mm) was placed on slides. Slides were 

kept in the fridge until evaluation. Slides were observed using fluorescence microscopy as 
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described previously. 4 different breeds (2 animals for each breed) were analysed and 500 

spermatozoa were counted per slide.  

2.2.8.1.2 Chromosome positioning 

This study was performed to investigate whether chromosome positioning on boar 

spermatozoa is random or non-random, and to see whether there is a difference between 

fertile and sub-fertile groups. Slides from previous FISH experiments were re-analysed; 150 

images of spermatozoa were captured by Olympus BX61 microscope which was equipped 

with a CCD camera and appropriate filter under 100x objective. Images were captured with 

Smart Capture 3 software (Digital Scientific, UK). For detecting the position of signals in boar 

sperm, a custom designed macro (Designed by Michael Ellis, Digital scientific) in image J 

(available from http://imagej.nih.gov/ij/) based on that of Croft et al. (Croft et al., 1999) which 

is capable of counting signals was utilised. Chi-squared statistical tests were performed 

automatically. 

2.2.9 Telomere detection in boar sperm (FISH) 

In order to assess telomere distribution in sperm nuclei, fixed semen samples were used as 

described in section (2.1.1) and slides were prepared for FISH according to section 2.2.3.2. 

In this experiment four fertile breeds and four sub-fertile breeds were used and per breed 

two animals were studied. After preparing boar sperm slides according to previous sections, 

DTT treatment was performed (Sigma, UK) using 10mM DTT, 0.320 g papain dissolved in 

0.1M tris-HCl pH8 for 30 minutes in the dark. This experiment procedure was adopted from 

(Hazzouri et al., 2000) but the experiment was optimised according to the used boar breeds. 
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2.2.9.1 Pre-hybridisation washes 

Following decondensation, slides were immersed in PBS solution for 15 minutes and fixed 

in 4% formaldehyde (in PBS) for 4 minutes. Slides were washed in PBS twice for 2 minutes, 

dehydrated in cold ethanol series for 2 minutes each in (70%, 85% and 100%) and were left 

to air dry. Subsequently, 15µl of PNA probe (Panagene, UK) in hybridisation buffer was 

added to each slide and slides were covered by a cover slip. Slides were denatured for 5 

minutes at 80ºC and incubated in the dark at room temperature for between 30 minutes and 

2 hours.  

2.2.9.1.1  Post hybridisation washes 

After incubation, Slides were immersed in washing solution I (PBS/0.1% tween20) in order 

to remove coverslips. Following this, slides were washed in washing solution I for 20 minutes 

at 57ºC, then in washing solution II (2XSSC/0.1%tween-20) for 1 minute at room 

temperature. A few drops of Vectashield mounting medium with DAPI were placed on slides 

and a coverslip (24x50mm) was placed on each slide. Slides were kept in the fridge until 

evaluation. 

2.2.9.1.2 Telomeric signals analysis  

Telomere signal positions were identified in at least 200 sperm cells from four breed of fertile 

boar sperm and four breeds of sub-fertile boar sperm using a custom designed macro 

(designed by Michael Ellis, Digital Scientific) in Image J. This macro programme is capable 

of splitting the area of the nucleus into five concentric rings of equal area and detecting the 

proportion of telomere signal within each area, relative to the total telomere signal. A chi-

squared test was used to test the hypothesis that signals are distributed non-randomly within 

the sperm nucleus.     
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2.2.10 Impact of biopsy on embryo morphology 

This retrospective study was performed by analysing time-lapse images of embryos from 

patients at the Assisted Conception Unit at Guy’s and St Thomas’ Hospital, London.  

2.2.10.1 Patient information 

Patients with known outcome such as fetal heart beat (FHB), live birth (LB), failed 

implantation and embryo transfer resulting in a singleton pregnancy, and following ICSI were 

included in this study. Those embryos without any information on their outcome were 

excluded. The female age range in this study was from 25 to 45 years (mean± SD 35.7± 

4.2). 

2.2.10.2 Ovarian stimulation and oocyte retrieval  

Patients underwent a variety of ovarian stimulation methods such as long down regulation 

protocol (Supracur Hoechest, Germany), a short antagonist protocol (Cetrotide Serono) and 

recombinant follicular stimulating hormone (R-FSH) (Gonal-F; Merck Serono). FSH doses 

ranged from 150 to 600 IU per day according to the patient’s ovarian response. Oocyte 

retrieval was performed using ultrasound-guided puncture of ovarian follicles 36 hours 

later.Ovarian stimulation procedure was performed by specialised IVF nurse at St Thomas 

guys hospital reproductive centre (London,UK) 

2.2.10.3 Embryo preparation  

After performing oocyte retrieval, oocytes were fertilised by ICSI. ICSI fertilised embryos 

were placed in the Embryoscope (Unisence Fertilitech, Denmark) immediately after injection 

and were cultured for 5 or 6 days. They were placed on an individual sterile embryoslide 

(Unisense Fertilitech, Denmark) which has a capacity of 12 embryos with 25µl media per 

well. IVFTM Plus (Vitrolife, Sweden) was used as the fertilisation media and was placed in 

each well of the Embryoslide on the day of insemination. Embryos were cultured in G-1TM 

(Vitrolife, Sweden) media from day 1 to day 3 of embryo development and day 3 onwards in 
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G-2TM Plus (Vitrolife, Sweden). To permit temperature stabilisation, Embryoslides were 

prepared one day before use. After loading embryos, the Embryoslides were placed directly 

into the Embryoscope and image acquisition started immediately. In order to change the 

embryo culture medium on days three and five, the pause icon was clicked, 20µl of medium 

was removed and 20 µl of pre-equilibrated fresh culture medium was added. For each well 

the Embryoscope was able to determine which focal planes yielded the most informative 

images; this process took only four minutes. After this, the Embryoscope continued with 

image acquisition from each well in multiple focal planes. All this process was performed by 

embryologists at St Thomas guy’s hospital reproductive centre (London, UK). 

 

2.2.10.4 Embryoscope software 

All data produced are viewed and analysed using Embryo viewer software (Unisense 

Fertilitech, Denmark). It was possible to observe images of all embryos in the embryo slide 

culture dish at once or individually. Images could be enlarged for observation where 

annotation tools were available. These tools included: Recording the appearance and 

disappearance of pronuclear (PN), cleavage times, fragmentation, blastomere evenness or 

unevenness, multinucleation as well as morula and blastocyst formation times (see figure 

2.2). Events were annotated by clicking the plus or minus sign in the upper left corner of the 

annotation box until the relevant number of cells was displayed. A black vertical line was 

revealed in the division chart to demonstrate the time at which the cell division took place. 

The annotation was performed by clicking on the field which demonstrates the number of 

cells (upper left corner on annotation screen). Annotation was done as follows: 1, 2, 3, 4, 5, 

6, 7, 8, 9+ for the number of cells; start of compaction; morula, start of blastulation (B), 

expanded blastocyst (EB), hatching blastocyst (HB) and dead for atretic embryos. When 

annotation was performed, a value was inserted in the list of annotation variables. The time 
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(hours since fertilisation) was automatically included by the software. Table 2.4 

demonstrates the annotation variables which were used in this research. This annotation 

procedure was established by Rebecca Gould (University of Kent, UK) at the Bridge Fertility 

Centre (London, UK). When annotation was performed, data was exported to an Excel 

spreadsheet and a Mann-Whitney U test was performed for statistical analysis. 

 

 

Figure 2.2. Annotation parameters that were considered during the embryo annotation 
process. Blastomere activity is displayed on the right. Annotation parameters such as 
appearance and disappearance of pronuclei time, number of cells, cleavage times, 
fragmentation, blastomere size, multinucleation, and irregular division, time of morula 
formation and time of blastocyst formation are displayed here.  
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Annotation variables Comments 
PN appearance  
Number of PN visible  
0PN 1PN 2PN 3PN >4PN 

Time of its appearance was recorded 

Number of PN visible 17 hours- or the closest point 
PN fading  Time of PN disappearance was recorded 
One time point before PN fading was checked Number of visible PN was recorded 
Further checking was performed at 24 hours-
or the closest point 

To make sure if early cleavage sign was 
observable and also PN fading performed 

First division. Formation of two distinct new 
blastomeres from a single blastomere 
 (each blastomere has a clear plasma 
membrane) 

Cell number, blastomere size (evenness or 
unevenness), fragmentation percentage 
 (0-10%, 10-20%, 20-50%, 50-100%), and time 
of occurrence of first division were recorded.  
Irregular division box was scored if it was 
observed. 

Further check was done at 27 hours-or the 
closest point 

Cell number at this time point was recorded 

Second division (formation of three cells), 
when two cells divided in three cells 
 

Time of second division was recorded 

Halfway of first and second division was 
considered 

To determine if multinucleation was observed 
(number of multinucleated blastomers was 
recorded).  
Blastomere size (evenness/unevenness), 
fragmentation percentage according to its 
category was recorded at this time point. 

Formation of third (t3) division  Blastomere size, fragmentation percentage 
according to its category was recorded. 

4th division t4 (4 cells divided to 5 cells) Time of appearance of 4th division was recorded 
Halfway of third and fourth division was 
considered 

To determine multinucleation as described 
before 

5th division t5 ( 5 cells divided to 6 cells) Time of appearance of 5th  division was 
recorded 

6th division t6 (6cells divided to 7cells) Time of appearance of 6th division was recorded 
7th division t7 (7cells divided to 8 ) Blastomere size, fragmentation percentage 

according to its category was recorded. 
8th division t8 (8cells divided to 9) Time of appearance of 8th division was recorded 
Halfway of 7th division and 8th division was 
considered 

Annotation was done based on described 
category 

Start of compaction (when the plasma 
membrane of the blastomeres becomes 
unclear before the cells start to compact) 
 

Time of start of compaction was recorded 

Morula stage Time of Morula stage formation was recorded 
Start of blastulation 
 

Time of formation of cavity was recorded 

Early blastocyst or BC1 (blastocoel less than 
half of the blastocyst) 

Time of appearance of this event was recorded 

Blastocyst or BC2 (blastocoel more than half 
of the blastocyst) 

Time of appearance of this event was recorded 

Full blastocyst BC3 or B in annotation box 
(blastocoel fills the blastocyst) 

Time of appearance of this event was recorded 
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Expanded blastocyst (EB) the embryo is large 
and Zona is thin 

Time of appearance of this event was recorded 

Hatching blastocyst (HB) Zona pellucida 
starting to come out of the shell 

Time of appearance of this event was recorded 

Hatched blastocyst (Zona pellucida out of the 
shell) 

Time of appearance of this event was recorded 

 

Table 2.4. This table illustrates the many annotation variables which were considered to 
annotate embryos for this research from pronuclear stage to hatched blastocyst stage. 
 

2.3 Statistical analysis 

Statistical analysis was performed in this research are follow as: 

2.3.1 Chi-squared statistic test: 

To statistically analyse the impact of freezing on boar sperm morphology, and to compare 

semen morphological features between high quality and poor quality boar semen groups 

chi-squared test was used. (Section 3.3.2, 3.3.3). This test was performed to statistically 

analyse the impact of sperm concentration on fertilisation rate, and also for studying 

whether there is correlation between boar sperm capacitation rate and fertilisation 

potential, analysis using Chi squared was used to statistically analyse the capacitation rate 

differences in both groups of high and poor quality boar semen (section 4.2.1, 4.2.4, 

4.2.5). In section 5.3.1, in order to test hypothesis that the sperm chromatin packaging is 

significantly different in the poor quality semen group compared the high quality boar 

semen group as assayed by CMA3 staining, Chi squared test was performed (Specific 

aim 3a). Chi squared test was used to statistically analysed whether telomere 

distribution and chromosome positioning is random or non-random in both groups of 

high and poor quality boar semen. This statistic was performed to statistically analyse 

the distribution of abnormal number of chromosomes in high quality and poor quality 

boar semen groups (section 5.3.2, 5.3.3). In section 6.2.2, chi squared test was used 

to compare blastocyst and hatching blastocyst rate and treatment outcome in patients 
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that opted for embryo biopsy at the cleavage stage with that of patients that opted for 

embryo biopsy at the blastocyst stage (specific aim 4b).  Results were considered 

significant for p ≤ 0.05. 

2.3.2 Independent t-test: 

Independent-test was performed in this thesis when our data were distributed normally.  

In section 4.2.3 t-test was used to statistically compare the capacitation rate in three 

defined capacitation media.  

In section 6.2.1, to investigate Timing of various developmental stages among embryos 

biopsied at cleavage or blastocyst stage, Mann Whitney U test were used to determine 

differences in two groups. As our data, did not have normal distribution, Mann Whitney U 

test was selected. Results were considered significant for p ≤ 0.05. 
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3 Specific aim 1: Estimating Boar semen quality for in vitro 

fertilisation commercial application 

3.1 Background 

Boar semen quality is considered to be an important factor in pig IVF (Gil et al., 2008) 

interestingly, evidence shows that boar fertility largely depends on the breed line. 

Additionally, several epigenetic factors are involved in the incidence of sperm defects, 

including acrosome defect, head defects, midpiece abnormalities and tail defects 

(Broekhuijse 2011; Wimmers et al., 2005). Furthermore, semen quality of a single boar may 

significantly change over a short period of time due to seasonal patterns (Sancho et al., 

2004), environmental impacts (Murase et al., 2007) and infection status (Bussalleu et al., 

2011). Several traditional methods have been suggested to evaluate semen quality in order 

to increase pig IVF success rates, including motility and morphology evaluations (Sancho et 

al., 2004). Of these, motility assessment has been considered as one of the most common 

methods owing to its simplicity and inexpensive nature (Sancho et al., 2004). Indeed, results 

from Gadea and colleagues suggest that motility evaluation is strongly correlated with 

spermatozoon membrane intactness and piglet farrowing rates (Gadea et al., 2005). Having 

said this however, others have suggested that motility assessment alone cannot be an 

effective factor in determining semen quality, and that when combined with other tests, the 

predictive potential of sperm motility on semen quality is improved (Yeste et al., 2010). 

Similarly, sperm morphology assessment has been considered as another important, 

inexpensive method to evaluate semen quality. In agreement with this, Broekhuijse and 

colleagues (2011) showed that a high rate of morphologically abnormal spermatozoa has a 

negative effect on fertility (Broekhuijse et al., 2011). However, there is no clear agreement 

in the literature over the threshold at which the percentage of abnormal spermatozoa should 

be adopted to distinguish between good and poor semen samples. Several studies suggest 
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a minimum of 70% normal morphology can be considered as a good semen sample (Shipley 

et al., 1999), while others recommend 80% or 85% (Feitsma, 2009 Orsztynowicz et al., 

2011). 

One factor that is known to impact sperm morphology is freezing, a necessary process for 

the preservation and global distribution of semen samples. Evidence shows that following 

freezing, the spermatozoa plasma membrane is damaged (Guthrie et al.,2005) and the 

acrosome and tails are adversely affected (Ozkavukcu et al., 2008). However, such studies 

are extremely limited, particularly in the context of freezing. This chapter therefore aims to 

explore these issues. 

3.2 Specific aims of this chapter 

The detailed specific aims of this chapter were as follows: 

 

Specific aim 1a: To produce a working classification system for boar sperm morphology 

 

Specific aim 1b: To compare semen morphological features between fertile and sub fertile 

boars 

 

Specific aim 1c: To test the hypothesis that sperm cryopreservation impacts on sperm 

morphological features. 
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3.3 Results 

3.3.1 Specific aim 1a:  To produce a working classification system for boar 

sperm morphology 

 

Using Sperm Blue stain (Microptic), a detailed morphology evaluation was performed on a 

total of 49358 spermatozoa from 20 boars of different breeds. The WHO 2010 guidelines 

were used as a basis to categorise semen morphological features. Abnormalities were found 

in either the head, midpiece or tail regions, or various combinations of the three. This is 

illustrated in Figure 3.1. Table 3.1 describes the features for each cell represented in Figure 

3.1, which formed a basic guide to assist with the recognition of anomalous morphological 

features. 
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Figure 3.1. Morphological features of boar spermatozoa. Sperm are stained using a Sperm 
blue kit and photographed at 1,000x magnification. The first three cells are normal (1-3), 
while the other images indicate boar spermatozoa with abnormal morphological features (4-
21). Please see supplementary Table 3.1 for a more detailed description of these 
morphological anomalies. 
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Sperm Abnormality Comment 

1 - Normal, typical form 

2 - Normal, typical form 

3 - Normal, typical form 

4 Acrosomal  Thick and irregular acrosomal edge 

5 Acrosomal  Detached acrosome 

6 Acrosomal  Acrosome lifted, not tightly adherent 

7 Acrosomal  Acrosome cap missing 

8 Acrosomal Vacuolated acrosome  

9 Acrosomal  Vacuolated acrosome 

10 Retained droplet Retained proximal droplet, immature cell 

11 Retained droplet Retained distal droplet, immature cell 

12 Multiple tails Two tails  

13 Head Elongated head 

14 Head Pear shape head 

15 Head +droplet Large, pear shaped head; distal 

cytoplasmic droplet  

16 Head Pear shaped head 

17 Head Pinhead 

18 Tail Coiled tail 

19 Tail Folded tail 

Table 3.1. Abnormal morphological features found in spermatozoa as represented in Figure 
3.1. For each spermatozoon, the type of abnormality is described. The first 3 spermatozoa 
indicated no abnormalities and therefore are considered as controls. 
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3.3.2 Specific aim 1b: To compare sperm morphological features between 

fertile and sub fertile boars 

Boar spermatozoa morphology assessment was performed for both high and poor quality 

boar sperm groups and in each group, there were 4 breeds such as Hampshire, Landrace, 

Pietran and Large White. Four animals for each group were used for the work described 

under specific aim 1a. On average, the known high quality boar semen group displayed 

approximately 60% normal morphology while the known poor quality boar semen group 

showed 39% normal morphology. The first and second most common morphological 

abnormalities in the fertile group were acrosome abnormalities (17.4%) and head shape 

abnormalities (8.2%) respectively (Figure 3.2). However, in the poor-quality group, the first 

and second most common sperm morphological abnormalities were acrosome 

abnormalities (19%) and coiled/folded tail (17.4%) respectively (Figure 3.3).    

 

 

Figure 3.2. Sperm morphological abnormalities observed in the high-quality semen group 
(in total 11 animals, four breeds). The most common sperm morphological abnormalities 
among the fertile group were acrosome abnormalities with a frequency of 16.9%, followed 
by head shape abnormality with a frequency of 9.9%. 
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Figure 3.3 Morphological features among sperm in the poor-quality group (9 animals, 4 
breeds). The most common sperm morphological abnormalities among the sub fertile group 
were acrosome abnormalities with a frequency of 19% followed by coiled/folded tail with a 
frequency of 17.4%. 
 

 

Chi-squared analysis revealed that poor-quality boar semen had significantly lower levels 

of normal morphology compared to the high-quality semen group across all types of 

morphological parameters assessed, with the exception of acrosome or head 

vacuolisation. Figure 3.4 and table 3.2 illustrate the comparison of semen morphological 

feature between high quality and poor quality boar semen groups. 
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Morphology assessment  

 

 

 

Figure 3.4. Comparison of semen morphology characteristics between the high-quality (top) 
and poor-quality (bottom) semen groups. Features detailed in table 3.1 were represented in 
9 categories. The percentage of normal forms varies considerably between the two groups; 
however, acrosome abnormalities appear to be evenly distributed. 
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 Numbers Observed    

Sperm 

morphological 

Feature 

High boar 

semen 

quality 

Poor boar 

semen 

quality 

Chi 

square  

df P-value 

Normal 14482 6292 5414.97 1 0.00E0 

Acrosome 

shape/size 

637 946 58.735 1 1.80E-14 

Lifted acrosome 1519 1238 33.502 1 7.12E-09 

Detached 

acrosome 

1737 1548 13.878 1 0.000195 

Absent acrosome 

cap 

593 1394 326.334 1 6.04E-73 

Coiled/folded tail 966 5016 3036.67 1 0.00E 

Distal droplet 988 1944 318.822 1 2.61E-71 

Proximal droplet 611 1269 231.305 1 3.10E-52 

Head shape/size 2956 2509 46.305 1 1.01E-11 

Midpiece 

abnormality 

735 929 21.214 1 4.11E-06 

Multiple head 9 11 0.176 1 0.672 

Multiple tails 25 15 2.612 1 0.106 

Vacuolisation 475 514 1.164 1 0.281 

 

Table 3.2. Boar sperm morphology evaluation in fertile and sub fertile groups. Results 
were compared for statistical significance using a Chi-squared test. 
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3.3.3 Specific aim 1c: To test the hypothesis that sperm cryopreservation 

impacts on sperm morphological features 

In order to study the impact of freezing on boar spermatozoa morphology, 2,000 

spermatozoa from 2 fertile Duroc boars were collected and evaluated both before and after 

freezing. Results showed that 56.7% (fresh) and 26.3% (frozen) were morphologically 

normal. Acrosome abnormalities were common among both fresh and frozen spermatozoa 

(29.5% and 42.4% respectively). The second most common abnormality among fresh and 

frozen spermatozoa was head shape abnormalities (8.7% and 20.1% respectively); see 

Figures 3.5 and 3.6. 

 

Figure 3.5. Morphological abnormalities in fresh boar spermatozoa (n=2000) before 
freezing. The most common morphological abnormality among fresh spermatozoa was 
acrosome abnormalities with a frequency of 28.1%. The second most common abnormality 
was head shape abnormalities with a frequency of 6.6% 
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Figure 3.6: Morphological abnormalities among frozen spermatozoa (n=2000). The most 
common morphological abnormality in frozen spermatozoa was acrosome abnormalities 
with a frequency of 49.1%. The second most common morphological abnormality was head 
shape abnormalities with a frequency of 25%. 
 

 
In order to compare the impact of freezing on sperm morphology, morphological 

abnormalities incidence between fresh and frozen spermatozoa were compared using a Chi-

squared test. Table 3.3 indicates both the raw data and results of the statistical analysis. 

Results show that fresh spermatozoa had significantly higher percentages of normal 

morphological features (p <0.05). Overall, frozen spermatozoa showed significantly higher 

acrosome abnormalities, head shape abnormalities and acrosome vacuolisation than fresh 

spermatozoa (P <0.05). However, no significant difference was observed in coiled/folded 

tail, and head vacuolisation between the two groups of fresh and frozen. Interestingly, a 

higher proportion of sperm with retained cytoplasmic and midpiece abnormalities were 

present in fresh rather than frozen spermatozoa. This is outlined in Figure 3.7. 
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 Numbers Observed    

Sperm 

morphological 

Feature 

Fresh 

semen 

Frozen 

semen 

Chi 

square  

df P-value 

Normal 1121 801 167.778 1 2.25E-38 

Acrosome 

shape/size 

51 64 0.187 1 0.6650 

Lifted acrosome 453 276 83.97 1 5.03E-20 
 

Detatched 

acrosome 

164 852 7.481 1 0.0063 

Absent acrosome 

cap 

140 111 9.408 1 0.0022 

Coiled/folded tail 96 90 2.151 1 0.1431 

Distal droplet 68 30 21.304 1 3.92E-06 

Proximal droplet 128 42 59.085 1 1.51E-14 

Head shape/size 240 612 133.1 1 8.68E-31 

Midpiece 

abnormality 

103 36 44.162 1 3.02E-11 

Vacuolisation 69 135 13.330 1 0.0003 

 
3Table 3.3. Boar spermatozoa morphology before (n=2000) and after freezing (n=2000). 
Semen features between fresh and frozen samples were compared by using a Chi-squared 
statistical test. 
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Fresh vs. frozen boar spermatozoa morphology evaluation 
 

 
 
 
 
 
 

 
 
 
 
Figure 3.7. Comparison of semen morphology features between fresh (top) and frozen 
(bottom) groups. Detailed morphological abnormalities in table 3.3 were categorised into 9 
categories. The percentage of normal forms appears to be significantly different across the 
two groups.  
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3.4 Discussion 

3.4.1 To produce a detailed classification of boar semen morphological 

abnormalities (specific aim 1a). 

Current published literature presents some confusion with respect to boar semen 

abnormality classification and no clear standards exist (Bonet et al., 2012). To the best of 

my knowledge therefore, the study presented here is the first attempt to develop full criteria 

for the evaluation of morphological features in boar sperm based on the WHO laboratory 

manual 2010, for the assessment of human sperm. 

As discussed earlier in section 3.1, inter-breed differences in sperm morphology implicate 

difficulties when trying to standardise the morphological assessment thresholds of high 

quality boar semen boars (Smital et al., 2009) and an interesting further study would be to 

determine whether there is a difference in sperm morphology in different breeds. 

Nonetheless, this work acts as a starting point for a more comprehensive, breed-specific 

study. Indeed, our data is complemented by appropriate field records of boar farrowing rates, 

and therefore could supply indications to infer morphology aberration thresholds for each 

breed. A similar approach was applied before with success (Xu, 1998; Gadea 2004; Gadea 

et al., 2005). 

3.4.2 To test the hypothesis that fertile and sub fertile groups significantly 

differ in morphological features 

Results from this study indicate that some morphological abnormalities (such as acrosome 

detachment, absence of acrosome and vacuolisation) may be regarded as physiological at 

the levels encountered in both groups of high and poor quality boar semen. According to 

previous studies, a threshold of 70% normal forms is considered as a good quality semen 

sample and a value below this threshold is considered as poor and is therefore discarded 

(Dominiek 2011;Bonet et al., 2012). In our sperm morphology evaluation experiment, 
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however, even the boar with the best morphology only achieved 66.5% normal 

morphological features and the average result for the high-quality semen group was 58.5%. 

There are several reasons that might explain this observation in the high-quality semen 

group: firstly, most semen samples evaluated were produced during the spring and summer 

seasons. Seasonal patterns in boar semen quality have been well documented before, and 

it has been suggested that semen samples produced during spring and summer have lower 

quality and quantity due to higher environmental temperatures in comparison to those 

produced during autumn and winter (Pokrywka 2014; Sancho et al., 2004). Also, a more 

recent study by Lipensky and colleagues in 2011 indicated that season has the adverse 

effect on sperm morphology and considerably impact boar semen quality (Frydrychova et 

al., 2011). Suriyasomboon research group in 2005, reported that high temperature has a 

negative impact on sperm morphological features, particularly the rate of abnormal head 

shape may increase in high temperature. The same research group proposed that high 

humidity may increase the rate proximal cytoplasmic droplet (Suriyasomboon et al., 2005) 

In addition, temperature changes during transport from the farm to our laboratory may have 

had detrimental effects on semen quality. Since spermatozoa are sensitive to alterations in 

temperature, it is imperative that samples are maintained at 17oC during transit in order to 

avoid temperature shock. Indeed, a negative impact of high temperature on sperm 

morphology has been shown in previous research (Lopez Rodriguez et al., 2012). 

Alternatively, it is possible that our own scoring system is stricter than that implemented by 

others. Scoring sperm morphological features is highly operator dependent and may be 

considerably different in different laboratories. Finally, it is of course possible that a 

proportion of the abnormalities observed can be attributed to errors made during fixing and 

staining procedures. One possible explanation for the observation of reduced sperm 

morphology in the poor-quality boar is the presence of bacteria in the semen; previous 
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evidence has shown that this causes reduced semen quality (Bussalleu et al., 2011). Semen 

from healthy boar normally does not have bacteria, however, the skin and hair of the boar 

contain bacteria, as do the collection environment which can contaminate the collector’s 

hand or collection container (Gradil et al., 1991). Therefore, the content of bacteria in semen 

extender solution increases after storage of semen for a few days. In our research, some of 

our semen sample were stored at 17Cº 2-5 days after collection, this issue may impact on 

boar sperm morphological features. Although antimicrobial agents are usually added to the 

semen extender, in some cases there may be resistance to these treatments which may 

negatively impact on semen quality and decrease fertilisation rates (Sone et al., 1990). It 

has been suggested that E. coli bacteria attaches to sperm surface through mannose-

binding structures causing damage to the sperm plasma membrane (Wolff et al., 1993). In 

line with this, presence of bacteria has previously been shown to disrupt the acrosome, 

membrane viability and midpiece of sperm (Kuster et al., 2016). 

3.4.3 The impact of freezing on boar spermatozoa morphology 

In the pig breeding industry, the use of frozen–thawed boar semen samples for artificial 

insemination and in vitro fertilisation is largely limited due to shortened life span of 

spermatozoa and lower fertilisation rates leading to variable pregnancy rates (Knox et al., 

2015). Similarly, freezing of semen samples has been reported to lower sperm motility 

leading to reduced fertilisation rates (McNamara e et al., 2013). It is thought that this is 

largely due to an increased sensitivity to cryopreservation in boar sperm when compared to 

human and bovine sperm (Guthrie et al., 2005). In keeping with these findings, results from 

our study identified that the process of freezing significantly impacts boar sperm 

morphology. Our results showed that overall morphology was highly significantly reduced in 

frozen compared to fresh sperm samples from animals of the same breed. More specifically, 

the number of acrosome abnormalities, head shape abnormalities and presence of vacuoles 
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were significantly higher in frozen semen samples compared to fresh samples. It is likely 

that this can be explained by the high sensitivity of boar sperm to cold shock, which is 

thought to be cause by the unique composition of phospholipids and cholesterol of their 

plasma membrane (Watson et al., 1995). During the process of freezing, semen samples 

are cooled down to below 15 oC, then to 5oC before a rapid temperature decrease to -100oC. 

It has been suggested that maintaining boar semen samples at 17oC for between 16 and 24 

hours before freezing allows the semen sample to develop resistance to cold shock 

(Watson, 1995 #489). However, in our study, semen was collected and frozen on the same 

day after maintenance at 17oC for only a couple of hours. Therefore, it is possible that cold 

shock may have impacted on acrosome and membrane morphological features as observed 

in our results. Furthermore, glycerol is added to semen when samples are prepared for 

freezing. It is well-known that glycerol is highly toxic and can damage the sperm membrane, 

leading to decreased fertility.  It has been suggested that a reduced concentration of glycerol 

may improve semen quality during the freezing process (MuiñoǦBlanco et al., 2008) however 

more recent research indicates that even low concentrations of glycerol can negatively 

impact on boar sperm motility and morphology. As an alternative, others have recommended 

use of Trehalose as this is a non-permeable cryoprotectant and a non-reducing disaccharide 

known to stabilise proteins and biological membranes. As such, Trehalose may improve 

boar sperm quality during the post-thaw process (Athurupana et al., 2015) In future studies, 

it would be interesting to investigate the impact of the use of Trehalose over glycerol on 

sperm morphology in comparison to fresh semen samples.  

3.5 Conclusions 

In conclusion, we believe to have successfully developed a series of tests that may predict 

boar semen quality without the requirement for breeding tests. Semen morphological 

evaluation offers a quick and cheap alternative in order to identify good quality semen 
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samples. In addition, our results suggest that, to preserve semen quality, extra care is 

needed during the freezing process. It is possible that replacing glycerol with Trehalose may 

decrease the toxicity of the semen extender and it would be interesting to investigate such 

effects in future studies. 

 

4 Specific aim 2: The impact of boar sperm concentration and 

capacitation on fertilisation rate 

4.1 Background 

In humans and animals alike, several in vitro methods have been designed for the analysis 

of sperm fertilisation ability in order to predict male fertility (Xu et al., 1998). In 1990, Bavister 

and colleagues were one of the first groups to introduce such techniques by assessing 

sperm morphology and motility, in addition to testing oocyte penetration (Bavister et al., 

1990). As mentioned in before, routine techniques in most AI centres and IVF laboratories 

for the analysis of boar semen quality involve examination of sperm morphology, motility 

and concentration (Barth 1992; Buckner, 1954; Linford et al., 1976). Previous results have 

shown that use of a sperm concentration of 1x106 sperm/ml results in high penetration rate, 

however the incidence of polyspermy is increased (Ding et al., 1992). In light of this, it has 

been suggested that a decrease in boar sperm concentration may reduce polyspermy and 

improve penetration rates. One of the aims of this chapter therefore, is to determine the 

impacts of decreasing boar sperm concentration on fertilisation potential.  

In order to acquire the ability to penetrate and fertilise the oocyte, the spermatozoa must 

undergo acrosome activation in a process known as capacitation. (Yanagimachi, 1994 

#541). in vitro fertilisation experiments have achieved capacitation in chemically defined 

media (Cohen-Dayag et al., 1995). The components of the media used is highly dependent 

on the species, however most contain bicarbonate, calcium and macromolecules such as 
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BSA (bovine serum albumin) (Visconti et al., 1998). Furthermore, the majority of porcine IVF 

media is supplemented with caffeine (Cheng, 1986; Nagai, 1993; Nagai, 2006; Mattioli et 

al., 1989) and in some reports ophylline has been included in the media in order to improve 

boar sperm capacitation rate (Yoshioka et al., 2011). Overall, caffeine is considered the most 

effective promoter of sperm capacitation, resulting in spontaneous acrosome reaction 

(Nagai, 1993; Funahashi, 2000; Funahashi et al., 2000) and a significant increase in sperm 

penetration. However, the use of caffeine supplementation additionally results in a high rate 

of polyspermy. As an alternative, others have suggested that adenosine supplementation 

may be used to improve capacitation rate whilst reducing the polyspermic rate associated 

with caffeine supplementation (Funahashi, 2004; Funahashi, 2000; Funahashi et al., 2000).  

 

It has been reported that boar in vivo in capacitation requires between 90 and 180 minutes 

after insemination (Mattioli et al., 1996). Therefore, this chapter aimed to optimise the boar 

sperm capacitation period. Since acrosome reaction is essential for the sperm capacitation 

process, it is possible that sperm capacitation rate may be correlated with sperm 

morphological features. This phenomenon is largely under-explored however and therefore 

work in this chapter additionally aimed to address this gap (Gadea et al., 2005).  
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4.1.1 Specific aims of this chapter 

Specific aim 2a: To test the hypothesis that by decreasing boar sperm concentration, 

fertility rate is increased, as identified by an increase in cleavage rates. 

Specific aim 2b:  To test the hypothesis that sperm incubation time is associated with 

capacitation in the high quality and poor quality boar semen. 

Specific aim 2c: To test the hypothesis that supplementation of capacitation media with 

caffeine or adenosine is associated with higher capacitation rates in the high and poor quality 

boar semen. 

Specific aim 2d: To test the hypothesis that specific morphological parameters in boar 

sperm are significantly associated with sperm capacitation rate. 

Specific aim 2e: To test the hypothesis that sperm capacitation rate is significantly  

associated with fertilisation potential, as demonstrated by embryo cleavage rates.  
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4.2 Results 

4.2.1 The impact of sperm concentration on fertilisation rate (specific aim 

2a) 

In this section, IVF was performed using a sperm concentration of either 1x106 sperm/ml or 

1x104 sperm/ml (in this experiment 224 oocytes of Large White were fertilised with Pietran 

spermatozoa). IVF success was measured in each group by assessing the number of 

embryos that reached 2 cell, 3 cell, 4 cell, 8 cell, 16 cell, morula stage, early blastocyst and 

full blastocyst. A Chi square test was performed to test the data for significant differences.  

Table 4.1 indicate the fertilisation outcomes in each of the two groups. Overall, there was 

no significant difference between fertilisation outcomes in two groups. 

 Sperm 

concentration 

   

Embryo outcome 106 104 Chi 

square  

df P-value 

Development 1 cell 

to 2 cells 

43/152 53/183 0.0183 1 0.892 

Development 2 to 4 

cells 

23/43 34/53 1.119 1 0.290 

Development 4 to 8 

cells 

11/23 16/34 0.0016 1 0.968 

 Development 8 cell 

to compacted 

10/11 16/16 1.510 1 0.219 

Development 

compacted to 

morula 

9/10 15/16 0.9410 1 0.332 

Development 

morula to blastocyst 

0/9 1/15 0.626 1 0.429 

 

Table 4.1. IVF success rates following insemination with 1x106 sperm/ml compared to 
insemination with 1x104 sperm/ml. In this experiment, 224 oocytes were used and oocytes 
were fertilised with Pietran spermatozoa. Chi square test revealed no significant difference 
between the two between the two groups. 
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4.2.2 The impact of sperm incubation time on sperm capacitation rate 

(specific aim 2b) 

Capacitation was assessed in semen samples from three high-quality and three poor-quality 

boars’ semen (White Duroc, Pietran and Hampshire), using chlortetracycline (CTC) staining 

as described in section 2.3, 2.3.1 and 2.3.2.  

When CTC staining was performed, three different fluorescence patterns were observed as 

shown in figure 4.1. Uncapacitated spermatozoa (Pattern A) was identified by bright 

fluorescence over the entire sperm head and midpiece of the tail; capacitated spermatozoa 

(pattern B) was identified by presence of fluorescence in the equatorial segment and 

midpiece of the tail, and a dark band (fluorescence free) in the post acrosome region; or 

acrosome reacted sperm (pattern C) identified by low fluorescence signal in the sperm head 

with a positive signal in the equatorial segment and midpiece.  

 

 

Figure 4.1. CTC staining patterns observed under capacitating conditions. (A) 
Uncapacitated, acrosome intact sperm, identified by bright fluorescence over the entire 
sperm head and presence of positive fluorescence in the mid piece of the tail; (B) 
capacitated, acrosome intact sperm identified by bright fluorescence observed on the 
equatorial segment and mid piece of the tail. In the post acrosome region fluorescence, free 
(dark) bands were observed. (C) Acrosome reacted sperm with no fluorescence signal 
observed on the entire sperm head and positive staining on the equatorial segment and mid 
piece of the tail. In this experiment three high-quality semen and three poor-quality boar 
semen were used (two animals were used in each breed) 
 
 
 
 
 

A B C 
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The percentages of the three different patterns observed throughout the capacitation 

incubation times in three high-quality and poor-quality semen groups are indicated in table 

4.2 (two animals of each breed were used). According to these results, a significant 

decrease in the rate of pattern A (uncapacitated) was observed in high quality boar sperm 

group as the incubation time for capacitation proceeded. The percentage of sperm 

representing pattern A decreased from 54.3±0.5 (mean ± SEM of 6 replicates) at the 

beginning of the incubation to 38.7± 2.1(n=6), 28.6±3.1 (n=6), 25±2.3 (n=6) and 17±3.5 

(n=6) after 60 min,120 min,180 min and 240 min of the incubation respectively. Pattern C 

(Acrosome-reacted sperm) indicates inverse behaviour compared to pattern A, as the 

percentage of sperm stained as per pattern C increased from 43.1±0.9 (n=6) at the 

beginning of the incubation to 45.9±3.7 (n=6), 48.7±3.5 (n=6), 57.5±2.5 (n=6) and 78.5 ±6.1 

(n=6) after 60 min, 120 min, 180 min and 240 min of incubation respectively. The percentage 

of sperm representing pattern B (capacitated) significantly increased from 8.3±0.7 (n=6) at 

the beginning of the incubation to 25.3±2.6 (n=6) after 60 min of incubation. After that, 

pattern B increased slightly to 30.1±2.3 (n=6) after 120 min incubation followed by a 

decrease in the percentage of sperm represented by pattern C to 25.2±2.0 (n=6) and 

12.3±3.8 (n=6) after 180 min and 240 min of incubation respectively. The same observation 

of capacitation patterns indicated for poor semen quality group according to table 4.1. 
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Time 

(minutes) 

A B C A B C 

0 54.3±0.5 8.3±0.7 34.3±4.9 35.6±14 3.8±0.7 71±4.7 

60 38.7±2.1   25.3±2.6     45.9±3.7       12.2±1.8    2.6±0.5       90.0±1.3 

120 28.6±3.1   30.1±2.3     48.7±3.5    9.8±1.7     5.5±1.3 91.7±3.8 

180 25±2.3        25.2±2.0     57.5±2.5       10.5±0.8    5.8±1.9     88.3±1.2 

240 17±3.5 12.3±3.8 78.5±6.1   8.8±3.1 9.7±3.7 90.3±8.7 

Table 4.1. The value of three fluorescence patterns during incubation of fertile and sub fertile 
boar sperm up to 240 minutes. Each value represents the mean of 6 replicates ±Standard 
error of the mean (SEM), a minimum of 100 spermatozoa were scored in each slide.  
 

In order to determine whether there is any association between incubation time and 

capacitation rate in both high-quality and poor-quality semen group, a Pearson’s correlation 

test was carried out. According to this statistical test, there was no correlation between 

incubation time and total capacitation rate in high-quality boar sperm (r = 0.157, p = 0.171), 

whereas a moderate positive correlation between incubation time and capacitation rate was 

observed in the poor-quality semen group (r = 0.434, p<0.0001) 

 

4.2.3 Comparison of three different capacitation media for in vitro 

fertilisation (specific aim 2c) 

In this section three different fertilisation media (media 1: capacitation media, media2: 

capacitation media supplemented with caffeine and media3: capacitation media 

supplemented with adenosine) were compared to determine which media is more suitable 

for inducing optimum capacitation rate in both high and poor quality semen groups. In 

order to identify where overall differences occurred, the capacitation rate in the three-

High quality boar semen                                                Poor quality boar 
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defined media, was compared for statistical significance using a t-test (results shown in 

tables 4.4). Table 4.2 indicates the capacitation rate of high quality and poor quality semen 

groups in the three-different media (media1, media 2 and media 3) tested.  In high quality 

semen group, the Capacitation rate was significantly higher in capacitation media (media1) 

compared to the capacitation rate in media supplemented with caffeine (media2) or 

adenosine (media3). However, the capacitation rate was significantly higher in media 

supplemented with caffeine (media2) compare to adenosine (media3). In poor quality 

semen group, the capacitation rate was significantly higher in media supplemented with 

adenosine (media3) compare o media supplemented with caffeine (media2) (p value: 

0.03). 

 

 t-test 
value 
between 
media1 
and 
media2 

df 
between 
media1 
and 
media2 

p-value 
between 
media1 
and 
media2 

t-test 
value 
beween 
media1 
and 
media3 

df 
between 
media1 
and 
media3 

p-value 
between 
media 1 
and 
media3 

t-test 
value 
media2 
,media3 

df 
media2,3 

P-value 
Media2,
3 

High-
quality 
semen 

2.932 19 0.01 4.98 16 0.006 3.29 13 0.006 

Poor-
quality 
semen  

0.640 17 0.531 3.10 11 0.010 2.49 13 0.030 

4.2. High-quality and poor-quality boar spermatozoa capacitation rate was compared in 
three different media: capacitation media (media1), capacitation media with caffeine 
(media2) and capacitation media with adenosine (media3). T-test was performed to 
compare capacitation rate in three defined media. According to t-test in high quality boar 
spermatozoa, the capacitation rate is significantly higher in Capacitation media(media1), 
and also capacitation rate is significantly higher in capacitation media supplemented with 
caffeine (media2) than capacitation media supplemented with adenosine. In poor- quality 
semen group, the mean number of capacitated spermatozoa increase significantly in 
capacitation media supplemented with adenosine (media3) 
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This study results indicate that there is a significant difference in proportion of capacitated 

spermatozoa in high quality boar semen group and poor quality semen group in two tested 

media. Table 4.3 indicated these differences based on Mann Whitney U test. According to 

this table the number of capacitated spermatozoa in capacitation media (media1) and in 

capacitation media with caffeine supplement (media2) is significantly higher in fertile group 

(p <0.001), while no significant difference observed between the amounts of capacitated 

spermatozoa in capacitation media with adenosine supplement in both groups (p= 0. 4832). 

 High-

quality 

semen 

Poor-

quality 

semen 

Mann 

Whitney 

U test 

value 

df P value 

Mean Capacitated 

spermatozoa in 

media 1 

28.9±1.4 6.1±0.9 13.345 
 

17 <0.001 

Mean Capacitated 

spermatozoa in 

media 2 

23.8±1.0 7.1±1.3 10.351 19 <0.001 

Mean of capacitated 

spermatozoa in 

media 3 

15.7±2.2 13.1±2.1 0.851 17 0.4832 

Table 4.3. A comparison of capacitation rate in fertile and sub fertile spermatozoa in three 
different media: Capacitation: media 1, capacitation supplemented with caffeine: media 2 
and capacitation supplemented with adenosine: media3  
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4.2.4 Correlation between boar spermatozoa capacitation rate and 

fertilisation rate (specific aim 2d) 

In order to determine the effects of different media supplements on IVF success, 

capacitation and fertilisation rates were assessed when using high quality boar sperm in 

media 2 and media 3. 145 oocytes were fertilised in media supplemented with caffeine 

(media2) and 103 oocytes were fertilised in adenosine (media3) supplemented with 

adenosine as described in the materials and methods sections 2.3, 2.3.1. Results were 

tested for statistical significance using an independent samples t-test, as shown in table 4.8. 

No significant difference was observed in the fertilisation rate between the media tested. In 

this section, poor quality boar spermatozoa were not assessed as the IVF in our laboratory 

was only performed with high quality boar spermatozoa in order to achieve higher 

fertilisation rates. Furthermore, media 1 was not assessed as our IVF protocol stipulates use 

of supplementation. 
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Embryo 

outcomes 

The number of 

fertilised 

embryos in 

media 2 

The number 

of fertilised 

embryos in 

media 3 

Chi-square 

value 

df Chi-square P 

value 

From 1-2 

cell 

38/145 39/103 3.823 1 0.053 

From cells- 

4 cells 

22/38 19/39 0.651 1 0.420 

From 4 -8 

cells  

18/22 13/19 0.992 

 

1 0.319 

From 8 

cells-16 

cells 

15/18 7/13 3.186 1 0.074 

Compacted 13/15 4/7 2.431 1 0.119 

Morula 12/13 4/4 0.643 1 0.423 

Early 

blastocyst 

4/12 2/4 3.111 1 0.551 

Blastocyst 1/4 1/2 0.375 1 0.540 

 

Table 4.4. Fertilisation outcomes using two different fertilisation media:  capacitation media 
supplemented with caffeine or adenosine. This experiment was carried out using 145 
incubated embryos in the capacitation media with caffeine and 103 incubated embryos in 
the capacitation media with adenosine. A chi-square test revealed no significant difference 
between fertilisations rate in the two groups (P value>0.05). 
 
 

4.2.5 Correlation between boar spermatozoa capacitation and sperm 

morphology (specific aim 2d) 

In order to test for an association between sperm morphology and capacitation potential, 

sperm morphology was assessed in three high quality boars and three poor quality boars. 

This experiment was repeated three times for each breed and 150 sperm was analysed per 

slides. In total 1350 sperm were evaluated in each group of high quality and poor quality 

semen, as described in section 2.3 and 2.3.1. As determined in section 4.2.2, the optimum 
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incubation time for capacitation was 120 minutes and 60 minutes for high quality and poor 

quality boars respectively. Analysis using a Chi squared test for significance found that 

sperm of poor quality boars possessed a significantly lower percentage of normal 

spermatozoa and a significantly higher percentage of sperm with acrosome, tail, head shape 

and midpiece abnormalities. However, no difference was found in cytoplasmic retention 

between the two groups.  The most common spermatozoa abnormality among sperm from 

high quality boars was acrosome abnormality with 12.4%, whereas in poor quality boars the 

most common abnormality was coiled and folded tail with 22.5%. This is illustrated in  

table 4. 

 
An independent samples t-test was carried out in order to analyse the data obtained for 

statistical significance. Results showed that the sperm of the high quality boar semen group 

possessed a significantly higher capacitation rate (58.6%) than that of the poor quality 

semen group (23.5%, p = <0.05). This is shown in table 4.5 and figure 4.2. 
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 Percentage    

Sperm Feature High 

quality 

boar 

sperm 

Poor 

quality 

boar 

sperm 

Chi-

square 

value 

df Chi-square 

P value 

Normal  58.6% 23.5% 25.456 1 <0.001 

Percentage of 

Acrosome 

abnormalities 

12.4% 21% 2.658 1 0.103 

Percentage of 

Coiled/folded tail 

3.0% 22.5% 17.091 1 <0.001 

Percentage of 

Retained 

Cytoplasmic  

12% 10.0% 0.204 

 

1 0.651 

Percentage of 

Head shape/size 

11% 18.0% 1.976 

 

1 0.160 

Percentage of 

Midpiece 

abnormality 

3% 5% 0.521 1 0.470 

Table 4.5. Boar spermatozoa morphology in high quality and poor quality boars. Three 
breeds were analysed in each group and the experiment was repeated three times for each 
breed in both groups. Spermatozoa characteristics between the high and poor quality groups 
were compared using a classical chi-squared test; differences were considered as 
significant for p<0.05. 
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Figure 4.2. Sperm capacitation rate in high and poor quality f boars. Sperm of high quality 
boars possessed a significantly higher capacitation rate than sperm of poor quality boars.  
 

Following morphological analysis, CTC staining was performed in order to determine 

whether a correlation exists between spermatozoa morphology and capacitation rate. A non-

parametric spearman‘s correlation test was carried out in order to test for a statistically 

significant relationship. Results indicate a strong positive correlation between sperm 

morphological features and capacitation rate, rS (14) =0.735, P<0.0005. As shown in figure 

4.3, a high percentage of normal spermatozoa morphological features are correlated with a 

high capacitation rate. 
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Figure 4.3. Correlation between % morphologically normal sperm and capacitation rate. An 
increase in the proportion of normal sperm morphological features is strongly positively 
associated with increased capacitation rate.  
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4.3 Discussion 

 

4.3.1 Impact of sperm concentration on fertilisation rate (specific aim 2a) 

 
Previously published data has shown that use of a high concentration of boar spermatozoa 

in IVF treatment results in high penetration rate and an increased incidence of polyspermy 

(Xu et al., 1996). Furthermore, results have shown a clear negative correlation between 

polyspermy rate and spermatozoa capacitation rate, by increasing sperm polyspermy the 

capacitation rate will decrease. As such, it has been suggested that a decrease in the 

number of spermatozoa used for in vitro fertilisation could reduce the incidence of 

polyspermy and in turn, increase penetration rate (Gil et al., 2008). In this study, therefore, 

two different concentrations of boar semen were used in IVF procedures (1x106 and 

1x104sperm/ml) in order to determine the optimum sperm concentration for fertilisation. 

The boar sperm motility o each breed was assessed before fertilisation and he average of 

motility was between 70% and 80 %. This experiment was repeated six times with two 

different breeds. Our results showed that there was no significant difference in fertilisation 

rate between the two groups assessed.  One of the reasons for this unexpected finding 

may be explained by the fact that we used cleavage rate as an indicator of fertilisation. 

Since the porcine oocyte is lipid rich and therefore extremely dark, it was not possible to 

visualise and assess the rates of pro-nuclei formation as an indicator of successful 

fertilisation. Thus, it is possible that in some instances fertilisation did occur, however 

cleavage was not observed. This may lead to an inaccurate estimation of fertilisation rates, 

which may have affected the interpretation of our data. Alternatively, it is possible that our 

results can be explained by poor semen samples, since in most cases, the semen used 

had been collected five to seven days prior to use. In all IVF cycles, fresh semen (as 

oppose to frozen and thawed semen) were used for fertilisation, therefore it is possible that 
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during those 5 to seven days from collection to use, sperm quality had significantly 

reduced resulting in impaired fertilisation potential. In this instance, we might expect that 

varying concentrations would have no effect on fertilisation potential as previously 

confirmed by Xu and colleagues (Xu et al., 1998). Finally, it is possible that we did not see 

an increase in fertilisation rates with reduced sperm concentration due to the fact that 

although a reduction in sperm concentration is expected to reduce polyspermy rates, a 

lower number of sperm per oocyte ratio is incurred. It is possible therefore that there 

simply were not enough sperm present in the lower concentration group.  

4.3.2 The impact of incubation time on sperm capacitation rate (specific aim 2b). 

Results from this chapter showed that, as expected, in response to increased incubation 

time, the proportion of uncapacitated sperm (pattern A, figure 4.1) progressively decreased, 

while the proportion of capacitated sperm and acrosome reacted sperm (patterns B and C 

respectively, figure 4.1) progressively increased with incubation time in both high and poor 

quality boars. These observations are in accordance with previous findings from Mattioli and 

colleagues (Mattioli et al., 1996). 

Previous reports have found that spermatozoa capacitation timing is different among 

different species in vitro; for example, in humans the capacitation process takes 1 hour while 

in the mouse this process is completed in 2 hours.  Furthermore, others have noted that in 

boars, capacitation is completed in 2 hours (Bavister 1969; Iritani, 1977; Hunter et al., 1974). 

This is in agreement with the findings from this study, in which the capacitation process was 

seen to be completed within 120 minutes in fertile boars. In fact, our results suggest that the 

majority of sperm have undergone capacitation within 60 minutes in high quality boar semen 

groups. This is followed by a small but significant increase in the number of capacitated 

sperm between 60 and 120 minutes. Following this time, no significant difference in the 

proportion of capacitated sperm was observed between 120 and 180 minutes and 
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interestingly a significant decrease in the proportion of capacitated sperm was observed 

between 180 and 240 minutes in the sperm of high quality boars. Also, pattern C (acrosome- 

reacted sperm) proportion increased constantly over the period of incubation from 60 

minutes to 240 minutes. It can be argued that sperm is expected to constantly go through 

the acrosome reaction procedure (which is required to complete the capacitation process). 

However according to our study, after 240 minutes of incubation, sperm were not able to 

continue the capacitation procedure. It is possible that this finding can be explained by the 

presence of sperm with acrosome abnormalities in the ejaculate of high quality boars’ 

semen. In this instance, those sperm with normal acrosome are able to undergo capacitation 

within the expected time frame, whereas those with abnormal acrosome remain 

uncapacitated, representing a decline in capacitation at later time points. Alternatively, the 

decline in capacitation rate after 240 minutes could be an artefact of the experiment, as is 

is expected that the amount of capacitation should stay constant, or increase over the 

incubation period rather than begin to decline.   

In poor quality boars, our results showed that again, a significant proportion of sperm had 

undergone capacitation within the first 60 minutes. However, no significant increase in 

capacitation was observed between 60 and 120 minutes. Interestingly, in contrast to high 

quality boar semen groups, a significant increase in capacitation was observed between 120 

and 180 minutes and 180 and 240 minutes in poor quality boars. It is possible that this may 

be the result of two separate populations of spermatozoa within the ejaculate of poor quality 

boar semen: one in which the sperm quality is comparable to that of high quality boar semen 

and hence undergo capacitation within 60 minutes, and a second in which sperm quality is 

poor, with high morphological abnormalities and hence capacitation may eventually occur 

albeit at a much slower rate than those of higher quality. To the best of my knowledge this 
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is the first study to assess capacitation rate in the sperm of poor quality boars, therefore 

these findings represent some interesting new insights. 

 

4.3.3 Comparison of three different capacitation media for in vitro 

fertilisation (specific aim 2c, 2d) 

The molecular mechanism of sperm capacitation is still poorly understood. Sperm 

capacitation may occur spontaneously in vitro in defined media without addition of biological 

fluids (Visconti et al., 1998), however, previous reports have suggested that various 

supplements may be added to the fertilisation media in order to facilitate capacitation 

(Funahashi et al., 2000).  The most common examples of such supplements include caffeine 

and adenosine. In order to investigate the effects of these on the capacitation of sperm from 

high and poor quality boars’ semen, we incubated semen samples from each group with 

capacitation media alone, capacitation media supplemented with caffeine and capacitation 

media supplemented with adenosine. Results showed that in both high and poor quality boar 

semen groups; no significant difference was observed when the fertilisation media was 

supplemented with caffeine. However, when the media was supplemented with adenosine 

a differential response was recorded between high and poor quality boar semen groups: 

While the poor-quality boar semen group showed a significant increase in capacitation in 

response to adenosine supplementation (when compared to capacitation media alone and 

capacitation media supplemented with caffeine), the fertile group showed a significant 

decrease in capacitation in response to adenosine supplementation. Our results are 

therefore in partial agreement with those reported by others in which it was suggested that 

the addition of caffeine to IVF media results in an increase sperm motility, induction of 

capacitation and spontaneous acrosome reaction. (Funahashi et al., 2001).  In our own 

experience, this beneficial effect is specific to poor quality semen samples only. Indeed, 
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others have also reported boar specific effects of IVF media supplementation on sperm 

capacitation rates: In a report by Gil and colleagues, while some boars displayed higher 

capacitation rates in media caffeine supplements, others displayed higher capacitation and 

fertilisation rates in IVF media without caffeine supplements (Gil et al., 2008). Therefore, it 

can be concluded that each boar responds differently to caffeine and adenosine 

supplements. Also, it was reported that when spermatozoa were incubated in the 

capacitation media with adenosine supplements, they require more time to induce 

capacitation rate compared to capacitation media with caffeine supplementation (Funahashi 

et al., 2001). It is possible that spermatozoa incubated in the capacitation media with 

adenosine supplementation might require additional time to incubate as the number of 

capacitated spermatozoa in this media declined. According to our results, poor quality boar 

semen reached capacitation later than high quality boar semen when incubated without 

supplements, therefore the addition of adenosine supplementation resulted in improved 

capacitation rates in this group. In another part of this experiment, the fertilisation rate of 

porcine oocytes in capacitation media with caffeine or adenosine supplementation was 

determined in order to examine if these results are in accordance with our capacitation 

findings. It was found that there is no significant difference between fertilisation rates in the 

capacitation media with caffeine or adenosine supplements, however the IVF experiment in 

this study was only performed with high quality boar spermatozoa. This study showed no 

significant difference in the portion of capacitated spermatozoa from high quality semen in 

capacitation media supplemented with caffeine in comparison to that supplemented with 

adenosine, therefore it is in accordance with the fertilisation experiment.   
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4.3.4 Correlation between boar sperm morphological features and 

capacitation rate (specific aim 2e).  

To date, the current literature regarding a correlation between spermatozoa morphology 

and fertilisation rate remains controversial. While some studies argue a strong correlation, 

others report none. For example, Lundin and colleagues report that fertilisation ability is 

not necessarily impaired in morphologically poor human spermatozoa (Lundin et al., 

1997), whereas Enginsu et al. argue the opposite (Enginsu et al., 1991) .Interestingly, 

evidence shows that ICSI treatments can be significantly improved by injecting 

morphologically normal spermatozoa, suggesting a positive link between morphology and 

fertilisation ability, however this conclusion requires further validation by additional clinical 

studies  (Bartoov et al.,, 2003). In the pig breeding industry, spermatozoa motility and 

morphology evaluation are considered as important tools to guarantee successful 

fertilisation. In support of this, some studies have found a significant correlation between 

sperm parameters and farrowing rate or litter size (Waberski, 1994; Xu, 1998; Alm, 2006; 

Ruiz-Sánchez 2006; Broekhuijse et al., 2011). In addition, Alhouse and colleagues found 

that there is a negative correlation between spermatozoa cytoplasmic droplet and 

fertilisation rate in boars (Althouse et al.,1995), and Thundathil group found a similar result 

in bulls (Thundathil et al., 2001). On the other hand, others have found no correlation 

between cytoplasmic droplet and litter size and fertilisation rate in boars, and more 

intriguingly, the percentage of sperm possessing acrosome abnormalities has been 

positively correlated with fertilisation rate (Quintero-Moreno, 2004). Since current literature 

is sparse and unclear regarding the influence of boar sperm morphology on fertility 

potential therefore, the aim of this section was to re-visit this topic, in the interest of 

shedding further light. Results showed that there is a significant correlation between boar 

sperm morphology and capacitation rate. Overall, the capacitation rate was significantly 

higher in morphologically good semen samples (p value: 0.03351). This study showed that 



Maryam Sadraie ART in Porcine IVP 

 

148 

 

21% of spermatozoa used in the capacitation experiment had an acrosome abnormality, 

while this proportion in the fertile group was 12.4%. Therefore, it is possible that acrosome 

abnormalities (the second most common abnormality in sub fertile boars in our study) is 

negatively associated with capacitation. When spermatozoa undergo the capacitation 

process, the acrosome reaction is initiated enabling the sperm to acquire the ability to 

penetrate the zona pellucida. In light of this, it is clear that an increase in the percentage of 

sperm with normal acrosome is associated with an increase in sperm capacitation. It can 

be concluded therefore, that acrosome morphology plays an essential role in boar 

fertilisation success rate. Furthermore, our results demonstrate that capacitation may be 

considered as a suitable indicator for the determination of boar fertility potential.  

4.3.5 Conclusion 

In conclusion, this chapter has identified that a decrease in boar sperm concentration did 

not significantly improve fertilisation outcomes, as previously suggested by other reports. In 

addition, it was found that the optimum sperm incubation time and IVF media 

supplementation appears to be specific to the boar semen sample used and our results 

regarding media supplementations was in accordance with fertilisation rate in pig IVF. 

Finally, results in this chapter identified that sperm morphology parameters are strongly 

significantly associated with capacitation. This suggests that sperm morphology can act as 

a suitable indicator of boar fertility potential. 

 

Future work should focus on investigations into a broader range of sperm concentrations in 

ejaculates from different boars in order to ascertain whether the optimum sperm 

concentration for fertilisation is also boar specific. Such work would enable more reliable 

conclusions to be drawn regarding sperm concentration and fertilisation ability.  
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5 Specific aim 3: To test the hypothesis that reduced fertility in 

boars is related to levels of sperm packaging as determined by 

a range of assays 

5.1 Background 

The previous chapters of this thesis dealt with assessment of parameters in common usage 

in human IVF clinics but adapted to a porcine model. There are numerous other factors 

however that have been associated with reduced fertility in humans and, to a greater or 

lesser extent, been associated with reduced fertility in pigs. Many of these centres around 

sperm packaging (Erenpreiss et al., 2006). As outlined in the general introduction, the 

mammalian sperm head undergoes a series of radical alterations in order to package the 

genome tightly in the sperm head, a process that must be reversed as the nucleus fertilises 

the egg and proceeds to syngamy. With suitable adaptations to the porcine system, assays 

for appropriate measurement of the following should shed light on whether there are further 

tests that may be used in the future to assess for reductions in boar fertility that might impact 

on downstream production. Such assays form the basis of this chapter and encompass the 

following: 

a) The level of chromatin packaging in the sperm. There are several assays for this 

however a common one that is easily used is the CMA3 stain. 

b) The patterns of nuclear organisation in the sperm, which might be related to infertility 

in humans (Ioannou et al., 2011). 

c) The proportion of sperm cells that are aneuploid (Griffin et al., 2005). In pigs, unlike 

in humans, fertility problems in boars may manifest themselves as reduced litter 

sizes or poor non-return rates, factors that might not even be noticed for individual 

humans who, in western populations at least, might only have one, two or three 

children in their lifetime. In the following study, the aim was to take a selection of 5 
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boars that had, retrospectively, been determined to have fertility issues and compare 

them to 10 controls. 

5.2 Specific aims 

 

With this in mind therefore, this study set out to test the following hypotheses: 

Specific aim 3a.  That the sperm chromatin packaging was significantly different in the poor 

quality boar semen group compared to high quality group as assayed by CMA3 staining  

Specific aim 3b.  That nuclear organisation was significantly altered in the poor quality boar 

semen group compared to high quality boar semen group using a pan-telomeric probe 

Specific aim 3c.  To develop locus specific probes for further investigation of nuclear 

organization in high and poor quality boar semen group and the determination of aneuploidy 

levels  
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5.3 Results 

5.3.1 To test the hypothesis that the sperm chromatin packaging was 

significantly different in the sub-fertile compared to the control group 

as assayed by CMA3 staining  

In order to assess chromatin packaging, chromomycin A3 (CMA3) staining was carried out 

using sperm from 10 high sperm quality boars and 5 poor sperm quality boars as described 

in the materials and methods section 2.2.7. Since CMA3 competes with DNA protamine 

binding sites, a deficiency in protamine within the sperm nucleus is highlighted by a positive 

(bright yellow) CMA3 stain, as shown in figure 5.1. For each boar, at least 100 images were 

captured and assessed.  

 

Figure 4.4. Chromomycin A3 (CMA3) staining of boar spermatozoa. Spermatozoa with 
normal protamine content appear dull, while CMA3 positive or protamine deficient 
spermatozoa appear as bright yellow (Magnification ×100). 
 

The percentage of sperm nuclei with positive CMA3 staining was calculated, and then all 

results from each high and poor quality boar semen groups were pooled. Statistical analysis 

was performed using a Chi-squared test. As shown in figure 5.2, results indicate that the 

proportion of protamine deficient spermatozoa was highly significantly increased in the sub-

fertile group (1.7%) compared to the fertile group (0.5%) (Chi-square value: 7.484, p value: 

0.006, df: 1).  

CMA3 + 

CMA3 -
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Figure 4.5. Graph to show the proportion of sperm nuclei positively stained by CMA3 in 
high quality and poor quality boar semen groups. Sub-fertile boars possess a highly 
significantly higher percentage of positive CMA3 staining (p value=0.006). 
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5.4 To test the hypothesis that nuclear organization (telomere distribution) 

in boar spermatozoa is non-random and significantly altered in the poor 

quality semen group compared to high quality boar semen group 

(specific aim 3b). 

 

Results from the previous section suggest that chromatin packaging is altered in the sperm 

of the poor quality semen group, as indicated by a higher proportion of protamine deficient, 

positive CMA3 stained nuclei. Therefore, in order to investigate this concept further, 

telomere distribution was assessed in the sperm nuclei of 10 high semen quality boars and 

5 poor semen quality boars. Using a telomere specific PNA probe, FISH was performed in 

sperm samples as described in materials and methods section 2.2.10. A gallery of example 

images for telomere distribution in control boar spermatozoa can be seen in figure 5.3.  

 

 

Figure 4.6. Telomere distribution in the sperm nuclei of high quality boar spermatozoa. 
Images were acquired following FISH experiments using a FITC labelled telomere specific 
PNA probe (green). The nucleus was counterstained with DAPI (blue). 
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Figure 5.3 demonstrates that telomeres are positioned throughout the nuclear volume within 

the sperm head of high quality boar semen. However, as shown in figure 5.4, when 

normalised for 3D flattening into a 2D image by DAPI density normalisation (as previously 

described by (Skinner et al., 2009), telomere signals showed a preferential localisation in 

the interior nuclear volume. Chi-squared analysis revealed that overall telomere distribution 

was significantly different to random and preferentially located towards the nuclear centre in 

both control and poor quality boar semen groups (p<0.01) 

 

 

 

 

 

 

 

 

 

 

 



Maryam Sadraie ART in Porcine IVP 

 

155 

 

 

 

 

 

 

 

 
 
 
 
 

 
 

 
 
Figure 4.7. Telomere distribution in boar spermatozoa from high quality semen (top) and 
poor quality semen (bottom. Results indicate that telomeres are preferentially distributed in 
the nuclear interior in the sperm of high and poor quality boars (p = <0.01). 
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5.4.1 To develop locus specific probes for further investigation of nuclear 

organization in high quality and poor quality boar semen groups and 

the determination of aneuploidy levels (specific aim 3c) 

During the course of this study, chromosome specific probes were successfully isolated for 

chromosomes 1, 2, 3, 6, 7, 10, 11, 12, 14, 16, 17 and 18. Following labelling with red and 

green fluorochromes a dual colour FISH protocol was optimised in the normal (high quality 

boar semen) group and poor quality boar semen group. For technical reasons, not clear at 

the time of writing, the FISH assay was not successful for chromosomes 6, 7 and 17 with 

the sub-fertile group. The following results for aneuploidy and nuclear organization 

(chromosome positioning) pertain to the high and poor quality semen groups. Examples of 

successful FISH experiments are given in figure 5.5 

   

  
 
Figure 4.8. The evaluation of boar sperm aneuploidy for autosome chromosomes 2, 18. The 
green signal represents chromosome 2 and the red signal represents chromosome 18. This 
figure indicates normal sperm (A), disomy (n+1) (B), nullisomy (2n-2) (C) and diploid (2n) 
(D).  
 

This experiment was performed on five high semen quality and one poor semen quality 

boars (two replicates each) and frequencies of numerical aberrations for each of these 

mentioned chromosomes were assessed in a total of 65000 sperm cells in total (time 

constraints precluded further analyses). Nullisomic cells (2n-2) were considered an artefact 

and were not included in to the final calculations as they were not distinguishable from 

hybridization failure. The estimated aneuploidy rate was calculated by dividing the double 

A B C D 
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number of disomic sperms by the number of haploid cells, and the rate of diploidy was 

calculated by dividing the number of diploid sperms by the number of all examined cells 

(haploid and diploid). The average rate of chromosomally unbalanced sperm in high semen 

quality and poor semen quality boars was 0.154 % and 0.238%, respectively. Altogether 50 

sperm cells had an abnormal number of chromosomes in the high quality boar semen group 

and 11 sperm cells had an abnormal number of chromosomes in the poor quality boar 

semen group. Among all analysed boar spermatozoa 0.022% diploidy and 0.132 % disomy 

levels were identified in the high quality boar semen group and the rate of diploidy and 

disomy in the poor quality semen group identified 0.043% and 0.195%, respectively. Table 

5.1 demonstrates the disomy, diploidy and estimated aneuploidy rate in both groups of high 

and poor quality boar semen groups. 

Abnormal 

number 

chromosomes 

High quality 

boar semen 

group 

Poor quality 

boar semen 

group 

Chi2 value P value DF 

Disomy  0.132% 0.174% 0.504 0.478 1 

Diploidy  0.022% 0.043% 0.797 0.372 1 

 

Table 4.5. Distribution of abnormal number of chromosomes (diploidy and disomy) in high 
quality boar spermatozoa and poor quality boar spermatozoa. Chi-squared test was carried 
out in order to test for statistical significance. It was found that there was no significant 
difference between disomy (0.478) and diploidy rate (P value: 0.372) in high and poor quality 
boar semen groups. 
 
 

The Chi-squared test was performed to determine whether there is any significant difference 

between diploidy and disomy rate between high and poor quality boar semen groups. 

According to the test, no significant difference was observed in either diploidy or disomy 

rates in both groups of high and poor quality boars. Table 5.1 indicates the statistical analysis 
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results. Also, disomy rate in all individual chromosomes were identified as it has been 

indicated in humans that this varies from chromosome to chromosome (Tempest and Griffin 

et al., 2005). In order to use the same probes to assess nuclear organisation the approach 

as described in 2.2.9.1.2 methods and materials section was used. Mean chromosome 

positions were evaluated for both groups of high and poor semen quality boars by 2D 

analysis using the DAPI density and volumetric models previously described (outlined in 

section 2.2.9.1). All autosomic chromosome positioning in the high quality boar semen group 

is non-random , except chromosome 16, and the poor quality boar semen group indicates 

non-random positioning in all chromosomes except chromosomes 1,2 and  16 (p = 0.111). 

Table 5.2 demonstrates the positioning of chromosomes in both groups (with the caveat that 

a single poor quality boar was examined). A chromosome positioning figure for high semen 

quality boars has been included in the appendix (figure 8.1 and 8.2). Chromosome 

positioning for the poor semen quality boar was performed, while this group was only made 

of one boar (two replicates) chromosome positioning for chromosomes 1, 2, 3, 10, 12, 14, 

16 and 18 were performed. Chromosomes in both groups of high and poor quality semen 

ae located in central region of the sperm head. 
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Chromosome Region Chi 

square 

value 

df p-value  

 

Chi 

square 

value 

df p-value 

1 Central 278.72 4 0.002 Central/Medial 97.64 4 0.325 

2 Central/medial 145.28 4 <0.0001 Central 111.40 4 0.064 

3 Central 147.8 4 0.0001 Central 234.51 4 <0.0001 

6 Central 223.55 4 <0.0001 Did not evaluate 

for sub-fertile 

N/A 4 N/A 

7 Central 138.63 4 0.0007 Did not evaluate 

for sub-fertile 

N/A 4 N/A 

10 Central 105.79 4 <0.0001 Random 88.64 4 0.184 

11 Central 234.81 4 <0.0001 Did not evaluate 

for sub-fertile 

321.4 4 N/A 

12 Central 179.78 4 <0.0001 Central 66.16 4 <0.0001 

14 Central 88.43 4 0.003 N/A N/A 4 N/A 

16 Random 1.30 4 0.865 Random 5.02 4 0.285 

17 Central 100.27 4 0.037 N/A N/A 4 N/A 

18 Central 234.55 4 <0.0001 Central/Medial 36.5 4 <0.0001 

 

Table 4.6. Chromosome positioning in high and poor quality boar groups. Results showed 
that chromosome positioning is non-random (P <0.05) in both groups, with the exception of 
chromosome 16 in both group, chromosome 1 and 2 in poo quality semen group which is 
random (P>0.05). 
 

 

High quality boar semen group                           Poor quality boar semen group 
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Taken together therefore the results show little or no evidence of an alteration in sperm 

aneuploidy or nuclear organization in poor quality semen group vs high quality boars. 

 

5.5 Discussion 

5.5.1 To test the hypothesis that reduced fertility in boars is related to levels 

of sperm packaging at determined by a range of assays (specific aim 

3a) 

 Normal spermatogenesis is necessary for the formation of competent spermatozoa 

 (Iranpour et al., 2014). One important stage in spermatogenesis is the replacement of 

histone by protamine which is required for the high stability and condensed nature of the 

chromatin structure in spermatozoa. This sperm condensing and insoluble chemical 

properties of protamine provides high protection of paternal genome in the reproductive 

tract of males and females (Brewer et al., 1999). Abnormalities in sperm chromatin 

packaging and DNA damage are correlated with poor fertility potential (González-Marín et 

al., 2012). Abnormalities in sperm chromatin packaging can be caused by: disturbances 

during replacement of protamin with histone, a lack of protamine and/or any disturbances 

in the process of sperm maturation in epididymis (Kazerooni et al., 2009).It has been 

reported that sperm DNA integrity is a better indicator of semen quality compared to 

traditional sperm evaluation techniques (morphology, concentration and motility) (Zini et 

al., 2001). Most of these studies have been performed in human sperm but very few studies 

have been done in boar sperm chromatin packaging. In Zini’s study, chromatin packaging 

structure in boar spermatozoa was analysed using CMA3 staining to determine protamine 

deficiency. Protamine is a specific sperm protein and during decondensation it is replaced 

histone protein. Therefore, protamine deficiency can impact on decondensation procedure 

and then fertility potential (Zini et al., 2001). Tarrozi and colleagues (2009) reported that 
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the interaction between DNA strand breaks and abnormal sperm chromatin packaging can 

indicate that this abnormality arises in the spermatogenesis pathway involving sperm 

chromatin packaging and condensation CMA3 in-vivo competes with protamine and is an 

indirect measure of protamine content such that a high degree of CMA3 staining is possibly 

an indication of low protamination and sub-fertility in boars. In the present study, the 

application of CMA3 as an effective indicator of sperm chromatin packaging quality has 

been investigated as a potentially useful technique in assessing boar fertility  

Potential (Tarozzi et al., 2009). It was found that protamine deficiency is significantly higher 

in the poor quality semen group than in the control (p value <0.05). This result is in 

accordance with a similar study in human (Iranpour et al., 2014) Protamine deficiency in 

sub-fertile boars can cause failure in the decondensation process as there is not sufficient 

protamine to replace the histone protein, therefore it impacts on fertility potential in this 

group. It can be concluded that CMA3 staining can be considered as an indicator of boar 

sperm fertility potential, as it is a very convenient technique because it avoids using costly 

computer assessed sperm analysis (Banaszewska et al., 2015)   
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5.5.2 To test the hypothesis that nuclear organization (telomere distribution) 

in boar spermatozoa is non-random and significantly altered in the 

sub-fertile group compared to control group (specific aim 3b) 

Early studies in human genome architecture in the human sperm nucleus indicated a 

chromosome hairpin-like configuration. Centromeres are located near the centre of 

nucleus while the telomeres are located in the periphery of the nucleus. It has been 

reported that telomere distribution in human sperm is non-random and telomeres are 

mostly located in the periphery of the sperm nucleus (Acloque et al., 2013). In contrast, 

Hazzouri and colleagues in 2013 did not confirm the location of telomers in human 

spermatozoa in the peripheral part of nucleus, but their study was quite small and was not 

reliable (Hazzouri et al., 2013). This is the first study to investigate the telomere distribution 

in boar spermatozoa in both fertile and sub-fertile groups. According to the present study, 

telomere distribution in both fertile and sub-fertile boar spermatozoa has a non-random 

distribution. While this study suggests that telomeres in boar spermatozoa is mostly located 

in the central part of the sperm nucleus as it is not in accordance with a similar human 

study (Acloque et al., 2013) .It could be because boar spermatozoa need to go through a 

decondensation process in order to perform FISH and boar spermatozoa decondense 

much more in 10mM DTT with 0.2g papain in 0.2M Tris-HCl decondensing agent, therefore 

the decondensing process itself may cause this alteration of telomere location in boar 

spermatozoa. Further experiments with different condensation protocols are thus required 

in future. 
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5.5.3 To develop locus specific probes for further investigation of nuclear 

organization in fertile and infertile boars and the determination of 

aneuploidy levels (specific aim 3c) 

Chromosomal imbalances are normally present in the semen of wild type animals due to 

de novo mutations in the germ line (Saias-Magnan et al.,1999)Dual colour FISH is 

performed to evaluate chromosomes and to estimate aneuploidy in spermatozoa, therefore 

for estimating aneuploidy, disomy (presence of an extra chromosome), diploidy (double 

chromosomal constitution), and nullisomy (absence of one chromosome) while nullisomy 

cannot be determined by FISH accurately as there is possible that some chromosomes 

will be loss during fixation therefore in most experiments the number of nullisomy it is quite 

high which is not reliable, that is why in this experiment for estimating aneuploidy rate, the 

double number of disomy divided by the rest of normal haploid cells is calculated. The 

aneuploidy rate was estimated for autosome chromosomes of four high quality boar sperm 

and one poor quality boar and the aneuploidy rate was quite similar between all animals 

tested and there was no significant difference between the aneuploidy rate among infertile 

and sub-fertile boars analysed. As discussed in the introduction, currently only a few 

authors have used FISH to assess boar spermatozoa copy number of chromosomal 

abnormalities. Orsztynowicz and colleague indicated that a baseline of 0.105% of 

chromosomal imbalances (disomy+diploidy) is detectable in fertile boar semen, while in 

their study aneuploidy rate only for chromosome 1, 10 and Y was estimated (Orsztynowicz, 

2011 #516).The present study is the first to estimate aneuploidy for most autosome 

chromosomes. 32500 high quality boar spermatozoa were analysed in this study and the 

baseline 0.132% of imbalance chromosome copy number (diploidy+disomy) for the high 

quality group and the baseline 0.174% of imbalance chromosomes in poor quality group 

has been found. It has been reported that the frequency of disomy rate in autosome 

chromosomes in human spermatozoa was 0.15% and 0.26% in sex chromosomes 
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 (Shi et al., 2000) .The disomy rate in boar spermatozoa according to this study is close to 

the proportion of disomy in human spermatozoa. The present study indicated that the 

percentage of imbalance chromosome copy number in high and poor quality semen group 

is not significantly different. This point can be argued that in this study more high quality 

boar spermatozoa (32500) were analysed for aneuploidy compared to the poor quality boar 

(4606 sperm cells) and also more chromosomes have been evaluated in the high quality 

boar semen group as during this study in poor quality semen group some chromosomes 

such as 6, 7, 11 and 17 did not produce a good signal. Therefore, Dual colour FISH in sub-

fertile boars requires more optimisation and this aneuploidy analysis in the sub-fertile group 

can be considered a preliminary study. It is possible that performing this study with more 

boars may give a more accurate and reliable comparison between aneuploidy rate in fertile 

and sub-fertile animals. In human studies, it is reported that sperm DNA with high 

fragmentation and damage have a higher aneuploidy rate (Carrell et al., 2003). It has been 

suggested that the rate of aneuploidy in infertile human males will increase and also in 

human semen with more abnormal sperm parameters indicated higher aneuploidy rate 

compared to control group (Calogero et al., 2003). In brief, performing FISH on boar 

spermatozoa is more challenging than human because the decondensation procedure 

required in animals is different from species to species. For instance, in this experiment 

papain as decondensing agent was used to obtain better signals, poor quality spermatozoa 

decondensed significantly better in DTT and papain in Tris HCl compared to DTT in Tris 

HCl.  

The present study suggests that boar spermatozoa are the same as other mammals in 

having highly organized chromosome territories. The high quality boar spermatozoa 

indicated non-random positions and these findings are in accordance with  
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(Foster et al., 2005). This can have considerable implications for the presence of nuclear 

organization and gene-expression patterns in early embryogenesis (Foster et al., 2005). In 

the present study, the chromosome positioning in poor quality boar spermatozoa was also 

mostly considered as non-random with the exception of chromosome 16, which indicated 

a random localisation. Chromosome positioning of chromosomes 1, 2, 10, 14 and 18 was 

slightly altered in the poor quality boar semen group compared to high quality boar semen 

shifting from central to central/medial or vice versa in the poor quality semen group. Some 

chromosome positioning is not in accordance with (Foster et al., 2005)   findings as they 

suggested that the position of chromosome 11 is mostly in the peripheral region of nucleus 

while in this study this chromosome is located in the central region of high quality boar 

sperm nuclei. The differences between these two studies can be due to different 

decondensation procedures performed, which may have caused some changes to the 

chromosome positioning.  

 

Overall these results therefore suggest that the CMA3 stain is worthy of further 

investigation on a larger group of animals and may ultimately become a useful tool in 

screening for boar infertility. By and large however FISH studies are still in their infancy 

and were beset with technical problems that meant that time ran out to perform 

experiments on more boars, particularly those in the sub-fertile group. Nonetheless, this 

study has developed the tools for further study that may, in time, reveal whether or not 

aneuploidy rate and nuclear organization of certain chromosomes is altered in poor quality 

boars as it is in some sub-fertile humans. In point of fact much of the time was taken getting 

the assay to work in the first place which proved technically more difficult than in other 

species such as human, cattle and mouse. Even when it did finally work, the key step was 

the addition of papain into the swelling buffer and, even then, most of the sub-fertile boars 



Maryam Sadraie ART in Porcine IVP 

 

166 

 

attempted did not work (and some probes did not work at all). Whether it is coincidence 

that the poor quality semen group appeared to be disproportionally subject to experimental 

failure in unclear at this time; if it were the case then perhaps biological reasons that were 

manifested in the differential CMA3 staining may be at the root cause. Moreover, whether 

the addition of papain caused a technical artefact that made the telomeres appear as 

though they were centrally located still warrants further investigation. This is a distinct 

possibility since other mammalian sperm analysed showed that the telomeres appear to 

occupy a peripheral nuclear address.  
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6 Specific aim 4: To investigate the impact of biopsy on embryo 

morphology and to determine the appropriate time of doing 

embryo biopsy by using time-lapse 

6.1 Background:   

Preimplantation genetic diagnosis (PGD) allows embryologists to select healthy, unaffected 

embryos for transfer (Kirkegaard et al., 2012) in patients carrying a well-defined genetic 

abnormality. The process of PGD involves the removal of the first and/or second polar body 

from the oocyte, one or two blastomeres from a cleavage stage embryo or several 

trophectoderm cells from a blastocyst, followed by subsequent genomic analysis (Harper, 

2010). Although there are countless examples of successful outcomes in PGD cases 

however, the effects of embryo biopsy on developmental potential remains under 

discussion. An initial study showed that, although removal of up to two blastomeres at 8 cell 

stage reduced cell numbers in both the trophectoderm and inner cell mass of the subsequent 

blastocyst, no poor effect on embryo development was observed {Hardy, 1990 #1645}. 

However, others have shown that embryo biopsy resulted in an increased frequency of 

blastocyst contraction and expansion movements (Ugajin et al.,2010), delayed and 

abnormal hatching, delayed development (Malte1989; Cohen;Schmoll2003;Duncan, 

2009;Tarin et al., 1992 ) and reduced embryo quality (Cohen et al., 2007) . Moreover, the 

number of cells removed was correlated with developmental potential (Goossens 2008; De 

Vos et al., 2009). In recent years, the introduction of time-lapse incubators designed to allow 

continuous, non-invasive monitoring of embryo development (Cruz et al., 2011) has enabled 

a more comprehensive investigation of the effects of embryo biopsy on developmental 

potential. To the best of our knowledge however, only one study has attempted to do so thus 

far. Results indicated that the duration of the developmental stage in which biopsy was 

performed was considerably delayed in biopsied embryos compared with the control group. 
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Nonetheless, the duration of compaction, morula and early blastocyst stage was identical in 

both groups. The authors concluded therefore, that in line with previous results from studies 

that did not utilise time-lapse monitoring, PGD embryos experience developmental delay in 

comparison to the control group. Interestingly however, the duration of the blastocyst stage 

was found to be shorter in the biopsied group, resulting in hatching at almost identical timing 

among biopsied and non-biopsied embryos (Kirkegaard et al., 2012). In another part of this 

study, time-lapse parameters impact on predicting blastocyst quality is investigated. There 

are several studies that have been done in this field so far, however results are not constant. 

It has been found that blastocyst quality can be determined based on embryo morphology 

on the first 48 hours of culture. Wong and colleagues used time-lapse parameters to identify 

blastocyst quality for the first time, concluding that the duration of first cytokinesis, duration 

of 2 cell and 3 cell stage were important predictors (Wong et al., 2010). However, other 

similar studies reported that only duration of 3 cell can be considered a good predictor of 

blastocyst quality (Hashimoto 2013; Krikegaard et al., 2013), therefore further research is 

required in this field.  Although this study represents some insightful new findings, further 

investigation is required in order to obtain accurate interpretations. In this study, only 52 

biopsied and 52 control embryos were included; therefore, the aim of this chapter was to 

asses more embryos in a bid to shed further light on this subject. More specifically, the aims 

of this chapter were as follows: 
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6.1.1 Specific aims of this chapter 

 

Specific aim 4a: To investigate the impact of embryo biopsy on the timing and duration of 

defined developmental stages.  

 

Specific aim 4b:  To compare treatment outcome in patients that opted for embryo biopsy 

at the cleavage stage with that of patients that opted for embryo biopsy at the blastocyst 

stage. 

 

6.2 Results 

6.2.1 To investigate the impact of biopsy on embryo morphology and to 

determine the appropriate time of doing embryo biopsy by using time-

lapse (specific aim 4a) 

In this section the impact of biopsy on embryo morphology was investigated using the 

Embryoscope time-lapse device. According to the methods outlined in sections 2.1, 2.1.1 

and 2.1.2, 612 cleavage stage biopsied human embryos produced via ICSI treatments were 

analysed and compared to 220 blastocyst stage biopsied embryos as a control via ICSI 

treatment. Unfortunately, it was impossible to obtain information on non-biopsied embryos 

from the clinic. Embryos were incubated in the Embryoscope device following 

disappearance of 2PN (pronuclear) and were annotated based on standard annotation 

policy at the Bridge Fertility Centre, London. Embryo viewer software was used to annotate 

embryos as described in the Materials and Methods in sections 2.1.2. 

Images below indicate development of an embryo at some of the key stages in development. 
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Figure 6.1. 650 embryos were annotated using the Embryoscope time-lapse device. 
Annotation was performed according to standard morphological makers described in section 
2.1.1. (A) represents disappearance of pronuclei, (B) shows the first mitotic division (t2), (C) 
represents the third mitotic division (t3), (D) represents the 7th division (t8), (E) shows the 
morula stage of development and (F) the full blastocyst.  
 

 

Developmental potential of 460 cleavage stage embryos biopsied for PGD at the 8 cell stage 

was compared to 220 embryos biopsied at the blastocyst stage according to the criteria 

outlined in table 6.1. Using a Mann-Whitney U test for significance, results showed that 

although there was a significant delay in the time taken to reach the 2 cell stage between 

the two groups (p = 0.001), no significant difference was observed in any other time points 

prior to the 8 cell stage on day 3 (from t2-t9); the time at which biopsy was performed in the 

cleavage stage biopsy group. Furthermore, results showed that embryos biopsied at the 8 

cell stage reached the 9 cell stage (t9) highly significantly later than embryos in the 

blastocyst biopsy group (p = 0.001). Following the 9 cell stage, the time taken to reach 

morula stage was longer in the cleavage stage biopsied embryos than the blastocyst stage 
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biopsy group, however this difference, although close to confidence at the 95% level, was 

not significantly different between the two groups (p = 0.06). Interestingly, the time taken to 

reach the start of blastulation (tsb), the full blastocyst stage (tb) and hatching stage (thb) was 

highly significantly shorter in the embryos biopsied at cleavage stage than in the embryos 

biopsied at blastocyst stage (p = ≤0.001). These results are summarised in figure 6.2 and 

table 6.1 
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Embryo 

stages 

n Time (h) since 

fertilisation 

n Time(h) since 

fertilisation  

Mann 

Whitney U 

test value 

df P value 

2- cell stage  220 27.84 ±0.26 612 29.49±0.25 2.40 306 0.017 

3-cell stage 208 37.7±0.30 580 38.5±0.28 1.3 175 0.197 

4-cell stage 204 39.9±0.60 574 38.96±0.32 3.28 259 0.055 

5-cell stage 185 48.7±0.80 524 49.8±0.35 0.130 170 0.900 

6-cell stage 184 53.35±0.93 490 53.8±0.50 0.215 242 0.722 

7-cell stage 164 58.7±0.90 478 57.43±0.53 0.655 221 0.510 

8-cell stage  158 64.1±1.1 460 63.78±0.70 0.030 265 0.976 

9- cell stage 125 75.75±1.21 420 79.32±0.9 1.65 242 0.0003 

Morula 118 99.33±1.1 368 99.81±0.7 0.420 227 0.675 

Start of 

blastulation 

104 108.97±1.2 220 101.63±0.81 5.01 191 <0.001 

Blastocyst 96 116.3±1.2 158 106.44±1.02 5.31 182 <0.001 

Hatching 

blastocyst 

30 128.5±2.3 40 118.2±1.71 3.71 59 0.0005 

 

Table 6.1. Timing of various developmental stages among embryos biopsied at cleavage 
or blastocyst stage. Data are expressed as average values with 95% CI. Differences 
between the two groups were tested for significance using a Mann-Whitney U test. 
 

 

Control (blastocyst biopsy)                                                         Cleavage stage biopsy 
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Figure 6.2. Time points of various embryonic stages after biopsy was performed at cleavage 
stage (blue) or blastocyst stage (red). A highly significant difference was observed between 
t9 (p = 0.001), start of blastulation (p = <0.001), full blastocyst (p = <0.001) and hatching 
stages (p = 0.001) between the two groups. 
 

 

As shown in table 6.2, the duration of each embryonic stage was additionally assessed. 

Results showed that the duration of the 2- cell stage is significantly shorter in the blastocyst 

biopsy group. However, after this time, no differences were observed between the two 

groups until the 8 cell stage.  Following the 8 cell stage, although no significant difference 

was observed between the two groups in the duration of 9 cell stage (t9-t8), morula stage 

and full blastocyst stage, the duration of the start of blastulation and hatching stages lasted 

significantly shorter in the cleavage stage biopsy group compared to the blastocyst biopsy 

group (figure 6.3 and table 6.2). 
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Embryonic 

stages 

n Time(h) 

since 

fertilisation 

n Time(h) 

since 

fertilisation 

Mann 

Whiney 

U test 

df P value 

t 3- t 2 220 10.6±0.41 612  3.82 164 0.0002 

t 4-t 3 208 9.12±0.41 580 8.42±0.21 4.88 217 <0.001 

t 5-t 4 204 11.2±0.62 574 10.3±0.5 1.15 262 0.250 

t 6-t 5 185 3.8±0.50 524 4.4±0.3 1.20 212 0.230 

t 7-t 6 184 4.5±0.50 490 4.8±0.4 0.450 227 0.655 

t 8-t 7 164 6.4±0.73 478 5.9±0.33 0.570 144 0.567 

t 9-t 8 158 11.3±0.73 460 11.7±0.50 0.495 187 0.621 

t m – t9 106 17.7±0.71 274 11.7±0.6 6.547 223 <0.001 

t sb -tm 101 10.9±0.62 148 4.90±0.31 8.70 148 <0.001 

t b – tsb 104 7.7±0.5 220 4.7±0.32 5.50 155 <0.001 

t hb- tb 27 10.82±1.1 40 8.54 ±0.60 1.980 45 0.0548 

Table 6.2. Duration of each developmental stage in embryos biopsied at cleavage or 
blastocyst stage. The data shown is demonstrated as average duration with standard 
error. A Mann-Whitney U test was used to test for statistical significance in any differences 
between the two groups. 
 

 

 

Blastocyst stage biopsy (control)                                                          Cleavage stage biopsy          
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Figure 6.3. The duration of embryonic stages after performing biopsy in cleavage stage 
(blue) and blastocyst stage (red) biopsy. No significant differences were observed in the 
duration of the developmental stages assessed until the start of blastulation (tsb-tm), which 
was significantly shorter in cleavage stage biopsied embryos (p = <0.001). Although no 
difference was observed in the duration of the full blastocyst stage (tb-tsb), hatching was 
significantly shorter in cleavage stage biopsied embryos compared to blastocyst stage 
biopsied embryos (p = <0.001).  
 

6.2.2 To compare blastocyst and hatching blastocyst rate and treatment 

outcome in patients that opted for embryo biopsy at the cleavage 

stage with that of patients that opted for embryo biopsy at the 

blastocyst stage (specific aim 3b). 

In this section a comparison study has been done between cleavage stage biopsy and 

blastocyst stage biopsy. Blastocyst and hatching blastocyst rate was evaluated in two 

groups of cleavage and blastocyst stage biopsy.  In this study, 158 cleavage biopsied 

embryos reached blastocyst stage and only 40 of them developed to hatching blastocyst 

(25.3%) and 87 of blastocyst stage biopsied embryos reached blastocyst and 25 (28.7%) of 

them reached hatching. Results showed that there is no significant difference between 

hatching blastocyst rate in cleavage stage biopsy and blastocyst stage biopsy group. Table 

6.3 illustrates these results. 
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Table 6.3. Chi-squared test for significance indicates no difference in the proportion of 
embryos reaching hatching blastocyst stage between blastocyst stage biopsied embryos 
and cleavage stage biopsied embryos. 
 
 
 
Treatment outcome following embryo biopsy was assessed by comparing implantation rate 

(as confirmed by a positive biochemical pregnancy test) and live birth rate in couples that 

opted for embryo biopsy at either the cleavage stage of development or the blastocyst stage. 

A Chi-squared test for significance found no difference in the implantation rates between the 

two groups (p = 0.710). Furthermore, no significant difference was observed in live birth 

rates between the cleavage stage biopsy group and blastocyst stage biopsy group 

(p=0.695). However, a higher proportion of embryos biopsied at the blastocyst stage were 

frozen (20%) compared to 5.9% the cleavage stage biopsy group and thus no pregnancy 

outcome is available for a greater proportion of blastocyst stage biopsied embryos. Table 

6.4 and figure 6.5 demonstrate the patient’s outcomes in two groups of cleavage and 

blastocyst stage biopsy. 

 

 

 

 

 

Embryonic 
stage 

n Percentage n Percentage Chi-
squared 
value 

df P 
value 

Hatching 
blastocyst 

25/87 28.7% 40/158 25.3% 0.337 1 0.562 

Blastocyst biopsy                                                                 Cleavage stage     
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Patient’s 

outcome 

Cleavage 

stage 

biopsied 

embryos% 

Blastocyst stage 

biopsied 

embryos% 

Chi-

squared 

value 

df P value 

Live birth 21% 23.3% 0.153 

 

1 0.695 

Biochemical 

pregnancy 

2.6% 3.3% 0.086 1 0.770 

Miscarriage 12.2% 6.7% 1.768 1 0.184 

No normal 

embryo 

11.3% 10% 0.089 1 0.766 

No pregnancy 47% 36.7% 2.18 1 0.140 

Frozen embryos 5.9% 20% 8.818 1 0.003 

Implantation 

rate  

35.8% 33.3% 0.138 1 0.710 

 

Table 6.4. Patient outcomes regarding the percentage of live birth, biochemical pregnancy, 
miscarriage, abnormal embryos and frozen embryos in cleavage stage biopsied and 
blastocyst biopsied embryos.  
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Figure 6.4. Patient outcomes regarding the percentage of live birth, biochemical pregnancy, 
miscarriage, abnormal embryos, no pregnancy and frozen embryos in cleavage stage 
biopsy group (A) and blastocyst stage biopsy group (B). 
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6.3 Discussion 

6.3.1 The impact of biopsy on embryo morphology (time-lapse study) 

Time-lapse monitoring has provided a detailed and dynamic analysis of the development of 

human pre-implantation embryos. In this study, an Embryoscope time-lapse device was 

used to compare the timings and duration of specific developmental events following biopsy 

at cleavage stage (8 cell stage on day 3) and blastocyst stage (day 5). Results showed that, 

following biopsy at the 8 cell stage, the time taken to reach the 9 cell stage was significantly 

longer in cleavage stage biopsied embryos. Interestingly however, the duration of the start 

of blastulation, and hatching blastocyst was significantly shorter in day 3 biopsied embryos 

compared to the blastocyst stage biopsy group. This shorter duration period at each of these 

stages resulted in cleavage stage biopsied embryos reaching subsequent developmental 

stages significantly earlier than those embryos that were not biopsied; that is, the emergence 

of the full blastocyst and the time of hatching was significantly earlier in cleavage stage 

biopsied embryos. In contrast with our findings, a study by Duncan et al observed a 

developmental delay in mouse embryos that underwent biopsy compared to non-biopsied 

embryos (Duncan et al., 2009). Similarly, Kirkgaard and colleagues showed that the duration 

of the stage in which embryos were biopsied was longer than that of the control group, 

resulting in biopsied embryos reaching subsequent embryonic stages up until hatching 

considerably later than non-biopsied control embryos (Kirkegaard et al., 2012) Furthermore, 

we utilised the Embryoscope® time-lapse device in our study, which captures every 15 

minutes. It is possible that blastocyst expansion may occur within this time frame and 

therefore was not accurately captured in the control group, leading to a significantly shorter 

recorded hatching time point in the cleavage stage biopsied group compared to the 

blastocyst stage biopsy group. In a previous study, the impact of blastomere removal on the 

process of hatching has been studied in mice via time-lapse monitoring (Duncan 2009; 
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Ugajin et al., 2010) and according to these studies, the time to the end of the hatching stage 

was significantly longer in the biopsied group, therefore authors confirmed that removal of a 

blastomere on day 3 negatively impacted the hatching process. It can be discussed that, 

there was some limitations with this study as the control group for this study was blastocyst 

stage biopsy group, therefore in this group biopsy was performed at full blastocyst stage 

and maybe this causes the hatching blastocyst duration in this group to be significantly 

longer than the cleavage stage biopsy group. Furthermore, this study did not record the 

expanded blastocyst in all of the cleavage stage biopsy group. Some embryos reached 

hatching stage immediately after full blastocyst stage and therefore, in some cases full 

blastocyst stage and hatching was not recorded.  Alternatively, it is possible that the process 

of zona breaching in order to biopsy at the 8 cell stage negates the requirement for 

blastocyst expansion and zona thinning in order to facilitate hatching. In this instance, the 

time taken for the embryo to hatch would be reduced, as shown in our results. Indeed, 

evidence from previous studies has shown that blastocyst expansion and zona thinning was 

only observed in non-biopsied embryos and not among biopsied embryos. Instead biopsied 

embryos hatched through the artificial whole in a thicker zona generated in the process of 

biopsy (Kirkegaard, 2012, Malter, 1989; Montag, 2000; Sathananthan et al., 2003). Although 

reports have suggested that cleavage stage biopsy provides better sample material in 

comparison to polar body biopsy, our own results and those of several other investigators 

have shown that the process of cleavage stage biopsy may have detrimental effects on the 

developmental potential of the embryo. It has been reported that two of every five embryos 

that undergo cleavage stage biopsy, lose their ability to continue their normal development 

and implant. However, no such investigation has been carried out to study the effects of 

blastocyst biopsy on the viability and developmental potential (Scott et al., 2013) 
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6.3.2 Cleavage stage biopsy versus blastocyst stage biopsy (specific aim 

1b) 

This study set out to compare the time taken to reach full blastocyst, hatching rate and 

pregnancy outcome following cleavage stage biopsy or blastocyst stage biopsy. Results 

showed that significantly more embryos in the blastocyst stage biopsy group reached full 

blastocyst and hatching blastocyst compared to cleavage stage biopsy (p = <0.05). This 

observation can be supported by other studies that showed that performing blastocyst 

biopsy can be safer than cleavage stage biopsy. One potential explanation for this 

hypothesis is that the procedure involved in the removal of a smaller proportion of the 

embryo’s total cellular content is less detrimental (Hardy et al., 1990). For instance, a single 

blastomere taken from 7 or 8 cells of embryo represents nearly 13% of the total content, 

however blastocyst biopsy can be performed by taking approximately 5 cells from the 

trophectoderm (200-300 cells at this stage) which represents only 2-3% of total cell content. 

Another contributing factor is that for blastocyst biopsy, extra embryonic (trophectoderm) 

cells are taken which is contributing to placental tissues following implantation. While 

cleavage stage biopsy requires taking only one blastomere, the lineage dictating the specific 

developmental fate cannot be predicted based on morphology, regardless of molecular 

genetic evidence that commitment occurs at the cleavage stage (hansis et al., 2003). As 

embryos at blastocyst stage have gone through genomic activation, they have better 

tolerance to manipulation compared to cleavage stage (Braude et al., 1988).  However, 

although blastocyst and hatching rate was higher in blastocyst biopsy embryos then 

cleavage stage biopsy, no significant difference in implantation rate and pregnancy rate was 

found between these two groups in our study.  This finding is in contrast to that of Scott and 

colleagues in 2013, who found that patients that went through blastocyst stage biopsy 

achieved significantly higher pregnancy rate (Scott et al., 2007). However, in our study, 

significantly more embryos biopsied on day 5 were frozen compared to those biopsied on 
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day 3. Those embryos that were frozen were not transferred, and therefore no further 

information is available regarding pregnancy outcome.  

6.4 . Conclusions 

In conclusion, although these results represent some interesting new insights, this study has 

some limitations which should be appreciated and therefore further study is required in order 

to draw more accurate conclusions. The first issue is that, interpretation of the data is being 

based on the assumption that the two groups are comparable. All biopsied embryos used in 

this study had less than 50% fragmentation, however the sample size between the two 

groups were not equal; 612 embryos from (137 patients) were used for day 3 biopsies and 

220 embryos from 35 patients were included in the day 5 biopsy groups. Furthermore, there 

are a number of differences in treatment procedures between the two groups of patients 

assessed. Differences in cumulative FSH dose used, hormone treatment used and ratio of 

IVF/ICSI were apparent among the two groups. It is possible that these differences between 

the two groups might impact on the results and conclusions. Furthermore, it was not possible 

to include a non-biopsied control group in the study, and most embryos were derived from 

patients with fertility problems including recurrent miscarriage and IVF failures. As a result, 

most embryos were not of high developmental quality, which may have had a negative 

impact on our results. 

In summary, cleavage stage biopsy results in delayed development to the 9 cell stage, 

however after this time, the duration of each developmental stage assessed is reduced, 

leading to significantly earlier development to blastocyst stage and hatching in comparison 

to embryos biopsied at the blastocyst stage.  
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7 General Discussion 

This project was largely successful in the fulfilment of its specific aims in that technologies 

currently being used in IVF clinics were investigated and, in many cases, adapted to the 

porcine system; specifically: 

 

1. An atlas of porcine sperm morphology was developed and is now in general use with 

our collaborating company JSR’s laboratories. Our results indicated that the freezing 

process negatively affect boar sperm morphological features.  It was suggested that 

there is a significant correlation between sperm morphological features and 

capacitation rate. 

2. For the IVF procedure, the optimum concentration of semen has been determined.  

3. Potential novel assays for boar fertility (sperm aneuploidy, nuclear organization and 

chromatin packaging) were investigated, the most promising being the CMA3 stain 

which may ultimately prove to be a powerful predictor of fertility in boars. 

4. Finally, given the need in porcine IVP to biopsy the embryo before genotyping, 

morphokinetic time-lapse data from human IVF clinics suggested that embryo biopsy 

does not appear to have an adverse effect on the subsequent development of the 

embryo. 

 

As mentioned from the outset, this project was part of a wider effort to develop and improve 

porcine IVF at the University of Kent and the data presented here in represented a piece in 

the puzzle within this context. Semen quality has an important impact on fertilisation 

potential, and therefore this thesis was focused primarily on the impact of boar semen quality 

on pig breeding. In this research, two groups of boar sperm were assessed; including those 

defined as high quality and poor quality semen based on their motility and morphological 
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features as determined by us at Laboratory. Sperm quality parameters such as 

concentration, morphology, capacitation rate, chromatin packaging and aneuploidy rate 

were analysed and the association of all parameters with sperm morphological features 

have been examined. It has been suggested that sperm morphological features impact 

embryo quality and fertilisation potential in human, therefore we focused on association with 

sperm morphological features and other semen quality parameters in this thesis. This 

research may help to improve fertilisation rate in pig IVF laboratory. The impact of the 

freezing process was assessed on boar sperm morphological features and results identified 

that the freezing process has a significantly negative impact on boar sperm morphology.  

We suggested that the underlying cause of this finding could be that the use of during the 

freezing process may damage the plasma membrane or alternatively that the freezing 

process itself may result in compromised sperm morphology. In light of this, and given the 

association between poor sperm morphology and reduced IVF success rates in humans 

(Ikawa et al., 2010) it is possible that cryopreserved boar sperm indicate lower fertilisation 

potential. As such, we developed our porcine IVF protocol using fresh boar semen rather 

than frozen semen.  

In addition to this, the work presented here investigated the impact of boar sperm 

concentration on IVF success rates and found no significant difference using 106 sperm/ml 

compared to 104 sperm/ml. However, in this study, 245 oocytes were fertilised in total and 

therefore to validate these results, further studies are required. Future work should 

concentrate on investigations in to a broader range of sperm concentrations from different 

boars in order to make sure whether the optimum sperm concentration for fertilisation is also 

boar specific. 

It was found that the optimum sperm incubation time and IVF media supplementation 

appears to be specific to the boar semen sample used and our results suggested that there 
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is no significant difference between fertilisation rate in the capacitation media with caffeine 

and adenosine supplements. It was indicated that no significant difference in the percentage 

of capacitated spermatozoa in the capacitation media with caffeine and adenosine 

supplement, therefore our results were in accordance with our IVF fertilisation rate. 

Although, the IVF experiment in this study was performed only with high quality boar sperm 

and we do not have any IVF data regarding poor quality semen quality in terms of fertilisation 

rate.  

This thesis investigated the correlation between capacitation rate and boar sperm 

morphological features, it has been found that in poor quality boar semen group, the 

capacitation rate significantly decrease compare to high quality boar semen group. 

Therefore, it can be argued that the boar sperm morphological features can be considered 

as a capacitation rate indicator. The capacitation method can be applied in industry, as it is 

an inexpensive and quick technique to determine fertilisation potential. The role of sperm 

aneuploidy, chromatin packaging and nuclear organisation in the boar sperm head represent 

promising avenues for future study and, as only small numbers of boars were investigated 

it is feasible that associations with fertility problems may be established in other animals in 

future studies. By far the most promising avenue as a result of this thesis is the application 

of the CMA3 stain and we are in discussions with JSR about implementing this as a routine 

test.  

 

In the future, it is highly plausible that porcine IVP will have significant economic, social and 

environmental benefits to the pig breeding industry, particularly in establishing breeding 

stocks to overseas farms. The work presented in this thesis provides the identification of, 

and comprehensive analysis of a number of factors that act to optimize sperm selection 

procedures and in vitro fertilization success. Furthermore, the ability to biopsy and determine 
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the sex of preimplantation embryos has been developed by other members within our 

laboratory and this will provide additional benefits to the pig breeding industry going forward. 

As such, the final chapter of this thesis analyzed the impact of embryo biopsy on human 

embryo development as an indicator of how such procedures may be relevant in the porcine 

model. This data provided a strong indication that our own biopsy strategies (which used the 

same standard operating procedures) could continue with confidence.  

In general, this thesis was successful in studying the impact of boar semen quality on pig 

breeding and we could assess boar sperm efficiently in order to select high quality sperm 

for IVF. The work presented here indicated that sperm morphological features may be 

considered a strong indicator of capacitation and fertilisation potential and such evaluations 

improved our porcine IVF protocols and success rates considerably. In future, it would be 

beneficial to introduce two further methods for sperm selection (CMA3 staining and the 

sperm capacitation technique described in this thesis), both of which have clear industrial 

application. Future work should focus on performing fertilisation test according to both 

groups of morphologically high quality and poor quality semen, in order to ascertain about 

association between morphology and fertilisation rate.  
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Figure 8.1. Autosomal chromosome positioning (chromosomes 1-18) in the sperm heads of 
three fertile boars following 2D analysis of FISH signals using DAPI density compensation 
models. Error bars represent the standard error of the mean, n is the number of sperm nuclei 
analysed and p is the statistical significance of non-random distribution assessed using a 
Chi-squared test.  
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Figure 8.2. The chromosome positioning for (chromosomes 1, 2, 3, 10, 12, 14, 16 and 18) 
in one sub-fertile boar. Error bars represents the standard error of the mean, n is the number 
of sperm nuclei analysed, p is the statistical significance for non-random positioning 
assessed by Chi-squared analysis, where p<0.05 indicates non-random positioning.   
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