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Abstract

Let K be an algebraically closed field and An ∼= Kn affine n-space. It is known that a finite group

G can only act freely on An if K has characteristic p > 0 and G is a p-group. In that case the group

action is “non-linear” and the ring of regular functions K[An] must be a trace-surjective K − G-

algebra.

Now let k be an arbitrary field of characteristic p > 0 and let G be a finite p-group. In this paper we

study the category Ts of all finitely generated trace-surjective k −G algebras. It has been shown in

[13] that the objects in Ts are precisely those finitely generated k−G algebras A such that AG ≤ A

is a Galois-extension in the sense of [7], with faithful action of G on A. Although Ts is not an

abelian category it has “s-projective objects”, which are analogues of projective modules, and it has

(s-projective) categorical generators, which we will describe explicitly. We will show that s-projective

objects and their rings of invariants are retracts of polynomial rings and therefore regular UFDs. The

category Ts also has “weakly initial objects”, which are closely related to the essential dimension

of G over k. Our results yield a geometric structure theorem for free actions of finite p-groups on

affine k-varieties. There are also close connections to open questions on retracts of polynomial rings,

to embedding problems in standard modular Galois-theory of p-groups and, potentially, to a new

constructive approach to homogeneous invariant theory.
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0. Introduction

Let k be a field, G a finite group and X a k-variety. The following beautiful argument appears in Serre’s
paper “How to use finite fields for problems concerning infinite fields” ([27]). Unable to express it any better
we quote almost verbatim:
“ Suppose that G acts freely on X. There is a Cartan-Leray spectral sequence (... of étale cohomology...)
Hi(G, Hj(X,C)) ⇒ Hi+j(G, Hj(X/G, C)), where C is any finite abelian group. If X is the affine n-space
An and |C| is prime to char(k), then Hj(X,C) = 0 for j > 0 and H0(X,C) = C. In that case the spectral
sequence degenerates and gives Hi(G, C) = Hi(X/G, C) for every i, i.e. X/G has the same cohomology as
the classifying space of G. Take now C = Z/`Z and suppose that ` divides |G|. It is well known that Hj(G, C)
is non-zero for infinitely many j’s, and that Hj(X/G, C) is zero for j > 2 · dimX: contradiction!”

This establishes the following

Theorem 0·1. The only finite groups which can act freely on An are the p-groups with p = char(k).

Serre then poses the Exercise: “Let G be a finite p-group with p = char(k). Show that there exists a free
action on An, provided that n is large enough.”
Parts of the current article can be viewed as solving a “generic version” of this exercise. Using results from
[13] we obtain the following:

Theorem 0·2. Let k = k be an algebraically closed field of characteristic p > 0 and G be a finite group of
order pn. Then the group G acts freely on the affine space A ∼= k|G|−1 in such a way that the following hold:

(i) The quotient space A/G is isomorphic to affine space k|G|−1.
(ii) There is a (non-linear) decomposition A = B×C such that G acts freely on B ∼= kn and trivially on

C ∼= k|G|−n−1.
(iii) The quotient space B/G is isomorphic to affine space kn.

Moreover we will show that the varieties A and B are cogenerators in the category of affine varieties
with free G-action. Combining this with a structure theorem in [13] on modular Galois-extensions of finite
p-groups, we obtain the following geometric structure theorem:

Theorem 0·3. Let k = k be an algebraically closed field of characteristic p > 0 and G be a finite group of
order pn and let X be an arbitrary affine variety.

(i) There is an affine variety Y with free G-action such that Y/G ∼= X.
(ii) Every such Y is a fibre product of the form Y ∼= X ×B/G B.

(iii) For every such Y there is a G-equivariant embedding Y ↪→ BN for some N ∈ N (which is the
“cogenerator property” of B).

It turns out that free actions of p-groups on affine varieties in characteristic p > 0 are dualizations of group
actions on affine k-algebras which are Galois ring extensions over the ring of invariants, in the sense of
Auslander-Goldmann [1] or Chase-Harrison-Rosenberg [7]. In [13] we showed that for a p-group G acting
faithfully on a k-algebra A in characteristic p, the extension A ≥ AG is Galois if and only if the algebra
A is trace-surjective in the sense of Definition 0·4. We then went on to develop a structure theory for such
algebras and their rings of invariants. Using the results obtained there, we will prove Theorems 0·2 and 0·3 by

2010 Mathematics Subject Classification: 13A50,14L24,13B05,20C20,12F12.
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studying the category of modular Galois extensions of finitely generated k-algebras, where the Galois group
is a fixed finite p-group.

Let G be an arbitrary finite group, k a field and A a commutative k-algebra on which G acts by k-algebra
automorphisms; then we call A a k − G algebra. Let AG := {a ∈ A | ag = a ∀g ∈ G} be the ring of
invariants and let tr := trG : A→ AG, a 7→

∑
g∈G ag be the transfer map or trace map. This is obviously a

homomorphism of AG-modules, but not of k-algebras. As a consequence the image tr(A) EAG is an ideal in
AG.

Definition 0·4. A k−G algebra A such that tr(A) = AG will be called a trace-surjective k−G-algebra.
With Ts := TsG we denote the category of all finitely generated trace-surjective k−G-algebras, with morphisms
being G-equivariant homomorphisms of k-algebras. For A,B ∈ Ts the set of morphisms φ : A → B will be
denoted by Ts(A,B).

We are grateful to an anonymous referee for pointing out to us that there is in fact a deeper analogy between
free G actions on affine varieties and faithful G-actions up to birational isomorphism (or, equivalently, finitely
generated field extensions K/k with G-action). The latter can also be organized into a category, RG which
has been studied by many authors (e.g. see [24] (subsection 1.3) or [25] (subsection 2.4,2.6).
While the duality between free actions of finite groups on varieties and Galois-extensions of corresponding
coordinate rings over their ring of invariants is true for any finite group, the identification with trace-surjective
algebras is only valid for finite p-groups. Indeed, if 1 < |G| is coprime to p = char(k), then every linear G-
action is trace-surjective, but not free. This special role of p-groups with regard to free group actions was a
major motivation for the investigations in this paper. However, some of our results and aspects of the theory
developed for p-groups have natural generalizations to arbitrary finite groups, where they lead to the notion
of “p-local Galois extensions” or “p-locally free group actions”. For initial steps in this direction see [15].

The category Ts contains weakly initial objects W ∈ Ts satisfying Ts(W, A) 6= ∅ for any A ∈ Ts. If G is
a finite p-group, then every algebra A ∈ Ts turns out to be an extension by invariants of a quotient of W of
the form AG ⊗WG W. Although the category RG does not have weakly initial objects, it contains analogues
that some authors call “versal” or “strongly versal”, referring to a G-variety X with faithful G-action, which
admits a G-equivariant dominant rational map V → X for some linear action of G on a vector space V . For
the notion of “versality” see [26] section 5. Strong versality is defined and studied in [11], where the term
“very versal” is used in place of “strongly versal”.

The category Ts is not abelian. However, it has finite coproducts given by tensor products of k-algebras.
With the help of these one can define analogues of projective modules, which we call “s-projective objects”,
because projectivity is defined using surjective maps rather than epimorphisms. There are also analogues
of generators in module categories and we will give explicit descriptions of s-projective generators. These
arise in (homogeneous) modular invariant theory as dehomogenized symmetric algebras of suitable linear
representations, such as the regular representation. Let S ↪→ T be an extension of k-algebras, then S is
a retract of T if T = S ⊕ I with ideal I E T . We will show that s-projective objects and their rings of
invariants are retracts of polynomial rings and therefore regular Unique Factorization Domains (UFDs) (see
[10] Proposition 1.8).

From now on let k be an arbitrary field of characteristic p > 0 and G a finite p-group, whereas G will be
used to denote a general finite group. We will adopt the following definitions and notations, often used in
affine algebraic geometry:

Definition 0·5. Let R be a k-algebra and n ∈ N.

(i) With R[n] we denote the polynomial ring R[T1, · · · , Tn] over R.

(ii) Let P = k[T1, · · · , Tm] ∼= k[m] and G ≤ Autk(P). Then P is called triangular (with respect to the
chosen generators T1, · · · , Tm), if for every g ∈ G and i = 1, · · · ,m there is fg,i(T1, · · · , Ti−1) ∈
k[T1, · · · , Ti−1] such that (Ti)g = Ti + fg,i(T1, · · · , Ti−1).

(iii) Let m ∈ N, then a k-algebra R is called (m-) stably polynomial if T := R⊗k k[m] ∼= R[m] ∼= k[N ] for
some N ∈ N. Assume moreover that R is a k −G algebra and T extends the G-action on R trivially,
i.e. T ∼= R⊗k F with F = FG ∼= k[m]. If T is triangular, then we call R (m-) stably triangular.

In order to describe the results of this paper in more detail, we need to refer to some definitions and results
obtained in [13]:

Let G be a finite group of order pn with regular representation Vreg ∼= kG and let Dk be the dehomogenization
of the symmetric algebra Sym(V ∗reg), as defined in [13] (see also Section 1 shortly after Theorem 1·8). It is
known that a graded algebra and its dehomogenizations share many interesting properties (see e.g. [4] pg.
38 and the exercises 1.5.26, 2.2.34, 2.2.35 loc. cit.) Clearly the algebra Dk ∈ Ts is a polynomial ring of
Krull-dimension |G| − 1 with triangular G-action.
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The following Theorem was one of the main results of [13]:

Theorem 0·6 ([13] Theorems 1.1-1.3). There exists a trace-surjective triangular G-subalgebra U := UG ≤
Dk, such that U ∼= k[n] is a retract of Dk, i.e. Dk = U ⊕ I with a G-stable ideal I EDk. Moreover: UG ∼= k[n]

and DG
k
∼= k[|G|−1].

For any k − G-algebra A ∈ Ts and ` ∈ N we define A⊗` :=
∐`
i=1 A := A ⊗k · · · ⊗k A with ` copies of A

involved. The following are main results of the present paper:

Theorem 0·7. Let Γ ∼= k[d] ∈ Ts with triangular G-action, e.g. Γ ∈ {Dk, U}. Then
(i) Γ is an s-projective generator in the category Ts.

(ii) For any A ∈ Ts there is a G equivariant isomorphism A ⊗k Γ ∼= A ⊗k k[T1, · · · , Td] ∼= A[d], which is
the identity on A, with

k[T1, · · · , Td] ≤ (A⊗k Γ)G ∼= (AG)[d].

(iii) Γ⊗` ∼= Γ⊗k k[s1, · · · , sN ] with k[N ] ∼= k[s1, · · · , sN ] ≤ (Γ⊗`)G.
(iv) For every ` the ring of invariants (Γ⊗`)G is stably polynomial.
(v) If Γ ∈ {Dk, U}, then (Γ⊗`)G is a polynomial ring.

Proof. (1),(2) and (3): It follows from Proposition 2·9 that Γ is “erasable” (see Definition 2·8), which by
Theorem 2·11 implies that Γ is an s-projective generator in Ts.
(4): This follows from Theorem 2·13.
(5): This follows from Corollary 2·14.

The above results on rings in Ts having polynomial, stably polynomial or retract-polynomial rings of invariants
have analogues in the category RG: they appear in the form of invariant fields being rational, stably rational
and retract rational, respectively. In the case where X ∈ RG is strongly versal, retract rationality of k(X)G

is equivalent to the existence of a “generic polynomial” for G (for details, see [17], Section 5.2. e.g. Theorem
5.2.3. pg.99).]

Theorem 0·8. Let P ∈ Ts be s-projective1, then both, P and PG are retracts of polynomial rings over k.

Proof. See Theorem 2·16.

It follows from [10] Proposition 1.8 that retracts of a unique factorization domain (UFD) are UFDs as well
and from [10] Corollary 1.11 that retracts of regular rings are regular. Hence

Corollary 0·9. Let P ∈ Ts be s-projective, then both, P and PG are regular UFDs.

Setting A := max− spec(Dk) and B := max− spec(U) with A/G ∼= max− spec(DG
k ) and B/G ∼=

max− spec(UG) it is clear now how to obtain Theorems 0·2 and 0·3 (3) from Theorems 0·6 and 0·7. The
statements in 0·3 (1) and (2) follow from

Theorem 0·10 ([13] Theorem 1.2). Every algebra A ∈ Ts with given ring of invariants AG = R is of the
form

A ∼= R[Y1, · · · , Yn]/(σ1(Y )− r1, · · · , σn(Y )− rn)

with suitable r1, · · · , rn ∈ R, and G-action derived from the action on U .

Let V be a finite dimensional k-vector space, G ≤ GL(V ) a finite group and S(V ∗) := Sym(V ∗) the
symmetric algebra over the dual space V ∗ with induced linear G-action. One of the main objectives of
(homogeneous) invariant theory is the study of the structure of the ring of invariants S(V ∗)G. By a result
of Serre ([3]) these rings are regular (and then polynomial, as they are graded rings) only if the group G
is generated by pseudo-reflections. If char(k) does not divide |G|, the converse also holds by the well-known
theorem of Chevalley-Shephard-Todd and Serre(see e.g. [9] or [28]). If G = G is a p-group in characteristic
p > 0, all pseudo-reflections are transvections of order p, so if G is not generated by elements of order p the
ring S(V ∗)G can never be regular. In this case S(V ∗)G can have a very complicated structure and, in most
cases, will not even be Cohen-Macaulay. If A ∈ Ts, then obviously S(V ∗) ⊗k A ∈ Ts. Using the universal

property of polynomial rings one can show that for every k-G-algebra S ∼= k[d] with triangular G-action, the
k-G algebra S ⊗k P is s-projective in Ts, whenever P is. In particular S ⊗k P and (S ⊗k P)G are retracts of
polynomial rings and therefore regular UFDs.

1 see Definition 2·1
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In [10], the question was asked whether retracts of polynomial rings are again polynomial rings. Despite some
positive answers in low-dimensional special cases (see [29]) this question was unanswered for several decades.
Recently S. Gupta ([16]) found a counterexample to the “cancellation problem” in characteristic p > 0, which
also implies a negative answer in general to Costa’s question. Gupta’s example yields a non-polynomial retract
R of a polynomial ring, which however is still stably polynomial. Using Theorem 0·10 one can easily construct
A ∈ Ts with AG ∼= R, such that A is s-projective. So there are s-projective objects in Ts with non-polynomial
invariant rings. If all retracts of polynomial rings were stably polynomial, then this would be true for arbitrary
s-projective objects in Ts and their invariant rings. This is our main reason for the following

Question 0·1. Are P and PG stably polynomial rings for every s-projective P ∈ Ts?

For P = Dk or U this is already contained in Theorem 0·6 and for P = S ⊗ Dk or P = S ⊗ U with
triangular k−G algebra S ∼= k[d] it follows from 2·10. From this one can derive a result that includes “graded
modular rings of invariants”, for which we don’t know any other reference in the literature:

Theorem 0·11. Let S ∼= k[d] be a polynomial ring with triangular G-action (e.g. S = S(V ∗)). Then the ring
of invariants SG is the intersection of two polynomial subrings inside an s-projective polynomial k−G-algebra
k[N ] ∈ Ts of Krull-dimension N = d + n with n := log p |G|. If moreover S ∈ Ts, then SG ⊗k k[n] ∼= k[n+d],

i.e. SG is n-stably polynomial.

Proof. See Theorem 2·17. The proof will show that the intersection SG can be obtained by a procedure of
“elimination of variables”.

A special role in the category Ts is played by “minimal universal” or “basic” algebras, which are investigated
in Sections 3 and 4. They turn out to be integral domains of the same Krull-dimension dk(G), an invariant
depending only on the group G and the field k. The analogues in the category RG are the strongly versal
varieties of minimal dimension. This minimal dimension is the essential dimension ek(G) as defined by Buhler
and Reichstein ([5]) and we will see that dk(G) provides an upper bound for ek(G).
The following is one of the main results of these sections: (See Section 4 and Theorem 4·4 for details and
precise definitions).

Theorem 0·12. Let char(k) = p > 0 and G be a group of order pn. The minimal universal objects U ∈ Ts
are integral domains of Krull dimension dk(G), satisfying ek(G) ≤ dk(G) ≤ n. Moreover, “essential G-fields”
of transcendence degree ek(G) appear among the “embedded residue class fields” k(℘) ↪→ Quot(U) of U with
respect to suitable G-stable prime ideals ℘E U.

The rest of the paper is organized as follows: In Section one we describe the connection between free
actions of a finite group on affine varieties and Galois extensions of rings. In particular for normal varieties
we formulate a freeness-criterion in terms of the Dedekind different (Corollary 1·6). We will also introduce
some basic notation and describe results from previous work, which will be needed in the sequel. From there
on, k will always be a field of characteristic p > 0 and G will be a finite p-group. In Section two we introduce
and analyze the universal, projective and generating objects in Ts. We also introduce the notion of erasable
algebras, which will lead to proofs of the main results, Theorems 0·7, 0·8 and 0·11. In Section three we turn our
attention to basic algebras, which we define as minimal universal algebras in Ts. We classify all basic algebras
which are also normal rings, in the case where G is elementary-abelian of rank n and dim Fp(k) ≥ n. They
all turn out to be univariate polynomial algebras with explicitly described non-linear G-action. Moreover, in
this case the basic normal algebras in Ts coincide with the minimal normal generators and minimal normal
s-projective objects (see Theorem 3·15). The connection between basic algebras and the essential dimension
of G over k and the proof of Theorem 0·12 is the topic of the short Section four. Most of the results here
are known, at least for fields of characteristic zero or algebraically closed fields. Our contribution consists in
some new ways of proving them as well as proposing new models for essential G-fields via basic objects in Ts
(see Theorem 0·12).
The brief final Section five contains an open question and a conjecture.

1. Free affine actions and Galois-extensions

Free group actions on affine varieties are closely related to Galois ring extensions, as we will now demon-
strate. First let G be an arbitrary finite group and A a finitely generated commutative k − G algebra. We
want to keep flexibility between left and right group actions; therefore in whatever way the “natural side” of
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the action is chosen, we will use the rule gf := f · g−1 to switch freely between left and right actions when
convenient. 2

Set B := AG and define ∆ := G ? A = A ? G := ⊕g∈GdgA to be the crossed product of G and A with
dgdh = dgh and dga = g(a) · dg = (a)g−1 · dg for g ∈ G and a ∈ A. Let BA denote A as left B-module, then
there is a homomorphism of rings

ρ : ∆→ End(BA), adg 7→ ρ(adg) = (a′ 7→ a · g(a′) = a · (a′)g−1).

One calls B ≤ A a Galois-extension with group G if BA is finitely generated projective and ρ is an isomorphism
of rings. This definition goes back to Auslander and Goldmann [1] (Appendix, pg.396) and generalizes the
classical notion of Galois field extensions. It also applies to non-commutative k − G algebras, but if A is
commutative, this definition of ‘Galois-extension’ coincides with the one given by Chase-Harrison-Rosenberg
in [7], where the extension of commutative rings AG ≤ A is called a Galois-extension if there are elements
x1, · · · , xn, y1, · · · , yn in A such that

n∑
i=1

xi(yi)g = δ1,g :=
{

1 if g=1
0 otherwise.

(1·1)

In [7] the following has been shown:

Theorem 1·1. (Chase-Harrison-Rosenberg)[7] AG ≤ A is a Galois extension if and only if for every 1 6=
σ ∈ G and maximal ideal p of A there is s := s(p, σ) ∈ A with s− (s)σ 6∈ p.

Now, if X is an affine variety over the algebraically closed field k, with G ≤ Aut(X) and A := k[X] (the ring
of regular functions), then for every maximal ideal m E A, A/m ∼= k. Hence if (m)g = m, then a− (a)g ∈ m
for all a ∈ A. Therefore we conclude

Theorem 1·2. The finite group G acts freely on X if and only if k[X]G ≤ k[X] is a Galois-extension.

If B ≤ A is a Galois-extension, then it follows from equation (1·1), that tr(A) = AG = B (see [7], Lemma
1.6), so A is a trace-surjective k−G algebra. It also follows from Theorem 1·1, that for a p-group G and k of
characteristic p, the algebra A is trace-surjective if and only if A ≥ AG = B is a Galois-extension (see [13]
Corollary 4.4.). Using Theorem 0·1 we obtain

Corollary 1·3. Let k be algebraically closed. Then the finite group G acts freely on X ∼= An if and only
if G is a p-group with p = char(k) and k[X] is a trace-surjective k −G algebra.

Since for p-groups in characteristic p the trace-surjective algebras coincide with Galois-extensions over the
invariant ring, we obtain from Theorem 1·2:

Corollary 1·4. If k is an algebraically closed field of characteristic p > 0, X an affine k-variety and G
a finite p-group, then G acts freely on X if and only if A = k[X] ∈ Ts.

Any finite p-group G can be realized as a subgroup of some SLn(k). The left multiplication action of
G on Matn(k) induces a homogeneous right regular action on the coordinate ring k[M ] := k[Matn(k)] ∼=
k[Xij | 1 ≤ i, j ≤ n] with det := det(Xij) ∈ k[M ]G. It can be shown that det ∈

√
tr(k[M ]), in other words

tr(f) = (det)N for some N ∈ N and some f ∈ k[M ]. It follows that the coordinate ring k[GLn] = k[M ][1/det]
is a trace-surjective G-algebra. Since epimorphic images of trace-surjective algebras are again trace-surjective
(see Theorem 1·8 (iii)), a similar conclusion holds if GLn is replaced by an arbitrary closed linear algebraic
subgroup H containing G (see [13] Corollary 4.5, where this is proved in a different way). In particular, if
H = U is a connected unipotent subgroup with U ∼= An, then we obtain the free G-action asked for in Serre’s
exercise.

In the case of a normal affine variety, associated to an affine k−G algebra which is also a normal noetherian
domain, there is a nice and useful characterization of Galois-extensions in terms of the Dedekind-different.3

Set B := AG and A∨ := HomB(BA,B). Then A∨ is an A-module via a · λ(a′) = λ(a′a) for a, a′ ∈ A and
λ ∈ A∨. Moreover A∨ is an A-submodule of End(BA) and for G+ :=

∑
g∈G dg ∈ ∆ we have ρ(G+ · a)(a′) =

2 If A is an algebra of k-valued functions on a G-set X, (e.g. A = k[X], the algebra of regular functions on
a variety X with G ≤ Aut(X)) there is a natural right action of G on A given by composition f ◦ g for g ∈ G.
In other situations we might have a given linear left G-action defined on a k-vector space Ω :=

∑m
i=1 kωi.

This extends to a natural left action on the symmetric algebra Symk(Ω) = k[ω1, · · · , ωm] by g(ωe11 · · ·ωemm ) :=
(gω1)e1 · · · (gωm)em .

3 which in the circumstances considered coincides with E Noether’s “homological different”.
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tr(aa′) = (a · tr)(a′), so ρ(G+ · A) = A · tr ⊆ A∨. If in addition A is a normal noetherian domain, then we
define D−1

A,B := {x ∈ Quot(A) | trG(xA) ⊆ B}, the inverse of the Dedekind-different. In this case the field

extension L := Quot(A) ≥ K := Quot(B) = LG is Galois, so normal and separable, and it follows that the
map θ : D−1

A,B → A∨, x 7→ tr(x()) is an isomorphism of (divisorial) A-modules.

Proposition 1·5. Let A be a noetherian normal domain and G ≤ Aut(A) a finite group of ring automor-
phisms with ring of invariants B := AG. Then the following are equivalent:

(i) B ≤ A is a Galois-extension;
(ii) BA is projective and A∨ := Hom(BA,BB) = A · trG.

(iii) BA is projective and DA,B = A (or D−1
A,B = A).

Proof. “(1)⇒ (2)”: By assumption ρ : ∆→ End(BA) is an isomorphism. For any λ ∈ A∨ we have λ = ρ(d)
with d :=

∑
g∈G ag · dg ∈ ∆. Then λ(a) =

∑
g∈G agg(a) ∈ AG, hence for every h ∈ G,

∑
g∈G h(ag)hg(a) =∑

g∈G agg(a), which implies ∑
g∈G

h(ag)dhg =
∑
g∈G

agdg ∈ ∆

and therefore h(a1) = ah. We get d =
∑
g∈G g(a1)dg =

∑
g∈G dg · a1 = G+ · a1 ∈ G+ · A. Hence A∨ ⊆

ρ(G+ ·A) = A · trG ⊆ A∨.
“(2) ⇒ (1) ”: Since the field extension L ≥ K = LG is Galois, the map

ρ⊗B K : ∆⊗B K→ End(BA)⊗B K = End(KL)

is an isomorphism, so ρ is injective. Since BA is finitely generated and projective, the map γ∨ : A⊗B A∨ →
End(BA), a ⊗ λ 7→ a · λ() = (a′ 7→ a · λ(a′)) is surjective (and bijective). Hence ρ(∆) ⊇ ρ(AG+A) =
γ∨(A⊗B G+A) = End(BA), so ρ is surjective and therefore bijective.
“(2) ⇐⇒ (3)”: Consider the isomorphism θ : D−1

A,B → A∨, x 7→ tr(x()). Then A∨ = A · trG if and only if

for every x ∈ D−1
A,B there is a ∈ A with θ(x) = θ(a), i.e. D−1

A,B ⊆ A, which is equivalent to D−1
A,B = A (since

A ⊆ D−1
A,B is always true) and equivalent to DA,B = A.

Corollary 1·6. Let k be algebraically closed and X be a normal irreducible k-variety (so A := k[X] is a
normal domain). Then the following are equivalent:

(i) G acts freely on X;
(ii) AGA is projective and DA,AG = A (or D−1

A,AG = A).

In the rest of this section we will recapitulate notation and results from earlier papers, which will be used in
the sequel. For a finitely generated commutative k-algebra A we will denote by Dim(A) the Krull-dimension
of A. For a k-vector space V we will denote with dim(V ) = dim k(V ) the k-dimension of that space. So
Dim(A) = 0 ⇐⇒ dim(A) <∞.

Definition 1·7. Let A ∈ Ts, then an element a ∈ A with tr(a) = 1 is called a point in A.

In [13] Theorem 4.1 and Proposition 4.2 the following general result has been shown:

Theorem 1·8. Let A be trace-surjective and a ∈ A be a point, then:
(i) A = ⊕g∈GAG · (a)g is a free AG-module with basis {(a)g | g ∈ G} and also a free AG[G] module of

rank one, where AG[G] denotes the group ring of G over AG.
(ii) If S := k[(a)g | g ∈ G] ≤ A is the subalgebra generated by the G-orbit of the point a, then A =

AG ⊗SG S.

Remark 1·9. Note that Theorem 1·8 (2) is a special case of the “no-name lemma” for Galois ring exten-
sions (see e.g.[23], Lemma 9.4.1). If G is not a p-group, this statement is false for general trace-surjective
algebras as the following example shows:
Let G be the natural semidirect product G = U o C with U = Fp and C = F∗p, acting on A := k[X]

by f(X)(a,b) = f(a + bX). Then AU = k[Xp − X] and AG = (AU )C = k[(Xp − X)p−1]. The subalgebra
B := k[Xp] ≤ A is isomorphic to A in Ts, AG[B] = k[Xp, (Xp −X)p−1] < A.

Now let V = Vreg and V ∗ := ⊕g∈GkXg ∼= kG, with Xg = (X1G)g, be the regular representation of G

and set Sreg := Sym(V ∗) (note that V ∗ and V are isomorphic kG-modules). Set X :=
∑
g∈GXg ∈ SGreg,

then V ∗G = k · X. Following [13] Definition 2, we set Dk := Dk(G) := Sreg/(α) with α = X − 1. Then

Dk ∼= k[xg | 1 6= g ∈ G], with xg := Xg and tr(x1) = 1, is a polynomial ring of Krull dimension |G| − 1 and
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there is an isomorphism of trace-surjective k −G-algebras Dk ∼= (Sreg[1/X])0; xg 7→ Xg/X. Moreover there
is an isomorphism of Z-graded trace-surjective algebras: Dk[X, 1/X] →

∑
z∈ZDkX

z = Sreg[1/X]. Taking

G-invariants on both sides we obtain an isomorphism of Z-graded k-algebras: DG
k [X, 1/X] ∼= SGreg[1/X]. As

mentioned in Theorem 0·6, there is a retract U ≤ Dk with U ∈ Ts such that the rings U , UG and DG
k are

polynomial rings. We will show that the algebras Dk and U are s-projective 4objects in Ts (see Definition 2·1
and Theorem 2·19). It has been shown in [13] Proposition 5.5. that the Krull-dimension logp(|G|) of U is the
minimal possible number of generators for a trace-surjective subalgebra of Dk, if k = Fp.

Remark 1·10. The embedding U ↪→ Dk = (Sreg[1/X])0 ↪→ Sreg[1/X] dualizes to a G-equivariant surjec-
tive morphism Vreg,X → B = max− spec(U), where Vreg,X ⊆ Vreg is the fundamental open set of elements
not vanishing on X. Hence there is a rational map Vreg → B, which shows that the varieties B and BN are
strongly versal in the the category RG, in the sense defined in Section 0.

2. Universal, projective and generating objects in the category Ts

From now on, unless explicitly stated otherwise, G will denote a non-trivial finite p-group.
The category Ts is non-abelian but it has finite coproducts, given by tensor products over k. This together

with the structure theorem 1·8 gives rise to the concepts of weakly initial, generating, projective and free
objects, in analogy to module categories. In particular there are categorical characterizations of Dk and its
standard subalgebras in Ts, as defined in [13] Definition 3, comparable to projective generators in module
categories, which we are now going to develop. This was announced in [13] Remark 5.

Let C be an arbitrary category. Then an object u ∈ C is called weakly initial, if for every object c ∈ C
the set C(u, c) := MorC(u, c) is not empty, i.e. if for every object in C there is at least one morphism from
u to that object. If moreover |C(u, c)| = 1 for every c ∈ C, then u is called an initial object and is uniquely
determined up to isomorphism.

An object m ∈ C is called a generator in C, if the covariant morphism - functor MorC(m, ∗) is injective on
morphism sets. In other words, m is a generator if for any two objects x, y ∈ C and morphisms f1, f2 ∈ C(x, y),
f1 6= f2 implies (f1)∗ 6= (f2)∗, i.e. there is f ∈ C(m,x) with f1◦f 6= f2◦f . It follows that C(m,x) 6= ∅ whenever
x ∈ C has nontrivial automorphisms. So if every object x ∈ C has a nontrivial automorphism, then generators
in C are weakly initial objects. If C = TsG then right multiplication with any 1 6= z ∈ Z(G) is a nontrivial
automorphism for every A ∈ Ts, hence every generator in TsG is weakly initial.

Recall that in an arbitrary category C an object x is called “projective” if the covariant representation
functor C(x, ?) := MorC(x, ?) transforms epimorphisms into surjective maps. If C is the module category of a
ring, then a morphism is an epimorphism if and only if it is surjective. Therefore a module M can be defined
to be projective, if MorC(M, ?) turns surjective morphisms to surjective maps. In the category Ts, however,
there are non-surjective epimorphisms (e.g. Ap ↪→ A for a domain A ∈ Ts over a perfect field k). This leads
to the slightly modified notions of “s-generators” and “s-projective objects” in the category Ts:

Definition 2·1. Let B be a k −G algebra in Ts.
(i) B is called universal, if it is a weakly initial object in Ts.

(ii) Γ ∈ Ts is an s-generator if for every R ∈ Ts there is a surjective morphism Ψ : Γ⊗` → R for some
` ≥ 1.

(iii) A ∈ Ts is called s-projective, if the covariant representation functor Ts(A, ∗) transforms surjective
morphisms into surjective maps.

Let a ∈ A be a point, i.e. tr(a) = 1. Then the map Xg 7→ (a)g for g ∈ G extends to a k-algebra
homomorphism Sym(V ∗reg) → A with α 7→ 0, hence it defines a unique morphism φ : Dk → A with φ ∈ Ts,
mapping xg 7→ (a)g. In other words Dk has a “free point” xe, which can be mapped to any point a ∈ A ∈ Ts
to define a morphism φ ∈ Ts(Dk, A). It is not hard to see that, due to the existence of these free points xg,
the algebra Dk is s-projective in Ts. The following generalization has been shown in [14]:

Theorem 2·2 ([14] Theorem 2.8). Let W → V be an epimorphism of finite dimensional kG-modules, S :=
Sym(V ∗) ↪→ T := Sym(W ∗) the corresponding embedding of symmetric algebras and v∗ ∈ (V ∗)G. Assume
that S̄ := S/(v∗− 1)S is in Ts. Then S̄ is a retract of T̄ := T/(v∗− 1)T and T̄ and S̄ are s-projective objects
in Ts.

Remark 2·3.
(i) It is easy to see that every s-generator and every s-projective object is also universal.

(ii) Every A ∈ Ts with Ts(A,P ) 6= ∅ for some s-projective P ∈ Ts is universal. So the universal objects
are precisely the objects of Ts that map to Dk.

4 with respect to surjective functions rather than epimorphisms



Free p-Group actions 9

(iii) The commutative artinian “diagonal group ring” kG := ⊕g∈Gkeg with egeh = δg,heg and regular
G-action is a non-universal object in Ts.

The following Lemma characterizes universal objects in Ts and also indicates the particular significance of
this notion in that category:

Lemma 2·4. Let W ∈ Ts, then the following are equivalent:
(i) W is universal;

(ii) W/I ≤ Dk for some G-stable prime ideal I ≤W;
(iii) every A ∈ Ts can be written as A ∼= AG ⊗SG S where S ≤ A is any subalgebra isomorphic to W/I for

some G-stable ideal I EW.
(iv) every A ∈ Ts is of the form A ∼= R⊗WG W for some k-algebra R with trivial G-action and homomor-

phism WG → R.

Proof. (1) ⇐⇒ (2): This has been shown above.

(1) ⇒ (3): Let φ ∈ Ts(W, A) with S := φ(W) ≤ A, then S ∼= W := W/I for some G-stable ideal I EW and
it follows from Theorem 1·8, that A ∼= AG ⊗W̄G W̄.
(3) ⇒ (1): This follows from “(1) ⇐⇒ (2)” and choosing A = Dk. Finally, (3) and (4) are different ways of
expressing the same situation.

Remark 2·5. The property (3) in Lemma 2·4 gives universal objects a special significance in the case of
p-groups in characteristic p > 0, which is not present for general finite groups:
If G is a p-group and W ∈ Ts is universal, then every object A ∈ Ts can be obtained from W as an “extension
by invariants” A ∼= R ⊗WG W with trivial G-action on R. So W contains all information on the G-action
needed to construct in principle every object in Ts.
If p 6 | |G|, then the trivial module k ∈ Ts is weakly initial and every finitely generated k − G-algebra lies in
Ts. However, A ∼= R⊗kG k with trivial G-action on R can only hold if G acts trivially on A.

Let R ∈ Ts with point w ∈ R, wg := (w)g for g ∈ G and RG = k[r1, · · · , rn], then by Theorem 1·8,

R = k[RG, wg | g ∈ G] = k[wg, wg + ri | g ∈ G, i = 1, · · · , n]

with tr(wg + ri) = tr(wg) + |G|ri = 1 for all g ∈ G and i = 1, · · · , n (since G 6= 1). So R = k[v1, · · · , v`], with
points vi so we conclude:

Lemma 2·6. Every object R ∈ Ts is generated by a finite set of points.

Recall that the finite coproducts in Ts are given by the tensor-product over k. A finite tensor product
of k-G algebras lies in Ts if at least one of the factors does. In particular the category Ts also has finite
coproducts given by the tensor-product over k. Recall that for an object A ∈ Ts and ` ∈ N we define

A⊗` :=
∐̀
i=1

A := A⊗k A⊗k · · · ⊗k A

with ` copies of A involved. This allows for the following partial characterization of categorical generators in
Ts:

Lemma 2·7. If Γ is an s-generator, then it is a categorical generator in Ts.

Proof. Let α, β ∈ Ts(R,S) with α ◦ ψ = β ◦ ψ for all ψ ∈ Ts(Γ, R). By assumption we have the following
commutative diagram

Γ⊗`
Ψ -- R

Γ

τi

6

Ψ i

-

where τi maps γ ∈ Γ to 1⊗ · · · ⊗ γ ⊗ · · · ⊗ 1 and Ψ is surjective. Then α ◦Ψ ◦ τi = β ◦Ψ ◦ τi for all i, hence
α ◦Ψ = β ◦Ψ. Since Ψ is surjective it follows that α = β, so Γ is a generator in Ts.

We will now give some definitions that turn out to be useful in finding criteria for s-projectivity and the
s-generator property:
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Definition 2·8. Let E be an k-G-algebra of Krull dimension N .
(i) E is said to be erasable, if for every A ∈ Ts, the tensor product A⊗k E erases the G-action on E in

the sense that

A⊗k E = (A⊗k 1)[λ1, · · · , λN ] ∼= A[N ],

with the isomorphism being the identity on A and k[N ] ∼= k[λ1, · · · , λN ] ⊆ (A⊗k E)G.
(ii) If E ∈ Ts and isomorphism in (1) holds for A = E, then E is called self-erasing.

Proposition 2·9. Let Γ ∈ Ts be a polynomial ring with triangular G-action. Then Γ is erasable.

Proof. We assume that Γ = k[T1, · · · , TN ] ∈ Ts is a polynomial ring such that for each g ∈ G and 1 ≤ i ≤ N
we have (Ti)g = Ti+fi,g with fi,g ∈ k[T1, · · · , Ti−1]. Now let A ∈ Ts and a ∈ A with tr(a) = 1. Then tr(aTi) =∑
g∈G(a)g · (Ti)g =

∑
g∈G(a)g · (Ti + fi,g) = tr(a) ·Ti +

∑
g∈G(a)g · fi,g. Hence Ti− tr(aTi) ∈ A[T1, · · · , Ti−1].

Therefore an obvious induction argument shows that

A⊗k Γ = A[T1, · · · , TN ] = A[tr(aT1), · · · , tr(aTN )],

so Γ is erasable.

Proposition 2·10. Let E be an erasable k − G-algebra of Krull-dimension e (not necessarily in Ts) and
let P ∈ Ts. Then the following hold:

(i) EG = E ∩ (E ⊗k P)G with (E ⊗k P)G ∼= (P[e])G ∼= (PG)[e].

(ii) If PG ∼= k[m], then (E ⊗k P)G ∼= k[e+m].
(iii) If P is s-projective, then so is E ⊗k P.

Proof. (1) and (2): Clearly EG = E ∩ (E ⊗k P)G. By definition of “erasable”, F := E ⊗k P ∼= P ⊗k
k[T1, · · · , Tn] ∼= P[e] with k[T ] ≤ FG, hence (P[e])G ∼= (PG)[e].
(3): Let α : A → B ∈ Ts be surjective and β : F = P[T1, · · · , Te] → B be morphisms in Ts. Choose
a := (a1, · · · , ae) ∈ Ae with α(ai) = β(Ti) and θ ∈ Ts(P, A) with αθ = β|P. Then θ extends to a map

θ̃ : F → A,
∑
µ∈Ne

0

pµT
µ 7→ θ(pµ)aµ1

1 · · · a
µe
e

with α ◦ θ̃ = β. Since the Ti are G-invariant, θ̃ ∈ Ts(F , A), which shows that F is s-projective.

Theorem 2·11. Let Γ ∈ Ts. Then Γ is erasable if and only if Γ is self-erasing and any one of the following
equivalent conditions is satisfied:

(i) Γ is universal;
(ii) Γ is s-projective;

(iii) Γ is an s-generator.

Proof. “Only if”: Suppose that Γ is erasable, then clearly Γ is self-erasing (take A = Γ). Now put A = Dk;
then Dk ⊗k Γ = Dk[λ1, · · · , λd] =: Dk[λ], where each λi is invariant and d is the Krull-dimension of Γ. Now
Dk is s-projective and so Dk[λ] is also s-projective by Proposition 2·10 (3). Further, as Dk is universal, there
exists a morphism Dk → Γ. Therefore Γ is a direct summand of Dk[λ] and so is s-projective and hence
universal. Finally, as Γ is self-erasing, Γ⊗k Γ = Γ[µ] := Γ[µ1, · · · , µd] where each µi is invariant. Hence, by a

simple induction argument, Γ⊗(m+1) ∼= Γ[ν1, · · · , νmd] for all m ≥ 1. Since Γ is universal it follows easily from
Lemma 2·6, that every A ∈ Ts is surjective image of some Γ⊗`, so Γ is also an s-generator.
“If”: Note first that if Γ is either s-projective or an s-generator, then Γ is universal. Now suppose that Γ
is self-erasing and universal and let A ∈ Ts. Then there exists a morphism θ : Γ → A. Now, as above,
Γ⊗k Γ = Γ[µ] with invariants µ = (µ1, · · · , µd) and further A ∼= AG ⊗ΓG Γ where ΓG → AG is induced by θ.
Hence

A⊗k Γ ∼= (AG ⊗ΓG Γ)⊗k Γ ∼= AG ⊗ΓG (Γ⊗k Γ) ∼= AG ⊗ΓG (Γ[µ]) ∼= (AG ⊗ΓG Γ)[µ] ∼= A[µ]

with trivial G-action on k[µ]. Thus Γ is erasable.

Corollary 2·12. The following algebras in Ts are triangular polynomial rings and therefore erasable s-
projective generators:

(i) Every algebra S̄ := S/(v∗ − 1)S ∈ Ts as in Theorem 2·2.
(ii) The algebra Dk and its standard retract U (as in Theorem 0·6).

Proof. The proof of Theorem 0·6, given in [13] shows that U is a polynomial ring on which G acts in a
triangular way. All the other algebras are visibly triangular, so the claim follows from Proposition 2·9 and
Theorem 2·11.
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Theorem 2·13. Let Γ ∈ Ts of Krull dimension d and assume that Γ is erasable. Then Γ ∼= k[d] and
ΓG ⊗k k[n] ∼= k[n+d] with n = log p(|G|). Moreover

(i) Γ is n-stably triangular.
(ii) ΓG is n-stably polynomial.

Proof. We use notation of the proof of Theorem 2·11. Suppose that Γ ∈ Ts is erasable. Then Γ is universal
and so there is a morphism Γ → kG, the disconnected abelian group algebra from Remark 2·3. Hence Γ
has a maximal ideal m with Γ/m ∼= k. Since Γ is self-erasing, Γ ⊗k Γ = Γ[µ], therefore Γ ∼= k ⊗k Γ =

Γ/m ⊗k Γ = (Γ ⊗k Γ)/me = Γ[µ]/me = Γ/m[µ] ∼= k[d] as k-algebras, with k[d] ∼= k[µ] ⊆ (Γ ⊗k Γ)G. Here me

denotes the extended ideal in Γ⊗k Γ.
Now by Proposition 2·9 the algebra U ∼= k[n] is erasable, therefore, as before, there are invariants λ =
(λ1, · · · , λd) and α = (α1, · · · , αn) such that U [λ] = U ⊗k Γ ∼= Γ⊗k U ∼= Γ[α] is triangular. Hence

ΓG[α] = (Γ[α])G = (U [λ])G = UG[λ] ∼= k[n+d]

and so ΓG is n-stably polynomial. Since U is triangular, Γ is n-stably triangular.

Corollary 2·14. Let Γ ∈ Ts be erasable and assume that ΓG ∼= k[d]. Then (Γ⊗`)G ∼= k[d`]. In particular
this is satisfied for Γ ∈ {Dk, U}.

Proof. The proof is by induction on `. For ` = 1 the statement is true by the hypothesis. Γ⊗` ∼= Γ⊗(`−1)⊗k
Γ ∼= Γ⊗(`−1) ⊗k k[λ1, · · · , λd] with k[λ] ≤ (Γ⊗`)G. Hence

(Γ⊗`)G ∼= (Γ⊗(`−1) ⊗k k[λ])G ∼= (Γ⊗(`−1))G ⊗k k[λ] ∼= k[d(`−1)] ⊗k k[d] ∼= k[d`].

As a consequence we see that every stably triangular k −G algebra is a tensor factor of a tensor power of
U or of Dk:

Corollary 2·15. Let X ∈ {Dk, U} and let A be a stably triangular k−G algebra. Then there is an erasable
algebra B ∈ Ts and an N ∈ N, such that A⊗k B ∼= X⊗N . If moreover A ∈ Ts, then AG is stably polynomial.

Proof. First note that, since U is erasable, we have for every ` ∈ N: U⊗` ∼= U⊗kU⊗(`−1) ∼= U [λ1, · · · , λn(`−1)] ∼=
U [n(`−1)] with k[λ1, · · · , λn(`−1)] ≤ (U⊗`)G. Similarly D⊗`k

∼= U [(|G|−1)`−n]. Assume now that A ⊗k F ∼= k[N ]

is triangular with F = FG ∼= k[m]. Then A ⊗k F is erasable by Proposition 2·9. Hence A ⊗k F ⊗k U ∼=
U ⊗k k[β] ∼= U [N ] with k[N ] ∼= k[β] ≤ (A⊗k F ⊗k U)G. Now let ` ∈ N be minimal with ` > N/n+ 1 and set

M := (`−1)·n−N > 0. Then with B := F⊗kU [M ] we obtain A⊗kB ∼= U [N ]⊗kk[M ] ∼= U [N+M ] ∼= U [(`−1)·n] ∼=
U⊗`. Similarly let `′ ∈ N be minimal with `′ > N+n

|G|−1
and set M ′ := `′(|G| − 1) − n − N > 0. Then with

B′ := F⊗kU [M′] we obtain A⊗kB′ ∼= U [N ]⊗kk[M′] ∼= U [N+M′] ∼= U [`′(|G|−1)−n] ∼= D⊗`
′

k . Now assume in addi-

tion that A ∈ Ts. Since B ∈ Ts is erasable, A⊗kB ∼= A⊗kk[α] with k[α] ≤ (A⊗kB)G = AG⊗kk[α] ∼= (U⊗`)G,
which is a polynomial ring by Theorem 0·7. It follows that AG is stably polynomial.

We now give a Proof of Theorem 0·8:

Theorem 2·16. Let P ∈ Ts be s-projective, then both, P and PG are retracts of polynomial rings over k.

Proof. Let P ∈ Ts be s-projective and Γ = U or Dk, then there is a surjective morphism Γ⊗` → P, which
splits, since P is s-projective. It follows that P and PG are retracts of Γ⊗` and (Γ⊗`)G, respectively. Both of
these rings are polynomial rings over k.

We now give a Proof of Theorem 0·11 from the introduction:

Theorem 2·17. Let S ∼= k[d] be a polynomial ring with triangular G-action (e.g. S = S(V ∗)). Then the ring
of invariants SG is the intersection of two polynomial subrings inside an s-projective polynomial k−G-algebra
k[N ] ∈ Ts of Krull-dimension N = d + n with n := log p |G|. If moreover S ∈ Ts, then SG ⊗k k[n] ∼= k[n+d],

i.e. SG is n-stably polynomial.

Proof. Clearly S(V ∗) is a triangular k−G-algebra (taking a triangular basis for the vector space V ∗) and
U is triangular by Theorem 0·6. If follows from Proposition 2·9 that S and U are erasable. Now the first claim
follows from Proposition 2·10, taking P = U with UG ∼= k[n] and n = log p |G|, by Theorem 0·6.

If in addition S ∈ Ts, then S ⊗k U ∼= S ⊗k k[λ1, · · · , λn] with k[n] ∼= k[λ1, · · · , λn] ≤ (S ⊗k U)G, by Theorem
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0·7(2). It follows, switching the roles of U and S, that SG ⊗k k[n] ∼= (S ⊗k U)G ∼= (U ⊗k S)G ∼= (UG)[d] ∼=
k[n+d].

Definition 2·18. Following [13] Definition 3, we call a trace-surjective G-subalgebra S ≤ Dk standard,
if it is a retract of Dk, or in other words, if Dk = S ⊕ J , where J is some G-stable (prime) ideal. We also
call C ∈ Ts cyclic, if C ∼= Dk/I with G-stable ideal I. Equivalently, C is generated by one G-orbit of a point
c ∈ C.

In this terminology, U is standard as well as cyclic and s-projective. The next theorem shows that the
latter two properties characterize standard subalgebras of Dk:

Theorem 2·19. Let R,S ∈ Ts, then the following hold:
(i) R is s-projective, if and only if it is retract of a tensor product D⊗`k .

(ii) S is a standard subalgebra of Dk if and only if S ∈ Ts is cyclic and s-projective.

Proof. (1): This follows from the fact that every R ∈ Ts is surjective image of some D⊗`k .
(2): By definition every standard subalgebra is cyclic and a retract of Dk. Hence by (1) it is s-projective. Now
let S ∈ Ts be cyclic and s-projective. Then there is a surjective morphism Dk → S, which must split, hence
S is a standard subalgebra.

Remark 2·20. The statement (1) in Theorem 2·19 shows that the algebra D⊗`k is the analogue in Ts of the
free module of rank ` in a module category.

3. Basic Algebras

Let C be an arbitrary category, then for objects a, b ∈ C one defines a ≺ b to mean that there is a
monomorphism a ↪→ b ∈ C and a ≈ b if a ≺ b and b ≺ a. According to this definition, an object b ∈ C is called
minimal if a ≺ b for a ∈ C implies b ≺ a and therefore a ≈ b. Clearly “≈” is an equivalence relation on the
object class of C. Recall that A ∈ Ts is universal if it is weakly initial, or, equivalently, if it maps to Dk.

Definition 3·1. The algebra B ∈ Ts is called basic if it is universal and minimal.

The following Lemma characterizes types of morphisms in Ts by their action on points. The results will
then be used to analyze basic objects in Ts:

Lemma 3·2. A morphism θ ∈ Ts(R,S) is surjective (injective, bijective) if and only if it induces a surjective
(injective, bijective) map from the set of points of R to the set of points of S. In particular θ ∈ Ts(R,S) is a
monomorphism if and only if θ is injective.

Proof. “Surjectivity”: Let s ∈ S with tr(s) = 1 and r ∈ R with θ(r) = s. Then r′ := tr(r)−1 ∈ ker (θ)∩RG.
Let w ∈ R with tr(w) = 1, then r′ = tr(r′w) and v := r − r′w satisfies θ(v) = s and tr(v) = 1, hence the
induced map on points is surjective. On the other hand, since R and S are generated as algebras by points,
the reverse conclusion follows.
“Injectivity”: We can assume that the induced mapping on points is injective and want to show that θ is
injective. Let w ∈ R be a point and r, r′ ∈ RG with θ(r) = θ(r′), then tr(r + w) = tr(w) = 1 = tr(r′ + w)
and θ(r + w) = θ(r′ + w), so r + w = r′ + w and r = r′. Hence the induced map on the rings of invariants
is injective. But R = ⊕ni=1R

Gwi, with n = |G| and a G-orbit of points {w1, · · · , wn}. It follows that V ′ :=
〈θ(wi) | i = 1, · · · , n〉 ≤ S is a copy of the regular representation of G, so by 1·8 we have S = ⊕ni=1S

Gθ(wi).
Let r =

∑n
i=1 riwi, r

′ =
∑n
i=1 r

′
iwi with ri, r

′
i ∈ RG and θ(r) = θ(r′), then

∑n
i=1 θ(ri − r

′
i)θ(wi) = 0 implies

θ(ri) = θ(r′i), so ri = r′i for all i and therefore r = r′.
For the last claim, it is clear that an injective morphism is a monomorphism, so assume now that θ is
a monomorphism. It suffices to show that θ is injective on the points of R, so let a1, a2 ∈ R be points
with θ(a1) = θ(a2). Define ψi : Dk → R as the morphisms determined by the map Dk 3 x1 7→ ai, then
θ ◦ ψ1 = θ ◦ ψ2, hence ψ1 = ψ2 and a1 = a2. This finishes the proof.

Now let A be an object in Ts, then Dim(A) = max{Dim(A/p) | p ∈ Spec(A)}, where Dim(A/p) =
transc.degk(A/p) := transc.degk(Quot(A/p)), the transcendence degree over k of the quotient field Quot(A/p).
If B ≺ A then

Dim(B) = transc.degk(B) ≤ transc.degk(A) = Dim(A).

This is clear if A is a domain and an easy exercise otherwise. In particular, any two ≈-equivalent domains in
Ts have the same Krull-Dimension.
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If A ∈ Ts is universal it maps into Dk with a universal image isomorphic to A/I for some G-invariant prime
ideal I E A. So every universal object has a quotient which is a universal integral sub-domain of Dk. Notice
also that if B ≺ A with universal A, then B is also universal; so if A is minimal among the universal objects,
then A is also a minimal object and therefore basic. It is however not completely obvious from the definition
that basic objects do exist. This is established as follows, which also shows the existence of basic normal
domains:

Lemma 3·3. Let X ∈ Ts be a subalgebra of U or of Dk and let X̂ denote its normal closure in Quot(X).

Then X̂ is universal in Ts. Moreover if X is a subalgebra of minimal Krull-dimension in U or in Dk, then

X and X̂ are basic domains.

Proof. The polynomial rings U and Dk are universal domains of Krull-dimension n and |G| − 1 = pn − 1,
respectively. Let X ∈ Ts, X ↪→ U or Dk, then X is a universal domain. Now suppose that X has minimal
Krull-dimension. If Y ≺ X, then Dim(Y ) = Dim(X), but there is α ∈ Ts(X,Y ) with α(X) ≺ Y ≺ X. It
follows that Dim(α(X)) = Dim(Y ) = Dim(X), so ker (α) = 0 and X ≺ Y . This shows that X is a universal
minimal, hence basic, domain.

Since X is a finitely generated k-algebra, so is X̂ and, since U and Dk are normal rings, X̂ ≤ U or X̂ ≤ Dk,

respectively. It follows that X̂ is universal, and basic, if X is.

The next result describes properties of basic objects and shows that they form a single ≈-equivalence class
consisting of integral domains, all of which have the same Krull-dimension:

Proposition 3·4. Let A ∈ Ts be universal. Then the following are equivalent:
(i) A is basic;

(ii) A is a basic domain;
(iii) every α ∈ EndTs(A) is injective;
(iv) A ≺ B for every universal B ∈ Ts;
(v) A ≈ B for one (and therefore every) basic object B ∈ Ts;

(vi) no proper quotient of A is universal;
(vii) no proper quotient of A is a subalgebra of A.

Any two basic objects are ≈-equivalent domains of the same Krull-dimension dk(G) ≤ n = logp(|G|) with
dk(G) > 0 if G 6= 1. With B we denote the ≈-equivalence class of basic objects in Ts.

Proof. Let X ∈ Ts be a basic domain and α ∈ EndTs(X). Then α(X) ≺ X, hence X ≺ α(X), so
Dim(X) = Dim(α(X)) and α must be injective.
“(1) ⇒ (2)”: There is β ∈ Ts(X,A) and γ ∈ Ts(A,X), so γ ◦ β ∈ EndTs(X) is injective, which implies that
β is injective and therefore X ≺ A. It follows that A ≺ X, hence A is a domain.
“(2) ⇒ (3)”: This has already been shown above. (We didn’t use the fact that A is universal, there. So every
minimal domain in Ts satisfies (3)).
“(3) ⇒ (4)”: Since A and B are universal there exist morphisms α ∈ Ts(A,B) and β ∈ Ts(B,A) with β ◦ α
injective, because A is minimal. Hence A ≺ B.
“(4) ⇒ (5)”: This is clear.
“(5) ⇒ (1)”: B ≈ A means that B ↪→ A and A ↪→ B. In that case A is universal (minimal) if and only if B
is universal (minimal). Choosing B := X, it follows that A is basic.
“(3)⇒ (6)”: Now assume that every α ∈ EndTs(B) is injective and let B/I be universal for the G-stable
ideal I E B. Then there is γ ∈ Ts(B/I,B) and the composition with the canonical map c : B → B/I gives
γ ◦ c ∈ EndTs(B). It follows that I = 0.
“(6) ⇒ (1)”: Assume B ≺ A. Then B is universal and since A is universal, there is θ ∈ Ts(A,B) with
θ(A) ≤ B universal. Hence A ∼= θ(A) ≺ B and A is basic.
Let A,B ∈ Ts be basic, then Ts(A,B) 6= ∅ 6= Ts(B,A) implies that A ≺ B ≺ A, hence A ≈ B and
Dim(A) = Dim(B) =: dk(G) ≤ n = logp(|G|) (see Theorem 0·6). Assume that dk(G) = 0. Then X must be
a Galois-field extension K ≥ k with Galois group G and K ↪→ Dk, which implies K = k and G = 1.
“(6) ⇒ (7)”: This is clear, because a quotient A/I as subalgebra of A would be universal.
“(7) ⇒ (1)”: We have X ≺ A and there is θ ∈ Ts(A,X) with θ(A) ≤ X universal. It follows that θ(A) ≺ A,
hence ker θ = 0 and θ(A) ∼= A ≈ X, so A is basic.

Corollary 3·5. Let A ∈ Ts be a universal domain. Then dk(G) ≤ Dim(A) and the following are equiva-
lent:

(i) A ∈ B;
(ii) dk(G) = Dim(A);

(iii) If C ∈ Ts with C ≺ A, then Dim(C) = Dim(A).
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Proof. The first statement and “(1) ⇒ (2)” follow immediately from Proposition 3·4.
“(2)⇒ (3)”: C ≺ A implies that C is a universal domain and Dim(C) ≤ Dim(A). Hence Dim(A) = dk(G) ≤
Dim(C) ≤ Dim(A).
“(3) ⇒ (1)”: Suppose A is not minimal. Then there is α ∈ EndTs(A) with ker (α) 6= 0. Hence A/ ker (α) ∼=
α(A) =: C ≺ A. Clearly Dim(C) < Dim(A).

The results in Theorem 2·19 can give useful bounds for dk(G). Let S = Sym(V ∗) be as in Theorem 2·2;
it has been shown in [14] Theorem 2.7 that there exists v∗ ∈ V ∗G such that S/(v∗ − 1)S ∈ Ts, and so is s-
projective and universal, if and only if XV := 〈V g | 1 6= g ∈ G, gp = 1〉 < V. In this case dk(G) ≤ dim(V )−1.
If k = Fp, the condition XV < V implies dim(V ) ≥ n + 1 with n = logp(|G|) (see [14] Proposition 3.3). For
certain p-groups (called “CEA-groups” in [14]) the condition XV < V is satisfied with dim(V ) = n+1, which
then gives the known bound dk(G) ≤ n. For extension fields however, one can obtain sharp bounds for dk
and the essential dimension ek as the following examples show:

Examples 3·6.
(i) Let q := pn, Fq ≤ k and (Cp)

n ∼= G a Sylow p-subgroup of GL2(q) consisting of upper triangular
matrices. Set V := k2 = ke1 ⊕ ke2 be the natural kG-module, then X = ke1 < V and Sym(V ∗)/(x1 −
1) ∼= B = k[Z] (see Theorem 3·15), proving again that dk(G) = 1.

(ii) Now let Fq2 ≤ k and let G be a Sylow p-subgroup of SU3(q2). Then G can be represented as the group
of matrices

ga,b :=

 1 a b
0 1 −aq
0 0 1

 , a, b ∈ Fq2 , b+ bq + aaq = 0.

Let V ∼= k3 = ke1 ⊕ ke2 ⊕ ke3 be the natural SU3(q2)-representation, then an elementary calculation
shows that XV = 〈e1, e2〉k < V , hence Sym(V ∗)/(x1 − 1) is s-projective and dk(G) ≤ 2, so dk(G) =
ek(G) = 2 by Corollary 4·9. Note that for q = p, G is extraspecial (of exponent p, if p ≥ 3).

Corollary 3·7. Let p ≥ 3, Fp2 ≤ k and G be extraspecial of order p3 and of exponent p. Then dk(G) =
ek(G) = 2.

Back again to basic objects; the ≈-equivalence class B of basic objects contains cyclic domains:

Corollary 3·8. If B ∈ B, then B ≈ C with C a cyclic domain.

Proof. Let α ∈ Ts(Dk, B), then C := α(Dk) ≺ B, hence B ≈ C with cyclic domain C ∈ Ts.

In Lemma 2·4 we showed that every object A ∈ Ts arises from extending the quotient of a universal object
by a ring with trivial G-action. The class B consists of those objects from which all universal objects arise
by extending invariants:

Lemma 3·9. An object B ∈ Ts is basic, if and only if every universal object is of the form W = WG⊗BG B
with embedding B ↪→W.

Proof. If B ∈ Ts has the described property and X ∈ Ts is basic, then B ≺ X, so X ≈ B and B is basic.
Now assume that B is basic and W is universal. Then by Lemma 2·4, W = WG ⊗SG S with B/I ∼= S ↪→W.
It follows that B/I is universal, hence I = 0 and S ∼= B.

We are therefore particularly interested in describing basic objects, i.e. minimal subalgebras of Dk which
are also in Ts. However, with regard to minimality the following has to be taken into account: Since Dk is

the polynomial ring k[xg | 1 6= g ∈ G], we have Dp
k = kp[xpg | g ∈ G] and ∩i∈NDpi

k = ∩i∈Nkp
i

= kp
∞
, where

kp
∞

denotes the maximal perfect subfield of k. This implies that Cp < C for every subring C 6= kp
∞
≤ Dk,

hence there will be in general no subalgebra of Dk which is minimal with respect to ordinary inclusion of
k-subalgebras. (If k is perfect and C ≤ Dk is trace-surjective, then Cp < C is a proper inclusion of isomorphic
objects in Ts). The result in Corollary 3·8 motivates the following

Lemma 3·10. Let C ∈ Ts be basic and cyclic. Then up to isomorphism C ≤ Dk and there exists χ ∈
EndTs(Dk) with χ(Dk) = C and ker(χ|C) = 0. Moreover one of the following two situations can occur:

(i) C > χ(C) > · · · > χn(C) > χn+1(C) · · · is an infinite descending chain of properly contained,
isomorphic k −G-subalgebras in Ts.

(ii) C = χ(C) and Dk = C ⊕ I, where I = ker (χ) EDk is a G-stable ideal.
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Proof. By Proposition 3·4, C ≺ Dk, so there is an embedding ι : C ↪→ Dk and we can assume C = ι(C) =
k[W ] ≤ Dk with w ∈W of trace 1 and W ∼= kG as kG-module. Then W = 〈wg | g ∈ G〉 and the map xg 7→ wg
defines a G-equivariant k-algebra epimorphism θ : Dk → C. Set φ := θ ◦ ι and χ := ι ◦ θ, then φ ∈ EndTs(C)
is injective with image C ∼= φ(C) = θ(C) ≤ C, so χ(C) = ι ◦ θ(ι(C)) = φ(C) ≤ C. Suppose χn+1(C) = χn(C)
and let c ∈ C; then χn(c) = χn+1(c′) for some c′ ∈ C, so c − χ(c′) ∈ ker (χn|C) ⊆ ker (φn+1) = 0. Hence

c = χ(c′), χ(C) = C = φ(C) and φ = θ ◦ ι is an automorphism of C. We conclude Dk = C ⊕ ker (χ).

If k = kp, we have already seen that case (1) actually occurs. For general k, the homomorphism F̃ =

k[Xg | g ∈ G]→ F̃ defined by Xg 7→ Xp
g induces a Frobenius-endomorphism

Φ : Dk = k[xg |g ∈ G]→ Dk, α(x1, · · · , xg, · · ·) 7→ α(xp1, · · · , x
p
g, · · ·),

which in the case k = Fp coincides with the ordinary power map a 7→ ap. It follows that Dk > Φ(Dk) >
· · ·Φn(Dk) > Φn+1(Dk) > · · ·. Similarly, for every subalgebra C0 = Fp[V ] ≤ DFp with subspace 1 ∈ V ∼= FpG
we have

C0 > Φ(C0) = Cp0 > · · · > Cp
n

0 > Cp
n+1

0 > · · ·

and therefore the subalgebra C := k ⊗Fp C0 ≤ Dk satisfies

C > Φ(C) > · · · > Φn(C) > Φn+1(C) > · · · .

In the rest of this section, and in fact the paper, we will study the second case of lemma 3·10, which also
occurs naturally and, in many respects, is the more interesting situation.

If S ≤ Dk is standard, then there is a projection morphism χ : Dk → S ↪→ Dk, which is an idempotent in
EndTs(Dk). The following has been shown in [13]:

Lemma 3·11. [[13] Lemma 5.1] Let S ↪→ Dk be a trace-surjective G-algebra, then the following are equi-
valent:

(i) S is standard.
(ii) ∃ χ = χ2 ∈ (EndTs(Dk) with S = χ(Dk).

(iii) ∃χ ∈ (Endk−alg(Dk))G with χ2(x1) = χ(x1) =: w ∈ S = k[wg |g ∈ G].
(iv) ∃ w = W (x1, xg2 , · · · , xg|G|) ∈ S with tr(w) = 1, w = W (w,wg2, · · · , wg|G|) and S = k[wg |g ∈ G] ≤

Dk.

Let S ≤ Dk be standard. Since Dk is a polynomial k-algebra it follows from [10] Corollary 1.11, that S is
a regular UFD.

Definition 3·12. (see [13][Definition 4]) A point w ∈ Dk will be called reflexive, if

w = W (x1, · · · , xg · · ·) = W (w, · · · , wg, · · ·) = θ(w),

where θ ∈ (Endk−alg(Dk))G is defined by xg 7→ w · g ∀g ∈ G.

By definition a trace-surjective G-algebra is cyclic, if and only if it is generated as an algebra by the G-orbit
of one point. Lemma 3·11 shows, that the standard subalgebras of Dk are precisely the subalgebras generated
by the G-orbit of a reflexive point.

Let G1, G2 be two finite p-groups and Ai ∈ TsGi with point ai ∈ Ai for i = 1, 2. Then a1 ⊗k a2 is easily
seen to be a point of A1 ⊗k A2 ∈ TsG1×G2 . Moreover, Dk(G1)⊗k Dk(G2) is standard universal, i.e. a retract
of Dk(G1 × G2) (see [13] Section 5, Example 3). If the Ai’s are universal with θi ∈ TsGi(Ai, Dk(Gi)), then
θ1 ⊗ θ2 ∈ TsG1×G2(A1 ⊗k A2, Dk(G1) ⊗k Dk(G2)), hence A1 ⊗k A2 is universal in TsG1×G2 . Clearly the

polynomial ring D̃ := Dk(G1) ⊗k Dk(G2) can be viewed as an object in TsG1 or TsG2 by restricting the

action accordingly. In that way D̃|G1
∼= Dk(G1)⊗k k[T1, · · · , T|G2|−1] is a polynomial ring over Dk(G1) with

trivial G1-action on k[T1, · · · , T|G2|−1]. Let R ∈ TsG1 and φ ∈ TsG1(Dk(G1), R), then any map Tj 7→ rj ∈ RG1

extends φ to a morphism φ̃ ∈ TsG1(D̃|G1
, R), which shows that D̃|Gi

is universal in TsGi .

Suppose that φ ∈ TsG1×G2(Ã, D̃) for Ã := A1 ⊗k A2 with i1 ∈ TsG1(A1, Ã) the canonical morphism. Then

the composition φ|G1
◦ i1 is in TsG1(A1, D̃|G1

), hence A1 is universal. We summarize:

Proposition 3·13. Let G1 and G2 be two finite p-groups with Ai ∈ TsGi for i = 1, 2. Then A1 ⊗k A2 ∈
TsG1×G2 and the following hold:

(i) Ai universal in TsGi for i = 1, 2 ⇐⇒ A1 ⊗k A2 is universal in TsG1×G2 ;
(ii) Ai standard universal in TsGi for i = 1, 2 ⇒ A1 ⊗k A2 is standard universal in TsG1×G2 ;

(iii) dk(G1 ×G2) ≤ dk(G1) + dk(G2).
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We close this section by illustrating the above notions in the case of elementary-abelian p-groups. We need
some notation and a lemma: Define ∂n(T ) ∈ k[X1, · · · , Xn−1][T ] to be the following n× n-determinant:

∂n(T ) = ∂n(X,T ) :=

∣∣∣∣∣∣∣∣
X1 · · · Xn−1 T
Xp

1 · · · Xp
n−1 T p

· · · · · · · · · · · ·
Xpn−1

1 · · · Xpn−1

n−1 T p
n−1

∣∣∣∣∣∣∣∣ ,
and set Fn−1(T ) :=

∏
x∈V (T − x), where V := 〈X1, · · · , Xn−1〉Fp .

Lemma 3·14. The following hold:
(i) ∂n(T ) = ∂n−1(Xn−1) · Fn−1(T );

(ii) for any α1, · · · , αn ∈ k, ∂n(α1, · · · , αn−1, αn) 6= 0 if and only if the set {α1, · · · , αn} is linearly inde-
pendent over Fp.

Proof. (1): For every x ∈ V we have ∂n(x) = 0, so considering the T -degree we obtain ∂n(T ) = c ·Fn−1(T )

with c being the coefficient of ∂n(T ) at T p
n

, hence c = ∂n−1(Xn−1).
(2): Assume that {α1, · · · , αn} ⊆ k is linearly independent over Fp and set

f(T ) :=
∏
x∈W

(T − x) with W := 〈α1, · · · , αn−1〉Fp .

Then we have ∂n(α1, · · · , αn−1, αn) = ∂n−1(α1, · · · , αn−2, αn−1)·f(αn). By induction the first factor is nonzero
and f(αn) 6= 0, since αn 6∈W ; hence ∂n(α1, · · · , αn−1, αn) 6= 0. Conversely, if ∂n(α1, · · · , αn−1, αn) 6= 0, then,
again by induction, {α1, · · · , αn−1} is linearly independent over Fp. Moreover f(αn) 6= 0, so αn 6∈ W and
{α1, · · · , αn} is linearly independent over Fp.

Let G be an elementary-abelian group of order pn. We identify G with the additive group (Fnp ,+) and write
an element g ∈ G as a vector g =

∑n
i=1 giei with gi ∈ Fp and ei the standard basis vector of Fnp . Set

f := k[Y1, · · · , Yn], the polynomial ring in n variables, then G acts on f by the rule (Yi)g = Yi − gi for all i,
hence f = U1 ⊗k U2 ⊗k · · · ⊗k Un, with Ui = k[Yi] ∈ TsGi and Gi := 〈ei〉. It follows from [13] Proposition
3.2 that every Ui ∈ TsGi is a basic and standard subalgebra of Dk(Gi), hence by Proposition 3·13, f is a
standard universal subalgebra of Dk(G).

Now assume that k contains an n-dimensional Fp-subspace W := 〈α1, · · · , αn〉; then there is an embedding
of abelian groups α : G→ W ≤ k+, g 7→ αg :=

∑n
i=1 giαi. Consider a univariate polynomial ring k[Z] with

(nonlinear) G-action extending the maps Z 7→ (Z)g = Z−αg to k-algebra automorphisms. The corresponding
k − G-algebra will be denoted by Bα. Then the map Z 7→

∑n
i=1 αiYi extends to a G-equivariant morphism

of k −G-algebras θ : Bα → f. It follows from Lemma 3·14 that there exists a matrix (fij)
T := (αp

j−1

i )−1 ∈
GLn(k), i.e. such that

∑n−1
j=0 fijα

pj

k = δik. Set fi(Z) :=
∑n−1
j=0 fijZ

pj ∈ k[Z], then fi(αg) = gi for every

g ∈ G. Now define a k-algebra morphism ψ : f→ Bα by extending the map Yi 7→ fi(Z). Then fi(µ+ λ) =
fi(µ)+fi(λ) for µ, λ ∈ k and fi(λ) = λi, whenever λ =

∑n
i=1 λiαi with λi ∈ Fp. Hence ψ◦θ(Z) = h(Z) ∈ k[Z]

is a polynomial of degree less than pn such that h(λ) − λ =
∑n
i=1 αifi(λ) − λ =

∑n
i=1 αiλi − λ = 0 for all

λ ∈ W . It follows that h(Z) = Z. Moreover, for every g ∈ G we have ψ((Yi)g) = ψ(Yi − gi) = ψ(Yi) − gi =
fi(Z)−fi(αg) = fi(Z−αg) = fi((Z)g) = (fi(Z))g = (ψ(Yi))g. This shows that ψ is a G-equivariant retraction.
In particular Bα is a trace-surjective retract of f, hence a standard and basic universal algebra in TsG.
Let β : G → k+, g 7→ βg :=

∑n
i=1 giβi be a different embedding of abelian groups and define Bβ to be

the univariate polynomial ring k[Z] with G-action given by Z 7→ (Z)g = Z − βg. Since the set {β1, · · · , βn}
is linearly independent over Fp, there are (λ0, · · · , λn−1) ∈ k with

∑n−1
j=0 λj · β

pj

i = αi for i = 1, · · · , n. Let

Lα,β : Bα → Bβ be the algebra homomorphism extending the map Z 7→ fα,β(Z) :=
∑n−1
j=0 λj · Z

pj . Then

Lα,β is injective, because fα,β(Z) 6∈ k and Lα,β((Z)g) = Lα,β(Z−αg) = Lα,β(Z)−αg = fα,β(Z)−fα,β(βg) =
fα,β(Z − βg) = (Lα,β(Z))g. So Lα,β is a G-equivariant embedding Bα ↪→ Bβ . In a similar way we see that
Lβ,α ∈ TsG(Bβ , Bα) is injective, hence Bβ is universal and indeed Bα ≈ Bβ .

We summarize

Theorem 3·15. Let G be elementary-abelian of order pn and f := k[Y1, · · · , Yn] ∈ TsG as described above.
Then the polynomial ring f is a standard universal subalgebra of Dk(G).
Assume now that dim Fp(k) ≥ n, then there is an embedding of abelian groups

α : G→W := 〈α1, · · · , αn〉Fp ≤ k
+, g 7→ αg :=

n∑
i=1

giαi

and the following hold:
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(i) The univariate polynomial ring Bα = k[Z]α with G-action as described above is a retract of f in TsG
and a standard universal and basic object in TsG. In particular dk(G) = 1.

(ii) Every basic object in TsG which is also a normal ring is of the form Bβ for some embedding of abelian
groups β : G ↪→ k+.

(iii) Two normal basic algebras Bα, Bβ ∈ TsG are isomorphic if and only if α = c · β for some 0 6= c ∈ k.
They are conjugate under an outer automorphism of G if and only if α(G) = c · β(G) for some
0 6= c ∈ k.

(iv) Let α := α(1), · · · , α(n) be n not necessarily distinct embeddings G ↪→ k+. Then

f ∼= B⊗nα ∼= Bα(1) ⊗k Bα(2) ⊗k · · · ⊗k Bα(n) .

Proof. (1): This has already been shown. (2): Let N ∈ Ts be basic and normal. Then N ↪→ f and it
follows from [12] that N ∼= k[T ] is a univariate polynomial algebra. It is clear that the G-action is of the form
(T )g = T − β(g) with β ∈ Hom(G, k+). Since ker (β) ≤ G acts trivially on N , which is a faithful kG-module,
we must have ker (β) = 1, so β is injective and N ∼= Bβ ∈ Ts. (3): Let η ∈ Aut(G) ∼= GLn(Fp) and assume
that θ is an k-algebra isomorphism Bα → (Bβ)η. Then θ(Z) = c · Z + µ with c, µ ∈ k and c 6= 0, such that
θ((Z)g) = θ(Z − α(g)) = cZ + µ − α(g) = (θ(Z))η(g) = (cZ + µ)η(g) = c(Z − β(η(g))) + µ. This implies
α(g) = c · β(η(g)) for all g ∈ G and the last statement in (3) follows easily.

(4): As above we define θs ∈ TsG(Bα(s) ,f) by Z 7→
∑n
j=1 α

(s)
j Yj . Assume first that α(s) = (α(1))(ps−1) with

α
(s)
i = (α

(1)
i )p

s−1

. Set Γ := (γij) = (αp
j−1

i )−1 ∈ GLn(k), then Yk =
∑n
j=1 γkjθj(Z), hence the coproduct

morphism Θ :=
∐n
s=1 θs := θ1⊗· · ·⊗ θn is a surjective G-equivariant algebra homomorphism from ⊗ni=1Bα(i)

to f. Since both algebras are polynomial algebras of Krull-dimension n, Θ is an isomorphism. Clearly f
and each of the Bα(i) are triangular and therefore erasable. It follows that f ∼= Bα(1) ⊗k k[λ2, · · · , λn] with

k[n−1] ∼= k[λ2, · · · , λn] ≤ fG. Now we take α(i) for i = 2, ..., n to be arbitrary embeddings G ↪→ k+. As before

we see that B⊗nα ∼= Bα(1) ⊗k k[µ2, · · · , µn] with k[n−1] ∼= k[µ2, · · · , µn] ≤ (B⊗nα )G, so f ∼= B⊗nα . This finishes
the proof.

Corollary 3·16. Let G ∼= F+
pn and Fps ≤ k for some s ≤ n. Then

dk(G) ≤
{
n/s if s divides n
bn/sc+ 1 otherwise

where bxc is the largest integer ≤ x.

Proof. Let n = ms + r with 0 ≤ r < s. Then Proposition 3·13 and Theorem 3·15 give dk((Cp)
n) ≤

m · dk((Cp)
s) + dk((Cp)

r), which is equal to m = n/s, if r = 0 and equal to m+ 1 = bn/sc+ 1 otherwise.

With the help of Theorem 2·11 we can classify the minimal normal generators and minimal normal s-
projective objects of Ts in the case where G is elementary-abelian and k is large enough. We will use the
notation introduced before Theorem 3·15:

Proposition 3·17. Let G be elementary-abelian of order pn and dim Fp(k) ≥ n and let Γ ∈ Ts be a normal
ring. Then the following are equivalent:

(i) Γ is a generator and minimal in Ts;
(ii) Γ ∼= Bα = k[Z]α for some embedding α : G ↪→ k+;

(iii) Γ is an s-projective and minimal object in Ts.

Proof. “(1) or (3) ⇒ (2) ”: Since every generator and every s-projective object is universal, this follows
from Theorem 3·15. “(2) ⇒ (3) ”: This also follows directly from Theorem 3·15. “(2) ⇒ (1) ”: Since Bα
is basic, it is minimal in Ts, so it remains to show that Bα is a generator. But Bα ∈ Ts is triangular and
therefore erasable, so it follows from Theorem 2·11 that Bα is an s-generator, hence a generator (see Lemma
2·7).

4. Basic Algebras and the Essential Dimension of G

In this section we are going to briefly point out the connections to the notion of “essential dimension” of a
group, as defined by Buhler and Reichstein ([5]). Let for the moment k be an arbitrary field and G an arbitrary
finite group, acting faithfully on the finite-dimensional k-vector space V . Then the essential dimension ek(G)
is defined to be the minimal transcendence degree over k of a field E with k ≤ E ≤ k(V ∗) := Quot(Sk(V ∗))
such that G acts faithfully on E. It can be shown, that the value ek(G) only depends on the group G and the
field k, but not on the choice of the faithful representation (see [5] Theorem 3.1., if k has characteristic 0 and
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[2] Proposition 7.1 or [6] for arbitrary field k). For an arbitrary field K ≥ k together with an embedding of
G in Autk(K), define

ek(K) := min{tr.degkE | k ≤ E ≤ K, E isG −stable with faithful action},

in other words, ek(K) is the minimum transcendence degree of a Galois field extension E/EG containing k
and contained in K.

Lemma 4·1. ek(G) = max k≤K
G≤Autk(K)

ek(K) = max k≤K
G≤Autk(K)

(min k≤E≤K
G≤Autk(E)

tr.degkE).

Moreover, ek(G) = ek(L) for any field L ≤ k(V ∗) with G ≤ Autk(L).

Proof. Define ẽk(G) := max k≤K
G≤Autk(K)

ek(K). By definition ek(G) = ek(k(V ∗)) ≤ ẽk(G). By [6] Proposition

2.9, ek(K) ≤ ek(G) for any field K with G ≤ Autk(K), hence ẽk(G) ≤ ek(G). Now pick any field L ≤ k(V ∗)
with faithful G-action. Then by the definitions we have ek(G) ≤ ek(L) ≤ ẽk(G), which finishes the proof.

Definition 4·2. A field extension L ≥ k with G ≤ Autk(L) will be called a G-field (over k). If tr.degkL =
ek(G) = ek(L), then L will be called an essential G-field (over k).

Now let k again be of characteristic p > 0, let G be a p-group and choose V := Vreg. Let B ∈ Ts be basic
(and cyclic, if we wish), then B ≺ Dk with

Quot(B) ≤ Quot(Dk) ≤ k(V ∗).

Clearly G acts faithfully on Quot(B), so dk(G) = Dim(B) ≥ ek(G). On the other hand, let k ≤ K be essential
with K ≤ k(V ∗), then we can choose a point a ∈ K and consider the algebra A := k[aG] := k[(a)g | g ∈ G] ∈
Ts. It follows from the definition of ek(G) that Dim(A) = ek(G). Moreover, the map (x1)g 7→ (a)g extends
to a surjective morphism φ : Dk → A, so A ∼= Dk/ ker (φ) is a cyclic domain in Ts. If U ≤ Dk is universal,
there is also a morphism α ∈ Ts(U, A) and since α(U) ⊆ K with faithful G-action on α(U) it follows again
from the definition of ek(G) that Dim(A) = Dim(α(U)) = ek(G). Hence dk(G) = Dim(B) ≥ Dim(α(U)) =
tr.degk(Quot(α(U))) = ek(G), so K ≥ Quot(α(U)) is an algebraic extension. Note that α(U) ∼= U/p for some
G-stable prime ideal p E U. Conversely, if ℘ ∈ Spec(U) is G-stable such that k(℘) := Quot(U/℘) ≤ K, then
K is algebraic over k(℘), so k ≤ k(℘) is essential. It follows that ek(G) is the minimum of the transcendence
degrees of “embedded residue class fields” tr.degkk(℘) of those G-stable prime ideals ℘ E U that satisfy
k(℘) ↪→ Quot(U). This motivates the following

Definition 4·3. Let A ∈ Ts with total ring of quotients Q(A) := Quot(A). With Spec(A)G we denote the
set of G-stable prime ideals of A. We also define

SA := {k(℘) | ℘ ∈ Spec(A)G, ∃ a G− equivariant embedding k(℘) ↪→ Q(A)},
the set of all “embedded residue class fields” of G-stable prime ideals of A.

Note that if A ∈ Ts is a domain, then Q(A) = k(0) ∈ SA. We can now summarize

Proposition 4·4. Let k be a field of characteristic p > 0, G a group of order pn and U ≤ Dk a universal
trace-surjective algebra (e.g. any basic algebra). Set ddom,k(G) := min{Dim(C) | C ∈ Ts | C (cyclic) domain},
then

n ≥ dk(G) ≥ ek(G) ≥ ddom,k(G).

Moreover ek(G) = ek(Q(U)) = min{tr.degkk(℘) | k(℘) ∈ SU} and every essential G-field K ≥ k is algebraic
over an essential G-field of the form k ≤ k(℘) ∈ SU.

Note that we can choose U to be, for example, the polynomial algebra U = k[Y1, · · · , Yn] mentioned in Theorem
0·6. So, at the expense of replacing a faithful linear action of G on S(V ∗) by a nonlinear action on U , one
can reduce the dimensions of rings from which to construct essential G-fields. If for example G is cyclic of
order pn, the smallest faithful representation has dimension pn−1 +1, whereas U has Krull-dimension n. Since
every basic algebra B ∈ B is embedded into Dk, we have the following “intrinsic description” of the essential
dimension:

Corollary 4·5. Let B be any basic algebra in Ts, then

ek(G) = ek(Q(B)) = min{tr.degkk(℘) | k(℘) ∈ SB}.

In Proposition 3·4 (7) we proved that a universal algebra A ∈ Ts is basic if and only if it does not have
any “embedded” trace-surjective proper factor rings. The following is a criterion in a similar spirit for the
situation where dk(G) = ek(G):
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Lemma 4·6. For any universal domain A ∈ Ts the following are equivalent:
(i) SA = {Q(A)};

(ii) A is basic and dk(G) = ek(G);
(iii) ek(G) = Dim(A).

If these hold, Q(A) is an essential G-field and all the others are algebraic extensions thereof.

Proof. (1) ⇒ (2): It follows from Proposition 3·4 (7) that A is basic, hence by Corollary 4·5, ek(G) =
tr.degkk(℘) for some k(℘) ∈ SA. So k(℘) = Q(A), ℘ = 0 and dk(G) = Dim(A) = ek(G).
(2) ⇒ (3): This is obvious, since Dim(A) = dk(G).
(3) ⇒ (1): Since A is universal, Corollary 3·5 yields Dim(A) = ek(G) ≤ dk(G) ≤ Dim(A), so A is basic. Now
assume k(℘) ∈ SA; then, k(℘) ≤ Q(A) and by Corollary 4·5, ek(G) = ek(Q(A)) ≤ tr.degkk(℘) = Dim(A/℘) ≤
Dim(A) = ek(G), so ℘ = 0.

If k is algebraically closed, then the numerical invariant dk(G) is similar in nature to the “covariant
dimension”, defined and analyzed in [20] and [19] for finite groups acting on varieties in characteristic zero.
The analogue for arbitrary fields would be to define covdimk(G) as the minimum Krull dimension of a
faithful subalgebra of some S(V ∗), in contrast to dk(G), which is the minimum Krull dimension of a trace-
surjective subalgebra of Dk(G). Using arguments of [20] one can see that ek(G) ≤ covdimk(G) ≤ ek(G) + 1
for arbitrary field k. The fact that Dk(G) < S(Vreg)[1/X] implies the inequalities dk(G) ≥ ek(G) and
dk(G) + 1 ≥ covdimk(G).
Let T := k(x1, · · · , xn) be a purely transcendental field extension and L ≤ T a subfield of transcendence
degree m ≤ n − 1. Then it follows from a result of Roquette and Ohm (see Proposition 8.8.1. [17]) that L
can be embedded into k(x1, · · · , xn−1). An obvious induction shows that, indeed, L can be embedded into
k(x1, · · · , xm). This can be used to obtain the following result:

Proposition 4·7. Let A ∈ Ts with A ≤ Dk and assume that G is not isomorphic to a subgroup of Autk(L)
for any intermediate field k < L ≤ k(x1, · · · , xm−1) with L = k(℘) ∈ SA. Then m ≤ ek(G).

Proof. By Proposition 4·4 there is an essential G-field k(℘) ∈ SA with k(℘) ≤ Q(A) ≤ Q(Dk) ∼=
k(x1, · · · , x|G|−1). Assume ek(G) < m, then k(℘) can be embedded into k(x1, · · · , xm−1) and G ≤ Aut(k(℘)).
This contradiction finishes the proof.

By Lüroth’s theorem, any intermediate field k < L ≤ k(x1) is rational, i.e. isomorphic to k(x1) and therefore
Autk(L) ∼= PGL2(k). From this we obtain:

Proposition 4·8. Let k be a field of characteristic p > 0 and 1 6= G a finite p-group. Then the following
are equivalent:

(i) dk(G) = 1;
(ii) ek(G) = 1;

(iii) G ∼= F+
pn ≤ k;

(iv) G is isomorphic to a subgroup of GL2(k).

Proof. “(3) ⇐⇒ (4)” is clear, since the finite p-groups of GL2(k) are isomorphic to subgroups of the
additive group Ga = (k,+).
“(1)⇒ (2)” is clear, because ek(G) = 0 ⇐⇒ G = 1 ⇐⇒ dk(G) = 0.
“(2)⇒ (4)”: If G is not isomorphic to a subgroup of PGL2(k) we take A := Dk and m = 2 in Proposition 4·7.
By Lüroth’s theorem Autk(L) ∼= PGL2(k) for any intermediate field k < L ≤ k(x1), hence 2 ≤ ek(G).
“(3)⇒ (1)”: This follows from Theorem 3·15.

Corollary 4·9. Let k be a field of characteristic p > 0 and G a finite p-group, then dk(G) = 2 if and only
if ek(G) = 2.

Corollary 4·10. Let G ∈ {Cp × Cp, Cp2}; assume moreover that k is the prime field Fp in the case
G = Cp × Cp. Then dk(Cp2) = ek(Cp2) = 2 = dFp(Cp × Cp) = eFp(Cp × Cp).

Proof. Note that G is not isomorphic to a subgroup of PGL2(k), hence 2 ≤ ek(G) ≤ dk(G) ≤ 2, by
Proposition 4·4.

Proposition 4·11. Let G be elementary-abelian of order pn with n ≥ 3 and k be any field of characteristic
p. Then ek(G) ≤ 2.

Proof. We can assume k = Fp. We use the description of G and further notation from Theorem 3·15 and the
arguments immediately before that. In particular U = k[Y1, · · · , Yn] with G-action given by (Yj)gi = Yj − δij .
Let b ∈ UG\k, so that b is transcendental over k and put A = k[b, bY1 + b2Y2 + b3Y3 + ... + bnYn] < U .
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Clearly A is a polynomial subalgebra of U with only two generators on which G acts faithfully. Note that
for Z :=

∑n
i=1 b

iYi and b := (b, b2, · · · , bn), we have k(b) ⊗k A ∼= k(b)[Z]b̄, in the notation of Theorem 3·15.
It follows that Quot(A) < Quot(U), contains a trace-surjective algebra which is a quotient of U of Krull
dimension 2. In particular eFp(G) ≤ 2.

Remark 4·12.
(i) In the case where k is a field of characteristic different from p, containing a primitive p-th root of

unity and G is a finite p-group, ek(G) is equal to the least dimension of a faithful linear representation
of G over k (see [18]).

(ii) The result in Proposition 4·8 has been obtained in [21] for arbitrary finite groups and infinite fields
k, together with the consequence that ek(Cp × Cp) = 1. The result of Proposition 4·8, that ek(G) = 1
for G being elementary abelian and |G| ≤ |k| has also been obtained with a different method in [22]
Lemma 2. In [8] the groups with essential dimension one were classified for all fields k. We are not
aware that the general bound in Proposition 4·11, which is independent of k, already appears in the
literature.

(iii) The results in Corollaries 4·9, 4·10, Proposition 4·11 and Theorem 3·15 show that the group invariants
dk(G) and ek(G) depend crucially on the choice of the ground field k.

(iv) Set A := k[x, y], the polynomial ring in two variables, and G := 〈g〉 ∼= Cp2 , then there is a G-action

on A defined by (x)g = x+ yp−1 and (y)g = y − 1. Using [13] Lemma 5.2. one can show that A ∈ Ts
is standard universal (i.e. a retract of Dk). Then it follows from 4·10, that A is a basic object in Ts,
Q(A) is an essential G-field and all essential G-fields are algebraic extensions of Q(A).

5. Concluding Remarks

We conclude this article with a couple of open questions:

• In all cases where we know dk(G), there exists a basic algebra which is an erasable polynomial ring.
Is there always an erasable basic algebra? Its ring of G-invariants would be stably polynomial.

• If k = Fp we dare to conjecture that dk(G) = n = logp(|G|). This would follow from a positive answer
to the first question and Proposition 5.5 in [13].

• Does every erasable algebra in Ts have a polynomial invariant ring?
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