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Abstract 

 

The Vehicle Routing Problem with all its variants and richness is still one of the most 

challenging Combinatorial Optimization problems in the Management Science / Operations 

Research arena since its introduction in the 1950s. In this research we introduce a real life 

Vehicle Routing Problem, inspired by the Gas Delivery industry in the UK. It has various real 

life attributes which have not been researched in the past, such as demand-dependent service 

times, light load requirements and allowable overtime coupled with unlimited vehicle fleet. A 

Mixed Integer formulation of the problem is presented and the problem is solved to 

optimality, reporting optimal solutions and lower and upper bounds. After solving the real life 

routing problem, both optimally and heuristically some interesting observations and practical 

implications are reported, relating to better fleet utilization and better working time 

utilization. 

We design three initial solution methods, namely the Adapted Sweep, the Adapted Nearest 

Neighbour and the Parallel Clustering method. They are motivated by the real attributes of 

the Vehicle Routing Problem under research and show a very good performance in terms of 

reaching a good initial solution quality as compared to other famous initial solution methods 

in the literature. Moreover, the Adapted Sweep and the Adapted Nearest Neighbour have 

computational times of less than one second. 

Two new hybrid metaheuristic methods are designed in order to address the real life Vehicle 

Routing Problem. A Population Variable Neighbourhood Search with Adaptive Memory 

Procedure is the first method, which aims to incorporate and hybridize the learning principles 

of Adaptive Memory into a method which does not make use of memory structures in its 

original form, namely the Variable Neighbourhood Search. Moreover, we use a Population 

version of the Variable Neighbourhood Search in order to provide diversification to the 

method and to aid the learning aspect of the method. The Population Variable 

Neighbourhood Search with Adaptive Memory Procedure was tested extensively on the real 

life Vehicle Routing Problem, as well as relevant literature benchmark instances and it was 
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found to perform well in comparison with the optimal solutions we generated. Moreover, the 

method shows a good performance on the benchmark instances with less than 1% deviation 

from the Best Known Solutions in the literature.  

We later extend the Population Variable Neighbourhood Search with Adaptive Memory 

Procedure (PVNS_AMP) and hybridize it with aspects from Tabu Search in order to create the 

second new hybrid metaheuristic method, namely the Population Variable Neighbourhood 

Search with Adaptive Memory Procedure and Tabu Search principles (TS_PVNS_AMP). The 

TS_PVNS_AMP was found to have better performance on the RVRP without overtime, and 

superior performance on the RVRP with overtime as compared to the PVNS_AMP. Moreover, 

the TS_PVNS_AMP showed a better performance than the PVNS_AMP on the relevant 

literature benchmark instances reaching Best Known Solutions in the literature with less than 

0.5 % deviation from the Best Known Solutions on average. 

We have also tested our proposed algorithms on other VRP problems, such as the 

Heterogeneous Fleet VRP with imposed fleet and the School Bus Routing Problem. We have 

done this experimentation in order to test the generalizability of the methods and their 

flexibility in addressing other problems from the Vehicle Routing family. Our methodology 

showed good performance on the literature benchmarks for both problems in terms of 

solution quality and computational time, as well as a good degree of flexibility in terms of 

finding good heuristic solutions. 
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Chapter 1 

 

Introduction 

 

1.1. Purpose of the research 

The purpose of this research is to formulate and solve a real life Vehicle Routing Problem 

inspired by the UK Gas delivery industry, as well as design a new hybrid metaheuristic method 

to address the RVRP. The new method is also tested on other relevant Vehicle Routing 

Problems from the literature, in order to show algorithmic efficiency and a degree of 

methodological generalizability. 

1.2. Objectives of the research   

The three main objectives of this research are as follows: 

(i)  To introduce a new real life Vehicle Routing Problem (RVRP) variant, which reflects the real 

routing practices of a gas delivery company in the UK. It is characterized with heterogeneous 

vehicle fleet, demand-dependent service times, special requirement for light load, maximum 

allowable overtime and other relevant routing elements.  

(ii) To present a new Mixed Integer Formulation of the RVRP and test it using Cplex, where 

optimal solutions and lower/upper bounds are reported where possible.  

(iii) For the RVRP introduced in this research, only small problem instances can be solved to 

optimality. Therefore, a new metaheuristic algorithm is designed to solve the proposed RVRP. 

It is based on the classical Variable Neighbourhood Search (VNS), but it is adapted in a 

population-based manner, hence becoming Population VNS or PVNS.  It also makes use of 

learning principles and mechanisms inspired by Adaptive Memory Programming (AMP). We 

refer to the new method as PVNS_AMP. The PVNS_AMP was later enhanced by adding 

principles from Tabu Search, which resulted in a new hybrid metaheuristic method, which we 

call TS_PVNS_AMP. 
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1.3. Contribution to Knowledge 

The contribution to knowledge stems from the 3 main objectives of this research, namely to 

introduce a new RVRP to the literature, to design a new methodology to address the RVRP 

and to demonstrate the methodological efficiency and potential for generalization to other 

relevant problems from the VRP domain. Therefore, the contribution of this research is 

threefold and it is stated below: 

(i) Researching a Vehicle Routing Problem, which can be applied in real setting, is one of the 

main drivers in the literature over the years and it fits into the current trend of minimizing the 

gap between optimization and real life practices. Moreover, adapting the classical Vehicle 

Routing Problem to better represent real operations is the reason for the steep growth of the 

Vehicle Routing Problem variants. To the best of our knowledge, there is no VRP problem in 

the literature which considers the same routing elements, as the one introduced in this 

research, which makes it a new RVRP variant. Researching a RVRP requires some practical 

implications of how routing practices can be improved, since it is inspired by real operations. 

One of the ultimate contributions of researching a RVRP is to be able to show that as a result 

of the study, there can be some cost savings or ways to improve the current practice. This 

research offers some interesting insights and analysis of the results of the study, which show 

great potential for cost savings and more efficient routing. 

(ii) Testing the formulation of the RVRP on Cplex is for methodological purposes. It is common 

in the literature when addressing a RVRP, that either an exact method or heuristic method is 

used, but rarely both. Moreover, there are no universal literature benchmark instances for 

RVRPs, because they are so different from one another. Therefore, having an optimal solution 

and lower/upper bounds, acts as a guide for the efficiency of any proposed heuristic method 

and serves as a methodological comparability platform. This is an important aspect when 

dealing with RVRPs and it is not yet addressed in the literature. 

(iii) The new method introduced in this research, namely the PVNS_AMP, employs learning 

mechanisms for extracting good solution sequences with good diversity of candidate solutions 

used to enhance learning and diversification of the solution space search. The enhanced 

method, namely the TS_PVNS_AMP shows superior performance to the PVNS_AMP, 

demonstrating greater intensification of the search space and a good performance on 



3 
 

literature benchmark instances, reaching best known solutions which in most cases are 

proved to be optimal. Moreover, we test our methodology on other relevant Vehicle Routing 

Problems, such as the Fleet Size and Mix VRP (FSMVRP), the Heterogeneous fleet VRP with 

imposed fleet (HFVRP) and the School Bus Routing Problem (SBRP), in order to test the 

generalizability of our methodology to other problems within the VRP domain. This is not 

commonly done in the literature, because real-life VRPs are very problem specific. However, 

in this research the trend for methodological generalizability is incorporated and some 

interesting results and observations are reported.  

1.4. Background of the Research 

Transportation is an inseparable part of any society. It has a very close relation with other 

aspects of life ranging from personal lifestyle and status to the general ability to consume and 

distribute utilities, goods, commodities and skills. The world today is more economically, 

socially and politically integrated than any other time in history. Advances in the area of 

transportation not only shorten the distance between countries, companies and people but 

are a major landmark for humanity.  Therefore, researchers still aim to improve the way we 

travel and transport. Some academic publications are concerned with the benefits of 

transportation and how it improves and helps societies, especially in economic and political 

context. However, most of the publications in many academic areas, such as marketing, 

supply chain, economics and management science/ operational research, are concerned with 

minimizing the cost of travel and the significance of finding new concepts and methods to 

make transportation more effective and cost efficient ranging from innovative supply chain 

management principles to specific algorithms for distribution.  

The reason why businesses are concerned with improvement in transportation capability is 

because it allows them to build strategic competences based on just-in-time management, 

added value, consumer relations, as well as improving the business flexibility, effectiveness 

and efficiency (Morash, 1997). Companies can have cost advantage before competitors, 

differentiation advantage or both (Jobber, 2008). Therefore, continuous academic and 

practical efforts are directed towards achieving cost advantage through transportation 

optimisation and in practice many companies have based their strategic competence on 

distribution optimisation, such as Tesco Plc (Jobber, 2008). Nowadays, there is little economic 

growth in the different sectors of transportation in the UK and the delivery cost of goods and 
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services for the end user is increasing, as well as pushing up the Consumer Price Index (Office 

of National Statistics, 2012). The main reason for this is the sharp increase in fuel cost and 

operational costs. Therefore the first key area of consideration in the transportation sector 

outlined by the Freight Transport Association is minimizing costs of distribution, followed by 

delivering high quality service, human resource considerations and minimizing carbon 

emissions (The Logistics Report, 2012).  

Transportation has many definitions, depending on the area it is applied to. For the purpose of 

this research transportation is defined as “transportation of materials and products to and 

from markets and suppliers” (Transportation Research Board). Moreover, the focus here is 

distribution of goods by road, which in the UK is responsible for 60% of the total movement of 

goods (Transportation Statistics Great Britain, 2011). 

Road distribution and transportation falls under the umbrella term “logistics”. Logistics is the 

management of resource flow from an origin point to various destination points, in order to 

meet a set of needs, either individual or corporate. The resource flow can be food, materials, 

liquids, utilities, materials and many more. Depending on the transported commodity, the 

nature of the business, the fleet size and other operational and strategic aspects of the 

business, the logistics system can be optimized in a way to fit the companies’ objectives and 

minimize costs. Logistics is a part of the supply chain management process and there are 

various types of logistics such as procurement, production, distribution, disposal and reverse. 

The traditional logistics management encompasses decisions ranging from production timing, 

warehousing, inventory management and control, just-in-time management, purchasing, 

vehicle maintenance. It is a full managerial concept for complete understanding of 

production, distribution channels and after sales management. Some researchers focus on 

inventory optimisation, others on just-in-time delivery, whereas this research fits into the 

stream of vehicle routing and scheduling optimisation. 

Optimising logistics is not only an issue for individual companies in their attempt to achieve 

competitive advantage and maximum efficiency.  Advance in the area of logistics is also a 

national and international priority.  For instance in the UK there is a Chartered Institute for 

Logistics and Transport, which supports knowledge and advances in the area, providing 

membership for major logistics companies. Moreover, there is a European Union body 
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Eurodecision Operational Research, which provides solutions for various aspects of logistics 

optimisation, such as route optimisation, planning optimisation, staff optimisation. 

Additionally, it provides information on software and models for solving various logistics 

problems using linear programming, non-linear programming, metaheuristics methods, 

artificial intelligence and many more (EUOR, 2012). The logistics management involves 

strategic and operational decisions. The operational decisions are location, production, 

inventory and distribution. The distribution element is the single most important element for 

companies and a key area for decision making in the logistics mix, because for most firms 

transportation incurs the greatest costs (Marinakis, 2012) and driving costs down is beneficial 

both for companies and consumers (Toth and Vigo, 2002). Moreover, decision making for 

distribution has to be fast and timely, as it has shorter planning horizons. Therefore, designing 

new efficient and fast algorithms to better optimize distribution is paramount for advances in 

economy and academia. 

This research is focused on road transport optimization, which is inspired by real life company 

operations. It falls into the family of Vehicle Routing Problems. The Vehicle Routing Problem 

(VRP) is a Combinatorial Optimisation (CO) problem which belongs to the area of 

Management Science and Operations Research (MS/OR). There are two fundamental 

approaches known in the literature used to address the VRP. On one hand there is the 

classical heavily quantitative approach, which deals with VRP in a more ‘laboratory’ manner 

and the aim is to design quantitative solution methods for exact or heuristic optimization. On 

the other hand there are the Soft Systems Methodologies and Problem Structuring Methods, 

which argue to be alternative to the classical approaches and aim to capture real world 

uncertainties and complexities (Kirby, 2007), as well as some qualitative aspects. This research 

belongs to the former approach, but it occupies an area in the MS/OR literature, which is 

gaining much popularity nowadays, namely the real life Vehicle Routing Problems (RVRP). Real 

life problems still do not have a widely accepted definition, but what is common for them is 

that they follow the classical approach and provide efficient quantitative solutions for RVRPs, 

but also incorporate routing characteristics that are usually informed by real routing 

operations. 

The area of RVRP is gaining much popularity mainly because there is a trend in the literature 

to bring academia closer to industry practices. Some criticisms that the OR community 
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experiences an ‘over-mathematization’ and simplification of the optimization problems (Kirby, 

2007) lead to a quest for more real life oriented VRP variants, which incorporate elements of 

real logistics operations. Nowadays, capacities of vehicles, demands and distances are not 

sufficient elements to build a true representation of the VRP and much more is demanded 

from authors, in order to make a significant contribution to the literature. The new problem 

introduced here and the motivations behind it fit into the trend of minimizing the gap 

between literature and operations and make the application of the RVRP much more 

practical. Contrary to common approaches to VRP research, here an exploratory research is 

conducted prior to the formulation of the research question with the aim to discover the 

important VRP elements to be modelled. 

1.5. Thesis outline  

This thesis begins with a detailed literature review in Chapter 2 of any relevant VRP variants 

and solution methods used to address VRPs. The focus is placed on any VRP variants and 

solution methods, which are relevant to this research. Chapter 3 provides a full description of 

the RVRP problem under study, as well as formulation and optimal solutions achieved by 

Cplex. Chapter 4 details the initial solution methods we designed in order to generate a 

starting point for our metaheuristic algorithms, with relevant descriptions and computational 

experience. Chapter 5 and 6 give details on the hybrid metaheuristic methods we designed, 

namely PVNS_AMP and TS_PVNS_AMP. Description of the algorithmic steps is provided for 

each method, as well as any relevant parameter testing, methodological justification and 

detailed results on the RVRP and literature benchmark instances. Chapter 7 offers an 

extension to the application of our methodology, where we test it on other relevant VRP 

problems for a degree of generalizability.  Chapter 8 provides a rounded conclusion detailing 

the main findings and interesting observations from this research. Moreover, we discuss how 

we have achieved the main objectives of this research and our contribution to the body of 

knowledge. Finally, we provide directions for further research, which are motivated by our 

findings and computational experience. 
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Chapter 2 

 

Literature Review 

 

This literature review will focus on two key aspects. 

(i) Some of the most researched variants of the VRP, as well as the classical VRP are described, 

with the focus being on VRPs relevant to the RVRP in this study. RVRPs are discussed in more 

depth and some critical perspective is offered on their definition and methodological 

justification. 

(ii) A review of the exact methods for the VRP is offered, but the focus is on heuristic 

methods, because this study aims to design a new hybrid metaheuristic method to address 

the RVRP. A classification of the heuristic methods is presented, as well some details and 

successful applications of the methods. The methods which are used in this study are 

discussed in-depth, as well as some of the most powerful methods in the literature which are 

responsible for various best known solutions.  

2.1. The history of the Vehicle Routing Problem 

 

Combinatorial Optimization (CO) is a topic, which aims to find optimal objects from a finite set 

of objects, for instance finding a shortest path in an undirected graph. Usually, there is a set of 

discrete feasible solutions and the goal is to find the best solution. Combinatorial means that 

all possible combinations of the decision variables must be exploited in order to find an 

optimal solution (Gambardella, 2005). For this type of problems explicit enumeration and 

exhaustive search is not always feasible, because with the increase of possible decision moves 

the complexity of the problem increases exponentially, as well as the time necessary to solve 

it. According to computational complexity theory, the VRP belongs to the class of NP-hard 

problems (Non-Deterministic Polynomial time hard), which classifies how easy or hard certain 

types of decision problems are to solve. There is still some debate on whether certain CO 

problems belong to NP or NP-hard or P. Put simply, VRP being a NP-hard problem, means that 
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there exists an algorithm which can solve the problem on a non-deterministic machine (with 

unlimited parallelism) and a deterministic machine can verify that the solution is correct in 

polynomial time. An algorithm for solving CO problems is good if it can be solved in 

polynomial time. For smaller instances exhaustive search (exact) methods can be used to 

solve a VRP in polynomial time, whereas larger instances are impossible to solve exactly, 

because of the intrinsic complexity of the problems. This is why there is great academic effort 

to design heuristic (approximate) algorithms, which are polynomial and provide quick good 

solutions to large VRP problems. Some authors even state that the NP-hard nature of VRPs is 

what pushed researchers to explore and use heuristic methods (Yeun, 2008). For further 

insight on computational complexity, readers are referred to Lawler (1976). 

The VRP is based on the famous CO problem The Travelling Salesman Problem (TSP). The TSP 

is an NP-hard problem as well, however until present day much larger instances are solved to 

optimality. The origin of the TSP dates back to 1800, when Sir William Hamilton created the 

Icosian Game. It was in the form of a pegboard with 20 holes and each vertex was required to 

be visited only once, where the ending point is the same as the starting point. The resulting 

path that connects all vertices is referred to as a Hamiltonian Circuit. Therefore, the optimal 

solution to the TSP is a Hamiltonian circuit in a complete weighted graph (graph, where each 

vertex is connected to one another by a single edge, which carries a specific value, usually 

representing a cost, distance or other value), which has the smallest sum of edges value 

(Fields, 2004). 

Following the principle of the Icosian game, the purpose of the TSP is to find the shortest tour 

from a starting point that visits all vertices (cities) exactly once and returns to the origin. Each 

possible tour can be described as a cyclic permutation π, which represents the order in which 

a salesperson visits all cities. The objective is to find the minimum length permutation π. For 

an instance with n cities, there are (n - 1)! possible permutations that have to be compared, in 

order to find the shortest one (Fields 2004). Figure 2.1 shows possible solutions for a small 

TSP. Finding the shortest permutation requires examining all possible combination of 

sequences of all cities. Figure 2.1 only shows three possible solutions, whereas in fact for a 

problem with 7 nodes, there are 720 possible solutions that all need to be explored in order to 

find the optimal. 
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Figure 2.1: Possible Solutions for a TSP 
 

The more cities there are, the more permutations there are to be explored, which increases 

computational time and effort. Therefore, the larger the instance there is no guarantee that 

an optimal solution will be found within reasonable time (Dantzig and Ramser, 1959). The TSP 

is one of the most researched problems and there is software which can guarantee optimality 

for up to 2 million nodes. However, the VRP problem is more complex and optimal solution 

can be guaranteed for up to 135 nodes for its classical form (Semet, Toth and Vigo, 2014).  

The first academic publication on the Vehicle Routing Problem (VRP) is in 1959 by Dantzig and 

Ramser, who pioneered the problem in its classical form under the name of the “Truck 

Dispatching Problem”. The approach is based on linear programming and it aims to find near 

optimal solution to the VRP. Considering a complete graph ( , )G V A  the VRP has a set of 

vertices (0,..., )V n , where vertex 0 refers to the depot and vertices (1,..., )n  to the 

customers. There is a set of arcs (1,..., )A n  and each arc ( , )i j  has an associated cost 
ijc A

, which represents the cost of travel from customer i   to j . Local subtours where customers 

are revisited are not allowed, therefore iic  = + ∞ for all i V  (Toth and Vigo, 2002), except 

for the global subtour starting and ending at the depot. There are 3 fundamentally different 

types of VRP depending on the nature of the graph G. It can be symmetric (where the distance 

from i  to j  is the same as from j  to i ), asymmetric (where the distance from i  to j  is not 

the same as from j  to i ) and Euclidean (where the distance between i  and j  is the 

Euclidean distance), which is a type of a symmetric problem.  

Each customer , ( 1,..., )i i n  is associated with known nonnegative demand iq , where the 

demand of the depot is 0oq  . Each vehicle has an equal capacity Q , and it is assumed that 

each iq Q  .The minimum number of vehicles to be used in the VRP can be calculated using a 
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trivial lower bound by dividing the total demand of all customers by the capacity of the 

vehicles. Alternatively, the optimum number of vehicles can be found by solving the Bin 

Packing Problem (BPP), which can accommodate up to hundreds of customers to optimality. 

The aim of the VRP is to find k simple circuits, each corresponding to one vehicle, which will 

service the customers in optimal sequences and return to the depot at minimum cost. The 

classical features to the VRP are in place for almost all variants of the problem and are 

adopted from Toth and Vigo (2002). Figure 2.2 also shows a small graphical solution of the 

VRP. 

 Each circuit starts and ends at the depot; 

 The total demand of the customers on the route does not exceed the vehicle capacity C;  

 Each customer vertex is visited exactly once and there are no subtours (excluding the final 

tour starting and ending at the depot);  

 

 
 Figure 2.2: Possible solution of the CVRP 
 

The VRP can be formulated in many ways, depending on the solution approach adopted. One 

can adopt a commodity flow model, a set-partitioning model, and a dynamic programming 

model. For further reading on the VRP formulations the reader is referred to a recent review 

by Laporte (2009) and Toth and Vigo (2002). The commodity flow formulation is as follows: 

Minimize Z =
1 1

n n

ij ij

i j

x c
 

          (1) 

Subject to: 
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ijy ≥ 0;      (i ≠ j =1,…,n);     (7) 

ijx  =  0,1      (i ≠ j =1,…,n)                (8) 

The Objective function (1) minimizes the total cost of travel by the fleet as well as minimises 

the number of vehicles used. Constraints (2) and (3) are called indegree and outdegree, which 

impose that each customer is visited and left exactly once. Constraint (4) ensures that there 

are no subtours where constraints (5) and (6) ensure the capacity restriction is not violated. 

Constraint (7) specifies that the load should be a positive real number and constraint (8) the 

binary nature of the 
ijx  variable. This Mixed Integer Programming (MIP) model is commonly 

used as a base model for any VRP variant and any additional features, constraints or objective 

function components are added to the model or adjusted to the nature of the problem. 

2.2 Variants of the Classical VRP 

 

The literature is increasingly focusing on real world problems, inspired from real 

organisational operations within the transportation and retail sector. In reality vehicle routing 

is not as simple as the classical VRP problem. There are many other restrictions that apply to 

organisational operations. For instance, the vehicle fleet can have heterogeneous size and 

capacity, there may be a need not only for delivery but also for pickup of goods at customer 

points, the demands may be unknown, and customers may be visited only within a certain 

time window. Moreover, there is the human factor as well, where drivers must have 
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compulsory breaks, may have overtime, there may be a vehicle breakdown etc. Optimising 

transportation is a priority not only for academia and economy but for governments as well, 

and further advances in the area are highly valuable. Real routing practices inspire the 

research on VRP and also are the triggers for creating more complex variants of the classical 

VRP. This section gives some more insight into some of the most researched VRP variants and 

provides relevant formulations. 

The Vehicle Routing Problem with Time Windows (VRPTW) 

The time window is described as a window of opportunity for delivery, which has earliest 

allowed time for start of delivery (arrival time, a) and latest allowed time (closing time, b). 

Building up from the classical VRP, the VRPTW has the same constraints with an additional 

requirement that each customer i  can be visited within a time interval [      . Therefore, 

each vehicle has to deliver goods to customers within a specified service time    and in case of 

early arrival it has to wait until    begins. The VRPTW is usually modelled as asymmetric, 

because the time window and any waiting time imply that the distance between i  and j  may 

be different from j  to i  (Toth and Vigo, 2002). It can also be modelled as symmetric 

depending on the objective function and constraints. Typically there is cost 
ijc  and time 

ijt

associated with each arc. This variant is one of the most researched in the literature and there 

are other extended variants derived from it. There is no universally accepted way for 

modelling the VRPTW, however what needs to be considered in the time window restriction 

in addition to the CVRP. Some formulations include time windows for the depot, which govern 

the length of a working shift. Others also take account of service time lengths or costs. In 

addition to the minimum cost routing schedule, the output of the VRPTW can also include the 

respective timing schedule with arrival times at each customer and back at the depot. This 

would require some extra constraints to keep track of arrival times and maximum allowable 

time for the tours. Here we offer a mixed integer formulation of the VRPTW, with hard time 

windows where the objective function is to minimize the cost of travel and number of vehicles 

used, and ensure the time windows are not violated for each vehicle (1,..., )k K . In addition 

to the Classical VRP formulation the VRPTW has an extra decision variable, which is the service 

time at which a vehicle begins to serve customer i   and it is denoted with iks . 
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Minimize Z =
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           (1) 

Subject to: 

1 1

n K

ijk

i k

x
 

  = 1     (j=0…n);      (2) 

1 1

n K

ijk

j k

x
 

  = 1     (i =0…n);      (3) 

1

n

ipk

i

x


  -
1

n

pjk

j

x


  = 0    (k =1…K), (p =0…n);     (4) 

1

n

ij

i

y


  - iq  = 
1

n

ji

i

y


     (j=1…n);      (5) 
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K
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K
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 

      (i ≠ j =1…n);      (7) 

(1 )ik ij ijk jks t M x s      (i ≠ j =1…n), (k =1…K);    (8) 

i ik ia s b      (i =1…n), (k =1…K);     (9) 

ijy , iks ≥ 0;    (i ≠ j =1…n);      (10) 

ijkx  =  0,1     (i ≠ j =1…n);                 (11) 

The extra constraints to the classical VRP are (8) and (9), which make sure that the service of 

customer i  can only start if the time window is open. There are two types of time windows, 

soft and hard. Soft time windows can be violated at a cost or with associated penalty, whereas 

hard windows cannot be violated and a vehicle can only deliver within the appropriate time. 

On arrival to the customer location, if the time window has not started the vehicle has to wait 

until it can service the client. The waiting time    can be calculated and taken into account in 

the model by the formula                 , where     denotes the actual arrival time. 

Exact methods can solve 45 out of 56 benchmark instances introduced by Solomon (1987), 

including instances of 200, 400 and 1000 customers. One of the most efficient methods so far 

in the literature for solving the VRPTW is the memetic algorithm of Nagata et al. (2010).  



14 
 

The Vehicle Routing Problem with Pickup and Delivery (VRPPD) 

This variant is inspired by reverse logistics. Logistics usually concerns deliveries from the 

manufacturer or distributor to the consumer. Reverse logistics are concerned with backward 

distribution at least one step back in the supply chain. This means that not only goods have to 

be delivered to consumers, but also picked up at consumer points and brought back to the 

manufacturer or depot. Many companies actually utilize reverse logistics, which makes the 

VRPPD a very practical problem and one of the most widely researched. The formulation 

derives straight from the classical VRP with some additional features. Each customer has a 

demand amount    to be delivered and amount    to be picked up (Nagy and Salhi, 2005). The 

reason why each customer has both demand and an amount for pickup is because customers 

may not wish to be serviced separately as it requires extra effort and inconvenience 

(Subramanian, 2009). This leads to the main characteristic of this variant, namely the mixed 

load on a given vehicle route and it is considered practical both for suppliers and consumers 

(Montane, 2006). In the literature there are three main types of VRPPD shown in Figure 2.3. 

 

Figure 2.3: Vehicle Routing Problem with Pickup and Delivery Typology 

 

The case of delivery-first pickup-second is also known as VRP with Backhauls (VRPB), where 

the deliveries must occur before the pickups. The mixed pickup and delivery VRP (MVRPPD) is 

when there is no order of the pickups and deliveries and they can occur at any time. However, 

customers have either an amount to be delivered or picked up. The simultaneous pickup and 

delivery also has mixed load, but customers may have both goods to be delivered and pickups. 

Pick up feasibility, delivery feasibility and load feasibility constraints have to be added to the 

classical VRP in order to model the VRPPD (Toth and Vigo, 2002). An interesting addition to 

the literature is the notion of strong and weak feasibility of VRPPD routes introduced by Nagy 

and Salhi (2005) based on load capacities and the reader is referred to the article for further 

information. For more comprehensive review and taxonomy on VRPPD the reader is referred 

to Wassan and Nagy (2014). Here a MIP formulation is presented for the VRPB. The set of 
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customers for the VRPB is divided into two subsets. Subset (1,..., )L l  refers to the linehaul 

customers, which are those customers that have a given demand for goods to be delivered to 

them, where subset ( 1,..., )B l n   refers to the backhaul customers, which have a given 

amount of goods to be picked up. 
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The extra constraints added to the CVRP (6)-(9), which govern the precedence of linehaul 

customers to backhaul, also make sure that the total demand for pickup and delivery is 

satisfied. Constraint (11) ensures that no backhaul customers can be serviced at the beginning 

of the delivery schedule, immediately after the depot.  

 

The Fleet Size and Mix Vehicle routing Problem (FSMVRP) 

This variant of the VRP is also very practical and common in the industry. Many companies 

have a heterogeneous fleet, or in other words some of the vehicles have different capacities 

and different associated costs (Brandao, 2011). Hoff et al. (2010) even argues that even if the 

vehicle fleet is homogeneous, it can become heterogeneous over time, as each vehicle may 

have different characteristics, depreciation, cost requirements etc. This is one of the most 

commonly researched variants of the VRP, as well as a part of other extended variants or rich 

variants proposed in the literature. Therefore, some more details of the types of FSMVRP are 

given in Table 2.1. Also the acronyms used to describe this variant of the VRP are not very 

consistent, therefore the table provides a brief description on the nature of the respective 

problem. The problem introduced in this thesis is also characterized with heterogeneous fleet, 

hence the more extensive literature review. 

The formulation of the FSMVRP is the same as for the VRP with the addition of mixed fleet 

constraints. There are k   different types of vehicles with (1,..., )k K . For every k K  , there 

are km   available vehicles and each has capacity kQ . Moreover, given the different size of 

vehicles each vehicle type has an associated fixed cost kf . Similar to the VRP each arc has a 

cost of travel 
ijc , which consists of the distance 

ijd  multiplied by the variable cost of travel ka

, for each vehicle (1,..., )k K . The objective function is to minimize the cost of travel, as well 

as select the optimal vehicle fleet. The capacities of the corresponding vehicles must not be 

exceeded. Typically, when considering FSMVRP it is implied that the available fleet is 

unlimited. However, there are some cases in the literature which have limited (imposed) fleet 

availability and only a given number of vehicles from each type can be used in the optimal 

solution. Some of the most commonly used benchmark instances for FSMVRP are those by 

Golden et al. (1984), where most instances with up to 100 customers are solved to optimality 
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and the most commonly used instances for HFVRP with imposed fleet are introduced by 

Taillard (1999). 

Table 2.1: Types of FSMVRP  

Description Author Acronym Solution Method 

VRP with different vehicle 
capacity and variable cost, 
unlimited fleet 

Salhi (1992) VFM Constructive Heuristic 

Choi and Tcha (2007) VFM 
Column Generation and Branch and 

Bound 

Subramanian et al. (2012) FSMV  
Iterated Local Search, Variable 

Neighbourhood Descent  

VRP with different vehicle 
capacity, fixed cost and 
variable cost, unlimited fleet 

Golden et al. (1984) FSMVRP  Savings Heuristic 

Desrochers (1991) FSMVRP  Savings Heuristic with route fusion 

Gendreau (1999) HVRP  
Genius, Tabu Search embedded in 

Adaptive Memory Procedure 

Renaud (2002) FSMVRP  Sweep-based algorithm 

Choi and Tcha (2007) HVRP 
LP relaxation solved by column 

generation 

Liu (2009) FSMVRP  Genetic Algorithm 

Brandao (2011) FSMVRP  Tabu Search based algorithm 

Imran et al. (2009) HFVRP 
Variable Neighbourhood based 

 Heuristic 

Subramanian et al. (2012) FSMVF  
Iterated Local Search, Variable 

Neighbourhood Descent  

VRP with different vehicle 
capacity, fixed cost and 
unlimited fleet (without 

variable cost) 

Subramanian et al. (2012) FSMF 
Iterated Local Search, Variable 

Neighbourhood Descent  

VRP with limited fleet, with 
fixed and variable cost 

Taillard (1999) VRPHE 
Adaptive Memory Procedure and 

Heuristic Column Generation 

Li et al. (2007) HVRP Record-to-Record Travel algorithm 

Subramanian et al. (2012) HVRPFV  
Iterated Local Search, Variable 

Neighbourhood Descent  

VRP with limited fleet with 
variable cost, but without 

fixed cost 

Tarantilis et al.  (2003) HFFVRP  
List Based threshold accepting 

Heuristic  

Subramanian et al. (2012) HVRPV  
Iterated Local Search, Variable 

Neighbourhood Descent  

 



18 
 

A Mixed Integer formulation for the FSMVRP with fixed and variable cost is given below. It is 

similar to the formulation of the CVRP, but the decision variables are three-index, so as to 

accommodate for the fact that the different vehicles k   have different characteristics. 
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ijkx  =  0,1     (i ≠ j =1…n);                  (9) 

The School Bus Routing Problem (SBRP) 

SBRP also falls into the larger class of VRP. It was firstly introduced by Newton and Thomas 

(1969) but it has received much less attention in the literature than the VRP. The SBRP is 

similar to the real life vehicle routing problems, because there is no general or standard 

approach to solving the SBRP. Most of the publications in the literature are based around the 

different versions of the SBRP which arise as a result of various real life constraints and 

assumptions. There is no dominant approach to studying the SBRP and most of the solution 

methods proposed are very problem specific (Li and Fu, 2002). The SBRP is somehow all-

encompassing, containing smaller sub-problems. Typically in the literature the SBRP is not 



19 
 

addressed as an all-encompassing problem, but researchers focus on one of its sub-problems 

alone or in combination (Park and Kim, 2010). According to the decomposition of Desrosiers 

et al. (1980) the SBRP has 5 sub-problems. 

 Data Preparation consists of preparing the data set, specifying the Origin-Destination 

(OD) matrix, student homes, bus stops, depot and school locations.  

 

 Bus stop selection consists of deciding where to locate the bus stops and assigning 

students to bus stops. This step can be solved on its own as a location problem. Usually a 

maximum walking distance constraint for each student to a bus stop is imposed. An 

interesting version of the SBRP is when the walking distance is larger and students can walk to 

more than one stop. Then the decision on which student should walk to which stop gets 

incorporated into the SBRP model. 

 

 Bus Route Generation is the step which is most similar to the VRP. It consists of 

generating the vehicle routes from the point of origin (depot) to the school, visiting all bus 

stops. This step can be solved as a VRP, or in combination with the previous step as a location-

routing problem. 

 

 School Bell Adjustment and Route Scheduling sub-problems arise when multiple 

schools are considered. The buses used to transport the students to schools are not typically 

owned by the schools, but operated by regional board of education. Therefore, it is common 

that multiple schools use the same bus fleet, hence the need for better coordination and 

scheduling with regards to the school opening and closing hours. This step has many real-life 

considerations and different SBRPs can arise based on the different assumptions and 

constraint imposed. 

Because of the different approaches one can take when solving a SBRP, there is no standard 

definition of the problem. However, a VRP oriented definition can be offered for the SBRP. 

The SBRP consists of planning an efficient routing schedule for a fleet of buses, where each 

bus leaves the point of origin visits all bus stops and collect all students, ensuring the 

maximum bus capacity is not violated, and delivers the students to the designated school 

(Park and Kim, 2010). Additional constraints such as maximum riding time, maximum walking 
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distance and school time window can apply. The objective function of the SBRP can be 

minimizing distance, travel time, student riding time, numbers of buses used or it can be 

multi-objective. There is no common formulation of the SBRP, but we refer to Shittekat et al. 

(2013) for a formulation representing 2 of the SBRP sub-problems, namely student assignment 

to stops and route generation. 

Figure 2.4 shows an example of the SBRP, where students are assigned to buses according to a 

maximum walking distance constraint. This means that there is a reasonable walking time for 

each student to reach a bus stop. The figure shows a simple assignment of students (the small 

black dots on the figure) to stops and the generated route for the School Bus after the 

assignment has taken place. The demand at each stop equals the number of students assigned 

to that stop, where the Bus capacity is 25. In the case portrayed in Figure 2.4 one bus can 

accommodate the entire demand, hence the single route. 

 

 
Figure 2.4: The School Bus Routing Problem 
 
The problem becomes more interesting and arguably 'heterogeneous', when the walking 

distance for students to reach stops is larger. This means that a student can walk to more than 

one of the available stops, and a decision needs to be made which is the best stop for the 

student to walk to in order to minimize cost. This results in an overlapping assignment and it is 

portrayed in Figure 2.5. In this case, the students marked in red are those students who can 

be assigned to multiple stops. This makes the SBRP more interesting and difficult to solve, 
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especially if more stops are available (a larger datasets). We address this problem in Chapter 7 

and test our proposed methodology on both overlapping and non-overlapping versions of the 

SBRP. 

 
Figure 2.5: SBRP with overlapping radius of Bus Stops 

 

The Multi Depot Vehicle Routing Problem (MDVRP) 

The MDVRP is also an extension of the VRP and it is inspired by various industry cases, where 

companies own more than one depot, which cover different geographical area with separate 

vehicle fleet (Renaud and Laporte, 1996). It is very common in a real business environment 

that large organisations have more than one depot, such as Tesco’s, Sainsbury’s, Calor Gas 

etc. It is believed that determining more effective and cost efficient ways to assign vehicles to 

depots can result in great savings for companies. The problem can be represented as either a 

directed or an undirected graph, where ( , )G V E , where V is partitioned into two subsets, 

one for the set of customers 1( ,..., )c nV v v  and 1( ,..., )d n n mV v v   for the set of depots where 

not all depots are necessarily used. All vehicles must return to the depot they were based at 

and a constraint must be present, which does not allow a depot to be treated as a customer 

vertex and be part of the route of vehicles based at different depots. The MDVRP can be 

solved in two stages. Firstly, all vehicles are assigned to depots, according to predefined 

criteria and then each one is solved as a separate VRP. Alternatively, an algorithm can be used 
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to both assign vehicles to depots and customers to vehicles. Optimal solutions are reported 

for instances with up to 151 customers and 12 depots (Contardo and Martinelli, 2014). The 

MDVRP and the periodic VRP (PVRP) are closely related and some solution methods are 

formulated that are applicable across the two variants. PVRP arises when customers require 

service on multiple days within a time period (Gulczynski, 2011). MDVRP reduces to PVRP, 

when there is only one depot and PVRP reduces to MDVRP when customers require only one 

visit (Vidal, 2011).  

Vehicle Routing Problems with Probabilistic Elements 

The Stochastic VRP (SVRP) arises when there is a stochastic element in the VRP formulation. 

SVRP is very difficult to solve to optimality even for small instances of up to 30 customers. The 

most common versions of SVRP are static and stochastic, where some elements of the VRP 

problem are random variables, such as customer demand, service time, travel time etc. The 

most researched stochastic element in the literature is demand, which becomes known once 

the vehicle has arrived at the customer point. This type of SVRP is solved to optimality for 70 

customers (Gendreau, Jabali and Rei, 2014). Gendreau (1996) found that some fundamental 

properties of the VRP and TSP do not hold for SVRP. Firstly, the shortest path which covers all 

vertices never intersects itself (it is a simple polygon), secondly customers are visited in the 

same order as they appear in the convex hull and finally any segment of the optimal tour is 

also optimal.  For further reading on the SVRP a book chapter by Gendreau, Jabali and Rei in 

Toth and Vigo (2014) is recommended. There are also dynamic VRPs (DVRP) and stochastic 

VRPs, where information becomes available dynamically after the routing schedule has 

started.  This leads to the need of route re-optimisation techniques. The two most successful 

methods for solving a dynamic VRP, which account for re-optimisation in different ways, are 

Chance Constrained Stochastic Programming and Stochastic Programming with Recourse. The 

integer L-shaped method and Branch and Cut are also commonly used in the literature to 

solve SVRP (Dror, 1989). 

Other Variants  

The VRP literature is very rich and there are many different variants that are proposed by 

academics each year, some based on extensions of the main variants or creating new ones. 

Some of those are worth reviewing, because they are applicable in practice even though they 
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are less researched. The Two Echelon Vehicle routing problem (2E_VRP) considers a multilevel 

distribution system inspired by city logistics, where vehicles start at a depot, go to the nearest 

intermediate facility (satellite) and from there are routed to various customer locations. The 

purpose is to minimize pollution and congestion in big cities and avoid sending large trucks 

into the city. Instances with 21 customers are solved to optimality so far (Hemmelmayr, 2012). 

The Cumulative Vehicle Routing Problem (CumVRP) is motivated by customer satisfaction and 

relations. Its objective function is to minimize arrival times as opposed to cost. This is perhaps 

the most consumer centric variant in the VRP family, which incorporates issues like just in 

time service, equity and fairness (Ngueven, 2010). The Multi-compartment Vehicle Routing 

Problem (MCVRP) arises when m products must be delivered to customers by k vehicles, 

which all have different compartments for each product. This variant considers the benefits of 

co-transportation as opposed to un-partitioned trucks and independent distribution. Some 

authors found that co-distribution leads to shorter routes (Muyldermas, 2010). The Open 

Vehicle Routing Problem (OVRP) occurs when given fleet of vehicles does not have to end the 

tour at the depot, but at the last customer. This variant is highly applicable for leased vehicles 

or any fleet that is not an asset of the company. The solution to the OVRP then becomes a 

Hamiltonian path, not a cycle. Last, but not least is the Truck and Trailer Vehicle Routing 

Problem (TTRP) introduced by Chao (2002). It is inspired by the ability to access customer 

locations in difficult areas. TTRP consist of finding shortest routes to serve set of customers 

either by the full vehicle (truck and trailer) or truck only.   

Mixed Variants 

It is rare in the industry that a fleet optimisation will be only constrained by time window 

alone, or heterogeneous fleet alone. Usually a combination of requirements and constraints is 

present, which need to be considered simultaneously. Therefore, academics become more 

creative and practical and introduce what can be referred to as ‘mixed’ or ‘extended’ variants 

to the literature. An example of a mixed variant is a combination between VRPTW and VRPPD 

researched by Bent (2006). Thanghai (1996) aimed to solve the VRPBTW, which includes time 

window and backhauling. Salhi et al. (2014) addresses a mixed variant between MDVRP and 

FSMVRP. There are many other mixed variants, which exist in the literature and cannot be 

exhaustively listed but are following the same principle. Extensions to the main variants are 

also common in the literature such as the VRPmiTW, which is VRPTW with multiple 
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independent time windows (Doerner, 2008), and the DVRP which is VRP with time dependent 

travel times (Haghani, 2005). Following an in-depth literature search, it can be stated that the 

VRPTW VRPPD and FSMVRP are the most common problems that have been mixed with other 

variants or extended with additional requirements and constraints. Introducing a mixed or 

extended variant of the VRP can also aid algorithmic advancements. One of the trends in the 

literature is to design more generalizable algorithms, which can be applied to a range of VRPs. 

Having a mixed or extended variant gives the opportunity to design a method which is 

applicable to the variants separately and it could be very beneficial to test the results of those 

algorithms on the literature benchmarks of the separate problems, or introduce new 

instances with the combined characteristics. Figure 2.6 shows some of the main elements 

based on which the VRP variants are differentiated. It is not an exhaustive list, but provides an 

idea of the different broad categories of VRP problems, which arise according to the elements 

present in the problem. The inspiration of this classification is the real life VRPs, which are 

differentiable based on their elements. A similar rationale can be adopted for the problems of 

the VRP family. 

Real life (Rich) variants 

The notion for real life problems is not new, because as early as 1993 there are papers in the 

literature, which are based on case studies or explicitly state that they are researching a real 

life problem. For example Semet and Taillard (1993) tackle a real-life VRP inspired by the 

grocery industry in Switzerland. Real life operations have been an inspiration for modelling in 

OR for the past 20 years. However, it was not until 2006 when real life problems were 

introduced as a class of the VRP. After the introduction of the Livestock Collection problem 

(LCP) (Gribkovskaia et al., 2006), the authors formally categorize real life problems under the 

term ‘rich’ Vehicle Routing Problems and provide a loose definition of what a rich VRP is. It 

cannot be stated with certainty that the OR society has accepted the term as descriptive of all 

VRP problems which have real life constraints and features. However, there are some 

definitions in the literature of what constitutes a rich VRP. Hastle et al. (2006) states that a 

rich VRP includes aspects that are essential to the routing practice in real life and the richness 

of the problems can stem from many elements of the routing practice such as drivers, fleet, 

order types, depots, tours etc. 



25 
 

 

Figure 2.6: Classification of VRPs based on their elements 
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In addition, Rieck (2010) states that rich VRPs include different constraints or different 

objective functions. Vidal et al. (2013, 2014) referred to the rich VRPs as Multi-Attribute VRPs 

(MAVRPs), which typically arise from real life situations. However, in their classification, any 

deviation from the Classical VRP is considered to be MAVRP and the proposed algorithm is an 

all-encompassing rich solver, rather than a single algorithm applicable across variants. Goel 

and Gruhn (2008) refer to the real life problem they propose as General VRP, whereas other 

authors do not adopt any formal classification terminology when dealing with these types of 

problems and simply refer to them as real life routing problems. 

If we look at another class of VRP problems, such as the Fleet Size and Mix VRP or the VRP 

with time window, we can find papers that summarize the most important aspects of the 

respective problems. Usually a standard formulation of the problem is provided alongside best 

known solutions on publically available benchmark problem instances, and the best 

performing methods are indicated. However, RVRPs are very diverse and such a well-rounded 

summary could be very difficult to achieve. One of the main reasons for this is the loose 

definition provided for RVRPs. Another reason is that usually a RVRP is introduced only once 

and it is not revisited by another author under the same form with the same characteristics. 

Moreover, the nature of RVRPs changed over time and some of the problems referred to as 

rich in the past, may not necessarily qualify as such today. RVRPs cannot be standardised, 

because their relevance and contribution stem from the diversity of real life routing practices. 

One of the first papers which provides a more comprehensive literature review of RVRPs as 

well as a theoretical framework and definition of RVRPs is Lahyani et al. (2015). They 

investigate in detail 41 publications since 2006, when the rich VRPs became a class of the VRP 

domain. The definition they provide is similar to the one by Hastle et al. (2006) because it 

expresses the nature of RVRPs in terms of the characteristics/elements they possess. A RVRP 

must have a sufficient number of real life routing elements in order to qualify as rich. If the 

RVRP is defined in terms of physical characteristics, then it should have at least 9 elements 

additional to the classical VRP. If the problem is defined from a strategic or a tactical view 

point, then it should have at least 6 additional elements. Rich VRP variants are a term that is 

becoming more popular in the literature, but there is no single definition of what exactly 

constitutes a rich VRP variant, which is accepted across the OR community. Regardless of the 

different acronyms used to describe RVRPs, there is some consistency grounded in the 
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definitions of RVRPs. A RVRP should contain relevant aspects of a real life routing problem, 

which can aid the decision making process in practice and be significantly differentiable from 

other VRPs on the merits of their real life routing characteristics. In addition, in this research it 

is suggested that when researching a real life VRP there should be some practical implication 

or recommendations for improving routing practice.  

Rich problems are extremely diverse and may incorporate features of real life operations 

ranging from consumer requirements to driver break times. The classical VRP can be enriched 

and extended in many novel ways which can be valuable for academia and industry. The quest 

of making VRP problems more realistic and bringing them closer to industry realities provides 

an opportunity for being creative and adding interesting aspects of routing to the existing 

variants. Some of them cannot specifically be described as extensions of a certain variant, but 

simply reflect the nature of real life operations and the different ways a company’s operations 

can be constrained. For instance Bortfeld (2010) includes the presence of three-dimensional 

loading constraints, which makes the problem a mix of routing and loading decisions. Ren 

(2010) discusses the multishift VRP with overtime, which emphasizes the drivers 

considerations and constraints, whereas Moon (2012) analyses the VRP with deadlines and 

travel/demand time, which is consumer centred. Battarra (2009) aims to solve the Multiple 

Minimum Trip VRP (MMTVRP), which is also industry inspired and assumes that one vehicle 

can be assigned to more than one route. Valle (2011) considers the min-max selective VRP, 

where not all customers need to be visited and those that are not visited must be close 

enough to those that are visited. All those real life aspects that can be added to a VRP 

problem and provide that extra richness, contribute to making real life VRP research very 

flexible and a fertile area for ideas and novel developments.  

Most of the published papers emphasize the real life constraints of the RVRPs and somehow 

place the emphasis on the problem nature. This is where the proposed definitions of RVRP 

and taxonomy are a useful guide for future research. However, there is an issue which has not 

been much addressed in the literature, which relates to the solution methodologies. The main 

contributions to the literature of VRP come from the nature of the problem or from the 

proposed methodology. Typically, a contribution to the literature can be made either by 

introducing a new interesting problem, which is different from previous research or by 

introducing a new methodology, which is powerful and relevant in terms of performance or 
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novelty. When it comes to RVRPs, however, given the fact that they are so different from 

other variants and from each other, it poses a challenge for proving algorithmic efficiency 

compared to other methods in the literature. There are some common practices that authors 

use when dealing with RVRPs. An exact method can be used for RVRPs, which guarantees 

optimal solutions. For instance Dayarian et al. (2015) use a Column Generation (CG) method 

for a real life case inspired by milk collection, whereas Oppen (2010) applied CG to the 

livestock collection problem. However, heuristic methodologies are more common, because 

they can tackle larger sized problems. Using a heuristic method, there is no guarantee that the 

obtained solutions are in fact optimal or of a good enough quality. Some papers on RVRPs are 

case studies, based on real company data. Using a real dataset, which is also used by the 

company in question, is a good way of showing algorithmic efficiency by directly comparing 

the results from the study to the actual practices of the company. This way the impact of the 

study can be measured and recommendations can be made on how to improve the routing 

practice. In other cases, the datasets used for the RVRPs can be either randomly generated or 

adapted from literature benchmarks. In these cases the issue of comparability is more 

significant. Therefore, it is important that some form of comparison or test of algorithmic 

merits has to be adopted. It has to be noted here, that some papers propose algorithms for 

RVRPs which aim to be all-encompassing and qualify as rich solvers, rather than single 

methodologies for one particular problem. An example of this is the Genetic Algorithm based 

rich solver proposed by Vidal et al. (2014). In their paper many aspects of the VRP, including 

rich elements can be addressed by the proposed methodology, hence the results can be 

tested on various literature benchmarks. However, the purpose of the method is to be all-

encompassing and able to accommodate VRPs across the different variant classes. This means 

that in the cases where algorithms have a degree of generalizability the issue of comparison 

can be overcome. This research proposes two ways one can address the issue of algorithmic 

comparison and efficiency, especially when heuristic methods are used to address a RVRP. 

First, it is beneficial if a RVRP is solved to optimality (alongside a heuristic solution), where 

optimal solutions or lower/upper bounds are reported. This could aid the discussion of 

algorithmic efficiency and be a guideline for the performance of the heuristic algorithm. There 

are some very powerful exact methods for solving larger instances to optimality, such as CG. 

However, if the methodological effort of the research in question is on designing powerful 
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heuristic algorithms, and not exact, it could be useful to propose a Mixed Integer formulation 

(where feasible) and solve as many instances to optimality using solvers such as CPLEX. The 

new version 12.4 is more powerful and employs Branch and Bound (BB), as well as valid cuts 

and it is able to achieve some good lower/upper bounds, on larger problem sizes, previously 

not so well accommodated.  

Second, a specific approach with dealing with RVRPs can also be introduced, where 

algorithmic efficiency can be tested on publically available benchmarks. This is not to state 

that a method which is created to address a RVRP must be able to outperform or match the 

results of methods specifically created for a main variant of the VRP. However, the smaller the 

gap the stronger the evidence that the proposed method for RVRP has the potential for 

generating good solutions. 

The approach we propose for dealing with RVRPs is to design them in a way that the RVRP can 

be reduced to a well-researched variant of the VRP. We refer to this approach as ‘Standardise-

First Customise-Second’. It can be argued that having a main variant of the VRP, such as the 

VRPTW or FSMVRP as a base of a RVRP is not an unreasonable assumption. The most 

researched variants of VRP are so popular, because they occur most frequently in industry 

settings. Even if the proposed RVRP is very different from other existing research and cannot 

be generalized to a main variant, it should typically be generalizable to the classical VRP. Some 

exceptions may be problems which maximize the objective function, where the aim is to 

maximize customer satisfaction (i.e. Ambulances, Red Cross Coverage of territory) or some 

other strategic or operational objective. Embedding a well-researched variant of the VRP into 

RVRPs is the Standardizing Stage of the approach. The reason for this is that the solution 

methodology designed for the RVRP can also be tested on literature benchmarks for a main 

variant of the VRP. This could provide a better perspective on how powerful and adaptive the 

solution method is and be directly comparable with other methods in the literature. The stage 

of customization will provide the problem with the richness a RVRP needs to possess in order 

to qualify as rich. The customization stage would build up on the standardization stage, which 

will be tailored to reflect the specifics of the problem that is being researched and portray a 

relevant picture of distribution practices in a real industry setting. 
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The standardization stage is useful for testing against benchmarks and making sure that the 

algorithms are adequate and have a good level of performance (if not superior), where the 

customisation stage provides the “richness” of the problem and makes it adjusted to real life 

operations. The rich variants should provide that notion of customisation, because each and 

every company has different considerations when designing distribution routes, based on its 

strategic, marketing and corporate goals. Moreover, the nature of some distribution systems 

may require special considerations that are unusual and occur less frequently such as 

distribution after natural disasters.  

Evaluation of the literature on the VRP Variants 

There is no doubt that the literature on VRP is very rich and covers many aspects of business 

operations across different industries. The advances made in the areas of VRPTW, VRPPD and 

the other main variants is highly valuable and can result in savings for companies and 

minimizing costs. One of the main trends in the literature of VRP is the quest for more realistic 

modelling. Having this in mind, this section provides a real routing inspired critical perspective 

on some of the modelling practices of VRP problems. This is not done with the aim of 

criticising the existing research on the problems considered, but to offer a real life motivated 

perspective on some issues which became apparent throughout the literature search. 

The VRPTW usually implies that every customer has requested a time window for delivery, 

which is either hard or soft. In reality, large companies not only do not accept such request 

often, but they are the once that provide the time windows (i.e. Furniture deliveries). Real 

operations are influenced by companies bargaining power, whether they are Business-to-

Customer (B2C) or Business-to-Business (B2B) and the construction of routes is much more 

flexible because consumers have low bargaining power to specify time request. SDVRP is 

mostly feasible when the demand quantity is very large (Fizzell and Griffin, 1995) and the 

product being delivered can actually be split. OVRP does not take account of other costs for 

leasing vehicles and transportation costs to the depot. 

 The fact that most problems use distance, time and cost interchangeably in the objective 

function (Toth and Vigo, 2002) is inaccurate, since factors like traffic, congestion and driver 

break times are not included. It could even be argued that using distance in the objective 

function is much more accurate than cost, because cost is very complex to calculate and 
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things like opportunity cost are very difficult to incorporate. Many formulations also impose 

maximum time or length constraints for each route, which can be misleading since using staff 

to do overtime and extra deliveries happens on a daily basis. It is quite common in the 

literature that the objective function also decides the optimal number of vehicles. This is very 

useful when a company start-up is considered, downsizing or restructuring, but it is not 

greatly relevant to fully functioning company, which has its own fleet. The reason for this is 

that cutting on vehicle numbers also implies redundancy or use of temporary staff in peak 

periods and this can be damaging for the company for their long term strategic horizons and 

Corporate and Social Responsibility.  

The RVRP class of problems are much more open to criticism, because of their diversity. 

Recently a more comprehensive definition for RVRP was proposed by Lahyani et al. (2015), 

which is a useful guide for research, but it has two aspects which could be argued to be 

problematic. Firstly, the definition proposed is retrospective. This means the definition is not 

generic, but formulated on the basis of what already exists. It could be argued that this could 

limit creativity and place taxonomical boundaries on future research. Secondly, the number of 

elements the authors propose to be sufficient for a RVRP are extracted from pure VRP 

problems and combined VRP problems. What is meant by a combined VRP is that the problem 

consists of a VRP and another CO problem such as Loading or Inventory optimization.  

Combined problems possess more elements by definition even in their classical forms, 

because they combine two or more CO problems. Therefore, it can be argued that the 

sufficient elements for RVRP in the proposed definitions are artificially inflated, because the 

combined problems are considered. Perhaps, if a review of the routing problems alone was 

considered, the number of elements that are sufficient to make a problem rich would be 

different. 

Designing more sophisticated problems, which are relevant in real setting, is one of the 

literature trends since the new millennium and any current research should offer enough real-

life features in order to claim the ‘rich’ title. However, the argument on how much richness a 

problem should have in order to be categorised as rich can go beyond the number of features 

required in the nature of the problem. The fact that RVRPs are difficult to categorise and 

express with compact acronyms, can leave one’s interpretation of RVRPs open to criticism. At 

the same time however, it is also what makes the RVRP domain so interesting and such a 
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fruitful area for future research. It provides the opportunity to minimize the gap between 

academia and real life operations and introduce some novel characteristics of routing, as well 

as an opportunity for extending existing methodologies. 

Addressing a RVRP with a heuristic method is another area that may leave a research open to 

criticism. Heuristic methods are generally problem specific and this is one of their main 

limitations. Coupled up with the problem-specific nature of the RVRPs it poses a double threat 

and the need for methodological justification. This is the main reason why a way to show 

algorithmic efficiency is needed in the RVRP domain. This would strengthen the contribution 

of RVRP research and overcome any perceptions that RVRP research is peripheral or weaker 

than the mainstream, which is generally focused around benchmarking and algorithmic 

superiority. This is one of the main arguments of this research, hence the propositions for 

overcoming the issue of methodological comparability. In fact, researching a real life variant 

can act as an inspiration to adapt and adjust well known methods and provide an opportunity 

to extend those methods to other problems and ideally make them more generalizable across 

VRP problems. 

2.3 Solution Methods for the VRP  

 

There are many exact and heuristic methods that can be used to solve the VRP. Each of them 

has its advantages and limitations. This section aims to describe the most popular and 

efficient solution methods for the VRP and analyse their capability to solve the VRP and its 

variants. The first general class of solution methods are the exact methods, which can solve 

VRP problems with guaranteed optimality. Exact methods are typically exhaustive search 

methods, where each combination of decision variables is explored before the best solution is 

found. They are usually very computationally expensive, because of their nature and solve 

relatively small problem instances to optimality. The second class of solution methods are the 

heuristic methods, which do not guarantee an optimal solution to the problem, but a good 

approximate solution within reasonable computational time. Sometimes good heuristic 

methods can match the optimal solution (assuming it is known). It is not possible to provide a 

full-rounded summary of all the solution methods in the literature. Each variant of the VRP 

has its own best performing methods and it cannot be stated that one single method is 
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superior to another. However, some of them are more powerful than others and more 

commonly used, and are responsible for some of the best known solutions in the VRP domain. 

2.3.1 Exact methods for the VRP 

As previously discussed the VRP and its variants do not have one universal way of formulating 

the problem. Depending on the purpose of the problem there are many different constraints 

that can be added to the classical VRP model and can be presented in novel ways. There is 

two-index vehicle flow formulation, three-index vehicle flow formulation, two-commodity 

flow formulation (Baldacci, 2004) and Set Partitioning formulation (Balinski, 1964). The lower 

bounds for the VRPs (assuming a minimization objective function) are usually computed using 

cutting planes, column generation and in some cases linear programming relaxations. Many 

valid inequalities are introduced to the literature to complement existing formulations and 

make them more robust for generating solutions. Extensive computational results on the 

same VRP instances available in the literature have been reported based on Branch and Cut 

(BC), Branch and Cut and Price (BCP), and Set Partitioning (SP) methodologies. Moreover, they 

have been proven to be most effective for generating lower bounds and exact solutions in the 

VRP family of problems (Baldacci, 2010). This research only offers a brief review of the exact 

methods for VRPs, because the main methodology here is heuristic based. For further 

information on mathematical formulations for the VRP readers are referred to a recent review 

by Baldacci (2010). However, mixed integer programming is still one of the most popular 

approaches to obtaining optimal solutions and it is aided by the advances and new versions of 

available software such as Cplex. The new version provides for the use BB and BC techniques 

which lead to obtaining better lower bounds, tighter gaps, and optimal solutions where 

possible. 

 Branch and Cut 

BC is widely used in the literature by many authors for obtaining exact solutions to problems 

of the VRP family and obtaining better lower bounds.  Given an integer solution or LP 

relaxation, the purpose of BC methods is to design an algorithm that effectively separates a 

fraction of the obtained solution convex hull using valid inequalities. The underlying running 

algorithm is BB and the cutting planes are used to tighten the solution. After applying BB the 

cutting planes are used to design valid inequalities to be applied to the original formulation, 



34 
 

which aims to make the solution less fractional and enhance its speed and quality. The valid 

inequalities should be of polynomial size in order to improve the time it takes to solve a 

problem, since LP and BB have exponential complexity. The way the algorithm works is by 

starting from an optimal solution generated by LP relaxation and branching on the different 

variables by forcing them to take integer values and then re-solving the problem. The 

branching continues until all variables take integer values. The cuts that can be added during 

the process of branching can either be global cuts (valid for all feasible integer solutions) or 

local cuts (valid only for the current branch solution). The process of branching is not random; 

there are strategies that can be applied depending on the nature of the problem and the 

value of the variables. The initial choice may be to start with the most infeasible value of a 

variable (most fractional) or start with the variable that brings the best objective function 

improvement and consequently continue with depth-first, or breadth-first tree search 

approach. For further reading one can refer to Baldacci (2010). 

 Branch and Cut and Price 

BCP is an extension of BC which adopts similar steps and principles, but both cuts and 

variables are generated in a dynamic way, which allows for more flexibility and solving larger 

instances of a given problem. BCP is one of the most successful exact method for solving VRP 

and its variants. Branching cutting and pricing is combined in this method. Pricing comes from 

the idea of Column Generation. At the start of the algorithm through the search tree, columns 

are excluded from the search so as to reduce the problem size and then are added later in the 

search if necessary. The idea behind this method is that some variables are non-basic and 

have a value of 0 in the optimal solution so they can be excluded from the search process. 

Then a pricing problem is solved which aims to find a column with negative reduced cost. 

There is no need to find the most negative reduced cost, therefore simple heuristics can be 

used for this purpose. If no columns can be added to the solution then branch and cut takes 

place. There is available software which uses BCP for solving CO problems, such as ABACUS, 

CPLEX, CONCORDE, SYMPHONY (branchandcut.org).  

 

 Set Partitioning 

Based on recently reported results for exact method performance on common benchmarks, 

Baldacci (2010) reported that SP methods outperform BCP and BC on the classical VRP, 
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especially when combined with column generation and additional cuts. SP methods are quite 

general and flexible in terms of their ability to incorporate further constraints such as time 

windows and fleet heterogeneity. Therefore it is also one of the most useful exact methods 

for solving VRP variants and potentially for addressing rich VRPs. The objective function is to 

cover each customer exactly once by a given vehicle route, where the original classical VRP 

constraints apply.  

2.3.2. Heuristic Methods for the VRP 

Heuristic methods date back to 1950 and they have been evolving ever since to become more 

sophisticated and powerful. Heuristics seek good and fast solutions by intelligently exploiting 

the structure of the given problem and performing simple intuitive steps in order to achieve 

an approximate solution without a guarantee for optimality. The main limitation of the 

heuristic methods is that they do not give optimal solutions or any indications of how far a 

solution is from optimality. The main strength of these methods is that they can tackle very 

complex problems where exact methods fail and a good and fast solution is considered 

sufficient enough for decision making. Some CO problems such as the VRP cannot be solved 

optimally for the large instances. This is the reason why heuristic methods have been in the 

focus of academic research in the recent years. There are four main characteristics of 

heuristics that need to be in place, in order to be considered efficient and useful.   Heuristics 

have to be accurate, fast, robust, simple and easy to implement and modify (Cordeau, 2002).  

Heuristic methods can be grouped into six classes. Class A are constructions heuristics, Class B 

are Improvement heuristics, Class C Mathematical Programming, Class D Partitioning 

Heuristics, Class E Relaxations and Reductions, Class F Composite heuristics and Class G is 

Metaheuristics. Very often in the literature authors associate NP-Hard problems such as VRP 

with a necessity to use heuristic methods. 

Construction Heuristics build a solution by making series of decisions one by one, at each step. 

For instance a vehicle is leaving from the depot and the first customer it serves is the nearest 

to the depot (or any other predefined choice criteria). It uses the greedy criterion, because at 

each step through the graph a decision is made that seems best at the time and it is usually 

not changed later. Improvement Heuristics have the purpose of improving a given initial 

solution which can be obtained by the use of construction heuristic, or be randomly generated 

or based on some predefined criteria as in the case of compulsory vertices for the attractive 
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TSP (Erdogan, 2010). This class of heuristic methods is also called local search, because the 

solution space is explored by means of various local search operators.  

Metaheuristic methods are believed to be amongst the most popular solution methods in the 

VRP domain and are responsible for some of the best known solutions found in the literature. 

Figure 2.7 shows the main types of metaheuristic methods. The remainder of the chapter 

covers the local search operators and the different types of metaheuristic methods which are 

most commonly used in the literature, and those relevant to this research. 

 

 

Figure 2.7: Metaheuristic Methods Typology 

 

Construction Heuristics 

Construction heuristics are typically used for the generation of initial solutions. They are not 

powerful enough to reach good heuristic solutions, but are a common way for generating a 

starting point for further metaheuristic search. There are many construction heuristics which 

are used in the literature, with different rationale. For instance there are greedy heuristics, 

cluster-first route-second heuristics and petal heuristics. There are also composite 

construction heuristics, which combine a construction and an improvement heuristic, such as 

the GENI-US. It has a construction stage, namely the Generalized Insertion Procedure (GENI), 

followed by an improvement phase, namely Unstringing and Stringing (US). Moreover, there 

are different ways each construction heuristic can be executed, either in its classical form or 

with some relevant adaptation to the researched problem. Some of the most widely used 

construction heuristics are described in this section.  

 The Nearest Neighbour (NN) 

The NN is a very simple greedy heuristic method which has the following steps. 
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Step 1: Choose a random node i    as a starting point, Mark i   as visited; 
Step 2: Find the nearest unvisited node j    to node i  , where ( )i j ; 

Step 3: Mark node j    as visited; Set  ;i j   

Step 4: 
  If all nodes are visited end; 
 Else Go to step 2; 

 

There can be many variations and adaptations of the NN, such as having different starting 

points or additional criteria by which nodes are added to routes. In this research we use an 

adaptation of the NN for initial solution generation.   

 The Savings Heuristic 

The savings heuristic was first introduced by Clarke and Wright (1964) and there are also 

many adaptations to it introduced in the literature. Some of the most used are the parallel 

version and the sequential version of the heuristic. The idea of the method is to find arcs 

between nodes, which will result in greatest cost savings if the nodes are to be joined 

together. The cost savings for each i , j  are calculated using the following formula:  

0 0ij i j ijS c c c    , where 
ijc  denotes the cost or the arc between nodes i  and j , and 0 is the 

depot. The steps for the classical savings heuristics are given below: 

Step 1: Calculate all the saving
ijS    

Step 2: Sort the pairs i , j in descending order according to their saving; 

Step 3: 
Do 
  Add New Route 

  Add an unvisited pair ( , )i j   to a route with largest saving; 

  Mark  i and j  as visited 

   Do 

     Find the largest saving from pair ( , )i j  to an unvisited node p  , ipS   or jpS   

     Add customer p to the route, mark it as visited 

   Until capacity is full 
Until all nodes are visited 

 

 The Sweep Method 

 

The Sweep method was first introduced by Gillet and Miller (1974). It is based on the 

idea, that nodes are added to routes based on their adjacency in terms of their location 
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in the plane. Figure 2.8 shows a graphical representation of the Sweep Method. The 

black arrow represents a ray which sweeps the plane anticlockwise. The customers are 

added to the routes when the ray ‘hits’ them, while sweeping the plane. In Figure 2.8, 

customer 1, which has the smallest angle, will be first added to the tour, where number 

6 will be added last.  

 
  Figure 2.8: The Sweep Method 
 

 A simple pseudo code is given below and further detail on the Sweep method is given in 

Chapter 4. 

Set depot as a centre of two-dimensional place 
Calculate the angle of each customer node with respect to depot 
Sort the customers in ascending order according to their angle 
   Do 
   Add New route 
      Do 
       Add customers from sorted list to the route 
      Until capacity is full 
   Until all nodes are visited  

 

Local Search Operators 

Local search operators are perhaps the most commonly used solution search techniques and 

are present in a great part of the research on VRP. They can be embedded in almost any 

metaheuristic method such as VNS, TS, Memetic Algorithm (MA), GA, SA. They can also be 

used as a post-optimization of Construction Heuristics before a more sophisticated method is 

employed for further solution quality improvement. This is the reason why we dedicate a 

separate paragraph for them. The local search operators can be used either until first 

improvement of the objective function occurs or by exhausting all possible moves and select 
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the best improving move. It has to be noted however, that researchers usually employ 

different neighbourhood reduction techniques, in order to minimize the admissible moves 

from the operators. This is usually done for the purpose of saving computational time. One 

example of this is the tabu tenure during TS, where some moves are not allowed to be 

performed for a certain number of iterations. The most commonly used local search operators 

are as follows. 

 

 One customer Moves 

Figure 2.9 shows an example of a 1 customer Shift and Swap. The 1-0 Shift operator involves 

shifting one customer from one route into another route in a systematic manner. Typically 

each customer is shifted from a route into every other route at every available position. The 1-

1 Swap operator involves swapping one customer from one route with a customer from a 

different route. This is also done systematically where each customer is swapped with every 

other available customer in all routes. 

 

 
Figure 2.9: 1-0 Inter-route Shift and 1-1 Inter-route Swap 

 

Figure 2.10 shows 1-0 Intra-Route shift, where one customer is removed from its current 

position and repositioned at another, within the same route.  

 

 
                         Figure 2.10: 1-1 Intra-route shift 
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 Two customer moves 

The operators involving the move of two customers are 2-0 inter-route shift, 2-1 inter-route 

swap and 2-2 inter-route swap. Figure 2.11 illustrates these moves. 

 

  Figure 2.11: 2-0 Inter-route Shift, 2-1 and 2-2 Inter-route Swap 

 

Another famous 2 customer move is 2-opt (Lin, 1973). It involves removing 2 arcs from the 

current route composition and reversing the order of customers between the deleted arcs. 

This is an Intra-route operator and it is less computationally expensive than 1-0 Shift. There is 

also 3-opt which involves reversing the order of 3 consecutive customers, however it is not as 

commonly used as 2-opt. 2-opt is portrayed in Figure 2.12. 

 

           Figure 2.12: 2-opt 
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Metaheuristic Methods 

Metaheuristics belong to Class G heuristics methods and are designed to solve very difficult 

optimisation problems, where classical heuristics and exact methods are not suitable for 

providing good solutions. Typically they are used for larger sized problems. As discussed in the 

previous section, the complexity of VRP increases with the size of the problem. There are 

exact algorithms which provide optimal solutions with up to 130 customers, however this 

applies to the classical VRP. There are some variants like the stochastic VRP, which are only 

solved to optimality for 70 customers (in the case of stochastic demand with one stochastic 

element), MDVRP for up to 151 customers and dynamic VRP with only up to 30 customers. In 

reality vehicle fleets are much larger and a company can serve hundreds of customers on a 

daily basis. This is where metaheuristic methods are most useful. For smaller instances 

metaheuristics are very powerful and often reach the known optimal solution. However, as 

the problem becomes larger there are many benchmark instances in the literature which 

allow for showing efficiency and effectiveness of the methods against other similar methods 

or best known solutions found so far. Metaheuristics make very few assumptions about a 

certain problem and therefore they are very flexible and highly applicable. There are some 

metaheuristics which require good knowledge of the research problem and can be somehow 

problem specific such as Simulated Annealing (Henderson, 2006; Eles, 2010) but by and large 

they are quite generalizable and adaptable to different problems and only an initial solution is 

required. Metaheuristics are improvement heuristics, but much more powerful and structured 

than Class B Heuristics. Some utilize memory structures in order to better explore the solution 

space. Moreover, most of the metaheuristic methods allow for degradation of the objective 

function and have various hill-climbing mechanisms, so as to escape getting trapped in local 

minima, which is a major weakness of construction and improvement heuristics. 

Intensification and Diversification are two very important aspects of metaheuristic methods. 

Intensification refers to mechanisms which aims to explore better regions of a given solution 

neighbourhood and depending on the adopted solution method there are various strategies 

that can be found in the literature for instance using local search operators or probabilistic 

rules on the incumbent solution. Diversification refers to exploring further topography of the 

solution space to the incumbent, in order to get a better coverage of the solution space, 

escape from local optima and ideally find the global optima for the problem. An example of 
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diversification strategy is Random Restart from a random point or a new solution structure to 

the incumbent. 

There are three types of metaheuristics. 

(i) Local search methods or one-point solution methods. Most of the methods belong to the 

first category and include Tabu Search (TS), Simulated Annealing (SA), Variable 

Neighbourhood Search (VNS), Adaptive Neighbourhood Search (ANS), Large Neighbourhood 

Search (LNS). They are iterative methods and explore the solution space by performing 

various structured inter-route and intra-route moves according to some predefined criteria 

(Laporte, 2009). They typically need one initial solution to use as a starting point and employ 

shift and swap moves, as well as other principles until the best solution is found or a stopping 

criteria is applied.  

(ii) Population based methods include Genetic Algorithms (GA), Memetic Algorithms (MA), Ant 

Colony Optimization (ACO), Particle Swarm Optimization (PSO). They involve a population of 

initial solutions, generated according to different principles and work with more than one 

solution structure at a time. 

(iii) Learning methods are the third broad type, where one of the most famous solution 

methods, based explicitly on learning is Adaptive Memory Programming (AMP), but there are 

other methods which make use of memory and learning such as TS, Path Relinking (PR) and 

Scatter Search (SS). There are not many methods which solely rely on learning. It mostly 

occurs during a local search or population generation. Learning is a key aspect in the intuitive 

design of heuristic methods and can act as an enhancement strategy of any other method, or 

learning principles can be used in a hybrid manner. The next paragraphs offer a description on 

some of the most widely used metaheuristic methods and those we use for this research. 

 Variable Neighbourhood Search  

Variable Neighbourhood Search (VNS) was introduced by Mladenovic and Hansen (1997). It is 

a very simple and powerful metaheuristic, which is its classical forms aims to provide structure 

and guidelines for the local search operators in a systematic fashion. The structure provided 

to the local search operators gives an opportunity for intensification and better exploring the 

current neighbourhood structures to the incumbent solution.  
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The search space refers to the space of all possible solutions that can be visited during the 

search process via selected local search operators such the Inter-Route and Intra-Route Shift 

and Swap. The neighbourhood structure is closely linked to the definition of the search space. 

A candidate solution S has a set of neighbouring solutions N(S) which can be reached by one 

local transformation. For instance if one customer is moved to a position in another route (the 

1-0 Inter-Route Shift) will make the current solution go to a new neighbourhood. There are 

many possible neighbourhoods of a current solution S and some of them may be more 

attractive than the current neighbourhood structure. In some cases a single move or shift can 

result in a neighbourhood very close to the topography of the current solution S, but in other 

cases the solution structure may be significantly different. An example of this is when a 

heterogeneous fleet is present, one swap or shift can lead to change in the fleet composition, 

as well as the solution sequence. VNS uses multiple neighbourhood structures    , as opposed 

to one, which is typically the case with local search operators,  kN for k = (1,… , maxk ) and 

kN ( )x  the set of solutions in the     neighbourhood of x. VNS has only a few parameters that 

need to be considered by the researcher in advance. This includes the value of     , the 

order in which the neighbourhoods are visited and the strategy for changing from one 

neighbourhood to another.  

The methodological steps of the VNS are as follows: 

Step 1: Find Initial Solution x, using some construction heuristic or at random; 

Step 2: Select the set of neighborhood structures kN  for max(1,..., )k k  that will be used in 

the search; 

Step 3: Set 1k   , until maxk k  , repeat the following steps:  

(3a) Generate a point 'x   at random from the thk   neighborhood of ( ' ( ))kx x N x ; 

(3b) Apply a local search method with x' as the initial solution; denote with ''x   the obtained 

local optimum;  

(3c) If the solution obtained is better than the incumbent, move there ( : '')x x  and continue 

the search with    ( : 1)k  , Else next k  ; 
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The way one can go from one neighbourhood to another it is up to the researcher. Shift and 

Swap moves can be used or some probabilistic rule. VNS typically has a shake stage, which 

aims to diversify the search process. The shake stage is implemented if stagnation of the 

objective function occurs. It acts as a diversification strategy and brings the search process to 

distant regions of the current search space. This provides for better coverage of the solution 

topography. The shake stage can be done either by some perturbation mechanism or more 

commonly by a probabilistic rule, which involves random shifting of customers. Some authors 

use Random Restart strategy for diversification where a previously found good 

neighbourhood is further explored and all steps of the VNS are repeated from the beginning.  

 

Large Neighbourhood Search (LNS) is similar to VNS but has construction and destruction 

mechanisms to identify the best neighbourhood. It involves exploring large parts of one 

neighbourhood, where a proportion of customers is removed from the solution sequence and 

then re-built typically using some construction heuristic. Adaptive Large Neighbourhood 

Search (ALNS) adopts several insertion and removal heuristics, by giving them proportional 

weight depending on their success in generating improvements in the current solution. LNS 

was firstly introduced by (Shaw, 1997) which is then extended to ALNS by (Ropke and Pisinger, 

2006).  

Another popular type of VNS is the Variable Neighbourhood Descent (VND). It is proposed by 

Mladenovic and Hansen (2001) as an extension of the classical VNS. The motivation behind is 

very simple. When working on a given candidate solution S, which has a set of 

neighbourhoods N(S), one cannot assume that the local optima for one neighbourhood will be 

the same as the local optima of another. Therefore, VND works systematically on finding the 

descent of each neighbourhood using local search operators and once the descent of the 

neighbourhood is found the search moves with another local search operator. VND is a 

probabilistic version of VNS, where Neighbourhood descent can be found either by first 

improvement strategy or best improvement. Usually best improvement is more 

computationally expensive. It is common that local optima, with respect to one or several 

neighbourhoods are very close to each other in the solution topography. This is because 

neighbourhoods of solution N(S) are nested, which means that each neighbourhood 

constrains the previous. In these cases VND and its deterministic nature may have the 
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problem escaping from those regions. Reduced VNS (RVND) is a stochastic VNS, with pre-

selected neighbourhood structures chosen at random. There are many ways one can amend a 

given method to give it more intensification or diversification as suitable for the researched 

problem. This research makes use of a population VNS (PVNS), where neighbourhoods of 

multiple solutions are further explored, which acts as a diversification strategy. 

Another method which is worth mentioning is Simulated Annealing (SA). It is a probabilistic 

local search method with a key function of hill-climbing. A parameter t (temperature) is 

introduced, which is the probability of accepting a non-improvement move. At the beginning 

of the algorithm this parameter is usually very high and it reduces with the number of 

iterations until it reaches zero or a certain stopping criteria. There are some generic decisions, 

which need to be set prior to the execution of the algorithm such as cooling schedule (choice 

of t, length of t and rate of decreasing of t) and stopping criteria. There are also some problem 

specific decisions such as the neighbourhood structure, the size of the solution space and the 

representation of the objective function (Eles, 2010).  

 Tabu Search 

Tabu Search (TS) is a very sophisticate metaheuristic method, which was originally introduced 

by Fred Glover in 1989. The word ‘tabu’ originates from the Tongan language and means that 

something cannot be touched, because it is sacred. TS is a one-point solution method, 

however, because it makes use of memory structures it can also be classified as a learning 

algorithm. Similar to VNS, TS has an iterative search approach to finding good solutions 

through the well-known local search operators. However, the search process is strategically 

guided through forms of memory. TS has a few parameters which need to be considered in 

advance, or by computational experience. Firstly is the tabu tenure, which is part of the short-

term memory of TS. Tabu tenure is one of the most important elements of TS and it has to do 

with prevention of short-term cycling over the current neighbourhood structure, or cycling 

over neighbourhoods which have already been visited. For instance if a local search method is 

adopted, which shifts one customer to a different position in another route without 

improvement of the objective function, the tabu tenure ensures that this move will not be 

performed again during the search process for a given number of iterations. Hence this move 

will become tabu, and it will be added to the tabu list. The reason why the move will be tabu 

only for a few iterations is the key to good intensification. Once a move becomes tabu, it is 
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not permitted again in the short term, therefore other moves will be applied and ideally lead 

to a further reduction of the objective function (assuming minimization). Once a better region 

is found from a few consecutive iterations, the moves that were tabu in the past iterations 

become admissible again. This is done because when further improving moves are found the 

solution goes to a new neighbourhood and when a tabu move is freed and applied to the new 

neighbouring solution it may result in further improvement. During the search process the 

tabu list is updated, by adding moves which are recently declared as tabu, and freeing those 

which have been tabu for a while. The tabu list can either by of dynamic length or fixed 

length, depending on the preference of the researcher. One of the key parametric 

considerations that have to be made is for how many iterations the tabu tenure is valid. This is 

typically done by trial and error, by running the algorithm with different values of tabu tenure 

and fine tuning the parameters based on experience and the results obtained. The tabu 

tenure value would also be dependent on the nature of the problem. Another benefit of 

having tabu tenure is that when a move is inadmissible it is not performed, which means that 

the computational time speeds up. Hence the tabu list acts as a neighbourhood reduction 

technique. There is trade-off when deciding the value for tabu tenure. If it is set too high, it 

will restrict the search process and cause stagnation, if it set too low, it will result in cycling. 

The tabu status can be given to different types of moves which occurred in past iterations. 

Some authors give tabu status to improving moves, which means that the arc connecting the 

improving move cannot be broken. Others give tabu status to dropped arcs, or in other words 

the inverse of the improving, which is the strategy we use in this research. Tabu status can 

also be given to non-improving moves. For instance if a move degrades the objective function 

significantly, relative to a given threshold can receive a tabu status to that it does get revisited 

again, because it is not a promising move. 

Another key parameter is the aspiration criteria which to an extent, addresses the problem 

with the tabu tenure trade-off. Having tabu moves is very powerful, but sometimes during the 

search process a move that is currently on the tabu list may lead to a better solution that the 

best found so far. This is because the structure of the solution changes over the runtime of 

the method and one cannot guarantee that all moves in the tabu list will be non-improving for 

a number of iterations. Therefore, in cases like this, the aspiration criteria can be applied, 

which means that the tabu status of a certain move on the list can be overridden and become 
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admissible again. Typically the tabu tenure forces the search into good regions of the search 

space by prohibiting worse quality moves, but in some cases it can lead to stagnation of the 

solution quality and getting trapped in local optima. Therefore, the aspiration criteria allows 

for some flexibility, which could intensify the search in the specific region. The termination 

criterion governs when the algorithm should terminate. There are a few typical ways of 

deciding when to terminate the tabu search algorithm. One can terminate the algorithm after 

a pre-specified number of iterations, or pre-specified number of iterations without 

improvement of the objective function. Another way is to terminate when the objective 

function reaches a certain value or when a maximum time limit of the runtime is imposed.  

TS has been a focus of research in the VRP domain and responsible for some of the best 

known solutions in the literature. Therefore, many versions of the TS were introduced over 

the years. Battiti and Tecchiolli (1994) proposed a Reactive Tabu Search (RTS), which was later 

adapted by Wassan (2007). It adopts new powerful mechanisms to escape from local optima. 

One of the main differences between TS and RTS is how the tabu tenure value is decided. In 

the case of RTS it is decided dynamically, based on the reaction to repetitions of moves which 

occur during the search process. There is also an escape diversification strategy which moves 

the current solution away from its current topography if the neighbourhoods and structures 

of the solution are extensively repeated / cycled over. Some authors use randomized 

strategies, where others use a more guided approach. 

Granular TS is another version of TS which is successfully implemented over a number of 

VRPs. It was proposed by Toth and Vigo (2002). What is different here to the classical TS is 

that moves which involve long distance arcs (customers too far from eachother) are not 

visited. This is not to state that a long arc is not permitted in a solution sequence, but that a 

sequence of only long arcs is not permitted. An arc is defined to be long if it is over the 

minimum granularity threshold defined as 

 
z

n K
 


 , 

Where   is the granular threshold,   is a scaling parameter, n is the size of the problem and 

K is the number of vehicles. The scaling parameter value is decided by trial and error. There 
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are other types of TS, which include probabilistic rules, Greedy Randomised Tabu Search 

(GRTS) proposed by Resende and Ribeiro (2003) and many more hybrid applications. 

 

 Genetic Algorithms 

Genetic Algorithms (GA) are informed by the metaphor of natural selection and genetics. They 

build on the principle that certain genes (solution sequences) have better characteristics than 

others, and those individuals (candidate solution) who have those ‘good’ genes are the fittest, 

hence they survive. When applied to CO, this means that the aim of the algorithm is to create 

parent population of solutions with different chromosomes (solution sequences), which are 

evaluated based on their fitness (value of objective function). Those parents who have better 

fitness are mated to create children solution offspring, which contains genes from both 

parents. Typically two parent solutions are combined to create a child individual. Parents can 

be generated randomly, or using some construction heuristic. The method which is used for 

combining the parent solutions is crossover. There are one point and two-point crossovers 

and some further variants proposed in the literature. A mutation operator is also used to 

slightly amend the inherited genes from the parents, hence the unique nature of the child. 

Usually GA and other population based methods are not very powerful on their own when 

dealing with complex VRPs. They are often applied together with local search methods 

(Laporte, 2009) and this forms a typical hybrid method of two metaheuristics. They include 

Ant Colony Optimisation (ACO) and Neural Networks (NN). 

 Adaptive Memory Procedure 

 

Adaptive Memory (AM) procedure is a term introduced by Rochat and Taillard (1995), which 

complements Tabu Search (TS) and refers to a special utilization of the memory during the 

search process. AMP can be defined as a special data structure, which initializes a set of 

solutions and during the search process keeps track of the “best” components of the 

solutions, which are later combined to build a better quality solutions (Tarantilis, 2005). 

Initially AM was used as a complement to TS, because one of the main characteristics of TS is 

the utilization of memory, where AM was used to bring in more diversification and 

intensification of the TS process. Most of the research on AM is still by means of TS. However, 

TS is not the only meta-heuristic methods which makes use of memory. There are other 
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methods which make use of forms of memory, such as Scatter Search (SS), Path Relinking (PR), 

Genetic Algorithms (GA), Memetic Algorithms (MA), and AM could be used to improve their 

performance. Therefore, Taillard (2001) introduced an umbrella term of Adaptive Memory 

Programing (AMP), which unifies all those solution methods which make strategic use of 

memory, where knowledge of the solution is gathered during the solution search process and 

it is later exploited to improve the solution. In short, we can talk about AMP when the 

solution method in question has underlying principles of memory already embedded in the 

nature of the method. However, explicitly embedding AM into meta-heuristics other than TS 

is not very common. There are some papers where AM was used with Particle Swarm 

Optimization (Yin et al., 2010) and Path Relinking (Li, 2010).  

 

AMP has three main characteristics. Memory initialization is the initial pool of solutions. 

Memory updating refers to the ability of compiling knowledge about the solution space and 

the recognition and updating of “good” solution components. Memory exploitation is the last 

stage, where all the pieces of knowledge gathered are used to build an improved solution. 

AMP can be associated to a greater extend with longer-term memory structures, even though 

methods like TS also make use of short-term memory updating, namely the tabu tenure.  

 

Similar to other metaheuristic methods, AMP has parameters and methodological 

justifications which need to be specified by the researcher. Originally AMP makes use mostly 

of probabilistic rules for methodological decision-making, but later on other methods have 

been introduced. In terms of memory initialization there are some common techniques. For 

instance, Tarantillis (2005) and Yin et al. (2010) use Diversification generation method, 

Tarantillis (2002) and Zachariadis (2010) use Paessens’ construction algorithm, Tarantillis and 

Kiranoudis (2007) use the Generalized Route Construction algorithm (GEROCA) etc. Perhaps 

the most important methodological consideration regarding AMP is the way “good” solution 

components are extracted from the memory and how do we know exactly how good they are.   

 

Tarantillis and Kiranoudis (2007) proposed the BoneRoute method, where good solution 

sequences are referred to as bones. A bone has two main characteristics and that is the length 

and frequency. A node sequence is regarded as a bone only if it is of a certain length and the 

bone will be regarded as good and will be saved into the memory if it has frequency higher 
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than a given threshold, hence it re-appears in the initial solution pool. The main rationale of 

this method is that good solution sequences appear in good, medium and low quality 

solutions, so they higher the frequency of a bone, the better the chance it is a promising 

solution component.  Another method is the Solutions’ Elite Parts Search (SEPAS) introduced 

by Tarantillis (2005). It is similar to the BoneRoute method, but employs more deterministic 

principles for initial solution generation, as well as for building the new solution out of the 

elite parts. Moreover, the parameters for initial solution pool, length and frequency are 

different, as well as the form of TS used to navigate through the search space. Zachariadis 

(2010) extended these notions to include bones of variable length, as well as assign different 

cost tags to the bones, indicating their goodness of fit. Li (2010) uses a multi-start AMP where 

solutions are constructed at each iteration and the survival of good solution sequences is 

extracted based on a specific probability.  

 

The AM procedure has been successfully applied to different variants of the VRP and has 

produced competitive results. It is used for the classical VRP (Tarantillis, 2010), VRP with 

Heterogeneous Fleet (Li, 2010), VRP with Split Deliveries (Aleman, 2010), VRP with 

Simultaneous Pickup and Delivery (Zachariadis, 2010) and VRP Fleet Size and Mix with Time 

Windows (Repoussis, 2010), Heterogeneous Fleet Open VRP (Li, 2010), VRP with Backhauls 

(Wassan, 2007), VRP with Multiple Trips (Olivera, 2007). This research adopts the AM 

procedure in a hybridized manner with a heuristic solution method, which does not make use 

of memory in its classical form, namely the VNS. Instead, the proposed algorithm adopts 

learning mechanism from the neighbourhood search and uses AM procedure to improve the 

incumbent solution by preserving the elite parts. It also takes a more retrospective view on 

the memory initialization, through learning from past experience.  

Hybrid Methods 

Hybridisation occurs when two or more metaheuristic methods are combined, in order to 

reach better solutions. This is a very popular technique in recent years and there are many 

hybrid methods proposed by scholars which tackle VRP variants quite successfully. For 

instance Vidal et al. (2013) proposes a hybrid between GA and local search methods to solve 

the VRPTW which matches, and in some instances, improves current best known solutions. 

Also Belhaiza (2010) uses a hybrid VNS with TS and Oliveira (2010) uses an SA and 
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Neighbourhood Search hybrid to solve the VRPTW. There are also hybrids between 

metaheuristics and exact methods in the literature such as Subramanian’s (2012) hybrid 

between Iterated local search and Set Partitioning for the VRPTW. There are many examples 

in the literature and exhaustive review cannot be provided. However, it is important to note 

that hybridisation provides more flexibility and has the ability to generate competitive results. 

Therefore, this research focuses on the design of hybrid metaheuristic methods in order to 

solve the proposed real life VRP. The main methodological drive behind creating hybrids is to 

successfully combine good elements from different solutions methods and aim to strike the 

right balance between diversification and intensification, as well as guided search and 

randomization. Various elements of different methods have been hybridised and some 

methods are more commonly used than others. It can be summarized that VNS, TS and GA are 

amongst the most commonly hybridized metaheuristics, where SP and BCP are amongst the 

most commonly hybridized exact methods. 

Hyper-Heuristics 

The term hyper-heuristics was introduced in 2000 by Cowling (2000), but notions of the main 

idea behind the method can be found as early as 1960s. The main idea underpinning hyper-

heuristics as a CO solution method is to automate the design of heuristic methods and make 

them more generalizable to various CO problems. Typically the heuristic solution methods in 

the literature are very much problem specific and there is a need to amend the parameters of 

the search process to fit the nature of the problem or sometimes the instance in hand. 

Generalizability is one of the main motivations behind this method, and it fits the trend in the 

literature for calling for more flexible methods which can be applied across problem variants, 

and even across CO problems. Hyper-heuristics is not concerned with exploring the search 

space of solutions to a given problem; rather it explores a search space of heuristics, which 

can be applied to the studied problem. Hyper-heuristics can be viewed as a population or a 

set of easy to implement low-level heuristic methods which are the components of the hyper-

heuristic, where a sequence of heuristics is chosen to address the problem at hand. The goal is 

not to operate on the solution space, but to find a good combination and sequence of 

heuristic solution methods, appropriate to address the problem. Hence a hyper-heuristic can 

be seen as a collection of methods which are generated in accordance with the problem. An 

analogy here can be made with the rich Solvers, where depending on the features of the 
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problem different constraints and aspects of the solution method are activated. Burke et al. 

(2010) proposes a classification of hyper-heuristic methods, which is shown in Figure 2.12. 

 
Figure 2.12: Classification of Hyper-heuristics (Burke et al., 2010) 

 

 

There are two dimensions which need to be considered when classifying hyper-heuristics. One 

is the nature of the search space and the other is the sources of feedback. The nature of the 

search space has two components, namely heuristic generation and heuristic selection. Some 

methods from the set of methods that compose the hyper-heuristic can be directly applied to 

a problem. Other methods however can be generated depending on the nature of the 

problem, which combine features of different heuristics. This can be regarded as a form of 

learning, because it involves mix and match of features to best address the nature of the 

problem. Feedback is another learning mechanism, which can be online or offline. During 

online hyper-heuristics feedback, learning happens during the execution of the algorithm and 

the sequence of the chosen heuristic methods, where in offline hyper-heuristics learning 

knowledge is gathered during test instances and can be used later on instances which have 

not been solved before. There are types of hyper-heuristics where no learning is incorporated. 

There are some successful applications in VRP. For instance Garrido and Castro (2009) use 

hyper-heuristics to solve the CVRP incorporating constructive and perturbative heuristics and 

hill-climbing mechanisms. Further research into this area can have good contributions 

towards generalizability of algorithms, as well as learning mechanisms and ways of hybridising 

elements of different heuristic methods. 
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Matheuristics 

Matheuristics are a type of hybrid metaheuristic methods, but the difference is that a 

heuristic method is hybridized with an exact method. Often exact methods are used as a 

subroutine of the metaheuristic method to solve smaller sub problems (Hanafi et al., 2010) or 

find an optimal assignment or partitioning. For instance Hanafi et al. (2010) uses Variable 

Neighbourhood Decomposition technique, where at each iteration the generation of 

neighbourhoods is done via solving a relaxation of the problem. The exact methods used to 

design matheuristics are usually set partitioning based, branching based or linear/ integer 

relaxations. Another popular way of hybridising exact and heuristic methods is to use 

candidate solutions at local optima, achieved by a given metaheuristics, as columns in a set 

partitioning formulation. For instance, Villegas et al. (2013) use Greedy Randomised Adaptive 

Search Procedure (GRASP) and Iterated Local Search (ILS) to generate the columns for the 

TTRP. Kramer et al. (2015) uses set covering formulation with local search for the Pollution-

Routing Problem. Not all authors refer to an algorithm which combines exact and 

metaheuristic method as matheuristics. The terms is not universally accepted across the OR 

community. For instance Subramanian et al. (2012) proposes a hybrid metaheuristic algorithm 

which consists of Set Partitioning formulation which is executed in CPLEX solver, and calls 

iteratively a hybrid method based on ILS and VND. This would make the method a 

matheuristics since the metaheuristic is hybridized with an exact method, but it is not referred 

to by the authors as such. However, it has to be noted that it produces one of the best results 

on the VRPHF and FSMVRP benchmark instances. It shows that hybridising metaheuristics and 

exact methods result in one of the most competitive algorithms in terms of solution quality 

and it is a very fruitful area of research, because it gives an opportunity for creativity and 

flexibility of hybrid designs.  Research efforts in this area can be very beneficial for academia 

and industry. 

 

Solution Methods for RVRPs 

Following from the discussion on the main VRP variants and their extensions, there is no one 

universal method which is used to solve RVRPs. In fact, the methods used in the literature are 

very diverse and cannot be all noted. There are some exact methods formulated for real life 

VRPs an example of which is column generation for rich VRP with inventory constraints 
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(Oppen, 2010) and Branch-and-Cut for Rich VRP with docking constraints (Rieck, 2010). 

However, some of the popular methods are TS, GA and Neighbourhood Search. The literature 

on rich VRP is difficult to summarize because of the loose definition of rich VRP. Some authors 

consider mixed variants such as VRPPDTW to be rich (Derigs, 2006), whereas the definition 

adopted in this research is quite different. A rich VRP is defined to consist of one or more main 

VRP variants and several real-world additions. Therefore, examples of solution methods will 

be given based on that definition. Tarantilis (2008) uses a hybrid metaheuristic method based 

on TS, VNS and Guided Local Search (GLS) for the VRP with intermediate replenishment 

facilities, Valle (2011) uses a hybrid between BC and column generation based heuristic and 

Greedy Randomized Adaptive Search Procedure (GRASP) for the min-max selective VRP. Some 

authors create new methods to fit the richness of the problem they are investigating. For 

instance Ren (2010) solved the VRP with multi shift and overtime and introduced a shift-

dependent heuristic to tackle the problem. Benjamin (2010) proposed a waste collection 

VRPTW with driver’s rest period and multiple disposal facilities. He develops a hybrid 

metaheuristic method using TS and VNS, which performed well on selected benchmark 

problems.  

It is not common that a learning metaheuristic method is applied to a rich variant. In fact, to 

the best of our knowledge a learning metaheuristic has not been used to address a RVRP. 

Therefore, this research will attempt to propose a learning method to solve the RVRP 

introduced here and make it generalizable to other VR variants.  

2.4. Summary  

This chapter aimed to cover two areas from the literature on the Vehicle Routing Problem, 

namely variants of the VRP and solution methods for the VRP and any relevant VRP variants. 

Because of the steep growth in research in the VRP area, there are many different version of 

the VRP which are being addressed in the literature. They can be classified as main variants, 

extensions, combinations or (mixed) variants and real life (rich) variants of the VRP. In this 

research we introduce a real life VRP (RVRP) and we discussed the issues around researching a 

RVRP. We found that usually when one is addressing a RVRP there is little room for 

algorithmic comparability. In most cases authors focus on either designing exact methods or 

heuristic methods, and given the diverse nature of the RVRPs it is more challenging to 
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compare results against known literature benchmark instances. Therefore, we proposed to 

approach RVRPs in a standardize-first customize-second fashion, where a main variant of the 

VRP is incorporated within the RVRP, or if this does not match the real life specifications of the 

problem the Capacitated VRP can be used as a comparability platform. Moreover, we suggest 

that formulation can be provided for a RVRP and solved to optimality, on as large instances as 

possible, and this can act as a comparability guide for any metaheuristic method designed for 

the RVRP. 

The literature on solution methods within the VRP domain suggests that hybrid 

methodologies are some of the most powerful when addressing a VRP and its variants. 

Combining principles from different heuristic methods can lead to enhanced performance of a 

method and hybrids are responsible for some of the best found solutions in the literature on 

different VRP variants. Therefore, we focus our methodological design on creating new hybrid 

metaheuristic methods which are used to solve the proposed RVRP in this research, as well as 

other relevant VRP problems. 
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Chapter 3 

   

Problem Description and Formulation 

 

This research introduces a new real life VRP variant to the body of literature on VRP. Before 

the problem was created, there were informal exploratory interviews with the Distribution 

and Logistics managers of the largest gas delivery company in the UK and market leader in gas 

supply with over 51% of the market share. Usually in MS/OR new variants introduced to the 

literature are inspired by industry. For instance the VRPPD is inspired by reverse logistics, the 

Roll on Roll off VRP by waste collection, the TTRP by large heavy goods vehicles etc. The rich 

variants are much closer to real routing practices and it can be argued that it is very important 

to understand the purpose of routing optimisation in the context of a real business and 

outline the main elements of the routing system before modelling and solving the problem. 

After the exploratory interviews with the key informants of the researched company, a few 

important aspects of the gas delivery routing practices came to light, which will be 

incorporated in the modelling and problem definition.  

(i) The restrictions on the length of a driver’s route is either when the capacity of the vehicle is 

reached or and the end of the working day, which is 8 and a half hours. Overtime is also 

possible but at an extra cost if there is still available capacity. Allowable overtime is one of the 

main aspects which can be further improved. First, overtime is not considered in advance 

when creating the routes, but it occurs towards the end of a driver’s shift, which means that if 

there is still capacity left in the vehicle, the deliveries made during overtime are not part of an 

optimized route, but only occurring where possible. Moreover, it is very common that drivers 

refuse overtime if it is not promptly offered and this leads to customer dissatisfaction and 

putting off deliveries for the next planning period. The room for improvement here can be 

twofold. First, in terms of cost saving, that is when overtime is considered in advance the 

routes can be generated to accommodate for that. Second, in terms of more qualitative gains, 

such as reducing drivers’ resistance to overtime if they are informed about it in advance, and 

increasing customer satisfaction.  
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(ii) Gas delivery service times are proportionate to the demand. The larger the customer 

demand that needs to be satisfied, the longer it will take to do it. This is because the gas can 

be pumped into the customers’ gas tanks at an average rate of 150 litres per minute. Service 

time is usually between 10 and 45 minutes. This leads to a special characteristic of gas delivery 

and that is the demand-dependent service time. This means that because of the time 

consuming service time, less customers can be serviced by one vehicle in one planning period, 

which also emphasizes the need for allowable overtime.  

(iii) There is also a special requirement for light load, which commonly occurs in gas delivery 

or any other sector which uses heavy goods vehicles. A light load requirement is attached to 

the service of certain customers. For instance, if a customer lives in an area which is difficult 

to access, steep hills or soft grounds, then they can only be accessed when the vehicle 

becomes lighter. If the vehicle is full, it may be too heavy and may not be able to access that 

customer. This means that only once the vehicle has become lighter, a light load customer can 

be serviced. The maximum proportion of customers with light load requirement can be up to 

20% of the total customers served, as per company’s information. This is another possible 

area for improvement of the routing, because according to the company, the light load 

customers are not incorporated in the generation of the routes, but manually added at the 

end of the delivery period of a given vehicle. However, light load customers do not necessary 

have to be serviced at the very end of a shift, they can be serviced at any time a given vehicle 

becomes lighter. Therefore, incorporating the light load requirement can lead to cost savings 

for the company and a more efficient routing schedule. 

(iv) The vehicle fleet is unlimited heterogeneous, with two types A and B. They have different 

capacities and variable costs, which are calculated based on average vehicle load and speed. 

The speed of the vehicles is quite low, an average of 30 mph, which leads to different travel 

times, which are not proportionate to the distance, but adjusted for the speed factor.  

These main routing elements shape the nature of the RVRP introduced in this study, namely 

VRP with heterogeneous fleet, light loads, demand-dependent service times and allowable 

overtime. To the best of our knowledge there is no study which considers maximum overtime 

with unlimited vehicle fleet, which is an interesting feature to explore. It is very important that 
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when dealing with RVRPs practical implications are offered, in line with the main elements of 

the routing and the areas that can be improved as a result of optimization.  

3.1 Problem Definition 

The RVRP is modelled on a complete directed graph  ,  G N A , where N is the set of 

customers  0,1, ,N n  with 0 being the depot, and  ,  :  ,   ,{ }A i j i j N i j   is the set of 

arcs where each arc  ,  i j A has associated distance    and time     .There are k types of 

vehicles k, each {1,..., }k K , with a    different capacities. Each vehicle is also associated 

with a variable cost
kv , based on how much fuel a specific vehicle consumes, given the 

vehicle's average speed. The number of vehicles of each type is unlimited. The distance is 

Euclidean and the cost is proportionate to the distance multiplied by the variable cost kv . The 

time of travel is a key feature, because it takes into account the average speed of the vehicles. 

The average speed for heavy vehicles carrying dangerous load is approximately 50 km/h, 

which is quite low and has impact on the delivery schedule. Each customer i N  has a known 

demand    and known service time is , which is demand-dependent. Customers are divided 

into two types, regular R(R ⊆ N), which can be serviced at any time during the delivery period, 

and light load L (L ⊆N, R ∩ L = {}, R∪  L = N).If a customer is considered to be light load ( )i L , 

it means that it can only be serviced if the remaining load in the vehicle is less than a specified 

threshold level, kc  for {1,..., }k K . T is the maximum regular time allowed for each vehicle 

route (7 hours and 15 min, adjusted for compulsory breaks), O is the maximum allowable 

overtime (4 hours and 30 min) and   is the cost of overtime which is 1.5 times higher than 

the cost of regular travel. 

3.2. Formulation 

The mixed integer formulation of the RVRP is presented in this section. 

Decision Variables: 

 0,1ijkx  1 if vehicle k travels along arc ( , )i j , 0 otherwise; 

ijky is a non-negative continuous variable, which denotes the remaining load on a vehicle k  , 

travelling along the arc ( , )i j before reaching customer j ; 
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ijz is a non-negative continuous variable, which keeps track of the travel time on arc ( , )i j ; 

Objective Function: 

Minimize Z =
0 0 1
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The Objective Function (1) aims to minimize the total cost of travel. Constraints (2)-(3) state 

that each vehicle arrives at a customer location and leaves that customer location exactly 

once. Constraint (4) ensures connectivity of the solution. Constraints (5)-(6) govern the 

commodity flow conservation and capacity restriction. Constraint (7) ensure that the light 

load customers i L , will only be serviced if the remaining load on the vehicle is less than the 

specified threshold   . Constraints (8)-(10) govern the maximum time allowed for each vehicle 

trip. Constraints (11)-(12) guarantee that the decision variables 
ijky  and ijz are positive, where 

constraint (13) specifies the binary nature of the decision variable
ijkx . The proposed MIP 

formulation has ( 1)(2 3) 3 ( 1)n n n LK R     constraints, ( 1)kn n binary variables and 

( 1) ( 1)n n n n k   continuous variables. 

An extension of the formulation is also provided to include maximum overtime. The reason 

why overtime is modelled as an extension to the model without overtime (and separately 

solved by the metaheuristic method) is for the purpose of comparing the results and showing 

any possible cost savings by incorporating overtime. For the problem with overtime much 

smaller instances can be solved to optimality as opposed to the model without overtime, 

however lower/upper bounds are recorded where possible. In the case where overtime is 

allowed, the objective function can be modified as follows: 

Minimize Z=
0 0 1 1

{ ,0}
n n K K

ijk ij k k

i j k k

x d v Max a T
   

        (1a) 

where ka is a new variable denoting the arrival time at the depot for each vehicle. The 

additional component to the objective function ensures that upon return to the depot any 

time over the maximum regular T will be treated as overtime, multiplied by the overtime cost 

  and added to the total cost of travel.  

The variable tracking the time ijz  is replaced by variable ikz , which denotes the arrival time at 

customer i , for each vehicle {1,..., }k K . Constraints (8)-(11) have to be replaced with the 

following, in order to account for any allowable overtime, where Big M is a significantly large 

constant. 
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Constraints (8a)-(9a) keep track of the time for each vehicle and the arrival time at the depot. 

Constraint (10a) ensures the maximum travel time (including regular and overtime) is not 

exceeded and constraints (11a)-(12a) ensure the positive nature of the corresponding 

variables. 

The number of vehicles can also become fixed to a certain number m  by adding constrain 

(14), but the type of vehicle chosen remains variable. Moreover, if constraints (7)-(11) in the 

original model are relaxed, the RVRP reduces to the VRP Fleet Size and Mix.  

0

1

;
n

jk

j

mx


      (k =1,…,K);     (14) 

3.3. Cplex Results for the RVRP 

This section provides the problem specifications of the RVRP, as well as the results from Cplex 

for the RVRP with and without overtime. Testing the formulation is an important aspect of this 

research, since it will be used as a methodological comparability platform for the proposed 

metaheuristic method. Table 3.1 gives the specification of the RVRP, as well as some 

information on how the instances were generated.  

Table 3.1: RVRP Problem Specifications 

Customer Coordinates Golden et al. (1984)  

Customer Demands Randomly Generated with Uniform Distribution [630,3950] 

Vehicle Capacity 13050 litres (Type A) ,20880 litres (Type B) 

Average Speed 30m/h 

Service time 150 litres per minute 

Variable cost per vehicle 0.36 (Type A), 0.48 (Type B) 

Set of Light Load Customers L⊆   N Randomly Chosen 
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Table 3.2 shows the Cplex results for the RVRP without overtime, which is based on the 

formulation in Section 3.2. It shows optimal solutions in bold for up to 30 customers and for 

the other instances lower and upper bounds are provided. The time is reported in minutes 

and the Fleet Mix shows the fleet composition of the solution. The RVRP is solved using Cplex 

OPL Version 12.6, on a PC with Intel CPU 3.4G. 

 

         Table 3.2: Cplex Results for the RVRP without overtime 

N 
Proportion 

of L 
LB/ Optimal UB Time Fleet Mix 

20 10% 446.2 - 4 3A 1B 

20 15% 446.9 - 3 3A 1B 

20 20% 462.3 - 3 3A 1B 

30 10% 560.1 - 640 2A 3B 

30 15% 560.1 - 640 2A 3B 

30 20% 535.9 575.4 375 - 

50 10% 701.1 901 1830 - 

50 15% 706.8 958.2 248 - 

50 20% 699.4 N/A 1109 - 

75 10% 993.1 1541 971 - 

75 15% 985.9 1391 1658 - 

75 20% 985.9 N/A 2662 - 

100 10% 1274.6 2908 1396 - 

100 15% 1248.4 2844 1930 - 

100 20% 1247.4 N/A 322 - 

 

 

Table 3.3 shows the generated optimal solutions and lower/upper bounds for the RVRP with 

overtime, based on the extended formulation in Section 3.2. Only instances up to 50 

customers are portrayed in Table 3.3, because for the larger instances the search tree grows 

to the memory limits and the program runs out of memory. 

3.4. Summary  

This chapter describes the RVRP proposed in this study in detail, with its different real life 

attributes and specifications of the dataset we used in order to create the test instances for 

the RVRP. Moreover, a Mixed Integer formulation of the problem with and without overtime 
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is presented and the results from Cplex are detailed. In the following Chapter we use the 

Cplex results as a comparability platform for the metaheuristic methods we designed to solve 

larger instances of the RVRP. 

 

                    Table 3.3: Cplex Results for the RVRP with Overtime 

N Proportion of L LB/Optimal UB Time Fleet Mix 

18 10% 390.3 - 4 1A 2B 

20 10% 413.8 451.1 63 - 

20 15% 413.8 451.1 51 - 

20 20% 418.1 448.3 84 - 

25 10% 474.5 511.8 22 - 

30 10% 504.9 586.1 31 - 

30 15% 504.9 586.1 30 - 

30 20% 503.7 584.7 21 - 

50 10% 699.1 - 32 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 
 

Chapter 4 

 

Initial Solution Method 

Heuristic algorithms are usually constructed in a similar manner across different CO problems 

and their variants. Figure 4.1 gives a typical structure of the algorithmic sequence one usually 

follows when designing heuristic methods. It begins with the generation of an initial solution, 

then an execution of a main method, typically a member of the metaheuristic class or a hybrid 

and commonly ends with a post-optimization routine. Not all algorithm designs follow these 

steps, because an algorithm is also influenced by the nature of the problem, as well as the 

authors’ preference. 

 
Figure 4.1: Common steps for a heuristic algorithm design 

 

This chapter discusses in detail the generation of the initial solution for the RVRP and other 

VRP problems the algorithm is tested on. It is common practice in the literature for an 

algorithm to begin with an initial solution, generated either by a lower level heuristic of Type 

A or B (discussed in Section 2.3.2), a composite method as in the case of GENI-US or a 

randomly generated solution. There is an argument that can be made that having an initial 

solution generated by a given method, gives the subsequent heuristic search (main method) a 

good direction for exploration. Using a randomly generated solution could be more 

computationally expensive to transform into a better quality heuristic solution. However, a 
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powerful and efficient main method should be able to reach good heuristic solutions from any 

given starting point.  

This research adopts a population-based view on the algorithm design, and this population-

based nature is present throughout the algorithmic steps, including the initial solution.  After 

an extensive literature review on the VRP domain, a few key observations came to light on the 

methodological side. A good algorithm requires a sufficient degree of diversification, 

intensification and a fine balance between randomization and guided approach. Further 

discussion and details on these aspects are portrayed in Chapter 6. The rationale of the 

algorithm proposed in this research, rests on the idea that diversification is a long term 

consideration throughout the algorithm, which can be achieved by changes in the solution 

structure in a greater scope. The diversification principle can be embedded into an algorithm 

from the beginning with the initial solution generation. This research uses a few methods for 

initial solution generation, which forms a population of initial solutions, which is referred to as 

the Initial Solution Pool.  The idea is that having a pool of solutions which have different 

structure and sequence, could provide a coverage of a larger solution topography and explore 

corners which may otherwise not been explored if one initial solution (or one starting point) is 

used. Moreover, having a population of solutions aids the learning mechanisms which is 

embedded into the PVNS_AMP discussed in Chapter 5.  

The initial solution used in this research is generated by using four different methods, which 

encompass the different ways an initial solution can be achieved. The construction heuristics 

used here are an Adapted version of the Sweep method (AS), an adapted version of the 

Nearest Neighbour method (ANN), a Parallel Clustering method and a Random initial solution. 

These methods are fast and can be repetitively used without too much computational effort. 

The reason why these methods were selected is because of their nature. The Sweep method 

understands proximity of customer nodes in terms of their geometric position, the Nearest 

Neighbour in terms of real distances regardless of their positioning on the plane, the Parallel 

Clustering method in terms of Least Sum of Squares, where the Random solution follows no 

principle. Therefore, the resulting solutions will have different composition. An example of 

this is portrayed in Figure 4.2. 
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Figure 4.2 shows two solution structures of a VRP with 4 customers (a, b, c, d) and a depot 

denoted with 0 using the same customer coordinates. It can be seen that the generated 

routes from the two methods are different in terms of solution sequence, despite having the 

same coordinates on the plane. The anticlockwise Sweep generates a route where customer c 

is before b, where the Nearest Neighbour’s route visits customer c before b. Therefore, using 

methods with different underlying principles can lead to a diverse Initial Solution Pool.  

 

 

 

 

 

 

Figure 4.2: Routes generated from Anticlockwise Sweep and Nearest Neighbour 

 

 When making a methodological choice for an initial solution, there may be a relevant trade-

off which is time vs. solution structure. If a random initial solution is used, it could be more 

computationally expensive to transform that into a better quality final heuristic solution. On 

the other hand, using a solution from construction heuristic can bias the search towards the 

solution structure of that heuristic, unless strong intensification strategies are put in place. 

Depending on the main method used in the algorithmic design, any initial solution strategy 

can be chosen. The following sections explain which methods were used in our case for initial 

solution generation and also provide some brief preliminary computational experience to 

support the methodological initial solution choices. 

4.1. The Adapted Sweep Method (AS) 

 

 Initial solutions are usually adjusted to the nature of the researched problem. For instance 

the construction heuristics used here are influenced by the features of the RVRP, namely 

heterogeneous fleet, light load customers and others. Having real life characteristics in the 
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problem inevitably has an impact on the methods used. For instance if a construction heuristic 

such as the Sweep or Clarke & Wright Savings is applied to a heterogeneous fleet VRP, the 

question here is what fleet mix should be used. In order to overcome this drawback, here the 

construction heuristics are performed a fixed number of times, with different fleet 

compositions. The reason for this is to recognise better fleet compositions, which may lead to 

better solution quality. In addition, the RVRP can have allowable overtime. This further 

emphasizes the need for a pool of initial solutions, which can not only have different solution 

sequence and fleet composition, but also different allowable overtime for each route.  

The use of Sweep has been adapted to fit the nature of the RVRP. The idea is motivated by the 

nature of the problem. Having light load requirement means that certain customers can be 

serviced at any time on a given route, as long as the capacity threshold has been reached.  

A Giant Tour using the Anticlockwise Sweep angle sorting is first generated. The angles of the 

customer locations are only calculated once with respect to the depot. Once a Giant Tour 

based on the sorted angles is formed, the AS is performed for a fixed number of iterations 

(explained in a later section) from different starting nodes. After extensive computational 

experimentation an interesting observation was made. If the regular Anticlockwise Sweep is 

used, the starting point on the Giant Tour is the most negative angle, whereas the end point is 

the most positive angle. However, the link between the customers with most positive and 

most negative angles does not get explored. Therefore, we introduce a Giant Tour Rewind 

strategy, which aims to explore this link between the furthest customers in terms of angles. 

Therefore, we have empirically selected a Rewind section of 10 customers, regardless of the 

instance size. This means that the AS is performed a fixed number of times, but instead of 

starting from customer 1, we perform the AS for each consecutive node i   as a starting point, 

for ( 5,...,5)i n  . 

Let us take a small example to explain this point with the following Giant Tour, consisting of 

12 customers: 

Depot – 1 – 3 – 5 – 2 – 4 – 7 – 9 – 10 – 8 – 6 – 11 – 12 – Depot    

Node in Rewind  

Figure 4.3: Sample Giant Tour  

 

n n-5 5 
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Figure 4.3 shows a Giant Tour with n = 12. We perform the AS starting from node 5i n   as a 

starting point which in the case of the Giant Tour is node 10, and it is performed sequentially 

until 5i  , or in this case node 4.  This gives a better coverage of the proximity of the nodes, 

especially the proximity of those with the most positive and the most negative angles. The 

benefit of this is portrayed with a small example in Figure 4.4. 

 
  Figure 4.4: An illustrated Example of Adapted Sweep Rewind Strategy  
 

Figure 4.4 (i) shows the Giant Tour after Anticlockwise AS. The starting point of the AS in 4.4 

(ii) is node a, which is node number 1 on the Giant Tour. The starting point for the AS in 4.4 

(iii) is node e on the Giant Tour, which is node 1n . The different starting nodes are shown in 

colour blue. In the instance shown in 4.4 (iii), there is a benefit in terms of distance as well as 

overall cost, where the customers are serviced by two smaller vehicles, rather than one small 

and one large as it is in the case of 4.4 (ii).  This shows that having a Rewind strategy within AS 

can have a positive impact on the solution quality.  

 

The number of nodes for the Rewind strategy was empirically tested and it was found that 

having 10 node Rewind on the Giant Tour is sufficient for achieving good quality solutions. 

Figure 4.5 shows the benefit of having 10 node Giant Tour Rewind on different sized Fleet Size 

and Mix benchmark instances from Golden et al. (1984). The reason why we choose to show 

different sized instances is for consistency purpose, since the behaviour of any method can be 

different when tested on different sized problems. The X axis on the figure shows the number 

of nodes tested for the Rewind Strategy for (1,..., )i n , where the Y axis shows the 

corresponding solution quality. The line graph shows the solution quality at each node count 

for the four different problem instances. 
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It can be seen from Figure 4.5 that for all of the instances after the 10 node Giant Tour Rewind 

the solution quality does not improve, but stagnates. Therefore, 10 node rewind is performed 

for the final algorithm, because any additional iterations do not result in solution quality gains. 

 

 Figure 4.5: Performance of AS with different number of nodes for the Rewind Strategy 
 

Another important aspect considered within the AS is the light load requirement. Having 

adjacent starting points for the AS means that if any customer has a light load requirement, it 

would be positioned at different locations along a given route and moving along the Giant 

Tour stepwise can ensure that at some point the light load customer will reach feasibility in 

terms of threshold capacity. This is shown is Figure 4.6. 

 

 

Figure 4.6: Light load customer distribution during Adapted Sweep 

 

 

Figure 4.6 shows the AS with different starting points and feasibility of the tours in terms of 

the light load requirement. The customer which requires light load requirement is shown in 

purple, and the AS starting point is shown in blue. The numbers in the brackets show the load 

(i) (iii) (ii) 
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remaining in the vehicle, where the total load leaving the depot is 13050 tonnes. In Figure 4.6 

(i) the tour will be infeasible because the vehicle is not light enough to service the light load 

customer. The threshold for servicing light load customers is that the vehicle needs to be 

lighter than 5020 tonnes. Figure 4.6 (iii) is also infeasible in terms of light load requirement, 

even though the starting point on the Giant Tour is different. In Figure 4.6 (ii) however, the 

positioning of the nodes has shuffled and the light load requirement is met, hence this is the 

only feasible scenario. This shows that having the AS can help having a good quality initial 

solution as a starting point for the algorithm, which also has light load feasibility.  

 

In case the AS cannot ensure that all nodes which require light load are in feasible positions, 

they have been feasibly re-assigned with a 1 – 0 Intra Route Shift (explained in Section 2.3.2, 

Figure 2.8) performed in a Push_Back fashion.  Let us take a vehicle route which is formed of 6 

customers after the AS has been performed. This is illustrated in Figure 4.7. The current node 

for the Push Back routine is node 2. The routine starts with the current position of the node 

and it re-inserts it in all other consequent positions along the route, but does not insert it in 

any previous positions, hence the Push_Back nature of the routine. This is done for the 

purpose of feasibly re-assigning any light load customers and also a quick post-optimization 

routine for the AS. The routine does not perform an exhaustive search, since only push back 

moves are allowed.  

 

 

Figure 4.7: Illustration of the Push_Back Routine 

 

Figure 4.8 provides a pseudo code for the AS, as well as the Push_Back routine applied to the 

routes generated from the AS. Computational experiments have been performed in order to 

find the best performing version of the AS. The AS has been tested for different number of 

iterations, different number of starting points for the Giant Tour Rewind, as well as coupled 
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up with the Push_Back Routine, which is the final version of the AS. These experiments show 

the benefit of having the different adapted features added to the Sweep and are tested on the 

well-known benchmark instances by Golden et al. (1984) with Heterogeneous Fleet and fixed 

vehicle cost. Table 4.1 shows the results of different versions of the AS which have been 

tested during computational experiments. AS3 refers to the final version of the method used 

for the PVNS_AMP and all the computational experience testing of the main metaheuristic 

method. A percent improvement in average solution quality between the different versions is 

also provided below the figure in bold.  

 

Adapted Sweep: 
 Calculate customer angles   
 Sort Angles in Ascending Order 

 Generate Giant Tour for (1,..., );i n   

    Do 

        Set Starting node for Rewind ( 5)i n  ;  

            Do  
               Select vehicle type at random 
               Select Overtime (in Minutes) at Random 

                 Assign nodes i  from Giant Tour to routes 

               Until capacity is full OR maximum time/overtime is reached for the route 
          Save Solution S 

        Next ;i  

     Until 5;i   
 Select the 10 best solutions S in terms of objective function for Push Back routine  
Push Back Routine: 

  For (1,...,10)S    

      Perform Push Back 

  Next S   

Figure 4.8: Adapted Sweep pseudo code 

 

An interesting observation from Table 4.1 is that when the Giant Tour Rewind Strategy is not 

used, the increased number of iterations has a positive impact on the solution quality on 

average. However, when the strategy is used there is no impact when the AS is performed for 

more than 100 iterations. This means that there is a benefit in exploring different starting 

points from the Giant Tour and suggests a benefit of exploring the most positive-most 

negative angle link. When the AS is performed with the Push_Back routine it results in the 

best solution quality, therefore this is the final version of the AS used for further algorithm 

testing and part of the solution methodology.  
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Table 4.1: Computational Results for the Adapted Sweep Versions 

Method 

Problem  AS1(a) AS1(b) AS1(c) AS2(a) AS2(b) AS3 

3 1221 1066 1066 1053 1053 967 

4 8890 7355 7355 7355 7355 7304 

5 1394 1194 1173 1170 1170 1031 

6 8553 7562 7562 7562 7562 7356 

13 3182 2905 2876 2869 2869 2550 

14 16327 11687 11687 10797 10797 9637 

15 3245 3051 3026 2998 2998 2763 

16 3433 3326 3205 3195 3195 2898 

17 2624 2357 2343 2323 2323 1837 

18 3430 3284 3264 3163 3163 2612 

19 12703 12165 12143 11095 11095 9481 

20 5852 5533 5524 5358 5358 4578 

IMP in Average 
Solution Quality: 5.77% 0.16% 3.10% 0.00% 17.04% 

AS1(a): AS with 1 Iteration; 

AS1(b): AS with 100 iterations; 

AS1(c): AS with 1000 iteration; 

AS2(a) AS with 100 iterations and 10 node rewind 

AS2(b) AS with 1000 iterations and 10 node rewind 

AS3: Final versions of AS with 100 iterations, 10 node rewind and Push_Back routine; 

 

 

The results from the AS are also compared to known solutions generated by other relevant 

initial solution methods such as the Savings and Giant Tour based methods tested similarly to 

our approach. However, we have only compared our results to Initial Solution methods with 

no post-improvement routines. It has to be noted here that the AS makes use of a post-

improvement routine, namely the Push_Back routine, however it is not used in an all 

exhaustive fashion. Table 4.2 (a) details the results obtained by other famous initial solution 

methods compared to the AS, together with Best Known Solutions (BKS) on the benchmark 

instances by Golden et al. (1984) on the Heterogeneous Fleet with Fixed Cost. The methods 

used for benchmarking purposes are classical the Savings heuristic (CW), Combined Savings 
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(SC), Combined Opportunity Savings (COS), Realistic opportunity Savings (ROS), Single 

Partition Giant Tour (SGT) and Multiple Partition Giant Tour (MGT). For details on those 

methods please refer to Golden et al. (1984). 

 

  Table 4.2 (a): Computational Results for the Adapted Sweep 

Problem 
Method 

CW CS COS ROS SGT MGT AS 

3 1119 1044 1024 1024 965 989 967 

4 7822 7911 7306 7369 6918 7345 7304 

5 1061 1060 1101 1052 1027 1056 1031 

6 9343 7016 9401 7016 7391 7356 7356 

13 2550 2650 2629 2616 2449 2494 2550 

14 12000 9689 10154 9689 9637 9174 9637 

15 2885 2763 2949 2763 2722 2742 2763 

16 3026 2978 2982 2949 2855 2912 2898 

17 1968 2043 2182 2000 1815 1837 1837 

18 3447 2677 2587 2612 2479 2520 2612 

19 11319 8741 10233 8741 9283 9411 9481 

20 4689 4318 4921 4283 4273 4332 4578 

 

 

Table 4.2 (b) shows the deviation of each Initial Solution method from the Best Known 

Solution (BKS). It can be seen that the AS has a good performance, where it outperforms the 

CW, SC, COS and ROS with up to 13.28% improvement. The AS was designed to reflect the real 

life nature of the RVRP, where the Push_Back routine was implemented in order to overcome 

any infeasibility in terms of the light load customers. However, it was found to perform 

relatively well with respect to the best performing initial solution methods SGT and MGT with 

a respective 2.5% and 1.1% average deviation, and a 7.8% average deviation from the BKS. All 

of the results have computational time of less than one second. 
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       Table 4.2 (b): Average Deviation from BKS 

Problem BKS 
Method 

CW CS COS ROS SGT MGT AS 

3 961.03 16.44% 8.63% 6.55% 6.55% 0.41% 2.91% 0.62% 

4 6437.33 21.51% 22.89% 13.49% 14.47% 7.47% 14.10% 13.46% 

5 1007.05 5.36% 5.26% 9.33% 4.46% 1.98% 4.86% 2.38% 

6 6516.47 43.38% 7.67% 44.27% 7.67% 13.42% 12.88% 12.88% 

13 2406.36 5.97% 10.12% 9.25% 8.71% 1.77% 3.64% 5.97% 

14 9119.03 31.59% 6.25% 11.35% 6.25% 5.68% 0.60% 5.68% 

15 2586.37 11.55% 6.83% 14.02% 6.83% 5.24% 6.02% 6.83% 

16 2720.43 11.23% 9.47% 9.62% 8.40% 4.95% 7.04% 6.53% 

17 1734.53 13.46% 17.78% 25.80% 15.31% 4.64% 5.91% 5.91% 

18 2369.65 45.46% 12.97% 9.17% 10.23% 4.61% 6.34% 10.23% 

19 8661.81 30.68% 0.91% 18.14% 0.91% 7.17% 8.65% 9.46% 

20 4032.81 16.27% 7.07% 22.02% 6.20% 5.96% 7.42% 13.52% 

Average Deviation: 21.07% 9.66% 16.08% 8.00% 5.28% 6.70% 7.79% 

 

 

4.2. The Adapted Nearest Neighbour (ANN) 

 

The Nearest Neighbour in its classical form is not a typical initial solution method which is 

used for problems with Heterogeneous fleet, and it is a relatively weaker method compared 

to other initial solution methods. However, the adapted version designed in this research is 

found to yield some good results. The testing of the ANN is very similar to the one detailed for 

the AS, and this section shows the benefit of having the adapted features of the NN. Figure 

4.9 shows a simple pseudo code for the ANN. 

 

The behaviour of the ANN in terms of solution quality is not similar to the AS, where after a 

certain number of iterations the solution quality stagnates. In ANN it was found that the more 

iterations and the more starting nodes on the Giant Tour are used, the better the solution 

quality. However, since this is only initial solution generation no more than 100 iterations per 
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starting node are considered, since the computational time used for initial solution generation 

is desired to be less than 1 second.  

 

Calculate the Distance matrix  
    Do  

 Get the minimum distance 
ijd    from node i   to unvisited node j ; 

        Add
 j  

to the vehicle tour; 

      Mark j   as visited; 

   Until All nodes are visited and Giant Tour is Formed 
   Do 

    Set 5;i n    

     Add nodes i  from Giant Tour to form routes 

     Select vehicle type at random; 
     Select Overtime Present at Random; 
   Until capacity is full, maximum time/overtime is reached for the route; 

   1;i i    

Until 5;i   

Select the 10 best solutions S in terms of objective function for Push Back routine  
Push Back Routine: 

  For (1,...,10)S    

      Perform Push Back 

  Next S   

Figure 4.9: Adapted Nearest Neighbour pseudo code 
 

 

 

Figure 4.10 (a): Behaviour of ANN with different Iterations and Starting Nodes 
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Figure 4.10 (b): Behaviour of ANN with different Iterations and Starting Nodes 

 

Figures 4.10 (a) and (b) graphically show the behaviour of the ANN on two different sized 

instances when different numbers of starting nodes are used for creating the solution 

structure. The instances portrayed are from Golden et al. (1984) instance 3 with n = 20 and 

instance 20 with n = 100, both with fixed vehicle cost. It can be seen that the behaviour is 

similar in the different sized instances. The more iterations there are the better the solution 

quality. Also with the increase of different starting nodes up to n, the solution quality 

improves. The trend is downward, but there are some peaks, which are due to the randomly 

generated fleet composition at each iteration. For the purpose of this research 100 iterations 

are chosen with n different starting nodes. For any instances larger than 100 customers, 100 

nodes are used as a maximum number of starting nodes, in order to ensure the computational 

time will remain within the one second desired limit.  

 

Table 4.3 shows the benefit of using the different versions of the ANN explored.  Different 

number of iterations, as well as the addition of a different starting node have been tested, 

where the ANN4 correspond to the final version of the ANN which makes use of the 

Push_Back routine in the same fashion as for the AS. The testing of all initial solution methods 

is performed on the Golden et al. (1984) instances with Heterogeneous Fleet and fixed vehicle 

cost. 
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     Table 4.3: Computational Results of the Adapted Nearest Neighbour Versions 

Method 

 Problem  ANN1 ANN2 ANN3 ANN4 

3 1390 1125 1096 1024 

4 8386 7956 7450 7429 

5 1243 1180 1086 1034 

6 8422 7499 7004 6922 

13 2877 2712 2692 2608 

14 14793 11633 12199 11119 

15 3115 2880 2870 2815 

16 3196 3196 3074 2870 

17 2303 2073 1996 1901 

18 3135 3112 2931 2686 

19 12853 12172 12085 11280 

20 5805 5457 5217 4987 

IMP in Average  
Solution Quality 10.69% 2.17% 5.34% 

 ANN1: ANN with 1 iteration 

 ANN2: ANN with 1000 iterations 

 ANN3: ANN with 100*n  iterations and different start node 

 ANN4: Final Version, NN with 100*n  iterations, different start node and Push_Back Routine 

 

 

It can be seen from Table 4.3 that there is a clear gain in the initial solution quality when the 

different start node strategy is used, and 100 iterations for each starting node has been found 

sufficient for good solution quality generation.  

 

The obtained solutions from the ANN are also tested on the benchmark problem instances by 

Golden et al. (1984) and compared to other well performing initial solution methods. The 

results are shown in Table 4.4 (a), where Table 4.4 (b) details the average deviation from the 

BKS in the same manner as it was performed for the AS. The ANN outperforms the CW and 

the COS with up to 13% improvement, and has a 12.7% average deviation from the BKS. All of 

the results have computational time of less than one second. 
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                  Table 4.4 (a): Computational Results for the Adapted Nearest Neighbour 

Problem 
 Method 

CW CS COS ROS SGT MGT ANN 

3 1119 1044 1024 1024 965 989 1024 

4 7822 7911 7306 7369 6918 7345 7429 

5 1061 1060 1101 1052 1027 1056 1034 

6 9343 7016 9401 7016 7391 7356 6922 

13 2550 2650 2629 2616 2449 2494 2608 

14 12000 9689 10154 9689 9637 9174 11119 

15 2885 2763 2949 2763 2722 2742 2815 

16 3026 2978 2982 2949 2855 2912 2870 

17 1968 2043 2182 2000 1815 1837 1901 

18 3447 2677 2587 2612 2479 2520 2686 

19 11319 8741 10233 8741 9283 9411 11280 

20 4689 4318 4921 4283 4273 4332 4987 

 

Table 4.4 (b): Average Deviation from BKS 

Problem   BKS 
Method 

CW CS COS ROS SGT MGT ANN 

3 961.03 16.44% 8.63% 6.55% 6.55% 0.41% 2.91% 6.55% 

4 6437.33 21.51% 22.89% 13.49% 14.47% 7.47% 14.10% 15.40% 

5 1007.05 5.36% 5.26% 9.33% 4.46% 1.98% 4.86% 2.68% 

6 6516.47 43.38% 7.67% 44.27% 7.67% 13.42% 12.88% 6.22% 

13 2406.36 5.97% 10.12% 9.25% 8.71% 1.77% 3.64% 8.38% 

14 9119.03 31.59% 6.25% 11.35% 6.25% 5.68% 0.60% 21.93% 

15 2586.37 11.55% 6.83% 14.02% 6.83% 5.24% 6.02% 8.84% 

16 2720.43 11.23% 9.47% 9.62% 8.40% 4.95% 7.04% 5.50% 

17 1734.53 13.46% 17.78% 25.80% 15.31% 4.64% 5.91% 9.60% 

18 2369.65 45.46% 12.97% 9.17% 10.23% 4.61% 6.34% 13.35% 

19 8661.81 30.68% 0.91% 18.14% 0.91% 7.17% 8.65% 30.23% 

20 4032.81 16.27% 7.07% 22.02% 6.20% 5.96% 7.42% 23.66% 

Average Deviation: 21.07% 9.66% 16.08% 8.00% 5.28% 6.70% 12.70% 
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One of the most important reasons why we use more than one initial solution method is for 

the purpose of diversification. Having initial solutions from different methods allows for 

diversification and creates a pool of initial solutions, which are further explored during the 

PVNS_AMP. We show the diversity of the initial solution pool with a small example portrayed 

in Table 4.5. Table 4.5 uses a small instance with 10 customers to show 3 Candidate Solutions 

which form a part of the Initial Solution Pool. The 3 candidate solutions have different fleet 

compositions, different allowable overtime and total cost. The routing schedule of each of the 

Candidate Solutions is given on the left hand side, whereas the characteristics of the solutions 

are given on the right hand side. 

 

     Table 4.5: Sample Candidate solutions from the Initial Solution Pool 

Candidate Solution 1   Characteristics 

Route 1 0-1-3-7-8-4-5-10-0 
 

Cost: 123.1 

Route 2 0-2-6-9-0 
 

Overtime: 20 min 

- 
 

Fleet: 1A 1B 

 
    

   Candidate Solution 2 
 

Characteristics 

Route 1 0-1-3-4-5-10-0 
 

Cost: 119.6 

Route 2 0-2-6-9-0 
 

Overtime: 0 min 

Route 3 0-7-8-0 
 

Fleet 2A 1B 

 
    

   Candidate Solution 3  
 

Characteristics 

Route 1 0-1-3-4-0 
 

Cost: 131.2 

Route 2 0-2-6-9-0 
 

Overtime: 0 min 

Route 3 0-4-5-0 
 

Fleet 4A 

Route 4 0-7-8-0   
  

 

It can be seen from Table 4.5 that each of the Candidate Solutions is sufficiently different and 

this provides for a greater flexibility to explore different neighbourhoods of the solution space 

during the PVNS_AMP. 

 

4.3. The Parallel Clustering Method (PC) 

 

The PC used in this research is not very commonly used in the VRP domain. The clustering is 

based on the Ward Method which belongs to the family of Hierarchical Clustering Methods. 

The reason why the Ward method was chosen is because it is one of the most sophisticated 
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clustering methods, which uses the Least Sum of Squares criterion. Using a criterion different 

to those used of AS and ANN, can add to the diversification of the Initial Solution Pool.  

There are many heuristic methods which belong to the type Cluster-First Route-Second, which 

are often used for initial solution generation. There are a few applications of such an approach 

for initial solution generation, but there are very few algorithms which hybridize clustering 

principles as a main ingredient to a metaheuristic method. Moreover, a clustering algorithm 

has never been used as means of learning. This research aims to tap into unexplored areas 

and research approaches which have not been used before. A Parallel Clustering algorithm is 

designed here, in order to aid the formation of the initial solution, but mainly it is used to aid 

learning as well as Neighbourhood Reduction (this is explained in more detail in Chapter 7). It 

is a parallel method, because the clustering and route formation happen at the same time, 

rather than sequentially as in the case of Cluster-First-Route-Second methods.  

Based on computational experience and literature review, it is common that clustering 

algorithms on their own do not result in good quality solutions. The reason for this is because 

there are many clustering algorithms, each with their strengths and weaknesses. One of the 

main classes of clustering algorithms is the Hierarchical Clustering algorithms, which are based 

on exhaustive search and the outcome is exact in relation to the nature of the method 

employed. Hierarchical Clustering methods can be 2 types, namely agglomerative and divisive. 

Agglomerative methods start off as each data point (customer i ) being its own cluster, and 

based on a given criteria, at each step of the clustering process cluster i   is merged with 

cluster j . Divisive methods have a reverse approach, where all points start as being one super 

cluster and at each step of the clustering process the cluster is divided into smaller clusters 

until each point becomes a cluster on its own. They are exhaustive search methods, because 

at each step the proximity matrix is recalculated depending on the current number of clusters. 

Moreover, they can also be described as greedy, since the best move at a given time is 

accepted in order to create the next cluster. 

A weakness of the hierarchical methods is that they cannot usually accommodate too large 

datasets, because the re-calculation of the proximity matrix grows with the size of the 

problem and can result in large computational times.  
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The other class of clustering algorithms is K means, where the search can be described as 

heuristic. They can handle big datasets because the number of iterations is not proportional 

to the size of the dataset. The rationale behind them is to be fast and easy to implement, 

similarly to the heuristic methods for VRP and not to hold large spaces of memory. 

The reason why a clustering method is not usually used on its own or as a main ingredient for 

an algorithm for a VRP is threefold.  

(i) One cannot make an assumption about the distribution of the customer coordinates. 

Usually when a clustering algorithm is applied in the field of data analysis, the behaviour of 

the data (linearity, spatial distribution etc.) can be checked in advance and appropriate 

method for clustering can be employed. When it comes to VRP, one cannot typically perform 

these preliminary checks. Some of the data instances which are used as literature benchmarks 

are random, which means that they are quite equally spread across a two dimensional plane. 

An example of this is shown in Figure 4.11: 

 

Figure 4.11: Scatter Plot of customer coordinates and Depot 

This instance belongs to one the most famous benchmark instance problems by Golden et al.  

(1984) instance 3 of the small FSMVRP dataset. The cluster membership of the different nodes 

is represented with different colour, where the depot is 0. It can be seen that the customer 
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nodes are equally spread across the plane. In reality, this may not be the case. The datasets 

can have different geographical distribution and can follow naturally evolving clusters of 

customers to be serviced in one planning period. However, a good VRP algorithm should not 

be biased towards a specific dataset and ideally should perform well on any distribution. The 

different clustering methods tend to perform well on different datasets. For instance some 

methods are more prone to creating elongated clusters, where others are very sensitive to 

outliers. Some cannot address datasets, where there is linear or curvilinear relationship.  

(ii) When creating routes it is very possible that nodes from one cluster can belong to a route 

which has nodes from different clusters, especially in randomly generated data.  For instance, 

the optimal solution of the instance portrayed in Figure 4.11 contains a route which has 

customer 20 and customer 14 in the same route. The Ward clustering method would place 

them in different clusters and it is very likely that they will not be placed in the same cluster 

until the very end of the agglomeration schedule. 

(iii) Hierarchical methods do not have means for specifying cluster number, but always end up 

in one giant cluster. This means that unless there is a prior knowledge on how many routes 

are to be formed it is difficult to decide on cluster number, as well as acceptable inter-cluster 

distances.  

However, this does not mean that clustering algorithms cannot aid in other aspects of the VRP 

methodological design. This research employs the Ward method for Neighbourhood 

Reduction, whilst taking into account the limitations of its application and emphasizing the 

strengths. The Ward method has been adapted in order to fit the purpose of the RVRP 

introduced here.  

Applying hierarchical clustering methods to the VRP have an advantage when it comes to 

cluster numbers. Time or capacity restrictions can act as constraints of the cluster size, that is 

when the capacity or maximum time is reached then the cluster is full. This allows for the 

parallel formation of clusters and routes. Moreover, if the fleet is fixed, the number of clusters 

can be easily specified. An additional benefit is the re-calculation of the agglomeration 

schedule and the reduction in computational time. When a capacity or time constraint is 

included into the agglomeration schedule, the algorithm does not end with one large cluster, 

but with the specified number of clusters, which leads to a complexity of (n - c - 1), where c is 
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cluster number, instead of (n - 1). However, it was found that the PC has better performance if 

the agglomeration schedule is not constrained by capacity or time constraints, but when one 

Giant Tour is formed and is thereafter broken into routes. This is done in the same manner as 

for the ANN and the AS. 

A simple pseudo code for the PC is provided in Figure 4.12.  

Do 
  Calculate Proximity Matrix; 

  Merge closest clusters/nodes i  and j  to form a cluster; 

Until all nodes are in one Giant Cluster (i.e. Giant Tour); 
Do 

    Set 5;i n    

     Add nodes i  from Giant Tour to form routes 

     Select vehicle type at random; 
     Select Overtime Present at Random; 
   Until capacity is full, maximum time/overtime is reached for the route; 

   1;i i    

Until 5;i   

Select the 10 best solutions S in terms of objective function for Push Back routine  
Push Back Routine: 

  For (1,...,10)S    

      Perform Push Back 

  Next S   

Figure 4.12: Parallel Clustering pseudo code 

 

The results from the Parallel Clustering Method (PC) are presented in Table 4.6 and the 

deviation form BKS in Table 4.7. It can be seen that the method performs significantly better 

than the Clarke and Wright’s Savings with 7.6% average improvement and 2% better than the 

COS. However, the method is not strong in terms of computational time. Because the 

Clustering method requires re-calculating of the proximity matrix each time a node is merged 

into a cluster, it increases the computational time significantly. Having a good initial solution 

method can give the heuristic search a better direction; however, this should not be at the 

expense of reasonable computational time. For this reason the PC was not included in the 

Initial Solution Pool, even though it results in reasonable solution quality and indeed provides 

diversification to the Initial Solution Pool. 
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However, the PC is used in the PVNS_AMP as a Neighbourhood Reduction technique which 

aids the improvement routines with probabilistic principles. This is explained further in 

Chapter 6. 

    

     Table 4.6: Computational Results for the Parallel Clustering  

Problem 
Method 

CW CS COS ROS SGT MGT PC 

3 1119 1044 1024 1024 965 989 1038 

4 7822 7911 7306 7369 6918 7345 6945 

5 1061 1060 1101 1052 1027 1056 1101 

6 9343 7016 9401 7016 7391 7356 7426 

13 2550 2650 2629 2616 2449 2494 2784 

14 12000 9689 10154 9689 9637 9174 11807 

15 2885 2763 2949 2763 2722 2742 2759 

16 3026 2978 2982 2949 2855 2912 3019 

17 1968 2043 2182 2000 1815 1837 2087 

18 3447 2677 2587 2612 2479 2520 2895 

19 11319 8741 10233 8741 9283 9411 11860 

20 4689 4318 4921 4283 4273 4332 4987 

 

The fourth type of initial solution generation is Random, both in terms of the fleet 

composition and solution sequence. Computational results for this will not be added since this 

does not add value to the computational experience.  

Table 4.8 provides a summary of all 3 Initial Solution methods considered in this Chapter with 

the corresponding deviations from BKS. 
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     Table 4.7: Deviation from BKS 

Problem BKS 
Method 

CW CS COS ROS SGT MGT PC 

3 961.03 16.44% 8.63% 6.55% 6.55% 0.41% 2.91% 7.42% 

4 6437.33 21.51% 22.89% 13.49% 14.47% 7.47% 14.10% 7.31% 

5 1007.05 5.36% 5.26% 9.33% 4.46% 1.98% 4.86% 8.53% 

6 6516.47 43.38% 7.67% 44.27% 7.67% 13.42% 12.88% 12.25% 

13 2406.36 5.97% 10.12% 9.25% 8.71% 1.77% 3.64% 13.56% 

14 9119.03 31.59% 6.25% 11.35% 6.25% 5.68% 0.60% 22.77% 

15 2586.37 11.55% 6.83% 14.02% 6.83% 5.24% 6.02% 6.26% 

16 2720.43 11.23% 9.47% 9.62% 8.40% 4.95% 7.04% 9.89% 

17 1734.53 13.46% 17.78% 25.80% 15.31% 4.64% 5.91% 16.89% 

18 2369.65 45.46% 12.97% 9.17% 10.23% 4.61% 6.34% 18.15% 

19 8661.81 30.68% 0.91% 18.14% 0.91% 7.17% 8.65% 26.97% 

20 4032.81 16.27% 7.07% 22.02% 6.20% 5.96% 7.42% 19.13% 

Average Deviation: 21.07% 9.66% 16.08% 8.00% 5.28% 6.70% 14.09% 

 

       Table 4.8: Summary results of all initial solution methods  

Problem BKS AS ANN PC 

3 961.03 967 1024 1038 

4 6437.33 7304 7429 6945 

5 1007.05 1031 1034 1101 

6 6516.47 7356 6922 7426 

13 2406.36 2550 2608 2784 

14 9119.03 9637 11119 11807 

15 2586.37 2763 2815 2759 

16 2720.43 2898 2870 3019 

17 1734.53 1837 1901 2087 

18 2369.65 2612 2686 2895 

19 8661.81 9481 11280 11860 

20 4032.81 4578 4987 4987 

Average Deviation 7.79% 14.09% 17.09% 
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4.4. Summary  

After performing extensive computational experiments we have designed 3 methods for initial 

solutions generation, namely the Adapted Sweep (AS), the Adapted Nearest Neighbour (ANN) 

and the Parallel Clustering (PC). Our experience suggested that all three methods have good 

performance compared to other initial solution generation methods, with the Adapted Sweep, 

being the superior method. However, we also found that Parallel Clustering consumes too 

much computational time and the methodological choice was to use the AS, the ANN and a 

randomly generated solution for final initial solution generation to be used within the 

metaheuristic methods designed hereafter. The Parallel Clustering will be used as a 

Neighbourhood Reduction Strategy. 

The initial solution generation method used for the testing on every set of benchmark 

instances is the one detailed in this chapter. No amendments or adjustments to the initial 

solution method are made in any of the testing stages of the metaheuristics we designed 

when applied to the RVRP and the FSMVRP data instances. Small adjustments are made to the 

initial solution generation for testing the generalizability of the proposed metaheuristics on 

other VRP applications, detailed in Chapter 7. 
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Chapter 5 

 

The PVNS_AMP Method 

This chapter focuses on the developed learning-based metaheuristic method, namely the 

Population Variable Neighbourhood Search with Adaptive Memory Procedure (PVNS_AMP), 

which is applied to the RVRP of this study, as well as other VRP problems. The algorithmic 

steps are explained in great detail graphically and by pseudo code given in Section 5.2. 

Methodological justification for the algorithm design is also provided. Before the method 

description takes place there are some aspects and trade-offs that are important for the 

design of heuristic methods. To a great extent these aspect are key for the success of any 

given heuristic method designed to address a VRP and are briefly explained in the following 

section.  

 

5.1 Strategic Choices and trade-offs of heuristic-based methods 

After an extensive literature search and methodological experimentation, some aspects and 

trade-offs of heuristic methods’ design came to light. These are explained hereafter, and the 

methodological design and justification of the PVNS_AMP, as well as other extensions to the 

algorithm take into account those aspects.  

 Local Search Routines 

As described in Section 2.3.2 local search routines are widely used as a part of various 

metaheuristic methods, such as the Shift and Swap operators. There are various operators 

that a researcher may choose to use in their methodological design. Moreover, there are 

many different variations of the standard operators that can be created by the researcher, 

based on randomized or systematic moves. The researcher should justify the choice of 

operators and conduct experiments in order to measure the impact and contribution of the 

operators and the necessity to use the operators chosen. Moreover, the order in which they 

are used needs to be considered, because each operator modifies the search space in a 

different way and results in different neighbourhood structures to the incumbent solution. For 

instance, when a heterogeneous fleet is present, one operator may not only lead to a change 

in the structure of the solution, but may lead to a change in the fleet composition as well.  



88 
 

Usually the best order of executing the operators becomes evident after extensive 

computational experiments. In some cases the order of execution may not have an impact on 

the final solution quality if the method is powerful enough to reach good heuristic solutions or 

best known solutions.  The local search routines can be executed sequentially or the decision 

on which routine to choose to execute next may be as a result of a predefined criteria. For 

instance, if learning principles are adopted, one can select the operators based on the 

frequency and impact on the improvement of the solution quality. This means that an 

operator which is resulting in improvement of the objective function will be executed more 

often than those which do not result in improvement, or those which do not result in 

improvements as frequently. In this research, this issue is tested extensively and the local 

search routines are executed in a manner, which is found most suitable for the problem at 

hand. 

 Intensification 

When dealing with metaheuristic methods, intensification is an important aspect that needs 

to be incorporated into the search process. Intensification is defined as a short term anti-

cycling strategy, which aims to explore close neighbourhoods of the incumbent solution in the 

adjacent topographies. Intensification can be described as a technique, which is usually 

associated with short term memory, or in other words, to prevent stagnation of the solution 

in the short term during the exploration of closer vicinities of the incumbent solution. An 

example of this is portrayed in Figure 5.1. 

 

 

  Figure 5.1: Topography of a VRP solution 

 

At a given point of the search process, the incumbent solution finds itself at position A. A 

small change in the solution structure can lead the solution to drop to position B. This is an 
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example of intensification; exploring neighbourhoods adjacent to the incumbent via changes 

into the solution structure, which do not degrade the original structure too much, but enough 

to force the search into unexplored areas within the neighbourhood vicinity. This is an 

important consideration for every heuristic methodology, because the global optima can 

sometimes be found in areas closer to the incumbent solution. A good intensification strategy 

should be able to explore the adjacent topography as much in depth as possible, without 

resulting in cycling or stagnation of the search process. An example of intensification of the 

search process is the tabu tenure (a parameter of Tabu Search, described in Section 2.3.2), 

where cycling over regions which are already explored is prevented for a certain number of 

iterations. However, this can be overridden by the Aspiration criteria, where going back to a 

solution structure which was explored in the recent history can be accepted again, if it results 

in improvement of the current solution.  

 

 Diversification 

Diversification is another strategy which has to be considered when designing heuristic 

methods. The purpose of diversification is to avoid stagnation in the long term. Its purpose is 

to force the search out of a region which is already been extensively explored and bring it to a 

new unexplored region which can be further from the current solution structure. Sometimes 

intensification can only result in local optima if no diversification strategy is adopted. 

Therefore, in order to explore larger areas of the search space it is needed to be incorporated 

into the algorithmic design. Looking at Figure 5.1, an example of diversification will be when 

the incumbent solution is at position B, adopting diversification can bring to position C, and a 

subsequent intensified search of that region can lead it to position D, which is the global 

optimum. In many cases good diversification involves hill-climbing, when the solution has to 

worsen, before it improves on the current best. An example of diversification strategy is 

random restart, where the search begins at a new region. A perturbation or randomisation of 

the incumbent solution can also act as a diversification strategy, if it results in a greater 

change in the incumbent solution topography. An example of that can be a more vigorous 

Shake routine. A fine balance has to be achieved between intensification and diversification, 

in order to guide the search intelligently towards promising regions of the solution space.  
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 Randomisation vs. Guided approach 

Randomisation is commonly used in heuristics for many purposes, mainly diversification. In 

some cases it can also be used for initial solution generation, or generating a pool of solutions, 

or Bones as in the BoneRoute method (explained in Section 2.3.2). Using randomisation is 

usually alternative to using some kind of systematic or guided method.  For instance, an initial 

solution to a VRP can either be randomly obtained, or by a relevant construction heuristic. 

This methodological choice has to be justified, and the benefit of using one as opposed to the 

other should be clearly communicated. The amount of randomness in a heuristic method 

should also be carefully considered; usually it is done by computational experimentation. If 

there is too much randomisation, the search process may be corrupted and good areas which 

can be reached through intensification may be missed out. Moreover, if the algorithm is 

repeated, the best found solution may not be found again, even after a number of runs. There 

should be a balance of randomisation and guided approach to the search, in order to have a 

good degree of control over the solution search. However, too little randomisation in some 

cases, may not bring the desired diversification of the search. 

 Parameter Tuning 

Most of the proposed heuristic methods have a number of parameters, which need to be fine-

tuned, in order to results in good solutions. An example of parameters is number of iterations, 

size of solution populations, stopping criteria and other parameters which are dependent on 

the method used. Sometimes an indication of a good value for a parameter can be found in 

the literature, based on recommendations of authors who have done research in a given area 

in the past. However, it is also very common that researchers give recommended values for 

algorithmic parameters based on computational experience. Different values for the 

parameters are explored before deciding the most appropriate one for the problem at hand. 

Of course, this needs to be discussed and added into the methodological justification clearly, 

so that further research can benefit from the findings. This is mostly necessary if a new 

methodology is presented, or an existing one is being modified. This research explains the 

benefits of using specific parameters and details the testing process. 
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 Neighbourhood Reduction vs. Cycling 

 

There are many ways which are commonly used to reduce the complexity of the local search 

operators, such as Shift and Swap. For instance, one can use distances or angles of the 

customer nodes in order to reduce the neighbourhood search. If two nodes are far from each 

other, in terms of distance or another measure, then the neighbourhood moves do not 

explore the option of linking them with an arc, or swapping their positions, in certain 

conditions.  The tabu tenure for example can be viewed as a reduction technique, because 

certain moves are tabu for a number of iterations and this reduces the number of possible 

moves during the local search. Like any other methodological consideration, there is a trade-

off between the amount of allowable moves one can reduce and the chance for cycling. If too 

many customer nodes are tabu, or are characterized as restricted moves, then this could limit 

the search space too much, which can lead to limited exploration of the topography and 

possibly missing a promising solution. However, if too little restrictions apply, this could lead 

to cycling over the same solution structure and fail to employ successful intensification 

strategy, or even to diversify the solution into further regions. In this research the 

neighbourhood reduction technique based on Parallel Clustering, described in Section 4.3 is 

used with the measure of increased sum of squares, which is further discussed and illustrated 

in Chapter 7. 

 

All of the trade-offs described above should be taken into consideration when designing a 

heuristic-based method, so as to make the search for good solutions efficient and quick.  

5.2. The PVNS _AMP Method Description 

This section provides a detailed description of the Population Variable Neighbourhood Search 

with Adaptive Memory (PVNS_AMP) method designed for the RVRP in this study. It provides 

methodological justification of the method, as well as extensive computational experience to 

show the benefit of adding learning mechanisms to the VNS. One of the main objectives of 

this research is to enhance a method, such as the VNS, which has no memory structures in its 

classical form, by the means of learning. Therefore, it is important to show what the impact on 

the solution quality is when learning is employed. Some interesting algorithmic behaviour is 

also noted, as well as any methodological trade-offs.  
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This research adapts the classical form of VNS, where the search is based on one-point 

solution search, to be population based and enhances it with learning principles of AMP. 

Hereafter, we refer to the proposed method as PVNS_AMP. The main idea behind VNS is to 

explore neighbourhoods of the incumbent solution in depth, which provides intensification of 

the search process. In this research a population based VNS is used, which means that more 

than one solution structure is kept and explored during the search (generated by the initial 

solution methods), which is done for the purpose of diversification and exploration of 

different solution structures.  

 

The second reason for using population of the candidate solutions is for learning purposes. 

The idea behind this is that if same parts of the solution structure appear in different 

solutions, given their different solution structure, they are likely to be promising parts of that 

solution. For instance, if a node sequence appears in a candidate solution generated by the 

Adapted Sweep and it also appears in a solution generated by the Adapted Nearest 

Neighbour, this may suggest that this part of the solution is a promising part or a good node 

sequence, which can ultimately become of a part of the best heuristic solution found. 

 

As described in section 2.3.2 AMP has 3 main considerations, namely Memory initialization, 

Memory Updating and Memory Exploitation. In the original AMP rationale memory 

initialization is done prior to the search process, memory updating is performed during the 

computational experience and memory exploitation is the final step where good solution 

structures are used to build the final solution. 

 

In this research Memory Initialization and updating is not constructed in advance, but 

performed in parallel during the search in Stage 1 of the algorithm, namely the PVNS stage. 

Once some information on the solution structures is gathered, Memory Exploitation is 

performed during the Stage 2 of the algorithm, where the good solution structures found in 

the Stage 1 are preserved as a fixed part of the solution structure, and further exploration is 

only performed on the variable parts. 

 

One of the most important considerations when adopting AMP is the way “good” solution 

sequences are recognised. In this research those good solution sequences are referred to as 
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Elite Strings. This methodological consideration is to a great extent the key feature for success 

of the method employed. If the criterion for good Elite String extraction is powerful enough, it 

can considerably improve the performance of the algorithm and vice versa.  

 

In Stage 1 of the algorithm, the recognition of good node sequences depends on their length 

and frequency, similarly to the BoneRoute method described in Section 2.3.2 However, the 

length of the node sequence is variable, not fixed. Moreover, a sequence of one node is also 

accepted, if it is single customer route. Another significant difference with previous AMP 

methods is that a node is allowed to be repeated in the extracted node sequences, and the 

motivation behind it is that there may be more than one route composition and solution 

sequence, which could result in best heuristic solution. This is true especially if randomly 

generated instances are used for testing, or the distances between nodes are similar or 

identical. Adjacency to the depot is recognised as well, which means that if a customer is best 

suited to be serviced first after the depot the Elite String can include the depot node. In 

addition, the proposed algorithm PVNS_AMP has a few parameters, which are mostly related 

to memory extraction and exploitation. This is important as we aim to present a simple and 

intuitive method. The parameters used in this study are listed in Table 5.1. They have all been 

empirically tested and found most suitable for this RVRP problem. 

Table 5.1: Parameters of the PVNS_AMP 

Initial Solution Pool P Consists of Initial Solutions , (1,...,10);S P S   

Memory Initialization Pool M Consists of ;th

bestx S neighbourhood M = dynamic length; 

Memory Exploitation Pool with Elite Strings E 
Consists of Solutions survived to the PVNS_AMP stage

1 101 10, ( ( ' ),..., ( ' ));best bestE M E x S x S   

       , for Stage 1 
Dynamic, until no further improvement for 2 consecutive 

iterations 

       , for Stage 2 10 

Elite Strings Recognition Criteria in M Frequency >= 75% 

Proportion of Elite Strings in E <=30% 

Elite Strings List  Dynamic Length  
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The PVNS_AMP has two stages. The first stage is called the PVNS stage, where information 

about the structure and the quality of the candidate solutions is gathered. At the end of the 

PVNS stage this information is used to recognize the Elite Strings which occur in more than 

75% of the candidate solutions generated in the Initial Solution Pool and modified via the Shift 

and Swap operators within VNS. Stage 2 which we refer to as the PVNS_AMP stage is the 

memory exploitation stage, where only the best 10 solutions, in terms of solution quality 

survive. The Elite strings are encoded into the solutions which have survived from Stage 1 and 

are further exploited using VNS until the best solution is found. Figure 5.2 provides a simple 

pseudo code for our PVNS_AMP algorithm. For more information on the notation, please 

refer to Table 5.1. 

Stage 1: PVNS (Learning) Stage 

Generate P (Initial Solution Pool, explained in Chapter 4) 

For Each S P  

Do 

      Generate point x from the 
thS  Neighbourhood 

, 1;bestx x iter   

     Do 
        Execute Neighbourhood Search Operators  
     Until no improvement of x 

Add bestx S  to M  

Shake 
While no further improvement 

Next S  

End of Stage 1 

Elite String Recognition in M  

Select E M  

Stage 2: PVNS_AMP (Memory Exploitation) Stage 

For Each 
'S E  

  Do 
'' , 1;bestx x iter   

         Do 
           Execute Neighbourhood Search Operators  

Until no improvement of 'x  

if 
''

bestx x  , update bestx  

Shake 

While maxiter iter  

Next 
'S E  

End of Stage 2 
End 

Figure 5.2: PVNS_AMP pseudo code  

 



95 
 

Figure 5.3 also shows a graphical representation of the algorithm, so as to portray the 

sequence of the execution of the steps more clearly and visually. The PVNS stage (Stage 1) 

acts as the learning stage, whereas the PVNS_AMP stage (Stage 2) is the memory exploitation 

stage. 

 
Figure 5.3: Graphical Representation of the PVNS_AMP 
 
 
5.2.1 Stage 1 (PVNS Stage) 

 

Stage 1 of the PVNS_AMP is where the experience of changes in neighbourhood structures is 

used to compile knowledge about good solution sequences reappearing in the diversified 

candidate solutions from the Initial Solution Pool. In the original rationale of AMP, Memory 

Initialization is constructed in advance. Here the Memory Initialization is done through 

learning from past experience. This PVNS stage is applied to the pool of generated initial 

solution sequentially, hence the population nature. All of the solutions explored are saved 

into the memory with their respective total cost. The PVNS consists of the execution of 6 

neighbourhood search operators, as well as a Shake stage. 

 

There are six neighbourhood search operators used to explore the solution neighbourhoods, 

which are explained in more detail in Section 2.3.2. The 1-1 intra-route swap, exchanges the 

positions of each node with all other nodes on the same route. 1-0 and 2-0 inter-route shift 

insert each node / each two consecutive nodes respectively, in all feasible locations on all 
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other routes. The 1-1 inter-route swap, exchanges the positions of one node with all other 

nodes from all different routes; 2-1 inter-route swap, exchanges the positions of 2 consecutive 

customers from one route with one customer from all other routes and 2-2 inter-route swap, 

exchanges the positions of two consecutive nodes from one route with two consecutive nodes 

from all other routes. All operators are used in a systematic exhaustive search fashion, where 

all feasible shifts and swaps are considered.  

 

First-improvement moves are accepted for the purpose of “quicker learning”. Therefore, first 

improvement strategy is used in order to find immediate good links between nodes, hence 

speed up the learning process for the composition of the Elite Strings.  The operators are 

executed in an iterative fashion until there are no further improvements. The current best 

solution bestx  of the thS  neighbourhood after each iteration is saved into the Memory 

Initialization Pool M. After the current best solution is saved, the Shake stage takes place. The 

Shake is done by probabilistic rules. In the learning stage 3 random customers from random 

routes are inserted into a different route at a random position. The Shake significantly 

degrades the quality of the solution. The reason for choosing a more vigorous Shake is 

because when the solution enters the neighbourhood operators at the next iteration, any 

good immediate links between nodes will re-appear if they were broken during the Shake and 

the frequency of the link will increase, as well as the likelihood to become a part of an Elite 

String. 

The RVRP requires a very flexible methodology in order to explore greater regions of the 

solution space. Therefore, a special strategy for fleet diversification and allowable overtime is 

adopted during the execution of the neighbourhood operators, namely the dummy route. This 

means that each solution has an empty route at the end of the solution route sequence, 

which can be used for adding an extra route (vehicle) to the solution structure if it is feasible 

and results in better solution quality. This is shown in Figure 5.4. 

 

Solution (S)   Solution (S') 

Route 1: 0-1-3-7-8-4-5-10-0 
Applying 2-2 

 Inter-Route Shift 

Route 1: 0-1-3-4-5-10-0 

Route 2: 0-2-6-9-0 Route 2: 0-2-6-9-0 

Dummy Route: 0-0 Route 3: 0-7-8-0 

Cost: 123.1     Cost: 119.6   

    Figure 5.4: Implementation of the dummy route 
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Figure 5.4 shows the solution structure and objective function (with variable cost only) for a 

small sized instance with 10 customers. The solution on the left has an objective function of 

123.1 where 1 vehicle of type B is used and 1 vehicle of type A. However, moving customers 7 

and 8 to the dummy route results in the use of 3 vehicles of type A and an improvement of 

the objective function with 2.8%.  

 

The reason for having a dummy route is twofold. First it is done for the purpose of 

intensification, in terms of vehicle fleet composition. The candidate solutions in the initial 

solution pool are diverse in terms of fleet composition, and they contain solutions with 

different number of vehicles. This is done in order to explore which fleet composition gives 

better solution quality. However, if a larger fleet is better suited for the problem at hand, it is 

beneficial to have the opportunity to add extra vehicles if this will result in better overall cost. 

The second reason is to avoid bias towards overtime.  

 

One of the interesting features of this RVRP is the trade-off between unlimited fleet and use 

of allowable overtime. If there is no opportunity to explore this trade-off properly, then the 

analysis of results and the possibilities for savings may not be fully explored. Moreover, 

heuristic methods are typically problem-specific, which may lead to the biased design of the 

method in order to emphasize certain aspect of the problem. Adding a dummy route here is 

done for minimizing the bias towards allowable overtime, because it gives the method enough 

flexibility to select the most appropriate solution form. One cannot assume that having 

allowable overtime necessarily means that it will be beneficial, because it may in fact not be. 

Having population VNS here also helps increase the opportunity for finding the best 

conditions for the RVRP, because different solution structures are explored, which may 

include overtime or not, coupled with diverse vehicle fleet.  

 

A shrink route strategy is also adopted, which has reverse logic to the dummy route strategy. 

This means that the fleet can be modified during the search process, and the number of 

vehicles used can be reduced, if it improves the solution quality. This is shown in Figure 5.5. 
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Solution (S)   Solution (S') 

Route 1: 0-1-3-7-8-4-0 
Applying 2-2 

 Inter-Route Shift 

Route 1: 0-1-3-7-8-4-0 

Route 2: 0-2-6-9-0 Route 2: 0-2-6-5-10-9-0 

Route 3: 0-5-10-0 
  Cost: 135.7     Cost: 123.1   

Figure 5.5: Implementation of the shrink route 

 

Figure 5.5 shows the benefit of having variable fleet during the algorithmic runtime and the 

execution of the local search operators on a small instance of 10 customers with variable 

vehicle cost. Here the application of the 2-2 Inter-Route Shift leads to the reduction of 

vehicles used, from 3 vehicles of type A, to 2 vehicles of type B, with a gain of the objective 

function of 8.5%. 

 

The execution of all Inter-Route Shift local search operators allow for the shrink route strategy 

and for the dummy route strategy. If the local search operators are performed in an 

exhaustive fashion it can become computationally expensive to perform many iterations, 

especially on the large instances. Various ways of implementing the operators have been 

designed and tested, in order to find a way for most efficient implementation. After an 

extensive computational and programing experience all of the local search operators are 

performed using a gain function  which assists the quicker implementation of the operators, 

and in the later testing and extension of the algorithm (provided in Chapter 7) assists with the 

data structures for the Tabu Search. The gain function consists of calculating the gain in terms 

of cost of each move for a given local search routine and those moves which result in a 

negative gain are only kept in the memory and are performed in order to test the real impact 

of the move. The gain function    for all local search routines is described hereafter.  

 

 The 1-0 Inter-Route Shift routine involves moving one customer from one route to all 

positions on all other routes. The gain function for this routine is as follows, with i  being the 

current node to be moved to route m   and j  is the position at which it is moved to route n

and d  the corresponding distance between the nodes: 

( [[ ][ 1]][[ ][ 1]] [[ ][ 1]][[ ][ ]] [[ ][ ]][[ ][ ]])

( [[ ][ 1]][ ][ ]] [[ ][ ]][[ ][ 1]] [[ ][ 1]][[ ][ ]]);

d m i m i d n j m i d m i n j

d m i m i d m i m i d n j n j

       

    
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The first argument of the equation is the distance after the move is performed, whereas the 

second is the distance before the move is performed. If
maxv  , where 

maxv  is the variable 

cost of the largest vehicle, means that the 1-0 shift may result in an improvement of the 

objective function, considering any possible change in the vehicle fleet as well. All the moves 

which have a gain function less than 
maxv   are performed to see whether the move will still be 

improving when other constraints are not violated, such as capacity constraint and also to see 

the improvement on the objective function given any applicable changes in variable cost or 

fixed cost (if any), if the move results in change of fleet composition. If the objective function 

decreases the move is accepted and the search continues with the next improving move. If 

the problem at hand does not have heterogeneous fleet and all vehicles have identical 

variable cost, then all moves with 0  will be improving moves. All Inter-Route Shifts and 

Swaps make use of the gain function. 

 

 The gain function of the 1-1 Inter-Route swap is the following: 

( [[ ][ 1]][[ ][ ]] [[ ][ 1]][[ ][ ]] [[ ][ ]][[ ][ 1]] [[ ][ ]][[ ][ 1]])

( [[ ][ 1]][ ][ ]] [[ ][ ]][[ ][ 1]] [[ ][ 1]][[ ][ ]] [[ ][ ]][[ ][ 1]]);

d m i n j d m i n j d m i n j d m i n j

d m i m i d m i m i d n j n j d n j n j

         

      
 

 The gain function of the 2-1 Inter -Route swap is the following: 

( [[ ][ 1]][[ ][ ]] [[ ][ ]][[ ][ 1]] [[ ][ 2]][[ ][ ]] [[ ][ 1]][[ ][ 1]])

( [[ ][ 1]][ ][ ]] [[ ][ 2]][[ ][ 1]] [[ ][ 1]][[ ][ ]] [[ ][ ]][[ ][ 1]]);

d m i n j d m i n j d m i n j d m i n j

d m i m i d m i m i d n j n j d n j n j

          

       

 

 The gain function of the 2-2 Inter -Route swap is the following: 

( [[ ][ 1]][[ ][ ]] [[ ][ 2]][[ ][ 1]] [[ ][ 1]][[ ][ 2]] [[ ][ ]][[ ][ 1]])

( [[ ][ 1]][ ][ ]] [[ ][ 2]][[ ][ 1]] [[ ][ 1]][[ ][ ]] [[ ][ 1]][[ ][ 2]]);

d m i n j d m i n j d m i n j d m i n j

d m i m i d m i m i d n j n j d n j n j

           

        

 

The Intra-Route Shift and Swap used in this research make use of the gain function in the 

same fashion, with the only difference that moves which have 0   are considered improving 

moves. This is because when the shift is within the same route, the assumption is that the 

vehicle capacity will not change, therefore a negative  will be associated with an improving 

move. The moves occur on the same route, therefore m  refers to the route under 

investigation, where i   and j   to the different positions on that route. 
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 The gain function for the 1-0 Intra-Route shift is: 

( [[ ][ 1]][[ ][ 1]] [[ ][ ]][[ ][ ]] [[ ][ ]][[ ][ 1]])

( [[ ][ 1]][ ][ ]] [[ ][ ]][[ ][ 1]] [[ ][ ]][[ ][ 1]]);

d m i m i d m j m i d m i m j

d m i m i d m i m i d m j m j

       

    
 

 The gain function for the 1-1 Intra-Route swap is: 

( [[ ][ 1]][[ ][ ]] [[ ][ ]][[ ][ 1]] [[ ][ ]][[ ][ 1]] [[ ][ ]][[ ][ 1]])

( [[ ][ 1]][ ][ ]] [[ ][ ]][[ ][ 1]] [[ ][ 1]][[ ][ ]]) [[ ][ ]][[ ][ 1]];

d m i m j d m j m i d m i m j d m i m j

d m i m i d m i m i d m j m j d m j m j

         

      
 

Neighbourhood Reduction Strategy  

All local search routines are executed in an all exhaustive fashion; however a Neighbourhood 

Reduction Strategy (NR) is put in place in order to decrease the size of allowable moves. Some 

common ways to do NR is to use the real distances between customers, or some Savings 

criteria. In this research a Parallel Clustering method was performed for initial solution 

generation. It was not used as an initial solution generation method, because of the longer 

computational time. However, the results from the agglomeration schedule (the Sum of 

Squares between customer nodes) from the clustering are used for NR. The way it works is in 

a probabilistic fashion. Each of the customer nodes is assigned a probability of how good a 

certain Shift or Swap would be with another customer node (for an exchange of a node with 

itself a large number is assigned). A small example with 5 customers is given in Figure 5.6.  

  Distances   Neighbourhood Reduction   

    0 1 2 3 4 5 
 

  0 1 2 3 4 5   

  0 0 13.9 21 32.6 17.2 14.1 
 

0 99 0.15 0.3 0.35 0.25 0.15   

  1 13.9 0 12.4 19.2 31.1 22.2 
 

1 0.15 99 0.15 0.1 0.55 0.5   

  2 21 12.4 0 15.3 37 21 
 

2 0.3 0.15 99 0.05 0.75 0.45   

  3 32.6 19.2 15.3 0 49.7 36.1 
 

3 0.35 0.1 0.05 99 1 0.9   

  4 17.2 31.1 37 49.7 0 20.4 
 

4 0.25 0.55 0.75 1 99 0.4   

  5 14.1 22.2 21 36.1 20.4 0 
 

5 0.15 0.5 0.45 0.9 0.4 99   

                                  

Figure 5.6: Distances and Neighbourhood Reduction Probabilities 

The total Sum of Squares (SST) is calculated for each node being joined with any of the other 

nodes. The scale of the SST has then been transformed into a probability scale from 0 to 1. 

The formula used to transform the SST scale into probability is given below, where the new 

value is computed based on the minimum and maximum values of the old range and the new 

range, respectively: 



101 
 

min max min max min min_ ((( _ )*( ) / ( )) ;New Value Old Value Old New New Old Old New       

Let us have look at an optimal solution generated by CPLEX. Figure 5.7 shows the optimal 

solution for the RVRP instance without overtime with n = 20 L = 10%. It can be seen that the 

most favourable links recognised in the partial NR schedule are reflected in the solution. Node 

0 is connected to node 1, and also node 5 is connected to node 0. Moreover, the links which 

results in highest probability in the NR schedule are not connected, such as nodes 3 and 4, 

nodes 3 and 5, and nodes 4 and 2. In fact, looking at Figure 5.7 these nodes are parts of 

different routes.  

Route 1: 0-1-8-3-2-16-11-0 

Route 2: 0-12-4-19-13-18-0 

Route 3: 0-14-20-7-6-0 

Route 4: 0-17-15-10-9-5-0 

              Figure 5.7: Instance n=20, L=10% without overtime 

As discussed in Section 4.3, sometimes the largest distances between customers can be a part 

of the best found solutions and even optimal solutions. Therefore, the probability of shifting 

customers is enforced in a diminishing fashion, similar to the cooling schedule of Simulated 

Annealing explained in Chapter 2.  During the local search routines at the beginning of the 

search the probability threshold for allowable moves begin with 1 and after each iteration 

decreases by 0.1 until the probability of 0.3 is reached or the solution has not been improved. 

The NR strategy is not global, but local to the routines, which means that once the solution 

enters a new local search routine the probability of moves starts from 1 again and diminishes 

accordingly. This speeds up the computational time of the routines, since it reduces the 

number of feasible shifts and swaps and focuses the search to emphasize good links between 

customers. This strategy has been slightly amended in the extension of the PVNS_AMP where 

Tabu Search and short term memory is incorporated. This will be further explained in the next 

chapter. 

The reason why we chose to diminish the NR down to 0.3 rather than 0 is portrayed in Figure 

5.8. The Figure shows a small example of the behaviour of the NR during a 1-1 Inter-Route 

Shift. The routine is executed 10 times with different probability threshold starting from 1 

down to 0.1. 

 



102 
 

Neighbourhood Reduction for 1-1 Inter-Route Shift 

NR 
Probability 

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

Feasible 
Moves 

346 306 238 188 134 104 72 47 19 0 

Promising  
Moves 

21 21 21 20 20 20 19 16 8 - 

Solution 
Quality 

326.6 326.6 326.6 326.6 329 329 330.3 336 354.1 - 

Figure 5.8: Illustrated example of the NR 

Figure 5.8 shows the probability threshold at which the 1-1 Inter-Route Shift routine is 

performed, the total feasible moves at that threshold and the total promising moves at that 

threshold. Promising means those moves, which gain function   could result in an 

improvement of the solution. The best solution achieved at the given conditions is also 

reported in the last row. It can be seen that with the decrease of NR probability, the feasible 

moves and the promising moves decrease, which also decreases the computational time. 

However, the solution quality decreases as well.  

It is interesting to see from the figure that the solution quality remains unchanged until the 

probability reaches 0.7 and it starts to degrade as it approaches 0. Therefore, the probability 

starts off at 1 and diminishes until 0.3 during the iterations of the algorithm for each of the 

explored candidate solutions. After 0.3 the solution quality degrades significantly. During 

Stage 2 of the algorithm, however, the probability is fixed at 0.7 and it does not diminish. The 

reason for this is that the solution is already approximately 30% fixed by the Elite Strings, and 

any additional restrictions may “lock” the solution search. The idea of the diminishing 

parameter in Stage 1, is to begin with exploring all possible moves and gather knowledge 

about the good links within the routing schedule. As previously mentioned in Section 4.3 some 

of the longest (furthest) arcs between nodes can be part of the best known solution, so they 

should not be ignored. As the parameter diminishes with the local iterations it creates a 

“funnel” where the local routines explore more restricted set of arcs between the nodes and 

on the large instances it can also speed up computational time. 

It is important to note that this probability is only local to the routines, and not global per 

candidate solution. The reason for this is that if the probability parameter diminishes with the 
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exploration of a candidate solution, it means that the Elite Strings will be biased towards 

those nodes with greater proximity in terms of total Sum of Squares. Therefore, in order to 

avoid this bias, the NR is active only locally within the search routines.  

5.2.2. Stage 2 (PVNS_AMP Stage) 

The PVNS_AMP stage is the Memory exploitation stage of the algorithm, where the 

knowledge gathered in Stage 1 is used to improve the solution quality. After the PVNS stage 

the Elite Strings are recognised, according to the pre-defined criteria. The Memory 

Initialization Pool is then reduced to the best 10 candidate solutions in terms of solution 

quality and the Elite Strings are encoded into them. If a candidate solution contains an Elite 

String it becomes a fixed part of the solution structure and it does not change during further 

neighbourhood search. The Elite Strings List holds the Elite Strings and it is of dynamic length, 

because in the different data instances, different number of Elite Strings can be recognised 

from the Memory Exploitation Pool M. Only the solution sequences, which have frequency of 

occurrence in the candidate solutions of 75% and higher become Elite Strings. When encoding 

the Elite Strings into the solutions, those with highest frequency have priority. However, the 

proportion of Elite Strings which are encoded into a solution is limited to up to 30%. The 

remaining nodes are the variable part of the solution, which can be further amended in Stage 

2 via the local search routines. The manner in which the Elite Strings are encoded into the 

solution is further explained in Section 5.3. 

The candidate solutions from the Memory Exploitation Pool M enter Stage 2 in a systematic 

fashion in ascending order in terms of their objective function. The operators and execution of 

the VNS search is the same as in the PVNS stage, but only the variable part of the solution is 

modified via the Shift and Swap operators. Having a proportion of the solution, which remains 

unchanged, also acts as a neighbourhood reduction technique, and speeds up the 

computational time of the operators. The Elite Strings remain fixed during the Shake stage as 

well. However, in Stage 2 of the algorithm, the Shake does not degrade the solution too much, 

where only one customer is randomly reassigned to a different route. This provides 

intensification of the search, but keeps the focus of the search in better regions. 

The population-based nature of the VNS (the survival of a number of candidate solutions) in 

Stage 2 is very important for diversification. The candidate solutions which enter Stage 2 of 
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the algorithm are quite diverse in terms of solution structure; hence they contain different 

Elite Strings and provide for a better coverage of the solution space. The diversity of candidate 

solutions is desired for addressing the RVRP at hand, because different proportions of light 

load customers can feature in the problem. Also the opportunity to explore for allowable 

overtime requires more flexibility.  

Another reason for working with a population of candidate solutions with different Elite 

Strings is that allowable overtime is coupled with unlimited fleet. This means that a candidate 

solution can either favour an extra vehicle, or allow for overtime. The variable cost of travel of 

the vehicles ranges from 0.36 to 0.48, which means that it is 36% or 48% of the travel cost 

respectively. The overtime has 1.5 times higher cost than the non-overtime travel, which 

means it is incurs 50% greater cost.  This can make the cost of using overtime relatively higher 

than the cost of using an extra vehicle. Given this characteristic of the problem, it is expected 

that during the neighbourhood search, a first improvement move into the overtime will not 

typically be an improving move. Therefore, keeping a pool of solutions with different fleet 

composition and allowance for overtime provides for greater coverage of the search space.  

There are many interesting observations made regarding the RVRP and the behaviour of the 

algorithm, which are detailed in Section 5.3, with extensive analysis of results and 

recommendations for improvement of the vehicle routing practice. 

5.3. Method Justification and Parameter Testing 

This section provides an overview of some of the important methodological justifications 

regarding the PVNS_AMP. It also shows that having a population VNS has a positive impact on 

the effectiveness of the algorithm. Moreover, it shows details of the Elite Strings encoding and 

the usefulness of having AMP as a learning mechanism. Each methodological choice has been 

tested and found best for the researched RVRP. 

Elite Strings Encoding 

The proportion of Elite Strings incorporated into the solutions in Stage 2 of the algorithm is an 

important methodological consideration. After the Elite Strings are recognized from Stage 1, 

the Elite Strings are encoded in the candidate solutions which survive to Stage 2, hence they 

become a fixed part of the solution. There is a clear trade-off between the proportion of the 

solution that is fixed via Elite Strings, solution quality, and computational time. If a smaller 
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proportion of the solution is fixed, then the solution quality may not improve in Stage 2 as it is 

not focused enough into better search areas. Similarly, if too much of the solution is fixed, the 

Elite Strings may not in fact be elite, which can lead the search to explore a region that is 

falsely recognised as good. Also, the computational time decreases as the proportion of Elite 

Strings increases in the solution.  

 

Figure 5.9 illustrates this trade-off and shows that when the solution contains up to 30% Elite 

Strings, is sufficient for good memory exploitation. Another interesting observation is the 

fluctuation of the solution quality at different levels of Elite Strings encoding. It only fluctuates 

less than 4%, which suggests good quality extraction of Elite Strings even with up to 60% 

coverage of the solution. The example portrayed in Figure 5.9 is an instance with 100 

customers with and without overtime. Both versions are graphically represented in order to 

show consistency in the algorithmic behaviour. Another observation shown in Figure 5.9 

which is important is the decreasing computational time (for problems with and without 

overtime) as the Proportion of Elite Strings increases. 

 

 
  Figure 5.9: Solution Quality and CPU time vs. proportion of Elite Strings 
 
The population nature of the algorithm has another benefit when it comes to Elite Strings 

encoding. It can happen that an Elite String, which is recognised as elite, may in fact not be an 

Elite String. This is because the PVNS_AMP is a heuristic method, not exact, which means that 

one cannot guarantee that the extracted Elite Strings are indeed a promising part of the 
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solution. However, working with a population of candidate solutions allows for overcoming 

this possible drawback.  

This issue is illustrated in Figure 5.10, which shows two candidate solutions for an instance 

with 20 customers without overtime which survive from Stage 1 and contain encoded Elite 

Strings. The string 8-7-6 which is recognised as elite is present in the candidate solution 

annotated with (b). However, looking at the optimal solution obtained from Cplex it is clear 

that it is in fact not an Elite String, since it is not present in the optimal solution. The candidate 

solution annotated with (a), however contains two Elite Strings, which are also part of the 

optimal solution. When designing a metaheuristic method, one should be aware of the 

strengths and weaknesses of that method, and employ strategies to emphasize the strengths 

and overcome possible weaknesses. In this case the population nature of VNS allows to an 

extent for overcoming the possibility of false Elite Strings recognition.  

 
Figure 5.10: Encoding of Elite Strings into candidate solutions 

 

 

Shake Stage 

 

The number of customers to be re-assigned in the Shake stage is an important consideration 

for the algorithm. The method already has some diversification embedded into the pool of 

solutions to be explored and it is vital that the Shake stage has a good performance and 

supports the intensification of the search. Too much Shake can distort the solution structure 

beyond repair for the next iterations, and too little shake can fail to intensify the search. 

(a) 

(b) 



107 
 

Experiments were performed and it was found that re-assigning 3 customers at random in the 

PVNS stage (Stage 1) is sufficient for finding good quality solutions in the PVNS_AMP stage 

(Stage 2). Table 5.2 shows detailed computational results for the Shake stage on all RVRP 

instances without overtime. It can be seen from the table that the solution quality is quite 

stable for the different Shake For example looking at instance N = 20, L = 10% the solution 

quality is the same with 1, 2, 3 and 4 random shifts, namely 446.2 . However, having 1 or 2 

shifts may not be sufficient for a good Shake, because it does not provide enough room for 

linking back good solution sequences in the subsequent search. In some of the instances the 

best found solutions are not reached when 1 or 2 re-assignments are performed. It is 

interesting to note that in most cases the best found solutions from the PVNS_AMP (detailed 

later in this Chapter) are reached. However, this could be due to the diverse pool of solutions, 

since during the computational experience it was found that the best found solutions are 

reached from a different candidate solution. CPU time for the shifts is not provided as all 

random re-assignments take fractions of a second. 
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Table 5.2: Experimentation of the Shake stage with different random re-assignments  

N L 
  1 random shift   2 random shifts   3 random shifts   4 random shifts 

 
PVNS PVNS_AMP 

 
PVNS PVNS_AMP 

 
PVNS PVNS_AMP 

 

PVNS PVNS_AMP 

20 10% 
 

446.2 446.2 
 

446.2 446.2 
 

446.2 446.2 

 

446.2 446.2 

20 15% 
 

446.9 446.9 
 

446.9 446.9 
 

446.9 446.9 

 

446.9 446.9 

20 20% 
 

462.3 462.3 
 

462.3 462.3 
 

462.3 462.3 

 

462.3 462.3 

30 10% 
 

569.3 560.1 
 

569.3 560.1 
 

569.3 560.1 

 

569.3 560.1 

30 15% 
 

569.3 560.1 
 

569.3 560.1 
 

569.3 560.1 

 

569.3 560.1 

30 20% 
 

565.3 565.3 
 

565.3 565.3 
 

565.3 565.3 

 

565.3 565.3 

50 10% 
 

901.2 865.3 
 

901.2 865.3 
 

879.1 852.2 

 

879.1 852.2 

50 15% 
 

921.1 874.6 
 

923.3 874.6 
 

882.3 867.2 

 

882.3 867.2 

50 20% 
 

903.9 877.4 
 

903.9 877.4 
 

903.9 877.4 

 

903.9 877.4 

75 10% 
 

1298.3 1254.2 
 

1301.9 1248.4 
 

1269.5 1244.1 

 

1269.5 1244.1 

75 15% 
 

1302.5 1265.8 
 

1301.9 1278.5 
 

1272.1 1254.3 

 

1272.1 1254.3 

75 20% 
 

1311.2 1267.5 
 

1322.6 1271.3 
 

1292.4 1267.5 

 

1292.4 1267.5 

100 10% 
 

1723.6 1689.2 
 

1752.8 1702.6 
 

1667.6 1646.4 

 

1667.6 1646.4 

100 15% 
 

1775.9 1712.5 
 

1762.3 1723.2 
 

1744.1 1689.9 

 

1744.1 1689.9 

100 20%   1798.3 1721.5   1798.3 1721.5   1798.3 1705.3   1798.3 1705.3 
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Figure 5.11 shows some further insight into the solution quality during the Shake stage. We 

performed different number of random shifts ranging from 1 to 10. Different sized instances 

are used for consistency, namely with 20, 50 and 100 customers. The same behaviour was 

found for the problems with overtime as well. The X axis shows the number of random shits 

performed, whereas the Y axis shows the solution quality (objective function value) for the 

respective instance. 

 

 
Figure 5.11: Shake Experimentation on the RVRP without overtime 
 

Figure 5.11 shows that the solution quality has a degree of stability up to 5 random re-

assignments (shifts). Moreover, it is clear from the line graphs that adopting a 3 shift re-

assignment for the Shake, is sufficient for finding good quality solutions. If too many shifts 

are performed (more than 5) it could be difficult to re-connect all the broken links during the 

Shake and re-build a good solution, hence the increase of the solution quality, whereas if 1 

or 2 shifts are performed it could be insufficient for good intensification of the search.   
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Learning Mechanism 

The PVNS_AMP is mainly motivated by the idea that any solution method, which does not 

have memory structures in its original form, can be enhanced by learning. Therefore it is 

important to show the benefit of learning and memory exploitation. Figure 5.12 shows that 

there is a benefit from using the AMP as a learning strategy of VNS. It is clear from the figure 

that the solution quality from the Stage 1 fluctuates more during the runtime of the 

algorithm, whereas in Stage 2 it is more stable and more focused in lower topography. This is 

because the fixed part of the solution (i.e. the Elite String), is providing for a better stability 

of the search.  

Figure 5.12 shows the fluctuation of the solution quality during the runtime of the algorithm 

and another interesting observation comes to light. Given the fact that the candidate 

solutions enter the VNS stage in ascending order based on their objective function quality, it 

can be seen that the best solution in the PVNS_AMP stage (Stage 2) was reached towards 

the end of the running time of the algorithm. This means that it was reached by a candidate 

solution from 'S E  with larger objective function.  

 
Figure 5.12: RVRP with Overtime N=100, L=10% 
 
 
This is an important observation when it comes to problems with overtime. The local search 

routines used in the PVNS_AMP involve shifting a maximum of two customers at a time. 

Therefore, a shift of customers into the overtime part of the route may not result in an 

improvement of the cost and the move will be deemed non-improving. In the instance 

portrayed in Figure 5.12, the best found solution is from a candidate solution which has 
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allowable overtime and during further exploration via the local search operators the best 

heuristic solution for this instance was found. 

5.4. PVNS_AMP Results on the RVRP 

This section provides computational results for the PVNS_AMP applied to the RVRP with and 

without overtime. First of all we show the benefit of having AMP hybridized with the PVNS 

and how the learning mechanisms improve the solution quality. Second we show the results 

from the PVNS_AMP as compared to the results we achieved with CPLEX. Moreover, this 

section provides an analysis of the results and some interesting practical implications for the 

RVRP. It can be seen from the results that cost savings can be achieved, as well as a much 

better utilization of the vehicle capacity and the drivers’ working hours.  

 The RVRP without Overtime 

The RVRP is first solved using the MIP formulation provided in Section 3.2 in CPLEX Version 

12.6. The results are then compared to those from the proposed PVNS_AMP in order to 

show algorithmic efficiency. Table 5.3 shows the results achieved by Cplex and those 

achieved by the PVNS_AMP for both stages, with the corresponding CPU time. The total CPU 

time (TCPU) of each stage is reported, as well as the time to the best found solution (BCPU). 

The last column shows the % improvement in solution quality when AMP is incorporated 

into the PVNS. There are a few observations that can be made from Table 5.3. First, looking 

at the TCPU for both stages, it can be seen that generally the higher the proportion of light 

load customers, the smaller the TCPU. This is a valid observation, because the higher the 

number of light load customers, the smaller the search space becomes, which restricts the 

local search allowable moves. The BCPU confirms the observation made in Figure 5.12, that 

some of the best solutions are found towards the end of the total runtime for both stages of 

the algorithm. This emphasizes the benefit of using Population VNS. Second, the objective 

function can either increase with the increased proportion of light load customers, or it can 

remain unchanged. This is an interesting observation, which is further explained in Table 5.4 

using instance n = 20, without overtime and different light load customer composition. The 

light load customers are shown with underlined script. 
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Table 5.3: Computational Results for the RVRP without overtime 

N L
1
 

CPLEX Results   PVNS Results   PVNS_AMP Results 

% IMP
6
 

 
LB/Optimal

2
 UB Time

3
 Fleet Mix 

 
Solution TCPU

4
 BCPU

5
 Fleet Mix 

 
Solution TCPU BCPU Fleet Mix 

20 10% 
 

446.2 - 4 3A 1B 
 

446.2 3 <1 3A 1B 
 

446.2 5 <1 3A 1B 0.00% 

20 15% 
 

446.9 - 3 3A 1B 
 

446.9 3 <1 3A 1B 
 

446.9 5 <1 3A 1B 0.00% 

20 20% 
 

462.3 - 3 3A 1B 
 

462.3 2 <1 3A 1B 
 

462.3 4 <1 3A 1B 0.00% 

30 10% 
 

560.1 - 640 2A 3B 
 

569.3 5 2 2A 3B 
 

560.1 10 <1 2A 3B 1.62% 

30 15% 
 

560.1 - 640 2A 3B 
 

569.3 5 2 2A 3B 
 

560.1 12 <1 2A 3B 1.62% 

30 20% 
 

535.9 575.4 375 - 
 

565.3 4 2 2A 3B 
 

565.3 10 <1 2A 3B 0.00% 

50 10% 
 

701.1 901 1830 - 
 

879.1 16 5 8A 2B 
 

852.2 28 5 6A 2B 3.06% 

50 15% 
 

706.8 958.2 248 - 
 

882.3 15 10 5A 5B 
 

867.2 28 5 4A 5B 1.71% 

50 20% 
 

699.4 N/A 1109 - 
 

903.9 13 7 6A 4B 
 

877.4 26 3 6A 4B 2.93% 

75 10% 
 

993.1 1541 971 - 
 

1269.5 36 17 2A 8B 
 

1244.1 62 20 2A 8B 2.00% 

75 15% 
 

985.9 1391 1658 - 
 

1272.1 33 8 7A 5B 
 

1254.3 63 15 6A 5B 1.40% 

75 20% 
 

985.9 N/A 2662 - 
 

1292.4 31 15 8A 6B 
 

1267.5 58 7 8A 6B 1.93% 

100 10% 
 

1274.6 2908 1396 - 
 

1667.6 75 20 13A 5B 
 

1646.4 103 48 13A 5B 1.27% 

100 15% 
 

1248.4 2844 1930 - 
 

1744.1 79 36 13A 6B 
 

1689.9 99 86 12A 6B 3.11% 

100 20%   1247.4 N/A 322 -   1798.3 62 62 9A 9B   1705.3 95 75 10A 8B 5.17% 

                                                           
L is Proportion of L ⊆   N 
LB/Optimal shows Optimal Solution in bold 
Time is Cplex computational time in minutes 
TCPU is Total runtime of the corresponding stage in seconds 
BCPU is Time to best found solution for the corresponding stage in seconds 
IMP is Improvement when AMP is added to PVNS 
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Table 5.4: Routing Schedule for RVRP with different light load customers 
Light Load 
Customers 

None 2,11 2,10 1,10,15 1,10,15,8 

Routes 

0-1-8-3-2-0 0-1-8-3-2-0 0-1-8-3-2-0 0-5-11-16-2-3-1-0 0-5-11-16-2-3-1-0 

0-5-15-10-9-16-11-0 0-5-15-10-9-16-11-0 0-12-15-10-9-11-16-0 0-12-17-15-10-9-0 0-12-17-15-10-9-0 

0-14-20-7-6-0 0-14-20-7-6-0 0-14-20-7-6-0 0-14-20-7-8-6-0 0-14-20-7-8-6-0 

0-18-13-19-4-17-12-0 0-18-13-19-4-17-12-0 0-18-13-19-4-17-5-0 0-18-13-19-4-0 0-18-13-19-4-0 

Fleet Mix 3A,1B 3A,1B 3A,1B 3A,1B 3A,1B 

Solution 446.16 446.16 476.04 462.32 462.32 

TCPU 5 sec 5 sec 5 sec 4 sec 4 sec 

 

The first example in the Table 5.4 is the base routing schedule if there are no light load 

customers. When the light load customers are chosen such that in the base schedule they 

are serviced after the light load capacity threshold, then the objective function and routes 

do not change. However, if the chosen customers are positioned before the light load 

threshold is reached in the base schedule, then an adjustment in the routing is necessary 

and the objective function increases accordingly. The fact that the base routing schedule is 

mostly preserved in the solutions with different light load customers means that the 

PVNS_AMP method can recognise good quality Elite Strings which preserve good solution 

sequences, whilst adjusting for the light load requirement. This addresses one of the 

important real life considerations of the RVPR, which is to incorporate light load customers 

into the daily routing in an efficient manner. 

The RVRP with Overtime 

Our computational experience suggests that the problem is computationally demanding 

and only very small instances are solved to optimality. The RVRP with overtime results from 

The PVNS_AMP are shown in Table 5.5, as compared to the results achieved by CPLEX. 

The second important real life consideration for the RVRP is to show whether there can be 

any savings from considering allowable overtime in advance. The results from the RVRP 

with overtime are compared to those without overtime in Table 5.6. The total cost is 

provided as well as the fleet composition for each instance and how much overtime is 

used, if any. 
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Table 5.5: Results of the RVRP with overtime 

N L 
 CPLEX Results PVNS_AMP Results 

 
LB/Optimal UB Fleet Mix Time

1
 

 
Solution Fleet Mix TCPU Overtime

2 
 

18 10% 
 

390.3 - 1A 2B 4 
 

390.3 1A 2B 3 7 

20 10% 
 

413.8 451.1 - 63 
 

427.2 1A 2B 5 5 

20 15% 
 

413.8 451.1 - 51 
 

427.2 1A 2B 5 5 

20 20% 
 

418.1 448.3 - 84 
 

427.2 1A 2B 3 5 

25 10% 
 

474.5 511.8 - 22 
 

503.1 1A 3B 5 0 

30 10% 
 

504.9 586.1 - 31 
 

547.2 4B 7 49 

30 15% 
 

504.9 586.1 - 30 
 

547.2 4B 7 49 

30 20% 
 

503.7 584.7 - 21 
 

552.6 4B 7 58 

50 10%   699.1 - - 32   820.3 3A 4B 25 17 
1 

Computational time in minutes
 

2 
Overtime present in the solution in minutes 

 

 

Incorporating overtime shows the potential for cost savings up to 8% for one planning 

period (see Table 5.6). The saving is not only in terms of overall cost, but also in terms of 

fleet size. The RVRP proposed in this research has an interesting characteristic which 

became apparent during the computational experience. Having allowable overtime and 

unlimited fleet means that it is very likely that during the search process some candidate 

solutions could favour an extra vehicle, as opposed to allowing for overtime. Therefore, 

having a Population VNS allows for the exploration of solutions which favour overtime and 

solutions which favour extra vehicles, hence a more comprehensive picture for the 

possibilities for cost savings. 

For the instances without overtime, the fleet is larger. This is because the allowable 

maximum regular time in some cases restricts the RVRP more tightly than the capacity 

constraint. That is, a new route is added either when the maximum time is reached or 

there is no more capacity left in the vehicle. This is an important aspect of the routing in 

the gas delivery industry, because the time it takes to service a customer (the demand-

dependent nature of the service time) and the time is takes to travel between customer 

locations (given the lower speed of the heavy goods vehicles) is relatively large.
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              Table 5.6: Results on the RVRP with and without Overtime 

N L (%) 

PVNS_AMP without overtime   PVNS_AMP with overtime 

IMP (%)* 

Solution Fleet Composition  
 

Solution 
Total 

overtime  
Fleet Composition  

20 10 446.2 3A 1B   427.2 5 1A 2B 4.42 

20 15 446.2 3A 1B 

 

427.2 5 1A 2B 4.42 

20 20 462.3 3A 1B 

 

427.2 5 1A 2B 7.59 

30 10 560.1 2A 3B 

 

547.2 49 4B 2.30 

30 15 560.1 2A 3B   547.2 49 4B 2.30 

30 20 565.3 2A 3B 
 

552.6 58 4B 2.25 

50 10 852.2 6A 2B 
 

820.3 27 3A 4B 3.74 

50 15 867.2 4A 5B 
 

827.1 36 3A 4B 4.62 

50 20 877.4 6A 4B 
 

842.1 46 3A 4B 4.02 

75 10 1244.1 2A 8B 
 

1230.5 19 4A 6B 1.09 

75 15 1254.3 6A 5B 
 

1241.9 7 2A 8B 0.99 

75 20 1267.5 8A 6B 
 

1253.3 62 3A 7B 1.12 

100 10 1646.4 13A 5B 
 

1549.4 25 3A 10B 5.89 

100 15 1689.9 12A 6B 
 

1579.1 29 3A 11B 6.56 

100 20 1705.3 10A 8B   1592.1 38 3A 11B 6.64 
                  *% Improvement when incorporating Overtime



116 
 

            
 
 
                       Table 5.7: RVRP at a glance 

    
RVRP no Overtime 

  
RVRP with Overtime 

L 
 

None 
 

None  1,5,7,12,9 1,4,5,7,12,9,32,42,45,50 

Routing 
6
 

 
0-6-24-43-40-7-23-48-0 

 
0-1-22-28-31-26-8-48-27-0 0-6-14-24-43-40-7-23-48-27-0 0-6-14-24-43-40-7-32-48-27-0 

 
0-14-25-13-18-0 

 
0-32-2-20-35-36-3-0 0-8-26-31-28-1-0 0-8-26-31-28-1-0 

 
0-22-28-31-26-8-27-0 

 
0-6-23-7-40-43-24-25-14-0 0-22-3-36-35-20-2-32-46-0 0-22-3-36-35-20-2-32-0 

 
0-11-38-46-0 

 
0-15-45-33-39-10-49-5-46-0 0-11-16-29-21-34-50-9-49-5-12-0 0-11-16-29-21-50-34-30-9-49-38-0 

 
0-1-3-36-35-20-2-32-0 

 
0-11-16-29-21-50-34-30-9-38-0 0-38-30-10-39-33-45-15-0 0-10-39-33-45-15-5-0 

 
0-9-30-34-50-21-29-16-0 

 
0-37-44-42-19-41-13-18-0 46-37-17-4-47-0 0-17-37-44-42-19-41-4-12-0 

 
0-5-49-10-39-33-45-15-37-0 

 
0-47-4-17-12-0 44-42-19-41-13-25-18-0 0-47-18-13-25-0 

 
0-12-17-44-42-19-41-4-47-0 

 
- - - 

Fleet Mix 
 

5A, 3B 
 

1A, 6B 3A, 4B 3A, 4B 

AT
7
 

 
360.2 

 
379.6 398.3 410.1 

AVC
8
 

 
0.31% 

 
0.31% 0.31% 0.31% 

AL
9
 

 
14116 

 
15149 15828 16132 

Overtime
10

 
 

0 
 

0 27 46 

Solution   848.3   825.6 820.3 842.1 

                                                           
Underlined nodes are light load customers, nodes in bold are Elite Strings 
AT is Average travel time per vehicle in minutes 
AVC is Average variable cost per vehicle as a proportion of total cost 
AL is Average load per vehicle 
Overtime used in minutes in the solution 
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Table 5.7 provides an overview at a glance for the key aspects of the RVRP and their combined 

effect. It portrays instance N = 50 with and without overtime and with different proportions of 

light load customers. The key observations are summarized below.  

(i) It can be seen that the route composition is mostly preserved regardless of the overtime 

and the light load composition, as well as the Elite Strings. This means that the PVNS_AMP is 

flexible enough to identify good solution sequences for the different versions of the RVRP and 

the memory procedure has preserved those good sequences in a consistent manner. 

(ii) The examples with overtime of the RVRP tend to favour the larger vehicle type B, which 

results in a smaller fleet. Here an interesting observation is that even though the fleet mix is 

composed of more vehicles of type B, the average variable cost of the vehicles remains 

unchanged. Additionally, when considering overtime, the vehicle capacity is 12.5% better 

utilized, because the average load carried by the fleet is greater when overtime is considered 

in advance. Moreover, the working time is 12% better utilized, as the average travel time of 

the fleet is higher and much closer to the maximum allowable regular time. This is an 

important practical aspect, in relation to drivers working hours’ directive and management of 

human resources.  

(iii) Another interesting observation is the combined effect of having light load customers and 

allowable overtime. It can be seen that for the RVRP with overtime and no light load 

customers, the objective function is 825.6, with 6 vehicles of type B and only 1 of type A. In 

contrast, having L=10% with overtime has an objective function of 820.3. This means that 

having light load customers can actually improve the efficiency of the routing when overtime 

is allowed. It provides an opportunity for servicing more light load customers on a given route 

after the maximum regular time, when there is still capacity left; rather than placing them on 

a different route. 

The allowable overtime in the RVRP is coupled with unlimited fleet. This means that an extra 

vehicle could be favoured in the solution structure, as opposed to having allowable overtime. 

This trade-off is an interesting feature of the problem and it has not been explored before. It 

can be seen from Table 5.6 that in the instances with allowable overtime the fleet is actually 

smaller than the instances without overtime, in terms of size. For the different instances the 

fleet size of the instances with overtime is up to 42% smaller.  However, the larger vehicle 
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type B has been favoured. In the instances without overtime the fleet composition is almost 

balanced, with 56% of the fleet on average being vehicles of type A, and 44% being vehicles of 

type B. In contrast looking at the instances with overtime, the fleet composition is 26% of the 

vehicles are of type A, and 74% of type B. However, it can be noted from Table 5.7, that even 

if the fleet favours large vehicles, it does not comes at an increased variable cost on average. 

In fact, it prevents the formation of short routes, which only include a few or one customer at 

a vehicle route. This is important in real life routing because the full time drivers should utilize 

their working hours, in order for the company to make the most of their regular paid time. 

Moreover, if the drivers are on temporary basis or agency based, they may not agree to do 

short shifts, since it is not feasible in terms of monetary reward. 

5.5. PVNS_AMP Testing on Standard Benchmark Instances  

RVRPs are diverse and characterized with many real life routing elements which are typical in 

a given industry setting. Usually the RVRPs proposed in the literature are tested on specially 

designed instances, adapted literature benchmark instances or real datasets. Similar to most 

heuristic methods, the solution methods designed to solve RVRPs are problem specific. 

Moreover, they are not tested on well-known literature benchmark instances, because one 

cannot directly compare methods designed for different problems. However, we believe that 

it is important for researchers who address real life problems to be able to find a platform for 

comparability and show that the solution methods have a degree of generalizability. In our 

case one way of showing that the PVNS_AMP method can successfully address the RVRP is to 

compare the results to the optimal solutions or lower/upper bounds found by solving the MIP 

formulation. Moreover, we test the PVNS_AMP on the well-known literature benchmark 

instances by Golden et al. (1984), both with variable cost and fixed cost, even though the 

researched RVRP here does not consider the fixed cost of the vehicles. The results from the 

PVNS_AMP are shown in Table 5.8. They are compared to the Best Known Solutions (BKS) 

found in the literature. Some of the tables with computational experiments show an 

improvement from one version of the PVNS_AMP to another denoted by IMP, whereas the 

term Gap is used to show the deviation from any BKS. 
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Table 5.8 shows the results on the FSMVRP instances with variable cost and fixed cost, solved 

by the PVNS_AMP. Even though the method is designed for a RVRP it performs well on one of 

the most researched problem instances, yielding less than 1% deviation on average. 

Table 5.8: PVNS_AMP Results on Golden et al. (1984) 

Instance N 
  FSMVRP with Variable Cost    FSMVRP with Fixed Cost  

 
BKS PVNS_AMP Gap 

 
BKS PVNS_AMP Gap 

3 20 
 

623.22 623.22 0.00% 
 

961.03 961.03 0.00% 

4 20 
 

387.18 387.18 0.00% 
 

6437.33 6437.33 0.00% 

5 20 
 

742.87 742.87 0.00% 
 

1007.05 1007.05 0.00% 

6 20 
 

415.03 415.03 0.00% 
 

6516.47 6516.47 0.00% 

13 50 
 

1491.86 1491.86 0.00% 
 

2406.36 2406.36 0.00% 

14 50 
 

603.2 603.2 0.00% 
 

9119.03 9119.03 0.00% 

15 50 
 

999.8 999.8 0.00% 
 

2586.37 2612.1 0.99% 

16 50 
 

1131 1131 0.00% 
 

2720.43 2750.1 1.09% 

17 75 
 

1038.6 1061.2 2.18% 
 

1734.53 1758.02 1.35% 

18 75 
 

1800.8 1852.1 2.81% 
 

2369.65 2401.43 1.34% 

19 100 
 

1105.44 1139.2 3.05% 
 

8661.81 8709.1 0.55% 

20 100   1530 1560.2 1.96%   4032.81 4087.1 1.35% 

   
Average Gap 0.83% 

 
Average Gap 0.56% 

 

In order to present more detailed results, the best solution of 10 iterations has also been 

recorded. There is a degree of randomisation of the PVNS_AMP and this has to be evened out 

by executing a number of iterations and taking the best found solution. Also average solutions 

are recorded.  

Further experiments are performed on the benchmark instances with fixed and variable cost. 

The PVNS_AMP was run for 10 iterations on each instance and the results are presented in 

Tables 5.9 and 5.10. It can be seen from both tables that the average results are not far from 

the best known solutions, which suggests a relatively stable performance. There is 

improvement of the performance from 1 run to 10 runs with 0.68% and 0.47% for the 

instances with variable cost and fixed cost respectively. 

An observation here can be made that the small gaps in best found solutions and the BKS 

suggest that the diversification element of the algorithm is sufficient for a good coverage of 

the solution space and the candidate solutions have enough diversity to explore solution 

structures with different fleets. However, the fact that 2 of the BKS are not reached in the 
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case of the instances with variable cost and 3 of the instances with fixed cost, means that the 

intensification element of the PVNS_AMP can be further improved.  

       Table 5.9: Results on Golden et al. (1984) with Variable Cost 

Instance N 

  1 iteration    10 iterations 

 
PVNS_AMP 

 
PVNS_AMP 

best 
PVNS_AMP 

Average 
% IMP* 

3 20 
 

623.22 
 

623.22 623.22 0.00% 

4 20 
 

387.18 
 

387.18 387.18 0.00% 

5 20 
 

742.87 
 

742.87 742.87 0.00% 

6 20 
 

415.03 
 

415.03 415.03 0.00% 

13 50 
 

1491.86 
 

1491.86 1491.86 0.00% 

14 50 
 

603.2 
 

603.2 603.2 0.00% 

15 50 
 

999.8 
 

999.8 999.8 0.00% 

16 50 
 

1131 
 

1131 1131 0.00% 

17 75 
 

1061.2 
 

1038.6 1042.9 2.18% 

18 75 
 

1852.1 
 

1822.1 1836.7 1.65% 

19 100 
 

1139.2 
 

1112.25 1121.6 2.42% 

20 100   1560.2   1530 1532.5 1.97% 

          Average IMP 0.68% 
          *IMP is improvement from the PVNS_AMP with 1 iteration 

 
Table 5.10: Results on Golden et al. (1984) with Fixed Cost 

Instance N 

  1 iteration    10 iterations 

 
PVNS_AMP 

 
PVNS_AMP 

best 
PVNS_AMP 

Average 
% IMP* 

3 20 
 

961.03 
 

961.03 961.03 0.00% 

4 20 
 

6437.33 
 

6437.33 6437.33 0.00% 

5 20 
 

1007.05 
 

1007.05 1007.05 0.00% 

6 20 
 

6516.47 
 

6516.47 6516.47 0.00% 

13 50 
 

2406.36 
 

2406.36 2406.36 0.00% 

14 50 
 

9119.03 
 

9119.03 9122.8 0.00% 

15 50 
 

2612.1 
 

2586.37 2586.37 0.99% 

16 50 
 

2750.1 
 

2720.43 2732.1 1.09% 

17 75 
 

1758.02 
 

1749.53 1751.2 0.46% 

18 75 
 

2401.43 
 

2368.65 2389.43 1.34% 

19 100 
 

8709.1 
 

8661.8 8683.3 0.55% 

20 100   4087.1   4043.12 4058.2 1.09% 

          Average IMP 0.47% 
*IMP is improvement from the PVNS_AMP with 1 iteration 
 

    

Further experimentation was performed with the PVNS_AMP in order to test behaviour of the 

algorithm. We run the PVNS_AMP with different stopping criteria, namely maximum 

computational time. As previously noted, the PVNS_AMP shows a good potential for 
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diversification of the solution space. However, we also test the method for a longer period of 

time in order to see any gains in solution quality. Once Stage 1 of the algorithm is complete 

and the Elite Strings are encoded, we run Stage 2 of the PVNS_AMP for 2 hours on all 

benchmark instances from Golden et al. (1894). The results are shown in Tables 5.11 and 5.12, 

with variable and fixed cost, respectively. 

Table 5.11: Results on Golden et al. (1984) with Variable Cost 

Instance N 
  

PVNS_AMP 
  

PVNS_AMP average of 10 
iterations 

  
PVNS_AMP 2 hrs maximum 

running time 

  
Sol % IMP 

 
Sol % IMP* 

3 20 
 

623.22 
 

623.22 0.00% 
 

623.22 0.00% 

4 20 
 

387.18 
 

387.18 0.00% 
 

387.18 0.00% 

5 20 
 

742.87 
 

742.87 0.00% 
 

742.87 0.00% 

6 20 
 

415.03 
 

415.03 0.00% 
 

415.03 0.00% 

13 50 
 

1491.86 
 

1491.86 0.00% 
 

1491.86 0.00% 

14 50 
 

603.2 
 

603.2 0.00% 
 

603.2 0.00% 

15 50 
 

999.8 
 

999.8 0.00% 
 

999.8 0.00% 

16 50 
 

1131 
 

1131 0.00% 
 

1131 0.00% 

17 75 
 

1061.2 
 

1038.6 2.18% 
 

1038.6 2.18% 

18 75 
 

1852.1 
 

1822.1 1.65% 
 

1800.8 2.81% 

19 100 
 

1139.2 
 

1112.25 2.42% 
 

1105.4 3.06% 

20 100   1560.2   1530 1.97%   1530 1.97% 

          Average IMP 0.68%   Average IMP 0.84% 
 
 

    Table 5.12: Results on Golden et al. (1984) with Fixed Cost 

Instance N 
  

PVNS_AMP 
  

PVNS_AMP average of 10 
iterations 

  
PVNS_AMP 2 hrs maximum 

running time 

  
Sol % IMP 

 
Sol % IMP* 

3 20 
 

961.03 
 

961.03 0.00% 
 

961.03 0.00% 

4 20 
 

6437.33 
 

6437.33 0.00% 
 

6437.33 0.00% 

5 20 
 

1007.05 
 

1007.05 0.00% 
 

1007.05 0.00% 

6 20 
 

6516.47 
 

6516.47 0.00% 
 

6516.47 0.00% 

13 50 
 

2406.36 
 

2406.36 0.00% 
 

2406.36 0.00% 

14 50 
 

9119.03 
 

9119.03 0.00% 
 

9119.03 0.00% 

15 50 
 

2612.1 
 

2586.37 0.99% 
 

2586.37 0.99% 

16 50 
 

2750.1 
 

2720.43 1.09% 
 

2720.43 1.09% 

17 75 
 

1758.02 
 

1749.91 0.46% 
 

1734.53 1.35% 

18 75 
 

2401.43 
 

2369.65 1.34% 
 

2369.65 1.34% 

19 100 
 

8709.1 
 

8661.81 0.55% 
 

8661.81 0.55% 

20 100   4087.1   4043.2 1.09%   4043.2 1.09% 

          Average IMP 0.47%   Average IMP 0.53% 
*IMP is improvement from the PVNS_AMP 
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What these 2 tables show is that there is an improvement if the PVNS_AMP is run for an 

average of 10 iterations and when run for longer period of time, namely 2 hours. This shows a 

key observation regarding the PVNS_AMP, and that is that the best results are achieved when 

the algorithm is run for longer, which means with more in depth search of the candidate 

solutions. Another observation is that the results on the instances with variable cost are 

better on average, reaching all Best Known Solutions in the literature. This can be attributed 

to the fact that when fixed cost is present the shifts between fleet compositions incur greater 

costs and may not be further explored during the search.  

5.6. Summary  

The computation experience of the PVNS_AMP suggests that incorporating learning principles 

within a method which does not have learning mechanisms in its original form can yield some 

good results. The testing shows that the PVNS_AMP has a good potential of recognizing good 

solution sequences, which are often part of the optimal solution for a given problem instance. 

The population nature of the PVNS_AMP also acts as a driver for the good Elite Sting 

extraction as well as for providing diversification to the search process. The PVNS_AMP was 

successfully applied to the RVRP under study and showed potential for great operation 

savings in terms of total cost and better fleet utilization. Moreover, it was found to perform 

well on literature benchmark instances with less than 1% deviation from best known 

solutions. The PVNS_AMP is especially powerful when run for a longer period of time. 2 hours 

maximum running time can be considered reasonable for the generation of a routing schedule 

in practice. 

After the extensive literature search on the VRP domain, it was found that usually AMP is used 

via means of Tabu Search. Therefore, the next Chapter offers an extension to the PVNS_AMP, 

where the main principles of Tabu Search are incorporated into the method. The idea is that 

by using TS, the intensification element of the algorithm will be better addressed and this 

could lead to an improvement in the algorithm performance. 
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Chapter 6 

 

Tabu Search Aspect of the PVNS_AMP 

 

The literature review conducted in this research suggests that AMP is usually used within Tabu 

Search, and some of the best solutions found on the VRP literature benchmarks involving AMP 

is via means of Tabu Search. One of the main ideas for algorithm design in this research was to 

implement learning principles using AMP, within a method which does not make use of 

memory in its original form. However, we cannot ignore the findings from the literature that 

AMP performs well when used with Tabu Search.  

Some Tabu Search principles are incorporated within the PVNS_AMP which resulted in a new 

hybrid metaheuristic method, namely the TS_PVNS_AMP. We created this hybrid method in 

order to test for any improvements in the solution quality, as well as further the research 

aspect on the methodological side. AMP is used in this research as a long term learning 

mechanism, which was found to perform well on the RVRP, as well as on literature benchmark 

instances. The addition of the TS aspect is done for the purpose of adding short-term learning 

strategy. It is interesting to test whether there is any gain in terms of solution quality when 

this short-term memory aspect is added and how the TS aspect fits within the algorithmic 

design. 

The previous chapter details the results from the test instances, where one main observation 

can be made regarding the performance of the PVNS_AMP algorithm. The results and testing 

suggest that the PVNS_AMP has a good diversification strategy, where the benefit of having 

population of solutions and a vigorous Shake stage has been described. However, there is one 

aspect that can be further improved, namely intensification. What we found in Chapter 6 is 

that the PVNS_AMP performs better when run for a longer period of time, which suggests 

that the performance is better with a more in-depth search of the solution space. The short-

term memory aspect of the TS can be a good intensification strategy, because during the 

search process for better solutions, some of the moves are tabu. This means that using tabu 

status for certain moves can help to prevent solution cycling in the short-term. The motivation 

behind adding the TS aspect to the PVNS_AMP algorithm is to see whether this can enhance 
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the intensification strategy, hence it may lead to finding better solutions for the RVRP, as well 

as on literature benchmark instances. This algorithm extension is explained and tested in 

detail within this chapter and some interesting observations are reported. Hereafter we refer 

to the new extended algorithm as TS_PVNS_AMP. For some further detailed description on 

Tabu Search, please refer to Section 2.3.2. 

6.1. The TS_PVNS_AMP Method Description 

The TS aspect for the PVNS_AMP is not globally incorporated. This means that the TS aspect is 

only active within the local-search routines used within the PVNS_AMP. It is locally embedded 

in each Inter-Route routine, namely the 1-0 shift, 1-1 swap, 2-0 shift, 2-1 swap and 2-2 swap, 

as well as the Intra-Route routines, namely 1-1 swap and 1-0 Shift.  

The global methodological steps, described in Section 5.2 remain the same; that is all details 

relating to the methodological Steps for Stage 1 and Stage 2 of the PVNS_AMP, as well as the 

Shake routine. Therefore, this section will only offer a description of the local TS aspect, which 

relates to the Shift and Swap routines. The reason why the global algorithmic steps are not 

changed is because the TS aspect is mostly added in order to add more intensification to the 

search process, which was outlined in the previous chapter as an aspect which can be further 

enhanced. Moreover, it is added in order to strengthen the short-term learning aspect of the 

method.  

The Shift and Swap operators within the PVNS_AMP are used in a systematic fashion, until the 

best solution is reached. This aspect was changed for the TS_PVNS_AMP, in order to explore 

more deeply the surroundings of a given local optima. A graphical representation of the Shift 

and Swap operator methodology is given in Figure 6.1.  

Figure 6.1 shows a description on how the moves are accepted, as well as the stopping criteria 

within all of the Shift and Swap operators. If the operator finds an improving move, it is 

accepted and the new solution updated. Data structures are used to memorize the 2 best 

feasible non improving moves (that is second best and third best to the current best), which is 

a hill-climbing mechanism. The reason why we allow hill-climbing moves is from our 

computational experience with the PVNS_AMP. We found in Section 5.3 (shown in Figure 

5.12) that some of the best found solutions come from a candidate solution with a larger 
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objective function. Therefore, allowing for hill-climbing moves within the TS_PVNS_AMP can 

be beneficial for reaching better solutions.  

The 2 best improving infeasible moves are also kept in the memory and are used to continue 

the search if no further improving move was found. For the purpose of the RVRP, a non-

improving move is defined as a move which results in capacity or maximum allowable time 

violation. The light load constraint is kept feasible at all times. For the testing of the algorithm 

on literature benchmark instances, an infeasible move is defined as a move which results in 

capacity violation. Two parameters are used in Figure 6.1, which refer to the allowable non-

improving and infeasible moves. Inf counts the number of times an infeasible move was 

accepted, whereas Sec counts the number of times a non-improving feasible move was 

accepted (hence the second best). Imp denotes an improving move. The ‘++’ sign denotes an 

increase in the number of accepted moves. A simple pseudo code for the Tabu Search is also 

provided in Figure 6.2.  

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Graphical Representation of the Operators execution within TS_PVNS_AMP 

 

 The improving moves are those which result in an improvement of the current best 

solution. Once an improvement move is made, the inverse move is set as Tabu, in order to 

Routine is 
applied 

Solution enters a Shift or Swap Routine 

If Imp = true 

 

If Imp = false  
And Sec = 2 

Take Second Best 
Non Improving Move 

Sec++ 

Sec = 0 

Sec = 0     
Inf = 0 

If Imp = false  
And Sec = 2 

Take Best Improving 
Infeasible Move 

Inf++ 

Exit 
Routine 

With 

If Imp = false And Inf = 2, And Sec = 2 
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prevent the solution search to go back to the same structure for a number of iterations. This 

means that if an arc between two customers is dropped, because an improving arc was found, 

then the recently dropped arc does not get revisited in future iterations. 

 

 The non-improving moves are those moves which result in a second best solution 

quality, relative to the current best found improving move. If a better second best solution is 

found than the one currently saved in the memory, it gets replaced. Two second best moves 

are memorized and used if no improving moves are found. This is motivated by the hill-

climbing mechanism, where non-improving moves are accepted, in order to intensify the 

search and ideally force it into better regions. The number of non-improving moves allowed 

was empirically tested and is described later in this section.  

Begin Routine 
Calculate gain function   for all moves 

Save all moves with maxv   

Initialize Tabu List, Set Sec = 0, Inf = 0; 
Perform Move  
 If Imp = true and Move is not Tabu (or if Tabu activate aspiration criteria) 
   Accept Improving Move; Reset Sec=0; 
   Set inverse move as Tabu 
   Update Tabu List 
Else if Imp=false And Sec<2 
  Accept hill-climbing move 
  Sec++; 
Else if Imp=False And Sec = 2 
  Accept Infeasible Move; 
Else If Imp=false, Sec=2, Inf=2 
Save best found Solution 
End If  
Exit Routine 

Figure 6.2: TS_PVNS_AMP pseudo code 

 

 Infeasible moves are also accepted during the search process. The motivation behind it 

is that usually the optimal solution for Combinatorial Optimization problems lies on the 

convex hull (a small note here is that this is not the case for all problems), which is essentially 

the boundary between the feasible and the infeasible space. Therefore, allowing for infeasible 

moves can force the search to explore this boundary in more depth. An example of this is 

given in Figure 6.3. It has to be noted here that tabu status is not given to any accepted 

infeasible or hill-climbing moves. 
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   Figure 6.3: Shift from infeasible move to feasible move 
 

Figure 6.3 shows a small sample instance with 6 customers and a depot, and two vehicle types 

Type A has capacity of 150 and type B has capacity of 200. The node depicted in purple is a 

customer with a large demand. Starting from a feasible solution (a) during the search process 

an infeasible solution in terms of capacity (b) with a better cost can be found and accepted, 

which can then be further explored to find feasible solution (c) which results in an 

improvement of the total cost. There is no guarantee that allowing for infeasibility or non-

improving moves can results in a better overall solution quality. Therefore some results on the 

Shift and Swap operators are portrayed in Table 6.1, with some further explanation and 

observations. The table is generated based on the FSMVRP instance with fixed cost by Golden 

et al. (1984), instance number 3, with n = 20. The observations made from testing instance 3 

are valid for all other instances as well. Table 6.1 shows not only the benefit of having non-

improving and infeasible moves, but it also gives an idea of the execution sequence and the 

variable number of iterations each of the routines can have. Only the operators which are 

Inter-Route are shown in the table, because the Intra-Route operators do not result in 

infeasibility.  

 

Similarly to the PVNS_AMP, the TS_PVNS_AMP does not have a fixed number of iterations 

within the local search routines, but they are executed until no further improvement is found, 

according to the algorithm steps listed in Figure 6.2. Therefore, it is interesting to see from 

Table 6.1 the manner in which the routines are executed, where the solution quality during 

the corresponding routine is noted per iteration.  
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    Table 6.1: Solution Quality Change during each iteration of the operator execution 

Inter-Route Shift and Swap Routines 

0-1 1-1 2-0 2-1 2-2 

Move Solution Move Solution Move Solution Move Solution Move Solution 

Imp 1068 Imp 1056 Imp 1038 Imp 1084 Imp 1061 

Imp 1066 Sec 1058 Imp 1024 Imp 1075 Sec 1069 

Imp 1067 Sec 1061 Sec 1026 Imp 1072 Imp 1056 

Sec 1119 Inf 1048 Sec 1038 Imp 1070 Imp 1039 

Imp 1028 Imp 1042 Inf 998 Sec 1075 Imp 1023 

Imp 990 Sec 1058 Inf 980 Sec 1112 Sec 1056 

Inf 998 Sec 1058 Imp 1018 Inf 965 Sec 1067 

Inf 980 - - Sec 1042 Imp 1002 Inf 1044 

- - - - Sec 1058 Imp 1001 Inf 1012 

- - - - Inf 1003 Sec 1025 - - 

- - - - Inf 980 Sec 1054 - - 

- - - - - - Inf 1021  - - 

- - - - - - Inf 946 - - 

Best Solution 990 Best Solution 1042 Best Solution 1018 Best Solution 1001 Best Solution 1023 

Imp - Improving Move 

       Sec – Hill Climbing Move 

       Inf - Infeasible Improving Move 
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Table 6.1 shows the solution quality of a solution which enters the corresponding routine. The 

solution is noted after each iteration of the routine. An iterations here refers to a full 

exploration of a given solution structure of all moves which result in improvement according 

to the gain function   described in Section 5.2.1.  

The first column shows the changes in the solution quality for the 0-1 Inter-Route Shift. It can 

be seen that there are 3 improving moves accepted until no further improving move was 

found. After accepting the second best move (hill climbing move) there was still no 

improvement to the best found solution, however accepting the next second best non-

improving move, resulted in two consecutive improvements of the objective function. This 

means that accepting the non-improving move forced the search into a better area. There was 

no improvement of the solution after the infeasible moves were accepted; therefore the best 

found solution from the 6th iteration was accepted as the best for that routine. In the cases of 

1-1 swap and 2-0 and 2-1 shift, the best improving move was found after an infeasible move 

was accepted. This shows that there is a benefit for allowing infeasible moves, which can 

intensify the search for better solution quality. Also, the fleet composition remains variable 

during the search, which gives greater flexibility for the operators. This means that an 

infeasible move is only infeasible if the total capacity exceeds the capacity of the largest 

available vehicle.  

Another important observation here is the number of iterations per routine. The number of 

iterations is not fixed, but it depends on the quality of the search process. In the PVNS_AMP 

the iterations within the routines are also variable, but they are as many as the improving 

moves found. In this case, where non-improving and infeasible moves are allowed, there are 

more iterations, until no further improvement is found. The stopping criteria is the following: 

if there is no improvement and two non-improving and two infeasible moves have already 

been accepted, then the routine is exited, with the best found solution or if no improvement 

was found the solution remains unchanged from when it entered the routine. Therefore, the 

minimum number of iterations is 4 (assuming we accept 2 hill-climbing moves and 2 infeasible 

moves with no improving move), where the maximum depends on the number of improving 

moves. This can pose a strain on the computational time, if too many iterations for one 

routine are allowed. Therefore, only 2 non-improving and infeasible moves are allowed 

following an improving move. We call this parameter  , which is tested, in order to analyse 
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any trade-off between the number of allowable non-improving feasible moves vs. solution 

quality. These experiments are shown in Figure 6.4. 

 

Figure 6.4: Solution Quality change during local search routines  

 

For the experiments shown in Figure 6.4 the random seeding (generation of the initial 

solutions) was turned off, in order to have consistent findings and a more accurate 

representation of any trade-offs on solution quality relevant to the  parameter. Each of the 

routines was executed first, after an initial solution was generated. The reason for this is for 

each routine to work on the ‘raw’ initial solution. It can be seen from the figure that the 

solution quality for the 2 node shift and swaps does not improve after 2 allowable moves. 

However, the solution quality for the 1-0 Shift and 1-1 Swap does improve with the increase 

with the  parameter. However, when a large instance is used and the algorithm is run, 

adding more iterations to the routines increases computational time. Moreover, one cannot 

conclude that more allowable infeasible and non-improving moves will have a global effect on 

the solution quality. Indeed if the   parameter is larger, it will improve the solution quality 

locally for the routine. However, we need to show the effect on the entire algorithm, in order 

to decide on the best value for the   parameter. This is shown in Figure 6.5. Instance 20 with 

n = 100 from the Golden et al. (1984) benchmark instances with variable cost is shown in 

figure 6.5, because the real impact of the parameter can be noted using a larger instance (the 

smaller instances with n = 20  for example can be quickly reached with our method). Figure 

6.5 shows the best found solution from the TS_PVNS_AMP (run of the entire algorithm) tested 

with different values of the   parameter. 
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Figure 6.5: Solution quality and Computational time at different values of   

 

It can be seen from Figure 6.5 that a value of the parameter   = 2 is sufficient for good 

solution quality at a minimal increase of computational time (compared to   = 0). If the value 

of the parameter is increased up to 10, there is no improvement of the solution and the 

computational time increases significantly by 93%. 

 

 The Tabu List is another important consideration. The recently visited moves are 

added to the Tabu List for a number of iterations, which are governed by the tabu tenure 

value. Here different tabu tenure values are tested for each of the routines, as well as for the 

entire algorithm. The reason for this is that when applied locally to the routines, different tabu 

tenure can be proven best for the specific routine. For instance, the 1-0 Inter-Route shift 

results in more improving changes to the solution structure on average compared to the 2-1 

routine. The 1-0 Shift is a very powerful operator for finding better quality solutions. 

Therefore, larger tabu tenure may be more feasible for a routine which involves higher 

number of iterations. In contrast, if a routine does not have too many iterations a large tabu 

tenure will be ‘absolute’ for that routine. What this means is that having a tabu tenure = 7 

means that for the next 7 iterations a given move is not allowed. However, if on average the 

routine does not produce more than 7 iterations, then a tabu tenure of 7 will mean that this 

move will never become available.  

The way we chose the tabu tenure value in this research is based on the average iteration of 

the Shift and Swap operators. After running different instances for the RVRP and literature 

benchmark instances, we found that the average length of a routine (length means number of 

iterations within a routine) is 10. We chose the tabu tenure value to be half of the average 

iterations per routine, hence a value of 5. The reason for this is to allow for a move that has 
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been tabu to be removed from the tabu list and become available again within the life of the 

given routine. We use different tabu list for each routine and having a common value for the 

tabu tenure decreases the number of parameters used within the algorithm. Moreover, 

having a value based on average iterations across the routines prevents the tabu status of 

becoming ‘absolute’, as described earlier. We believe that having a different tabu list for each 

routine aids the intensification of the search. Let us take an example of executing two 

different routines with the same tabu list for all routines portrayed in Figure 6.6. 

Candidate Solution  
 

1-0 Inter-route Shift 
 

2-0 Inter-route Shift 
 

1-0 Inter-route Shift 

Route 1: 0-1-3-5-7-0 
 

Route 1: 0-1-3-5-0 
 

Route 1: 0-4-1-3-5-0 
 

Route 1: 0-4-1-3-5-7-0 

Route 2: 0-4-8-0 
 

Route 2: 0-4-8-7-0 
 

Route 2: 0-8-7-0 
 

Route 2: 0-8-0 

Route 3: 0-2-6-9-10-0 
 

Route 3: 0-2-6-9-10-0 
 

Route 3: 0-2-6-9-10-0 
 

Route 3: 0-2-6-9-10-0 

Route 4: 0-0 
 

Route 4: 0-0 
 

Route 4: 0-0 
 

Route 4: 0-0 

Total 
cost:  423.1   

Total 
cost:  412.5   

Total 
cost:  409.7   

Total 
cost:  401.6 

Figure 6.6: Changes in a candidate solution with Tabu Status 

When the candidate solution enters the 1-0 shift the best improving move is moving customer 

7 to Route 2. After the 2-0 shift is performed the solution structure changes again. If we 

execute the 1-0 shift again after the 2-0 shift the best move is for customer 7 to link back with 

customer 5. However, this was the first accepted move and it is tabu. This means that having 

one list for all routines will prevent that move from being accepted, unless the aspiration 

criterion is enforced. In this research we do make use of the aspiration criterion, though we 

found that in the case of our hybrid algorithm it does not have an effect on the final solution 

quality. Having the tabu tenure active within a routine and local to that routine, means that a 

smaller value for the tabu tenure can be used and often tabu moves become available again 

within the routine. The PVNS_AMP already has learning principles embedded within, such as 

the Elite String generation. Moreover, we work on a number of candidate solutions, therefore 

if one link is unexplored within one candidate solution, it could be explored in another and 

this will be reflected in the Elite String frequency. This suggests that the hybridization of the 

TS with a PVNS_AMP combines different aspects (strengths) of the methods in a 

complementary fashion, and there may not be a need to use all of the parameters a method 

has if used on its own. 

The purpose of the aspiration criterion is to override the tabu status of a move which is tabu 

but results in an improvement in the solution quality. We found that there is no impact on the 
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final solution if the aspiration criterion is applied or not. Therefore, motivated by this rationale 

we use aspiration criteria for the Neighbourhood Reduction (NR) strategy. If a move is 

improving at any point during Stage 1 of the algorithm and it has a probability within NR 

which is greater than 0.7, we override that probability and reduce it to 0.3. This allows for any 

further routines to explore this move in more depth if it is indeed promising, and this act as 

the link between the learning from one routine to the next, since NR is a global strategy 

throughout the algorithm. 

6.2. TS_PVNS_AMP Method Testing 

The extension to the PVNS_AMP with Tabu Search (TS) is tested on the same problem 

instances as the PVNS_AMP, including the proposed RVRP and the FSMVRP instances by 

Golden et al. (1984). Table 6.2 and 6.3 detail the results of the RVRP with and without 

overtime, and tables 6.4, 6.5 and 6.6, the FSMVRP instances with variable cost and fixed cost.  

Table 6.2: Results on the RVRP without Overtime 

N L 
  PVNS_AMP   PVNS_AMP with TS   

 
Solution CPU (sec) 

 
Solution CPU (sec) IMP 

20 10% 
 

446.2 3 
 

446.2 7 0.0% 

20 15% 
 

446.9 3 
 

446.9 7 0.0% 

20 20% 
 

462.3 2 
 

462.3 6 0.0% 

30 10% 
 

560.1 5 
 

560.1 12 0.0% 

30 15% 
 

560.1 5 
 

560.1 13 0.0% 

30 20% 
 

565.3 5 
 

565.3 11 0.0% 

50 10% 
 

852.2 27 
 

852.2 39 0.0% 

50 15% 
 

867.2 25 
 

867.2 35 0.0% 

50 20% 
 

877.4 23 
 

877.4 28 0.0% 

75 10% 
 

1244.1 58 
 

1244.1 78 0.0% 

75 15% 
 

1254.3 58 
 

1248.8 78 0.4% 

75 20% 
 

1267.5 56 
 

1267.5 72 0.0% 

100 10% 
 

1646.4 120 
 

1631.6 172 0.9% 

100 15% 
 

1689.9 120 
 

1680.2 171 0.6% 

100 20%   1705.3 118   1705.3 149 0.0% 

          Average IMP 0.13% 

*CPU time in Seconds
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Table 6.2 shows a 0.13% improvement of the best found solutions by the PVNS_AMP, 

when TS is added. The improvements are mostly on the larger instances and are less than 

1% for each of the problems. This shows that the TS can further improve the solutions, 

because it has more power when it comes to intensification of the search.  

Table 6.3: Results for the RVRP with Overtime 

N L 

  PVNS_AMP     PVNS_AMP with TS   

IMP 

 
Solution 

Total 
overtime  

Fleet Mix 
 

Solution 
Total 

overtime  
Fleet Mix 

20 10% 
 

427.2 5 1A 2B 
 

427.2 5 1A 2B 0.0% 

20 15% 
 

427.2 5 1A 2B 

 

427.2 5 1A 2B 0.0% 

20 20% 
 

427.2 5 1A 2B 

 

427.2 5 1A 2B 0.0% 

30 10% 
 

547.2 49 4B 

 

547.2 49 4B 0.0% 

30 15% 
 

547.2 49 4B 
 

547.2 49 4B 0.0% 

30 20% 
 

552.6 58 4B 
 

552.6 58 4B 0.0% 

50 10% 
 

820.3 27 3A 4B 
 

812.9 10 4A 4B 0.9% 

50 15% 
 

827.1 36 3A 4B 
 

827.1 36 3A 4B 0.0% 

50 20% 
 

842.1 46 3A 4B 
 

842.1 46 3A 4B 0.0% 

75 10% 
 

1230.5 19 4A 6B 
 

1228.1 19 4A 6B 0.2% 

75 15% 
 

1241.9 7 2A 8B 
 

1210.4 32 3A7B 2.6% 

75 20% 
 

1253.3 62 3A 7B 
 

1238.7 23 3A7B 1.2% 

100 10% 
 

1549.4 25 3A 10B 
 

1503.8 81 5A 8B 3.0% 

100 15% 
 

1579.1 29 3A 11B 
 

1552.6 46 5A 8B 1.7% 

100 20%   1592.1 38 3A 11B   1567.3 72 4A 10B 1.6% 

              Average IMP   0.75% 
*CPU time in Seconds 

The results from the problems with overtime are very interesting in terms of average 

improvement. It can be seen from Table 6.3 that adding the TS aspect can result in up to 

3% improvement in the best found solutions by PVNS_AMP. This can be attributed to the 

allowable infeasibility and the greater intensification provided by TS. It was noted in 

Section 5.6 that the problem with overtime is very challenging when it comes to accepting 

improving moves which enter the allowable overtime, because usually adding an extra 

vehicle can be a better option in terms of overall cost. However, the TS aspect allows for 

non-improving moves, where more than one customer can enter the overtime without an 

immediate improvement of overall cost. However, when the solution is further explored, 

more customers are shifted to the overtime, which results in significant improvement of 

the overall cost. Allowing infeasible moves is very favourable when it comes to problems 
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with overtime, which are coupled with unlimited fleet, because it allows for a greater 

flexibility for exploring the solution space within the allowable overtime. Compared to the 

results without overtime, where only minor improvements are achieved, due to the better 

intensification of the TS and the short term learning, the problem with overtime shows 

superiority of the TS_PVNS_AMP. Moreover, looking at the Fleet Mix reported for the 

TS_PVNS_AMP, it can be seen that the fleet is much more balanced, where more vehicles 

of type A are used in the final solution. This means that capacity of the smaller vehicles is 

better utilized, as well as their travel time. 

The methods are also tested on the Golden et al. (1984) Benchmark instances with 

heterogeneous fleet with fixed and variable cost against the BKS and other relevant 

methods. They are shown in tables 6.4, 6.5 and 6.6. It can be seen from the tables that the 

TS_PVNS_AMP reaches competitive results on both sets with average deviation less than 

0.01% and 0.04% respectively and achieves better results than the PVNS_AMP. For the 

problem with fixed cost, the TS_PVNS_AMP achieved better results than the Tabu Search 

proposed by Brandao (2011) and the Genetic Algorithm proposed by Liu (2009) with 0.08% 

and 0.01% respectively.  This supports the findings from the literature that AMP works well 

when used with Tabu Search. This also shows that the TS provides greater intensification to 

the search process as well as supports the AMP with the short term learning provided by 

the tabu tenure. When PVNS_AMP is hybridized with Tabu Search, the algorithm becomes 

more powerful in terms of solution quality. 

Another important observation is that the computational time for the TS_PVNS_AMP is not 

much larger than the one of the PVNS_AMP. This can suggest an efficient programming 

effort and it shows that TS can be implemented successfully, without placing too much 

strain on the computational time. Moreover, given the fact that the TS_PVNS_AMP is a 

population based algorithm, the computational time is relatively faster than the GA 

proposed by Liu (2009), as well as the Tabu Search proposed by Brandao (2011).
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6.4 Table: Results on Golden et al. (1984) FSMVRP with variable cost 

Instance N 
  

BKS 
  PVNS_AMP   TS_PVNS_AMP  

  
Sol Gap* CPU 

 
Sol Gap* CPU 

3 20 
 

623.22 
 

623.22 0.00% 10 
 

623.22 0.00% 35 

4 20 
 

387.18 
 

387.18 0.00% 9 
 

387.18 0.00% 32 

5 20 
 

742.87 
 

742.87 0.00% 8 
 

742.87 0.00% 36 

6 20 
 

415.03 
 

415.03 0.00% 9 
 

415.03 0.00% 28 

13 50 
 

1491.86 
 

1491.86 0.00% 32 
 

1491.86 0.00% 69 

14 50 
 

603.2 
 

603.2 0.00% 35 
 

603.2 0.00% 58 

15 50 
 

999.8 
 

999.8 0.00% 33 
 

999.8 0.00% 63 

16 50 
 

1131 
 

1131 0.00% 37 
 

1131 0.00% 61 

17 75 
 

1038.6 
 

1061.2 2.13% 78 
 

1038.6 0.00% 142 

18 75 
 

1800.8 
 

1852.1 2.77% 72 
 

1806.3 0.31% 121 

19 100 
 

1105.44 
 

1139.2 2.96% 121 
 

1105.44 0.00% 201 

20 100 
 

1530 
 

1560.2 1.94% 112 
 

1530 0.00% 213 

          Average Gap 0.82%     Average Gap 0.04%   

               *CPU time in Seconds 
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  Table 6.5: Results on Golden et al. (1984) FSMVRP with fixed cost against other methods 

Instance N 
  

BKS 
  TSA1

1
    GA

2
    ILS-RVND-SP

3
   TS_PVNS_AMP  

  
Sol Gap CPU 

 
Sol Gap CPU 

 

Sol Gap CPU 
 

Sol Gap CPU 

3 20 
 

961.03 
 

961.03 0.00% 21 
 

961.03 0.00% 21 

 

961.03 0.00% 0 
 

961.03 0.00% 32 

4 20 
 

6437.33 
 

6437.33 0.00% 22 
 

6437.33 0.00% 18 

 

6437.33 0.00% 0 
 

6437.33 0.00% 29 

5 20 
 

1007.05 
 

1007.05 0.00% 20 
 

1007.05 0.00% 13 

 

1007.05 0.00% 0 
 

1007.05 0.00% 28 

6 20 
 

6516.47 
 

6516.47 0.00% 25 
 

6516.47 0.00% 22 

 

6516.47 0.00% 0 
 

6516.47 0.00% 31 

13 50 
 

2406.36 
 

2406.36 0.00% 145 
 

2406.36 0.00% 91 

 

2406.36 0.00% 2 
 

2406.36 0.00% 65 

14 50 
 

9119.03 
 

9119.03 0.00% 220 
 

9119.03 0.00% 42 

 

9119.03 0.00% 2 
 

9119.03 0.00% 56 

15 50 
 

2586.37 
 

2586.84 0.02% 110 
 

2586.37 0.00% 48 

 

2586.37 0.00% 6 
 

2586.37 0.00% 52 

16 50 
 

2720.43 
 

2728.14 0.28% 111 
 

2724.22 0.14% 107 

 

2720.43 0.00% 4 
 

2720.43 0.00% 55 

17 75 
 

1734.53 
 

1736.09 0.09% 322 
 

1734.53 0.00% 109 

 

1734.53 0.00% 12 
 

1734.53 0.00% 99 

18 75 
 

2369.65 
 

2376.89 0.31% 267 
 

2369.65 0.00% 197 

 

2369.65 0.00% 12 
 

2369.65 0.00% 124 

19 100 
 

8661.81 
 

8667.26 0.06% 438 
 

8662.94 0.01% 778 

 

8661.81 0.00% 25 
 

8667.26 0.06% 269 

20 100   4032.81   4048.09 0.38% 601   4038.46 0.14% 1004   4032.81 0.00% 46   4034.3 0.04% 237 

          
Average 

Gap 
0.09%     

Average 
Gap 

0.02%     
Average 

Gap 
0.00%     

Average 
Gap 

0.01%   

Brandao (2011)
1
 

                Liu (2009)
2
 

                Subramanian et al. (2012)
3
 

                *CPU in seconds 
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  Table 6.6: Results on Golden et al. (1984) FSMVRP with fixed cost        

Instance N 
  

BKS 
  PVNS_AMP   TS_PVNS_AMP  

  
Sol Gap CPU 

 
Sol Gap CPU 

3 20 
 

961.03 
 

961.03 0.00% 7 
 

961.03 0.00% 32 

4 20 
 

6437.33 
 

6437.33 0.00% 6 
 

6437.33 0.00% 29 

5 20 
 

1007.05 
 

1007.05 0.00% 5 
 

1007.05 0.00% 28 

6 20 
 

6516.47 
 

6516.47 0.00% 6 
 

6516.47 0.00% 31 

13 50 
 

2406.36 
 

2406.36 0.00% 29 
 

2406.36 0.00% 65 

14 50 
 

9119.03 
 

9119.03 0.00% 31 
 

9119.03 0.00% 56 

15 50 
 

2586.37 
 

2612.1 0.99% 28 
 

2586.37 0.00% 52 

16 50 
 

2720.43 
 

2750.1 1.08% 28 
 

2720.43 0.00% 55 

17 75 
 

1734.53 
 

1758.02 1.34% 59 
 

1734.53 0.00% 99 

18 75 
 

2369.65 
 

2401.43 1.32% 52 
 

2369.65 0.00% 124 

19 100 
 

8661.81 
 

8709.1 0.54% 105 
 

8667.26 0.06% 269 

20 100 
 

4032.81 
 

4087.1 1.33% 98 
 

4034.3 0.04% 237 

          Average Gap 0.55%     Average Gap 0.01%   

   *CPU in Seconds
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6.3. Summary  

 

Incorporating Tabu Search principles within the PVNS_AMP showed an improvement in the 

performance of the algorithm. The TS_PVNS_AMP improved the best found solutions for 

the PVNS_AMP for the real life VRP introduced in this research. Especially for the RVRP 

with overtime the TS_PVNS_AMP showed significant improvements. We attribute this to 

the greater degree of intensification provided to the search by adding a TS aspect, as well 

as to the allowance for hill climbing and infeasible moves. The problem with overtime, 

when coupled with unlimited heterogeneous fleet is very interesting, because there is a 

clear trade-off between choosing to use more overtime vs. using an extra vehicle. Allowing 

for infeasibility triggered a better exploration of the search into the allowable overtime and 

the results achieved by the TS_PVNS_AMP are superior to the PVNS_AMP. 

 

The TS_PVNS_AMP also performs better on standard literature benchmark instances, 

reaching most of the best known solutions in the literature with less than half a percent on 

average. The next chapter focuses on the extensibility and generalizability of the 

TS_PVNS_AMP methodology to other VRP problems and any interesting observations in 

the behaviour of the algorithm are outlined. 
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Chapter 7 

 

Generalization of the Methodology 

 

The PVNS_AMP and the TS_PVNS_AMP were originally designed to address the real life 

VRP under study. One of the main ideas behind the design of these methods was the ability 

to work with diverse solution compositions in terms of sequence and fleet mix. The 

unlimited fleet is a key feature in the RVRP, which also brings the interesting trade-off of 

unlimited fleet vs. allowable overtime. Being able to work with a population of candidate 

solutions with different fleet composition is one of the main strengths of the PVNS_AMP 

algorithm, which also aids the learning aspect of the method. Therefore, it could be less 

suitable to address a VRP which has an imposed fleet, rather than assuming unlimited 

availability of the fleet. In this research we aim to thoroughly test our algorithm and learn 

from the strengths and weaknesses which become apparent during the testing. Therefore, 

the next paragraph will detail the experimentation on the Heterogeneous Fleet VRP with 

imposed fleet. 

7.1. The Heterogeneous Fleet VRP with Imposed Fleet (HVRP) 

The application of the PVNS_AMP and TS_PVNS_AMP raised interesting observations 

regarding the nature of the proposed algorithm. In order to test the algorithm on the HVRP 

literature benchmarks we had to do slight modifications and make small additions to the 

algorithm. 

We believe that if one claims that a method is generalizable, this means that different 

versions of the VRP can be solved by the method where only minor modifications or 

additions are applied. We aim to test the PVNS_AMP on the instances by Taillard (1999), as 

well as the large instances by Li (2007), which have heterogeneous imposed fleet. During 

the algorithmic experimentation on the imposed fleet instances a few observations 

became apparent.  
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 Observation 1: This relates to the approaches to initial solution generation. The 

principle by which all initial solutions are generated (explained in Chapter 4) is by picking 

the fleet at random until all demands are satisfied.  However, if the vehicle fleet is 

imposed, the initial solution methods may never find feasible fleet compositions which 

satisfy all demands, assuming no modification to the current methodology are made. The 

initial solution methods developed in Chapter 4 have good performance on unlimited fleet 

benchmark instances, but they do not find feasible solutions if the fleet is imposed. The 

reason for this is what can be referred to as ‘unutilized free space’ issue. This issue is 

observable for any greedy initial solution heuristic, which uses a criterion to add customers 

(according to a given rule) until the capacity of the vehicle is full. This is the case with all 

initial solution methods used in this research. An example of this is portrayed in Figure 7.1, 

where each box corresponds to the demand of a customer inside the vehicle. 

 

 
 Figure 7.1: Process of adding customers (their demands) to vehicles from giant tour 
 

Figure 7.1 shows the inside of a vehicle, where different customers have been assigned to 

it during an initial solution generation. If we assume that total capacity of the vehicle is 

100, 87 units have been utilized by servicing 4 customers. However, if a customer which is 

next for insertion on the giant tour has a demand larger than the free space left, then a 

new vehicle has to be added to satisfy their demand. This results in all vehicles not being 

fully utilized. Therefore, when having an imposed fleet (maximum allowable number of 

vehicles) the free space factor contributes to the overall infeasibility of the solution in 

terms of total demand satisfaction. Furthermore, if the total available capacity of all 

vehicles and the sum of all demands are very close or identical, insertion methods such as 

the Sweep or Nearest Neighbour cannot be used to generate feasible solutions in terms of 

capacity (they can be used to generate infeasible solution, which is then improved by 



142 
 

means of Shift and Swap operators). Therefore, some amendment has to be done to the 

methods in order to satisfy the conditions of the VRP with imposed fleet. 

 

 Observation 2: One of the main aspects of the PVNS_AMP and the TS_ PVNS_AMP 

is the learning aspect, which is mainly driven by the diversity of the candidate solutions and 

the ability to generate solutions with different fleet composition. Moreover, there are 

many data structures used throughout the algorithm, such as the Shrink Route routine and 

the Dummy Route (explained in Section 5.2.1), which encourage variable fleet composition 

exploration.  Therefore, having an imposed fleet means very little leeway for fleet diversity 

and can ‘paralyze’ the learning process and bias it towards a given solution structure. After 

performing computational experimentation, two approaches were found suitable for minor 

modifications in the initial solution generations stage only of the PVNS_AMP and 

TS_PVNS_AMP in order to test them on the HFVRP instances. 

 

7.1.1. Modification to the Initial Solution Generation 

The Adapted Sweep and Adapted Nearest Neighbour developed in Chapter 4 were 

amended in order to accommodate the imposed fleet constraint. The only modification 

that was made is that instead of picking the fleet composition at random, the fleet was 

systematically selected starting from the largest available vehicle and inserting those 

customers with largest demands with a priority. The Dummy Route routine (please refer to 

Section 5.2.1 for details) was only allowed if there are available vehicles left from the 

imposed fleet or if the generated initial solution could not cover the total demand with the 

available fleet due to the issue of free space utilization. Any customers which were not 

covered by the available vehicles were placed in a dummy route. The Shrink Route routine 

(please refer to Section 5.2.1 for details) was fully utilized without modification, because 

there is only a restriction on the maximum number of available vehicles, but not all of them 

must be used. A simple constraint was imposed throughout the algorithm, that the number 

of vehicles cannot exceed the total number of available vehicles per type. 

The results on the Taillard (1999) instances are shown in Table 7.1 with variable and fixed 

cost respectively, which compare the performance of the PVNS_AMP and TS_PVNS_AMP. 

It can be seen that the TS_PVNS_AMP performs better than the PVNS_AMP with an 



143 
 

average improvement of 0.41% for the problems with fixed cost, and 0.29% on the 

problems with variable cost. The reason for this is the greater intensification of the search, 

by means of short term memory. The PVNS_AMP makes use of long term memory which 

relates to the learning and Elite Strings encoding (partially fuelled by the diversity of the 

population of solutions). In contrast the TS aspect of the TS_PVNS_AMP triggers the 

diversity within a given route solution structure, by allowing for hill climbing and infeasible 

moves, as well as preventing cycling via the tabu tenure. 

The TS_PVNS_AMP is also tested against the Best Known Solutions (BKS) in the literature 

and other relevant methods. This is shown in Tables 7.2 and 7.3, respectively. For the 

problem with fixed cost the TS_PVNS_AMP outperformed the HCG with 0.75% and BATA 

with 0.44%, and achieves all Best Known Solutions in the literature, except for one with an 

average gap of 0.18%. On the problem instances with variable cost the TS_PVNS_AMP 

outperforms the MAMP with 0.11% on average. The MAMP introduced by Li (2007) also 

makes use of Adaptive Memory Procedure (AMP), so this provides for an interesting 

comparison with the TS_PVNS_AMP, which also makes use of AMP. The computational 

times for both methods are also similar on average. The average gap from the Best Known 

Solutions is 0.08%, reaching all BKS except for instance 20. 

The TS_PVNS_AMP is also tested on the large instances introduced by Li (2007) with 

imposed fleet. The results are shown in Table 7.4. The TS_PVNS_AMP shows some good 

results on the large sized instances, with 1% average deviation from the BKS.  

The TS_PVNS_AMP shows some flexibility by addressing a real life VRP tested in two 

versions, namely with and without overtime and other real life constraints such as light 

load. It also shows very good results on literature benchmark instances ranging from small 

to large sized, with no more than 1% deviation from the Best Known solutions in the 

literature. Moreover, it shows good potential for accommodating problems both with 

unlimited and imposed fleet.  
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                Table 7.1: Results on the Taillard (1999) instances with fixed and variable cost 

HFVRP with fixed cost   HFVRP with variable cost 

Instance N 
  PVNS_AMP   TS_PVNS_AMP  

 
Instance N 

  PVNS_AMP   TS_PVNS_AMP  

  Sol 
 

Sol IMP* 

 
 

Sol 
 

Sol IMP* 

13 50 
 

3185.09 
 

3185.09 0.00% 

 

13 50 
 

1517.84 
 

1517.84 0.00% 

14 50 
 

10107.53 
 

10107.53 0.00% 

 

14 50 
 

607.53 
 

607.53 0.00% 

15 50 
 

3065.29 
 

3065.29 0.00% 

 

15 50 
 

1015.29 
 

1015.29 0.00% 

16 50 
 

3265.41 
 

3265.41 0.00% 

 

16 50 
 

1144.94 
 

1144.94 0.00% 

17 75 
 

2117.31 
 

2076.96 1.91% 

 

17 75 
 

1061.96 
 

1061.96 0.00% 

18 75 
 

3743.58 
 

3743.58 0.00% 

 

18 75 
 

1823.58 
 

1823.58 0.00% 

19 100 
 

10482.63 
 

10420.34 0.59% 

 

19 100 
 

1132.54 
 

1117.51 1.33% 

20 100 
 

4832.17 
 

4792.87 0.81% 

 

20 100 
 

1572.53 
 

1556.4 1.03% 

          Average IMP 0.41%             Average IMP 0.29% 

                      *IMP means improvement of TS_PVNS_AMP on PVNS_AM
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  Table 7.2: Results on the Taillard (1999) instances with fixed cost against Best Known Solutions (BKS) and other methods 

HFVRP with fixed cost 

Instance N 
  

BKS 
  HCG1   BATA2   ILS-RVND-SP3    TS_PVNS_AMP 

  
Sol Gap CPU 

 

Sol Gap CPU 
 

Sol Gap CPU 

 

Sol Gap CPU 

13 50 
 

1517.84 
 

1518.05 0.01% 473 

 

1519.96 0.14% 843 
 

1517.84 0.00% 19.29 

 

1517.84 0.00% 62 

14 50 
 

607.53 
 

615.64 1.33% 575 

 

611.39 0.64% 387 
 

607.53 0.00% 11.2 

 

607.53 0.00% 58 

15 50 
 

1015.29 
 

1016.86 0.15% 335 

 

1015.29 0.00% 368 
 

1015.29 0.00% 12.56 

 

1015.29 0.00% 61 

16 50 
 

1144.94 
 

1154.05 0.80% 350 

 

1145.52 0.05% 341 
 

1144.94 0.00% 12.29 

 

1144.94 0.00% 58 

17 75 
 

1061.96 
 

1071.79 0.93% 2245 

 

1071.01 0.85% 363 
 

1061.96 0.00% 29.92 

 

1061.96 0.00% 115 

18 75 
 

1823.58 
 

1870.16 2.55% 2876 

 

1846.35 1.25% 971 
 

1823.58 0.00% 38.34 

 

1823.58 0.00% 98 

19 100 
 

1117.51 
 

1117.51 0.00% 5833 

 

1123.83 0.57% 428 
 

1120.34 0.25% 67.72 

 

1117.51 0.00% 298 

20 100   1534.17   1559.77 1.67% 3402   1556.35 1.45% 1156   1534.17 0.00% 63.77   1556.4 1.45% 305 

                                        

Average Gaps from BKS     0.93%       0.62%       0.03%   
 

  0.18%   
1
 Taillard (1999) 

                2
 Tarantilis et al. (2009) 

                3 
Subramanian et al. (2012) 
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Table 7.3: Results on the Taillard (1999) instances with variable cost against Best Known Solutions (BKS) and other methods 

HFVRP with variable cost 

Instance N 
  

BKS 
  MAMP1   ILS_RVND2   ILS-RVND-SP3   TS_PVNS_AMP 

  
Sol Gap CPU 

 

Sol Gap CPU 
 

Sol Gap CPU 

 

Sol Gap CPU 

13 50 
 

3185.09 
 

3185.09 0.00% 110 

 

3185.09 0.00% 19.84 
 

3185.09 0.00% 1.99 

 

3185.09 0.00% 51 

14 50 
 

10107.53 
 

10107.53 0.00% 34 

 

10107.53 0.00% 11.28 
 

10107.53 0.00% 1.29 

 

10107.53 0.00% 42 

15 50 
 

3065.29 
 

3065.29 0.00% 46 

 

3065.29 0.00% 12.48 
 

3065.29 0.00% 1.77 

 

3065.29 0.00% 47 

16 50 
 

3265.41 
 

3265.41 0.00% 99 

 

3265.41 0.00% 12.22 
 

3265.41 0.00% 1.67 

 

3265.41 0.00% 43 

17 75 
 

2076.96 
 

2076.96 0.00% 148 

 

2076.96 0.00% 29.59 
 

2076.96 0.00% 5.95 

 

2076.96 0.00% 121 

18 75 
 

3743.58 
 

3743.58 0.00% 119 

 

3743.58 0.00% 36.38 
 

3743.58 0.00% 16.47 

 

3743.58 0.00% 109 

19 100 
 

10420.34 
 

10420.34 0.00% 287 

 

10420.34 0.00% 73.66 
 

10420.34 0.00% 15.8 

 

10420.34 0.00% 201 

20 100   4761.26   4832.17 1.49% 200   4788.49 0.57% 68.46   4761.26 0.00% 16.87   4792.87 0.66% 213 

                                        

Average Gaps from BKS     0.19%       0.07%       0.00%   
 

  0.08%   
1
 Li et al. (2007) 

                2
 Penna et al. (2011) 

                3 
Subramanian et al. (2012) 
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     Table 7.4: Results on the Large Size instances by Li (2007) for HFVRP with variable cost 

HFVRP Large Size Instances by Li (2007) 

Instance N 
  

BKS 
  HRTR1   TSA2   ILS-RVND-SP3   TS_PVNS_AMP 

  
Sol Gap CPU 

 

Sol Gap CPU 
 

Sol Gap CPU 

 

Sol Gap CPU 

H1 200 
 

12050.08 
 

12067.65 0.15% 688 

 

12050.08 0.00% 1395 
 

12050.08 0.00% 72.10 

 

12050.08 0.00% 1023 

H2 240 
 

10208.32 
 

10234.4 0.26% 995 

 

10226.17 0.17% 3650 
 

10329.15 1.18% 176.43 

 

10295.36 0.85% 2698 

H3 280 
 

16223.39 
 

16231.8 0.05% 1438 

 

16230.21 0.04% 2822 
 

16282.41 0.36% 259.61 

 

16305.21 0.50% 3152 

H4 320 
 

17458.65 
 

17576.1 0.67% 2256 

 

17458.65 0.00% 8734 
 

17743.68 1.63% 384.52 

 

17761.9 1.74% 5469 

H5 360 
 

23166.56 
 

- - - 

 

23220.72 0.23% 13,321 
 

23593.87 1.84% 621.17 

 

23612.23 1.92% 8554 

Average Gaps from BKS     0.28%       0.09%       1.00%       1.00%   
1
 Li et al. (2007) 

2
 Brandao (2011) 

3
 Subramanian et al. (2012) 
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7.1.2. Solving a Bin Packing Problem for the HFVRP with imposed fleet 

We have also tested the algorithm in different settings and from a different perspective. 

Here we will go back to an earlier argument made in Chapter 4, which details the initial 

solution generation. One of the methodological choices available to researchers is whether 

to use an initial solution method to generate a starting point for the consequent heuristic 

search, or to use a randomly generated solution. We noted in Chapter 4 that a good heuristic 

algorithm should be able to reach good heuristic solutions from any starting point. However, 

there may be a trade-off between a better starting point and the computation time needed 

to transform this starting point into a good final heuristic solution. Here we aim to test this 

and we report some interesting findings.  

We added an initial solution generation method for the purpose of computational 

experimentation, namely the Bin Packing Problem (BPP). The BPP aims to optimally pack 

(assign) a number of items with different weights where, 
jw  is the weight of item j , into a 

number of bins (1,..., )M m   with different capacities, where ic  is the capacity of bin i , 

(1,..., )i N n  , such that the total weight of items does not exceed the total bin capacity. 

The BPP can be used not only for CO problems which aim to optimize packing, but it can also 

be used for the VRP with imposed fleet. A BPP was optimally solved within Cplex, where the 

available vehicles are the ‘bins’, and the ‘items’ to be packed are the customer’s demands. 

By solving the BPP we guarantee a feasible vehicle mix, with minimum number of vehicles 

used. The mathematical formulation of the BPP is given below: 

Minimize  
1

n

i

i

z y


           (1)   

Subject to: 

1

n

j ij i i

j

w x c y


      for (1,..., );i M m       (2) 

1

1;
n

ij

i

x


      for (1,..., );i N n       (3) 

 0,1 ;ijx      1 if item j  is assigned to bin i , 0 otherwise; (4) 
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 0,1 ;iy         1 if bin i   is used, 0 otherwise     (5) 

The objective function (1) is to minimize the total number of bins used. Constraint (2) 

ensures that the total weight of the items do not exceed the capacity of the bins, where 

constraint (3) ensures that each item is packed in one bin only. Constraints (4) and (5) specify 

the binary nature of the variables. 

Given that the BPP is solved optimally, it means that it generates only the solution which 

minimizes the bins used. In order to preserve the population nature of the PVNS_AMP, we 

have generated different possible solutions by adding constraint (6) which specifies the 

number of bins used to be equal to k . 

1

;
m

i

i

y k


           for (1,..., );i M m      (6)          

 

For instance, after applying the BPP to minimize the total bins used, Cplex generates an 

optimal solution of 
bppk  = 15, which means that 15 bins are the minimum number of bins 

(vehicles) which cover the total demand. Then the BPP is performed again with different 

values of  k   for ( ,..., )bppk k m . All the generated solutions are imported in the PVNS_AMP 

and form the Initial Solution Pool. 

The interesting aspect here is not the quality of the solution from the BPP in terms of fleet, 

but in terms of customer sequence. The solution provided by the BPP is no better than 

random, when it comes to customer sequence, therefore it will be interesting to test the 

PVNS_AMP with a purely random starting point (in terms of customer sequence). This would 

further the discussion on the flexibility of the proposed methodology and how it can cope 

with transforming a solution of very bad quality into a good quality heuristic solution.  

Tables 7.5 and 7.6 below show the results on the benchmark instances from Taillard (1999) 

on HFVRP with variable and fixed cost. The first column shows the objective function of the 

problem generated from the BPP, which gives the minimum number of bins used 
bppk . The 

second and third column show the solution generated by PVNS_AMP and TS_PVNS_AMP 

respectively.  
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         Table 7.5: Results on the Taillard (1999) instances with variable cost 

Instance N 
  

BKS 
  

BPP 
  PVNS_AMP   TS_PVNS_AMP  

   
Sol Gap  

 
Sol Gap 

13 50 
 

1015.29 
 

2908.34 
 

1015.29 0.0% 
 

1015.29 0.0% 

14 50 
 

607.53 
 

1365.12 
 

607.53 0.0% 
 

607.53 0.0% 

15 50 
 

1015.29 
 

2569.74 
 

1015.29 0.0% 
 

1015.29 0.0% 

16 50 
 

1144.94 
 

2782.12 
 

1144.94 0.0% 
 

1144.94 0.0% 

17 75 
 

1061.96 
 

2854.65 
 

1089.3 2.6% 
 

1076.3 1.4% 

18 75 
 

1823.58 
 

3598.72 
 

1859.92 2.0% 
 

1823.58 0.0% 

19 100 
 

1117.51 
 

3018.44 
 

1146.81 2.6% 
 

1129.57 1.1% 

19 100   1559.77   3987.69   1602.35 2.7%   1587.63 1.8% 

Average Gap from BKS         1.2%     0.5% 

 

 

         Table 7.6: Results on the Taillard (1999) instances with fixed cost 

Instance N 
  

BKS 
  

BPP 
  PVNS_AMP   TS_PVNS_AMP  

   
Sol Gap  

 
Sol Gap 

13 50 
 

3185.09 
 

4388.12 
 

3185.09 0.0% 
 

3185.09 0.0% 

14 50 
 

10107.5 
 

20123.52 
 

10107.53 0.0% 
 

10107.53 0.0% 

15 50 
 

3065.29 
 

4236.47 
 

3065.29 0.0% 
 

3065.29 0.0% 

16 50 
 

3265.41 
 

4521.83 
 

3265.41 0.0% 
 

3265.41 0.0% 

17 75 
 

2076.96 
 

3784.52 
 

2112.31 1.7% 
 

2102.76 1.2% 

18 75 
 

3743.58 
 

5014.75 
 

3798.94 1.5% 
 

3763.58 0.5% 

19 100 
 

10420.3 
 

21125.82 
 

10487.25 0.6% 
 

10466.43 0.4% 

19 100   4761.26   62345.97   4813.74 1.1%   4794.19 0.7% 

Average Gap from BKS         0.6%     0.4% 

 
 
 
7.1.3. Discussion  
 
The results show a few key observations. Firstly, the quality of the solution after the BPP is 

very poor, which is in line with the expectation that the quality of the solution is no better 

than random. The PVNS_AMP and the TS_PVNS_AMP show a good capability and flexibility 



151 
 

to transform this random solution to a good quality heuristic solution, which in some cases 

matches the BKS in the literature (where in most cases the BKS have proven optimality).  

An interesting observation was made during the testing stage, which can aid our future 

research. The learning aspect of the PVNS_AMP was not as strong when starting from a 

completely random solution, especially on the larger sized problems. The reason is that the 

learning mechanism is activated at each iteration of the algorithm (as described in Section 

5.2.1). In order to reach good solutions from a very poor quality starting point, the algorithm 

requires more time to transform the initial solution into a better quality solution. Therefore, 

some of the Elite Strings extracted from the candidate solutions did not have a very high 

frequency. Since the learning process is a long term consideration in the PVNS_AMP, the 

learning happens at every iteration, therefore for the first iterations the extracted Elite 

Strings are not truly ‘elite’, since they belong to solutions structures which have not yet been 

transformed into good quality solutions. When testing the methodology on the solutions 

generated by BPP the best found solutions were reached in both stages of the algorithms, 

before the Elite Strings become fixed. In other cases, there were very few Elite Strings with a 

higher frequency than 75%, which is the threshold for a string to become a part of the Elite 

String List. Therefore, very small proportions of the solutions were fixed in the second stage 

of the algorithm. One important conclusion from here is that when using long term memory 

for learning purposes (specifically in our case, where AMP is used with VNS) is that the AMP 

learns better when applied on initial solutions generated by Initial Solution Methods, such as 

the Adapted Sweep or the Adapted Nearest Neighbour. It can be suggested that when using 

randomly generated solutions, it can be more feasible to make use of short term learning 

strategies, such as TS in order to focus on the intensification of the search. The reason why 

the learning strategy was not amended when testing the methodology on the HVRP 

instances is because we wanted to keep the modifications of the algorithm to a minimum, 

and learn from the computational experience for future research. 

7.2. The Large Scale Fleet Size and Mix VRP 

We believe that it is important to test any new methods introduced to the literature on 

common benchmarks, not only to show their efficiency, but also to further the research in a 

given area. The FSMVRP has a few literature benchmark instances, where the most famous 
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and most tested, including in this research, are the benchmarks by Golden et al. (1984). 

However, the largest instances for testing the VRP with unlimited heterogeneous fleet is 100 

customers, which now have been solved to optimality (Subramanian et al., 2012). Therefore, 

we introduce some new results on the instances by Li et al. (2007), but with unlimited fleet. 

The customer coordinates, demands and vehicle capacities and associated costs are not 

changed, only the imposed fleet is removed, and all vehicle types are assumed to be 

unlimited. The results for the testing are shown in Table 7.7. 

         Table 7.7: FSMVRP Large Instances 

FSMVRP on Li et.al (2007) dataset 

Instance N 
  TS_PVNS_AMP 

 

Sol 

H1 200 

 

10153.2 

H2 240 

 

  10004.3  

H3 280 

 

11428.4 

H4 320 

 

15486.9 

H5 360     21376.5  

 

Comparing these results to those reported in Table 7.4 it can be seen that there is significant 

difference between the overall cost of travel, which we could attribute to the difference of 

the fleet compositions. Future research on larger instances for the FSMVRP can provide new 

frontier for future methodological efforts. 

7.3. The School Bus Routing Problem 

The School Bus Routing Problem (SBRP) is very similar to the real life VRPs, because of the 

various attributes which a SBRP can have (described in more detail in section 2.2). Similarly 

to the RVRPs, the SBRP has no uniform definition of what attributes a problem should have 

in order to be classified as a SBRP. In this research we aim to show some form of 

comparability when it comes to real life VRPs, or those VRPs, which fall outside of the 

established VRP acronyms.  

In this section we test our method on some SBRP instances, introduced by Schittekat et al., 

(2013). The reason why we have chosen to compare our results to those introduced by the 

authors is because of the approach they adopt to algorithmic comparability. They have 

solved the SBRP optimally with Mixed Integer Programming (MIP) using Cplex and also by a 
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metaheuristic method, namely the Greedy Randomized Adaptive Search (GRASP) with 

Variable Neighbourhood Descend (VND). The reported solutions compare those by the MIP 

to those achieved by the GRASP+VND. In this research we approached the proposed RVRP in 

the same manner. We have solved as large instances of the RVRP (with and without 

overtime) as possible to optimality, which were then compared to the solutions achieved by 

the PVNS_AMP and TS_PVNS_AMP. We believe that when researching a RVRP one should 

aim to show algorithmic comparability either by comparing their methodology to existing 

problems, or in the case where there are no comparable problem instances, to optimal 

solutions or lower /upper bounds.  

The SBRP we test our methodology on consists of a depot, a set of bus stops and a set of 

customers. There is a maximum allowable walking distance for each student to a given bus 

stop. The SBRP proposed by Schittekat et al. (2013) is with homogeneous fleet. However, it 

can be approached as heterogeneous in the sense that students can walk to different bus 

stops, hence there is a choice of which stop the student can be assigned to and this will 

affect the load (student count) on the bus. If we refer to Table 7.8 we can see that there are 

different instances of the problem with different walking distance ranging from 5 to 40 

minutes. This provides the interesting aspect of the SBRP with overlapping radius of the bus 

stops (an illustrated example is shown in Section 2.2, Figure 2.5). The TS_PVNS_AMP was not 

amended in order to be applied to the SBRP. The Adapted Sweep was used to assign the 

students to corresponding bus stops. In the cases where the radius was overlapping, the 

students were assigned to different stops and each of the candidate solutions in the 

population has a different assignment of students to stops.  

The results are reported in table 7.8, which detail all 112 instances introduced by the 

authors. It can be seen from the results that we have achieved all the optimal solutions 

reported by the authors, including instance 42 and match all best found solutions by the 

GRASP+VND. 
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Table 7.8: Results on the SBRP instances by Shittekat et al. (2013) 

ID Stops Students Capacity 
Walking 
Distance 

  Cplex 
Solution 

  VND+GRASP   TS_PVNS_AMP 

  
Solution CPU 

 
Solution CPU 

1 5 25 25 5 
 

141.01 
 

141.01 0.16 
 

141.01 <1 

2 5 25 50 5 
 

161.62 
 

161.62 0.26 
 

161.62 <1 

3 5 25 25 10 
 

182.14 
 

182.14 0.39 
 

182.14 <1 

4 5 25 50 10 
 

195.8 
 

195.8 0.29 
 

195.8 <1 

5 5 25 25 20 
 

111.65 
 

111.65 0.49 
 

111.65 <1 

6 5 25 50 20 
 

103.18 
 

103.18 0.52 
 

103.18 <1 

7 5 25 25 40 
 

7.63 
 

7.63 0.29 
 

7.63 <1 

8 5 25 50 40 
 

25.64 
 

25.64 0.25 
 

25.64 <1 

9 5 50 25 5 
 

286.68 
 

286.68 0.39 
 

286.68 <1 

10 5 50 50 5 
 

197.2 
 

197.2 0.35 
 

197.2 <1 

11 5 50 25 10 
 

193.55 
 

193.55 0.43 
 

193.55 <1 

12 5 50 50 10 
 

215.86 
 

215.86 0.74 
 

215.86 <1 

13 5 50 25 20 
 

130.53 
 

130.53 1.68 
 

130.53 <1 

14 5 50 50 20 
 

96.26 
 

96.26 1.69 
 

96.26 <1 

15 5 50 25 40 
 

12.89 
 

12.89 1.38 
 

12.89 <1 

16 5 50 50 40 
 

30.24 
 

30.24 1.17 
 

30.24 <1 

17 5 100 25 5 
 

360.35 
 

360.35 1.15 
 

360.35 <1 

18 5 100 50 5 
 

304.23 
 

304.23 0.9 
 

304.23 <1 

19 5 100 25 10 
 

294.21 
 

294.21 2.08 
 

294.21 <1 

20 5 100 50 10 
 

229.41 
 

229.41 1.67 
 

229.41 <1 

21 5 100 25 20 
 

134.95 
 

134.95 2.89 
 

134.95 <1 

22 5 100 50 20 
 

144.41 
 

144.41 1.34 
 

144.41 <1 

23 5 100 25 40 
 

58.95 
 

58.95 4.24 
 

58.95 <1 

24 5 100 50 40 
 

39.44 
 

39.44 2.89 
 

39.44 <1 

25 10 50 25 5 
 

242.85 
 

242.85 1.55 
 

242.85 <1 

26 10 50 50 5 
 

282.12 
 

282.12 1.32 
 

282.12 <1 

27 10 50 25 10 
 

244.54 
 

244.54 2.45 
 

244.54 <1 

28 10 50 50 10 
 

288.33 
 

288.33 1.6 
 

288.33 <1 

29 10 50 25 20 
 

108.98 
 

108.98 2.86 
 

108.98 <1 

30 10 50 50 20 
 

157.48 
 

157.48 2.28 
 

157.48 <1 

31 10 50 25 40 
 

32.25 
 

32.25 2.84 
 

32.25 <1 

32 10 50 50 40 
 

36.66 
 

36.66 2.76 
 

36.66 <1 

33 10 100 25 5 
 

403.18 
 

403.18 0.9 
 

403.18 <1 

34 10 100 50 5 
 

296.53 
 

296.53 0.54 
 

296.53 <1 

35 10 100 25 10 
 

388.87 
 

388.87 3.82 
 

388.87 <1 

36 10 100 50 10 
 

294.8 
 

294.8 4.18 
 

294.8 <1 

37 10 100 25 20 
 

178.28 
 

178.28 5.58 
 

178.28 <1 

38 10 100 50 20 
 

175.96 
 

175.96 7.98 
 

175.96 <1 

39 10 100 25 40 
 

57.5 
 

57.5 7.38 
 

57.5 <1 

40 10 100 50 40 
 

31.89 
 

31.89 5.9 
 

31.89 <1 

41 10 200 25 5 
 

735.27 
 

735.27 8.49 
 

735.27 <1 

42 10 200 50 5 
 

506.06 
 

512.16 4.45 
 

506.06 <1 

43 10 200 25 10 
 

- 
 

513 27.17 
 

513 <1 
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44 10 200 50 10 
 

475.21 
 

475.21 12.09 
 

475.21 <1 

45 10 200 25 20 
 

- 
 

347.29 25.61 
 

347.29 <1 

46 10 200 50 20 
 

- 
 

217.46 20.58 
 

217.46 <1 

47 10 200 25 40 
 

- 
 

102.93 33.35 
 

102.93 <1 

48 10 200 50 40 
 

- 
 

55.05 13.05 
 

55.05 <1 

49 20 100 25 5 
 

- 
 

520.24 8.85 
 

520.24 4 

50 20 100 50 5 
 

- 
 

420.64 3.4 
 

420.64 4 

51 20 100 25 10 
 

- 
 

422.21 7.84 
 

422.21 4 

52 20 100 50 10 
 

- 
 

360.86 3.88 
 

360.86 <1 

53 20 100 25 20 
 

- 
 

245.17 10.32 
 

245.17 3 

54 20 100 50 20 
 

- 
 

185.06 5.6 
 

185.06 <1 

55 20 100 25 40 
 

- 
 

52.52 10.4 
 

52.52 3 

56 20 100 50 40 
 

- 
 

19.05 23.73 
 

19.05 2 

57 20 200 25 5 
 

- 
 

903.84 10.6 
 

903.84 6 

58 20 200 50 5 
 

- 
 

485.65 29.27 
 

485.65 4 

59 20 200 25 10 
 

- 
 

616.93 28.85 
 

616.93 5 

60 20 200 50 10 
 

- 
 

462.31 18.48 
 

462.31 3 

61 20 200 25 20 
 

- 
 

373.21 50.39 
 

373.21 8 

62 20 200 50 20 
 

- 
 

250.75 26.94 
 

250.75 6 

63 20 200 25 40 
 

- 
 

93.01 67.73 
 

93.01 9 

64 20 200 50 40 
 

- 
 

45.4 33.5 
 

45.4 4 

65 20 400 25 5 
 

- 
 

1323.35 234.66 
 

1323.35 13 

66 20 400 50 5 
 

- 
 

733.54 37.64 
 

733.54 8 

67 20 400 25 10 
 

- 
 

975.12 139.12 
 

975.12 10 

68 20 400 50 10 
 

- 
 

614.67 73.23 
 

614.67 7 

69 20 400 25 20 
 

- 
 

763.76 132.47 
 

763.76 9 

70 20 400 50 20 
 

- 
 

298.47 90.54 
 

298.47 8 

71 20 400 25 40 
 

- 
 

239.58 307.2 
 

239.58 11 

72 20 400 50 40 
 

- 
 

84.49 127.08 
 

84.49 7 

73 40 200 25 5 
 

- 
 

831.94 60.1 
 

831.94 21  

74 40 200 50 5 
 

- 
 

593.35 40 
 

593.35 15  

75 40 200 25 10 
 

- 
 

728.44 709.28 
 

728.44 31  

76 40 200 50 10 
 

- 
 

481.05 91.71 
 

481.05 19  

77 40 200 25 20 
 

- 
 

339.75 153.04 
 

339.75 28  

78 40 200 50 20 
 

- 
 

273.88 53.84 
 

273.88 17  

79 40 200 25 40 
 

- 
 

76.77 132.52 
 

76.77 36  

80 40 200 50 40 
 

- 
 

58.46 77.92 
 

58.46 23  

81 40 400 25 5 
 

- 
 

1407.05 353.09 
 

1407.05 31  

82 40 400 50 5 
 

- 
 

858.8 585.98 
 

858.8 25 

83 40 400 25 10 
 

- 
 

891.02 496.35 
 

891.02 33  

84 40 400 50 10 
 

- 
 

757.42 413.29 
 

757.42 29  

85 40 400 25 20 
 

- 
 

586.29 739.56 
 

586.29 37  

86 40 400 50 20 
 

- 
 

395.95 242.91 
 

395.95 23  

87 40 400 25 40 
 

- 
 

195.33 1186.56 
 

195.33 39  

88 40 400 50 40 
 

- 
 

70.77 549.07 
 

70.77    28 

89 40 800 25 5 
 

- 
 

2900.14 3529.15 
 

2900.14 41  



156 
 

90 40 800 50 5 
 

- 
 

1345.7 1257.96 
 

1345.7 27  

91 40 800 25 10 
 

- 
 

2200.57 3495.62 
 

2200.57 42  

92 40 800 50 10 
 

- 
 

1025.16 3600.03 
 

1025.16 36  

93 40 800 25 20 
 

- 
 

1404.16 3600.18 
 

1404.16 42  

94 40 800 50 20 
 

- 
 

616.58 3600.12 
 

616.58 29  

95 40 800 25 40 
 

- 
 

396.92 3600.81 
 

396.92 38  

96 40 800 50 40 
 

- 
 

200.94 3074.14 
 

200.94 31  

97 80 400 25 5 
 

- 
 

1546.23 958.12 
 

1546.23 89  

98 80 400 50 5 
 

- 
 

1048.56 471.89 
 

1048.56 73  

99 80 400 25 10 
 

- 
 

1216.74 1833.44 
 

1216.74 91  

100 80 400 50 10 
 

- 
 

760.61 576.26 
 

760.61 69  

101 80 400 25 20 
 

- 
 

565.49 1224.64 
 

565.49 83  

102 80 400 50 20 
 

- 
 

372.05 878.86 
 

372.05 76  

103 80 400 25 40 
 

- 
 

131.75 1116.28 
 

131.75 84  

104 80 400 50 40 
 

- 
 

95.84 3600.05 
 

95.84  81 

105 80 800 25 5 
 

- 
 

2527.96 3433.78 
 

2527.96 101  

106 80 800 50 5 
 

- 
 

1530.58 3600.03 
 

1530.58 95  

107 80 800 25 10 
 

- 
 

1809.9 3600.05 
 

1809.9  111 

108 80 800 50 10 
 

- 
 

1187.51 3600.04 
 

1187.51 94 

109 80 800 25 20 
 

- 
 

1110.44 3600.1 
 

1110.44 116  

110 80 800 50 20 
 

- 
 

623.03 3600.62 
 

623.03 98  

111 80 800 25 40 
 

- 
 

311.41 3600.21 
 

311.41 114  

112 80 800 50 40   -   126.06 3600.05   126.06 99  

 

7.3.1. Discussion 

It can be seen from Table 7.7 that the TS_PVNS_AMP has a much faster computational time 

than the GRASP+VND on all instances. The behaviour of both algorithms in terms of 

computational time is similar. It can be seen that for the instances which have the same 

number of students and stops the computational time can vary. This means that the 

impacting factors on the complexity of the problem are the walking distance and the 

capacity of the buses. Different combinations of these two parameters can lead to different 

nuances of the problem. However the computational time of the TS_PVNS_AMP is more 

stable, because it is mostly affected by the size of the VRP problem, rather than the size of 

the assignment problem. We believe that the strength of the TS_PVNS_AMP on the SBRP lies 

with the population of solutions, as well as the Adapted Sweep proved very efficient in the 

assignment of students to stops, where even the largest instances were assigned for less 

than 3 seconds in computational time.  
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There are some clear trade-offs between the features of the SBRP. It can be noted from 

Table 7.8 that the instances with smaller capacities and larger walking distances take more 

computational effort to be solved. This can be attributed to the fact that when the bus 

capacity is larger, fewer buses can satisfy the total demand (transport all students), hence 

the VRP part of the problem has less vehicles. The smaller the capacity, the more vehicles 

are needed and the fleet mix becomes larger. Moreover, the longer the walking distance, the 

greater the choice of which stop a given student can walk to, hence there are more 

possibilities to explore before finding a good heuristic solution.  

7.4. Summary  

The PVNS_AMP and the TS_PVNS_AMP have been extensively tested on the RVRP with and 

without overtime and other relevant VRP problems, which can be derived from the RVRP, 

such as the FSMVRP with fixed and variable cost. In this chapter we tested the methodology 

on other VRP problems such as the HFVRP with imposed fleet, with fixed and variable cost 

and the School Bus Routing Problem with overlapping and non-overlapping bus stop radius. 

Both methods show a good degree of flexibility and capability for generalization to other 

VRP problems different than the RVRP the method was originally designed to address.   
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Chapter 8 

 

Conclusion and Future Research 

The aim of this research is to introduce a real life Vehicle Routing Problem inspired by the 

Gas Delivery industry in the UK and to design a methodology to address this problem. After 

an extensive literature review was conducted a few key trends in the literature became 

apparent and we aimed to address all of them through our research objectives. 

 The first objective relates to the trend in the literature to bridge the gap between academia 

and real life practices. Therefore, we introduced a new real life VRP problem, which has not 

been researched in the past, with real life attributes such as light load requirement, demand-

dependent service time, allowable overtime coupled with unlimited fleet etc. We provide a 

mathematical formulation and detailed description of the RVRP introduced here and we 

found some very interesting observations and practical implications. 

The current operations of the company which motivated this research are that overtime 

becomes a necessity at the end of the drivers' routing schedule and the decision to go into 

overtime has to be taken then without considerations regarding routing efficiency. Our 

computational experience shows that accommodating for allowable overtime in advance 

and incorporating it in the routing schedule can result in up to 8% savings for one planning 

period. Moreover, informing the drivers in advance of any possible overtime can contribute 

to minimizing the resistance to accept overtime when it is offered at the end of their shifts. 

Accommodating for overtime into the routing schedule in advance results in 12.5% better 

utilization of the vehicle capacity and 12% better utilization of the working time. Another 

important practical implication is that by better utilizing capacity and working time, fewer 

vehicles can be used to satisfy customer demand.  

Another interesting feature of the RVRP is the allowable overtime coupled with unlimited 

fleet. There is a clear trade-off between allowing overtime and using extra vehicles to satisfy 

the total customer demand. We found that when overtime is not used the fleet mix is larger, 
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whereas when overtime is considered the fleet mix is smaller where there are no short 

routes. This is an important consideration, because the drivers have to work up to 8 hours 

and 30 minutes and any unused time becomes an inefficiency for the company, both 

operationally and financially. The other main real life aspect is the efficient incorporation of 

the light load customers. We found that these customers can be incorporated into the 

routing schedule efficiently, at a very small extra cost compared to a base line routing 

schedule with no light load customers or compared to the current operations of the 

company which assign the light load customers manually at the end of the routing schedule, 

regardless of their location. 

The second objective of this research relates to the design of powerful methodologies to 

address Vehicle Routing Problems. Firstly, we design two new initial solution methods, which 

are an adaptation of the Sweep and the Nearest Neighbour, namely the Adapted Sweep (AS) 

and the Adapted Nearest Neighbour (ANN). Both methods show good results on standard 

benchmark instances and show a better performance than one of the most widely used 

methods, namely the Savings heuristics. Incorporating the initial solution methods we 

designed into the main metaheuristic methods provided the search with a good starting 

point for the consequent heuristic search, whilst providing a degree of diversification to the 

method, as well as aiding its learning aspect. 

 We design 2 new hybrid metaheuristic methods which are extensively tested on the RVRP 

and other relevant VRP problems. The Population Variable Neighbourhood Search with 

Adaptive Memory Procedure was designed in order to test a new approach to learning 

mechanisms. We aim to hybridize Adaptive Memory with a method which does not use 

memory structures or learning in its original form, namely the VNS. To the best of our 

knowledge this hybridization has not been done in the past, and we have learned a lot from 

the computational experience. When testing the PVNS_AMP on the RVRP and literature 

benchmark instances, we found that it has good performance on the RVRP and reaches most 

Best Known Solutions in the literature with less than 1% deviation on average. We found 

that using AMP with a population VNS has a good potential for extracting promising parts of 

the solution, i.e. the Elite Strings and using those parts in order to build a better quality 

solution. The population aspect of the VNS proved to be a key for diversification of the 

solution search, as well as for the good extraction of the Elite Strings. When we compared 
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the extracted Elite Strings to the generated optimal solutions, it was found that they are 

indeed a part of the optimal solutions, and are encoded into the metaheuristic solution 

accordingly.  

One of the areas of improvement of the PVNS_AMP that we found during the computational 

experimentation was the intensification of the search process and the possibility to 

incorporate short term memory strategies in order to improve the algorithm performance. 

Therefore, in accordance with our findings and the review from the literature we 

incorporated aspects from Tabu Search into the PVNS_AMP, which resulted in a new hybrid 

metaheuristic the TS_PVNS_AMP. When we tested the new TS_PVNS_AMP against the 

PVNS_AMP we found significant improvements of the total cost for the RVRP. The 

TS_PVNS_AMP especially proved very powerful for the RVRP with overtime, where the 

average improvement from the PVNS_AMP is 0.75% with a much more balanced fleet 

composition of the routing schedule. Moreover, the TS_PVNS_AMP proved more powerful 

on the literature benchmark instances with unlimited fleet, where most of the Best Known 

Solutions were reached, with less than half percent average deviation from the best, and at 

no significant increase in computational time.   

Another important aspect that we addressed is the comparability of any heuristic method 

when it comes to real life VRPs. We proposed that when one aims to address an RVRP it is 

necessary to approach the problem in a standardise-first customize-second fashion. This 

provides the opportunity to compare the results from the RVRP on standard literature 

benchmarks in order to have an indication of the performance of the method. Moreover, we 

proposed a Mixed Integer formulation for the RVRP, which was used to solve the RVRP to 

optimality where possible and these results were compared to those from the PVNS_AMP 

and TS_PVNS_AMP.  

The third objective relates to the trend in the literature to design methods which have a 

degree of flexibility and can be generalized to other VRP problems with minor modifications. 

The hybrid metaheuristic methods we designed aim to solve a real life VRP, though we 

tested the methodology on other relevant VRP problems. The methodology showed some 

good results on the heterogeneous fleet VRP with imposed fleet, on literature benchmark 

instances ranging from 50 to 360 customers, with less than 1% deviation on average from 
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the Best Known Solutions. We also applied the methodology on an interesting problem, 

namely the School Bus Routing Problem and our method found all optimal solutions and 

Best Known Solutions in the literature in a short computational time. It is important to note 

that on some instances the methods were tested not only in their original form, but also 

starting from a random solution generated by solving the Bin Packing Problem, and the 

TS_PVNS_AMP showed a good potential to find good heuristic solutions, not only from a 

good heuristic starting point (generated by the Adapted Sweep and Adapted Nearest 

Neighbour), but also from a random point. The PVNS_AMP proved to have good 

diversification and learning mechanisms, whereas the TS_PVNS_AMP added a greater 

intensification to the search, which resulted in a well-balanced metaheuristic hybrid which 

makes use of long term and short term memory structures. We believe that these findings 

and all lessons learned from the computational experience can be very useful for further 

research, especially for incorporating learning and memory principles in any existing method 

in order to enhance performance in an intelligent and guided manner.  

The contribution of this research is twofold  

(i) In terms of novelty in the body of literature on vehicle routing variants, the RVRP 

introduced in this research has not been addressed before. It has elements, which have not 

been researched, such as demand-dependent service times, requirement for light load and 

the simultaneous consideration of maximum allowable overtime and unlimited 

heterogeneous fleet. This research fits into the literature trend of minimizing the gap 

between optimization and real life operations, by introducing a problem, which is highly 

relevant in practice. Moreover, this research offers real practical implications on how to 

improve routing practices given the relevant routing elements. There is still a gap in the 

literature of RVRPs which poses an opportunity to find unexplored corners and make a fine 

addition to the existing literature. 

(ii) In terms of methodological contribution, this research introduces two new hybrid 

metaheuristic methods to address the RVRP, which have a degree of generalizability and can 

be applied to other Vehicle Routing Problems, namely the FSMVRP, the HFVRP and the SBRP. 

Moreover, mathematical formulation of the problem is presented, which is used for 

methodological justification and a platform for comparability, since the RVRP is based on 
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adapted literature benchmark instances. The issue of comparability is not present in the 

RVRP literature. However, we believe that it is a vital part of the methodological 

contribution. A generalizable and efficient algorithm can contribute to the body of 

knowledge in the management science arena, because Combinatorial Optimization problems 

like the VRP are difficult to solve to optimality. 

Future research 

This research was a great source of learning and motivation for future research. Experiencing 

the design of metaheuristic methods can shape one’s approach to Combinatorial 

Optimization problems, in this case for the Vehicle Routing Problem. From this research we 

learned that having a balanced design in hybridizing different methods can be very beneficial 

and can result in powerful heuristic methods. Here we incorporate learning principles in 

methods which do not make use of learning and memory in its original form and the 

computational experience showed that there is a potential in further research of such 

intuitive and intelligent methods, which can learn from past experience. Short term and long 

term learning aspects of the PVNS_AMP and TS_PVNS_AMP can be further tested, such as 

developing a learning tabu tenure, relative to each local search operator and other novel 

ways of extracting good Elite Strings from a given solution structure. 

 

Another aspect which proved interesting and challenging, which also has a research gap in 

the literature, is introducing a School Bus Routing Problem with heterogeneous fleet and 

overlapping radius of the bus stops. This problem has a lot of potential to be developed 

further, as well as introducing some standard literature benchmark instances for it. Having a 

heterogeneous fleet and overlapping radius is a complex problem and can have real life 

richness and relevance not only in academia, but in practice as well. 

 

Our experience with the Heterogeneous Fleet problem with imposed fleet (HFVRP) was also 

very interesting and challenging. A Bin Packing Problem (BPP) was used to address the 

HFVRP within the life of this research. However, it would be interesting to further this 

research in a more sophisticated way, by ensuring that the solution generated from the BPP 

is not random, but relevant for the vehicle routing problem. One aspect which could be 

investigated further is adding precedence constraints to the BPP where the customers are 
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not added to the routes at random, but according to some criteria, such as a giant tour 

generated by another heuristic method such as the Sweep. Moreover, we aspire to hybridize 

the BPP and any metaheuristic method, in a Matheuristic fashion, where the results from the 

optimal solutions and the metaheuristic can be linked together, in order to create a more 

powerful hybrid. 
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