

Kent Academic Repository

Broad, Neville William (2017) *The Forensic Analysis of Counterfeit Pharmaceutical Packaging.* Master of Science by Research (MScRes) thesis, University of Kent, University of Kent.

Downloaded from <u>https://kar.kent.ac.uk/61267/</u> The University of Kent's Academic Repository KAR

The version of record is available from

This document version UNSPECIFIED

DOI for this version

Licence for this version UNSPECIFIED

Additional information

Versions of research works

Versions of Record

If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in *Title of Journal*, Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact <u>ResearchSupport@kent.ac.uk</u>. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our <u>Take Down policy</u> (available from <u>https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies</u>).

Word Count: 19593 Words

NEVILLE W BROAD

University of Kent

A Thesis submitted in partial fulfilment of the requirements for the Degree of Master of Chemistry of the University of Kent

> The School of Physical Sciences University of Kent Canterbury CT2 7NZ

January 2017

This thesis describes research conducted by Neville W Broad at Authenticate Ltd., Sittingbourne, under the supervision of Michael Went and Stuart Gibson of the School of Physical Sciences, University of Kent. I certify that the research described is original and that any parts of the work that have been conducted by collaboration are clearly indicated. I also certify that I have written all the text herein and have clearly indicated by suitable citation any part of this dissertation that has already appeared in publication.

Signed

Date

THE FORENSIC ANALYSIS OF COUNTERFEIT PHARMACEUTICAL PACKAGING

Faculty of Science MSc Chemistry January 2017 Neville Broad

ABSTRACT

Pharmaceutical packaging is the coordinated system that encloses and protects a dosage form. Counterfeit drugs have caused deaths, and lead to the failure of public trust in the healthcare system and the pharmaceutical manufacturers. The authentication of packaging materials requires a trained forensic approach. Advanced instrumentation has become expensive, for example with hyper- and multi-spectral techniques, and multivariate data interpretation can be non-standard. There is always a need for rapid screening of suspect materials, particularly across market surveys where rapid, non-destructive determination counterfeits is required to segregate and allow further downstream forensic analysis.

The development of Fourier transfer infra-red (FT-IR) spectroscopy in the 1970's facilitated the rapid data capture and analysis of solids and liquids. Since then thousands of spectra are commercially available for identification purposes based on transmission and, more recently, attenuated total reflectance (ATR) analysis modes. ATR is a rapid technique requiring pressure exerted from a crystal onto a sample to create a spectrum. Specular reflectance is a third analysis mode that does not require such force to obtain a spectrum.

It was found that the ExoScan FT-IR in specular reflectance mode combined with a *similarity* identification algorithm was most successful for confirming the presence of counterfeit Reductil cartons. Results were in less than a minute with no damage inflicted on the suspect with this non-destructive technique. Results can be shown overlaid or stacked, together with a similarity (hit) value. The repeatability for a single control carton was 0.16% for six replicates.

The use of external reflectance FT-IR has been shown to be able to rapidly uncover counterfeit packaging materials, with the application of bespoke, easy to create libraries. The technique is non-destructive and especially suited to carbon based solids.

DEDICATION

I dedicate this thesis to my wife Karen and my beautiful daughters Hannah Xiuni and Lila Fu Yuan.

ACKNOWLEDGEMENT

I would like to thank Professor Michael Went and Doctor Stuart Gibson for academic supervision and direction. I would also like to thank Authenticate Limited for the funding of this MSc.

TABLE OF CONTENTS

THE FORENSIC ANALYSIS OF COUNTERFEIT	Page
PHARMACEUTICAL PACKAGING	2
ABSTRACT	3
DEDICATION	4
ACKNOWLEDGEMENT	4
TABLE OF CONTENTS	5
LIST OF FIGURES	9
LIST OF TABLES	11
LIST OF APPENDIXES	
LIST OF ABBREVIATIONS	15

TABLE OF CONTENTS (continued)

CHAPTER 1 - INTRODUCTION10

1.1	Bac	kground	.16
1.2	Cou	nterfeit Pharmaceuticals	.17
1.3	Pac	kaging Materials for the Pharmaceutical Industry	.20
1.3.1	Car	tons for the Pharmaceutical Industry	.22
1.4	Fun	damentals of infra-red spectroscopy	.23
1.5	IR a	nalysis of pharmaceutical packaging	.31
1.6	FT-	IR instrumentation and producing a spectrum	.32
	1.6.1	The Advantages of FT-IR Spectroscopy	. 39
1.7	Spe	cular reflectance FT-IR analysis of solids	.41
1.8	Atte	enuated Total Reflectance (ATR) analysis of solids	.45
1.9	Alg	orithms used for Identification	.49
	1.9.1	Correlation	.50
	1.9.2	Derivative Correlation	.50
	1.9.3	Similarity	.55
	1.9.4	Derivative Similarity	.55
	1.9.5	Euclidean Distance	.55
1.10	Ain	as and objectives	.56

TABLE OF CONTENTS (continued)

2.1	Intro	duction	57
2.2	Back	ground	57
2.3	Expe	rimental	58
	2.3.1	Suspect and Control samples	58
	2.3.2	Specular Reflectance FT-IR analysis	62
2.4	Resu	Its and discussion	66
	2.4.1	Precision	66
	2.4.2	Set 1 – Specular Reflectance Spectra	67
	2.4.2.1	Set 1 – Similarity Algorithm Predictions	67
	2.4.2.2	Set 1 – Derivative Similarity Algorithm Predictions	67
	2.4.2.3	Set 1 – Correlation Algorithm Predictions	67
	2.4.2.4	Set 1 – Derivative Correlation Algorithm Predictions	69
	2.4.2.5	Set 1 – Euclidean Algorithm Predictions	69
	2.4.3	Set 2 – Specular Reflectance Spectra	73
	2.4.3.1	Set 2 – Similarity Algorithm Predictions	75
	2.4.3.2	Set 2 – Derivative Similarity Algorithm Predictions	75
	2.4.3.3	Set 2 – Correlation Algorithm Predictions	75
	2.4.3.4	Set 2 – Derivative Correlation Algorithm Predictions	75
	2.4.3.5	Set 2 – Euclidean Algorithm Predictions	75
	2.4.4	Set 3 – Specular Reflectance Spectra	77
	2.4.4.1	Set 3 – Similarity Algorithm Predictions	79
	2.4.4.2	Set 3 – Derivative Similarity Algorithm Predictions	79
	2.4.4.3	Set 3 – Correlation Algorithm Predictions	79
	2.4.4.3	Set 3 – Derivative Correlation Algorithm Predictions	79
	2.4.3.3	Set 3 – Euclidean Algorithm Predictions	79

TABLE OF CONTENTS (continued)

3.1	Intro	oduction	85
3.2	Bacl	kground	85
3.3	Resu	ults and discussion	86
	3.3.1	Precision	86
	3.3.2	Set 1 – ATR Spectra	88
	3.3.2.1	1 Set 1 – Similarity Algorithm Predictions	90
	3.3.2.2	2 Set 1 – Derivative Similarity Algorithm Predictions	90
	3.3.2.3	3 Set 1 – Correlation Algorithm Predictions	90
	3.3.2.4	4 Set 1 – Derivative Correlation Algorithm Predictions	91
	3.3.2.5	5 Set 1 – Euclidean Algorithm Predictions	91
	3.3.3	Set 2 – ATR Spectra	97
	3.3.3.1	1 Set 2 – Similarity Algorithm Predictions	99
	3.3.3.2	2 Set 2 – Derivative Similarity Algorithm Predictions	99
	3.3.3.3	3 Set 2 – Correlation Algorithm Predictions	99
	3.3.3.4	4 Set 2 – Derivative Correlation Algorithm Predictions	99
	3.3.3.5	5 Set 2 – Euclidean Algorithm Predictions	99
	3.3.4 \$	Set 3 – ATR Spectra	102
	3.3.4.1	1 Set 3 – Similarity Algorithm Predictions	103
	3.3.4.1	1 Set 3 – Similarity Algorithm Predictions	105
	3.3.4.2	2 Set 3 – Derivative Similarity Algorithm Predictions	105
	3.3.4.3	3 Set 3 – Correlation Algorithm Predictions	105
	3.3.4.4	4 Set 3 – Derivative Correlation Algorithm Predictions	105
	3.3.4.5	5 Set 3 – Euclidean Algorithm Predictions	105
		-	

CHAPTER 4 – CONCLUSIONS / RECOMMENDATIONS 112

REFERENCES	
RESEARCH PUBLICATIONS	

LIST OF FIGURES

Figure 1.1 – How Counterfeit Drugs can get to Patient via Illeagal Routes (Courtesy of
Merck, Sharp and Dohme)
Figure 1.2 - Alli® (Orlistat 60mg) Pharmaceutical Packaging Commodities
Figure 1.3 - Anatomy of a Printed Carton
Figure 1.4 - The electromagnetic spectrum
Figure 1.5 - Harmonic and anharmonic potential functions for a diatomic oscillator27
Figure 1.7 - Example Fundamental IR Frequencies (Courtesy of Perkin Elmer)
Figure 1.8 - An Example Absorbance IR Spectrum
Figure 1.9 - Example FT-IR Instrument Optics (Courtesy of Thermo Fisher Scientific)
Figure 1.10 - The Michelson Interferometer (Courtesy of Perkin Elmer)
Figure 1.11 - Relationship between optical path difference and wavelength
Figure 1.12 – Fourier Transformation
Figures 1.13a and b) – Background, Sample and Final Spectra of Lacquered Card 37
Figures 1.14a to c): Spectral Path and Active Area Dimensions 'Spot Size' Diameter
using a 45° Specular Reflectance Head
Figure 1.15 - Representation of specular reflectance Beam path for Reflection-
Absorption of a relatively thin film measured by Specular Reflectance (Courtesy Pike
Technologies Inc.)
Figure 1.16 - Beam path for a relatively thick sample measured by Specular Reflection
(Courtesy Pike Technologies Inc.)
Figure 1.17 - The effective pathlength variation as a function of the angle of incident
radiation
Figure 1.18 - Graphical representation of a single reflection ATR
Figure 1.18- Effect of derivatisation for resolution of individual components a and b:
() raw spectrum, and () second derivative of raw spectrum
Figure 1.19 - Representation of spectral data points for calculation of a
derivative using a gap approach (Courtesy of FOSS NIRSystems Inc)
Figure 1.20 - Effect of varying segment size of second derivative spectral data (gap size
= 0)
Figure 2.1 - Suspects S1 to S7 and Control C1 Carton Images

LIST OF FIGURES (Continued)

Figure 2.3 - Suspects S11 to S16 and Control C3 to C9 Carton Images
Figure 2.4 - ExoScan Instrument Settings for Reductil Carton Analysis
Figures 2.5a and b) - Specular Reflectance Measuring Head and Caps - a) 45° Specular
Reflectance Head with no Cap (Suspect Analysis Ready), and b) Specular Head with
Cap for Referencing
Figures 2.6a to c) - Docked ExoScan Analyser for Lap Top Communication with a
Specular Reflectance Measuring Head in a) Referencing Mode and c) Suspect Analysis
Mode post b) Sample Placement
Figure 2.7 - Example System Suitability Results Page (Scanned Polystyrene)
Figure 2.8 - Example Scanning Instructions Screen
Figure 2.9 - Results from Library Scanning
Figure 2.10 - Interactive Results Display Screenshot
Figure 2.11 - Control C1 Carton FT-IR Repeatability Reflectance Spectral Stack66
Figure 2.12 - Suspects S1 to S7 and Control C1 Carton FT-IR Reflectance Spectral
Stack
Figure 2.13 - Suspects S8 to S10 and Control C2 Carton FT-IR Reflectance Spectral
Stack
Figure 2.14 - Suspects S11 to S16 and Control C3 to C9 Carton FT-IR Reflectance
Spectral Stack
Figure 3.1 - Control C1 Carton FT-IR Repeatability ATR Spectral Overlay
Figure 3.2 - Suspects S1 to S7 and Control C1 Carton FT-IR ATR Spectral Stack89
Figure 3.2 - Suspects S8 to S10 and Control C2 Carton FT-IR ATR Spectral Stack 98
Figure 3.3): Suspects S11 to S16 and Control C3 to C9 Carton ATR Spectral Stack . 104

LIST OF TABLES

Table 1.1 - Examples of SFFC Medicines	20
Table 1.2 – ATR Crystal Characteristics for FT-IR Sampling	18
Table 2.1a - Suspect Reductil Cartons Set 1	58
Table 2.1b - Reductil Control Materials Used in the Counterfeit Investigation for	
Suspect Set 1	59
Table 2.2a - Suspect Reductil Cartons Set 2	59
Table 2.2b - Reductil Control Materials Used in the Counterfeit Investigation for	
Suspect Set 2	50
Table 2.3a - Suspect Reductil Cartons Set 3	50
Table 2.3b - Reductil Control Materials Used in the Counterfeit Investigation for	
Suspect Set 3	51
Table 2.4 - Reductil Control Carton Repeatability 6	56
Table 2.5 - Reductil Cartons Set 1 Specular Reflectance Similarity Predictions (Source	;
Data: Appendix 2a)	0
Table 2.6 - Reductil Cartons Specular Reflectance Set 1 Derivative Similarity	
Predictions (Source Data: Appendix 2c)	1
Table 2.7 - Reductil Cartons Specular Reflectance Set 1 Correlation Predictions	
Results (Source Data: Appendix 2e)	1
Table 2.8 - Reductil Cartons Set 1 Derivative Correlation Set 1 Predictions (Source)	
Data: Appendix 2g)	2
Table 2.9 - Reductil Cartons Specular Reflectance Set 1 Euclidean Predictions (Source	;
Data: Appendix 2i)	2
Table 2.10 - Reductil Cartons Specular Reflectance Set 2 Similarity Predictions	'6
Table 2.11 - Reductil Cartons Specular Reflectance Set 2 Derivative Similarity	
Predictions	6
Table 2.12 - Reductil Cartons Specular Reflectance Set 2 Correlation Predictions	6'
Table 2.13 - Reductil Cartons Specular Reflectance Set 2 Derivative Correlation	
Predictions	7
Table 2.14 - Reductil Cartons Specular Reflectance Set 2 Euclidean Predictions	7
Table 2.15 - Reductil Cartons Specular Reflectance Set 3 Similarity Predictions	30

LIST OF TABLES (Continued)

Table 2.16 - Reductil Cartons Specular Reflectance Set 3 Derivative Similarity
Predictions
Table 2.17 - Reductil Cartons Specular Reflectance Set 3 Correlation Predictions 82
Table 2.18 - Reductil Cartons Specular Reflectance Set 3 Derivative Correlation
Predictions
Table 2.19 - Reductil Cartons Specular Reflectance Set 3 Euclidean Predictions 84
Table 3.1 - Reductil Control Carton Repeatability 86
Table 3.2 - Reductil Cartons Set 1 ATR Similarity Predictions Results (Source Data:
Appendix 2b)
Table 3.3 - Reductil Cartons Set 1 ATR Derivative Similarity Predictions Results
(Source Data: Appendix 2d)
Table 3.4 - Reductil Cartons Set 1 ATR Correlation Predictions Results (Source Data:
Appendix 2f)
Table 3.5 - Reductil Cartons Set 1 ATR Derivative Correlation Predictions Results
(Source Data: Appendix 2h)95
Table 3.6 - Reductil Cartons Set 1 ATR Euclidean Predictions Results (Source Data:
Appendix 2j)
Table 3.6 - Reductil Cartons ATR Set 2 Similarity Predictions 100
Table 3.7 - Reductil Cartons ATR Set 2 Derivative Similarity Predictions
Table 3.8 - Reductil Cartons ATR Set 2 Correlation Predictions 100
Table 3.9 - Reductil Cartons ATR Set 2 Derivative Correlation Predictions
Table 3.10 - Reductil Cartons ATR Set 2 Euclidean Algorithm Predictions
Table 3.11 - Reductil Cartons ATR Set 3 Similarity Predictions Results 106
Table 3.12 - Reductil Cartons ATR Set 3 Derivative Similarity Predictions Results 107
Table 3.13 - Reductil Cartons ATR Set 3 Correlation Predictions Results 108
Table 3.14 - Reductil Cartons Set 3 ATR Derivative Correlation Predictions
Table 3.15 - Reductil Cartons Set 3 Euclidean Predictions Results 110
Table 3.16 - Summary of ATR Pass Predictions 111
Table 4.1 - Comparison of ATR versus Specular Reflectance Pass Predictions 112
Table 4.2 - Comparison of Total ATR and Total Specular Reflectance Pass Predictions

LIST OF APPENDIXES

Appendix 1a - Specular Reflectance Control C1 Repeatability – Similarity Library Hits
Appendix 1b - ATR Control C1 Repeatability – Similarity Library Hits 121
Appendix 2a - Specular Reflectance Similarity Library Hits for Suspect Set 1
Appendix 2b - ATR Similarity Library Hits for Suspect Set 1
Appendix 2c - Specular Reflectance Derivative Similarity Library Hits for Suspect Set
1
Appendix 2d - ATR Derivative Similarity Library Hits for Suspect Set 1
Appendix 2e - Specular Reflectance Correlation Library Hits for Suspect Set 1 124
Appendix 2f - ATR Correlation Library Hits for Suspect Set 1
Appendix 2g -Specular Reflectance Derivative Correlation Library Hits for Suspect Set
1
Appendix 2h - ATR Derivative Correlation Library Hits for Suspect Set 1
Appendix 2i - Specular Reflectance Euclidean Library Hits for Suspect Set 1
Appendix 2j - ATR Euclidean Library Hits for Suspect Set 1
Appendix 3a - Specular Reflectance Similarity Library Hits for Suspect Set 2
Appendix 3b - ATR Similarity Library Hits for Suspect Set 2
Appendix 3c - Specular Reflectance Derivative Similarity Library Hits for Suspect Set
2
Appendix 3d - ATR Derivative Similarity Library Hits for Suspect Set 2128
Appendix 3e - Specular Reflectance Correlation Library Hits for Suspect Set 2 128
Appendix 3f - ATR Correlation Library Hits for Suspect Set 2
Appendix 3g -Specular Reflectance Derivative Correlation Library Hits for Suspect Set
2
Appendix 3h - ATR Derivative Correlation Library Hits for Suspect Set 2
Appendix 3i - Specular Reflectance Euclidean Library Hits for Suspect Set 2129
Appendix 3j - ATR Euclidean Library Hits for Suspect Set 2
Appendix 4a - Specular Reflectance Similarity Library Hits for Suspect Set 3
Appendix 4b - ATR Similarity Library Hits for Suspect Set 3
Appendix 4c - Specular Reflectance Derivative Similarity Library Hits for Suspect Set
3

LIST OF APPENDIXES (Continued)

Appendix 4d - ATR Derivative Similarity Library Hits for Suspect Set 3 1	.34
Appendix 4e - Specular Reflectance Correlation Library Hits for Suspect Set 3 1	.35
Appendix 4f - ATR Correlation Library Hits for Suspect Set 3	.36
Appendix 4g -Specular Reflectance Derivative Correlation Library Hits for Suspect S	Set
31	.37
Appendix 4h - ATR Derivative Correlation Library Hits for Suspect Set 3 1	.38
Appendix 4i - Specular Reflectance Euclidean Library Hits for Suspect Set 3	.39
Appendix 4j - ATR Euclidean Library Hits for Suspect Set 31	.40
Appendix 5a - Techniques Statistical Comparisons Set 1 1	.41
(Similarity, Derivative Similarity, and Euclidean Only)1	.41
Appendix 5b - Techniques Statistical Comparisons Set 2 1	.42
(Similarity, Derivative Similarity, and Euclidean Only)1	.42
Appendix 5c - Techniques Statistical Comparisons Set 31	.43
(Similarity, Derivative Similarity, and Euclidean Only)1	.43
Appendix 6a - Within Specular Reflectance Statistical Comparison of Sets by One-wa	ay
ANOVA1	.44
Appendix 6b - Within ATR Statistical Comparison of Sets by One-way ANOVA1	.45
Appendix 7 - Assessment of All Sets Across All Algorithms by Unstacked ANOVA 1	46

LIST OF ABBREVIATIONS

ANOVA	Analysis of Variance		
API	Active Pharmaceutical Ingredient		
ASTM	American Society for Testing and Materials		
ATR	Attenuated Total Reflectance		
CI	Confidence Interval		
CV	Coefficient of Variation		
DTGS	Deuterated Triglycine Sulfate		
ED	Euclidean Distance		
EMEA	European Agency for the		
	Evaluation of Medicinal Products		
EP	European Pharmacopoeia		
FDA	Food and Drugs Administration		
FFT	Fast Fourier transform		
FIR	Far Infra-red		
FT	Fourier transform		
FT-IR	Fourier transform Infra-red		
HeNe	Helium Neon		
IR	Infra-red		
KBr	Potassium Bromide		
MCT	Mercury Cadmium Telluride		
MHRA	Medicines and Healthcare Products Regulatory Agency		
N/A	Not applicable		
NIR	Near-infrared		
RFID	Radio Frequency Identification		
SNR	Signal to Noise Ratio		
SSFFC	substandard/spurious/falsely-labelled/falsified/counterfeit		
USP	United States Pharmacopeia		
WHO	World Health Organisation		
ZnSe	Zinc Selenide		

CHAPTER 1 - INTRODUCTION

1.1 Background

The World Health Organisation (WHO) defines a counterfeit medicine is one which is deliberately and fraudulently miss-labelled with respect to identity and/or source. Counterfeiting can apply to both branded and generic products and counterfeit products may include products with the correct ingredients or with wrong ingredients, without active ingredients, with insufficient active ingredients or with fake packaging.¹

Pharmaceutical companies currently spend one-third of all sales revenue on marketing their products - roughly twice what they spend on research and development. Counterfeiters do not need to invest in research, rapidly bringing their dangerous copies to the unregulated internet market place. As a result of some pharmaceuticals being expensive, or not readily available, an uneducated portion of the human population are tempted to avoid the legal prescription route and instead purchase drugs via the unlicensed routes, most notably the internet.

Packaging materials provide a protective barrier and instructive purpose for the pharmaceutical product. There is much thought devoted to the design complexity of the pharmaceutical pack and the marketing of the product by the brand owner. Since the pack is the most recognised and first encountered feature of a pharmaceutical product, it is therefore the most counterfeited part of the entire product. Counterfeiters invest most effort and investment in mimicking the pack to try to fool the customer (including the doctor and patient).

The decentralization of the pharmaceutical industry in terms of manufacturing and the emergence of the small-scale personal care industry reduces the manufacturer's control on the supply chain and increases the probabilities of counterfeiting. However, the advancement in track-and-trace technologies and increasing practices of multi-layered authentication technologies have brought revolutionary changes in securing original products. Companies with a premium range of products are opting for radio frequency infrared detection (RFID) and electronic (e) Pedigree authentication technologies such as holograms, inks and dyes. However, the significant cost structure of track and trace technologies, and complex operations involved in tracking the products are the major challenges for the growth of the anti-counterfeit and related security markets always pave the way for cheaper anti-counterfeiting solutions.

This thesis focusses on the rapid authentication of cartons as a first point of analysis for the brand owner. It is postulated that the portable technology involved could be used both in the testing forensic laboratory and in the field.

1.2 Counterfeit Pharmaceuticals

Counterfeit medicines represent a global public health problem, with solutions requiring a co-ordinated security approach, both within and across pharmaceutical companies and health authorities. According to the Health Research Fund, an estimated 10% to 30% of medicines sold in developing countries are counterfeit. In addition, the value of the counterfeit drug market annually is estimated at \$200

billion.² However, other statistics report counterfeits are present in up to 10% of the world market and up to 50% in developing countries.³ Therefore, there is no agreed, nor definitive study and resulting statistics to support absolute conclusions.

In 2013, the World Health Organisation launched a global surveillance and monitoring system to encourage Member States to report *Substandard, Spurious, Falsely labelled, Falsified and Counterfeit* (SSFFC) Medical Products incidents in a structured and systematic format, to help develop a more accurate and validated assessment of the scope, scale and harm caused by this issue. Over nine hundred and twenty medical products have so far been reported representing all main therapeutic categories and representing both innovator and generic medicines.⁴ Counterfeit medicines can unscrupulously enter the legal supply chain via a number of routes. Figure 1.1 shows such examples, including the entry via an illegal distributer.

Figure 1.1 - How Counterfeit Drugs can get to Patient via Illegal Routes (*Courtesy of Merck, Sharp and Dohme*)

Defects in counterfeit pharmaceuticals can be attributed to the wrong coating, active pharmaceutical ingredient (API), excipients, and/or packaging.⁵⁻⁷ A WHO study published in June of 2012 examined samples of malaria medicines from several countries in South-East Asia and sub-Saharan Africa. In both regions, 35% of the samples failed chemical analysis. In South-East Asia, 46% failed packaging analysis and 36% were classified as falsified. In sub-Saharan Africa, 35% failed packaging analysis analysis and 20% were classified as falsified.⁸

Though this has been more of an issue in the developing/ third World, instances of counterfeiting have occurred in the United Kingdom – see Table 1.1. In some instances this has been due to unapproved wholesalers. One additionally counterfeited product that breached the UK legal supply chain in 2004 was Reductil® (Table 1.1), manufactured by Abbott used for obesity control.⁹ As a result, all of Reductil 15 mg Capsules having batch number 65542 were recalled from the UK market. Such drastic measures were to protect the public from the dangers of counterfeit drugs. However, this also tarnished the reputation of Abbott and the Reductil franchise/ brand image.

Table 1.1 -	Examples	of SFFC	Medicines
-------------	----------	---------	-----------

SFFC medicine	Country/Year	Report
1. Avastin (for cancer treatment)	United States of America, 2012	Affected 19 medical practices in the USA. The drug lacked active ingredient
2. Viagra and Cialis (for erectile dysfunction)	United Kingdom, 2012	Smuggled into the UK. Contained undeclared active ingredients with possible serious health risks to the consumer
3.Truvada and Viread (for HIV/AIDS)	United Kingdom, 2011	Seized before reaching patients. Diverted authentic product in falsified packaging
4. Zidolam-N (for HIV/AIDS)	Kenya, 2011	Nearly 3 000 patients affected by falsified batch of their antiretroviral therapy
5. Alli (weight-loss medicines)	United States of America, 2010	Smuggled into the USA. Contained undeclared active ingredients with possible serious health risks to the consumer
6. Anti-diabetic traditional medicine (used to lower blood sugar)	China, 2009	Contained six times the normal dose of glibenclamide. Two people died, nine people were hospitalized
7. Metakelfin (antimalarial)	United Republic of Tanzania, 2009	Discovered in 40 pharmacies. The drug lacked sufficient active ingredient
Source: WHO		

The United States Food and Drugs Administration (FDA) declare that *Counterfeit medicine is fake medicine. It may be contaminated or contain the wrong or no active ingredient. They could have the right active ingredient but at the wrong dose. Counterfeit drugs are illegal and may be harmful to your health.*¹⁰ The FDA regulates both finished dietary supplement products and dietary ingredients, one of which on the watch-list is Subutramine – the active pharmaceutical ingredient in Reductil.

1.3 Packaging Materials for the Pharmaceutical Industry

Packaging materials for the pharmaceutical industry come in a variety of types, in some cases with a specific function. Packaging materials, which include cartons, blisters, and bottles, help to protect the drug product from sunlight, moisture and tampering. There are three sub-categories of packaging:

- Primary Packaging materials, including blisters, syringes, and bottles, that come directly into contact with the drug product
- Secondary The outer pack that contains the primary pack (a carton for example)
- Tertiary These are typically large cartons or plastic packaging which contains the secondary and primary packs.

Figure 1.2 shows an example commercial pharmaceutical pack (Alli® – a GlaxoSmithKline product for anti-obesity):

Figure 1.2 - Alli® (Orlistat 60mg) Pharmaceutical Packaging Commodities (*Courtesy of GSK*)

Modern digital scanning and printing techniques mean that packaging can be easily and cheaply duplicated. A counterfeiter will spend most of their production costs in such replication, primarily to fool the potential patient. The pharmaceutical industry tries to keep one step ahead of the counterfeiter, employing such inclusions on the pack as codes (e.g. 2 dimensional bar codes), taggants, markings and holograms. Many of these 'solutions' are costly and may remain within the company intellectual property.

1.3.1 Cartons for the Pharmaceutical Industry

The carton is the most popular choice as secondary packaging for the pharmaceutical industry. It typically houses a blister of the drug products (e.g. tablets) as well as a patient information leaflet. The carton box is usually flat, with a surface area available for printing. Their visibility to the pharmacist and consumer makes them the most popular commodity for the positioning of anti-counterfeiting features.

The anatomy of a printed, disassembled Reductil® carton is shown in in Figure 1.3, with lacquered white areas. The region of variable data can be non-lacquered to aid printing.

Figure 1.3 - Anatomy of a Printed Carton

The thesis will explore the potential of infra-red spectroscopy to identify counterfeit packaging.

1.4 Fundamentals of infra-red spectroscopy

The electromagnetic spectrum is the common name given to the broad band of radiations from gamma rays to radio waves. A portion of the electromagnetic spectrum including IR is shown in Figure 1.4:

The IR region was the first part of the electromagnetic spectrum discovered beyond the visible region. In 1800 Herschel observed that the red portion of a spectrum (generated by a prism) caused a thermometer to register a temperature rise.¹¹ However, on passing the thermometer beyond the red region of the spectrum the temperature dramatically increased and Herschel assumed that an invisible band existed, which became known as the IR region.

The IR region of the spectrum is, by convention, further sub-divided into three different regions based on wavelength:

- Far-infrared, usually defined as the spectral range below 400 cm⁻¹ to 20 cm⁻¹

- Mid-infrared, usually defined as the spectral range 4000 cm⁻¹ to 400 cm⁻¹

- Near-infrared, usually defined as the spectral range 12820 cm⁻¹ to 4000 cm⁻¹ (780 to 2500 nm)

The far-infrared region is primarily used for measuring heavier atoms and inorganic materials, so is not relevant to these types of samples. Mid-infrared spectroscopy is used for observing fundamental vibrations within molecules and will generate spectra that can be used as a fingerprint for different types of materials. Absorption of IR radiation is associated with the bonds between atoms within a molecule. This gives rise to vibrational and rotational motions that are specific to the type of covalent bond present. The energy absorbed by the bond is specific to the atoms themselves, as well as the number and type of atoms attached to the atoms in question. As a result, the mid-IR range has been used for structural elucidation of pure organic compounds for many years.

The American Society for Testing and Materials (ASTM)¹² defines the Mid-IR region as having a wavelength range from approximately 2500 to 25000 nm (wavenumber range 4000 to 400 cm⁻¹). For IR radiation to be absorbed it must be of the correct frequency to produce vibrational transitions in the molecules concerned, i.e. the radiation frequency should be the same as the fundamental vibration frequency for the specific molecule. The molecule should also undergo a change in its dipole moment by virtue of its fundamental vibration.

The vibrational frequency, f, for a diatomic molecule is given by equation 1.1 (equation for a harmonic oscillator) in which it is assumed that an atom shifts from its equilibrium position with strength proportional to the shift (Hooke's Law):

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \tag{1.1}$$

Where, k is the bonding force constant (in units of dyne/cm, a measure of the strength or rigidity of a chemical bond in its normal equilibrium position) and μ is the reduced molecular mass (in amu, or atomic mass units).

In this case the variation in potential energy as a result of stretching or compressing the bond is a parabola centred about the equilibrium distance. The application of the Schrödinger wave equation gives evenly spaced vibrational energy levels. The energy $E_{\rm v}$ of each energy level will be given by:

$$E_{\rm v} = f({\rm v} + \frac{1}{2})$$
 (1.2)

Where, v is the vibrational quantum number.

As the selection rule for a harmonic oscillator is $\Delta v \pm 1$, and the energy levels are evenly spaced, then the energy difference between two consecutive levels will then always be:

$$E_{(v+1)} - E_v = f$$
(1.3)

Where, f is known as the 'fundamental frequency' of the bond.

Other transitions, for example from $V_{2 \leftarrow 0}$ and higher, are forbidden.

Vibrations in polyatomic molecules involve complex movements of their constituent atoms. These movements can be resolved into individual vibrations called 'normal vibrations'. The energy of each normal frequency is independent of the others, so the total vibrational energy of the molecule is the sum of the individual energies (equation 1.4).

$$E_{Tv} = \sum_{i=0}^{\infty} f(v_i + \frac{1}{2})$$
(1.4)

In practice, molecular vibrations tend to be non-harmonic. The potential energy curve for real bonds is only approximately parabolic, with small deviations at the lower energy levels that become more marked at the upper energy levels (Figure 1.5). Also, the spacing between energy levels are not identical but decrease (subsequent levels become closer) with increasing energy.

Figure 1.5 - Harmonic and anharmonic potential functions for a diatomic oscillator

The energy E_v of the vibrational levels will be given by:

$$E_{v} = f_{e}\left(v + \frac{1}{2}\right) - f_{e}\chi_{e}\left(v + \frac{1}{2}\right)^{2} + \text{higher order terms}$$
(1.5)

Where, χ_e is the anharmonicity constant for a molecule (which measures the deviation of the potential function from the parabola), and f_e is the frequency spacing between levels corresponding to a parabola with its centre at the equilibrium distance (r_e).

One further consequence of introducing the quadratic term into Hooke's law is that the selection rule becomes $\Delta v = \pm 1, \pm 2$, etc.. Hence, in addition to the fundamental transition, $V_{1\leftarrow 0}$, other, higher transitions called overtones appear at frequencies at approximately two, three, etc., times higher than the fundamental frequency. The intensity of these bands decay abruptly, since the transition probability decreases markedly with increase in the vibrational quantum number and, in practice, only the first two or three overtones are observed. For the vast majority of organic molecules and complex ions the fundamental vibration occurs in the mid-IR and the overtones appear in the NIR albeit one to three orders of magnitude smaller. The transition probabilities for overtones and combination bands are 10 to 1000 times smaller than those for the fundamental frequency and, consequently, such absorbances are weak.

Polyatomic molecules possess several fundamental frequencies so they may exhibit simultaneous changes in the energies of two or more vibrational modes: the frequency observed will be the sum of $(f_1 + f_2, 2f_1 + f_2, \text{ etc.})$. This results in very weak absorptions that are called combination bands. Anharmonicity results in combination bands that are smaller than the combined fundamental frequencies involved.

With polyatomic molecules there is a significantly higher number of modes of vibration possible (3N - 6, where N is the number of atoms, or 3N - 5, for linear molecules), those typically encountered are shown in shown in Figure 1.6.

Figure 1.6 - Vibrational modes for a molecule of the type XH₂ : A - symmetric stretching, B - asymmetric stretching, C - rocking (in-plane deformation), D scissoring (in-plane deformation), E - wagging (symmetric out-of plane deformation), and F - twisting (asymmetric out-of-plane deformation) Key: white circle = Hydrogen, Black Circle = Oxygen, Nitogen or Carbon (*Courtesy of Thermo Fisher Scientific*)

Many IR absorptions are fundamentals arising from bonds in which one of the atoms is hydrogen (e.g. C–H, N–H, O–H and S–H), Figure 1.7.

Figure 1.7 - Example Fundamental IR Frequencies (Courtesy of Perkin Elmer)

The small mass of the hydrogen atom coupled with the large force constants for C–H bonds form the origin of high fundamental frequencies and hence the appearance of the first few overtones in the NIR region. X–H bonds also have significantly higher anharmonicity constants than other groups. C=C, C–C, C–F, and C–Cl groups fundamental vibrations occur at low frequencies in the IR region, where their first few overtones also appear as a result. Carbon tetrachloride has no absorptions in the IR region as it is a symmetrical molecule (though it has weak asymmetric vibrations).

In IR spectroscopy, the frequency (or wavelength) where absorptions occur allows for identification, the amplitude or intensity of the absorption can allow quantification. Figure 1.8 shows an example IR absorbance spectrum, and the previous Figure 1.7 explains some of those frequencies (for a transmission spectrum).

Figure 1.8 - An Example Absorbance IR Spectrum of Paracetamol

The region from 1500 to 500 cm^{-1} is known as the identification region, and is frequently utilised for identification purposes due to the finer, detailed structure. It

is typical to show data from solids in absorbance or reflectance, unless the spectra results from transmission, for example through a media such as a potassium bromide disk.

Equation 1.6 shows the relationship between transmittance and absorbance:

Absorbance (A) =
$$2 - \log(\% \text{ Transmittance (T)})$$
 (1.6)

Although the positions of IR absorptions can be estimated from the principles of the anharmonic oscillator, in practice these may vary. This could be related to the degree of hydrogen bonding in the molecule, interaction with other molecules and the temperatures at which the spectrum is measured. The presence of hydrogen bonding typically broadens absorptions in higher frequencies of IR spectra. Also, deformation from a crystalline to an amorphous solid state results in peak broadening. There is also the added complication that may arise when transitions are of similar frequencies, however, this is more likely in the NIR region, formed by the combinations and overtones of fundamental IR absorbances.

1.5 IR analysis of pharmaceutical packaging

IR spectroscopy has been extensively used in the forensic laboratory for the identification of unknown, as well as the authentication of known chemicals. A significant advantage IR spectroscopy has compared with other complementary techniques, such as Near Infra-red (NIR) and Raman spectroscopy, is its maturity, and because of this, many diverse libraries are commercially available for the identification of unknown chemicals.

FT-IR spectroscopy offers the infrared spectroscopist throughput and sensitivity advantages that make it possible to accommodate a wide range of sampling accessories. This in turn makes possible the routine collection of spectra from various solids, including cartons.

Though there is much written in the literature about the use of IR for the analysis of counterfeit drugs, surprisingly little has been published on the use of IR for the analysis of counterfeit cartons.¹³ In 2012 Andria *et al* described the use of IR for the analysis of counterfeit blisters, where attenuated total reflectance mode was used to identify the plastics within them.¹⁴ Rodomonte *et al* described the use of colorimetry to discriminate counterfeit secondary packaging and Broad *et al* used multispectral visible - near-infrared to successfully identify counterfeit Reductil cartons.^{15, 16}

The body of work described in this thesis utilises two interface technologies coupled with FT-IR. Both external specular reflectance and attenuated total reflectance (ATR) were used, compared and evaluated.

1.6 FT-IR instrumentation and producing a spectrum

Fourier transform (FT) instruments are commonly used within the laboratory.¹⁷⁻²³ Fourier Transform Infrared (FT-IR) spectrometry was developed in order to overcome the limitations encountered with dispersive instruments. Early IR instruments were dispersive, with many moving internal parts and slow scanning speeds, many time lacking good reproducibility. A solution, Fourier transform infrared (FT-IR), was developed which employed a very simple optical device called an interferometer. An example of the instrumentation optical arrangement is shown in Figure 1.9 below.

Figure 1.9 - Example FT-IR Instrument Optics (Courtesy of Thermo Fisher Scientific)

The interferometer produces a unique type of signal which has all of the infrared frequencies "encoded". The signal can be measured very quickly, usually in approximately one second. Thus, the analysis time per sample is reduced to a matter of a few seconds rather than several minutes. The essential component of an interferometer is a system for splitting a source radiation beam and then recombining the two beams after introducing a path difference. This combined beam passes through the sample to the detector. Division of the beam is achieved with a

beamsplitter that transmits about 50 % and reflects about 50 % of the radiation. One part of the beam goes to a fixed mirror, and the other to a mirror that can be moved to introduce a varying path difference (Figure 1.10).

Figure 1.10 - The Michelson Interferometer (*Courtesy of Perkin Elmer*)

One beam reflects off a flat mirror which is fixed in place. The other beam reflects off a flat mirror which is on a mechanism which allows this mirror to move a very short distance (typically a few millimetres) away from the beamsplitter. The two beams reflect off their respective mirrors and are recombined when they meet back at the beamsplitter. The distance the mirror can move determines the maximum possible resolution. The most commonly used beamsplitter is a plate of KBr with a germanium coating. The instrumentation used for this work uses ZnSe beamsplitters.

Because the path that one beam travels is a fixed length and the other is constantly changing as its mirror moves, the signal which exits the interferometer is the result of these two beams "interfering" with each other. The resulting signal is called an interferogram which has the unique property that every data point (a function of the moving mirror position) which makes up the signal has information about every infrared frequency which comes from the source. This means that as the interferogram is measured, all frequencies are being measured simultaneously. Thus, the use of the interferometer results in extremely fast measurements.

When the beams are recombined, an interference pattern is obtained as the path difference is varied. For a single frequency, the interference pattern is a sine wave with maxima when the two beams are exactly in phase and minima when the two are 180 degrees out of phase. The spacing between the maxima corresponds to a change in path difference equal to the wavelength (Figure 1.11):

Figure 1.11 - Relationship between optical path difference and wavelength
For a broadband source the interference pattern is the sum of the sine waves for all the frequencies present. This interferogram consists of a strong signal at the point where the path difference is zero, falling away rapidly on either side. As the analyst requires a frequency spectrum (a plot of the intensity at each individual frequency) in order to make an identification, the measured interferogram signal cannot be interpreted directly. A means of "decoding" the individual frequencies is required. This can be accomplished via a mathematical technique called the Fourier transformation.^{18, 20} This transformation is performed by the computer which then presents the user with the desired spectral information for analysis. The customary spectrum, showing energy as a function of frequency, can be obtained from the interferogram by the mathematical process of Fourier Transformation (Figure 1.12).

Figure 1.12 - Fourier Transformation

Fourier transformation is the mathematical process by which the interferogram is analysed into its component frequencies with their corresponding amplitudes. To achieve this rapidly and efficiently, the Cooley-Tukey algorithm (also known as a Fast Fourier Transform (FFT)), is used.²¹

When no sample is present this gives a single beam spectrum, the overall shape of which is largely determined by the characteristics of the beamsplitter. Normally, interferometers operate by first recording this background and then ratioing the spectrum recorded with a sample against it (Figures 1.13a and b):

Figures 1.13a and b – a) Background (blue) and Sample (red) Records, and b) Final Spectra of Lacquered Card

The five important components required for IR spectral collection are:

1. The Source: Infrared energy is emitted from a glowing black-body source such as tungsten filament. This beam passes through an aperture which controls the amount of energy presented to the sample (and, ultimately, to the detector).

2. The Interferometer: The beam enters the interferometer where the "spectral encoding" takes place. The resulting interferogram signal then exits the interferometer.

3. The Sample: The beam enters the sample compartment where it is transmitted through, or reflected off, the surface of the sample, depending on the type of analysis being accomplished. This is where specific frequencies of energy, which are uniquely characteristic of the sample, are absorbed.

4. The Detector: The beam finally passes to the detector for final measurement. The detectors used are specially designed to measure the special interferogram signal. IR detectors include PbS and PbSe photoconductive detectors, InAs and InSb photovoltaic detectors, and, HgCdTe and InSb photoconductive detectors.

5. The Computer: The measured signal is digitized and sent to the computer where the Fourier transformation takes place. The final infrared spectrum is then presented to the user for interpretation and any further manipulation. Modern FT-IR instruments are computer controlled; enabling spectra to be measured and saved as a data file typically within seconds. The fast Fourier transform (FFT) is done onboard, with the computer being an advanced chart recorder and meta data handler. Extreme wavenumber accuracy enables signal averaging and it is common to measure many scans to enhance signal (greater signal to noise).

1.6.1 The Advantages of FT-IR Spectroscopy

In principle, a well-designed interferometer has eight basic advantages over a classical dispersive instrument:

1. Multiplex Advantage (Fellgett Advantage)²¹

All frequencies are measured simultaneously in an interferometer, whereas in a dispersive spectrometer they are measured successively. A complete spectrum can be obtained very rapidly and many scans can be averaged in the time taken for a single scan of a dispersive spectrometer.

2. Throughput Advantage (Jacquinot Advantage)²²

For the same resolution, the energy throughput in an interferometer can be higher than in a dispersive spectrometer where it is restricted by the slit size. In combination with the *Multiplex Advantage*, this leads to one of the most important features of an FT-IR spectrometer; the ability to achieve the same signal-to-noise ratio as a dispersive instrument in a much shorter time.

3. Connes Advantage²²

The frequency scale of an interferometer is derived from a helium neon laser that acts as an internal reference for each scan. The frequency of this laser is known very accurately and is very stable. As a result, the frequency calibration of interferometers is much more accurate and has much better long term stability than the calibration of dispersive instruments. FT-IR instrument typically employ a HeNe laser as an internal wavelength calibration standard, however portable instruments can use solid state lasers.

4. Negligible Stray Light

Because of the way in which the interferometer modulates each frequency, there is no direct equivalent of the stray light found in dispersive spectrometers.

5. Constant Resolution

Resolution is the same at all wavelengths. In a dispersive instrument the resolution varies because of the slit program.

6. No Discontinuities

As there is no grating or filter changes, there are no discontinuities in the spectrum.

7. Sensitivity

Sensitivity is dramatically improved with FT-IR for many reasons. The detectors employed are much more sensitive, the optical throughput is much higher (referred to as the *Jacquinot Advantage*) which results in much lower noise levels, and the fast scans enable the co-addition of several scans in order to reduce the random measurement noise to any desired level (referred to as signal averaging).

8. Mechanical Simplicity

The moving mirror in the interferometer is the only continuously moving part in the instrument. Thus, there is very little possibility of mechanical breakdown.

In summary, FT-IR is much simpler optically than dispersive technology, harnessing computer power to enable all frequencies to be collected at once during data acquisition. The analyst can collect a spectrum within a second compared to minutes.

1.7 Specular reflectance FT-IR analysis of solids

Agilent Technology's ExoScan 4100 Fourier transform infrared (FT-IR) spectrometer is based on a Michelson interferometer coupled with ZnSe beamsplitter technology. On an axis angle of 45°, the collimated beam is reflected by a parabola and the cone of IR light travels through a ZnSe window, reflects off the sample / background cap, penetrates approximately 350 microns into a laminated carton in reflectance mode, with spot size of 1.55 mm diameter (1.76 cm² area) acquired (see Figures 1.14a and b). The cone angles are from 35-55° with a beam spot size of 1.5 mm.

Figures 1.14a and b - Spectral Path and Active Area Dimensions 'Spot Size' Diameter using a 45° Specular Reflectance Head (*Courtesy of Agilent*)

Specular reflectance sampling in FT-IR represents a very important technique useful for the measurement of thin films on reflective substrates, analysis of bulk materials and measurement of monomolecular layers on a substrate material. Specular reflectance Fourier transform infrared measurements allow thin coatings layers on reflective surfaces to be analysed with little or no sample preparation.²²⁻²⁷

In specular reflectance the infrared beam strikes the sample at an angle of incidence, for example of 45 degrees, but the variable-angle accessories commercially available can provide different sensitivity. The smaller the angle of incidence, the more sample the IR beam must pass through. Note that the nature of the solid sample itself will determine the ultimate depth of penetration. The primary difficulties associated with specular reflectance measurements involve spectral distortions caused by the mixing of the absorption information and refractive index variation in the measured radiation. A second difficulty is low signal:noise ratio (SNR) of highly absorbing solids. This can be overcome by collecting more spectra, and/or using more advanced detectors (for example, cooled Mercury Cadmium Telluride (MCT) technology).

The basics of the sampling technique involves measurement of the reflected energy from a sample surface at a given angle of incidence. The electromagnetic and physical phenomena which occur at, and near, the surface are dependent upon the angle of incidence of the illuminating beam, refractive index and thickness of the sample and other sample and experimental conditions. In the case of a relatively thin film on a reflective substrate, the specular reflectance experiment may be thought of as similar to a "double-pass transmission" measurement and can be represented as shown in Figure 1.15:

Figure 1.15 - Representation of specular reflectance Beam path for Reflection-Absorption of a relatively thin film measured by Specular Reflectance (*Courtesy Pike Technologies Inc.*)

The incident FT-IR beam, represented by I_0 , illuminates the thin film of a given refractive index, n_2 and at an angle of incidence, θ_1 . Some of the incident beam is reflected from the sample surface, represented by I_R at the incident angle, θ_1 and is also known as the specular component. Some of the incident beam is transmitted into the sample represented by I_T at an angle of θ_2 – calculated by

$$n_1 \sin \theta_1 = n_2 \sin \theta_2 \tag{1.7}$$

At the reflective substrate, the beam reflects back to the surface of the thin film. When the beam exits the thin film it has geometrically passed through the film twice and is now represented as I_A . Infrared energy is absorbed at characteristic wavelengths as this beam passes through the thin film and its spectrum is recorded.

The specular reflectance spectra produced from relatively thin films on reflective substrates measured at near-normal angle of incidence are typically of high quality and very similar to spectra obtained from a transmission measurement. This result is expected as the intensity of I_A is high relative to the specular component, I_R .

For relatively thick samples, specular reflectance produces results which require additional considerations, as the specular component of the total reflected radiation is relatively high. As per Figure 1.16, the incident FT-IR beam represented by I_0 illuminates the sample of a given refractive index, n_2 and at an angle of incidence, θ_1 . Some of the incident beam is reflected from the sample surface, represented by I_R at the incident angle, θ_1 . Some of the incident beam is transmitted into the sample represented by I_T at an angle of θ_2 . The percent of reflected versus transmitted light increases with higher angles of incidence of the illuminating beam. Furthermore, the refractive index of the sample, surface roughness and sample absorption coefficient at a given wavelength all contribute to the intensity of the reflected beam.

Figure 1.16 - Beam path for a relatively thick sample measured by Specular Reflection (*Courtesy Pike Technologies Inc.*)

By increasing the incident angle of infra-red radiation, the effective pathlength through the sample can be increased (Figure 1.17). Grazing Angle Specular

reflectance is the measurement of relatively thin films and mono-molecular layers using a shallow grazing angle of incidence. At high angles of incidence, between 60 and 85 degrees, the electromagnetic field in the plane of the incident and reflected radiation is greatly increased relative to a near normal angle of incidence. The perpendicular component of the electromagnetic field of the reflecting radiation is not enhanced.

Figure 1.17 - The effective pathlength variation as a function of the angle of incident radiation

1.8 Attenuated Total Reflectance (ATR) analysis of solids

Attenuated Total Reflectance (ATR) spectroscopy enables FT-IR analysis of solids and liquids without the need for sample preparation. In ATR, a liquid or solid is placed on top of a suitable crystal material. An infrared beam passes through the crystal and is internally reflected from the top crystal surface. The ATR used for this thesis is ZnSe supported with diamond. A small evanescent wave then penetrates a small distance from the crystal surface into the sample itself before it is reflected back into the crystal and the infrared detector.²⁵⁻²⁷ The penetration of the infrared beam into the sample is sufficient to generate an infrared spectrum of the various suspect samples.

In ATR-IR spectroscopy the infrared beam is coupled into an internal reflection element (IRE). The latter consists of a material of high refractive index (n_1) and is transparent in the mid-IR, such as diamond or Zinc Selenide (the latter is used in this thesis – see Chapter 3). The geometry of the IRE allows the radiation to be totally reflected once, or multiple times before it leaves the IRE. Total internal reflection of an electromagnetic wave occurs at the interface of the IRE and an optically rare medium (the sample, $n_2 < n_1$) when the angle of incidence of the radiation exceeds the critical angle (θ_c) defined by the law of refraction:

$$\theta_c = \sin^{-1} \left(\frac{n_2}{n_1} \right) \tag{1.8}$$

where n_1 is the refractive index of the medium immediately outside the IRE

An indication of the fraction of sample probed by the electromagnetic field is given by the penetration depth (d_p) :

$$d_{p} = \frac{\lambda}{2\pi + n_{1}\sqrt{\sin^{2}\left[\theta - \left[\frac{n_{2}}{n_{1}}\right]^{2}\right]}}$$
(1.9)

Where dp is the distance from the IRE surface where the electric filed vector E drops to a value of 1/e of its amplitude at the interface. The penetration depth

depends on the wavelength, λ , the angle of incidence (θ) and the refractive indices of the IRE and the sample (n_1 and n_2).

The reflected radiation sets up a standing wave, known as the evanescent wave. The intensity of the evanescent wave decays exponentially with distance from the surface; the distance at which the intensity of the evanescent wave has decayed to 1/e of its original value at the surface is known as the depth of penetration (d_p) . At the point of reflection an *evanescent electromagnetic field* is generated into the sample (Figure 1.18):

Figure 1.18 - Graphical representation of a single reflection ATR

The amplitude of the evanescent wave field decreases exponentially from the surface of the IRE into the sample.

Upon internal reflection no energy is lost if no absorption occurs in the sample. When absorption occurs at the interface, the evanescent field is attenuated and the infrared spectrum of the sample (the analyte) is generated. The typical effective pathlength d_p for a sample in an ATR measurement is in the range 0.5 - 20 microns, depending on the crystal type and the number of reflections in the crystal. Generally, a single reflection ATR is ideal for qualitative analysis, however the effective path length (EPL) is increased by increasing the number of reflections (N) within the ATR crystal (effective pathlength is directly proportional to the number of internal reflections). Table 1.2 shows the commercially available crystals and their properties:

Material	n 1	$d_p,$	Water Solubility,	pH Range	Hardness,
		microns	g/100g		Kg,mm
Diamond/ ZnSe	2.4	2.01	Insoluble	1-14	5,700
Ge	4.0	0.66	Insoluble	1-14	550
KRS-5	2.37	2.13	0.05	5-8	40
Si	3.4	0.85	Insoluble	1-12	1,150
ZnS	3.3	3.86	Insoluble	5-9	240
ZnSe	3.4	2.01	Insoluble	5-9	120

 Table 1.2 – ATR Crystal Characteristics for FT-IR Sampling

Most organic chemicals have a refractive index, n_1 , around 1.5. In this case dp is equal to about 0.2 λ for ZnSe and 0.066 λ for Ge when the angle of incidence at the surface is 45°. Since the depth of penetration is directly proportional to the wavelength of the infrared radiation, the bands in the ATR spectrum are weaker at the short-wavelength (high-wavenumber) end of the spectrum than the longwavelength end.

1.9 Algorithms used for Identification

Arguably the most common single spectroscopic technique used for algorithmic library searching is FT-IR. This is mostly due to the selective and sensitive nature of FT-IR spectra to the material being examined. This enables even small differences to be discriminated, however judicious use of the correct algorithm requires testing and examination of the results.

There are many algorithms to enable the user to accentuate particular spectral differences over others to suit the data, since these are purely mathematical algorithms they do not consider the condition, or chemistry, or contamination issues therefore a variety of algorithms were developed to suit different types of data and differences. All software quotes either an index, quality index, hit quality, hit quality index, etc.. The hit percentage or more correctly the hit quality index is an indication of how well a test spectrum matches the library (based on the algorithm). The value is algorithmic and spectrally dependent. Most software report a value of "Hit Quality" value between 0-100, this quality value in essence has no units whatsoever, they are literally an indicator. Correlation values are typically between 0 and 1, again these a purely a measure of how well two spectra match (e.g. a library spectrum and a test sample spectrum).

Agilent FT-IR software has several algorithms available for identification purposes – *correlation, derivative correlation, Euclidean, Similarity* and *Derivative Similarity*. These are detailed in the following sub-sections 1.9.1 to 1.9.5.

1.9.1 Correlation

The correlation search algorithm facilitates a linear regression of the query spectrum intensities versus the library spectrum intensities. The correlation coefficient of the resulting linear function is very characteristic through deviations from linearity. The closer the correlation coefficient is to 1, the better is the accordance and match of both spectra. Correlation can cope with mild negative bands such as present in reflectance spectra.

$$correlation = \frac{(L_m \bullet Q_m)^2}{(L_m \bullet L_m) \bullet (Q_m \bullet Q_m)}$$
(1.10)

where $L_m = L - \frac{\sum_{i=1}^{n} L_i}{n}$ and where $Q_m = Q - \frac{\sum_{i=1}^{n} Q_i}{n}$

and,

Q = query spectrum intensity vector

L = Library spectrum intensity vector

• = Dot product, scalar product or inner product. Euclidean maths definition takes two equal length sequence of numbers and returns a single value

1.9.2 Derivative Correlation

Derivatisation of an untreated (zero order) spectrum can be a useful technique for enhancing the fine structure within the IR spectrum (i.e. resolution is enhanced).²⁷ The presence of overlapping peaks in spectroscopy are resolved by taking the derivative of the raw data, where the derivative describes the rate of change of the original signal.

The first derivative spectrum is the slope of the spectral curve at each point of the original spectrum. It has peaks where the original spectrum has maximum slope and crosses zero where peaks occurred in the original. Taking the first derivative of a spectrum largely removes the effects of baseline offsets and slopes to improve resolution for analysis.

The second derivative is the slope of the first derivative and utilised to remove both baseline offset and slope from the spectrum (i.e. the physical information is almost completely removed to leave only chemical information).²⁸

The visual advantage of derivatives is the separation of overlapping peaks, as in Figure 1.19. The peaks corresponding to the two components overlap, with the peak for component **b** appearing as a shoulder on the peak corresponding to component **a**. Thus visual separation of components pre-derivatisation is difficult. The second derivative spectrum resolves the over-lapping peaks into their individual component peaks, with the relevant position and size of the original peaks maintained.

The common derivative algorithms include the gap and Savitsky-Golay methods.²⁸⁻³⁶ In the former algorithm, typical parameters required for this calculation are the segment and gap size. The principle of this approach is to calculate the difference between the mean values of segments (blocks) of data points either side of the point at which the derivative is required. The segment size represents the number of data points to average (for smoothing purposes) and the gap is the number of data points between these segments.

Figure 1.19 - Effect of derivatisation for resolution of individual components a and b: (—) raw spectrum, and (—) second derivative of raw spectrum

For example, Figure 1.20 calculates data using a segment (block) size of 7 data points with a gap size of 3 data points. To calculate the first derivative using the data in Figure 1.19 the mean value of intensity in the second block is subtracted from the mean value in the first to obtain a new value. This is then repeated across the complete spectrum moving one point at a time.

Figure 1.20 - Representation of spectral data points for calculation of a derivative using a gap approach (*Courtesy of FOSS NIRSystems Inc.*)

For each data point, A_i , from the original spectrum the calculation of the first derivative absorbance using this algorithm is,

$$A_i^{1'} = \overline{A}_c - \overline{A}_a \tag{1.11}$$

Where, $A_i^{1'}$ is the first derivative absorbance at the *i*th wavelength, \overline{A}_c is the average absorbance of the segment proceeding A_i , and \overline{A}_a is the average absorbance of the segment preceding A_i with a gap of the specified size between segments. The original data point, A_i , is located at the centre of the gap.

For higher order derivatives this procedure is simply repeated on the first derivative data, or, alternatively for each data point, A_i , from the original spectrum the calculation of the second derivative absorbance using this algorithm is,

$$A_i^{2'} = \overline{A}_a - 2\overline{A}_b + \overline{A}_c \tag{1.12}$$

Where, $A_i^{2'}$ is the second derivative absorbance at the *i*th wavelength, \overline{A}_a is the average absorbance of the segment preceding A_i , \overline{A}_b is the average absorbance of the segment at which A_i is centrally located (i.e. the mid-point of the gap) and \overline{A}_c is the average absorbance of the segment proceeding A_i with a gap of the specified size between segments.

Figure 1.21 shows the effect of selecting different segment sizes (in data points) on second derivative spectral data, the smaller the segment the more significant the noise. However, more detailed spectral information can appear. Optimisation of segment size is therefore usually a compromise of the signal to noise ratio.

Figure 1.21 - Effect of varying segment size of second derivative spectral data (gap size = 0)

The derivative correlation search algorithm facilitates a linear regression of the derivative of the query spectrum intensities versus the library spectrum intensities. The correlation coefficient of the resulting linear function is very characteristic through deviations from linearity. The closer the correlation coefficient is to 1, the better is the accordance of both spectra.

Derivative Correlation, as the name suggests, applies a first derivative adjustment to the correlation calculation.

1.9.3 Similarity

Similarity is simply the subtracted result of correlation from (the number) 1. Therefore the smaller the numerical outcome, the higher the similarity.

Similarity = 1 -
$$\left[\frac{(L_m \bullet Q_m)^2}{(L_m \bullet L_m) \bullet (Q_m \bullet Q_m)} \right]$$
 (1.13)

1.9.4 Derivative Similarity

Derivative Similarity, as the name suggests, applies a first derivative adjustment to the similarity calculation.

1.9.5 Euclidean Distance

The Euclidean Algorithm is the most commonly used algorithm in commercial library search packages. Mathematically it shares some similarity in its operation with the correlation algorithm. It is better suited to spectra with the following three attributes, a well-behaved baseline, only positive peaks, and good signal to noise. It is a slightly faster algorithm than correlation. If the baseline is not flat then it will require baseline correction prior to invoking the search. Values nearest zero indicate a good match, these values are often converted to 100.00-computed value.

$$Euclidean = \sqrt{2} \times \left[\sqrt{1 - \frac{(L \bullet Q)}{\sqrt{L \bullet L} \sqrt{Q \bullet Q}}} \right]$$
(1.14)

1.10 Aims and objectives

This thesis focusses on the rapid authentication of cartons as a first point of analysis for the brand owner. It is postulated that the portable technology involved could be used both in the testing forensic laboratory and also in the field, ensuring a cheaper technology for anti-counterfeiting.

Specular reflectance and attenuated total reflectance are both non-destructive techniques that could potentially be applied to the authentication of intact pharmaceutical packaging in a significantly shorter time than traditional, destructive and time consuming analysis methods. This work will recommend which of the two technologies and identification algorithms is better suited to such work.

CHAPTER 2 – THE ANALYSIS OF COUNTERFEIT SLIMMING PILL CARTONS USING SPECULAR REFLECTANCE FOURIER TRANSFORM INFRA-RED SPECTROSOCPY

2.1 Introduction

This Chapter describes in detail the analysis of counterfeit and authentic Reductil® cartons using specular reflectance FT-IR, and compares and evaluates the results of the identification algorithms available.

2.2 Background

A total of sixteen suspects and nine control cartons were available for ATR and specular reflectance analyses. These were divided into sub-sets according to similarity and time period of manufacture, resulting in three sets of counterfeit strains to study. The aim of this Chapter was to evaluate the effectiveness of specular reflectance combine with various identification algorithms for carton authentication. Should specular reflectance be successful, this would facilitate rapid, non-destructive analysis to be envisaged at-line/ in the field.

2.3 Experimental

2.3.1 Suspect and Control samples

Suspect and Control Samples for Analysis

ID	Description	Lot and Expiry	Component (Count)	Component #
S1	Reductil 15mg	Lot 583998D Exp 08-2010	Carton (1)	24286161*
S2	Reductil 10mg	Lot 633288D Exp 12.2010	Carton (1)	24181219
S 3	Reductil 15mg	Lot 651878D Exp 02-2011	Carton (1)	24286161*
S4	Reductil 15mg	Lot 762618D Exp 01.2012	Carton (3)	24286161*
S5	Reductil 10mg	Lot 720658D Exp 07.2011	Carton (1)	24181219
S6	Reductil 10mg	Lot 220808D Exp 06.2007	Carton (2)	24181154
S7	Reductil 10mg	Lot 282298D Exp 09.2009	Carton (2)	24181154

Note*: Component Number Matches Control C1 Component Number

Cartons Set 1 - Suspects S1 to S7 and control cartons:

Figure 2.1 - Suspects S1 to S7 and Control C1 Carton Images

Key: Red rectangle encompasses the control carton.

Control ID	Description	Lot and Expiry	Component (Count)	Component #
C1	Reductil 15mg Abbott Ludwigshafen, Germany For Control for Set 1 (S1 to S7) comparisons	Lot 372638D Exp 10.2007	Carton (1)	24286161

Table 2.1b - Reductil Control Materials Used in the Counterfeit Investigationfor Suspect Set 1

Table 2.2a - Suspect Reductil Cartons Set 2

ID	Description	Lot and Expiry	Component (Count)	Component #
S 8	Reductil 15mg	Lot 273198D Exp 08-2009	Carton (4)	24286127
S9	Reductil 15mg	Lot 2011030 Exp 08.2008	Carton (2)	24286025
S10	Reductil 15mg	Lot 651878D Exp 02-2011	Carton (1)	24181172

Cartons Set 2 - Suspects S8 to S10 and control cartons:

Figure 2.2 - Suspects S8 to S10 and Control C2 Carton Images Key: Red rectangle encompasses the control carton.

Table 2.2	b - Reductil	Control	Materials	Used in	the Count	erfeit Investigat	tion
for Suspe	ct Set 2						
Control	Description		Lot and Ex	piry	Component	Component #	
ID					(Count)		

Control	Description	Lot and Expiry	Component	Component #
ID			(Count)	
C2	Reductil 15mg Abbott Ludwigshafen, Germany For Control for Set 2 (S8 to S10) comparisons	Lot 622678 Exp 12.2010	Carton (1)	24286200

Table 2.3a - Suspect Reductil Cartons Set 3

ID	Description	Lot and Expiry	Component (Count)	Component #
S11	Reductil 15mg	Lot 250328D Exp 08.2007	Carton (2)	24286062
S12	Reductil 15mg	Lot 394068D Exp 01.2009	Carton (1)	24286160
S13	Reductil 15mg	Lot 72783 Exp 04.2011	Carton (1)	24286054*
S14	Reductil 10mg	Lot 431648D Exp 10.2008	Carton (1)	24181202
S15	Reductil 10mg	Lot 481218D Exp 20 2009	Carton (1)	No # Present
S16	Reductil 15mg	Lot 73156 Exp 03.2012	Carton (1)	24286054*

Note*: Component Number Matches Controls C3 and C4 Component Number

Cartons Set 3 - Suspects S11 to S16 and control cartons:

Figure 2.3 - Suspects S11 to S16 and Control C3 to C9 Carton Images Key: Red rectangle encompasses the control cartons.

Table 2.3b -	Reductil	Control	Materials	Used in	the	Counterfeit	Investigation
for Suspect S	let 3						

Control ID	Description	Lot and Expiry	Component (Count)	Component #
C3		Lot B76053 Exp 12.2014	Carton (1)	24286054
C4		Lot B72978 Exp 12.2009	Carton (1)	24286054
C5	Reductil 15mg Abbott	Lot 262818D Exp 11.2007	Carton (1)	24286058
C6	Ludwigshafen, Germany For Control for Set 3	Lot 713388D Exp Unknown	Carton (1)	24286158
C7	(S11 to S16) comparisons	Lot 562428D Exp 06.2010	Carton (1)	24286158
C8	· · · · · · · · · · · · · · · · · · ·	Lot 651498D Exp 02.20 11	Carton (2)	24286158
С9		Lot 572308D Exp 02.2010	Carton (1)	24286158

2.3.2 Specular Reflectance FT-IR analysis

5	Status:	Reedy		Meth	hod:	Reduc	til Carton Da	ata Collect	
0	Туре	Instrument	Custom Fields Re	ports					
Sp	pectral Ra	nge (cm-1):	5000	to	650		🖪 Full		
	Backgro	ound Scans:	32	Í.					
	Sar	nple Scans:	32	1					
	Resolu	tion (cm-1):	8		Zero I	Fill Factor:	None	-	
		Apodization:	HappGenzel	•	Phas	e Correct:	Mertz	-	
	Sampling	Technology:	Reflectance		• 🗷 S	et Method	Gaîn		
	Sampli	ng Subtype:	Specular		Gair	n (192-255): 248		
	Det	ector Type:	<any type=""></any>		•				
			Store GPS Data						
			Require GPS Data	а					
*	To edit ite	ms on this ta	b, the user must hav	e Devel	loper role	rights			

The instrument analysis settings used are detailed in Figure 2.4:

Figure 2.4 - ExoScan Instrument Settings for Reductil Carton Analysis

Prior to each analysis the ExoScan specular reflectance measuring head (Figure 2.5 a) is referenced using a diffuse 100 micron reference cap (Figure 2.5b), the reflective inner material of which is similar to a carton. Figure 2.5 c) shows the cap in place for reference measurement. Figures 2.6a and b show the ExoScan analyser in referencing and suspect analysis modes.

Figures 2.5a and b - Specular Reflectance Measuring Head and Caps - a) 45° Specular Reflectance Head with no Cap (Suspect Analysis Ready), and b) Specular Head with Cap for Referencing

Figures 2.6a to c - Docked ExoScan Analyser for Lap Top Communication with a Specular Reflectance Measuring Head in a) Referencing Mode, b) Sample Placement, and c) Suspect Analysis Mode post

System suitability was performed daily prior to analysis by first referencing a gold reflective specular mirror, and then scanning a gold specular 100 micron reference with an embedded polystyrene film (Figure 2.6a). A typical results screen shot of the passed system suitability is shown in Figure 2.7:

On AC power	User:	Authent	ticate	
Status: Result/	Method:	LaserFi	reqCalT	est_Reflectance
stem Check Results:				
ame	Value	Mean	Diff	Std Dev
iak1	906.7850	906.9932	0.0082	0.0339
ak2	1028.3180	1027.5183	9.7997	0.0678
ak3	1154.6130	1155.0912	0.4752	0.1864
tak4	1583.1470	1583.8841	0.7571	0.0329
Current Laser Temp. Intercept: 7624.27	3	Calculated La	ser Temp.	Intercept: 7624.33

Figure 2.7 - Example System Suitability Results Page (Scanned Polystyrene)

After meeting system suitability requirements, each carton was scanned. A randomly chosen, laminated, white carton region was carefully placed on the measuring head such that a white lacquered portion of the carton was scanned within a minute, having first taken a specular 100 micron reference spectrum. A total of sixteen suspects and nine control cartons were scanned singly. As there were, at times, multiple cartons of the same batch number, twenty-five suspect spectra were obtained in total.

Suspect and control carton analysis was simply a matter of following the on screen instructions (Figure 2.8):

Figure 2.8 - Example Scanning Instructions Screen

A resulting example library hit screen is shown in Figure 2.9, with details page on Figure 2.10. The results page is interactive, for example, the resulting spectrum for suspect S14 has been compared with the nearest control (C5) in Figure 2.10.

N O St	NicroLab n AC power atus: Roady	Use Methe	er: od:	Authenticate Reductil Carton Library Search					
Note: This Results:	s method is to be used with			Note: The recommended reference c					
Quality	Library	CAS#	Name	ð j					
0.99344	Reductil CF Cartons Set 3 (3)		S14 (CF 431648D 10_2008					
0.98377	Reductil CF Cartons Set 3 (7)		S12 (CF 394068D 01_2009					
0.87870	Reductil Control Cartons (4)		52818D 11_2007						
0.83933	Reductil Control Cartons (8)		C8 65	51498D 02_2011					
0.82919	Reductil Control Cartons (6)		C6 71	13388D					
0.78777	Reductil Control Cartons (7)		C7 56	52428D 06_2010					
0.77741	Reductil CF Cartons Set 3 (0)		S11_	1 CF 250328D 08_2007					
0.77444	Reductil CF Cartons Set 3 (1)		S11_	2 CF 250328D 08_2007					
0.76738	Reductil Control Cartons (9)		72308D 06_2010						
0.76406	Reductil CF Cartons Set 3 (6)		S16 (F 73156 03_2012					

Figure 2.9 - Results from Library Scanning

Figure 2.10 - Interactive Results Display Screenshot

2.4 Results and discussion

2.4.1 Precision

A control carton was analysed six times, removing between each analysis and replacing in a similar location on the carton (see results in Appendix A). The resulting spectra are shown in Figure 7.11 and the results are tabulated in Table 2.4 below:

Replicate	Similarity Result
C1_1	0.9932
C1_2	0.9966
C1_3	0.9983
C1_4	0.9961
C1_5	0.9959
C1_6	0.9961
Mean	0.9960
CV	0.17%

Source Data: Appendix 1a

Figure 2.11 - Control C1 Carton FT-IR Repeatability Reflectance Spectral Stack

2.4.2 Set 1 – Specular Reflectance Spectra

In Figure 2.12 it was seen that the control C1 (top spectrum) was visually different to all suspects, confirming that the carton lacquers used on the suspects is not consistent with the control C1. For example, see reflectance differences around 1500cm^{-1} and 700cm^{-1} due to the lacquers (page 67).

2.4.2.1 Set 1 – Similarity Algorithm Predictions

Table 2.5 shows the success of similarity for challenged suspect and control cartons of Set 1. It was shown that they were correctly identified when scanned as unknowns (green boxes confirm similarity). Control C1 was not a second hit for any suspects, and the closest suspect to control C1 was suspect S7_1 at a similarity of 0.8101.

2.4.2.2 Set 1 – Derivative Similarity Algorithm Predictions

Table 2.6 shows the success of derivative similarity for challenged suspect and control cartons of Set 1. It was shown that eleven out of twelve cartons were correctly identified when scanned as unknowns. However, suspect S4_1 was incorrectly identified as S4_3 (identified by the red shaded box, with a derivative similarity value of 0.9352), which has exactly the same batch/ expiry.

2.4.2.3 Set 1 – Correlation Algorithm Predictions

Table 2.7 shows the success of correlation for challenged suspect and control cartons of Set 1. It was shown that they were correctly identified when scanned as unknowns (green boxes confirm similarity). Control C1 was not a second hit for any suspects, and the closest suspect to control C1 was suspect S7_1 at a correlation of 0.1899.

Reflectance FT-IR Data Set 1: Suspects S1 to S7 and Control C1

Figure 2.12 - Suspects S1 to S7 and Control C1 Carton FT-IR Reflectance Spectral Stack

2.4.2.4 Set 1 – Derivative Correlation Algorithm Predictions

Table 2.8 shows the success of derivative similarity for challenged suspect and control cartons of Set 1. It was shown that eleven out of twelve cartons were correctly identified when scanned as unknowns. However, suspect S4_1 was incorrectly identified as S4_3 (identified by the red shaded box, with a derivative correlation value of 0.0648), which has exactly the same batch/ expiry.

2.4.2.5 Set 1 – Euclidean Algorithm Predictions

Table 2.9 shows the success of Euclidean for challenged suspect and control cartons of Set 1. It was shown that they were correctly identified when scanned as unknowns (green boxes confirm similarity). Control C1 was not a second hit for any suspects, and the closest suspect to control C1 was suspect S7_2 at a Euclidean value of 0.1974.

Note: the following key clarifies the prediction classes:

Carton/	S1	S2	S3	S4_1	S4_2	S4_3	S5	S6_1	S6_2	S7_1	S7_2	C1
Challenge												
S1	0.9922											
S2		0.9868					0.9718				0.8681	
S 3			0.9940									
S4_1				0.9983	0.9331	0.9785						
S4_2	0.8382		0.8628		0.9982							
S4_3				0.9927		0.9848						
S 5		0.9606					0.9804	0.8428				
S6_1								0.9688	0.8949			
S6_2									1.0000			
S7_1										0.9964		0.8101
S7_2										0.8970	0.9900	
C1												1.0000

 Table 2.5 - Reductil Cartons Set 1 Specular Reflectance Similarity Predictions (Source Data: Appendix 2a)

Carton/	S1	S2	S 3	S4_1	S4_2	S4_3	S5	S6_1	S6_2	S7_1	S7_2	C1
Challenge												
S1	0.9417											
S2		0.8372					0.7534					
S 3	0.4374		0.8852									0.1393
S4_1				0.9299	0.8066	0.8474						
S4_2			0.6192		0.9162							
S4_3				0.9352		0.8601		0.5042				
S5		0.7248					0.8300					
S6_1								0.6792	0.5097	0.2392	0.2283	
S6_2									0.9934			
S7_1										0.8386		
S7_2											0.7322	
C1												0.9854

 Table 2.6 - Reductil Cartons Specular Reflectance Set 1 Derivative Similarity Predictions (Source Data: Appendix 2c)

 Table 2.7 - Reductil Cartons Specular Reflectance Set 1 Correlation Predictions Results (Source Data: Appendix 2e)

Carton/	S1	S2	S 3	S4_1	S4_2	S4_3	S 5	S6_1	S6_2	S7_1	S7_2	C1
Challenge												
S1	0.0078											
S2		0.0133					0.0282				0.1320	
S 3			0.0060									
S4_1				0.0017	0.0669	0.0215						
S4_2	0.1618		0.1372		0.0018							
S4_3				0.0073		0.0152						
S5		0.0394					0.0196	0.1572				
S6_1								0.0312	0.1052			
S6_2									0.0000			
S7_1										0.0036		0.1899
S7_2										0.1030	0.0100	
C1												0.0001
Carton/	S1	S2	S3	S4_1	S4_2	S4_3	S5	S6_1	S6_2	S7_1	S7_2	C1
------------	-----------	--------	-----------	--------	--------	--------	-----------	--------	--------	--------	--------	--------
Challenge												
S1	0.0583											
S2		0.1628					0.2466					
S 3	0.5627		0.1148									
S4_1				0.0702	0.1934	0.1526						
S4_2			0.3808		0.0838							
S4_3				0.0648		0.1399		0.4958				
S5		0.2752					0.1700					
S6_1								0.3208	0.4903			
S6_2									0.0066	0.7608	0.7717	
S7_1										0.1614		0.8608
S7_2											0.2678	
C1												0.0146

 Table 2.8 - Reductil Cartons Set 1 Derivative Correlation Set 1 Predictions (Source Data: Appendix 2g)

 Table 2.9 - Reductil Cartons Specular Reflectance Set 1 Euclidean Predictions (Source Data: Appendix 2i)

Carton/	S1	S2	S 3	S4_1	S4_2	S4_3	S5	S6_1	S6_2	S7_1	S7_2	C1
Challenge												
S1	0.0462											
S2		0.0505									0.1601	
S 3			0.0514				0.0735					
S4_1				0.0184	0.1209	0.0657						
S4_2	0.2086		0.1743		0.0201							
S4_3				0.0402		0.0579						
S 5		0.0882					0.0625	0.1941				
S6_1								0.0869	0.1606			
S6_2									0.0043			
S7_1										0.0271		
S7_2										0.1452	0.0430	0.1974
C1												0.0031

2.4.3 Set 2 – Specular Reflectance Spectra

In Figure 2.13 it was shown that the control C2 (top spectrum) was visually different to all suspects, confirming that the carton lacquers used on the suspects were not consistent with the control. For example, see reflectance differences around 1500cm⁻¹ and 700cm⁻¹ due to the lacquers. There was visual similarity between suspects S8 and S9 counterfeits.

Reflectance FT-IR Data Set 2: Suspects S8 to S10 and C2

Figure 2.13 - Suspects S8 to S10 and Control C2 Carton FT-IR Reflectance Spectral Stack

2.4.3.1 Set 2 – Similarity Algorithm Predictions

Table 2.10 shows the success of similarity for challenged control and suspects of Set 2. It was shown that all suspects, apart from S8_1 were correctly identified when scanned as unknowns. Suspect S8_1 was incorrectly identified as S8_4 (having the same batch/expiry) with a correlation of 0.9924.

2.4.3.2 Set 2 – Derivative Similarity Algorithm Predictions

Table 2.11 shows the success of derivative similarity for challenged control and suspects of Set 2. Only four out of the eight cartons were correctly identified – $S8_4$, $S9_2$, S10 and C2. Three out of four S8 carton types were incorrectly identified among themselves. $S9_1$ was incorrectly identified as $S9_2$ – again these share the same Lot and expiry.

2.4.3.3 Set 2 – Correlation Algorithm Predictions

Table 2.12 shows the success of correlation for challenged suspect and control cartons of Set 2. Seven out of eight cartons were correctly identified when scanned as unknowns. Carton S8_1 was incorrectly identified as S8_4 (correlation 0.0076), both share the same Lot/ expiry.

2.4.3.4 Set 2 – Derivative Correlation Algorithm Predictions

Table 2.13 shows the success of derivative correlation for challenged control and suspects of Set 2. Only four out of the eight cartons were correctly identified – $S8_4$, $S9_2$, S10 and C2. Three out of four S8 carton types were incorrectly identified among themselves. $S9_1$ was incorrectly identified as $S9_2$ – again these share the same Lot and expiry.

2.4.3.5 Set 2 – Euclidean Algorithm Predictions

Table 2.14 shows the success of Euclidean for challenged suspect and control cartons of Set 2. Seven out of eight cartons were correctly identified when scanned

as unknowns. Carton S8_1 was incorrectly identified as S8_4 (Euclidean 0.0595), both share the same Lot/ expiry.

Carton/	S8_1	S8_2	S8_3	S8_4	S9_1	S9_2	S10	C2
Challenge								
S8_1	0.9841	0.9940	0.9923	0.9833				
S8_2		0.9963						
S8_3			0.9923					
S8_4	0.9924			0.9943				
S9_1					0.9882	0.9963		
S9_2					0.9835	0.9999		
S10							0.9165	0.7595
C2							0.7559	0.9888

 Table 2.10 - Reductil Cartons Specular Reflectance Set 2 Similarity Predictions

Source Data: Appendix 3a

Table 2.11 - Reductil	Cartons Specular	Reflectance Set 2	2 Derivative Similarity
Predictions	_		

Carton/	S8_1	S8_2	S8_3	S8_4	S9_1	S9_2	S10	C2
Challenge								
S8_1	0.8841	0.9141	0.9038	0.8703				
S8_2		0.9094						
S8_3			0.8392					
S8_4	0.9394			0.9148				
S9_1					0.8952	0.9110		
S9_2					0.8977	0.9859		
S10							0.9165	0.2458
C2							0.7559	0.8964

Source Data: Appendix 3c

Table	2.12	-	Reductil	Cartons	Specular	Reflectance	Set	2	Correlation
Predic	tions								

Carton/	S8_1	S8_2	S8_3	S8_4	S9_1	S9_2	S10	C2
Challenge								
S8_1	0.0159	0.0060	0.0077	0.0167				
S8_2		0.0038						
S8_3			0.0077					
S8_4	0.0076			0.0057				
S9_1					0.0118	0.0037		
S9_2					0.0166	0.0001		
S10							0.0835	0.2406
C2							0.2441	0.0112

Source Data: Appendix 3e

I realetion	6							
Carton/	S8_1	S8_2	S8_3	S8_4	S9_1	S9_2	S10	C2
Challenge								
S8_1	0.1159	0.0860	0.0963	0.1297				
S8_2		0.0906						
S8_3			0.1608					
S8_4	0.0606			0.0853				
S9_1					0.1048	0.0890		
S9_2					0.1023	0.0141		
S10							0.1485	0.7542
C2							0.8253	0.1036

 Table 2.13 - Reductil Cartons Specular Reflectance Set 2 Derivative Correlation

 Predictions

Source Data: Appendix 3g

Carton/ Challenge	S8_1	S8_2	S8_3	S8_4	S9_1	S9_2	S10	C2
S8_1	0.0719	0.0467	0.0495	0.0716				
S8_2		0.0338						
S8_3			0.0456					
S8_4	0.0595			0.0418				
S9_1					0.0631	0.0229		
S9_2					0.0691	0.0034		
S10							0.1127	0.2275
C2							0.2298	0.0486

 Table 2.14 - Reductil Cartons Specular Reflectance Set 2 Euclidean Predictions

Source Data: Appendix 3i

2.4.4 Set 3 – Specular Reflectance Spectra

In Figure 2.14 it was seen that the control C6 to C6 were extremely visually similar, as were C3 and C4. Suspects S11_1 and S11_2 were also similar.

Reflectance FT-IR Data Set 3: Suspects S11 to S16 and C4 to C9

Figure 2.14 - Suspects S11 to S16 and Control C3 to C9 Carton FT-IR Reflectance Spectral Stack

2.4.4.1 Set 3 – Similarity Algorithm Predictions

Table 2.15 shows the success of similarity for challenged cartons for the suspects of Set 3. All fourteen cartons (all suspects and controls) were correctly identified.

2.4.4.2 Set 3 – Derivative Similarity Algorithm Predictions

Table 2.16 shows the success of similarity for challenged unknowns for the suspects of Set 3. Twelve out of the fourteen cartons were correctly identified. S11_1 was incorrectly identified as S11_2 (same lot/expiry) with a derivative similarity of 0.9250, and control C9 was incorrectly identified as control C7, with a derivative similarity of 0.9409. C9 and C7 do not share a common lot number.

2.4.4.3 Set 3 – Correlation Algorithm Predictions

Table 2.17 shows the success of correlation for challenged cartons for the suspects of Set 3. A total of thirteen out of fourteen cartons were correctly identified. S12 was incorrectly identified as S14 with a perfect correlation of 0.0000.

2.4.4.3 Set 3 – Derivative Correlation Algorithm Predictions

Table 2.18 shows the success of derivative correlation for challenged cartons for the suspects of Set 3. A total of thirteen out of fourteen cartons were correctly identified. S11_1 was incorrectly identified as S11_2 with a derivative correlation of 0.0900 - both these cartons share the same lot/ expiry.

2.4.3.3 Set 3 – Euclidean Algorithm Predictions

Table 2.19 shows the success of the Euclidean algorithm for challenged unknowns for the suspects of Set 3. All fourteen cartons were identified correctly.

Carton/	S11_1	S11_2	S12	S13	S14	S15	S16	C3	C4	C5	C6	C7	C8	C9
Challenge														
S11_1	0.9953	0.9861												
S11_2	0.9945	0.9952												
S12			1.0000		0.9834									
S13				0.9938										
S14			0.9863		0.9934									
S15						0.9898		0.8664						
S16							0.9943			0.8809				
C3								0.9659						
C4						0.9001			0.9984					
C5							0.8734			0.9976				
C6											1.0000		0.9732	
C7				0.7531								0.9988		0.9955
C8									0.9131		0.9730		0.9916	
C 9												0.9893		0.9959

Table 2.15 - Reductil Cartons Specular Reflectance Set 3 Similarity Predictions

Data Source: Appendix 4a

Carton/	S11_1	S11_2	S12	S13	S14	S15	S16	C3	C4	C5	C6	C7	C8	C9
Challenge														
S11_1	0.9100	0.8505					0.5893							
S11_2	0.9250	0.9029												
S12			0.9932		0.8727									
S13				0.9247										
S14			0.8521	0.2959	0.9256									
S15						0.9110		0.1921						
S16							0.9463							
C3								0.8296						
C4						0.3972			0.8222					
C5									0.3376	0.9359				
C6											0.9922		0.6735	
C7												0.9599		0.9409
C8										0.4871	0.6447		0.9041	
C9												0.9098		0.9319

 Table 2.16 - Reductil Cartons Specular Reflectance Set 3 Derivative Similarity Predictions

Data Source: Appendix 4c

Carton/	S11_1	S11_2	S12	S13	S14	S15	S16	C3	C4	C5	C6	C7	C8	C9
Challenge														
S11_1	0.0047	0.0139												
S11_2	0.0055	0.00482												
S12			0.0137		0.0162									
S13				0.00616										
S14			0.0000		0.0066					0.1191				
S15						0.0102		0.1336						
S16							0.0057							
C3							0.1266	0.0341						
C4									0.0016					
C5						0.0999			0.0869	0.0024				
C6											0.0000		0.0268	
C7				0.24691								0.0012		0.0041
C8											0.0270		0.0084	
C9												0.0107		0.0045

Table 2.17 - Reductil Cartons Specular Reflectance Set 3 Correlation Predictions

Data Source: Appendix 4e

Carton/	S11_1	S11_2	S12	S13	S14	S15	S16	C3	C4	C5	C6	C7	C8	C9
Challenge														
S11_1	0.0750	0.1495												
S11_2	0.0900	0.0971												
S12			0.0068		0.1273									
S13				0.0753										
S14			0.1479	0.7041	0.0744					0.5129				
S15						0.0890		0.8079						
S16							0.0537							
C3							0.4107	0.1704						
C4									0.1778					
C5						0.6219			0.6624	0.0641				
C6											0.0078		0.3265	
C7												0.0401		0.0681
C 8											0.3553		0.0959	
C9												0.0902		0.0591

Table 2.18 - Reductil Cartons Specular Reflectance Set 3 Derivative Correlation Predictions

Data Source: Appendix 4g

Carton/	S11_1	S11_2	S12	S13	S14	S15	S16	C3	C4	C5	C6	C7	C8	C9
Challenge														
S11_1	0.0335	0.0574												
S11_2	0.0399	0.0393												
S12			0.0030		0.0513									
S13				0.0360										
S14			0.0459		0.0324									
S15						0.0455		0.1990						
S16							0.0347			0.1433				
C3								0.0789						
C4						0.1379			0.0178					
C5							0.1405			0.0196				
C6											0.0020		0.0721	
C7				0.2355								0.0166		0.0311
C8									0.1308		0.0732		0.0407	
C9												0.0495		0.0302

Table 2.19 - Reductil Cartons Specular Reflectance Set 3 Euclidean Predictions

Data Source: Appendix 4i

CHAPTER 3 – THE ANALYSIS OF COUNTERFEIT SLIMMING PILL CARTONS USING ATTENUATED TOTAL REFLECTANCE FOURIER TRANSFORM INFRA-RED SPECTROSOCPY

3.1 Introduction

This Chapter describes the analysis of counterfeit and authentic Reductil® cartons using ATR FT-IR, and comparing the outcomes of the identification algorithms available.

3.2 Background

The same sample sets that were analysed using specular reflectance (Chapter 2) were scanned using ATR FT-IR to make sets 1, 2, and 3 libraries. The cartons were then scanned one more time and challenged per identification algorithm.

3.3 Results and discussion

3.3.1 Precision

A control carton was analysed six times, removing between each analysis and replacing in a similar location on the carton (see results in Appendix A). The resulting spectra are shown in Figure 3.1 and the similarity predicted results are tabulated in Table 3.1.

Replicate	Similarity
C1_1	0.9975
C1_2	0.9971
C1_3	0.9978
C1_4	0.9961
C1_5	0.9969
C1_6	0.9987
Mean	0.9974
CV	0.08%

Table 3.1 - Reductil Control Carton Repeatability

Source Data: Appendix 1b

Figures 3.1a and b - Control C1 Carton FT-IR Repeatability ATR Spectral Overlays (a = full range, six spectra, and b = focus on precision in fingerprint region).

Therefore the precision of analysis using ATR was acceptable for any future analytical methodology. This was not surprising as ATR analysis only penetrates a shallow portion of the carton lacquer.

3.3.2 Set 1 – ATR Spectra

In Figure 3.2 it was seen that the control C1 (bottom spectrum) was visually different to all suspects, confirming that the carton lacquers used on the suspects is not consistent with the control C1. For example, see spectral differences around 3700 cm⁻¹, 1500 cm⁻¹ and also 1150 cm⁻¹. It was shown that no suspect carton lacquer was visually similar to the control C1 carton lacquer. S7_1 and S7_2 were visually similar to each other. Also further sub-groups S4_1, S4_2 and S4_3 were spectrally similar to each other, as were S6_1 and S6_2.

FT-IR ATR Data Set 1: Suspects S1 to S7 and Control C1

Figure 3.2 - Suspects S1 to S7 and Control C1 Carton FT-IR ATR Spectral Stack

3.3.2.1 Set 1 – Similarity Algorithm Predictions

Table 3.2 shows the success of similarity for challenged suspect and control cartons of Set 1. It was shown that eight out of twelve cartons were correctly identified. Suspect S2 was incorrectly identified as S5, S4_3 was incorrectly identified as S4_1 (same lot/ expiry), S6_2 was incorrectly identified as S6_1 (same lot/ expiry) and finally S7_2 was incorrectly identified as S7_1 (same lot/ expiry).

3.3.2.2 Set 1 – Derivative Similarity Algorithm Predictions

Table 3.3 shows the success of derivative similarity for challenged suspect and control cartons of Set 1. It was shown that nine out of twelve cartons were correctly identified. Suspect S2 was incorrectly identified as S5, S4_1 was incorrectly identified as S4_3 (same lot/ expiry), S4_2 was incorrectly identified as S4_3 (same lot/ expiry) and finally S7 was incorrectly identified as S7_1 (same lot/ expiry).

3.3.2.3 Set 1 – Correlation Algorithm Predictions

Table 3.4 shows the success of correlation for challenged suspect and control cartons of Set 1. It was shown that nine out of twelve cartons were correctly identified. Suspect S2 was incorrectly identified as S5, S6_2 was incorrectly identified as S6_1 (same lot/ expiry), and finally S7_2 was incorrectly identified as S7_1 (same lot/ expiry).

3.3.2.4 Set 1 – Derivative Correlation Algorithm Predictions

Table 3.5 shows the success of derivative similarity for challenged suspect and control cartons of Set 1. It was shown that only seven out of twelve cartons were correctly identified. Suspect S2 was incorrectly identified as S5, S4_1 was incorrectly identified as S4_3 (same lot/ expiry), S4_2 was incorrectly identified as S4_3 (same lot/ expiry), S4_2 was incorrectly identified as S4_3 (same lot/ expiry), S4_2 was incorrectly identified as S4_3 (same lot/ expiry), S4_2 was incorrectly identified as S4_3 (same lot/ expiry) and finally S7_2 was incorrectly identified as S7_1 (same lot/ expiry).

3.3.2.5 Set 1 – Euclidean Algorithm Predictions

Table 3.6 shows the success of Euclidean for challenged suspect and control cartons of Set 1. It was shown that only seven out of twelve cartons were correctly Suspect S2 was incorrectly identified as S5, S4_2 was incorrectly identified. identified as S4_1 (same lot/ expiry), S4_3 was incorrectly identified as S4_1 (same lot/ expiry), S6 2 was incorrectly identified as S6 1 (same lot/ expiry) and finally S7_2 was incorrectly identified as S7_1 (same lot/ expiry).

Carton/	S1	S2	S3	S4_1	S4_2	S4_3	S5	S6_1	S6_2	S7_1	S7_2	C1
Challenge												
S1	0.9997											
S2		0.9900					0.9821					
S 3			0.9997									
S4_1				0.9993	0.9994	0.9994						
S4_2				0.9993	0.9994							
S4_3			0.9888			0.9991						
S5		0.9959					0.9969					
S6_1								0.9952	0.9942			
S6_2								0.9265	0.9787			0.8618
S7_1										0.9978	0.9978	
S7_2	0.9275									0.9952	0.9952	
C1												0.9995

 Table 3.2 - Reductil Cartons Set 1 ATR Similarity Predictions Results (Source Data: Appendix 2b)

Carton/	S1	S2	S 3	S4_1	S4_2	S4_3	S 5	S6_1	S6_2	S7_1	S7_2	C1
Challenge												
S1	0.9880											
S2		0.9450					0.9311					
S 3	0.8983		0.9900									
S4_1				0.9855		0.9855						
S4_2					0.9852							
S4_3			0.9783	0.9870	0.9874	0.9874						
S 5		0.9834					0.9789					
S6_1								0.9731				0.2728
S6_2								0.8330	0.9713			
S7_1									0.9182	0.9804		
S7_2										0.9736	0.9804	
C1											0.9736	0.9774

Table 3.3 - Reductil Cartons Set 1 ATR Derivative Similarity Predictions Results (Source Data: Appendix 2d)

Carton/	S1	S2	S 3	S4_1	S4_2	S4_3	S5	S6_1	S6_2	S7_1	S7_2	C1
Challenge												
S1	0.0003											
S2		0.0098					0.0179					
S 3			0.0003									
S4_1				0.0007								
S4_2				0.0007	0.0006	0.0006						
S4_3			0.0112		0.0006	0.0006						
S5		0.0041					0.0031					
S6_1								0.0049	0.0058			
S6_2								0.0735	0.0212			0.1382
S7_1										0.0022	0.0022	
S7_2	0.0726									0.0048	0.0048	
C1												0.0005

 Table 3.4 - Reductil Cartons Set 1 ATR Correlation Predictions Results (Source Data: Appendix 2f)

Carton/	S1	S2	S3	S4_1	S4_2	S4_3	S5	S6_1	S6_2	S7_1	S7_2	C1
Challenge												
S1	0.0120											
S2		0.0550					0.0689					
S 3	0.1017		0.0100									
S4_1				0.0145		0.0145						
S4_2			0.0217		0.0148							
S4_3				0.0130	0.0126	0.0126						
S5		0.0166					0.0211					
S6_1								0.0269	0.0287			0.7272
S6_2								0.1670	0.0818	0.0264		
S7_1										0.0198	0.0196	
S7_2											0.0264	
C1												0.0226

 Table 3.5 - Reductil Cartons Set 1 ATR Derivative Correlation Predictions Results (Source Data: Appendix 2h)

Carton/	S1	S2	S 3	S4_1	S4_2	S4_3	S 5	S6_1	S6_2	S7_1	S7_2	C1
Challenge												
S1	0.0233											
S2		0.0764					0.1032					
S3			0.0191									
S4_1				0.0243	0.0239	0.0239						
S4_2				0.0243	0.0240							
S4_3			0.0927			0.0333						
S5		0.0510					0.0437					
S6_1								0.0583	0.0681			0.3157
S6_2								0.2276	0.1228			
S7_1										0.0373	0.0373	
S7_2	0.2482									0.0554	0.0554	
C1												0.0180

 Table 3.6 - Reductil Cartons Set 1 ATR Euclidean Predictions Results (Source Data: Appendix 2j)

3.3.3 Set 2 – ATR Spectra

In Figure 3.2 it was shown that the control C2 (bottom spectrum) was visually different to all suspects, confirming that the carton lacquers used on the suspects were not consistent with the control. For example, see reflectance differences around 3700cm⁻¹, 1300cm⁻¹, and 700cm⁻¹ due to the lacquers. Suspect S10 was the most visually similar to control C2 carton lacquer, however it had extra peaks at 1000cm⁻¹ not present in C2.

Figure 3.2 - Suspects S8 to S10 and Control C2 Carton FT-IR ATR Spectral Stack

3.3.3.1 Set 2 – Similarity Algorithm Predictions

Table 3.6 shows the success of similarity for challenged control and suspects of Set 2. It was shown that six out of ten cartons were correctly identified. Suspects S8_2 and S8_3 were both incorrectly identified as S8_1 (having the same batch/expiry).

3.3.3.2 Set 2 – Derivative Similarity Algorithm Predictions

Table 3.7 shows the success of derivative similarity for challenged control and suspects of Set 2. Six out of the eight cartons were correctly identified. S8_1 was incorrectly identified as S8_2 (same lot and expiry), and S8_3 was incorrectly identified as S8_4.

3.3.3.3 Set 2 – Correlation Algorithm Predictions

Table 3.8 shows the success of correlation for challenged suspect and control cartons of Set 2. It was shown that six out of ten cartons were correctly identified. As per Similarity outcomes, Suspects S8_2 and S8_3 were both incorrectly identified as S8_1 (having the same batch/expiry) using the correlation algorithm.

3.3.3.4 Set 2 – Derivative Correlation Algorithm Predictions

Table 3.9 shows the success of derivative correlation for challenged control and suspects of Set 2. Only four out of the eight cartons were correctly identified – $S8_2$, $S9_2$, S10 and C2. Three out of four S8 carton types were incorrectly identified among their same lot/expiry populations. $S9_1$ was incorrectly identified as $S9_2$, again these share the same lot and expiry.

3.3.3.5 Set 2 – Euclidean Algorithm Predictions

Table 3.10 shows the success of Euclidean for challenged suspect and control cartons of Set 2. Six out of eight cartons were correctly identified when scanned as unknowns. Cartons S8_2 and S8_3 were both incorrectly identified as S8_1 - all share the same lot/ expiry.

Carton/	S8_1	S8_2	S8_3	S8_4	S9_1	S9_2	S10	C2
Challenge								
S8_1	0.9989	0.9987	0.9992					
S8_2	0.9984	0.9982		0.9992				
S8_3			0.9978				0.8366	
S8_4				0.9993				
S9_1					0.9981	0.9949		
S9_2					0.9976	0.9976		
S10							0.9986	0.6787
C2								0.9996

Table 3.6 - Reductil Cartons ATR Set 2 Similarity Predictions

Source Data: Appendix 3b

Carton/	S8_1	S8_2	S8_3	S8_4	S9_1	S9_2	S10	C2
Challenge								
S8_1	0.9849							
S8_2	0.9850	0.9863		0.9873				
S8_3			0.9865					
S8_4		0.9853	0.9867	0.9873	0.9807		0.5261	
S9_1					0.9815	0.9756		
S9_2						0.9805		
S10							0.9862	0.3878
C2								0.9893

Table 3.7 - Reductil Cartons ATR Set 2 Derivative Similarity Predictions

Source Data: Appendix 3d

Table 3.8 - Reductil Cartons ATR Set 2 Correlation Predictions

Carton/ Challenge	S8_1	S8_2	S8_3	S8_4	S9_1	S9_2	S10	C2
S8_1	0.0011	0.0013	0.0008					
S8_2	0.0016	0.0018		0.0008				
S8_3			0.0014				0.1634	
S8_4				0.0007				
S9_1					0.0020	0.0051		
S9_2					0.0024	0.0024		
S10							0.0014	0.3213
C2								0.0004

Source Data: Appendix 3f

Carton/	S8_1	S8_2	S8_3	S8_4	S9_1	S9_2	S10	C2
Challenge								
S8_1	0.0150							
S8_2	0.0151	0.0137		0.0127				
S8_3			0.0135					
S8_4		0.0147	0.0133	0.0127			0.4740	
S9_1					0.0193	0.0244		
S9_2					0.0185	0.0195		
S10							0.0139	0.6180
C2								0.0167

Table 3.9 - Reductil Cartons ATR Set 2 Derivative Correlation Predictions

Source Data: Appendix 3h

Carton/	S8_1	S8_2	S8_3	S8_4	S9_1	S9_2	S10	C2
Challenge								
S8_1	0.0287	0.0324	0.0247	0.0311				
S8_2	0.0383	0.0436						
S8_3			0.0330				0.3654	
S8_4				0.0227				
S9_1					0.0403			
S9_2					0.0505	0.0464		
S10						0.0633	0.0395	0.4897
C2								0.0191

Table 3.10 - Reductil Cartons ATR Set 2 Euclidean Algorithm Predictions

Source Data: Appendix 3j

3.3.4 Set 3 – ATR Spectra

In Figure 3.3 it was seen that the control C5 to C9 were visually similar. Suspects S11_1 and S11_2 were also similar to each other.

3.3.4.1 Set 3 – Similarity Algorithm Predictions

Table 3.11 shows the success of similarity for challenged cartons for the suspects of Set 3. Thirteen out of fourteen cartons were successfully identified. Suspect carton S11_1 was incorrectly identified as $S11_2 - i.e.$ another carton with the same lot / expiry.

Figure 3.3 - Suspects S11 to S16 and Control C3 to C9 Carton ATR Spectral Stack

3.3.4.1 Set 3 – Similarity Algorithm Predictions

Table 3.11 shows the success of similarity for challenged cartons for the suspects of Set 3. Thirteen out of fourteen cartons were successfully identified. Suspect carton S11_1 was incorrectly identified as $S11_2 - i.e.$ another carton with the same lot / expiry.

3.3.4.2 Set 3 – Derivative Similarity Algorithm Predictions

Table 3.12 shows the success of derivative similarity for challenged unknowns for the suspects of Set 3. Thirteen out of fourteen cartons were successfully identified. Suspect carton S11_1 was incorrectly identified as $S11_2 - i.e.$ another carton with the same lot / expiry.

3.3.4.3 Set 3 – Correlation Algorithm Predictions

Table 3.13 shows the success of correlation for challenged cartons for the suspects of Set 3. Twelve out of fourteen cartons were correctly identified. S12 was incorrectly identified as S14. Suspect S11_1 was incorrectly identified as S11_2 (same lot / expiry).

3.3.4.4 Set 3 – Derivative Correlation Algorithm Predictions

Table 3.14 shows the success of derivative correlation for challenged cartons for the suspects of Set 3. Twelve out of fourteen cartons were correctly identified. S12 was incorrectly identified as S14. Suspect S11_1 was incorrectly identified as S11_2 (same lot / expiry).

3.3.4.5 Set 3 – Euclidean Algorithm Predictions

Table 3.15 shows the success of the Euclidean algorithm for challenged unknowns for the suspects of Set 3. Twelve out of fourteen cartons were correctly identified. S12 was incorrectly identified as S14. Suspect S11_1 was incorrectly identified as S11_2 (same lot / expiry).

Carton/	S11_1	S11_2	S12	S13	S14	S15	S16	C3	C4	C5	C6	C7	C8	C9
Challenge														
S11_1	0.9989	0.9953												
S11_2	0.9998	0.9965												
S12			1.0000		0.9889									
S13				0.9938										
S14			0.9863		0.9964					0.9236				
S15						0.9959								
S16							0.9965	0.9236						
C3							0.9217	0.9993						
C4									0.9965		0.9964			
C5						0.7967			0.8432	0.9923				
C6											0.9977		0.9967	
C7				0.7531								0.9950		0.9952
C8													0.9988	
C9												0.9905		0.9982

Table 3.11 - Reductil Cartons ATR Set 3 Similarity Predictions Results

Data Source: Appendix 4b

Carton/	S11_1	S11_2	S12	S13	S14	S15	S16	C3	C4	C5	C6	C7	C8	C9
Challenge														
S11_1	0.9989	0.9953												
S11_2	0.9998	0.9965		0.6774				0.7496						
S12			1.0000		0.9899									
S13				0.9884										
S14			0.9863		0.9964									
S15						0.9959								
S16							0.9965							
C3							0.9217	0.9778						
C4									0.9744	0.8543	0.9643			
C5						0.7967			0.8208	0.9749				
C6											0.9814		0.9760	
C7												0.9708		0.9606
C8													0.9849	
С9												0.9380		0.9828

Table 3.12 - Reductil Cartons ATR Set 3 Derivative Similarity Predictions Results

Data Source: Appendix 4d
Carton/	S11_1	S11_2	S12	S13	S14	S15	S16	C3	C4	C5	C6	C7	C8	C9
Challenge														
S11_1	0.0114	0.0047												
S11_2	0.0002	0.0036												
S12			0.0061		0.0102									
S13				0.0005										
S14			0.0039	0.1346	0.0036					0.0764				
S15						0.0042								
S16							0.0035	0.0968						
C3							0.0783	0.0007						
C4									0.0035					
C5						0.2033			0.1568	0.0077				
C6											0.0037		0.0033	
C7												0.0050		0.0048
C 8											0.0235		0.0012	
C9												0.0095		0.0018

Table 3.13 - Reductil Cartons ATR Set 3 Correlation Predictions Results

Data Source: Appendix 4f

Carton/	S11_1	S11_2	S12	S13	S14	S15	S16	C3	C4	C5	C6	C7	C8	C9
Challenge														
S11_1	0.0011	0.0047												
S11_2	0.0002	0.0036						0.2504						
S12			0.0061	0.3226	0.0102									
S13				0.0116										
S14			0.0039		0.0036									
S15						0.0042								
S16							0.0035							
C3							0.0783	0.0223						
C4									0.0256	0.1457	0.0357			
C5						0.2033			0.1792	0.0251				
C6											0.0186		0.0240	
C7												0.0292		0.0394
C8													0.0151	
С9												0.0620		0.0172

Table 3.14 - Reductil Cartons Set 3 ATR Derivative Correlation Predictions

Data Source: Appendix 4h

Carton/	S11_1	S11_2	S12	S13	S14	S15	S16	C3	C4	C5	C6	C7	C8	C9
Challenge														
S11_1	0.0301	0.0603												
S11_2	0.0152	0.0494												
S12			0.0709		0.0849									
S13				0.0278										
S14			0.0579	0.3122	0.0527					0.2357				
S15						0.0557								
S16							0.0494	0.2612						
C3							0.2355	0.0253						
C4									0.0477		0.0469			
C5						0.3589			0.3208	0.0762				
C6											0.0381		0.0444	
C7												0.0579		0.0578
C8													0.0280	
C9												0.0798		0.0385

Table 3.15 - Reductil Cartons Set 3 Euclidean Predictions Results

Data Source: Appendix 4j

Set	Similarity	Derivative	Correlation	Derivative	Euclidean
		Similarity		Correlation	
1	8/12	9/12	9/12	7/12	7/12
2	6/8	6/8	6/8	4/8	6/8
3	13/14	13/14	12/14	12/14	12/14

 Table 3.16 - Summary of ATR Pass Predictions

CHAPTER 4 – CONCLUSIONS / RECOMMENDATIONS

Tables 4.1 and 4.2 summarize the predictions resulting from each technology and algorithm:

Technique	Set	Similarity	Derivative	Correlation	Derivative	Euclidean
			Similarity		Correlation	
Reflectance	1	12/12	11/12	12/12	11/12	12/12
ATR	1	8/12	9/12	9/12	7/12	7/12
Reflectance	2	7/8	4/8	7/8	4/8	7/8
ATR	2	6/8	6/8	6/8	4/8	6/8
Reflectance	3	14/14	12/14	13/14	13/14	14/14
ATR	3	13/14	13/14	12/14	12/14	12/14

 Table 4.1 - Comparison of ATR versus Specular Reflectance Pass Predictions

 Table 4.2 - Comparison of Total ATR and Total Specular Reflectance Pass

 Predictions

Technique	Similarity	Derivative Similarity	Correlation	Derivative Correlation	Euclidean
Reflectance	33/34	27/34	32/34	28/34	33/34
ATR	27/34	28/34	27/34	23/34	25/34

Overall, specular reflectance using either Similarity or Euclidean algorithms gave the most confident predictions for carton authentication, each achieving a total of 33 out of 34 predictions (i.e. a 97.1% confidence).

Appendixes 5a) to 5c) show the statistical comparisons between techniques using one-way analysis of variance (ANOVA - a statistical method in which the variation in a set of observations is divided into distinct components), confidence intervals (CI) and t-tests (95% confidence, for sets 1, 2 and 3 similarity, derivative similarity, and Euclidean outcomes (as these data treatments were more successful than correlation and derivative correlation outcomes). It was shown that the techniques

were similar, apart from those combined with derivative similarity, which gave results significantly different between ATR and specular reflectance for Sets 1 and 2. ATR and specular reflectance results did not statistically differ for similarity data, for all three sets. Also, ATR and specular reflectance results did not statistically differ for Euclidean data, for all three sets. In both FT-IR techniques the Similarity algorithm had the highest confidence of authentication/counterfeit detection.

Appendixes 6a) to c) show the statistical comparisons for within techniques algorithms using one-way ANOVA. There was no statistical difference within the specular reflectance sample sets 1-3 except the Derivative ATR data which was statistically different. Since ATR data suggests differences within sample sets and specular reflectance does not, this calls into question the validity of ATR determinations, and again strengthens the justification for the use of specular reflectance as the preferred technique.

The final statistical comparison compared all results, from all techniques and algorithms (for example, all similarity results were pooled from both techniques) and analysed by unstacked ANOVA in Appendix 7. For Euclidean data, the reciprocal value was used to normalise the data before analysis. Similarity ATR and specular reflectance results show the most accurate counterfeit carton detection. This would appear to be the most valid algorithm. Specular reflectance mode of analysis was more capable of confirming the presence of counterfeit packaging compared with ATR. *Similarity* and *Euclidean* were found to be the most reliable identification algorithms in specular reflectance mode, whereas correlation was most suitable for ATR analysis.

Agilent has designed a specular reflectance sample interface for use with the handheld 4100 ExoScan FTIR spectrometer. The 4100 ExoScan's interface uses a lens design that illuminates the sample with normal incidents, then collects the beam collinear. Specular reflectance is a valuable FT-IR sampling technique for the analysis of lacquered thin films on reflective substrates, for the analysis of relatively thick films on reflective materials and for analysis of bulk materials where no sample preparation is preferred.

ATR is a surface measurement, and a single reflection ATR sampling technique is ideal for the identification of thick or highly-absorbing samples where small IR pathlengths are required. In many ways, a reflectance interface may be the most versatile and easiest to use of the sampling technologies for a handheld FT-IR.

Whereas ATR requires good contact with a sample, the large depth of field enables diffuse reflectance to yield good spectra without touching the sample. Obtaining good contact with ATR for powdered samples is easy when one has a lab system with a conventional pressure device that ensures good contact - not as easy when you have a handheld system and may have inconsistent pressure.

The precision of a reanalysed control carton removing and then presenting it to the instrument six times, was excellent for both ATR and specular reflectance. However it is anticipated that this precision would deteriorate for counterfeit cartons where the uniformity of lacquer is not as controlled as a good manufacturing process. Therefore the prediction algorithm chosen would be irrelevant as at some point the prediction would be different across the same carton.

Analysis of drug products in the field using rapid techniques requires a 99.9% pass rate. This is because the risk of false outcomes can be severe for patient safety downstream (i.e. a counterfeit batch may get into the legal supply chain or could be purchased off the internet at risk). For deployment of the specular reflectance technology in the field, a 99% pass rate could be acceptable for screening of packaging materials. This rate is acceptable for screening packaging where pressure is on customs at borders with a multitude of other works to risk assess.

Improvements to the current set up would be a smaller and lighter instrument with a long battery lifetime. Agilent technologies now market such an instrument to cope - The 4300 Handheld FTIR is lightweight, perfectly balanced and ergonomically optimized to ensure that users get superior results. The deuterated triglycine sulfate (DTGS) detector version of the 4300 is designed for frequent field deployment and at-site analysis of a wide range of materials. It is finding use in many different industrial applications/markets including aerospace, automotive, coating and paints, polymers, composites, agriculture and art conservation.

Recommendations for further works should include the proof the robustness of the technique to identify other packaging materials, including the carton and lacquer types used in the pharmaceutical industry. A first recommendation is to truly prove if lacquers are specific to artwork code, and then make corresponding libraries for identification based on these codes. Predictions could be improved by narrowing frequency range of the identification algorithm to the highest specificity to the lacquer.

REFERENCES

- Department of essential drugs and other medicines. Counterfeit drugs: *Guidelines for the development of measures to combat counterfeit drugs*, Technical Report, World Health Organisation, Geneva, 1999, <u>http://www.who.int/medicines/regulation/ssffc/definitions/en/</u> accessed data 01 November 2016.
- 2. R. Cockburn, P. N. Newton, E. K. Agyarko, D. Akunylli, and N. J. White, *The global threat of counterfeit drugs: Why industry and governments must communicate the dangers*. PLoS Med., 2005, **2**, e100.
- 3. healthresearchfunding.org, 20 Shocking Counterfeit Drugs Statistics, http://healthresearchfunding.org/20-shocking-counterfeit-drugs-statistics/
- World Health Organisation, Counterfeit Medicinal Products: Report to the Secretariat, Document A63/23. WHO, Geneva. http://apps.who.int./gb/ebwha/pdf_files/WHA63/A63_23-en.pdf. accessed data 01 November 2016.
- European Alliance for Access to Safe Medicines (EAASM), the Counterfeiting Superhighway, 2008, http://www.eaasm.eu/cache/downloads/ch1vegnami0oow0o0c08kg4kc/EAAS M%20briefing%20leaflet%20July%202010.pdf.
- 6. WHO, http://www.who.int/dg/speeches/2012/medical_products_20121119/en/.
- 7. WHO, <u>http://www.who.int/mediacentre/factsheets/fs275/en/</u>, 2016.
- WHO Fact Sheet, http://patto.unite.it/pluginfile.php/17528/mod_resource/content/1/gruppo%203. pdf, May 2012.
- MRHA recalls counterfeit Reductil, MNT, UKhttp://www.medicalnewstoday.com/releases/12841.php, 3 September 2004.
- FDA Counterfeits Awareness http://www.fda.gov/Drugs/ResourcesForYou/Consumers/BuyingUsingMedicin eSafely/CounterfeitMedicine/default.htm.
- 11. F. W. Herschel, Philos. Trans. R. Soc. London, 1800, 90, 49, 255–283.
- American Society for Testing and Materials, Standard Terminology Relating to Molecular Spectroscopy, E131-00a, ASTM, Philadelphia, PA, 2000.

REFERENCES (Continued)

- 13. D. Custers, T. Cauwenbergh, J.L., Bothy, P. Courselle, J.O. De Beer, S. Apers, and I. E. Deconinck, *J. Pharm. and Biomed. Anal.*, 2015, **112**, 181–189.
- S. E. Andria, M. Fulcher, M. R. Witkowski, and S. Frank Platek, *Am. Pharm. Review*, http://www.americanpharmaceuticalreview.com/Featured-Articles/111769-The-Use-of-SEM-EDS-and-FT-IR-Analyses-in-the-Identification-of-Counterfeit-Pharmaceutical-Packaging/, 2012.
- A. L. Rodomonte, M. C. Gaudiano, E. Antoniella, D. Lucente, V. Crusco, M. Bartolomei, P. Bertocchi, L. Manna, L. Valvo, F. Alhaique, and N. Muleri, *J. Pharm. and Biomed. Anal.*, 2010, 53 (2), 215–220
- N. Broad and A. Bates, Whitepaper: Multispectral imaging for brand protection, Analytik Ltd., 2012, www.analytik.co.uk/Whitepaper-Multispectral_imaging_for_brand_protection_v.2, 2012
- 17. D. W. T. Griffiths, Appl. Spectrosc., 1996, 50, 59.
- P. R. Griffiths and J. A. Haseth, *Fourier Transform Infrared Spectroscopy*, Wiley Interscience, Hoboken, NJ, USA, 2007.
- R. G. J. Miller and B. C. Stace, *Laboratory Methods in Infrared Spectroscopy*, Heyden, London, 1972.
- M. T. Heideman, D. H. Johnson and C. S. Burrus, *Gauss and the history of the fast Fourier transform*, Archive for History of Exact Sciences, 1985, 34 (3), 265–277.
- T. Hirschfeld, *Fellgett's Advantage in UV-VIS Multiplex Spectroscopy*, Appl. Spectrosc., 1976, **30** (1), 68-69.
- 22. M. R. Descour, Throughput advantage in imaging Fourier-transform spectrometers, Imaging Spectrometry II, 1996, 285, doi:10.1117/12.258075
- 23. S. Wartewig, *IR and Raman Spectroscopy: Fundamental Processing*, Wiley, Germany, 2005.
- 24. J. W. Cooley and J. W. Tukey, *An algorithm for machine calculation of complex Fourier series*, Math. Comp., 1965, **19**, 297–301.
- N.J. Harrick., *Internal Reflection Spectroscopy*, John Wiley & Sons Inc., 1967, 342. ISBN 978-0-470-35250-2.
- 26. <u>http://www.nuance.northwestern.edu/keck-ii/keck-ii-instruments/FT-IR-spectroscopy/index.html</u>

REFERENCES (Continued)

- F. M. Mirabella, *Internal Reflection Spectroscopy*. New York: Marcel Dekker, 1993, 15, 10–13.
- M. J. Adams, *Chemometrics in Analytical Spectroscopy*, The Royal Society of Chemistry, Cambridge, UK, 1995.
- 29. H. Mark, Adv. Near Infrared Meas., 1993, 1, 55–68.
- 30. K. H. Norris and P. C. Williams, *Cereal Chem.*, 1984, **61**, 158–165.
- B. G. Osbourne and T. Fearn, *Near Infrared Spectroscopy in Food Analysis*, Longman, 1986.
- 32. P. Williams and K. Norris, *Near-Infrared Technology in the Agricultural and Food Industries*, American Assoc. Cereal Chemists Inc., St. Paul, 1987.
- 33. W. F. McClure, *NIRNews*, 1994, **5**, 14.
- 34. S. Morimoto, V. Scholar and W. F. McClure, NIRNews, 1994, 10, 10–12.
- 35. A. Savitsky and M. J. E. Golay, Anal. Chem., 1964, 36, 1627–1629.
- 36. J. Steiner, Y. Termonia and J. Deltour, Anal. Chem., 1972, 44, 1906–1909.

RESEARCH PUBLICATIONS

Full Papers

Alcalà M, Blanco M, Moyano D, Broad N W, O'Brien N, Friedrich D, Pfeifer F, and Siesler H, *Qualitative and Quantitative Pharmaceutical Analysis with a Novel Handheld Miniature Near Infrared Spectrometer*, J. Near Infrared Spectrosc., 2013, 21, 445-457.

Broad N, Dentinger C and Pasmore J, Advantages of 1064-nm Portable Raman for Counterfeit Pharmaceuticals Authentication, Spectroscopy, Raman Technology Supplement, 2013, 22-31.

Bates A and Broad N, Multispectral Imaging for Brand Protection, White Paper, Analytik UK, 2012, http://www.analytik.co.uk/documents/Whitepaper-Multispectral_imaging_for_brand_protection_v.2.pdf.

Broad N W, Graham P, Hailey P, Hardy A, Holland S, Hughes S, Lee D, Prebble K, Salton N and Warren P, *Guidelines for the Development and Validation of Near-Infrared Spectroscopic Methods in the Pharmaceutical Industry*, Handbook of Vibrational Spectroscopy, Wiley, 2006,

http://onlinelibrary.wiley.com/doi/10.1002/0470027320.s8303/pdf.

Skibstead E T S, Bolens H F, Westerhuis J A, Smilde A K, Broad N W, and Rees D R, Net Analyte Signal Based Statistical Quality Control, Analytical Chemistry, 2005, 77, 7103 -7114.

RESEARCH PUBLICATIONS

Full Papers (continued)

Smith M R, Jee R D, Moffat A C, Rees D R, and Broad N W, *A procedure for calibration transfer between near-infrared instruments – a worked example using a transmittance single tablet assay for piroxicam in intact tablets*, Analyst, 2004, 129, 806-816.

Broad N W, *PASG NIR Sub-Group Update*, Pharmaceutical Validation, NIR News, 2003, 14/4, 14-15.

Smith M R, Jee R D, Moffat A C, Rees D R and Broad N W, *Optimisation of partial least squares regression calibration models in near-infrared spectroscopy: a novel algorithm for wavelength selection*, Analyst, 2003, 128, 1312-1319.

Webster G K, Farrand D A, Johnson E, Litchman M A, Broad N W and Maris S, *The use of near-infrared spectrometry for quantitative determinations of selemectin and moisture in topical formulations*, J Pharm. Pharm. And Biomed. Anal., 2003, 33 (1), 21-32.

Broad N W, Jee R D, Moffat A C and Smith M R, *Application of transmission NIR spectroscopy to content uniformity testing of intact steroid tablets*, Analyst, 2001, 126 (12), 2207-2211.

Broad N W, Jee R D, Moffat A C, Eaves M J, Mann W C and Dziki W, Noninvasive determination of ethanol, propylene glycol and water in a multi-component pharmaceutical oral liquid by direct measurement through amber plastic bottles using FT-NIR spectroscopy, Analyst, 2000, 25, 2054-2058.

APPENDIXES

Appendix 1a - Specular Reflectance Control C1 Repeatability – Similarity Library Hits

C1_1				C1_2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99318	Reductil Control Cartons (0)		C1 372638 11-2005	0.99657	Reductil Control Cartons (0)		C1 372638 11-2005
0.91829	Reductil Control Cartons (2)		C3 B76053 12 2014	0.94770	Reductil Control Cartons (2)		C3 B76053 12_2014
C1 3				C1 4			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99830	Reductil Control Cartons (0)		C1 372638 11-2005	0.99611	Reductil Control Cartons (0)		C1 372638 11-2005
0.94102	Reductil Control Cartons (2)		C3 B76053 12_2014	0.95219	Reductil Control Cartons (2)		C3 B76053 12_2014
C1_5				C1_6			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99591	Reductil Control Cartons (0)		C1 372638 11-2005	0.99609	Reductil Control Cartons (0)		C1 372638 11-2005
0.95148	Reductil Control Cartons (2)		C3 B76053 12_2014	0.94896	Reductil Control Cartons (2)		C3 B76053 12_2014

Appendix 1b - ATR Control C1 Repeatability – Similarity Library Hits

C1_1				C1_2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99745	Control Reductil ATR (6)		C1 372638D 10_2007 ATR	0.99714	Control Reductil ATR (6)		C1 372638D 10_2007 ATR
0.83573	Control Reductil ATR (2)		C3 B76053 12_2014 ATR	0.84030	Control Reductil ATR (2)		C3 B76053 12_2014 ATR
C1_3				C1_4			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99777	Control Reductil ATR (6)		C1 372638D 10_2007 ATR	0.99613	Control Reductil ATR (6)		C1 372638D 10_2007 ATR
0.84189	Control Reductil ATR (2)		C3 B76053 12_2014 ATR	0.84306	Control Reductil ATR (2)		C3 B76053 12_2014 ATR
C1_5				C1_6			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99690	Control Reductil ATR (6)		C1 372638D 10_2007 ATR	0.99666	Control Reductil ATR (6)		C1 372638D 10_2007 ATR
0.83754	Control Reductil ATR (2)		C3 B76053 12 2014 ATR	0.84164	Control Reductil ATR (2)		C3 B76053 12_2014 ATR

S1				S2				
Quality	Library	CAS#	Name	Quality	Library	(CAS#	Name
0.99223	Reductil CF Cartons (0)		S1 CF 583998D 08-2010	0.98675	Reductil CE Cartons (1)			S2 CE 633288D 12 2010
0.83823	Reductil CF Cartons (4)		S4_2 CF 762618D 01-2012	0.06062	Reductil CE Cartons (f)			SE CE 720659D 07 2011
				0.90002	Reductil CF Canons (6)			35 CF /20656D 0/_2011
S3				S4 1				
Quality	Library	CAS#	Name	Quality	Library		CAS#	Name
0.99400	Reductil CF Cartons (2)		S3 CF 651878D 02-2011	0.99832	Reductil CF Cartons (11)			S4 1 CF 762618D 01-2012
0.86284	Reductil CF Cartons (4)		S4_2 CF 762618D 01-2012	0.99267	Reductil CF Cartons (12)			S4 3 CF 762618D 01 2012
S4 2				S4 3				
				Quality	Library	CA	S#	Name
Quality	Library	CAS#	Name	0 98476	Reductil CE Cartons (12)			S4 3 CE 762618D 01 2012
0.99816	Reductil CF Cartons (4)		S4_2 CF 762618D 01-2012	0.97848	Reductil CF Cartons (11)			S4 1 CF 762618D 01-2012
0.93311	Reductil CF Cartons (11)		S4_1 CF 762618D 01-2012					
S 5				S6 1				
Quality	Library	CAS	# Name	Quality	Library	CAS	#	Name
0.98044	Reductil CF Cartons (6)		S5 CF 720658D 07 2011	0.96882	Reductil CE Cartons (7)	0/10		S6 1 CE 220808D 06 2007
0.97176	Reductil CF Cartons (1)		S2 CF 633288D 12 2010	0.30002	Reductil CF Cartons (6)			S5 CF 720658D 07 2011
S6 2				S7 1				
Ouslity	Library	CACH	Manag	Quality	Library	CAS	S# 1	Name
Quality	Deductil OF Octors (0)	CAS#		0.99639	Reductil CF Cartons (9)		:	S7_1 CF 282298D 09_2009
0.99996	Reductil CF Cartons (8)		56_2 CF 220808D 06_2007	0.89699	Reductil CF Cartons (10)		:	S7_2 CF 282298D 09_2009
0.09405	Reductil CF Cartons (7)		56_1 CF 220000D 06_2007	01				
<u>87_2</u>				CI				
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name	
0.98998	Reductil CF Cartons (10)		S7_2 CF 282298D 09_2009	0.99997	Reductil CF Cartons (13)		C1 372	2638D 10_2007
0.86805	Reductil CF Cartons (1)		S2 CF 633288D 12_2010	0.81008	Reductil CF Cartons (9)		S7_10	CF 282298D 09_2009

Appendix 2a - Specular Reflectance Similarity Library Hits for Suspect Set 1

Appendix 2b - ATR Similarity Library Hits for Suspect Set 1

			S2			
Library	CAS#	Name	Quality	Library	CAS#	Name
CF Reductil ATR (0)		S1 CF 583998D 08_2010 ATR	0.99589	CF Reductil ATR (1)		S5 CF 720658D 07_2011 ATR
CF Reductil ATR (9)		S7 2 CF 282298D 09 2009 ATR	0.99003	CF Reductil ATR (3)		S2 CF 633288D 12_2010 ATR
			S4_1			
Library	CAS#	Name	Quality	Library	CAS#	Name
CF Reductil ATR (2)		S3 CF 651878D 02_2011 ATR	0.99929	CF Reductil ATR (13)		S4_1 CF 762618D 01_2012 ATF
CF Reductil ATR (15)		S4 3 CF 762618D 01 2012 ATR	0.99928	CF Reductil ATR (14)		S4 2 CF 762618D 01 2012 ATF
			S4_3			
Library	CAS#	Name	Quality	Library	CAS#	Name
CF Reductil ATR (13)		S4_1 CF 762618D 01_2012 ATR	0.99937	CF Reductil ATR (13)		S4_1 CF 762618D 01_2012 ATR
CF Reductil ATR (14)		S4_2 CF 762618D 01_2012 ATR	0.99937	CF Reductil ATR (14)		\$4_2 CF 762618D 01_2012 ATR
			0.99906	CF Reductil ATR (15)		S4 3 CF 762618D 01 2012 ATR
			S6_1			
Library	CAS#	Name	Quality	Library	CAS#	Name
CF Reductil ATR (1)		S5 CF 720658D 07_2011 ATR	0.99515	CF Reductil ATR (11)		S6_1 CF 220808D 06_2007 ATR
CF Reductil ATR (3)		S2 CF 633288D 12_2010 ATR	0.92647	CF Reductil ATR (12)		S6_2 CF 220808D 06_2007 ATR
			S7_1			
Library	CAS#	Name	Quality	Library	CAS#	Name
CF Reductil ATR (11)		S6_1 CF 220808D 06_2007 ATR	0.99781	CF Reductil ATR (10)		S7_1 CF 282298D 09_2009 ATR
CF Reductil ATR (12)		S6 2 CF 220808D 06 2007 ATR	0.99518	CF Reductil ATR (9)		S7 2 CF 282298D 09 2009 ATR
			C1			
Library	CAS#	Name	Quality	Library	CAS#	Name
CF Reductil ATR (10)		S7 1 CF 282298D 09 2009 ATB	0.99949	Control Reductil ATR (6)		C1 372638D 10_2007 ATR
CF Reductil ATR (9)		S7 2 CF 282298D 09 2009 ATR	0.86176	CF Reductil ATR (11)		S6_1 CF 220808D 06_2007 ATR
	Library CF Reductil ATR (0) CF Reductil ATR (9) Library CF Reductil ATR (2) CF Reductil ATR (15) Library CF Reductil ATR (13) CF Reductil ATR (13) CF Reductil ATR (14) Library CF Reductil ATR (10) CF Reductil	Library CAS# CF Reductil ATR (0) CF Reductil ATR (0) CF Reductil ATR (9) CAS# CF Reductil ATR (2) CF Reductil ATR (15) Library CAS# CF Reductil ATR (15) CAS# Library CAS# CF Reductil ATR (13) CF Reductil ATR (14) Library CAS# CF Reductil ATR (14) CAS# Library CAS# CF Reductil ATR (10) CF Reductil ATR (11) CF Reductil ATR (12) CAS# Library CAS# CF Reductil ATR (12) CAS# CF Reductil ATR (12) CAS# CF Reductil ATR (10) CAS# CF Reductil ATR (10) CAS# CF Reductil ATR (10) CF Reductil ATR (10) CF Reductil ATR (10) CF Reductil ATR (10)	Library CAS# Name CF Reductil ATR (0) S1 CF 583998D 08_2010 ATR CF Reductil ATR (9) S7 2 CF 282298D 09_2009 ATR Library CAS# Name CF Reductil ATR (2) S3 CF 651878D 02_2011 ATR CF Reductil ATR (12) S3 CF 651878D 02_2011 ATR CF Reductil ATR (15) S4 3 CF 762618D 01_2012 ATR Library CAS# Name CF Reductil ATR (13) S4_1 CF 762618D 01_2012 ATR CF Reductil ATR (14) S4_2 CF 762618D 01_2012 ATR CF Reductil ATR (14) S4_2 CF 762618D 01_2012 ATR CF Reductil ATR (14) S4_2 CF 762618D 01_2012 ATR CF Reductil ATR (13) S2 CF 633288D 12_2010 ATR CF Reductil ATR (1) S5 CF 720658D 07_2011 ATR CF Reductil ATR (13) S2 CF 633288D 12_2010 ATR CF Reductil ATR (13) S2 CF 633288D 12_2010 ATR CF Reductil ATR (11) S6_1 CF 220808D 06_2007 ATR CF Reductil ATR (12) S6 2 CF 220808D 06_2007 ATR CF Reductil ATR (12) S6 2 CF 220808D 06_2007 ATR CF Reductil ATR (10) S7_1 CF 282298D 09_2009 ATR CF Reductil ATR (10) S7_2	Library CAS# Name Quality CF Reductil ATR (0) S1 CF 5839980 08_2010 ATR 0.99589 0.99003 CF Reductil ATR (0) S7 2 CF 282298D 09_2009 ATR 0.99003 CF Reductil ATR (10) S7 2 CF 282298D 09_2009 ATR 0.99003 CF Reductil ATR (2) S3 CF 651878D 02_2011 ATR Ouality CF Reductil ATR (15) S4 2 CF 762618D 01_2012 ATR 0.99928 CF Reductil ATR (13) S4_1 CF 762618D 01_2012 ATR Ouality CF Reductil ATR (14) S4_2 CF 762618D 01_2012 ATR Ouality CF Reductil ATR (14) S4_2 CF 762618D 01_2012 ATR Ouality 0 CF Reductil ATR (14) S4_2 CF 762618D 01_2012 ATR Ouality 0 CF Reductil ATR (13) S2 CF 720658D 07_20111 ATR Ouality 0 CF Reductil ATR (13) S2 CF 633288D 12_2010 ATR Ouality 0 CF Reductil ATR (13) S2 CF 633288D 07_2011 ATR Ouality 0 CF Reductil ATR (11) S6_1 CF 220808D 06_2007 ATR Ouality 0 CF Reductil ATR (11) S6_1 CF 220808D 06_2007 ATR Ouality 0 CF Reductil ATR (11) S6_1 CF 220808D 06_2007 ATR Ouality	Library CAS# Name Quality Library CF Reductil ATR (0) S1 CF 583998D 08_2010 ATR 0.99003 CF Reductil ATR (1) CF Reductil ATR (2) S7 2 CF 282298D 09_2009 ATR 0.99003 CF Reductil ATR (3) CF Reductil ATR (2) S3 CF 651878D 02_2011 ATR 0.99929 CF Reductil ATR (13) CF Reductil ATR (15) S4 2 CF 762618D 01_2012 ATR 0.99929 CF Reductil ATR (13) CF Reductil ATR (13) S4_1 CF 762618D 01_2012 ATR 0.99937 CF Reductil ATR (14) CF Reductil ATR (14) S4_2 CF 762618D 01_2012 ATR 0.99937 CF Reductil ATR (14) 0.99937 CF Reductil ATR (14) S4_2 CF 762618D 01_2012 ATR 0.99937 CF Reductil ATR (13) CF Reductil ATR (14) S4_2 CF 762618D 01_2012 ATR 0.99937 CF Reductil ATR (14) 0.99937 CF Reductil ATR (13) S4_1 CF 762618D 01_2012 ATR 0.99937 CF Reductil ATR (14) 0.99937 CF Reductil ATR (14) 0.99937 CF Reductil ATR (15) S6_1 Quality Library 0.99915 CF Reductil ATR (17) CF Reductil ATR (13) S2 CF 720658D 07_20111	Library CAS# Name Quality Library CAS# CF Reductil ATR (0) S1 CF 583998D 08_2010 ATR 0.99589 CF Reductil ATR (1) 0.99033 CF Reductil ATR (1) 0.99003 CF Reductil ATR (2) 0.99003 CF Reductil ATR (3) 0.99003 CF Reductil ATR (13) 0.99003 CF Reductil ATR (13) 0.99003 CF Reductil ATR (14) 0.99929 CF Reductil ATR (14) 0.99937 CF

Annondin 20 Snoo	ulan Daflaatanaa	Dominiativo Cimi	lowity I ibnowy	Hita fon Cuar	soot Cot 1
ADDENOIX ZC - SDEC	шаг кенестансе	Derivative Sum	тагну глогагу	THIS FOR SHSE	ect set t
-pponami = c ppoo	unur mentectunee				

S1				S2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.94173	Reductil CF Cartons (0)		S1 CF 583998D 08-2010	0.83718	Reductil CF Cartons (1)		S2 CF 633288D 12_2010
0.43735	Reductil CF Cartons (2)		S3 CF 651878D 02-2011	0.72478	Reductil CF Cartons (6)		S5 CF 720658D 07_2011
S3				S4_1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.88517	Reductil CF Cartons (2)		S3 CF 651878D 02-2011	0.93519	Reductil CF Cartons (12)		S4_3 CF 762618D 01_2012
0.61923	Reductil CF Cartons (4)		S4_2 CF 762618D 01-2012	0.92985	Reductil CF Cartons (11)		S4_1 CF 762618D 01-2012
S4_2				S4_3			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.91620	Reductil CF Cartons (4)		S4_2 CF 762618D 01-2012	0.86011	Reductil CF Cartons (12)		S4 3 CF 762618D 01 2012
0.80659	Reductil CF Cartons (11)		S4_1 CF 762618D 01-2012	0.84744	Reductil CF Cartons (11)		S4_1 CF 762618D 01-2012
S 5				S6_1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.82997	Reductil CF Cartons (6)		S5 CF 720658D 07_2011	0.67917	Reductil CF Cartons (7)		S6_1 CF 220808D 06_2007
0.75341	Reductil CF Cartons (1)		S2 CF 633288D 12 2010	0.50420	Reductil CF Cartons (12)		S4_3 CF 762618D 01_2012
S6_2				S7_1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99341	Reductil CF Cartons (8)		S6_2 CF 220808D 06_2007	0.83864	Reductil CF Cartons (9)		S7_1 CF 282298D 09_2009
0.50968	Reductil CF Cartons (7)		S6_1 CF 220808D 06_2007	0.23917	Reductil CF Cartons (8)		S6_2 CF 220808D 06_2007
S7_2				C1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.73222	Reductil CF Cartons (10)		S7_2 CF 282298D 09_2009	0.98541	Reductil CF Cartons (13)		C1 372638D 10_2007
0.22830	Reductil CF Cartons (7)		S6_1 CF 220808D 06_2007	0.13925	Reductil CF Cartons (2)		S3 CF 651878D 02-2011

Key: Red Text = Incorrect Match

Appendix 2d - ATR Derivative Similarity Library Hits for Suspect Set 1

S1				S2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.98802	CF Reductil ATR (0)		S1 CF 583998D 08_2010 ATR	0.98344	CF Reductil ATR (1)		S5 CF 720658D 07 2011 ATR
0.89828	CF Reductil ATR (2)		S3 CF 651878D 02_2011 ATR	0.94503	CF Reductil ATR (3)		S2 CF 633288D 12 2010 ATR
S3				S4_1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99000	CF Reductil ATR (2)		S3 CF 651878D 02_2011 ATR	0.98696	CE Beductil ATB (15)		S4_3 CF 762618D 01_2012 ATB
0.97834	CF Reductil ATR (15)		S4_3 CF 762618D 01_2012 ATR	0.98548	CF Reductil ATR (13)		S4_1 CF 762618D 01_2012 ATR
S4_2				S4_3			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.98744	CF Reductil ATR (15)		S4_3 CF 762618D 01_2012 ATR	0.98744	CF Reductil ATR (15)		S4_3 CF 762618D 01_2012 ATR
0.98547	CF Reductil ATR (13)		84_1 CF 762618D 01_2012 ATR	0.98547	CF Reductil ATR (13)		S4_1 CF 762618D 01_2012 ATR
0.98518	CF Reductil ATR (14)		S4_2 CF 762618D 01_2012 ATR				
S 5				S6_1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.97890	CF Reductil ATR (1)		S5 CF 720658D 07 2011 ATR	0.97307	CF Reductil ATR (11)		S6_1 CF 220808D 06_2007 ATR
0.93114	CF Reductil ATR (3)		S2 CF 633288D 12_2010 ATR	0.83302	CF Reductil ATR (12)		S6_2 CF 220808D 06_2007 ATR
S6_2				S7_1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.97130	CF Reductil ATR (11)		S6_1 CF 220808D 06_2007 ATR	0.98037	CF Reductil ATR (10)		S7_1 CF 282298D 09_2009 ATR
0.91822	CF Reductil ATR (12)		S6_2 CF 220808D 06_2007 ATR	0.97359	CF Reductil ATR (9)		S7_2 CF 282298D 09_2009 ATR
S7_2				C1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.98037	CF Reductil ATR (10)		S7 1 CF 282298D 09 2009 ATR	0.97740	Control Reductil ATR (6)		C1 372638D 10_2007 ATR
0.97359	CF Reductil ATR (9)		S7_2 CF 282298D 09_2009 ATR	0.27282	CF Reductil ATR (11)		S6_1 CF 220808D 06_2007 ATR

S1				S2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00777	Reductil CF Cartons (0)		S1 CF 583998D 08-2010	0.01325	Reductil CE Cartons (1)		S2 CE 633288D 12 2010
0.16177	Reductil CF Cartons (4)		S4_2 CF 762618D 01-2012	0.03938	Reductil CF Cartons (6)		S5 CF 720658D 07 2011
S3				S4_1			_
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00600	Reductil CE Cartons (2)	0,10,	S3 CE 651878D 02-2011	0.00168	Reductil CF Cartons (11)		S4_1 CF 762618D 01-2012
0.13716	Reductil CF Cartons (4)		S4_2 CF 762618D 01-2012	0.00733	Reductil CF Cartons (12)		S4_3 CF 762618D 01_2012
S4_2				S4_3			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00184	Reductil CF Cartons (4)		S4_2 CF 762618D 01-2012	0.01524	Reductil CF Cartons (12)		S4_3 CF 762618D 01_2012
0.06689	Reductil CF Cartons (11)		S4_1 CF 762618D 01-2012	0.02152	Reductil CF Cartons (11)		S4 1 CF 762618D 01-2012
S5				S6_1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.01956	Reductil CF Cartons (6)		S5 CF 720658D 07_2011	0.03118	Reductil CF Cartons (7)		S6_1 CF 220808D 06_2007
0.02824	Reductil CF Cartons (1)		S2 CF 633288D 12_2010	0.15724	Reductil CF Cartons (6)		S5 CF 720658D 07_2011
S6_2				S7_1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00004	Reductil CF Cartons (8)		S6_2 CF 220808D 06_2007	0.00361	Reductil CF Cartons (9)		S7_1 CF 282298D 09_2009
0.10515	Reductil CF Cartons (7)		S6_1 CF 220808D 06_2007	0.10301	Reductil CF Cartons (10)		S7_2 CF 282298D 09_2009
S7_2				C1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.01002	Reductil CF Cartons (10)		S7_2 CF 282298D 09_2009	0.00003	Reductil CF Cartons (13)		C1 372638D 10_2007
0.13195	Reductil CF Cartons (1)		S2 CF 633288D 12_2010	0.18992	Reductil CF Cartons (9)		S7_1 CF 282298D 09_2009

Appendix 2e - Specular Reflectance Correlation Library Hits for Suspect Set 1

Appendix 2f - ATR Correlation Library Hits for Suspect Set 1

S1				S2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00034	CF Reductil ATR (0)		S1 CF 583998D 08_2010 ATR	0.00411	CF Reductil ATR (1)		S5 CF 720658D 07_2011 ATR
0.07255	CF Reductil ATR (9)		S7_2 CF 282298D 09_2009 ATR	0.00997	CF Reductil ATR (3)		S2 CF 633288D 12_2010 ATR
S3				S4_1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00033	CF Reductil ATR (2)		S3 CF 651878D 02 2011 ATB	0.00071	CF Reductil ATR (13)		S4_1 CF 762618D 01_2012 ATR
0.01117	CE Beductil ATB (15)		S4_3 CE 762618D 01_2012 ATB	0.00072	CF Reductil ATR (14)		S4_2 CF 762618D 01_2012 ATR
0.01264	CE Reductil ATR (13)		S4_1 CE 762618D 01_2012 ATR				
S4_2				S4_3			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00063	CF Reductil ATR (13)		S4_1 CF 762618D 01_2012 ATR	0.00063	CF Reductil ATR (13)		S4_1 CF 762618D 01_2012 ATR
0.00063	CF Reductil ATR (14)		S4_2 CF 762618D 01_2012 ATR	0.00063	CF Reductil ATR (14)		S4_2 CF 762618D 01_2012 ATR
S5				S6_1			
0.00313	CF Reductil ATR (1)		S5 CF 720658D 07_2011 ATR	Quality	Library	CAS#	Name
0.01794	CF Reductil ATR (3)		S2 CF 633288D 12_2010 ATR	0.00485	CF Reductil ATR (11)		S6_1 CF 220808D 06_2007 ATF
				0.07353	CF Reductil ATR (12)		S6_2 CF 220808D 06_2007 ATF
S6_2				S7 _1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00577	CF Reductil ATR (11)		S6 1 CF 220808D 06 2007 ATR	0.00219	CF Reductil ATR (10)		S7_1 CF 282298D 09_2009 ATF
0.02124	CF Reductil ATR (12)		S6 2 CF 220808D 06 2007 ATR	0.00482	CF Reductil ATR (9)		S7_2 CF 282298D 09_2009 ATF
S7_2				C1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00219	CF Reductil ATR (10)		87_1 CF 282298D 09_2009 ATR	0.00051	Control Reductil ATR (6)		C1 372638D 10_2007 ATR
0.00210							

		•	a 1	D (1)	D • 4•	A 1 1	т • т	TT'A P	n	
л	nnondi	v la	Snoonlor	Rationtoneo	Inrivotivo	l'arralation	Incort	Hite tor	Sucnoot y	
	VDCHU	A 42 '	-DUCULIAL	NEHELLAHLE		CULLETATION		11115 101	DUDUCUL	JCL I

S1				S2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.05827	Reductil CF Cartons (0)		S1 CF 583998D 08-2010	0.16282	Reductil CF Cartons (1)		S2 CF 633288D 12_2010
0.56265	Reductil CF Cartons (2)		S3 CF 651878D 02-2011	0.27522	Reductil CF Cartons (6)		S5 CF 720658D 07_2011
S3				S4 1			
Quality	Library	CAS#	Name	Quality	Library	CAS# Na	ame
0.11483	Reductil CF Cartons (2)		S3 CF 651878D 02-2011	0.06481	Reductil CF Cartons (12)	S4	4_3 CF 762618D 01_2012
0.38077	Reductil CF Cartons (4)		S4_2 CF 762618D 01-2012	0.07015	Reductil CF Cartons (11)	S4	4_1 CF 762618D 01-2012
S4_2				S4_3			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.08380	Reductil CF Cartons (4)		S4_2 CF 762618D 01-2012	0.13989	Reductil CF Cartons (12)		S4 3 CF 762618D 01 2012
0.19341	Reductil CF Cartons (11)		S4_1 CF 762618D 01-2012	0.15256	Reductil CF Cartons (11)		S4_1 CF 762618D 01-2012
S5				S6_1			
Quality	Library	CAS# Na	me	Quality	Library	CAS#	Name
0.17003	Reductil CF Cartons (6)	S5	CF 720658D 07_2011	0 32083	Reductil CE Cartons (7)		S6 1 CF 220808D 06 2007
0.24005	Reductin on Ganons (1)	52	CF 0332000 12_2010	0.49580	Reductil CF Cartons (12)		S4 3 CF 762618D 01 2012
S6_2				S7_1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00659	Reductil CF Cartons (8)		S6 2 CF 220808D 06 2007	0.16136	Reductil CF Cartons (9)		S7_1 CF 282298D 09_2009
0.49032	Reductil CF Cartons (7)		S6 1 CF 220808D 06 2007	0.76083	Reductil CF Cartons (8)		S6 2 CF 220808D 06 2007
S7_2				C1			
Quality	Library	CAS# Na	ame	Quality	Library	CA	S# Name
0.26778	Reductil CF Cartons (10)	S	7_2 CF 282298D 09_2009	0 01459	Reductil CE Cartons (13)		C1 372638D 10 2007
0.77170	Reductil CF Cartons (7)	S	6_1 CF 220808D 06_2007	0.86075	Peductil CE Cartons (2)		S3 CE 651878D 02 2011
				0.00075	Reducti Cr Caltons (2)		55 61 0510100 02-2011

Key: Red Text = Incorrect Match

Appendix 2h - ATR Derivative Correlation Library Hits for Suspect Set 1

S1				S2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.01198	CE Beductil ATB (0)	0.101	S1 CE 583998D 08 2010 ATB	0.01656	CF Reductil ATR (1)		S5 CF 720658D 07 2011 ATR
0.10172	CF Reductil ATR (2)		S3 CF 651878D 02_2011 ATR	0.05497	CF Reductil ATR (3)		S2 CF 633288D 12_2010 ATR
S3				S4_1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.01000	CF Reductil ATR (2)		S3 CF 651878D 02_2011 ATR	0.01304	CF Reductil ATR (15)		S4_3 CF 762618D 01_2012 ATR
0.02166	CF Reductil ATR (15)		S4_3 CF 762618D 01_2012 ATR	0.01452	CF Reductil ATR (13)		S4_1 CF 762618D 01_2012 ATR
S4_2				S4_3			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.01256	CF Reductil ATR (15)		S4_3 CF 762618D 01_2012 ATR	0.01256	CF Reductil ATR (15)		S4_3 CF 762618D 01_2012 ATR
0.01453	CF Reductil ATR (13)		S4_1 CF 762618D 01_2012 ATR	0.01453	CF Reductil ATR (13)		S4_1 CF 762618D 01_2012 ATR
0.01482	CF Reductil ATR (14)		S4_2 CF 762618D 01_2012 ATR				
S5				S6_1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.02110	CF Reductil ATR (1)		S5 CF 720658D 07_2011 ATR	0.02693	CF Reductil ATR (11)		S6_1 CF 220808D 06_2007 ATR
0.06886	CF Reductil ATR (3)		S2 CF 633288D 12_2010 ATR	0.16698	CF Reductil ATR (12)		S6_2 CF 220808D 06_2007 ATR
S6_2				S7_1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.02870	CF Reductil ATR (11)		S6_1 CF 220808D 06_2007 ATR	0.01963	CF Reductil ATR (10)		S7_1 CF 282298D 09_2009 ATR
0.08178	CF Reductil ATR (12)		S6_2 CF 220808D 06_2007 ATR	0.02641	CF Reductil ATR (9)		S7_2 CF 282298D 09_2009 ATR
S7_2				C1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.01963	CF Reductil ATR (10)		87_1 CF 282298D 09_2009 ATR	0.02260	Control Reductil ATR (6)		C1 372638D 10_2007 ATR
0.02641	CF Reductil ATR (9)		S7_2 CF 282298D 09_2009 ATR	0.72718	CF Reductil ATR (11)		S6_1 CF 220808D 06_2007 ATR

S1				S2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.04620	Reductil CF Cartons (0)		S1 CF 583998D 08-2010	0.05053	Reductil CF Cartons (1)		S2 CF 633288D 12 2010
0.20855	Reductil CF Cartons (4)		S4 2 CF 762618D 01-2012	0.08816	Reductil CF Cartons (6)		S5 CF 720658D 07_2011
S3				S4_1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.05137	Reductil CF Cartons (2)		S3 CF 651878D 02-2011	0.01840	Reductil CF Cartons (11)		S4_1 CF 762618D 01-2012
0.17426	Reductil CF Cartons (4)		S4_2 CF 762618D 01-2012	0.04023	Reductil CF Cartons (12)		S4_3 CF 762618D 01_2012
S4_2				S4_3			
Quality	Library	CAS# 1	Name	Quality	Library	CAS#	Name
0.02010	Reductil CF Cartons (4)		S4_2 CF 762618D 01-2012	0.05785	Reductil CF Cartons (12)		S4_3 CF 762618D 01_2012
0.12093	Reductil CF Cartons (11)		S4_1 CF 762618D 01-2012	0.06569	Reductil CF Cartons (11)		S4_1 CF 762618D 01-2012
S5				S6_1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.06254	Reductil CF Cartons (6)		S5 CF 720658D 07 2011	0.08692	Reductil CF Cartons (7)		S6_1 CF 220808D 06_2007
0.07345	Reductil CF Cartons (1)		S2 CF 633288D 12 2010	0.19406	Reductil CF Cartons (6)		S5 CF 720658D 07_2011
S6_2				S7_1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00428	Reductil CF Cartons (8)		S6 2 CF 220808D 06 2007	0.02714	Reductil CF Cartons (9)		S7_1 CF 282298D 09_2009
0.16064	Reductil CF Cartons (7)		S6 1 CF 220808D 06 2007	0.14521	Reductil CF Cartons (10)		S7_2 CF 282298D 09_2009
S7_2				C1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.04299	Reductil CF Cartons (10)		S7_2 CF 282298D 09_2009	0.00312	Reductil CF Cartons (13)		C1 372638D 10_2007
0.16011	Reductil CF Cartons (1)		S2 CF 633288D 12_2010	0.19737	Reductil CF Cartons (10)		S7 2 CF 282298D 09 2009

Appendix 2i - Specular Reflectance Euclidean Library Hits for Suspect Set 1

Appendix 2j - ATR Euclidean Library Hits for Suspect Set 1

S1				S2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.02332	CF Reductil ATR (0)		S1 CF 583998D 08_2010 ATR	0.05101	CF Reductil ATR (1)		S5 CF 720658D 07_2011 ATR
0.24823	CF Reductil ATR (9)		S7_2 CF 282298D 09_2009 ATR	0.07644	CF Reductil ATR (3)		S2 CF 633288D 12_2010 ATR
S3				S4_1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.01909	CF Reductil ATR (2)		S3 CF 651878D 02_2011 ATR	0.02428	CF Reductil ATR (13)		S4_1 CF 762618D 01_2012 ATR
0.09274	CF Reductil ATR (15)		S4_3 CF 762618D 01_2012 ATR	0.02432	CF Reductil ATR (14)		S4 2 CF 762618D 01 2012 ATR
S4_2				S4_3			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.02390	CF Reductil ATR (13)		S4 1 CF 762618D 01 2012 ATR	0.02390	CF Reductil ATR (13)		S4_1 CF 762618D 01_2012 ATR
0.02398	CF Reductil ATR (14)		S4 2 CF 762618D 01 2012 ATR	0.02398	CF Reductil ATR (14)		S4_2 CF 762618D 01_2012 ATR
				0.03332	CF Reductil ATR (15)		S4_3 CF 762618D 01_2012 ATR
S5				S6_1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.04369	CE Reductil ATR (1)		S5 CE 720658D 07 2011 ATR	0.05830	CF Reductil ATR (11)		S6_1 CF 220808D 06_2007 ATR
0.10000	OF Deducti ATD (2)		03 OF 6222000 12, 2010 ATR	0.22761	CF Reductil ATR (12)		S6_2 CF 220808D 06_2007 ATR
0.10322	CF Reducil ATR (3)		32 CF 033200D 12_2010 ATK				
S6_2				S7_1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.06812	CF Reductil ATR (11)		S6_1 CF 220808D 06_2007 ATR	0.03731	CF Reductil ATR (10)		S7_1 CF 282298D 09_2009 ATR
0.12283	CF Reductil ATR (12)		S6_2 CF 220808D 06_2007 ATR	0.05535	CF Reductil ATR (9)		S7_2 CF 282298D 09_2009 ATR
S7_2				C1			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.03731	CF Reductil ATR (10)		S7 1 CF 282298D 09 2009 ATR	0.01797	Control Reductil ATR (6)		C1 372638D 10_2007 ATR
0.05535	CF Reductil ATR (9)		S7 2 CF 282298D 09 2009 ATR	0.31574	CF Reductil ATR (11)		S6_1 CF 220808D 06_2007 ATR

Appendix 3a - Specular Reflectance Similarity Library Hits for Suspect Set 2

S8_1				S8_2			
Quality 0.99240 0.98413	Library Reductil CF Cartons Set 2 (3) Reductil CF Cartons Set 2 (0)	CAS#	Name S8_4 CF 273198D 01_2009 S8 1 CF 273198D 01 2009	Quality 0.99625 0.99403	Library Reductil CF Cartons Set 2 (1) Reductil CF Cartons Set 2 (0)	CAS#	Name S8_2 CF 273198D 01_2009 S8_1 CF 273198D 01_2009
S8_3				S8_4			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99231	Reductil CF Cartons Set 2 (2) Reductil CF Cartons Set 2 (0)		\$8_3 CF 273198D 01_2009 \$8_1 CF 273198D 01_2009	0.99428	Reductil CF Cartons Set 2 (3) Reductil CF Cartons Set 2 (0)		S8_4 CF 273198D 01_2009 S8 1 CF 273198D 01 2009
S9_1				S9_2			
Quality	Library	CAS#	Name		Table (Access)		
0.98817	Reductil CF Cartons Set 2 (4)		S9_1 CF 2011030 08_2008	Quality	Library	CAS#	Name
0.98345	Reductil CF Cartons Set 2 (5)		S9_2 CF 2011030 08_2008	0.99994	Reductil CF Cartons Set 2 (5) Reductil CF Cartons Set 2 (4)		S9_2 CF 2011030 08_2008 S9_1 CF 2011030 08_2008
S10				C2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.91649	Reductil CF Cartons Set 2 (6)		S10 CF 221518D 06_2007	0.98878	Reductil CF Cartons Set 2 (7)		C2 622678D 01_2008
0.75589	Reductil CF Cartons Set 2 (7)		C2 622678D 01_2008	0.75945	Reductil CF Cartons Set 2 (6)		S10 CF 221518D 06_2007

Key: Red Text = Incorrect Match

Appendix 3b - ATR Similarity Library Hits for Suspect Set 2

S8_1				S8_2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99893	CE Beductil ATB 2 (3)		S8_1 CE 273198D 01_2009 ATB	0.99873	CF Reductil ATR 2 (3)		S8_1 CF 273198D 01_2009 ATR
0.99842	CF Reductil ATR 2 (4)		S8 2 CF 273198D 01 2009 ATR	0.99818	CF Reductil ATR 2 (4)		S8_2 CF 273198D 01_2009 ATR
S8_3				S8_4			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99922	CF Reductil ATR 2 (3)		S8_1 CF 273198D 01_2009 ATR	0.99933	CF Reductil ATR 2 (6)		S8_4 CF 273198D 01_2009 ATR
0.99859	CF Reductil ATR 2 (6)		S8_4 CF 273198D 01_2009 ATR	0.99921	CF Reductil ATR 2 (4)		S8_2 CF 273198D 01_2009 ATR
0.99782	CF Reductil ATR 2 (5)		S8_3 CF 273198D 01_2009 ATR				
S9_1				S9_2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99805	CF Reductil ATR 2 (1)		S9_1 CF 2011030 08_2008 ATR	0.99756	CF Reductil ATR 2 (2)		S9_2 CF 2011030 08_2008 ATR
0.99763	CF Reductil ATR 2 (2)		S9_2 CF 2011030 08_2008 ATR	0.99489	CF Reductil ATR 2 (1)		S9_1 CF 2011030 08_2008 ATR
S10				C2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99860	CF Reductil ATR 2 (0)		S10 CF 221518D 06_2007 ATR	0.99963	Control Reductil ATR (5)		C2 622768D 12_2010 ATR
0.83664	CF Reductil ATR 2 (5)		S8_3 CF 273198D 01_2009 ATR	0.67866	CF Reductil ATR 2 (0)		S10 CF 221518D 06_2007 ATR

Key: Red Text = Incorrect Match

Appendix 3c - Specular Reflectance Derivative Similarity Library Hits for Suspect Set 2

S8_1				S8_2			
Quality 0.93936 0.88414	Library Reductil CF Cartons Set 2 (3) Reductil CF Cartons Set 2 (0)	CAS#	Name S8_4 CF 273198D 01_2009 S8_1 CF 273198D 01_2009	Quality 0.91405 0.90938	Library Reductil CF Cartons Set 2 (0) Reductil CF Cartons Set 2 (1)	CAS#	Name S8_1 CF 273198D 01_2009 S8_2 CF 273198D 01_2009
S8_3				S8_4			
Quality 0.90375 0.88850 0.83922	Library Reductil CF Cartons Set 2 (0) Reductil CF Cartons Set 2 (3) Reductil CF Cartons Set 2 (2)	CAS#	Name S8_1 CF 273198D 01_2009 S8_4 CF 273198D 01_2009 S8_3 CF 273198D 01_2009	Quality 0.91475 0.87026	Library Reductil CF Cartons Set 2 (3) Reductil CF Cartons Set 2 (0)	CAS#	Name S8_4 CF 273198D 01_2009 S8_1 CF 273198D 01_2009
S9_1				S9_2			
Quality 0.89766 0.89524	Library Reductil CF Cartons Set 2 (5) Reductil CF Cartons Set 2 (4)	CAS#	Name S9_2 CF 2011030 08_2008 S9_1 CF 2011030 08_2008	Quality 0.98587 0.91099	Library Reductil CF Cartons Set 2 (5) Reductil CF Cartons Set 2 (4)	CAS#	Name S9_2 CF 2011030 08_2008 S9_1 CF 2011030 08_2008
S10 Quality	Library	CAS#	Name	C2 Quality	Library	CAS#	Name
0.91649 0.75589	Reductil CF Cartons Set 2 (6) Reductil CF Cartons Set 2 (7)		S10 CF 221518D 06_2007 C2 622678D 01_2008	0.89638 0.24582	Reductil Control Cartons (1) Reductil CF Cartons Set 2 (6)		C2 622678D 01_2008 S10 CF 221518D 06_2007

S8 1				S8 2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.98496	CF Reductil ATR 2 (4) CF Reductil ATR 2 (3)		S8_2 CF 273198D 01_2009 ATR S8_1 CF 273198D 01_2009 ATR	0.98631	CF Reductil ATR 2 (4) CF Reductil ATR 2 (6)		S8_2 CF 273198D 01_2009 ATF S8_4 CF 273198D 01_2009 ATF
S8_3				S8_4			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.98670	CF Reductil ATR 2 (6)		S8_4 CF 273198D 01_2009 ATR	0.98732	CF Reductil ATR 2 (4) CF Reductil ATR 2 (6)		S8_2 CF 273198D 01_2009 ATR S8_4 CE 273198D 01_2009 ATR
0.98647	CF Reductil ATR 2 (5)		S8_3 CF 273198D 01_2009 ATR	0.30,20	of freddoll Arris (o)		00_4 01 2701000 01_2000 AAA
S9_1				S9_2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.98148	CF Reductil ATR 2 (2)		S9_2 CF 2011030 08_2008 ATR	0.98053	CF Reductil ATR 2 (2)		S9_2 CF 2011030 08_2008 ATR
0.98069	CF Reductil ATR 2 (1)		S9_1 CF 2011030 08_2008 ATR	0.97563	CF Reductil ATR 2 (1)		S9_1 CF 2011030 08_2008 ATR
S10				C2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.98615	CF Reductil ATR 2 (0)		S10 CF 221518D 06_2007 ATR	0.98927	CF Reductil ATR 2 (17)		C2 622768D 12_2010 ATR_2015-
0.52605	CF Reductil ATR 2 (6)		S8_4 CF 273198D 01_2009 ATR	0.38782	CF Reductil ATR 2 (0)		S10 CF 221518D 06_2007 ATR
1							

Appendix 3d - ATR Derivative Similarity Library Hits for Suspect Set 2

Key: Red Text = Incorrect Match

Appendix 3e - Specular Reflectance Correlation Library Hits for Suspect Set 2

S8_1				S8_2			
Quality 0.00760 0.01587	Library Reductil CF Cartons Set 2 (3) Reductil CF Cartons Set 2 (0)	CAS#	Name S8_4 CF 273198D 01_2009 S8_1 CF 273198D 01_2009	Quality 0.00375 0.00597	Library Reductil CF Cartons Set 2 (1) Reductil CF Cartons Set 2 (0)	CAS#	Name S8_2 CF 273198D 01_2009 S8_1 CF 273198D 01_2009
S8_3				S8_4			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00769	Reductil CF Cartons Set 2 (2)		S8_3 CF 273198D 01_2009	0.00572	Reductil CF Cartons Set 2 (3)		S8_4 CF 273198D 01_2009
0.00772	Reductil CF Cartons Set 2 (0)		S8_1 CF 273198D 01_2009	0.01672	Reductil CF Cartons Set 2 (0)		S8_1 CF 273198D 01_2009
S9 1				S9 2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.01183	Reductil CF Cartons Set 2 (4)		S9 1 CF 2011030 08 2008	0.00006	Reductil CF Cartons Set 2 (5)		S9_2 CF 2011030 08_2008
0.01655	Reductil CF Cartons Set 2 (5)		S9_2 CF 2011030 08_2008	0.00373	Reductil CF Cartons Set 2 (4)		54_1 CF 2011030 06_2006
S10				C2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.08351	Reductil CF Cartons Set 2 (6)		S10 CF 221518D 06_2007	0.01122	Reductil CF Cartons Set 2 (7)		C2 622678D 01_2008
0.24411	Reductil CF Cartons Set 2 (7)		C2 622678D 01_2008	0.24055	Reductil CF Cartons Set 2 (6)		S10 CF 221518D 06 2007

Key: Red Text = Incorrect Match

Appendix 3f - ATR Correlation Library Hits for Suspect Set 2

S8_1				S8_2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00107	CF Reductil ATR 2 (3)		S8_1 CF 273198D 01_2009 ATR	0.00127	CF Reductil ATR 2 (3)		S8 1 CF 273198D 01 2009 ATR
0.00158	CF Reductil ATR 2 (4)		S8_2 CF 273198D 01_2009 ATR	0.00182	CF Reductil ATR 2 (4)		\$8_2 CF 273198D 01_2009 ATR
S8_3				S8_4			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00078	CF Reductil ATR 2 (3)		S8_1 CF 273198D 01_2009 ATR	0.00067	CF Reductil ATR 2 (6)		S8_4 CF 273198D 01_2009 ATR
0.00141	CF Reductil ATR 2 (6)		S8_4 CF 273198D 01_2009 ATR	0.00079	CF Reductil ATR 2 (4)		S8_2 CF 273198D 01_2009 ATR
S9_1				S9_2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00195	CF Reductil ATR 2 (1)		S9 1 CF 2011030 08 2008 ATR	0.00244	CF Reductil ATR 2 (2)		S9_2 CF 2011030 08_2008 ATR
0.00237	CF Reductil ATR 2 (2)		S9 2 CF 2011030 08 2008 ATR	0.00511	CF Reductil ATR 2 (1)		S9_1 CF 2011030 08_2008 ATR
S10				C2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00140	CF Reductil ATR 2 (0)		S10 CF 221518D 06_2007 ATR	0.00037	Control Reductil ATR (5)		C2 622768D 12_2010 ATR
0.16336	CF Reductil ATR 2 (5)		S8_3 CF 273198D 01_2009 ATR	0.32134	CF Reductil ATR 2 (0)		S10 CF 221518D 06_2007 ATR

Appendix 3g -Specular Reflectance Derivative Correlation Library Hits for Suspect Set 2

S8_1				S8_2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.06064	Reductil CF Cartons Set 2 (3)		S8_4 CF 273198D 01_2009	0.08595	Reductil CF Cartons Set 2 (0)		S8_1 CF 273198D 01_2009
0.11586	Reductil CF Cartons Set 2 (0)		S8_1 CF 273198D 01_2009	0.09062	Reductil CF Cartons Set 2 (1)		S8_2 CF 273198D 01_2009
S8_3				S8_4			
Quality	Library	CAS#	Name	-	Same and Same		1220.000
0.09625	Reductil CF Cartons Set 2 (0)		S8 1 CF 273198D 01 2009	Quality	Library	CAS#	Name
0.11150	Reductil CF Cartons Set 2 (3)		S8 4 CF 273198D 01 2009	0.08525	Reductil CF Cartons Set 2 (3)		S8_4 CF 273198D 01_2009
0.16078	Reductil CF Cartons Set 2 (2)		S8 3 CF 273198D 01 2009	0 12974	Reductil CF Cartons Set 2 (0)		58_1 CF 273198D 01_2009
S9 1				S9 2			
Quality	Library	CAS#	Name	Quality	Library	CASH	linna
0.10234	Reductil CF Cartons Set 2 (5)		S9_2 CF 2011030 08_2008	Guainy	Clorary Discourse of the second	LAON	
0.10476	Reductil CF Cartons Set 2 (4)		S9_1 CF 2011030 08_2008	0.01413	Reductil CF Cartons Set 2 (5)		S9_2 CF 2011030 08_2008
				0.08901	Reductil CF Cartons Set 2 (4)		S9_1 CF 2011030 08_2008
S10				C2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.14848	Reductil CF Cartons Set 2 (6)		S10 CF 221518D 06_2007	0.10362	Reductil Control Cartons (1)		C2 622678D 01_2008
0.82526	Reductil CF Cartons Set 2 (7)		C2 622678D 01 2008	0.75418	Reductil CF Cartons Set 2 (6)		S10 CF 221518D 06_2007

Key: Red Text = Incorrect Match

Appendix 3h - ATR Derivative Correlation Library Hits for Suspect Set 2

S8 1				S8 2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.01504	CF Reductil ATR 2 (4)		S8 2 CF 273198D 01 2009 ATR	0.01369	CF Reductil ATR 2 (4)		S8 2 CF 273198D 01 2009 ATR
0.01512	CF Reductil ATR 2 (3)		S8_1 CF 273198D 01_2009 ATR	0.01471	CF Reductil ATR 2 (6)		S8_4 CF 273198D 01_2009 ATR
S8_3				S8_4			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.01220	CE Reductil ATR 2 (6)		C0 / CE 272100D 01 2000 ATD	0.01268	CF Reductil ATR 2 (4)		S8_2 CF 273198D 01_2009 ATR
0.01050	OF DeductinATT 2 (0)		30_4 CF 273190D 01_2009 ATK	0.01271	CF Reductil ATR 2 (6)		S8_4 CF 273198D 01_2009 ATR
0.01353	CF Reductil ATR 2 (5)		58_3 CF 273198D 01_2009 ATR				
S9_1				S9_2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.01852	CF Reductil ATR 2 (2)		S9 2 CF 2011030 08 2008 ATR	0.01947	CF Reductil ATR 2 (2)		S9_2 CF 2011030 08_2008 ATF
0.01931	CF Reductil ATR 2 (1)		S9_1 CF 2011030 08_2008 ATR	0.02437	CF Reductil ATR 2 (1)		S9_1 CF 2011030 08_2008 ATF
S10				C2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.01385	CF Reductil ATR 2 (0)		S10 CF 221518D 06_2007 ATR	0.01672	Control Reductil ATR (5)		C2 622768D 12_2010 ATR
0.47205	CE Reductil ATR 2 (6)		S8_4 CE 273198D 01_2009 ATR	0.61803	CE Reductil ATB 2 (0)		S10 CE 221518D 06 2007 ATB

Key: Red Text = Incorrect Match

Appendix 3i - Specular Reflectance Euclidean Library Hits for Suspect Set 2

S8_1				S8_2			
Quality 0.05947 0.07194	Library Reductil CF Cartons Set 2 (3) Reductil CF Cartons Set 2 (0)	CAS#	Name S8_4 CF 273198D 01_2009 S8_1 CF 273198D 01_2009	Quality 0.03383 0.04672	Library Reductil CF Cartons Set 2 (1) Reductil CF Cartons Set 2 (0)	CAS#	Name S8_2 CF 273198D 01_2009 S8_1 CF 273198D 01_2009
S8_3	1 an 1 m 1 m			S8_4			
Quality 0.04560 0.04948	Library Reductil CF Cartons Set 2 (2) Reductil CF Cartons Set 2 (0)	CAS#	Name S8_3 CF 273198D 01_2009 S8_1 CF 273198D 01_2009	Quality 0.04175 0.07159	Library Reductil CF Cartons Set 2 (3) Reductil CF Cartons Set 2 (0)	CAS#	Name S8_4 CF 273198D 01_2009 S8_1 CF 273198D 01_2009
S9 1				S9 2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.06312 0.06914	Reductil CF Cartons Set 2 (4) Reductil CF Cartons Set 2 (5)		S9_1 CF 2011030 08_2008 S9_2 CF 2011030 08_2008	0.00338 0.02288	Reductil CF Cartons Set 2 (5) Reductil CF Cartons Set 2 (4)		S9_2 CF 2011030 08_2008 S9_1 CF 2011030 08_2008
S10				C2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.11266	Reductil CF Cartons Set 2 (6)		S10 CF 221518D 06_2007	0.04858	Reductil CF Cartons Set 2 (7)		C2 622678D 01_2008
0.22982	Reductil CF Cartons Set 2 (7)		C2 622678D 01_2008	0.22748	Reductil CF Cartons Set 2 (6)		S10 CF 221518D 06_2007

Appendix 3j - ATR Euclidean Library Hits for Suspect Set 2

S8 1				S8 2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.02873	CF Reductil ATR 2 (3)		S8_1 CF 273198D 01_2009 ATR	0.03238	CF Reductil ATR 2 (3)		S8_1 CF 273198D 01_2009 ATR
0.03826	CF Reductil ATR 2 (4)		S8_2 CF 273198D 01_2009 ATR	0.03940	CF Reductil ATR 2 (5)		\$8_3 CF 273198D 01_2009 ATR
-				0.04024	CF Reductil ATR 2 (6)		S8_4 CF 273198D 01_2009 ATR
				0.04355	CF Reductil ATR 2 (4)		S8_2 CF 273198D 01_2009 ATR
S8_3				S8_4			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.02471	CF Reductil ATR 2 (3)		S8 1 CF 273198D 01 2009 ATR	0.02269	CF Reductil ATR 2 (6)		S8_4 CF 273198D 01_2009 ATR
0.03299	CF Reductil ATR 2 (6)		S8_4 CF 273198D 01_2009 ATR	0.03111	CF Reductil ATR 2 (3)		S8_1 CF 273198D 01_2009 ATR
S9_1				S9_2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.04034	CF Reductil ATR 2 (1)		S9_1 CF 2011030 08_2008 ATR	0.04639	CF Reductil ATR 2 (2)		S9_2 CF 2011030 08_2008 ATR
0.05045	CF Reductil ATR 2 (2)		S9_2 CF 2011030 08_2008 ATR	0.06334	CF Reductil ATR 2 (1)		S9_1 CF 2011030 08_2008 ATR
S10				C2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.03952	CF Reductil ATR 2 (0)		S10 CF 221518D 06_2007 ATR	0.01911	Control Reductil ATR (5)		C2 622768D 12_2010 ATR
0.26541	CE Beductil ATB 2 (5)		S8_3 CE 273198D 01_2009 ATR	0.40072	CE Deductil ATD 2 (0)		910 CE 221510D 06 2007 ATD

S11_1	I		-	S11_2	2		
Quality	Library	CASe	Name	Quality	Library	CAS# Na	me
0 99526	Reductil CF Cartons Set 3 (0)	1.1.1.2.2.2.2	S11_1 CF 250328D 08_2007	0.99518	Reductil CF Cartons Set 3 (1)	St	1_2 CF 250328D 08_2007
0.99452	Reductil CF Cartons Set 3 (1)		S11_2 CF 250328D 08_2007	0.98607	Reductil CF Cartons Set 3 (0)	S1	1_1 CF 250328D 08_2007
S12				S13			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99996	Reductil CF Cartons Set 3 (7)		S12 CF 394068D 01_2009	0.99384	Reductil CF Cartons Set 3 (2)		S13 CF 72783 04_2011
0.98632	Reductil CF Cartons Set 3 (3)		S14 CF 431648D 10_2008	0.75309	Reductil CF Cartons Set 3 (12)		C7 562428D 62_2010
S14				S15			
Quality	Library	CAS#	Name	Quality	Library	CASE	Nama
0.99344	Reductil CF Cartons Set 3 (3)		S14 CF 431648D 10 2008	0.00070	Distanti CE Cartana Sat 2 (6)	Union .	CAL OF 191310D 03 2000
0.98377	Reductil CF Cartons Set 3 (7)		S12 CF 394068D 01_2009	0.90008	Reductil Control Cartons (3)		C4 B72978 12_2009
S16							
Quality	Library	CAS	# Name				
0 99429	Reductil CF Cartons Set 3 (6)	105/943	S16 CF 73156 03 2012				
0.87343	Reductil Control Cartons (4)		C5 262818D 11_2007				
C3				C4			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.96586	Reductil CF Cartons Set 3 (8)		C3 B76053 12 2014	0.99842	Reductil Control Cartons (3)		C4 B72978 12 2009
0.86639	Reductil CF Cartons Set 3 (5)		S15 CF 481218D 02_2009	0.91311	Reductil Control Cartons (8)		C8 651498D 02_2011
C5				C6			
Quality	Library	CAS	4 Name	Quality	Library	CAS#	Name
0.00760	Deductil Central Cadens (4)	UP WIT	05 2628490 44 2007	0.99998	Reductil Control Cartons (6)		C6 713388D
0.99760	Reductil CE Control Cartons (4)		C5 2020100 11_2007	0.97300	Reductil Control Cartons (8)		C8 651498D 02_2011
C7	Reductin or Ganons Set 5 (0)		310 OF 13100 03_6016	Ce			
U/	1.2.22	0107		Uð.			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99884	Reductil Control Cartons (7)		C7 562428D 06_2010	0.99157	Reductil Control Cartons (8)		C8 651498D 02_2011
0.98930	Reductil Control Cartons (9)		C9 572308D 06_2010	0.97320	Reductil Control Cartons (o)		C6 /13388D
C9							
Quality	Library	C/	AS# Name				
0.99591	Reductil Control Cartons (9)		C9 572308D 06_2010				
0.99546	Reductil Control Cartons (7)		C7 562428D 06 2010				

Appendix 4a - Specular Reflectance Similarity Library Hits for Suspect Set 3

Appendix 4b - ATR Similarity Library Hits for Suspect Set 3

S11_1				S11_2	2		
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99978	CF Reductil ATR 3 (8)		S11 2 CF 250328D 08 2007 ATR	0.99645	CF Reductil ATR 3 (8)	5	811_2 CF 250328D 08_2007 ATR
0.99886	CF Reductil ATR 3 (7)		S11_1 CF 250328D 08_2007 ATR	0.99528	CF Reductil ATR 3 (7)		311_1 CF 250328D 08_2007 ATR
S12				S13			
Quality	Library	CA	S# Name	0	1940		
0.99996	Reductil CF Cartons Set 3 (7)		S12 CF 394068D 01 2009	Quality	Library	CAS	F Name
0.98632	Reductil CF Cartons Set 3 (3)		S14 CF 431648D 10 2008	0.99384	Reductil CF Cartons Set 3 (2)		S13 CF 72783 04_2011
				0.75309	Reductil CF Cartons Set 3 (12)		C7 562428D 62_2010
S14				S15			
Quality	Library	CASE	Name	Quality	Library	CAS#	Name
0.00627	CE Reductil ATR 3 (0)	ChOF	914 CE 421649D 10, 2009 ATP	0.99585	CF Reductil ATR 3 (4)		S15 CF 418218D 02_2009 ATF
0.98985	CE Reductil ATR 3 (3)		S12 CE 394068D 01 2009 ATR	0.79673	Control Reductil ATR (0)		C5 262818D 11_2007 ATR
S16							
Quality	Library	CAS#	Name				
0.99647	CE Beductil ATB 3 (2)		S16 CE 73156 03 2012 ATB				
0.92166	Control Reductil ATR (2)		C3 B76053 12_2014 ATR				
C3				C4			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99930	Control Reductil ATR (2)		C3 B76053 12_2014 ATR	0.99651	Control Reductil ATR (1)		C4 B72978 12_2009 ATR
0.90322	CF Reductil ATR 3 (2)		S16 CF 73156 03_2012 ATR	0.84324	Control Reductil ATR (0)		C5 262818D 11_2007 ATR
C5				C6			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99227	Control Reductil ATR (0)		C5 262818D 11_2007 ATR	0.99765	Control Reductil ATR (7)		C8 651498D 02_2011 ATR
0.92357	CF Reductil ATR 3 (0)		S14 CF 431648D 10_2008 ATR	0.99635	Control Reductil ATR (9)		C6 713388D 12 2010 ATR
C7				C8			
Quality	Library	CAS	# Name	Quality	Library	CAS#	Name
0.99502	Control Reductil ATR (4)		C7 562428D 06_2010 ATR	0.99878	Control Reductil ATR (7)		C8 651498D 02_2011 ATR
0.99047	Control Reductil ATR (8)		C9 572308D 02_2010 ATR	0.99672	Control Reductil ATR (9)		C6 713388D 12_2010 ATR
C9							
Quality	Library	CAS	# Name				
0.99819	Control Reductil ATR (8)		C9 572308D 02_2010 ATR				
0.99518	Control Reductil ATR (4)		C7 562428D 06_2010 ATR				

S11_1	l			S11_2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.92497	Reductil CF Cartons Set 3 (1)		S11_2 CF 250328D 08_2007	0.90292	Reductil CF Cartons Set 3 (1)		S11 2 CF 250328D 08 2007
0.90997	Reductil CF Cartons Set 3 (0)		S11_1 CF 250328D 08_2007	0.85048	Reductil CF Cartons Set 3 (0)		S11_1 CF 250328D 08_2007
S12				S13			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99316	Reductil CF Cartons Set 3 (7)		S12 CF 394068D 01 2009	0.92471	Reductil CF Cartons Set 3 (2)		S13 CF 72783 04 2011
0.85213	Reductil CF Cartons Set 3 (3)		S14 CF 431648D 10_2008	0.29587	Reductil CF Cartons Set 3 (3)		S14 CF 431648D 10_2008
S14				S15			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.92556	Reductil CF Cartons Set 3 (3)		S14 CF 431648D 10_2008	0.91096	Reductil CF Cartons Set 3 (5)		S15 CF 481218D 02_2009
0.87274	Reductil CF Cartons Set 3 (7)		S12 CF 394068D 01_2009	0.39724	Reductil CF Cartons Set 3 (9)		C4 B72978 12_2009
S16							
Quality	Library	CAS# 1	lame				
0.94627	Reductil CF Cartons Set 3 (6)	5	516 CF 73156 03 2012				
0.58931	Reductil CF Cartons Set 3 (0)	5	\$11_1 CF 250328D 08_2007				
C3				C4			
Quality	Library	CAS#	Name	Quality	Library	CAS	# Name
0.82957	Reductil CF Cartons Set 3 (8)		C3 B76053 12_2014	0.82220	Reductil Control Cartons (3)		C4 B72978 12 2009
0.19213	Reductil CF Cartons Set 3 (5)		S15 CF 481218D 02_2009	0.33757	Reductil Control Cartons (4)		C5 262818D 11_2007
C5				C6			
Quality	Library	CAS#	Name	Quality	Library	CASE	Name
0.93587	Reductil Control Cartons (4)		C5 262818D 11 2007	0 99220	Reductil Control Cartons (6)		C6 713388D
0.48713	Reductil Control Cartons (8)		C8 651498D 02_2011	0.64469	Reductil Control Cartons (8)		C8 651498D 02_2011
C7				C8			
Quality	Library	CAS#	Name	Quality	Library	CAS	₩ Name
0.95987	Reductil Control Cartons (7)	************************	C7 562428D 06_2010	0.90410	Reductil Control Cartons (8)		C8 651498D 02_2011
0.90984	Reductil Control Cartons (9)		C9 572308D 06_2010	0.67347	Reductil Control Cartons (6)		C6 713388D
C9							
Quality	Library	CAS#	Name				
0.94088	Reductil Control Cartons (7)		C7 562428D 06 2010				
0.93194	Reductil Control Cartons (9)		C9 572308D 06_2010				

Appendix 4c - Specular Reflectance Derivative Similarity Library Hits for Suspect Set 3

Appendix 4d	l - ATR De	erivative Sim	ilarity Library	Hits for	Suspect Set 3
-------------	------------	---------------	-----------------	----------	---------------

S11_1				S11_2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99978	CF Reductil ATR 3 (8)		S11_2 CF 250328D 08_2007 ATR	0.99645	CF Reductil ATR 3 (8)		S11_2 CF 250328D 08_2007 ATR
0.99886	CF Reductil ATR 3 (7)		S11_1 CF 250328D 08_2007 ATR	0.99528	CF Reductil ATR 3 (7)		S11_1 CF 250328D 08_2007 ATR
S12				S13			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.05787	CF Reductil ATR 3 (0)		814 CF 431648D 10_2008 ATR	0.98837	CF Reductil ATR 3 (1)	CAO#	S13 CF 72783 04 2011 ATR
0.07092	CF Reductil ATR 3 (3)		S12 CF 394068D 01_2009 ATR	0.67743	CF Reductil ATR 3 (3)		S12 CF 394068D 01_2009 ATR
S14				S15			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.99637	CE Beductil ATB 3 (0)	Ch0#	S14 CE 431648D 10, 2008 ATE	0.99585	CF Reductil ATR 3 (4)		S15 CF 418218D 02 2009 ATR
0.98985	CF Reductil ATR 3 (3)		S12 CF 394068D 01 2009 ATR	0.79673	Control Reductil ATR (0)		C5 262818D 11_2007 ATR
S16							
Quality	Library	CAS#	Name				
0 99647	CE Beductil ATB 3 (2)		S16 CE 73156 03 2012 ATB				
0.92166	Control Beductil ATB (2)		C3 B76053 12 2014 ATB				
		1					
C3				C4			
Quality	Library	CAS#	Name	Quality	Library	CAS	t Name
0.97771	Control Reductil ATR (2)	(C3 B76053 12_2014 ATR	0.97438	Control Reductil ATR (1)		C4 B72978 12_2009 ATR
0.74962	CF Reductil ATR 3 (8)	5	311_2 CF 250328D 08_2007 ATR	0.82083	Control Reductil ATR (0)		C5 262818D 11_2007 ATR
C5				C6			
Quality	Library	CAS#	Name	Quality	Library	CAS	Name
0.97489	Control Reductil ATR (0)		C5 262818D 11_2007 ATR	0.98143	Control Reductil ATR (7)		C8 651498D 02_2011 ATR
0.85434	Control Reductil ATR (1)		C4 B72978 12_2009 ATR	0.96432	Control Reductil ATR (9)		C6 713388D 12_2010 ATR
C7				C8			
Quality	Library	CAS#	Name	Quality	Library	CAS	# Name
0.97081	Control Reductil ATR (4)		C7 562428D 06_2010 ATR	0.98488	Control Reductil ATR (7)		C8 651498D 02 2011 ATR
0.93803	Control Reductil ATR (8)		C9 572308D 02_2010 AIR	0.97600	Control Reductil ATR (9)		C6 713388D 12_2010 ATR
C9							
Quality	Library	CAS#	Name				
0.98280	Control Reductil ATR (8)		C9 572308D 02_2010 ATR				
0.96059	Control Reductil ATR (4)		C7 562428D 06_2010 ATR				

Annendix 4	- Snecular	Reflectance	Correlation	Library	Hits for	Suspect Set 3
Аррениіх че	- Specular	Kenectance	Correlation	LIDIALY	11115 101	Suspect Set 5

S11_1				S11_2	2			
Quality 0.00474 0.00548	Library Reductil CF Cartons Set 3 (0) Reductil CF Cartons Set 3 (1)	CAS#	Name S11_1 CF 250328D 08_2007 S11_2 CF 250328D 08_2007	Quality 0.00482 0.01393	Library Reductil CF Cartons Set 3 (1) Reductil CF Cartons Set 3 (0)	CAS#	Nar S11 S11	ne _2 CF 250328D 08_2007 _1 CF 250328D 08_2007
S12				S13				
Quality	Library	CAS#	Name	Quality	Library.	C	ΔS#	Name
0.00004	Reductil CF Cartons Set 3 (7) Reductil CF Cartons Set 3 (3)		S12 CF 394068D 01_2009 S14 CF 431648D 10_2008	0.00616 0.24691	Reductil CF Cartons Set 3 (2) Reductil CF Cartons Set 3 (12)	0,	0011	S13 CF 72783 04_2011 C7 562428D 62_2010
S1 4				\$15				
0.0	1 Benev	0406	Mana	015	11	0104		
Quality	Library Reductil CE Contenes Set 3 (3)	CAS#	Name 814 CE 421548D 10 2008	Quality	Library Reductil CE Contena Set 2 (5)	CAS#	Nam	CE 494349D 03 3000
0.01623	Reductil CF Cartons Set 3 (7)		S12 CF 394068D 01_2009	0.09992	Reductil Control Cartons (3)		CAE	372978 12_2009
S16								
Quality	Library	CAS#	Name					
0.00571	Reductil CF Cartons Set 3 (6)		S16 CF 73156 03 2012					
0.12657	Reductil Control Cartons (4)		C5 262818D 11_2007					
C3				C4				
Quality	Library	CAS#	Name	Quality	Library		CAS#	Name
0.03414	Reductil CF Cartons Set 3 (8)		C3 B76053 12_2014	0.00158	Reductil Control Cartons (3)			C4 B72978 12_2009
0.13361	Reductil CF Cartons Set 3 (5)		S15 CF 481218D 02_2009	0.08689	Reductil Control Cartons (8)			C8 651498D 02_2011
C5				C6				
Quality	Library	CAS	# Name	Quality	Library	C.	AS#	Name
0.00240	Reductil Control Cartons (4)		C5 262818D 11_2007	0.00002	Reductil Control Cartons (6)			C6 713388D
0.11913	Reductil CF Cartons Set 3 (6)		S16 CF 73156 03_2012	0.02700	Reductil Control Cartons (8)			C8 651498D 02_2011
C7				C8				
Quality	Library	CAS	# Name	Quality	Library	(CAS#	Name
0.00116	Reductil Control Cartons (7)		C7 562428D 06_2010	0.00843	Reductil Control Cartons (8)			C8 651498D 02_201
0.01070	Reductif Control Cartons (9)		C9 572308D 06_2010	0.02680	Reductil Control Cartons (6)			C6 713388D
C9								
Quality	Library	CA	S# Name					
0.00409	Reductil Control Cartons (9)		C9 572308D 06 2010					
0.00454	Reductil Control Cartons (7)		C7 562428D 06 2010					

Appendix 4f - ATR	Correlation	Library 1	Hits for	Suspect Set 3
-------------------	-------------	-----------	----------	---------------

S11_1				S11_2			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00022	CF Reductil ATR 3 (8)		\$11_2 CF 250328D 08_2007 ATR	0.00355	CF Reductil ATR 3 (8)		S11_2 CF 250328D 08_2007 ATR
0.00114	CF Reductil ATR 3 (7)		\$11_1 CF 250328D 08_2007 ATR	0.00472	CF Reductil ATR 3 (7)		S11_1 CF 250328D 08_2007 ATR
S12				S13			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00385	CF Beductil ATB 3 (0)		S14 CF 431648D 10 2008 ATR	0.00048	CF Reductil ATR 3 (1)		S13 CF 72783 04_2011 ATR
0.00610	CF Reductil ATR 3 (3)		S12 CF 394068D 01_2009 ATR	0.13458	CF Reductil ATR 3 (0)		S14 CF 431648D 10_2008 ATR
S14				S15			
Quality	Library	049#	Nama	Quality	Library	CAS#	Name
Quality	CE De dustil ATD 2 (0)	CA0#	Name	0.00415	CF Reductil ATR 3 (4)		S15 CF 418218D 02_2009 ATR
0.00363	CF Reductil ATR 3 (U)		S14 CF 431648D 10_2008 ATR	0.20327	Control Reductil ATR (0)		C5 262818D 11_2007 ATR
0.01015	CF REducil ATR 5 (3)		512 CF 394000D 01_2009 ATK				
S16							
Quality	Library	CAS#	Name				
0.00353	CF Reductil ATR 3 (2)		S16 CF 73156 03_2012 ATR				
0.07834	Control Reductil ATR (2)		C3 B76053 12_2014 ATR				
C3				C4			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00070	Control Reductil ATR (2)		C3 B76053 12 2014 ATR	0.00349	Control Reductil ATR (1)		C4 B72978 12 2009 ATR
0.09678	CF Reductil ATR 3 (2)		S16 CF 73156 03_2012 ATR	0.15676	Control Reductil ATR (0)		C5 262818D 11_2007 ATR
C5				C6			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00773	Control Reductil ATR (0)		C5 262818D 11_2007 ATR	0.00235	Control Reductil ATR (7)		C8 651498D 02_2011 ATR
0.07643	CF Reductil ATR 3 (U)		S14 CF 431648D T0_2008 ATR	0.00365	Control Reductil ATR (9)		C6 713388D 12_2010 ATR
C7				C8			
Quality	Library	CAS	Name	Quality	Library	CAS#	Name
0.00498	Control Reductil ATR (4)		C7 562428D 06_2010 ATR C9 572308D 02_2010 ATR	0.00122	Control Reductil ATR (7)		C8 651498D 02 2011 ATR
0.00355	Control Reducal ATR (6)		C8 372300D 02_2010 AIN	0.00328	Control Reductil ATR (9)		C6 713388D 12_2010 ATR
C9							
Quality	Library	CAS	Name				
0.00181	Control Reductil ATR (8)		C9 572308D 02_2010 ATR				
0.00482	Control Reductil ATR (4)		C7 562428D 06_2010 ATR				

S11 1				S11 2	2		
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.07503	Reductil CF Cartons Set 3 (1)		S11 2 CF 250328D 08 2007	0.09708	Reductil CF Cartons Set 3 (1)		S11 2 CF 250328D 08 2007
0 09003	Reductil CF Cartons Set 3 (0)		S11_1 CF 250328D 08_2007	0.14952	Reductil CF Cartons Set 3 (0)		S11_1 CF 250328D 08_2007
S12				S13			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00684	Reductil CF Cartons Set 3 (7)	STANA CONTRACT	S12 CF 394068D 01_2009	0.07529	Reductil CF Cartons Set 3 (2)		S13 CF 72783 04_2011
0 14787	Reductil CF Cartons Set 3 (3)		S14 CF 431648D 10_2008	0.70413	Reductil CF Cartons Set 3 (3)		S14 CF 431648D 10_2008
S14				S15			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0 07444	Reductil CF Cartons Set 3 (3)	11614524	S14 CF 431648D 10 2008	0.08904	Reductil CF Cartons Set 3 (5)		\$15 CF 481218D 02_2009
0 12726	Reductil CF Cartons Set 3 (7)		S12 CF 394068D 01_2009	0.62188	Reductil Control Cartons (3)		C4 B72978 12_2009
S16							
Quality	Library	CAS#	Name				
0.05373	Reductil CF Cartons Set 3 (6)		S16 CF 73156 03_2012				
0.41069	Reductil CF Cartons Set 3 (0)		S11_1 CF 250328D 08_2007	ļ			
C3				C4			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.17043	Reductil CF Cartons Set 3 (8)		C3 B76053 12_2014	0 17790	Peduatil Control Cartons (3)		C4 B72079 12 2000
0.80787	Reductil CF Cartons Set 3 (5)		S15 CF 481218D 02_2009	0.66243	Reductil Control Cartons (5) Reductil Control Cartons (4)		C5 262818D 11_2007
C5				C6			
Quality	Library	CAS	# Name	Quality	Library	CAS#	Name
0.06413	Reductil Control Cartons (4)		C5 262818D 11_2007	0.00780	Reductil Control Cartons (6)		C6 713388D
0.51287	Reductil Control Cartons (8)		C8 651498D 02_2011	0.35531	Reductil Control Cartons (8)		C8 651498D 02 2011
C7				C8			
Quality	Library	CAS	S# Name	Quality	Library	CAS#	Name
0.04013	Reductil Control Cartons (7)		C7 562428D 06_2010	0.09590	Reductil Control Cartons (8)		C8 651498D 02 2011
0.09016	Reductil Control Cartons (9)		C9 572308D 06_2010	0.32653	Reductil Control Cartons (6)		C6 713388D
C9							
Quality	Library	CAS	S# Name				
0.05912	Reductil Control Cartons (7)		C7 562428D 06_2010				
0.06806	Reductil Control Cartons (9)		C9 572308D 06_2010				

Appendix 4g -Specular Reflectance Derivative Correlation Library Hits for Suspect Set 3

S11_1				S11_2	1		
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00022	CF Reductil ATR 3 (8)		S11_2 CF 250328D 08_2007 ATR	0.00355	CF Reductil ATR 3 (8)	0.01	S11_2 CF 250328D 08_2007 ATB
0.00114	CF Reductil ATR 3 (7)		S11_1 CF 250328D 08_2007 ATR	0.00472	CF Reductil ATR 3 (7)		811_1 CF 250328D 08_2007 ATR
S12				S13			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00385	CF Reductil ATR 3 (0) CF Reductil ATR 3 (3)		S14 CF 431648D 10_2008 ATR S12 CF 394068D 01_2009 ATR	0.01163	CF Reductil ATR 3 (1) CF Reductil ATR 3 (3)		813 CF 72783 04_2011 ATR S12 CF 394068D 01 2009 ATR
S14				S15			
Quality	Library	CAS#	Name	Quality	Libran	CA9#	Nama
0.00363	CF Reductil ATR 3 (0)		S14 CF 431648D 10_2008 ATR	0.00/15	CE Reductil ATR 2 (4)	GH0#	915 CE 419219D 02 2009 ATR
0.01015	CF Reductil ATR 3 (3)		S12 CF 394068D 01 2009 ATR	0.20327	Control Reductil ATR (0)		C5 262818D 11_2007 ATR
S16							
Quality	Library	CAS#	Name				
0.00353	CF Beductil ATB 3 (2)		S16 CF 73156 03 2012 ATB				
0.07834	Control Reductil ATR (2)		C3 B76053 12_2014 ATR				
C3				C4			
Quality	Library	CAS#	Name	Quality	Library	CAS	# Name
0.02229	Control Reductil ATR (2)		C3 B76053 12_2014 ATR	0.02562	Control Reductil ATR (1)		C4 B72978 12 2009 ATR
0.25038	CF Reductil ATR 3 (8)		S11_2 CF 250328D 08_2007 ATR	0.17917	Control Reductil ATR (0)		C5 262818D 11 2007 ATR
C5				C6			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.02511	Control Reductil ATR (0)		C5 262818D 11_2007 ATR	0.01857	Control Reductil ATR (7)		C8 651498D 02_2011 ATR
0.14566	Control Reductil ATR (1)		C4 B72978 12_2009 ATR	0.03568	Control Reductil ATR (9)		C6 713388D 12_2010 AIR
C7				C8			
Quality	Library	CAS	* Name	Quality	Library	CAS#	Name
0.02919	Control Reductil ATR (4) Control Reductil ATR (8)		C7 562428D 06_2010 ATR C9 572308D 02_2010 ATR	0.01512	Control Reductil ATR (7) Control Reductil ATR (9)		C8 651498D 02_2011 ATR C6 713388D 12_2010 ATR
С9							
Quality	Library	CAS#	Name				
0.01720	Control Reductil ATR (8)		C9 572308D 02_2010 ATR				
0.03941	Control Reductil ATR (4)	I	1 C7 562428D 06 2010 AIR				

Appendix 4h - ATR Derivative Correlation Library Hits for Suspect Set 3

Appendix 4i - Specular Reflectance Euclidean Library Hits for Suspect Set 3

S11_1				S11_2			
Quality	Library	CASH	Nama	Quality	Library	CAS# N	ame
0.02249	Deductil CE Castons Set 3 (0)	CADE	S41_1 CE 250222D 09_2007	0.03930	Reductil CF Cartons Set 3 (1)	S	11_2 CF 250328D 08_2007
0.03985	Reductil CF Cartons Set 3 (1)		S11_2 CF 250328D 08_2007	0.05738	Reductil CF Cartons Set 3 (0)	S	11_1 CF 250328D 08_2007
S12				S13			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.00302	Reductil CF Cartons Set 3 (7)	41.14C	S12 CF 394068D 01 2009	0.03595	Reductil CF Cartons Set 3 (2)		S13 CF 72783 04_2011
0.04586	Reductil CF Cartons Set 3 (3)		S14 CF 431648D 10_2008	0.23548	Reductil CF Cartons Set 3 (12)		C7 562428D 62_2010
S14				S15			
Quality	Library	CAS#	Name	Quality	Library	CAS# N	ame
0.03242	Reductil CF Cartons Set 3 (3)		S14 CF 431648D 10 2008	0.04547	Reductil CF Cartons Set 3 (5)	S	15 CF 481218D 02_2009
0.05134	Reductil CF Cartons Set 3 (7)		S12 CF 394068D 01_2009	0.13792	Reductil Control Cartons (3)	C	4 B72978 12_2009
S16							
Quality	Library	CAS#	Name				
0.03468	Reductil CF Cartons Set 3 (6)		S16 CF 73156 03 2012				
0.14051	Reductil Control Cartons (4)		C5 262818D 11_2007				
C3				C4			
Quality	Library	CAS#	Name	Quality	Library	CAS	Name
0.07885	Reductil CF Cartons Set 3 (8)		C3 B76053 12 2014	0.01775	Reductil Control Cartons (3)		C4 B72978 12_2009
0.19898	Reductil CF Cartons Set 3 (5)		S15 CF 481218D 02_2009	0.13076	Reductil Control Cartons (8)		C8 651498D 02_2011
C5				C6			
Quality	Library	CA	S# Name	Quality	Library	CAS	# Name
0.01957	Reductil Control Cartons (4)		C5 262818D 11_2007	0.00200	Reductil Control Cartons (6)	0,10	C6 713388D
0.14326	Reductil CF Cartons Set 3 (6)		S16 CF 73156 03_2012	0.07321	Reductil Control Cartons (8)		C8 651498D 02 2011
C7				C8			
Quality	Library	CA	S# Name	Quality	Library	CAS#	Name
0.01661	Reductil Control Cartons (7)		C7 562428D 06_2010	0.04067	Reductil Control Cartons (9)		C8 651498D 02 2011
0.04947	Reductil Control Cartons (9)		C9 572308D 06_2010	0.07205	Reductil Control Cartons (6)		C6 713388D
C9							
Quality	Library	CA	S# Name				
0.03017	Reductil Control Cartons (9)		C9 572308D 06_2010				
0.03110	Reductil Control Cartons (7)		C7 562428D 06_2010				

Appendix 4j -	ATR Euclidean	Library Hits	for Suspect Set 3
---------------	---------------	--------------	-------------------

S11_1				S11_2	1		
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.01518	CF Reductil ATR 3 (8)		S11_2 CF 250328D 08_2007 ATR	0.04940	CF Reductil ATR 3 (8)		S11_2 CF 250328D 08_2007 ATR
0.03008	CF Reductil ATR 3 (7)		S11_1 CF 250328D 08_2007 ATR	0.06031	CF Reductil ATR 3 (7)		811_1 CF 250328D 08_2007 ATR
S12				S13			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.05787	CF Reductil ATR 3 (0)		S14 CF 431648D 10_2008 ATR	0.02776	CE Reductil ATR 3 (1)	0-10#	813 CE 72783 04 2011 ATR
0.07092	CF Reductil ATR 3 (3)		S12 CF 394068D 01_2009 ATR	0.31215	CE Beductil ATB 3 (0)		S14 CE 431648D 10 2008 ATB
				0.01210			
S14				S15			
Quality	Library	CAS#	Name	Quality	Library	CAS#	Name
0.05274	CF Reductil ATR 3 (0)		S14 CF 431648D 10_2008 ATR	0.05568	CF Reductil ATR 3 (4)		S15 CF 418218D 02_2009 ATR
0.08494	CF Reductil ATR 3 (3)		S12 CF 394068D 01_2009 ATR	0.35894	Control Reductil ATR (0)		C5 262818D 11_2007 ATR
Quality [0.04937 0.23553	Library CF Reductil ATR 3 (2) Control Reductil ATR (2)	CAS	 Name S16 CF 73156 03_2012 ATR C3 B76053 12_2014 ATR 				
C3				C4			
Quality	Library	CAS#	Name	Quality	Library	CA	S# Name
0.02530	Control Reductil ATR (2)		C3 B76053 12_2014 ATR	0.04769	Control Beductil ATB (1)		C4 B72978 12 2009 ATB
0.26121	CF Reductil ATR 3 (2)		S16 CF 73156 03_2012 ATR	0.32075	Control Reductil ATR (0)		C5 262818D 11_2007 ATR
C5				C6			
Quality	Library	CAS#	Name	Quality	Library	CA	S# Name
0.07615	Control Reductil ATR (0)		C5 262818D 11_2007 ATR	0.03807	Control Reductil ATR (7)		C8 651498D 02_2011 ATR
1 0.23569	CF Reductil ATR 3 (0)		S14 CF 431648D 10 2008 ATR	0.04689	Control Reductil ATR (9)		C6 713388D 12_2010 ATR
C7				C8			
Quality	Library	CA	S# Name	Quality	Library	CA	S# Name
0.05790	Control Reductil ATR (4)		C7 562428D 06_2010 ATR	0.02798	Control Reductil ATR (7)		C6 712299D 12 2010 ATP
0.07979	Control Reductil ATR (8)		C9 572308D 02_2010 ATR	0.04433	control rieducar Arri (a)		00713300012_2010XIII
C9							
Quality	Library	CAS#	Name				
0.03854	Control Reductil ATR (8)		C9 572308D 02_2010 ATR				
0.05780	Control Reductil ATR (4)		C7 562428D 06_2010 ATR				

Appendix 5a - Techniques Statistical Comparisons Set 1 (Similarity, Derivative Similarity, and Euclidean Only)

One-way ANOVA, Paired T test and CI: Set 1 Sim SR results, Set 1 Sim ATR

One-way ANOVA, Paired T test and CI: Set 1 Der Sim SR results, Set 1 Der Sim ATR

LevelIndividual 95% CIs For Mean Based on Pooled StDevSet 1 Der Sim SR Results(------+-----)Set 1 Der Sim ATR Result(------+-----)0.8500.9000.950Pooled StDev = 0.067695% CI for mean difference: (-0.1688, -0.0502)T-Test of mean difference = 0 (vs not = 0): T-Value = -4.06P-Value = 0.002P Value is < 0.05</td>Conclusion is that there is a statistical difference between techniques.

One-way ANOVA, Paired T test and CI: Set 1 Euclid SR results, Set 1 Euclid ATR

Individual 95% CIs For Mean Based on Pooled StDev Level Set 1 Euc SR Results (-----) (-----) Set 1 Euc ATR Results 0.030 0.040 0.050 0.060 Pooled StDev = 0.0279995% CI for mean difference: (-0.0312, 0.0205) T-Test of mean difference = 0 (vs not = 0): T-Value = -0.46 P-Value = 0.656P Value is > 0.05Conclusion is that there is no statistical difference between techniques.

Appendix 5b - Techniques Statistical Comparisons Set 2 (Similarity, Derivative Similarity, and Euclidean Only)

One-way ANOVA, Paired T test and CI: Set 2 Sim SR results, Set 2 Sim ATR

One-way ANOVA, Paired T test and CI: Set 2 Der Sim SR results, Set 2 Der Sim ATR

LevelIndividual 95% CIs For Mean Based on Pooled StDevSet 2 Der Sim SR Results(-----+Set 2 Der Sim ATR Result(-----+0.9100.9450.980Pooled StDev = 0.029095% CI for mean difference: (-0.1156, -0.0446)T-Test of mean difference = 0 (vs not = 0): T-Value = -5.33P-Value = 0.001P Value is < 0.05</td>Conclusion is that there is a statistical difference between techniques.

One-way ANOVA, Paired T test and CI: Set 2 Euclid SR results, Set 2 Euclid

 Individual 95% CIs For Mean Based on Pooled StDev

 Level
 ------+----+

 Set 2 Euc SR Results
 (-------)

 (-------)
 -----+-----+

 0.030
 0.045
 0.060

 Pooled StDev = 0.02352
 95% CI for mean difference: (-0.0104, 0.0473)

 T-Test of mean difference = 0 (vs not = 0): T-Value = 1.51
 P-Value = 0.175

 P Value is > 0.05
 0.05

Conclusion is that there is no statistical difference between techniques.

Appendix 5c - Techniques Statistical Comparisons Set 3 (Similarity, Derivative Similarity, and Euclidean Only)

One-way ANOVA, Paired T test and CI: Set 3 Sim SR results, Set 3 Sim ATR

95% CI for mean difference: (-0.00833, 0.00321)T-Test of mean difference = 0 (vs not = 0): T-Value = -0.96 P-Value = 0.356 P Value is > 0.05 Conclusion is that there is no statistical difference between techniques.

One-way ANOVA, Paired T test and CI: Set 3 Der Sim SR results, Set 3 Der Sim ATR

One-way ANOVA, Paired T test and CI: Set 3 Euclid SR results, Set 3 Euclid
Appendix 6a - Within Specular Reflectance Statistical Comparison of Sets by One-way ANOVA

Similarity

Derivative Similarity

Pooled StDev = 0.06774, P = 0.164 Since P Value is > 0.05 Conclusion is that there is no statistical difference between the predicted sets.

Euclidean

Pooled StDev = 0.02467, P = 0.152

Since P Value is > 0.05Conclusion is that there is no statistical difference between the predicted sets.

Appendix 6b - Within ATR Statistical Comparison of Sets by One-way ANOVA

Similarity

Derivative Similarity

				Individual 95%	CIs For	Mean Based	on Pooled	StDev
Level	Ν	Mean	StDev	+	+	+	+-	
Set 1	12	0.97855	0.01209	()				
Set 2	8	0.98531	0.00295	(*	-)		
Set 3	14	0.99646	0.00305	(*)				
				+	+		+-	
				0.9800	0.9870	0.9940	1.0010	

Pooled StDev = 0.00760, P = 0.000 P Value is < 0.05Conclusion is that there is a statistical difference between the predicted sets.

Euclidean

 Individual 95% CIs For Mean Based on Pooled StDev

 Level N
 Mean StDev

 Set 1
 12
 0.04466
 0.03054

 Set 2
 8
 0.03416
 0.00996

 Set 3
 14
 0.04626
 0.01592

 0.020
 0.030
 0.040
 0.050

Pooled StDev = 0.02144, P = 0.426 P Value is > 0.05 Conclusion is that there is no statistical difference between the predicted sets.

Appendix 7 - Assessment of All Sets Across All Algorithms by Unstacked ANOVA

Using all sample sets and the Euclidean data reciprocal (to allow correlation precision to 1)

One-way ANOVA: All Sim SR r, All Sim ATR , All Der Sim , All Der Sim , ...

MS Source DF SS F Ρ
 Factor
 5
 0.22394
 0.04479
 42.52
 0.000

 Error
 198
 0.20854
 0.00105
 0.43248
 S = 0.03245 R-Sq = 51.78% R-Sq(adj) = 50.56% Level Ν Mean StDev
 All Sim SR results
 34
 0.9900
 0.0153

 All Sim ATR Results
 34
 0.9966
 0.0045
 All Der Sim SR Results 34 0.8988 0.0696 All Der Sim ATR Results 34 0.9875 0.0109
 All Euc SR Rec
 34
 0.9611
 0.0254

 All Euc ATR Rec
 34
 0.9571
 0.0214
 Individual 95% CIs For Mean Based on Pooled StDev Level All Sim SR results (---*---) All Sim ATR Results (--*---) All Der Sim SR Results (---*--) All Der Sim ATR Results (--*---) All Euc SR Rec (--*---) (---*---) All Euc ATR Rec 0.900 0.930 0.960 0.990

Pooled StDev = 0.0325