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Abstract

Recent developments in global financial markets have increased the need for research
aimed at the measurement and possible reduction of liquidity risk. In particular,
market crashes have been partly blamed on the sudden withdrawal of liquidity in
markets and increases in liquidity risk. To this end, it is important to develop bet-
ter approaches for inferring or quantifying liquidity risk. Liquidity risk caused by
some investors trading on their information advantage (informed trading) has been a
subject of market microstructure research in the last few decades. Researchers have
employed information-based models that use observed or inferred order flow to inves-
tigate this problem. The Probability of Informed Trading (PIN) is a measure which
uses inferred order flow to quantify the extent information asymmetry. However, a
number of computational issues have been reported to effect the estimation of PIN.
Using an alternative methodology, we address the numerical problem associated with
the estimation of PIN. Varied evidence of a relationship between volume and bid-ask
spread has been documented in the extant literature. In particular, theory suggests
that bid-ask spread and volume are jointly driven by a common process as both vari-
ables measure an aspect of liquidity. The complex relationship between these variables
is time-varying since the informed trading component of order flow changes as trading
takes place. Thus, volume and bid-ask spread may provide insight on the time-varying
composition of economic agents trading an asset. We exploit the nonlinear relation-
ship between traded volume and bid-ask spread to develop a model that can be used
to infer informed and uninformed trading components of volume. The structure of
the model and estimation methodology enhances the sequential processing and incor-
poration of past volume and bid-ask spread as conditioning information. The model
is applied to two equities that trade on the New York Stock Exchange. Finally, to
increase our understanding on the effects of liquidity risk on volatility, we also exam-
ine whether separating volume into informed and uninformed components can provide
further insight on the relationship between liquidity risk and volatility.
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Chapter 1

Introduction

Financial markets provide platforms for diverse participants including private in-
vestors, institutional investors, brokers and designated market-makers to trade finan-
cial securities. In addition to the facilitation of trade between market participants,
the markets collect and make available trade-related information such as prices, traded
volume, time of trade, number of transactions and other relevant variables about as-
sets. Market participants take account of this information when they make purchase
and sale decisions.

Academic researchers also use the trade-related information from financial markets to
develop theories and models that can be used to learn about the trading behaviour of
market participants. A branch of the finance literature that studies investor trading
behaviour in financial markets is called market microstructure. This research area
has been defined differently by several academics. A common definition that can be
drawn from papers including Madhavan (2000), O’Hara (1995) and Spulber (1996)
is that market microstructure explores the evolution of asset prices while taking into
consideration the following micro-level market issues:

1. The effect of market regulations and mechanisms on the evolution of asset prices.

2. How well the organisation of markets enhances the easy exchange of assets in
large volumes with little or no impact on the price of the asset (liquidity).

3. How information generated from the demand and supply decisions of market
participants, affects the price of an asset.



4 Introduction

Market microstructure theory assumes that financial market participants have differ-
ent information sets which influence their trading behaviour. Market participants,
therefore, reveal the information they hold about the asset through their demand and
supply decisions. Depending on the quality of information available, market partici-
pants alter their expectations on the stream of future cash-flow of an asset and hence
the value they place on the asset.

At the core of the extant literature, economic agents in financial markets are cate-
gorised into informed and uninformed. The uninformed market participants are some-
times referred to as liquidity traders. This categorisation is based on the assumed
motives behind the trading decisions of market participants. Informed market partic-
ipants are considered to have superior knowledge or the sophistication to determine
whether an asset is mis-priced. They, therefore, enter into trades hoping to gains from
their information advantage. On the other hand, uninformed market participants do
not have any information on the future price of the asset and hence trade on a multi-
tude of reasons. These reasons may include portfolio re-balancing, the need for funds
for other investment projects and consumption smoothing.

The likelihood of a market participant entering into a transaction with other market
participants who may potentially have superior knowledge about the value of the asset
creates what is referred to as information asymmetry. Bagehot (1971) made the ar-
gument that the differences between the prices at which investors are able and willing
to buy or sell (bid-ask spread) an asset exist because some investors possess superior
information. This implies that the size of the bid-ask spread is a function of informa-
tion asymmetry. Information asymmetry is a fundamental source of uncertainty faced
by market makers and liquidity providers. Investigating the presence or otherwise of
informed trading in an asset and within the market is very important since information
asymmetry affects the liquidity of an asset and the market in general.

In a seminal paper, Glosten and Milgrom (1985) formally presented a theoretical
model for the idea of Bagehot (1971). According to Glosten and Milgrom (1985)
traders arrive at the market sequentially to have their orders executed. In their model
bid and ask prices are set based on the liquidity providers’ belief of the proportion
of informed traders in the market. Thus in the absence of exogenous transaction
cost there exist a positive bid-ask spread. On the other hand, Kyle (1985) postulates
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that informed traders submit their orders strategically in a gradual manner. This
strategic behaviour of informed traders ensures that the impact of their trades on asset
price is minimal. Some academic papers have subsequently explored the information
asymmetry problem by extending the work of Glosten and Milgrom (1985). Many
papers based on initial work of Kyle (1985) also explore the impact of information
asymmetry on trading cost.

Papers including Chordia et al. (2001), Acharya and Pedersen (2005), Brennan and
Subrahmanyam (1996) and Easley and O’Hara (2003) argue that in equilibrium, high
levels of information asymmetry create significant trading costs. This causes unin-
formed traders to demand higher returns resulting in assets being purchased at a
discount. Chordia et al. (2001) also indicate that information asymmetry affects the
volatility of assets. French and Roll (1986) found evidence of increased price volatil-
ity principally caused by private information of informed traders. Using a theoretical
model, Wang (1993) also argues that in a market with information asymmetry, less
informed traders demand an extra premium for the uncertainty of trading against bet-
ter informed traders. Price volatility will, therefore, increase as less informed traders
post quotes that widen the bid-ask spread.

1.1 Measuring Information Asymmetry

A number of approaches have been taken in the market microstructure literature
to provide proxies for and measures of information asymmetry. In what follows we
provide a brief review of some of the prominently used methods. This review however
is not intended to be an exhaustive review of the numerous methods in the literature.

1.1.1 Spread decomposition models

A basic measure of illiquidity is the bid-ask spread. The bid-ask spread measures
the rent market-makers charge for the provision of immediate liquidity. The adverse
selection theory put forward by Glosten and Milgrom (1985) suggests that a trader
offering to sell a large amount of his/her stock holdings unexpectedly will have to take
a lower price for the asset if the counter-party to the trade believes that the seller of
the stock has information which other traders do not know.
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Various authors including Glosten and Harris (1988), foster1993variations, Madhavan
et al. (1997), Huang and Stoll (1997) and Sadka (2006), have used a trade indicator
regression model to decompose the bid-ask spread into inventory-holding cost, adverse-
selection cost and order-processing cost components. Liquidity suppliers incorporate
into the bid-ask spread the costs associated with the execution and processing of
orders they receive. These may include costs such as brokerage fees and transaction
tax. Apart from these costs, liquidity providers are exposed to the risk of trading with
better informed traders. The adverse-selection component of the bid-ask spread is the
compensation demanded by liquidity traders for trading with informed traders. Also,
since market makers hold inventory to meet their obligation of providing immediate
liquidity when demanded, they are exposed to price changes. Hence they demand
compensation for this price risk in the form of inventory-holding cost.

Let changes in mid-quote that prevailed before the transaction at time t be denoted
as rt = (pask

t +pbid
t )/2 − (pask

t−1+pbid
t−1)/2. Buyer and seller initiated trades at time t are also

denoted by qt = +1 and qt = −1 respectively. If St is the quoted spread prior to
the transaction at time t, then the Huang and Stoll (1997) model which encompasses
many of the trade indicator models is of the form

rt = (α + β)St−1

2 qt−1 + α(1 − 2π)St−2

2 qt−2 + εt, εt ∼ N (0, σ2), (1.1)

where E[qt−1|qt−2] = (1 − 2π)qt−2. The model parameters α and β are the adverse
selection and inventory components of the quoted spread. The order processing com-
ponent is calculated as 1−α−β. The probability that the trade at time t is opposite in
sign to the trade at t− 1 is π. The adverse selection component is used as a proxy for
information asymmetry. A temporary increase in the information asymmetry between
the informed and uninformed investors should cause a temporary positive deviation
in the bid-ask spread from its normal level.

1.1.2 Price Impact Models

Informed market participants are likely to evaluate the impact of their trades on
the price of the asset and hence would act strategically when trading. Kyle (1985)
introduced one of the early strategic information models for a single asset market
in which a monopolistic market maker operates. The market maker in this market
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sets break-even prices in such a way that the price sensitivity (referred to as price
impact) to trades balances losses and gains resulting from transactions with informed
and uninformed traders respectively.

In this model a trade from an informed trader should cause a permanent price impact
because it partly reflects the traders’ private information. The market subsequently
incorporates this information into the price. Studies including Easley and O’Hara
(1987), Glosten and Harris (1988), Glosten (1989) and Kyle (1985) argue that price
impact of trade better captures the illiquidity effect of information asymmetry. The
Kyle (1985) model is of the form

∆Pt = γ0 + γ1Xtqt + εt, εt ∼ N (0, σ2), (1.2)

where ∆Pt is price change, Xt is total volume of shares traded between time t−1 and t
respectively. However, other researchers have used various transformations of volume
such as square root of volume for Xt. For the same trading interval if the trade is
inferred to be a buyer initiated trade we have qt = 1 while a seller initiated trade is
qt = −1. In equation 1.2, γ1 measures the effect of information asymmetry on prices
while public information is captured in the error term εt. The model has been widely
applied to different asset classes.

Cont et al. (2014), Foster and Viswanathan (1993), Glosten and Harris (1988) and
Huh (2014) have extended and applied this model in various ways to answer the same
research problem. The drawback of this model is that at very low frequencies such as
daily level, aggregate trades will have to be classified as either buyer or seller initiated.
This may render the estimates of the model parameters less accurate compared to
estimating the model at high frequencies.

1.1.3 Vector Autoregressive (VAR) Models

Hasbrouck (1991) introduced the Vector Autoregressive (VAR) model to study the
relationship between economic and financial variables. It is also used as a model to
measure information asymmetry. Other models including the price impact model of
Kyle (1985) have assumed that information asymmetry has instant impact on asset
prices. However, the intuition behind the VAR is that the impact of information on
asset prices takes effect gradually.
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Defining signed volume at time t as xt = qtXt , Hasbrouck (1991) proposed the fol-
lowing model,

rt =
K∑
i=1

αirt−i +
K∑
i=0

βixt−i + ε1,t, ε1,t ∼ N
(

0, σ2
1

)
(1.3a)

x0
t =

K∑
i=1

γirt−i +
K∑
i=1

ρixt−i + ε2,t, ε2,t ∼ N
(

0, σ2
2

)
. (1.3b)

The model error terms ε1,t and ε2,t are updates to public and private information
sets respectively. Hasbrouck (1991) chose the value of K to be 5. The proxy for
information in this model is xt. It can be any trade related variable such as duration
between trades. The estimation of the impulse response function

K∑
i=0

E(rt+i) provides
a measure of the private information of the trade.

1.1.4 Probability of Informed Trading (PIN)

The Probability of Informed Trading, introduced by Easley et al. (1996) is another
measure of information asymmetry risk which is based on the asymmetric sequential
trade model of Glosten and Milgrom (1985). Since the introduction of PIN, it has been
extensively used as a proxy for liquidity risk in finance and in particular the market
microstructure literature. Examples of the application of PIN as a risk measure are
Borisova and Yadav (2015), and Chung and Li (2003).

PIN is used as a possible risk factor in the determination of expected asset returns.
In the US market, Easley et al. (2002) extended Easley et al. (1996) to investigate
the effect of information asymmetry on expected asset returns. They conclude that
assets with higher PIN have correspondingly higher expected returns in comparison
with assets that have lower PIN. In another study, Easley et al. (2010) established
that PIN plays a significant role in providing explanatory power in a regression model
where cross-sectional asset return is the response variable. Brennan et al. (2012) re-
port the existence of a significant positive relationship between expected returns and
price changes generated by sell orders. Motivated by the findings in Brennan et al.
(2012), Subrahmanyam et al. (2013) studied the asymmetric relationship between the
components of PIN. They found that the component of PIN attributable to trading
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based on unfavourable information (sell orders) is priced.

The PIN has traditionally been estimated on aggregate daily buyer and seller ini-
tiated trades. A number of studies including Boehmer et al. (2007), Easley et al.
(1997b), Easley et al. (2010), Lei and Wu (2005), Vega (2006) and Lin and Ke (2011)
have indicated that the PIN may be biased. The estimation of the underlying param-
eters of PIN is prone to numerical instability as a result of the nature of the likelihood
function. This leads to corner solutions, especially for frequently traded assets.

In Chapter 2, we use a Bayesian approach to estimate the model parameters of the PIN
measure. This alternative estimation methodology does not rely on any optimisation
routine and hence avoids the numerical problems reported in the maximum likelihood
estimation approach of calculating PIN. The methodology also provides a natural
way of estimating the uncertainty about the model parameters and that of the PIN
measure.

The Bayesian methodology Chapter 2 is implemented on high frequency buyer and
seller initiated trades to aid the estimation of daily PIN. This is done in Chapter 3
where we compare the time series of daily PIN with the Volume Synchronized Proba-
bility of Informed Trading (VPIN) introduced by Easley et al. (2011) as an alternative
measure of information asymmetry. The VPIN is widely used by many finance pro-
fessionals to measure order toxicity.

Researchers are continually exploring the theoretical relationship between various mar-
ket variables to build new information-based models which better estimate information
asymmetry. One such relationship is that which exists between volume and bid-ask
spread. In particular, theory suggests that bid-ask spread and volume are jointly de-
termined. Copeland and Galai (1983), Glosten and Milgrom (1985) and Kyle (1985)
posit that investors review their bid and ask quotes in response to their beliefs about
the composition of market participants. In reviewing their quotes, market makers
learn from the orders made by other investors who take the opposite side of the trade.
A wider bid-ask spread may be an indication of a higher estimate of information
asymmetry or other risks including inventory risk. A wider bid-ask spread will have a
feedback effect on subsequent trading decisions. Informed traders experiencing a fall
in their anticipated profits due to the increased cost of trading will reduce their order
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sizes subsequently.

Studies including Lesmond (2005) and Venkatesh and Chiang (1986) use the bid-ask
spread to test for increased information asymmetry before the disclosure of events
such as earnings or dividend announcements. Empirical predictions by Admati and
Pfleiderer (1988), Copeland and Galai (1983), Easley and O’Hara (1987), Foster and
Viswanathan (1990), Glosten (1987, 1989) and Kyle (1985) show that bid-ask spread is
positively related to information asymmetry. Admati and Pfleiderer (1988) suggested
that informed traders are attracted to the market when discretionary liquidity traders
are present in the market. This way, informed traders can conceal the information
content of their trades and hence minimise the possible impact of their trades on the
cost of trading. Contrary to this intuition, Foster and Viswanathan (1993) show that
volume and bid-ask spread exhibit similar characteristics during any typical trading
day. Both volume and bid-ask spread decrease from a high level a few minutes after
trading has begun in the morning and then rise again a few hours after lunchtime,
peaking during the last hour of the trading day.

Hasbrouck (1991) also argued that bid-ask spreads respond continuously to trades.
The dynamic changes in bid-ask spread suggest that market participants’ perception of
information asymmetry is not the same all the time. The bid-ask spread is, therefore, a
natural measure of liquidity reflecting investors’ expectations of market movements as
they learn from the trading process. Thus, the temporal relationship between volume
and bid-ask spread may provide insight on the time-varying composition of economic
agents trading an asset.

None of the information-based models above has explored the relationship between
volume and bid-ask spread in an attempt to infer the unobservable informed trading.
Motivated by this, we propose an alternative approach of inferring informed trading
in Chapter 4. We model the joint relationship between traded volume and bid-ask
spread dynamically using a state space model while decomposing volume into two
components with corresponding effects on bid-ask spread.

We depart from the use of derived variables such as the buyer or seller initiated trades
or volume which has predominantly been used in the literature. Using our model,
it is possible to account for the uncertainty about model parameters and unobserved
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processes. The structure of the model and estimation methodology enhances the in-
corporation of past volume and bid-ask spread as conditioning information. To the
best of our knowledge, this is the first attempt at exploiting the predicted relation-
ship between traded volume and bid-ask spread to extract unobserved informed and
uninformed trading using the Kalman Filter in a Bayesian framework.

Other branches of the finance literature have extensively explored the relationship
between asset returns and volume to learn about information in asset prices. This
has led to many volatility forecasting models of varied complexity. In the market
microstructure literature, the relationship between trade related data have been used
to study the relationship between informed trading and volatility. These studies have
resulted in mixed findings which are contingent on the underlying assumptions about
the behaviour of market participants. In Chapter 5 we propose alternative models that
can be used to explore the temporal relationship between volatility, informed trading
and uninformed trading. The models exploit the predicted relationship between traded
volume, bid-ask spread and volatility. We use the models to generate one-step-ahead
volatility forecasts. The models investigated in Chapter 5 are compared with the
Heterogeneous Autoregressive (HAR) model introduced by Corsi (2009).

The modelling approach we take in Chapters 4 and 5 are unique from what has been
done in the literature in the sense that we do not rely on ordinary least squares
estimation which assumes that the effect of information asymmetry is fixed over the
entire sample period. We are also able to account for parameter uncertainty and fat
tails in the observed market data.

We provide some conclusions in Chapter 6.





Chapter 2

A Bayesian Approach To

Probability Of Informed Trading

2.1 Introduction

During the last three decades researchers and finance practitioners have been inves-
tigating how to quantify information asymmetry risk in financial markets. In recent
times investigations about informed trading risk has increased partly in response to
financial market crashes. A school of thought in the financial literature attributes
the market crashes to the temporary withdrawal of liquidity by some investors. It
is, therefore, appropriate that in times of market uncertainty and temporary liquidity
dry-up, we revisit existing approaches used for quantifying information asymmetry
risk.

The Probability of Informed Trading is a widely used measure of information asym-
metry risk in the finance literature. The underlying parameters of PIN model are
estimated using maximum likelihood estimation. In the estimation of the parameters
underlying the PIN, a number of numerical computational issues have been docu-
mented in Boehmer et al. (2007), Easley et al. (1997b), Easley et al. (2010), Lei
and Wu (2005), Vega (2006), Yan and Zhang (2012) and Lin and Ke (2011). The
literature cited reports that due to the nature of the likelihood function of the PIN
model sometimes MLE leads to floating-point exceptions. Secondly, the maximum
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likelihood estimates of some of the underlying parameters of PIN lie on the boundary
of the parameter space. Also, one need to choose initial values of the MLE carefully
to achieve stable results. Thus the estimates are likely to be dependent on the choice
of the initial values used by the optimiser. Finally, in circumstances where the likeli-
hood function has several maxima, the MLE optimiser may settle on a local maximum
which may not necessarily be the global maximum we seek. These computational is-
sues potentially effect the accuracy of the PIN estimate which in turn will impact any
risk management decision drawn based on the PIN.

Boehmer et al. (2007), Easley et al. (2010, 1997b), Lei and Wu (2005), Vega (2006), Yan
and Zhang (2012) and Lin and Ke (2011) have suggested alternative solutions to the
computational problems of PIN estimation. However, there seems to be no concrete
solution for the known problems. Motivated by the search for improvement in estima-
tion of PIN as well as the search for alternative estimation methods to PIN, we employ
a Bayesian approach to the estimation of the parameters of Easley et al. (1996) infor-
mation asymmetry model. Using the Bayesian methodology, we can account for the
uncertainty in the estimation of the model parameters. This approach also avoids the
numerical problem of the MLE optimisers. Another motivation for using a Bayesian
method is its ability to handle complex models where tractable analytical formulations
are difficult to write down in closed-form and hence to estimate. Furthermore, we have
a natural way of calculating the standard errors of the model parameters and the PIN
from their respective posterior distributions.

In section 2.2, we provide a brief introduction to the theory underpinning the Easley
et al. (1996) model. The estimation method is also discussed. We proceed with a
description of our method of estimation in section 2.3. The theory and estimation
method of Easley et al. (2002), which is an extension of the Easley et al. (1996) is
described in section 2.4. In section 2.4, we give details of the Bayesian estimation
method of the extended model. In section 2.6 and 2.7, we carry out empirical imple-
mentation of the methods detailed in sections 2.2, 2.3, 2.4 and 2.5 for a simulated data
set and real data respectively. The results obtained from the empirical investigation
are also discussed. Finally we provide some conclusions in section 2.8.
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2.2 The Benchmark PIN Model

Glosten and Milgrom (1985) introduced the sequential information model for a market
involving a risk-neutral market maker and two economic agents, namely the informed
and uninformed traders. The informed and uninformed traders submit their orders to
either buy or sell an asset. The market maker subsequently updates her information
about the arrival of informed traders and then posts bid and ask prices that protect her
against losses from trading with the informed traders. The market maker continues
this Bayesian learning until all possible private information held by informed traders
are incorporated into the price of the asset.

In the Glosten and Milgrom (1985) market setting, informed traders are assumed to
be competitive and risk-neutral while liquidity traders buy or sell for reasons other
than information on the fundamental value of the asset. Easley et al. (1996) proposed
a structural model based on the sequential information model of Glosten and Milgrom
(1985). Easley et al. (1996) model assume that within any trading day, the number of
buyer and seller initiated trades from informed, and uninformed traders are realisations
of independent Poisson distributions with mean µ and ϵ respectively. In the model
a news event occur at the beginning of each trading day with probability α. With a
probability δ, the news event on a "bad news day" will have a negative impact on the
value of the asset. Otherwise on a "good news day", there will be a positive impact on
the value of the asset.

On any given trading day liquidity traders are present in the market to either buy or
sell the asset for reasons other than news. On a bad news day, informed traders expect
an adverse effect on the value of the asset and are therefore likely to sell the asset. The
total numbers of buy and sell orders on a bad news day are assumed to follow Poisson
distributions with means ϵ and µ + ϵ respectively. On a good news day, informed
traders have an incentive to buy the asset if they judge that the current asset value is
under-priced and therefore expect to make gains from their private information. The
total number of buy and sell orders on a good news day are Poisson with means µ+ ϵ

and ϵ respectively.

The assumption that informed traders trade on private information implies that in-
formed traders are absent from the market on a day classified as a no news day. Thus
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on a no news day, the total number of buyer and seller initiated trades are each Pois-
son with mean ϵ. In this model, we do not observe the arrival of investors or the
occurrence of a news event. However, we infer them from the observable market data.
Figure 2.1 below is a representation of the information and order arrival process for
the model

Fig. 2.1 Information and order arrival process in Easley et al. (1996) model

Let Bt and St denote the daily number of buyer and seller initiated trades inferred
using the Lee and Ready (1991) trade classification algorithm. The density of a buy
or sell order on any given trading day t is given as follows

P (Bt, St|Θ) = ω1
e−(µ+2ϵ) (µ+ ϵ)St

St!
ϵBt

Bt!
+ ω2

e−(µ+2ϵ) (µ+ ϵ)Bt

Bt!
ϵSt

St!
+ ω3

e−2ϵϵBt+St

Bt!St!
,

(2.1)

where Θ = (α, δ, µ, ϵ), ω1 = αδ, ω2 = α(1 − δ) and ω3 = 1 − α. The corresponding
joint likelihood function over a number of trading days t = 1, . . . , T is

L (Bt, St|Θ) =
T∏
t=1

[
ω1
e−(µ+2ϵ) (µ+ ϵ)St

St!
ϵBt

Bt!
+ ω2

e−(µ+2ϵ) (µ+ ϵ)Bt

Bt!
ϵSt

St!
+ ω3

e−2ϵϵBt+St

Bt!St!

]
.

(2.2)

Easley et al. (1996) estimate the model parameters by maximising equation 2.2 and



2.2 The Benchmark PIN Model 17

define PIN as
PIN = αµ

αµ+ 2ϵ, (2.3)

which is interpreted as the ratio of the expected number of informed trades to the
total number of trades. Easley et al. (1996) suggested a minimum of 60 days worth
of data to achieve stable estimates of the parameters. Due to the floating-point ex-
ception, boundary solution problems of the MLE and other numerical issues of the
maximum likelihood estimation reported in papers including Lei and Wu (2005), Vega
(2006), Yan and Zhang (2012) and Lin and Ke (2011), we carry out the following fac-
torisation of the log likelihood function

log L (Bt, St|Θ) =
T∑
t=1

[
− 2ϵ + (Bt + St) ln ϵ + χ + ln

(
eL1−χ + eL2−χ + eL3−χ

)]
, (2.4)

prior to maximisation. In equation 2.4, we have the following:

L1 = −µ+ St ln(1 + µ
ϵ
) + lnω1,

L2 = −µ+Bt ln(1 + µ
ϵ
) + lnω2,

L3 = lnω3, and

χ = max(L1, L2, L3).

Since the PIN is not a parameter estimate but rather a measure calculated based

on the parameters any MLE optimser employed will not provide the standard error

associated with the estimation of PIN. For this reason, we derive below the asymptotic

variance of the PIN. Let f(Θ) be a multivariate function of the parameter set Θ. The

delta method is a useful technique that can be used to derive the asymptotic variance

of maximum likelihood estimators. According to the delta method (see Schervish

(2012)), the asymptotic variance of f(Θ) is

V ar[f(Θ)] = ∇f ×
∑

Θ
×(∇f)′, (2.5)

where ∇f = ∂f
∂Θ is a vector of the first derivates of the function f(Θ) with respect to

the parameters. The term ∑
Θ is the variance-covariance matrix of the parameters Θ.
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The PIN for the Easley et al. (1996) model can be re-written as =
(

1 + 2ϵ
αµ

)−1
.

P IN =
(

1 + 2ϵ
αµ

)−1
. (2.6)

Since news arrival is a Bernoulli variable with parameter α, informed and uninformed

trade arrival intensities are poisson random variables with parameters µ and ϵ respec-

tively, we have α(1−α)
n

, µ
n

and ϵ
n

as their respective asymptotic variances. The variance

of PIN in the Easley et al. (1996) model can therefore be estimated via the delta

method as follows. The gradient vector is

∇PIN =
(
∂(PIN)
∂α

∂(PIN)
∂µ

∂(PIN)
∂ϵ

)

=
[
1 + 2ϵ

αµ

]−2( 2ϵ
α2µ

2ϵ
αµ2

−2
αµ

)
(2.7)

and the variance-covariance matrix is n−1


α(1 − α) 0 0

0 µ 0

0 0 ϵ


assuming independence of parameters. Defining Ω = [1 + 2ϵ

αµ
]−2 and using equation

2.5 we have

V ar(PIN) = n−1Ω
( 2ϵ
α2µ

2ϵ
αµ2

−2
αµ

)

α(1 − α) 0 0

0 µ 0

0 0 ϵ




2Ωϵ
α2µ

2Ωϵ
αµ2

−2Ω
αµ


and show that

V ar(PIN) = 4Ω2

n

(
ϵ

α2µ2 + ϵ2µ

α2µ4 + α(1 − α)ϵ2

α4µ2

)
(2.8)

We compare results of the maximisation of equation 2.4 with the estimates of the
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Bayesian estimation methods which we detail in the next section.
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2.3 Bayesian Inference Of Benchmark Model

Our goal is to learn about PIN and its underlying parameters from observed trans-

action data. The maximum likelihood estimation approach taken in the literature

assumes that the model parameters are unknown but fixed. However, in a Bayesian

setting, we assume that model parameters are random and unknown. The theory

behind the PIN model relates to a market maker who sets quotes and updates her

knowledge about the trading behaviour of other market participants. The methodol-

ogy is well suited for the estimation of PIN and its parameters since it allows for the

updating of knowledge about model parameters using data from the trading process.

In Bayesian inference, we express the uncertainty about the unknown model parame-

ters through the rules of probability. We achieve this through the Bayes’ rule which

states that the probability of the parameter set Θ given the observed data is

p(Θ|Bt, St) =p(Θ)p(Bt, St|Θ)
p(Bt, St)

∝p(Θ)p(Bt, St|Θ). (2.9)

The denominator in 2.9, p(Bt, St) =
∫
p(Bt, St|Θ)dΘ, is a normalising constant. The

term p(Θ), referred to as the prior density is not dependent on the data. It is used

to express the prior knowledge and uncertainty about the model parameters before

observing the data. The term p(Bt, St|Θ), usually referred to as the likelihood function

is the probability density function of the data conditional on the model parameters. In

Bayesian inference, the primary object of interest is p(Θ|Bt, St) which is referred to as

the posterior density. It summarises our updated knowledge of the model parameters

having observed the data. It pools together information from the prior and likelihood

to provide the updated information. From the posterior density, we can compute

point estimates like the mean, mode and credible intervals for the model parameters.

In this chapter, we employ two Bayesian Markov Chain Monte Carlo (MCMC) meth-
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ods, namely the Gibbs Sampler and the Metropolis Hastings Algorithm to infer the

parameters of the Easley et al. (1996) model. These methods are capable of exploring

the entire support of the posterior distribution of the model parameters.

Given daily buyer and seller initiated trades Bt and St, and defining Dt as

Dt =



1, bad news day with probability ω1 = αδ

2, good news day with probability ω2 = α(1 − δ)

3, no news day with probability ω3 = 1 − α,

then we can write the following conditional buy and sell order distributions

St|Dt = 1 ∼ Pn (µ+ ϵ)

Bt|Dt = 1 ∼ Pn (ϵ)

St|Dt = 2 ∼ Pn (ϵ)

Bt|Dt = 2 ∼ Pn (µ+ ϵ)

St|Dt = 3 ∼ Pn (ϵ)

Bt|Dt = 3 ∼ Pn (ϵ),

where Pn (.) 1 is the probability mass function of a Poisson random variable.

2.3.1 Method 1 : Gibbs Sampler

The latent variableDt is the process which determines the composition of traders in the

market on a daily basis. This underlying process is unobservable and hence is inferred

from transaction data, as a missing data problem within the Bayesian framework.

Since we do not observe trader arrival rates, good, bad or no news days, we employ

the data augmentation procedure to impute these missing observations. We do this

by directly sampling from the posterior distribution of Dt conditional on the available

data. In this section, we employ the theory of data augmentation to derive the density

function of buy and sell trades.

1Pn(x; θ) = e−θθx

x!
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Density of buy and sell trades on a bad news day (Dt = 1)

Sell trades initiated by informed and liquidity traders on a bad news day are denoted

as Sit and Sut respectively. These are assumed to follow Poisson distributions with

means µ and ϵ respectively. Hence the total daily seller initiated trades, St = Sit + Sut

is also Poisson with mean µ+ ϵ. Given the total number of sell orders St, the number

of informed seller initiated trades Sit are binomial with St trials and probability µ/µ+ϵ.

Uninformed seller initiated trades are determined as Sut = St −Sit . All buyer initiated

trades on a bad news day are made by liquidity traders. The distributions of buyer

and seller initiated trades are given as follows:

St|Dt = 1 ∼ Pn (µ+ ϵ),

Bt|Dt = 1 ∼ Pn (ϵ),
Sit |St, Dt = 1 ∼ Bin

(
St,

µ
µ+ϵ

)
,

where Bin (.) 2 is the probability mass function of the Binomial random variable. The

probability of a buy or sell initiated trade, on a bad news day is

f1
(
Bt, St, S

i
t ,Θ

)
=P

(
Bt, St, S

i
t |Dt = 1,Θ

)
=P (Bt|Dt = 1,Θ)P

(
St, S

i
t |Dt = 1,Θ

)
=P (Bt|Dt = 1,Θ)P

(
Sit |St, Dt = 1,Θ

)
P (St|Dt = 1,Θ)

=e
−ϵϵBt

Bt!

(
St
Sit

)(
µ

µ+ ϵ

)Si
t
(

ϵ

µ+ ϵ

)St−Si
t (µ+ ϵ)St e−(µ+ϵ)

St!

=
(
St
Sit

)
e−(µ+2ϵ)ϵBt

Bt!St!
µS

i
tϵSt−Si

t

=e
−µµS

i
t

Sit !
e−ϵϵBt

Bt!
e−ϵϵSt−Si

t

(St − Sit)!
. (2.10)

Density of buy and sell trades on a good news day (Dt = 2)

The total number of buyer initiated trades Bt on a good news day comprises of buyer

initiated trades Bi
t and Bu

t made by informed and uninformed traders respectively.

2Bn(n; r; θ) =
(

n
θ

)
θr(1 − θ)n−r
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These buyer initiated trades are assumed to be Poisson with mean µ and ϵ, hence Bt is

Poisson with µ+ϵ. Conditional on the total daily buyer initiated trades Bt, the number

of buyer initiated trades from informed trades Bi
t are binomial distributions with Bt

trials and probability µ/µ+ϵ. The uninformed buyer initiated trade is calculated asBu
t =

Bt −Bi
t. All seller initiated trades on a good news day are made by liquidity traders.

Thus we have Bt|Dt = 2 ∼ Pn (µ+ ϵ), Bi
t|Bt, Dt = 2 ∼ Bin

(
Bt,

µ
µ+ϵ

)
and St|Dt =

2 ∼ Pn (ϵ) as the distributions of the buyer and seller initiated trades on a good news

day. The probability density of a buy and sell trades, on a good news day is given

below

f2
(
Bt, St, B

i
t,Θ

)
=P

(
Bt, Bt, B

i
t|Dt = 2,Θ

)
=P (St|Dt = 2,Θ)P

(
Bi
t|Bt, Dt = 2,Θ

)
P (Bt|Dt = 2,Θ)

=e
−ϵϵSt

St!

(
Bt

Bi
t

)(
µ

µ+ ϵ

)Bi
t
(

ϵ

µ+ ϵ

)Bt−Bi
t (µ+ ϵ)Bt e−(µ+ϵ)

Bt!

=e
−µµB

i
t

Bi
t!

e−ϵϵSt

St!
e−ϵϵBt−Bi

t

(Bt −Bi
t)!
. (2.11)

Density of buy and sell trades on a no news day (Dt = 3)

Easley et al. (1996) assume that informed traders do not trade on no news days.

Hence the total number of buyer and seller initiated trades are made solely by liquidity

traders. The arrivals are independent Poisson distributions Bt|Dt = 3 ∼ Pn (ϵ) and

St|Dt = 3 ∼ Pn (ϵ) respectively. The probability density of a buyer or seller initiated

trade on a no news day is

f3 (Bt, St,Θ) =P (Bt, St|Dt = 3,Θ)

=P (St|Dt = 3,Θ)P (Bt|Θ)P (Bt|Dt = 3,Θ)

=e
−2ϵϵBt+St

Bt!St!
. (2.12)
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The Poisson mixture assumption underlying the model can be seen in equations 2.10, 2.11

and 2.12. We define the following indicator random variable dt,j = 1{Dt=j}, for

j = 1, 2, 3. Putting equations 2.10, 2.11 and 2.12 together, the density function of

buy and sell orders is

P (Bt, St|Θ, Dt) =
[
f1 (Bt, St,Θ)

]dt,1[
f2 (Bt, St,Θ)

]dt,2[
f3 (Bt, St,Θ)

]dt,3

=
[
e−µµS

i
t

Sit !
e−ϵϵBt

Bt!
e−ϵϵSt−Si

t

(St − Sit)!

]dt,1[e−µµB
i
t

Bi
t!

e−ϵϵSt

St!
e−ϵϵBt−Bi

t

(Bt −Bi
t)!

]dt,2[e−2ϵϵBt+St

Bt!St!

]dt,3

.

(2.13)

Posterior Density And Full Conditional Distributions

Since the probability of news arrival α and its effect δ are both positive values that

lie strictly in the interval (0, 1) we choose beta distributions for their prior distribu-

tions. Likewise we choose gamma prior distributions for the positive parameters µ

and ϵ. Finally, we choose a Dirichlet prior for the type of day classifier Dt. The prior

distributions for parameter set Θ = (α, δ, µ, ϵ,Dt) are

P (α|ρ, φ) = 1
Beta(ρ,ε)α

ρ−1(1 − α)φ−1,

P (δ|ν, τ) = 1
Beta(ν,τ)δ

ν−1(1 − δ)τ−1,

P (µ|γ0, β0) = β
γ0
0

Γ(γ0)µ
γ0−1e−β0µ.

P (ϵ|γ1, β1) = β
γ1
1

Γ(β1)λ
γ1−1
s e−β1λs ,

Dt ∼ Dirichlet(π1, π2, π3) and

With these conjugate prior distributions the resulting posterior distributions will

have kernels which are proportional to standard probability distributions. The Gibbs

Sampler can then be easily applied to sample from the posterior distributions. We

set each of the hyper-parameters ρ, φ, ν, τ, γ0, γ1, β0, β1 to the value 1 and

π1 = π2 = π3 = 1/3. This means that α and δ can take on any number between

zero and one with probability 1. The priors for ϵ and µ are informative since their

respective means and variances are equal to 1. The hyper-parameter choices will have

little influence on the parameter estimates since after a large enough iterations of the
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Gibbs Sampler, the markov chain converges to the true parameter. From Bayes’ theo-

rem, the posterior density for the parameter set Θ = (α, δ, µ, ϵ) is proportional to the

product of the likelihood and prior. This is given as

P (Θ|Bt, St) ∝ P (Θ)
T∏
t=1

[
P (Bt, St|Dt,Θ)P (Dt|Θ)

]

= µγ0−1e−β0µϵγ1−1e−β1ϵαρ−1(1 − α)φ−1δν−1(1 − δ)τ−1
[
(αδ)T1(α(1 − δ))T2(1 − α)T3

]

×
T∏
t=1

[
e−µµS

i
t

Sit !
e−ϵϵBt

Bt!
e−ϵϵSt−Si

t

(St − Sit)!

]dt,1[e−µµB
i
t

Bi
t!

e−ϵϵSt

St!
e−ϵϵBt−Bi

t

(Bt −Bi
t)!

]dt,2[e−2ϵϵBt+St

Bt!St!

]dt,3

.

(2.14)

The full conditional distributions of the parameters Θ = (α, δ, µ, ϵ) are needed for the

Gibbs Sampler. From equation 2.14 we have the following full conditional densities

for the parameters

µ ∼ Ga

(
γ0 +

T∑
t=1

[(Sit)dt,1 + (Bi
t)dt,2 ], T1 + T2 + β0

)
(2.15a)

δ ∼ Be

(
ν + T1, T2 + τ

)
(2.15b)

α ∼ Be

(
ρ + T1 + T2, T3 + φ

)
(2.15c)

ϵ ∼ Ga

(
γ1 +

T∑
t=1

[Bd1
t + Sd1

t − (Sit)d1 + Sd2
t + Bd2

t − (Bi
t)d2 + Bd3

t + Sd3
t ], 2T + β1

)
,

(2.15d)

where T1, T2 and T3 are the number of good, bad and no news days respectively such

that T = T1 + T2 + T3.

Gibbs Sampling Procedure

The algorithm recursively draw samples from the full conditional posterior distribu-

tions where the most recent values of the parameters are used in the simulation. The

procedure is as follows:
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• Choose an arbitrary initial type of day (good, bad and no news day) classification

for the (Bt, St). Denote the initial classification as Dt
(0).

• Set initial values for the parameter set Θ. Denote it as Θ(0)=
(
α(0), δ(0), ϵ(0), µ(0)

)
.

• Repeat for k = 1 to G sweeps

– Sample Bi(k)
t |D(k−1)

t ∼ Bin
(
Bt,

µ(k−1)

µ(k−1)+ϵ(k−1)

)
, t = 1, . . . , T

– Sample Si(k)
t |D(k−1)

t ∼ Bin
(
St,

µ(k−1)

µ(k−1)+ϵ(k−1)

)
, t = 1, . . . , T

– Update µ(k)|α(k−1), ϵ(k−1), δ(k−1), B
i(k)
t , S

i(k)
t

– Update α(k)|µ(k), ϵ(k−1), δ(k−1), B
i(k)
t , S

i(k)
t

– Update ϵ(k)|µ(k), α(k), δ(k−1), B
i(k)
t , S

i(k)
t

– Update δ(k)|µ(k), α(k), ϵ(k), B
i(k)
t , S

i(k)
t

– Compute L1 = logω(k)
1 −

(
µ(k) + 2ϵ(k)

)
+Bt log ϵ(k) + St log

(
µ(k) + ϵ(k)

)

– Compute L2 = logω(k)
2 −

(
µ(k) + 2ϵ(k)

)
+ St log ϵ(k) +Bt log

(
ϵ(k) + µ(k)

)

– Compute L3 = logω(k)
3 − 2ϵ(k) + (St +Bt) log ϵ(k)

– compute χ = max (L1, L2, L3)

– Compute p1 = eL1−χ

3∑
j=1

eLj −χ

, p2 = eL2−χ

3∑
j=1

eLj −χ

and p3 = eL3−χ

3∑
j=1

eLj −χ

– Update Dt
(k), the classification of (Bt, St) by sampling from the multinomial

distribution with probability
(
p1, p2, p3

)
,

where p1, p2 and p3 are the probabilities that at the beginning of the trading day there

will be bad news, good news and no news respectively.
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2.3.2 Method 2: Metropolis-Hastings Algorithm

The Metropolis Hastings algorithm is a MCMC algorithm for drawing samples from

the posterior distribution of high dimensional parameter and intractable complex

model problems. The algorithm is used to draw samples of the parameter set Θ′ =

(α′, δ′, µ′, ϵ′) from an approximating distribution which has the same support as the

posterior density. The approximating distribution which we denote as q
(

Θ′,Θ(t−1)
)

is referred to as a proposal density.

The algorithm involves two basic steps. Firstly a draw from the proposal density is

obtained. Secondly, the draw is either retained or rejected. Details of the algorithm

are summarised as follows

1. Initialise the algorithm with values Θ(0) from the parameter space of Θ.

2. At iteration t, a draw Θ′ is taken from the proposal density q
(

Θ′,Θ(t−1)
)

where

Θ(t−1) is the value of the parameter in the previous step.

3. The new draw is accepted with probability min
{

1, π(Θ′)q(Θ(t−1),Θ′)
π(Θ(t−1))q(Θ′,Θ(t−1))

}
, where

π(Θ) is the posterior density.

4. Steps 2 and 3 are repeated for a large number of iterations.

Now we proceed to derive the posterior density needed for the sampling. For easy com-

parison of results we use the same conjugate prior distributions and hyper-parameters

for α, δ, µ, ϵ and Dt which were chosen for the Gibbs Sampler. The choices as indi-

cated earlier is to ensure that we have the draws not falling on the boundary of the

respective parameter space. The joint posterior density of buyer and seller initiated
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trades is given as

P (Θ, Dt|Bt, St) ∝ P (α|ρ, φ)P (δ|ν, τ)P (µ|γ0, β0)P (ϵ|γ1, β1)

×
T∏
t=1

[
αδe−(µ+2ϵ) (µ+ ϵ)St ϵBt + α(1 − δ)e−(µ+2ϵ) (µ+ ϵ)Bt ϵSt + (1 − α)e−2ϵϵBt+St

]

= αρ−1(1 − α)φ−1δν−1(1 − δ)τ−1µγ0−1e−β0µϵγ1−1e−γ1ϵ

×
T∏
t=1

[
αδe−(µ+2ϵ) (µ+ ϵ)St ϵBt + α(1 − δ)e−(µ+2ϵ) (µ+ ϵ)Bt ϵSt + (1 − α)e−2ϵϵBt+St

]
,

(2.16)

Taking logarithm of the posterior density in equation 2.16 we have

ln (P (Θ|Bt, St)) =
T∑
t=1

ln
[
eL1−χ + eL2−χ + eL3−χ

]

+
T∑
t=1

[
− 2ϵ+ (Bt + St) ln(ϵ) + χ

]

+(γ0 − 1) ln (µ) − β0µ+ (γ1 − 1) ln (ϵ) − β1ϵ+ (ρ− 1) ln (α)

+(φ− 1) ln (α) + (ν − 1) ln (δ) + (τ − 1) ln (δ),

where

L1 = −µ+ St ln(1 + µ
ϵ
) + ln(αδ),

L2 = −µ+Bt ln(1 + µ
ϵ
) + ln[α(1 − δ)],

L3 = ln(1 − α) and

χ = max(L1, L2, L3).

We use a random walk Metropolis-Hastings algorithm with standard Gaussian innova-

tions to draw samples from the posterior distribution of the parameters. The random

walk proposal is Θ′ = Θ(t−1) + ε, where εt ∼ N (0, ξ). Since the random walk proposal

density is symmetric, the acceptance probability simplifies to

acceptance probability = min
{

1, P (Bt, St|Θ′)P (Θ′)
P (Bt, St|Θ)P (Θ)

}
. (2.17)
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We start off the Bayesian estimation with arbitrary initial values for algorithm. The

Markov chain initially explores regions of the parameter space around the initial values

and finally converge to most probably parameter space. However, including samples

around the initial values in the posterior mean calculation can produce substantial

bias in the mean estimate. The practice of discarding an initial portion of a Markov

chain sample so that the effect of initial values on the posterior inference is minimised

is known as burn-in period. To improve the convergence of the Markov chain, we

implemented the Adaptive Metropolis-Hastings algorithm (AMH) developed by Haario

et al. (2001) which we briefly describe below.

The Haario et al. (2001) AMH algorithm

1. For each element of the parameter set Θ = (α, δ, µ, ϵ), set initial values Θ(0), ξ(0),

MCMC samples G, burnin n0, and t0

2. For t = 1, 2, . . . do
3. Sample Θ′ = Θ(t) + εt where εt ∼ N

(
0, ξ(t)

)
4. Accept the next iterate Θ(t+1) = Θ′ with probability given in equation 2.17
5. Compute

ξ(t+1) =


ξ(0) if t ≤ t0,

sd × ϕ× Id + sd

t−1 ×
[

t∑
j=1

Θ(j)Θ(j)T −

(
t∑

j=1
Θ(j)

)(
t∑

j=1
Θ(j)

)T

t

]
, if t > t0

where ϕ is a small positive constant, Id is a d-dimensional identity matrix and

sd is a scale parameter
6. end for
7. Collect samples Θ(n0+1), . . . ,Θ(n0+G)

The scaling parameter sd = 2.42/d where d is the dimension of Θ. This value was

proposed in Gelman et al. (1996) to optimise the mixing properties of the Metropolis

algorithm.
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2.4 Extension Of The Benchmark PIN Model

Buyer and seller initiated trades made by liquidity traders in Easley et al. (1996) were

assumed to be Poisson with the same arrival rates. Easley et al. (2002) relaxed this

assumption since in reality, liquidity traders who want to buy or sell an asset do not

arrive at the market at the same rate. In this model the means of the liquidity trader

buyer and seller initiated trade distributions are λb and λs respectively. All other

assumptions in the previous model remain unchanged.

Since order arrivals on a bad news day are assumed to follow independent Poisson

distributions, the total number of buyer and seller initiated trades on a bad news day

are Poisson with means λb and µ + λs respectively. On a good news day, the total

number of buyer and seller initiated trades are also Poisson with parameters µ + λb

and λs respectively. Likewise, on a no news day the total number of buyer and seller

initiated trades are Poisson with parameters λb and λs respectively.

Figure 2.2 is a representation of the information and order arrival process for the

model.

Fig. 2.2 Information and order arrival process in Easley et al. (2002) model
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Using the definition of the variable Dt in section 2.3 the probability of a buyer or seller

initiated trade is

P (Bt, St|Θ) = ω1
e−(µ+λs) (µ+ λs)St

St!
e−λb (λb)Bt

Bt!
+ ω3

e−λb (λb)Bt

Bt!
e−λs (λs)St

St!

+ ω2
e−(µ+λb) (µ+ λb)Bt

Bt!
e−λs (λs)St

St!
, (2.18)

where Θ = (α, δ, µ, λb, λs). The corresponding joint likelihood function for buy or sell

trades is

L (Bt, St|Θ) =
T∏
t=1

[
ω1
e−(µ+λs) (µ+ λs)St

St!
e−λb (λb)Bt

Bt!
+ ω3

e−λb (λb)Bt

Bt!
e−λs (λs)St

St!

+ ω2
e−(µ+λb) (µ+ λb)Bt

Bt!
e−λs (λs)St

St!

]
. (2.19)

Maximising equation 2.19, we estimate the parameter set Θ. In this model the prob-

ability of information based trading is calculated as

PIN = αµ

αµ+ λs + λb
. (2.20)

As discussed in the preceding section, there are challenges with the optimisation of

equation 2.19. Defining Mt = 0.5[min(Bt, St) + max(Bt, St)], xs = λs

µ+λs
, and xb =

λb

µ+λb
, Easley et al. (2002) used the following factorisation of the joint likelihood func-

tion

L(Bt, St|Θ) =
T∑
t=1

[
− λs − λb +Mt(ln xb + ln xs) +Bt ln(µ+ λb) + St ln(µ+ λs)

]

+
T∑
t=1

ln
[
αδe−µxBt−Mt

b x−Mt
s + α(1 − δ)e−µxSt−Mt

s x−Mt
b + (1 − α)xSt−Mt

s xBt−Mt
b

]
,

(2.21)

to enhance the maximisation. However, Lin and Ke (2011) argue that the above
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factorisation which we henceforth refer to as EHO2002 factorisation gives downward

biased estimates of PIN due to the floating-point exceptions of optimisation routines

in software packages. They also suggest that their factorisation below, which we also

avoids the numerical problems in the EHO2002 factorisation. The factoristion which

we refer to as LinKe2011 factorisation is given as

L(Bt, St) =
T∑
t=1

[
− λs − λb +Bt ln(µ+ λb) + St ln(µ+ λs) + emaxt

]

+
T∑
t=1

ln
[
αδee1−emaxt + α(1 − δ)ee2−emaxt + (1 − α)ee3−emaxt

]
, (2.22)

where

e1 = −µ− St ln(1 + µ
λs

),

e2 = −µ−Bt ln(1 + µ
λb

),

e3 = −Bt ln(1 + µ
λb

) − St ln(1 + µ
λs

) and

emaxt = max(e1, e2, e3).

According to Yan and Zhang (2012), the LinKe2011 factorisation is also not fully

immune to the corner solutions problem. The authors suggest an adhoc approach

of selecting initial values for the maximisation of the likelihood function. Using the

following empirical first moments of buyer and seller initiated trades

E(B) = α(1 − δ)µ+ λb (2.23a)

E(S) = αδµ+ λs, (2.23b)

they propose the selection of the initial values of the model parameters as follows.

Firstly they divide the interval [0, 1] into equally spaced sub-intervals and choose

equidistant values for α and δ from these sub-intervals as the initial values. They argue

that since α(1 − δ)µ in equation 2.23a is always positive, the empirical first moment

B̄ which is an estimate for E(B) is always greater than λb. Hence initial values of
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λb should be fractions γ of E(B). Choosing γ = (0.1, 0.3, 0.5, 0.7, 0.9) and solving

equations 2.23a and 2.23b simultaneously they obtain µ = B̄−λb

α(1−δ) and λs = S̄ − αδµ

as the initial values for µ and λs respectively. Combining α, δ and γ yields 125 sets

of initial values. This large number of initial values did not completely solve the

boundary solutions problem either.

For numerical implementation, we use the following factorised version of the log like-

lihood function

lnL (Bt, St|Θ) =
T∑
t=1

[
− λb − λs +Bt ln λb + St ln λs + χ

]

+
T∑
t=1

ln
[
eL1−χ + eL2−χ + eL3−χ

]
, (2.24)

where

L1 = −µ+ St ln(1 + µ
λs

) + ln(αδ),

L2 = −µ+Bt ln(1 + µ
λb

) + ln[α(1 − δ)],

L3 = ln(1 − α) and

χ = max(L1, L2, L3).

The Bayesian estimation method does not require any adhoc selection of initial val-

ues. Any starting values of the parameters will yield feasible solutions which exclude

boundary solutions for α and δ. In the maximum likelihood estimation of PIN from

the parameters of equation 2.24, we would require the asymptotic variance of the PIN.

Similar to what did in section 2.2, we derive the asymptotic variance of PIN for Easley

et al. (2002) model can be estimated via the delta method as follows. The PIN for

this model can be re-written as

PIN =
[
1 + (λs + λb)

αµ

]−1
(2.25)
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Since news arrival is a Bernoulli variable with parameter α, informed and uninformed

trade arrival intensities are poisson random variables with parameters µ and ϵ respec-

tively, we have α(1−α)
n

, µ
n

λs

n
and λb

n
as their respective asymptotic variances. The

variance of PIN in the Easley et al. (2002) model can therefore be estimated via the

delta method as follows. The vector of derivatives of the PIN with respect to the

parameters of the model

∇PIN =
(
∂(PIN)
∂α

∂(PIN)
∂µ

∂(PIN)
∂λs

∂(PIN)
∂λb

)

=
(

1 + (λs + λb)
αµ

)−2[
λs + λb
α2µ

λs + λb
αµ2

−1
αµ

−1
αµ

]
(2.26)

and the variance-covariance matrix is n−1



α(1 − α) 0 0 0

0 µ 0 0

0 0 λs 0

0 0 0 λb


assuming independence of parameters. Defining Ω =

[
1+ (λs+λb)

αµ

]−2
and using equation

2.5, the asymptotic variance of PIN is

V ar(PIN) = Ω
n

(
λs + λb
α2µ

λs + λb
αµ2

−1
αµ

−1
αµ

)


α(1 − α) 0 0 0

0 µ 0 0

0 0 λs 0

0 0 0 λb





Ωλs+λb

α2µ

Ωλs+λb

αµ2

Ω−1
αµ

Ω−1
αµ



and show that

V ar(PIN) == Ω2

n

[
α(1 − α)(λs + λb)2

α4µ2 + µ(λs + λb)2

α2µ4 + (λs + λb)
α2µ2

]
(2.27)
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2.5 Bayesian Inference Of The Extended PIN Model

Similar to section 2.2, the Metropolis-Hastings and Gibbs sampling algorithms are

used to estimate the model parameters. We choose the following prior probability

distributions for the parameters α, δ, µ, λs,λb and Dt:

P (α|ρ, φ) = 1
Beta(ρ,ε)α

ρ−1(1 − α)φ−1,

P (δ|ν, τ) = 1
Beta(ν,τ)δ

ν−1(1 − δ)τ−1,

P (µ|γ0, β0) = β
γ0
0

Γ(γ0)µ
γ0−1e−β0µ,

P (λs|γ1, β1) = β
γ1
1

Γ(β1)λ
γ1−1
s e−β1λs ,

P (λb|γ2, β2) = β
γ2
2

Γ(β2)λ
γ2−1
b e−β2λb ,

Dt ∼ Dirichlet(π1, π2, π3).

2.5.1 Method 1: Gibbs Sampler

Density of buy and sell trades on a bad news day (Dt = 1)

On a bad news day, informed traders expect an adverse effect on the value of the asset

and would sell the asset. Liquidity traders either buy or sell the asset for reasons

other than information. The number of liquidity trader buy trades (Bu
t ) follows a

Poisson distribution with mean λb. Hence the total daily buy trades Bt = Bu
t , follows

a Poisson distribution with mean λb. Similarly, informed trader sell trades (Sit) and

liquidity trader sell trades (Sut ) follow independent Poisson distributions with means

µ and λs respectively. Thus the total sell orders (St = Sit + Sut ) follow a Poisson

distribution with mean µ+λs. Conditioning on buy and sell trades, the probability of

informed trader sell trades follows binomial distribution with St trials and parameter
µ/µ+λs. The trade arrival distributions are given as

St|Dt = 1 ∼ Pn (µ+ λs)

Sit |St, Dt = 1 ∼ Bin
(
St,

µ
µ+λs

)
.

Bt|Dt = 1 ∼ Pn (λb) ,
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The probability of a buy or sell trade on a bad news day is

f1
(
Bt, S, S

i
t ,Θ

)
= P

(
Bt, St, S

i
t |Dt = 1,Θ

)
=P (Bt|Dt = 1,Θ)P

(
St, S

i
t |Dt = 1,Θ

)
=P (Bt|Dt = 1,Θ)P

(
St, S

i
t |Dt = 1,Θ

)
=P (Bt|Dt = 1,Θ)P

(
Sit |St, Dt = 1,Θ

)
P (St|Dt = 1,Θ)

=
(
St
Sit

)
e−(µ+λb+λSt)
Bt!St!

λb
BtλSt

St

(
µ

λSt

)Si
t

=e
−λb (λb)Bt

Bt!

(
St
Sit

)(
µ

µ+ λSt

)Si
t
(

λSt

µ+ λSt

)St−Si
t e−µ+λSt (µ+ λSt)St

St!

=
(
St
Sit

)
e−(µ+λb+λSt)
Bt!St!

λb
BtλSt

St−Si
tµS

i
t

=e
−µµS

i
t

Sit !
e−λbλBt

b

Bt!
e−λStλ

St−Si
t

St

(St − Sit)!
. (2.28)

Equation 2.28 is a product of Poisson processes of uninformed trader sell and buy

trades, and informed trader sells. From the model assumptions and Poisson mixture

structure, this is expected.

Density of buy and sell trades on a good news day(Dt = 2)

Similarly, if the news content on a day is considered to be favourable, it is intuitive to

expect informed traders to make purchases while liquidity traders either buy or sell the

asset. Hence informed traders do not sell their assets during a period of anticipated

good news. All sales on such a day come from liquidity traders. The trade arrivals

distributions on such a day are as follows

Bt|Dt = 2 ∼ Pn (µ+ λb),

Bi
t|Bt, Dt = 2 ∼ Bin

(
Bt,

µ
µ+λb

)
.

St|Dt = 2 ∼ Pn (λs) ,
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The probability of a buyer or seller initiated trade on a good news day is

f2 (Bt, St,Θ) =P (Bt, St|Dt = 2,Θ)

=P (St|Dt = 2,Θ)P
(
Bi
t|Bt, Dt = 2,Θ

)
P (Bt|Dt = 2,Θ)

=e
−µµB

i
t

Bi
t!

e−λsλSt
s

S!
e−λbλ

Bt−Bi
t

b

(Bt −Bi
t)!
. (2.29)

We recognise this as the product of three Poisson processes of informed trader buy

trades, uninformed trader sell trades and uninformed buy trades.

Density of buy and sell trades on a no news day (Dt = 3)

Since informed traders do not trade on a no news day, the order arrivals would be

wholly attributable to liquidity traders with distributions given as Bt|Dt = 3 ∼

Pn (λb) and St|Dt = 3 ∼ Pn (λs) respectively. The probability of a buyer or seller

initiated trade, on a bad news day is

f3 (Bt, St,Θ) =P (Bt, St|Dt = 3,Θ)

=P (St|Dt = 3,Θ)P (Bt|Θ)P (Bt|Dt = 3,Θ)

=e
−λs (λs)St

St!
e−λb (λb)Bt

Bt!
. (2.30)

Putting equations 2.28, 2.29 and 2.30 together, we obtain the following joint density

function

P (Bt, St|Dt, Θ) =
[

f1 (Bt, St, Θ)
]dt,1[

f2 (Bt, St, Θ)
]dt,2[

f3 (Bt, St, Θ)
]dt,3

=
[

e−µµSi
t

Si
t !

e−λbλBt

b

Bt!
e−λsλ

St−Si
t

s

(St − Si
t)!

]dt,1[
e−µµBi

t

Bi
t!

e−λsλSt
s

St!
e−λbλ

Bt−Bi
t

b

(Bt − Bi
t)!

]dt,2

×

[
e−λs (λs)St

St!
e−λb (λb)Bt

Bt!

]dt,3

. (2.31)
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Posterior Density And Full Conditional Distributions
Based on the prior distributions chosen, we write down the posterior density of the
model parameters as

P (Θ|Bt, St) ∝ P (Θ)
T∏

t=1

[
P (Bt, St|Dt, Θ) P (Dt|Θ)

]

= µγ0−1e−β0µλγ1−1
s e−β1λsλγ2−1

b e−β2λbαρ−1(1 − α)φ−1δν−1(1 − δ)τ−1

×

[
(αδ)T1(α(1 − δ))T2(1 − α)T3

]
T∏

t=1

[
e−µµSi

t

Si
t !

e−λbλBt

b

Bt!
e−λsλ

St−Si
t

s

(St − Si
t)!

]dt,1

×

[
e−µµBi

t

Bi
t!

e−λsλSt
s

St!
e−λbλ

Bt−Bi
t

b

(Bt − Bi
t)!

]dt,2[
e−λs (λs)St

St!
e−λb (λb)Bt

Bt!

]dt,3

. (2.32)

To use the Gibbs sampler we need the full conditionals of the parameters of interest.

From equation 2.32 the full conditional distributions for the parameter set Θ are given

as follows

µ ∼ Ga
(
γ0 +

T∑
t=1

[(Sit)d1 + (Bi
t)d2 ], T1 + T2 + β0

)
, (2.33a)

δ ∼ Be
(
ν + T1 + T2, T3 + τ

)
, (2.33b)

α ∼ Be
(
ρ+ T1 + T2, T3 + φ

)
, (2.33c)

λs ∼ Ga
(
γ1 +

T∑
t=1

[Sd1
t − (Sit)d1 + Sd2

t + Sd3
t ], T1 + T2 + T3 + β1

)
, (2.33d)

λb ∼ Ga
(
γ2 +

T∑
t=1

[Bd1
t +Bd2

t − (Bi
t)d2 +Bd3

t ], T1 + T2 + T3 + β2

)
. (2.33e)

where dt,j = 1{Dt=j}, for j = 1, 2, 3 and T = T1 + T2 + T3. It can be observed that the

estimates of α and δ are highly dependent on the correct classification of news event

periods.

Gibbs Sampling Procedure

The following algorithm is used to sample from the full conditional posterior distribu-

tions of the model parameters.
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• Choose an arbitrary initial type of day (good, bad and no news day) classification

for the (Bt, St). Denote the initial classification as Dt
(0).

• Set initial values for the parameter set Θ. Denote it as Θ(0)=
(
α(0), δ(0), λ(0)

s , λ
(0)
b , µ(0)

)
• Repeat for k = 1 to G sweeps

– Sample Bi(k)
t |D(k−1)

t ∼ Bin
(
Bt,

µ(k−1)

µ(k−1)+λ(k−1)
b

)
, t = 1, . . . , T

– Sample Si(k)
t |D(k−1)

t ∼ Bin
(
St,

µ(k−1)

µ(k−1)+λ(k−1)
s

)
, t = 1, . . . , T

– Update µ(k)|λ(k−1)
s , λ

(k−1)
b , α(k−1), δ(k−1), B

i(k)
t , S

i(k)
t

– Update λ(k)
s |λ(k−1)

b , α(k−1), δ(k−1), B
i(k)
t , S

i(k)
t , µ(k)

– Update λ(k)
b |α(k−1), δ(k−1), B

i(k)
t , S

i(k)
t , µ(k), λ(k)

s

– Update α(k)|δ(k−1), B
i(k)
t , S

i(k)
t , µ(k), λ(k)

s , λ
(k)
b

– Update δ(k)|Bi(k)
t , S

i(k)
t , µ(k), λ(k)

s , λ
(k)
b , α(k)

– Compute L1 = logω(k)
1 −

(
µ(k) + λ(k)

s + λ
(k)
b

)
+Bt log λ(k)

b +St log
(
λ(k)
s + µ(k)

)

– Compute L2 = logω(k)
2 −

(
µ(k) + λ(k)

s + λ
(k)
b

)
+St log λ(k)

s +Bt log
(
λ

(k)
b + µ(k)

)

– Compute L3 = logω(k)
3 −

(
λ(k)
s + λ

(k)
b

)
+ St log λ(k)

s +Bt log λ(k)
b

– compute χ = max (L1, L2, L3)

– Compute p1 = eL1−χ

3∑
j=1

eLj −χ

, p2 = eL2−χ

3∑
j=1

eLj −χ

and p3 = eL3−χ

3∑
j=1

eLj −χ

– Update Dt
(k), the classification of (Bt, St) by sampling from the multinomial

distribution with probability (p1, p2, p3),

where p1, p2 and p3 are the probabilities that at the beginning of the trading there

will be a bad news, good news and no news respectively.
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2.5.2 Method 2: Metropolis-Hastings Algorithm

The posterior density for the parameter set Θ = (α, δ, µ, λs, λb) which is proportional

to the product of the likelihood and prior is given as

P (Θ|Bt, St) ∝ P (α|ρ, ε)P (δ|ν, τ)P (µ|γ0, β0)P (λs|γ1, β1)P (λb|γ2, β2)

×
T∏
t=1

[
αδe−(µ+λs) (µ+ λs)St e−λb (λb)Bt + (1 − α) e−λb (λb)Bt e−λs (λs)St

+ α (1 − δ) e−(µ+λb) (µ+ λb)Bt e−λs (λs)St

]
∝αρ−1(1 − α)φ−1δν−1(1 − δ)τ−1µγ0−1e−β0µλγ1−1

s e−β1λsλγ2−1
b e−β2λb

×
T∏
t=1

[
αδe−(µ+λs) (µ+ λs)St e−λb (λb)Bt + (1 − α) e−λb (λb)Bt e−λs (λs)St

+ α (1 − δ) e−(µ+λb) (µ+ λb)Bt e−λs (λs)St

]
. (2.34)

Similarly to the previous model we factorise the logarithm of the posterior density

to avoid the floating point execution problems encountered in most packages. The

logarithm of the posterior density is given as

ln (P (Θ|Bt, St)) =(γ0 − 1) ln (µ) − β0µ+ (γ1 − 1) ln (λs) − β1λs

+(γ2 − 1) ln (λb) − β2λb + (ρ− 1) ln (α)

+(φ− 1) ln (α) + (ν − 1) ln (δ) + (τ − 1) ln (δ)

+
T∑
t=1

[
− λb − λsBt ln λb + St ln λs + χ

]

+
T∑
t=1

ln
[
eL1−χ + eL2−χ + eL3−χ

]
,

where

L1 = −µ+ St ln(1 + µ
λs

) + ln(αδ),

L2 = −µ+Bt ln(1 + µ
λb

) + ln[α(1 − δ)],

L3 = ln(1 − α) and
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χ = max(L1, L2, L3).

We use the random walk Adaptive Metropolis Hastings algorithm with standard Gaus-

sian innovations where we accept the proposals α′, δ′, µ′, λ′
s and λ′

b of the parameters

α, δ, µ, λs and λb from their respective posterior distributions with

acceptance probability = min
{

1, P (α′, δ′, µ′, λ′
s, λ

′
b|Bt, St)

P (α, δ, µ, λs, λb|Bt, St)

}
. (2.35)

To test the applicability of our estimation method we carry out simulation exercise

on a hypothetical data set of aggregate buyer and seller initiated trades for Easley

et al. (1996) and Easley et al. (2002) models. Subsequently the method is applied to

real data for two assets. Henceforth we refer to Easley et al. (1996) and Easley et al.

(2002) models as Model I and Model II respectively.
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2.6 Hypothetical Data Implementation

We use the parameters in Table 2.1 below to simulate hypothetical data set. The

corresponding PIN for Models I and II based on these parameters are 0.3846 and

0.2307 respectively. The simulated data set is of size 1, 000.

α δ µ ϵ λs λb

Model I 0.5 0.7 50 20
Model II 0.5 0.7 30 20 30

Table 2.1 Parameter values for simulated data

The Gibbs Sampler is run for G = 100, 000 sweeps for both Models I and II. The initial

n0 = 30, 000 draws from the posterior distributions of the parameters are discarded.

From the remaining 70, 000 draws we calculate the posterior mean and credible inter-

vals for each parameter. Estimating Model I with the Adaptive Metropolis Hastings

(AMH) algorithm, after iterations t > t0, we set ϕ = 0.01 for the α′ and δ′ samples.

Similarly, for the µ′ and ϵ′ we set ϕ = 0.02. We run the chain for 135, 000 iterations

with G = 100, 000, n0 = 35, 000, and t0 = 15, 000. The ratio of the total number of

accepted draws to the number of iterations after the burnin period (acceptance rate)

achieved is 0.1384 compared to the optimal figure of 0.234 suggested in Roberts et al.

(1997).

Similarly, using d = 5, sd = 2.42 and ξ(0) = 1 we implement the Adaptive Metropolis

Hastings Algorithm on the simulated data for Model II. For iterations t > t0, we

set ϕ = 0.01 for the α′ and δ′ samples. Similarly for the µ′ , λ′
b and λ′

s sample

we set ϕ = 0.1. We run the chain for 135, 000 iterations with G = 100, 000, n0 =

35, 000, and t0 = 15, 000. The acceptance probability achieved is 0.1488 which is

closer to the optimal figure of 0.234 of Roberts et al. (1997). For comparability, we

carried out maximum likelihood estimation on the simulated data. The maximum
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likelihood estimates and PIN obtained by implementing the optimisation function

optim in the statistical package R on equations 2.4 and 2.24 are presented in Tables

2.2 and 2.3 respectively. We carried out the MLE while varying the sample size (N)

of the simulated data. For each sample size, we run the optimiser for 1, 000 runs each

time changing the initial values. The runs for each sample size with the minimum

negative log likelihood value are presented in the tables. The final columns of Tables

2.2 and 2.3 show the percentage of the 1, 000 runs for which the optimiser. Thus even

with the factorisation of the log likelihood function one still needs to be careful about

the choice of the initial values.

N α δ µ ϵ PIN -LogLike Error Rate
60 Init. values 0.226 0.484 4 7

Est 0.450 0.555 49 21 0.350 -9986 5.8
Std error 0.064 0.095 1.679 0.471 0.033

200 Initl. values 0.270 0.969 3 6
Est 0.465 0.666 49 20 0.358 -33602 6.8
Std error 0.035 0.048 0.904 0.258 0.017

400 Initl. values 0.058 0.930 9 7
Est 0.515 0.747 5 20 0.385 -70683 10.5
Std error 0.024 0.030 0.611 0.185 0.011

600 Initl. values 0.406 0.507 6 7
Est 0.523 0.716 50 20 0.390 -106911 10.8
Std error 0.020 0.025 0.495 0.151 0.009

800 Initl. values 0.837 0.116 6 6
Est 0.510 0.713 50 20 0.388 -140539 8.6
Std error 0.017 0.022 0.434 0.129 0.008

1000 Initl. values 0.493 0.190 2 4
Est 0.520 0.709 50 20 0.393 -177195 8.1
Std error 0.015 0.019 0.385 0.116 0.007

Table 2.2 Maximum likelihood estimates of the simulated data for Model I

It can be observed that the parameter estimates in Tables 2.2 and 2.3 get closer to

the actual values in Table 2.1 used in creating the hypothetical data set as the sample
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N α δ µ λs λb PIN -LogLike Error Rate
60 Initl. values 0.634 0.037 2 2 6

Est 0.513 0.746 32 20 29 0.249 -9973 2.9
Std error 0.066 0.081 1.513 0.732 0.802 0.023

200 Initl. values 0.912 0.737 4 6 3
Est 0.413 0.707 32 20 30 0.206 -31654 3.7
Std error 0.035 0.050 0.882 0.375 0.417 0.013

400 Initl. values 0.088 0.580 5 0 10
Est 0.486 0.738 31 20 30 0.228 -66268 2.3
Std error 0.025 0.031 0.576 0.276 0.293 0.009

600 Initl. values 0.593 0.900 5 3 5
Est 0.504 0.724 31 20 30 0.236 -99894 2.3
Std error 0.020 0.025 0.464 0.227 0.241 0.007

800 Initl. values 0.898 0.514 2 4 5
Est 0.517 0.741 30.435 20 30 0.239 -134247 2.9
Std error 0.017 0.021 0.398 0.201 0.208 0.006

1000 Initl. values 0.611 0.136 3 6 5
Est 0.518 0.726 31 20 30 0.241 -167998 2.3
Std error 0.016 0.019 0.356 0.178 0.188 0.005

Table 2.3 Maximum likelihood estimates of the simulated data for Model II

size of the data increases. Likewise, the standard error associated with the estimation

of the parameters and PIN decreases with increased sample size. From these results

one can argue that even though Easley et al. (2002) proposes that 60 days of buyer

and seller initiated trades are enough to give stable parameter estimates, the estimates

based on 60 will yield large estimation errors.

Tables 2.4 and 2.5 are summaries of the marginal posterior distributions of the pa-

rameters obtained from the Bayesian estimation. Similarly to the MLE results the

estimates from the Bayesian methods are also close to the original parameters used

for simulating the data. With uninformative priors, we expect the Bayesian estimates

to be close to the maximum likelihood estimates.

In Figure 2.3, we present the posterior distributions of the model parameters as well

as the distribution of the PIN and type of trading day for a the hypothetical data of

size 60.
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N α δ µ ϵ PIN
Gibbs 60 Est 0.451 0.552 47 20.643 0.338

Sdev 0.062 0.090 1.597 0.472 0.032
LCI 0.331 0.370 44 20 0.272
UCI 0.575 0.724 50 21 0.399

200 Est 0.464 0.662 48 20 0.354
Sdev 0.034 0.048 0.895 0.259 0.018
LCI 0.396 0.563 47 20 0.318
UCI 0.534 0.756 50 21 0.389

400 Est 0.514 0.744 49 20 0.383
Sdev 0.024 0.030 0.605 0.184 0.012
LCI 0.465 0.681 48 20 0.358
UCI 0.563 0.801 50 21 0.407

600 Est 0.523 0.715 49 20 0.389
Sdev 0.020 0.025 0.491 0.150 0.009
LCI 0.483 0.664 48 20 0.370
UCI 0.562 0.762 50 20 0.408

800 Est 0.509 0.711 50 20 0.387
Sdev 0.017 0.022 0.432 0.129 0.008
LCI 0.474 0.667 49 20 0.370
UCI 0.544 0.755 51 20 0.404

1000 Est 0.520 0.708 51 20 0.392
Sdev 0.015 0.019 0.385 0.116 0.007
LCI 0.489 0.669 49 20 0.377
UCI 0.551 0.746 51 20 0.407

AMH 60 Est 0.452 0.55 47 21 0.337
Sdev 0.062 0.088 1.624 0.479 0.032
LCI 0.332 0.374 44 20 0.269
UCI 0.578 0.720 50 22 0.398

200 Est 0.465 0.661 49 20.498 0.355
Sdev 0.035 0.048 0.884 0.247 0.018
LCI 0.397 0.561 47 20 0.318
UCI 0.535 0.749 50 21 0.390

400 Est 0.515 0.744 49 20 0.384
Sdev 0.024 0.030 0.599 0.188 0.011
LCI 0.466 0.685 48 20 0.360
UCI 0.564 0.802 50 21 0.408

600 Est 0.522 0.712 49 20 0.389
Sdev 0.019 0.024 0.524 0.146 0.009
LCI 0.484 0.662 48 20 0.370
UCI 0.560 0.761 50 20 0.407

800 Est 0.510 0.711 50 205 0.387
Sdev 0.016 0.022 0.402 0.124 0.008
LCI 0.475 0.664 49 20 0.370
UCI 0.540 0.754 51 20 0.403

1000 Est 0.521 0.707 50 20 0.393
Sdev 0.015 0.019 0.408 0.12 0.007
LCI 0.489 0.666 49 20 0.378
UCI 0.550 0.745 51 20 0.407

Table 2.4 Posterior estimates of the simulated data for Model I
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N α δ µ λs λb PIN
Gibbs 60 Est 0.523 0.720 30 20 29 0.280

Sdev 0.064 0.078 1.464 0.731 0.784 0.028
LCI 0.396 0.557 27 19 26.774 0.224
UCI 0.648 0.860 33 21 30 0.335

200 Est 0.416 0.701 31 20 30 0.244
Sdev 0.035 0.050 0.882 0.378 0.416 0.016
LCI 0.347 0.597 29 19 29 0.210
UCI 0.485 0.794 32 20 31 0.277

400 Est 0.487 0.734 30 20 30 0.270
Sdev 0.025 0.031 0.575 0.277 0.294 0.011
LCI 0.438 0.670 29 19 30 0.248
UCI 0.536 0.793 31 20 31 0.292

600 Est 0.505 0.722 30 20 30 0.278
Sdev 0.020 0.025 0.464 0.227 0.239 0.011
LCI 0.464 0.670 29 19 29 0.260
UCI 0.545 0.771 31 20 30 0.296

800 Est 0.517 0.740 30 20 30 0.281
Sdev 0.017 0.021 0.399 0.203 0.208 0.007
LCI 0.483 0.696 29 20 29 0.265
UCI 0.552 0.781 31 20 30 0.296

1000 Est 0.518 0.725 30 20 30 0.284
Sdev 0.015 0.019 0.354 0.175 0.186 0.007
LCI 0.486 0.686 30 19 29 0.270
UCI 0.549 0.763 31 20 30 0.298

AMH 60 Est 0.524 0.713 30 20 28 0.244
Sdev 0.063 0.077 1.471 0.732 0.757 0.024
LCI 0.399 0.549 27 19 27 0.194
UCI 0.648 0.851 33 21 30 0.290

200 Est 0.416 0.699 31 20 30 0.204
Sdev 0.034 0.049 0.907 0.38 0.418 0.014
LCI 0.348 0.601 29 19 29 0.175
UCI 0.485 0.791 33 20 31 0.232

400 Est 0.487 0.733 30 20 30 0.227
Sdev 0.024 0.031 0.533 0.274 0.295 0.009
LCI 0.437 0.670 29 19 30 0.208
UCI 0.535 0.792 31 20 31 0.247

600 Est 0.506 0.722 30 20 30 0.236
Sdev 0.019 0.024 0.459 0.206 0.233 0.007
LCI 0.468 0.670 29 19 29 0.221
UCI 0.545 0.770 31 20 30 0.252

800 Est 0.516 0.739 30 20 30 0.238
Sdev 0.018 0.020 0.396 0.192 0.200 0.007
LCI 0.481 0.698 29 20 29 0.224
UCI 0.550 0.777 31 20 30 0.251

1000 Est 0.518 0.723 30 20 30 0.240
Sdev 0.015 0.019 0.336 0.172 0.193 0.006
LCI 0.488 0.686 30 20 30 0.228
UCI 0.549 0.757 31 20 30 0.253

Table 2.5 Posterior estimates of the simulated data for Model II
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(a) Gibbs Model I (b) AMH Model I

(c) Gibbs Model II (d) AMH Model II

Fig. 2.3 Posterior distributions for the simulated data of size 60

The MLE computed from the optim function in R and the Bayesian estimates on

the simulated data are compared with the maximum likelihood estimates from code

written by Professor Noah Stoffman of Indiana University. Professor Stoffman’s code

uses the NLMIXED procedure in SAS to estimate the model parameters and PIN

which are presented in Table 2.6 above. The estimates from the SAS code for Model I
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are also similar in magnitude to the estimates of the Bayesian methods and estimates

of the fminsearchbnd function. Although slightly different, the confidence intervals of

the estimates for Model II from Stoffman SAS code contains the maximum likelihood

estimates of the optim function.

Model I Model II

Est Sdev LCI UCI Est Sdev LCI UCI

α 0.450 0.064 0.321 0.578 0.439 0.066 0.305 0.573
δ 0.555 0.095 0.364 0.746 0.811 0.081 0.647 0.974
µ 49 1.679 46 53 28 1.601 21 31
ϵ 21 0.471 20 21
λs 21 0.745 19 22
λb 30 0.807 29 32
PIN 0.351 0.034 0.282 0.418 0.195 0.025 0.144 0.246

Table 2.6 MLE for simulated data based on Noah Stoffman SAS 3code

In the simulation exercise none of the buyer and seller initiated trades were large

enough to cause overflow or underflow that arises from the terms like ΘBt , ΘSt , e−Θ

in the likelihood function of the two models. The value of e702 results in an overflow,

therefore, causes MLE optimisers to become unstable. However the optimiser still

failed in certain occasions. The failure of the optimisation function may be likely due

to the fact that either of α and δ fell on the boundary of their parameter space. The

results of the simulation exercise are encouraging since our estimation method can be

applied to real data.

3Source of SAS code: http://kelley.iu.edu/nstoffma/

http://kelley.iu.edu/nstoffma/
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2.7 Real Data Estimation

This section focuses on the empirical implementation of the Bayesian methodology on

data that has been downloaded from Bloomberg terminals at the University of Kent.

Comparison of the results are made with maximum likelihood estimation results. The

data comprises of tick-by-tick transaction data covering the period 3rd June 2013 to

15th April 2015 for International Business Machines (IBM) and Ashland Oil (ASH)

trading on the New York Stock Exchange (NYSE) only.

We excluded all transactions that occurred outside the normal trading hours of the

Exchange. All transactions that had negative spreads were also removed from the

sample. We further excluded all cases where the transaction price was higher (lower)

than the ask (bid) price by more than 50 times the tick size (0.01). Finally, any

transactions that occurred within the first and last 5 minutes of each trading day were

also removed from the data set. After this data cleaning exercise, we obtained a total

of 1, 484, 829 and 332, 799 data points for IBM and ASH respectively.

ASH IBM
Buys Sells Buys Sells

No. days 468 468 466 466
Min 71 64 414 424
Median 316 315 1406 1523
Mean 356 353 1554 1630
Max 1348 1263 6192 7165

Table 2.7 Summary of daily buy and sell trades

We use the Lee and Ready (1991) algorithm to classify the transaction data into buyer

and seller initiated trades from which we compute the aggregate daily buyer and seller

initiated trades. Table 2.7 is a summary of the daily buyer and seller initiated trades

for both assets which we use in this chapter. It can be observed that the daily buyer

and seller initiated trades for these assets are large enough to cause floating point
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exceptions. Corresponding scatter plots are shown in Figure 2.4. Noticeably, the buy

and sell orders are very correlated. Other variables of this data set will be introduced

in subsequent chapters where they are used.

(a) ASH Full Sample (b) IBM Full Sample

(c) ASH for last 60 days (d) IBM for last 60 days

Fig. 2.4 Daily buy and sell orders

Results

Easley et al. (2002) indicated that buyer and seller initiated trades for 60 trading

days is enough to provide stable estimates for the PIN model. With this in mind, we

carried out MLE and Bayesian estimation of the PIN using buyer and seller initiated
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trades for the 60 trading days before 15th April. The PIN estimate based on the last

60 is used as a proxy for the information asymmetry upon which the spread at the

beginning of the 15th April is set.

N α δ µ ϵ PIN % Error
ASH
60 Initl. values 0.968 0.560 5 4

Est 0.295 0.388 2687 218 0.153 0
Std error 0.058 0.114 5.397 1.449 0.009

468 Initl. values 0.166 0.993 3 7
Est 0.272 0.513 330 310 0.126 0
Std error 0.021 0.044 3.454 0.720 0.008

IBM
60 Initl. values 0.065 0.608 5 1

Est 0.311 0.631 857 1319 0.091 0.2
Std error 0.059 0.110 11.326 3.579 0.005

466 Initl. values 0.959 0.540 3 7
Est 0.251 0.601 1340 1424 0.105 1.2
Std error 0.020 0.045 5.438 1.347 0.007

Table 2.8 Maximum likelihood estimates of real data for Model I

N α δ µ λs λb PIN % Error
ASH
60 Initl. values 0.282 0.196 5 5 3

Est 0.360 0.727 245 174 254 0.171 0
Std error 0.061 0.094 4.750 1.950 2.109 0.008

468 Initl. values 0.329 0.465 3 4 7
Est 0.305 0.720 318 283 329 0.136 0
Std error 0.021 0.037 2.374 0.938 0.895 0.008

IBM
60 Initl. values 0.591 0.566 8 5 4

Est 0.229 0.071 1016 1464 1207 0.080 0.2
Std error 0.053 0.068 13.470 4.909 4.998 0.006

466 Initl. values 0.427 0.660 4 6 3
Est 0.26 0.527 1312 1455 1388 0.107 12.4
Std error 0.020 0.045 7.931 1.923 2.799 0.007

Table 2.9 Maximum likelihood estimates of the real data for Model II

The optim function was run for a 1, 000 iterations each time changing the initial

values. The run which resulted in the minimum negative log likelihood is presented

in Tables 2.8 and 2.9 for the full sample and the last 60 trading days of Models I and

II respectively. In Table 2.8 and 2.9 the optimiser did not fail for all the 1, 000 runs
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in the case of ASH. However in Table 2.9 the optimiser failed on 20 and 120 occasions

for the IBM for the last 60 days and full sample respectively. Comparative estimates

from Professor Stoffman’s SAS code are also presented in Table 2.10.

Full Sample Last 60 Days
Model I Model II Model I Model II

ASH IBM ASH IBM ASH IBM ASH IBM

α Est 0.302 0.072 0.271 0.310 0.300 0.174 0.333 0.113
Sdev 0.021 0.012 0.023 0.021 0.059 0.063 0.060 0.045
LCI 0.260 0.047 0.224 0.268 0.181 0.047 0.211 0.021
UCI 0.344 0.097 0.318 0.353 0.418 0.301 0.455 0.204

δ Est 0.527 0.777 0.515 0.721 0.388 0.540 0.550 0.563
Sdev 0.042 0.066 0.058 0.037 0.114 0.214 0.111 0.216
LCI 0.444 0.643 0.399 0.648 0.159 0.112 0.327 0.129
UCI 0.611 0.903 0.631 0.795 0.618 0.968 0.772 0.996

µ Est 304 1999 1956 306 269 200 253 200
Sdev 2 13 7 2 5 18 5 19
LCI 300 1974 1941 302 258 163 243 162
UCI 309 2024 1970 311 280 237 263 238

ϵ Est 305 1982 218 2000
Sdev 1 0 1 0
LCI 304 1982 215 2000
UCI 306 1982 221 2000

λs Est 1422 281 192 2000
Sdev 0 1 2 0
LCI 1422 279 188 2000
UCI 1422 282 195 2000

λb Est 1332 327 240 2000
Sdev 5 1 2 0
LCI 1323 323 236 2000
UCI 1341 328 244 2000

PIN Est 0.131 0.035 0.161 0.135 0.156 0.008 0.163 0.005
Sdev 0.008 0.005 0.011 0.008 0.026 0.003 0.025 0.002
LCI 0.115 0.024 0.138 0.119 0.104 0.002 0.113 0.001
UCI 0.146 0.047 0.185 0.151 0.208 0.015 0.214 0.010

Table 2.10 MLE from Stoffman SAS code on real data

Using the SAS code of Stoffman we encountered the numerical computation challenges

that have been reported in the literature. The estimates from the SAS code are

dependent on the initial values used. Also, the routine behind the code in most cases

got stuck in local maxima. We can see this in Table 2.10 where the optimiser failed

in estimating λb, λs and ϵ which have been highlighted in red. For these parameters,



2.7 Real Data Estimation 53

the estimates returned by the NLMIXED procedure are exactly the initial values.

Gibbs AMH
Model I Model II Model I Model II

ASH IBM ASH IBM ASH IBM ASH IBM

α Est 0.298 0.260 0.308 0.273 0.298 0.260 0.309 0.273
Sdev 0.021 0.020 0.021 0.020 0.021 0.019 0.021 0.021
LCI 0.256 0.221 0.267 0.234 0.257 0.222 0.268 0.232
UCI 0.341 0.300 0.351 0.315 0.341 0.300 0.352 0.314

δ Est 0.521 0.597 0.717 0.479 0.521 0.594 0.717 0.480
Sdev 0.042 0.044 0.037 0.044 0.041 0.042 0.037 0.044
LCI 0.437 0.508 0.639 0.392 0.442 0.508 0.639 0.392
UCI 0.603 0.684 0.786 0.567 0.602 0.675 0.785 0.567

µ Est 311 1297 312 1263 311 1296 313 1263
Sdev 3 5 2 5 3 6 3 5
LCI 306 1286 308 1251 304 1285 306 1252
UCI 317 1308 317 1273 317 1308 318 1274

ϵ Est 308 1422 308 1422
Sdev 1 1 1 1
LCI 307 1419 307 1419
UCI 309 1424 309 1424

λs Est 283 1463 283 1463
Sdev 1 2 1 2
LCI 281 1459 281 1459
UCI 283 1467 283 1467

λb Est 329 1369 329 1369
Sdev 1 2 1 2
LCI 327 1364 327 1365
UCI 331 1373 330 1373

ω1 Est 0.155 0.155 0.221 0.131 0.155 0.154 0.221 0.131
Sdev 0.017 0.016 0.019 0.015 0.016 0.016 0.019 0.015
LCI 0.123 0.123 0.185 0.102 0.124 0.125 0.184 0.101
UCI 0.189 0.189 0.260 0.163 0.190 0.188 0.260 0.163

ω2 Est 0.143 0.104 0.087 0.142 0.142 0.105 0.087 0.141
Sdev 0.016 0.014 0.012 0.016 0.015 0.013 0.013 0.016
LCI 0.112 0.078 0.063 0.112 0.112 0.079 0.064 0.111
UCI 0.177 0.133 0.114 0.176 0.175 0.134 0.115 0.174

ω3 Est 0.701 0.739 0.691 0.726 0.701 0.739 0.69 0.726
Sdev 0.021 0.020 0.021 0.020 0.021 0.019 0.021 0.021
LCI 0.658 0.699 0.648 0.684 0.658 0.699 0.647 0.685
UCI 0.743 0.778 0.732 0.765 0.742 0.777 0.731 0.767

PIN Est 0.131 0.106 0.145 0.105 0.131 0.105 0.136 0.108
Sdev 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.007
LCI 0.114 0.091 0.128 0.091 0.115 0.092 0.120 0.093
UCI 0.147 0.120 0.162 0.119 0.147 0.120 0.152 0.122

Table 2.11 Posterior Estimates for the full sample

The posterior mean, standard error and credible intervals of the model parameters
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obtained from the Bayesian estimation for the full sample data are presented in Table

2.11. Table 2.12 is a corresponding summary of results for the last 60 trading days.

The estimate of α shown in Table 2.11 for both assets is approximately 0.3 which is

an indication that on average 3 out of 10 trading days in our sample are news driven.

Given that news event occurs at the beginning, of a trading day there is approximately

72% chance that the news will have an effect on ASH in Model II. This result is in

contrast with the 52% negative effect in Model I.

For IBM there is a 60% and 50% chance of a negative effect of news in Models I and

Model II respectively. It can be observed that the Gibbs Sampler and AMH give similar

results for the PIN estimates. Using the Gibbs Sampler the risk of trading with an

informed trader in ASH is approximately 0.2 while that of IBM is also approximately

0.15. However, the risk of trading with an informed trader obtained from the AMH

is approximately 0.13 and 0.1 respectively for ASH and IBM. On average there are

about 300 and 1300 informed trader buyer and seller initiated trades for ASH and

IBM respectively. Similarly there are about 300 and 1500 liquidity trader initiated

buyer and seller initiated trades. Also on average in 70% of the days, order arrivals

did not convey information that would have effect on the value of both assets.

The estimates for the last 60 days calculated from the Bayesian and MLE are also

similar for both assets. It is worth noting that the MLE from optim function based on

our factorisation in equations 2.4 and 2.24 are sensitive to the choice of initial values.

In the code we allowed for randomly generated numbers to be used as initial values

for the parameters in each model.

The parameters estimates for the full sample shown in Table 2.11 are lower in magni-

tude compared with the estimates of the last 60 days which are also shown in Table
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2.12. As expected the standard error of the estimates are lower for the full sample

compared with the last 60 days. For instance the standard errors of α and δ for the

last 60 days are about 2.5 and 3 times the standard errors of α and δ for the full

sample.

Looking at the estimates of PIN, it can be observed that for IBM, the PIN for the

last 60 is lower for the full sample. The standard errors are also lower than the

corresponding figures of the last 60 days. However for ASH, the estimates of last 60

days are higher than that of the full sample. These results is an indication of less

information that can be extracted from 60 days to provide a fair estimate of PIN, the

probability of news arrival and its effect of news on the asset if it occurs.

Finally, it can be observed that models I and II results in slightly different estimates.

We argue that neither model is superior to the other based on the estimates. However

model II provides extra insight on the behaviour of liquidity buy and sell traders rather

than considring them to be homogeneous as in model I.
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Gibbs AMH
Model I Model II Model I Model II

ASH IBM ASH IBM ASH IBM ASH IBM
α Est 0.318 0.339 0.369 0.352 0.323 0.340 0.372 0.355

Sdev 0.060 0.059 0.060 0.060 0.060 0.059 0.060 0.059
LCI 0.207 0.225 0.255 0.240 0.210 0.230 0.258 0.242
UCI 0.443 0.460 0.491 0.475 0.447 0.461 0.494 0.476

δ Est 0.387 0.638 0.709 0.650 0.391 0.630 0.703 0.643
Sdev 0.105 0.100 0.091 0.098 0.103 0.098 0.089 0.096
LCI 0.191 0.431 0.517 0.446 0.199 0.428 0.516 0.444
UCI 0.604 0.823 0.869 0.828 0.602 0.811 0.860 0.819

µ Est 239 735 228 739 237 736 227 741
Sdev 7 11 4 11 7 11 4 10
LCI 225 715 219 719 220 712 219 720
UCI 252 757 237 761 248 756 237 762

ϵ Est 217 1313 217 1313
Sdev 2 4 2 4
LCI 213 1306 213 1306
UCI 220 1320 220 1320

λs Est 172 1281 172 1281
Sdev 2 5 2 6
LCI 168 1271 169 1271
UCI 176 1293 176 1294

λb Est 250 1311 250 1311
Sdev 2 5 2 5
LCI 246 1301 246 1302
UCI 254 1320 254 1320

ω1 Est 0.123 0.216 0.261 0.229 0.126 0.215 0.261 0.228
Sdev 0.040 0.051 0.054 0.052 0.040 0.050 0.054 0.051
LCI 0.053 0.124 0.162 0.136 0.057 0.124 0.164 0.135
UCI 0.213 0.326 0.376 0.338 0.216 0.321 0.375 0.338

ω2 Est 0.195 0.122 0.107 0.123 0.196 0.125 0.110 0.126
Sdev 0.050 0.040 0.038 0.041 0.051 0.040 0.038 0.040
LCI 0.106 0.054 0.044 0.054 0.107 0.058 0.048 0.057
UCI 0.304 0.213 0.192 0.214 0.307 0.215 0.197 0.215

ω3 Est 0.681 0.660 0.630 0.647 0.676 0.659 0.627 0.644
Sdev 0.060 0.059 0.060 0.060 0.060 0.059 0.060 0.059
LCI 0.556 0.539 0.508 0.524 0.552 0.538 0.505 0.523
UCI 0.792 0.774 0.744 0.759 0.789 0.769 0.741 0.757

PIN Est 0.148 0.086 0.196 0.092 0.149 0.086 0.166 0.092
Sdev 0.023 0.013 0.026 0.014 0.023 0.013 0.022 0.014
LCI 0.102 0.059 0.144 0.064 0.103 0.060 0.122 0.064
UCI 0.195 0.114 0.247 0.120 0.195 0.114 0.210 0.119

Table 2.12 Posterior estimates for last 60 days
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(a) ASH Gibbs Model I (b) IBM Gibbs Model I

(c) ASH Gibbs Model II (d) IBM Gibbs Model II

(e) ASH Metropolis Model I (f) IBM Metropolis Model I

(g) ASH Metropolis Model II (h) IBM Metropolis Model II

Fig. 2.5 Posterior estimates for recent 60 trading days
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(a) ASH Gibbs Model I (b) IBM Gibbs Model I

(c) ASH Gibbs Model II (d) IBM Gibbs Model II

(e) ASH Metropolis Model I (f) IBM Metropolis Model I

(g) ASH Metropolis Model II (h) IBM Metropolis Model II

Fig. 2.6 Posterior estimates for entire sample
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2.7.1 Discussion

In this chapter we have implemented the Metropolis-Hastings Algorithm and the Gibbs

Sampler assuming relatively non-informative prior distributions for the model param-

eters. This, in essence, is equivalent to maximum likelihood estimation. However, the

advantage of the MCMC methods over the classical MLE approach is that we have the

full posterior distribution of the parameters from which other distributional proper-

ties can be derived. The Bayesian approach also avoids the problem of local maxima.

Results from the estimation suggest that trading on private information in IBM is

less in comparison to ASH. This result is consistent with findings in the literature

suggesting that frequently traded assets have lower PIN compared to lower frequently

traded assets.

Limitations of model assumptions

• The PIN models considered in this chapter assume that the buy and sell order

arrival rates of informed traders are the same. This is to say that all informed

traders have the same information set at all times. The assumption, however, is

not realistic as investors may possess different information about an asset. Even

in the absence of private information investors would process public information

differently, and hence their trading behaviour would be non-homogeneous as

assumed in these models.

• Easley et al. (1996) and Easley et al. (2002) models imply that the only source of

information available to the investors is the direction of the trades. However, the

dynamics of traded volume may carry information about the arrival of new infor-

mation about the asset. Easley et al. (1997a) extended the Easley et al. (1996)

model to a market where investors make small and large trades. The intuition is

that large trades may be driven by the arrival of new information. However, the

authors concluded that traded volume provided no further insights beyond what
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is contained in transaction prices. This conclusion may be attributed to the

arbitrary classification of traded volume into small and large categories without

recourse to the natural stochastic dynamics of the volume process.

• The Poisson arrival distribution assumption for daily arrival of orders may also

not be appropriate due to large numbers of trades that occur during a normal

trading day in financial markets. This is particularly the case for very liquid

stocks. Sampling of trades at sub-intervals of the trading day may provide insight

into the flow of information within the trading day. The Poisson assumption may

be reasonable at such small intervals. We investigate the estimation of PIN using

short time interval sampled trades in section 3.1.

• The assumption of days without any news is unrealistic as it will mean that there

would be no trading on such days. However, we observe trades on every trading

day indicating that there is some amount of news within the trading day.
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2.8 Concluding Remarks

The empirical analysis carried out in this chapter indicate that the numerical instabil-

ity problem in PIN estimation which has widely been reported can be avoided using

Bayesian estimation methods. Bayesian methods provide flexible and efficient ways

of estimating the model parameters while avoiding the non convergence problems of

optimisation functions underlying maximum likelihood routines.

One challenging problem noted in papers that study PIN is the maximum likelihood

estimation of the probability of news event α and the probability of a bad news event

δ. In a considerable number of cases the MLE results in either a zero (0) or one (1) for

these parameters which in turn yields biased PIN. However, these parameters need to

be strictly between zero and one to make economic sense. The Bayesian methodology,

on the other hand, does not suffer from this corner solutions problem. In the Bayesian

approach, there is also no need for a careful selection and specification of initial values

as is done in the MLE approach.





Chapter 3

Estimating Daily Information

Asymmetry Risk From High

Frequency Data
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3.1 Introduction

In the preceding chapter we estimated the information asymmetry risk of an asset

using daily aggregate buyer and seller initiated trades. However, buyer and seller

initiated trades aggregated daily have the potential to conceal valuable information

which otherwise could have been learnt if the aggregation were done at a relatively high

frequency. In practice, investors are more interested in the evolution of information

asymmetry in real time as trading of the asset progresses. This will enable them to

better time their trades to minimise potential losses they may incur from trading with

informed traders. In this chapter we utilise buyer and seller initiated trades sampled

at relatively high frequency to explore daily estimated PIN. Comparisons are made

with estimates of the Volume Synchronized Probability of Informed Trading (VPIN)

of Easley et al. (2011).

Easley et al. (2008) were the first to investigate the time series properties of infor-

mation asymmetry via their PIN measure. The authors used a bivariate Generalized

Autoregressive Conditional Heteroscedastic (GARCH) to model the difference between

buyer and seller initiated trades to infer the informed and liquidity arrival rates that

underpin the PIN measure. They calculated PIN in the usual way as the ratio of

expected number of informed trades to total trades. Their findings are that the ar-

rival intensities of liquidity traders are negatively related to past arrival intensities of

informed traders. Also they report that PIN is time-varying and that both informed

and liquidity trader arrivals are persistent.

Easley et al. (2008) in their analysis did not account for the potential contributions of

other available market variables such as volume, bid-ask spread and duration between

trades. Tay et al. (2009) proposed a high frequency PIN based on Asymmetric Autore-

gressive Conditional model for trade direction and duration between high frequency
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trades. In their model, the authors used trade direction and duration between trans-

actions to estimate the expected arrival rates of informed and uninformed traders.

In predicting the probability of news arrival, Tay et al. (2009) used buyer and seller

initiated volume as an explanatory variable in their model.

Easley et al. (2011) developed the Volume Synchronized Probability of Informed Trad-

ing as an extension of PIN. The extended model is intended to account for the infor-

mation content of trading volume. The new measure is based on a predefined time

interval or an arbitrarily chosen level of volume of shares traded which the authors

define as volume bucket. The sequence of volume in a volume bucket is weighted us-

ing price changes over the sample period. According to the authors, the information

content of volume in each volume bucket is assumed to be unchanged. Hence any

unexpected increase or decrease in volume is an indication of the arrival of new in-

formation about the value of the asset. Using the cumulative distribution function of

the normal distribution the price-weighted volume in each volume bucket is classified

into buyer and seller initiated trades.

Since the introduction of VPIN, some papers including Wei et al. (2013), Andersen

and Bondarenko (2014a,b) and Abad and Yagüe (2012) have raised concerns about

the VPIN resulting in a considerable amount of debate and research that focus on the

performance of VPIN in estimating information asymmetry risk.

In a recent paper, Kumar and Popescu (2013) extended the Copeland and Galai (1983)

model to derive a new intra-day information asymmetry proxy called the Implied

Probability of INFormed (PROBINF) trading, using dealer quoted bid and ask prices

and market depth. The authors argue that dealer quotes may be considered as Amer-

ican Put and Call options since the dealer is obliged to trade at either the bid or ask
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price. Inverting the formula which equates the dealer expected gains and losses, they

calculate PROBINF as the probability used for the calculation of the expected gains

and losses. They find that PROBINF is highly correlated with PIN and hence an

appropriate alternative to PIN.

In this chapter, our aim is to compute daily PIN using buyer and seller initiated trades

that have been aggregated at a higher frequency. Sampling at high frequency has the

benefit of reflecting fully the intra-day and inter-day dynamics of the information

content of trades. A PIN estimated on trades sampled at relatively shorter time

periods may be useful for learning about information asymmetry in a more dynamic

way.

We infer daily PIN from buyer and seller initiated trades that has been sampled over

5 and 15-minute equally spaced time intervals of the trading day. There are 78 five

(5) minute and 26 fifteen (15) minute time intervals in each trading day. We assume

that the number of buyer and seller initiated trades within each time interval follow

independent Poisson distributions. We focus only on the implementation of Easley

et al. (2002) model.

As indicated earlier, Easley et al. (2011) introduced VPIN, a high frequency version

of the probability of informed trading measure which has been adapted by finance

professionals as a measure of order toxicity. We contrast the daily PIN estimate

obtained from buyer and seller initiated trades sampled at 5 and 15 minute time

intervals with VPIN. In what follows we give a brief description of the computational

methodology of the VPIN.
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Volume Synchronised Probability of Informed Trading

Easley et al. (2011) estimated VPIN using time-stamped transaction prices (P) and

volume (V) as the basic input market microstructure variables. They sampled total

volume and closing prices within 1 minute time intervals. The standard deviation

σ∆P , of changes in the 1 minute sample prices was also computed. They defined

a variable called the volume bucket V ∗, within which information is assumed to be

homogeneous. Easley et al. (2011) proposed that the size of the volume bucket be

calculated as 1
L

× average daily volume over the sample period. They chose L to be

50 in their work. However, they argued that the VPIN is robust to any choice of L.

From the 1 minute sampled data; volume is accumulated until the first volume bucket

is reached. The corresponding price is picked as the closing price associated with the

first volume bucket. Any excess volume is assigned to the next volume bucket. The

procedure is continued until we have a series of pairs {(Vτ , Pτ )}Kτ=1 for K buckets.

Denoting the total traded volume in a volume bucket by Vi, Φ as the cumulative

distribution function of the standard normal distribution and t(τ) the index of the

last time-bar included in bucket τ , buy and sell volume in each bucket are determined

as follows

V B
τ =

t(τ)∑
i=t(τ−1)+1

ViΦ
(
Pi − Pi−1

σ∆P

)

and

V S
τ =

t(τ)∑
i=t(τ−1)+1

Vi

(
1 − Φ

(
Pi − Pi−1

σ∆P

))
.

respectively. Denoting n as a rolling moving average window, the VPIN is calculated

as

V PIN =

n∑
τ=1

|V S
τ − V B

τ |

nV ∗ . (3.1)
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Easley et al. (2011) calculated VPIN with n = 50 buckets where at each update point

the first bucket is dropped, and a new bucket included. Thus starting with buckets 1

to 50 the first VPIN is calculated then buckets 2 to 51, 3 to 52 are used for calculating

the second and third VPIN, and so on.

3.2 Empirical Analysis

Table 3.1 below is a summary of buyer and seller initiated trades sampled at 5 and

15-minute intervals. An observation from this table is that buyer and seller initiated

trades at high frequency can also cause floating-point exceptions because in some

intervals they are large.

ASH IBM
Buys Sells Buys Sells

5 mins
Min 0 0 0 0
Median 3 3 14 15
Mean 5 4 20 21
Max 179 241 647 574
15 mins
Min 0 0 1 1
Median 9 9 45 49
Mean 14 14 62 65
Max 307 381 1480 964

Table 3.1 Summary of high frequency buy and sell trades

In Table 3.2 we provide the mean, median, first and third quartiles of the posterior

distributions of the model parameters and PIN. The median of the probability of news

event α, in ASH for the 5 and 15-minute intervals are 0.148 and 0.220 respectively.

In the event of a negative or positive news arriving in a 5-minute interval, the ratio

of the median informed trade arrivals µ, to the median liquidity trader arrivals (λs or

λb) for ASH is 14/3 ≈ 4. In contrast the ratio is 24/9 ≈ 2.5 for the 15-minute sampled

trades. Thus the order imbalance is higher in 5-minute intervals than in the 15-minute
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intervals. Although the negative effect of news at both sampling periods are similar

in magnitude, the median probability 0.232 for an investor trading with an informed

investor in the 5-minute interval is higher albeit marginal compared to 0.210 for the

15-minute interval sampled trades.

5 min sampled trades 15 min sampled trades

Min Q1 Median Mean Q3 Max Min Q1 Median Mean Q3 Max
ASH
α 0.025 0.040 0.148 0.159 0.334 0.463 0.069 0.071 0.220 0.238 0.495 0.599
δ 0.059 0.108 0.508 0.507 0.882 0.940 0.068 0.099 0.515 0.509 0.898 0.932
µ 4 6 14 17 48 92 7 9 24 30 86 133
λs 0 1 3 4 8 13 1 3 9 10 26 43
λb 1 1 3 4 8 14 2 3 10 11 25 36
ω1 0.008 0.011 0.060 0.082 0.253 0.424 0.022 0.025 0.089 0.122 0.380 0.504
ω2 0.008 0.011 0.062 0.077 0.221 0.377 0.022 0.024 0.090 0.116 0.347 0.473
ω3 0.536 0.665 0.851 0.840 0.959 0.974 0.400 0.504 0.779 0.761 0.928 0.930

PIN 0.073 0.130 0.232 0.233 0.356 0.466 0.077 0.117 0.210 0.216 0.360 0.474
IBM
α 0.025 0.060 0.199 0.204 0.365 0.495 0.072 0.107 0.283 0.287 0.494 0.687
δ 0.038 0.095 0.498 0.501 0.910 0.959 0.047 0.091 0.498 0.500 0.903 0.939
µ 12 17 38 43 114 244 20 31 72 83 229 436
λs 3 6 16 17 36 89 9 16 48 52 114 273
λb 4 6 15 16 35 52 12 18 43 48 107 168
ω1 0.008 0.012 0.089 0.103 0.279 0.374 0.026 0.028 0.122 0.142 0.365 0.529
ω2 0.008 0.012 0.090 0.101 0.260 0.378 0.024 0.029 0.125 0.144 0.387 0.630
ω3 0.504 0.634 0.800 0.795 0.939 0.974 0.312 0.505 0.716 0.712 0.892 0.927

PIN 0.078 0.105 0.190 0.193 0.298 0.386 0.061 0.099 0.174 0.178 0.288 0.352
Table 3.2 Summary of daily PIN estimates

Similar results are obtained for IBM where in the 5-minute interval, the ratio of

informed to liquidity trader arrival rate is approximately 2.4 compared with 1.5 for

the 15-minute interval trades. The results for IBM show that the PIN estimate is

higher in the 5-minute interval sampled trades. In our sample, the average daily

volume for ASH and IBM are approximately 533, 000 and 98, 000 respectively. The

corresponding standard deviation of prices changes within 1, 5 and 15 minute time

intervals for ASH are 0.0858, 0.1485 and 0.2442. That of IBM are also respectively

0.1087, 0.2298 and 0.3869. We used these figures as inputs for the VPIN calculation.

A summary of VPIN over the entire sample period calculated from 1, 5 and 15 minute

time bars are presented in Table 3.3. We chose L = 50 and n = 50 for each time bar.
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ASH IBM
1-min 5-min 15-min 1-min 5-min 15-min

Min 0.076 0.135 0.219 0.08 0.125 0.193
Q1 0.176 0.221 0.278 0.164 0.197 0.245
Median 0.350 0.363 0.373 0.316 0.336 0.346
Mean 0.358 0.371 0.385 0.331 0.343 0.354
Q3 0.577 0.569 0.555 0.568 0.525 0.504
Max 0.768 0.690 0.645 0.797 0.659 0.563

Table 3.3 Summary of VPIN

From Table 3.3, the VPIN of the 5 minute time bar for ASH over the sample period

ranges between 0.135 and 0.690 with a corresponding average of 0.371. This is in

contrast with the PIN for ASH which ranges between 0.073 and 0.466 obtained from

the 5-minute buyer and seller initiated trades. Similarly the range (0.219 – 0.645) of

the 15 minute time bar VPIN for ASH is higher than the PIN equivalent which is

0.077 to 0.474. The average VPIN of 15-minute time-bar for ASH is 0.385 compared

with the posterior mean of 0.216 for the PIN. In the case of IBM, the PIN estimate

from the 5-minute buyer and seller initiated trades is between 0.078 and 0.386. Part

of this range overlaps with the lower part the range for the corresponding 5-minute

time-bar VPIN which is 0.125 to 0.659.

Furthermore, it can be observed that the VPIN for ASH is higher than that of IBM.

Comparing the VPIN with daily PIN computed from buyer and seller initiated trades,

it can be seen that VPIN is consistently higher than the PIN for both assets. On the

whole, we observe that the PIN estimate of ASH is greater than that of IBM. This

is consistent with Easley et al. (1996) findings of infrequently traded assets having a

higher risk of informed trading. The dynamic structure of VPIN is also quite different

from the daily PIN.

Figures 3.1a and 3.1b show daily PIN for ASH and IBM respectively. An equivalent

version for the VPIN is also shown in Figures 3.1c and 3.1d. A series of 1, 5 and 15
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time-bar VPIN within each trading day are averaged out to provide an estimate of a

daily VPIN. These are shown in Figures 3.1c and 3.1d. Although both the PIN and

VPIN are time-varying, the results show that the PIN is relatively more stable than

the VPIN over the sample period. The daily PIN is calculated from 5 minute sampled

buyer and seller initiated trades. Since the assumption is that over short time intervals

order arrivals are constant, one would expect this stable behaviour of the daily PIN.
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(a) ASH - daily PIN

(b) IBM - daily PIN

(c) ASH - daily average VPIN

(d) IBM - daily average VPIN

Fig. 3.1 Comparison of daily PIN and VPIN
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3.3 Concluding Remarks

The empirical analysis carried out in this chapter indicates that the Bayesian method-

ology introduced in the previous chapter can be applied to high frequency sampled

buyer and seller initiated trades. In addition the time series properties of daily PIN

estimated from high frequency trades for our sample data are quite stable in compar-

ison with VPIN estimates. Hence VPIN may provide more insight on the likelihood

of Informed traders exploiting their information advantage.





Chapter 4

Learning About Informed Trading

Via Volume - Spread Relationship

4.1 Introduction

It is well documented in the market microstructure literature that trade-related data

such as the spread between bid and ask quotes, the number of transactions, traded vol-

ume, the duration between trades, trade direction and other derived variables contain

valuable information that can be used to provide insights on the liquidity of an as-

set. To mention a few, research providing this theoretical and empirical finding include

Kyle (1985), Manganelli (2005), Hasbrouck (1991), Easley and O’Hara (1992b), Easley

and O’Hara (1987) and Dufour and Engle (2000). Bagehot’s (1971) observations on

the existence of information asymmetry in financial markets have spurred on exten-

sive research that seeks to model and quantify information asymmetry risk. In chapter

2, we revisited the structural information model that uses order imbalance variables

derived from trade-related data to infer the extent of informed trading in assets.

Traded volume of an asset has been used widely in the literature as a source of liquidity
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and information flow. The wide application of volume as a proxy for information flow

is based on the mixture of distribution hypothesis (MDH) of Clark (1973). Clark

posit that asset returns and volume are both driven by an unobserved information

process. The unobserved information process generates trading decisions of investors.

Based on this theory Lamoureux and Lastrapes (1994) use a mixture model for daily

trading volume and returns to infer the process which jointly determines volume and

asset returns. The joint relationship between volume and returns is widely studied

in the finance literature. These include Bessembinder and Seguin (1993), Girard and

Biswas (2007), Tauchen and Pitts (1983), Darrat et al. (2003) and Andersen (1996)

to mention a few.

Another class of models that explores the information content of volume are based on

the model of Kyle (1985). These models assume a linear relationship between price

changes and order flow. To measure order flow, the direction of price change is used to

sign volume. The order flow is used as a proxy for information in a regression model

to estimate price impact.

We develop a joint model for volume and bid-ask spread. Volume is decomposed into

informed and uninformed components. The informed and uninformed components of

volume are associated with unobserved stochastic processes. The unobserved stochas-

tic processes have corresponding effects on bid-ask spread. We use the unobserved

stochastic processes as proxies for informed and uninformed trading. In the estima-

tion of the model parameters we use a Bayesian methodology. In addition, we use the

Bayesian method to infer the unobserved stochastic processes.

To learn about the composition of economic agents in the market and how the vari-

ous agents reveal their private information through the trading process, Glosten and
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Milgrom (1985) advanced the idea of sequential information hypothesis (SIAH). Ac-

cording to Glosten and Milgrom (1985), in a single asset market with a dedicated risk

neutral market maker, investors arrive to the market randomly in a sequential manner.

The market maker post prices at which she is willing to buy (bid price) and sell (ask

price) an asset. Investors grouped into informed and uninformed are randomly chosen

to trade. They can, however, choose to trade or not. As trading progress, the market

maker revise the bid and ask prices. The bid and ask prices set by the market marker

are conditional on her beliefs about the likelihood of the next purchase or sale coming

from an informed or uninformed investor. Thus the sequential arrival and subsequent

trading by the investors induce a Bayesian learning process for the market maker on

the information held by investors. Once the private information held by the informed

is incorporated into the price, there is an equilibrium. The learning process culminates

in a series of alternating price discovery and equilibrium phases.

Drawing on the MDH and SIAH, Andersen (1996) as well as Mahieu and Bauer (1998)

model the relationship between volume and asset returns in a joint mixture model.

Conditional on the unobserved daily information that jointly determines volume and

asset return volatility, they decompose volume into informed and uninformed compo-

nents. Both components are assumed to be generated from a Poisson distribution. The

informed component is driven by the unobserved daily information arrivals whereas

the uninformed component is constant. The daily information arrival is modelled as

a stochastic AR (1) process.

According to Mahieu and Bauer (1998) who also use the SIAH idea to decompose

volume into informed and uninformed components, a small part of the daily trad-

ing volume is directly related to the unobserved private information. Other studies

including Liesenfeld (2001) and Watanabe (2000) that extend the Andersen (1996)
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model assume that daily trading volume is normally distributed instead of the Pois-

son assumption in Andersen (1996). The work in chapter 2 is based on a model by

Easley and O’Hara (1992b) who provided insight on the link between trading volume

and unobserved private information. In their work, they proposed that volume has

two components of which one can be forecasted. They found that bid-ask spread

and the forecast-able component of volume are negatively related. In the model, pri-

vate information signals cause volume to deviate from its normal level. Bessembinder

(1994), Danielsson and Payne (2001), and Jorion (1996) among many others have em-

ployed the idea in Easley and O’Hara (1992b) to decompose volume into predictable

and unpredictable components. The expected volume is predetermined while the un-

predictable component of volume is more likely to be correlated with information

asymmetry.

The assumption underlying the decomposition of volume in the papers cited above

has been that daily volume is generated from either a normal or Poisson distribution.

However, due to increased trading volume observed in markets in recent times, the nor-

mal and Poisson distributions are potentially inappropriate probability distributions

for traded volume.

Volume and bid-ask spread are variables that measure different aspects of liquidity.

Because of that, the relationship between the bid-ask spread and volume has also been

studied extensively in the market microstructure literature. Exploiting the relationship

between daily dollar volume and closing relative spread, Hallin et al. (2011) infer the

common unobservable process that drive both volume and bid-ask spread. They found

that the common unobserved process driving volume and bid-ask spread is effected by

a unique shock which is a natural measure of market liquidity. According to Glosten

and Milgrom (1985), the bid-ask spread is a function of informed trading, and that
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increased informed trading induce high ask prices and low bid prices. This leads to

wider spreads that are intended to cover potential losses that might be incurred while

an investor trades with another who may be informed. Studies like Bollen et al. (2004)

explore the relationship between volume and spread with a linear regression model in

which volume is used as a predictor of bid-ask spread. In this model an increase in

daily volume is associated with a reduction in bid-ask spread. Copeland and Galai

(1983) found that the bid-ask spread increases with market activity measures. Hence

the bid-ask spread is positively related to volume. Li and Wu (2006) also studied the

relationship between volume and bid-ask spread where they found a dynamic feedback

relationship between informed trading volume and bid-ask spread. They found that

informed trading is a significant predictor of bid-ask spread when compared with order

imbalance variables that are used as measures of informed trading in spread regression

models. A number of research papers including Glosten and Milgrom (1985), Glosten

and Harris (1988), George et al. (1991) Madhavan et al. (1997) and Huang and Stoll

(1997) decompose bid-ask spread into components relating to inventory carry cost,

order processing cost and information asymmetry cost.

From the above, we infer that the dynamic relationship between volume and bid-ask

spread may be useful for learning about the latent processes that drive informed and

uninformed trading. Our aim is to exploit the theoretical relations between volume

and bid-ask spread to estimate informed and uninformed trading. Andersen (1996)

and the majority of the papers that extend it, assume that changes in daily volume

are primarily due to fluctuations in informed trading while uninformed trading volume

is time-invariant. According to Admati and Pfleiderer (1988) periods of high trading

activity are associated with increased trading from both informed and uninformed

traders. Thus uninformed trading may not necessarily be constant as has been mod-

elled in Andersen (1996), Mahieu and Bauer (1998), Abanto-Valle et al. (2010) and
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others. The volume decomposition approach in our model relies on the predicted link

between the components of volume and the bid-ask spread. The bid-ask spread is

expected to be associated with the relative composition of informed and uniformed

traders.

In the estimation of our model, we initially assume knowledge of the stochastic pro-

cesses that drive unobserved informed and liquidity trading and then use a Gibbs

Sampler to draw samples from the posterior distributions of the model parameters

while conditioning on the observed data and the latent stochastic processes. Given

the draws of the model parameters and the observed data, we employ a Kalman Fil-

ter to estimate optimal mean and variance of the latent stochastic processes for each

trading day. We then use these moments to sample from the posterior distribution of

the latent stochastic processes. This process of conditional sampling of model param-

eters and the latent stochastic processes is continued for a large number of times until

the convergence of the Markov chain is achieved. The posterior means of the model

parameters are then reported as estimates for the parameters.

The Bayesian estimation method allows for the incorporation of the history of volume

and bid-ask spread as conditioning information. By conditioning on the history of

volume and bid-ask spread we update our knowledge about the latent processes that

drive informed and liquidity trading. Another advantage of our model structure is

that we are able to extract the temporal information asymmetry through the joint

relationship between volume and bid-ask with no recourse to trade classification. This

is in contrast to information-based models such as the price impact of Kyle (1985),

PIN and VPIN models of chapter 2 all of which rely on Lee and Ready (1991) trade

classification algorithms. The Lee and Ready (1991) algorithm is used to infer the

direction of trade. The direction of trade is then used to derive buyer and seller
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initiated trades used in the PIN model. Similarly, the trade direction obtained from

the algorithm is used to create buyer and seller volumes for the price impact and

VPIN models. However in our model we identify latent liquidity and informed trading

effects through the theory which links volume and bid-ask spread. Also, we can take

into account parameter uncertainty and the uncertainty about the latent stochastic

processes through the Bayesian estimation approach.
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4.2 The Model

We assume that in the absence of information which will effect the fundamental value

of an asset, both informed and uniformed investors trade a certain amount of shares

µi and µl respectively. Informed traders have private signals about the fundamental

value of the asset. This private signal is driven by an unobservable stochastic process.

Uninformed traders on the other hand are aware of the presence of informed traders

and hence use the trading process to make inferences about their trading decisions.

Finally, the informed and uniformed interpret public news differently and thus the

innovations in their respective volume due to public news are random. In our model

εit and εlt represent the innovation in informed and uninformed processes. This as-

sumption is consistent with Kandel and Pearson (1995) who argue that informed and

uninformed investors interpret public news differently. Denoting informed and unin-

formed trading volume by V i
t and V l

t respectively, we decompose observed daily traded

volume Vt as follows

Vt = V i
t + V l

t

= V l
t

(
1 + V i

t

V l
t

)
(4.1)

For empirical estimation we model the logarithm of volume and hence have the fol-

lowing by taking logarithms of equation 4.1

ln Vt = lnV l
t + ln

(
1 + V i

t

V l
t

)
.

We assume that ln V l
t = µl + τt + εlt and ln

(
1 + V i

t

V l
t

)
= µi + ht + εit. Since the

term ln
(

1+ V i
t

V l
t

)
is a monotonic transformation of the ratio of informed to uninformed

trading V i
t

V l
t
, it is not effected by changes in overall volume. Based on these assumptions

we treat volume as a stochastic process whose logarithmic transform can be modelled
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as

ln Vt = lnV l
t + ln

(
1 + V i

t

V l
t

)
,

= µl + µi + τt + ht + εit + εlt

= µ+ τt + ht + εt. (4.2)

In the above, τt measures uninformed trading while ht also measures the level of

informed trading relative to uninformed trading. We assume that τt and ht are inde-

pendent stochastic processes. In addition τt is conditionally independent of its past

given its most recent value. Likewise, given the most recent value ht−1, ht is condi-

tionally independent of its history. Hence we model ht and τt with the following AR

(1) processes

τt = φττt−1 + ετ,t, ετ,t ∼ N
(

0, σ
2
ετ

ωt

)
(4.3)

ht = φhht−1 + εh,t, εh,t ∼ N
(

0,
σ2
εh

δt

)
, (4.4)

where N (.) is the normal distribution. Our choice of model for the latent information

processes τt and ht is in line with Easley et al. (2008) and other authors who model

the arrival intensities of informed and liquidity traders as first order auto-regressive

processes. Persistence in the informed and uninformed trader information are given by

the parameters φτ and φh respectively. The terms ωt and δt in the error components of

the latent processes are gamma distributions. They have been introduced to account

for the possibility of fat tails. Additionally we assume that τt and ht are uncorrelated

with expectations equal to zero.

Let the ask and bid prices be denoted by P a
t and P a

t respectively. Then we define the

relative spread for the ith time-stamped transaction as RSt,i = Pa
t −P b

t

0.5(Pa
t +P b

t ) . If M0 is
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the number of time-stamped relative spreads in trading day t, we denote the average

relative spread for trading day t as St =
M0∑
i=1

RSt,i/M0. Let yt = ln Vt and xt = lnSt

be the logarithm of daily volume and average relative bid-ask spread of an asset

respectively. Theoretical literature including Easley and O’Hara (1992a) as well as

Glosten and Milgrom (1985) suggests that informed trading induces a wider bid-ask

spread whereas as uninformed trading results in a narrower bid-ask spread. Thus the

effect of informed trading on bid-ask spread will be positive. Likewise the effect of

uniformed trading on bid-ask spread will be negative. We consider the following model

A1 : yt = µ+ τt + ht + εy,t, εy,t ∼ N
(

0,
σ2
εy

κt

)
(4.5a)

xt = η + αττt + αhht + εx,t, εx,t ∼ N
(

0, σ
2
εx

ϕt

)
(4.5b)

τt = φττt−1 + ετ,t, ετ,t ∼ N
(

0, σ
2
ετ

ωt

)
(4.5c)

ht = φhht−1 + εh,t, εh,t ∼ N
(

0,
σ2
εh

δt

)
, (4.5d)

where ατ < 0, αh > 0. The error terms εy,t, εx,t, ετ,t and εh,t are assumed to be

independent of each other. The term exp(η) is the minimum average relative bid-ask

spread. The effect of informed and uninformed components of volume are modelled

through αh and ατ respectively. We assume that, conditional on τt and ht, volume

and average bid-ask spread are independent.

The distribution of financial data are characterised by fat-tails. This mean that the

data generating process is not normally distributed. To account for fat-tails in our

models, we use a scale mixture of normals for the distribution of the error terms

εy,t, εx,t, ετ,t and εh,t. The terms κt and ϕt which follow gamma distributions are

used to achieve this scale mixture. Geweke (1993) proved that this formulation is
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equivalent to a specification that assume a Student-t distribution for the error terms.

By introducing a t-distribution in the shock structure, we are able to capture extreme

changes in the observed and unobserved processes. We therefore account effectively

for potential extreme events. Empirical research suggests that the lags yt−1 and xt−1 of

volume and bid-ask spread respectively convey information. Hence a natural direction

of investigation is to find out whether τt and ht will have significant impact on bid-

ask spread if the lags are included in the model. We carry out this investigation by

considering the following alternative model:

A2 : yt = µ∗ + ρyyt−1 + τt + ht + εy,t, εy,t ∼ N
(

0,
σ2
εy

κt

)
(4.6a)

xt = η∗ + ρxxt−1 + αττt + αhht + εx,t, εx,t ∼ N
(

0, σ
2
εx

ϕt

)
(4.6b)

τt = φττt−1 + ετ,t, ετ,t ∼ N
(

0, σ
2
ετ

ωt

)
(4.6c)

ht = φhht−1 + εh,t, εh,t ∼ N
(

0,
σ2
εh

δt

)
. (4.6d)

The expectations of yt and xt in model A2 are µ = µ∗/(1−ρy) and η = η∗/(1−ρx) re-

spectively. We our cast our models in state space form and then estimate them in a

Bayesian setting. Models A1 and A2 can be represented in a state-space form as

Yt = c+ AXt + Zβt + ut ut ∼ MVN (0,Wt) (4.7a)

βt = d+ Tβt−1 + vt vt ∼ MVN (0, Rt) (4.7b)

where MVN (.) is the density function of the multivariate normal distribution, Yt =

(yt, xt) is the observed variables and the unobserved state variable(s) to be inferred

is βt = (τt, ht). Other exogenous variables are collected in the vector Xt. Equation

4.7a, known as the observation equation links the observed data Yt to the latent state

βt while the state transition represented by equation 4.7b defines how the latent state

evolves over time. Harvey et al. (1992) proposes an alternative representation which
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also takes into account the fat tails in models A1 and A2. Their representation is not

materially different from our representation and will lead to similar results.

In equation 4.7 we can only observe Y1:N = (Y1, . . . , YN). However we are interested in

inferring the fixed parameter set Θ = (d, c,Wt, Rt, T, Z,A) as well as the latent state

vector β1:N = (β1, . . . , βN). We have the following design matrices

Z =
( 1 1
ατ αh

)
, T =

(
φτ 0
0 φh

)
, Wt =

σ2
y

κt
0

0 σ2
x

ϕt

, Rt =
σ2

ετ

ωt
0

0 σ2
εh

δt

, and d =
(

0
0
)

for

both models. We also have A =
(

0 0
0 0

)
, c =

(µ
η

)
, and A =

(
ρy 0
0 ρx

)
, c =

(
µ∗

η∗

)
for

models A1 and A2 respectively.

The state-space representation enhances the modelling of the temporal relationship

between observed variables and the unobservable processes in a more flexible man-

ner. The estimation method also provides an approximation to the marginal posterior

distributions of model parameters and the unobserved state. It enhances the measure-

ment of the uncertainty associated with the estimate of the state variable and model

parameters. To estimate the parameters Θ of the model in a Bayesian framework,

we specify a prior distribution P (Θ). If P (Y1:N |Θ,β1:N ) is the likelihood function of

the observed data conditional on the latent state β1:N and parameters Θ, then using

Bayes’ theorem, the joint posterior distribution of the model parameter set Θ and the

latent state process conditional on the observed data is given as

P (Θ, β1:N |Y1:N) ∝ P (Y1:N |β1:N ,Θ)P (β1:N |Θ)P (Θ) (4.8)

This joint posterior distribution is highly dimensional and most often analytically in-

tractable and hence very complicated to work with. This makes direct simulation from

the joint posterior distribution hard to perform. We use MCMC algorithms to explore
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the posterior density in equation (4.8). The idea behind the MCMC is to break the

highly dimensional vectors of latent variables and parameters into pieces. Conditional

on the latent process we use the Gibbs Sampler to infer the model parameters.

Gibbs Sampling Algorithm

We estimate the marginal posterior distributions using a Gibbs Sampler. This algo-

rithm is used to draw samples from the pair (Θ,β), conditioning on one element of

the pair and the observed series at a time. The steps below are taken to explore the

posterior distribution of p(Θ, β1:N |Y1:N).

1. We set the initial values of the parameter set Θ and β1:N .

2. Sample β1:N using the Kalman Filter and the Carter and Kohn (1994) Forward

Filtering Backward Sampling (FFBS) Algorithm.

3. Sample the Θ conditional on Y1:N and β1:N .

4. Steps 2 and 3 are repeated many times until we achieve convergence.

Full Conditional Posterior Distributions

We select the following conjugate prior distributions for the model parameters:

η ∼ N (µη, σ2
η)

ρy ∼ N (µρy , σ
2
ρy

)

ρx ∼ N (µρx , σ
2
ρx

)

φτ ∼ N (µφτ , σ
2
φτ

)

φh ∼ N (µφh
, σ2

φh
)

µ ∼ N (µµ, σ2
µ)

ατ ∼ N
(
µατ , σ

2
ατ

)
αh ∼ N

(
µαh

, σ2
αh

)
κt ∼ Ga

(
νy

2 ,
νy

2

)
ϕt ∼ Ga

(
νx

2 ,
νx

2

)

ωt ∼ Ga
(
ντ

2 ,
ντ

2

)
δt ∼ Ga

(
νh

2 ,
νh

2

)
νy ∼ Ga(a, b)

νx ∼ Ga(a, b)

νh ∼ Ga(a, b)

ντ ∼ Ga(a, b)

σ2
ετ

∼ IG(r, s)

σ2
εh ∼ IG(r, s)

σ2
εy

∼ IG(r, s)

σ2
εx

∼ IG(r, s),

where Ga(.) and IG(.) are the distributions of the gamma and inverse gamma random

variables respectively. With conjugate prior distributions, the kernel of the result-

ing posterior distributions are standard probability densities from which it is easy to
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draws samples using a Gibbs sampler. We set the hyper-parameters of the priors for

νy, νx, ντ , and νh as follows a = 0.16 and b = 0.04. This sets the prior degrees of

freedom for the distribution of the error terms in the models at 4 with a variance

of 100, which reflects how uncertain we are about the true values of these parame-

ters. Similarly we choose the following µαh
= µη = µφτ = µατ = µφh

= µµ = 0 and

σ2
αh

= σ2
η = σ2

φτ
= σ2

ατ
= σ2

φh
= σ2

µ = σ2
φh

= σ2
µ = 100. These hyper-parameter

choices mean that we are assuming that αh, ατ , φh, and φτ can take on any value.

The uncertainty is expressed through the choice of a large prior variance 100. Finally,

the hyper-parameters of σ2
ετ

, σ2
εh

, σ2
εy

, and σ2
εx

are set to be r = s = 1 which leads to

relatively flat priors. Flat priors place little weight on any specific part of the param-

eter space. Thus we assume relatively no knowledge about the level and uncertainty

of the model parameters. These choices imply that the estimation places more weight

on the information held in the observed data. The respective full conditional posterior

distributions of the parameters in model A1 are given as follows

σ2
y ∼ IG

(
r0 + N

2 , s0 + 0.5
N∑
t=1

κt[yt − µ− τt − ht]2
)

σ2
x ∼ IG

(
r1 + N

2 , s1 + 0.5
N∑
t=1

ϕt[xt − η − αττt − αhht]2
)

κt ∼ Ga
(
νy+1

2 , νy

2 + 1
2σ2

y
[yt − µ− τt − ht]2

)
ϕt ∼ Ga

(
νx+1

2 , νx

2 + 1
2σ2

x
[xt − η − αττt − αhht]2

)

ατ ∼ N

( 1
σ2

ατ
+

N∑
t=1

ϕtτ2
t

σ2
x

)−1(
µατ

σ2
ατ

+

N∑
t=1

ϕtτt(xt−η−αhht)

σ2
x

)
,
(

1
σ2

ατ
+

N∑
t=1

ϕtτ2
t

σ2
x

)−1



αh ∼ N

( 1
σ2

αh

+

N∑
t=1

ϕth2
t

σ2
x

)−1(
µαh

σ2
αh

+

N∑
t=1

ϕtht(xt−η−ατ τt)

σ2
x

)
,
(

1
σ2

αh

+

N∑
t=1

ϕth2
t

σ2
x

)−1



η ∼ N

 1
σ2

η
+

N∑
t=1

ϕt

σ2
x

)−1(
µη

σ2
η

+

N∑
t=1

ϕt(xt−ατ τt−αhht)

σ2
x

)
,
(

1
σ2

η
+

N∑
t=1

ϕt

σ2
x

)−1


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µ ∼ N


(

1
σ2

µ
+

N∑
t=1

κt

σ2
y

)−1(
µµ

σ2
µ

+

N∑
t=1

κt[yt−τt−ht]

σ2
y

)
,

(
1
σ2

µ
+

N∑
t=1

κt

σ2
y

)−1
 .

σ2
τ ∼ IG

(
r2 + N−1

2 , s2 + 0.5
N∑

2=1
[τt − φττt−1]2

)

σ2
h ∼ IG

(
r3 + N−1

2 , s3 + 0.5
N∑

2=1
[ht − φhht−1]2

)

φh ∼ N


(

1
σ2

φh

+

N∑
t=2

h2
t−1

σ2
h

)−1(
µφh

σ2
φh

+

N∑
t=2

htht−1

σ2
h

)
,

(
1
σ2

φh

+

N∑
t=2

h2
t−1

σ2
h

)−1


φτ ∼ N


(

1
σ2

φτ

+

N∑
t=2

τ2
t−1

σ2
τ

)−1(
µφτ

σ2
φτ

+

N∑
t=2

τtτt−1

σ2
τ

)
,

(
1
σ2

φτ

+

N∑
t=2

τ2
t−1

σ2
τ

)−1


ωt ∼ Ga
(
ν+1

2 , ντ

2 + 1
2σ2

τ
[τt − φττt−1]2

)

δt ∼ Ga
(
ν+1

2 , νh

2 + 1
2σ2

h
[ht − φhht−1]2

)
.

However, since the full conditional posterior distributions of νy, νx, ντ and νh do not

fall within any class of the standard probability distributions, we use the Adaptive

Metropolis Hastings Algorithm which was introduced in the previous chapter to sample

from the following posterior density functions

νy|κt ∝ νa−1
y e−bνye

− νy
2

N∑
t=1

κt N∏
t=1

κ
νy
2 −1
t

νx|ψt ∝ νc−1
x e−dνxe

− νx
2

N∑
t=1

ψt N∏
t=1

ψ
νx
2 −1
t

ντ |ωt ∝ νf−1
τ e−gντ e

− ντ
2

N∑
t=1

ωt N∏
t=1

ω
ντ
2 −1
t

νh|δt ∝ νk−1
h e−lνhe

− νh
2

N∑
t=1

δt N∏
t=1

δ
νh
2 −1
t .

Sampling β

We utilise the Kalman Filter (Kalman, 1960), which is a recursive algorithm that

provides an optimal estimate of the unobserved state variable βt conditional on the
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observed data and other model parameters.

The Kalman Filter algorithm minimises the mean squared errors of the estimated

state vector. The Kalman Filter and the Carter and Kohn (1994) FFBS algorithm

are used to draw samples from the full conditional distribution of β1, . . . , βN . There

are several approaches to explaining and deriving the Kalman Filter. However, in this

thesis, we focus on the Bayesian interpretation of the filter. Our goal is to obtain

the posterior distribution of the state vector β = β1:N conditional on knowledge of

the model parameter set Θ and observed series. Conditioning on the observed series

y1, . . . , yt, the posterior distribution of the unobserved state at time t can be obtained

recursively. We achieve this by noting that from from Bayes’ theorem, the posterior

distribution of the unobserved state βt can be written as

p(βt|yt, Y1:t−1,Θ) = p(yt|βt, Y1:t−1,Θ)p(βt|Y1:t−1,Θ)
p(yt|Y1:t−1,Θ)

∝ p(yt|βt, Y1:t−1,Θ)p(βt|Y1:t−1,Θ), (4.9)

where p(yt|βt, Y1:t−1,Θ) is the likelihood function and p(βt|Y1:t−1,Θ), the prior distri-

bution of βt.

Kalman Filter Algorithm

At time t−1 we assume that given observed data up to time t−1, the state vector has

a Gaussian distribution with mean βt−1|t−1 and variance Pt−1|t−1. Thus βt−1|Y1:t−1 ∼

N (βt−1|t−1, Pt−1|t−1).

1. We initialise the first and second moments of the distribution of the state vector

as β0|0 and P0|0. At time t before observing Yt, the prior distribution of the

state vector is βt|Y1:t−1 ∼ N (d + Tβt−1|t−1, TPt−t|t−1T
′ + Rt), where βt|t−1 =

d+ Tβt−1|t−1 and Pt|t−1 = TPt−t|t−1T
′ +Rt.
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2. After observing the Yt, we update our knowledge about the state vector using the

likelihood function. The posterior distribution of the state vector after observing

Yt then becomes βt|Yt ∼ N (βt|t, Pt|t), where βt|t and Pt|t are computed using the

following recursions relations

Ŷt = c+ AXt + Zβt|t−1

F = ZPt|t−1Z
′ +Wt

Kt = Pt|t−1Z
′F−1

βt|t = βt|t−1 +Kt(Yt − Ŷt)

Pt|t = Pt|t−1 −KtZPt|t−1.

Kt is known as the Kalman gain and the quantity (Yt − Ŷt) is the prediction

error. At each time step, the previous a posteriori estimate of the state vector

is used as the current a priori estimate.

3. Once we have the filtered state vector β̂t, we use the Carter and Kohn (1994)

FFBS algorithm to sample the state vector from its full conditional distribution.

To sample from the posterior distribution of the state vector βt, we start with the

filtered mean βN |N and variance PN |N at N as the posterior mean and variance.

Thus conditional on the observed values of Y1:N , βN is normally distributed with

mean βN |N and variance PN |N . The posterior distribution of the state vector

βt for trading times t = N − 1, . . . , 2, 1, is normal with mean and variance

respectively given as

µ = Σ ×
(
T ′R−1

t βt+1 − T ′R−1
t d+ Σ−1β̂t

)

and

Σ =
(
T ′R−1

t T + Σ−1
)−1

.

βt is the sampled state vector at time t+ 1, β̂t and Σ are the means and the variance-
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covariance matrix obtained from the Kalman filter at time t. One advantage of using

the Kalman Filter is that it accumulates information about the observed series as it

moves forward. This accumulated information is stored in mean and variance of the

latent state. Details of how these quantities have been derived are provided in Carter

and Kohn (1994).

Improving Sampling Efficiency

There are two ways of representing the state space model in equation 4.7. These are

the centered and non-centered representations. The choice of representation in the

estimation may have an effect on the simulation efficiency of the Gibbs Sampler. In

our specific case, the centered representation is given as

Yt = AXt + Zβ∗
t + ut, ut ∼ MVN (0,Wt) (4.10a)

β∗
t = (I − T )Z−1c+ Tβ∗

t−1 + vt vt ∼ MVN (0, Rt), (4.10b)

while the non-centered representation is also given as

Yt = c+ AXt + Zβt + ut, ut ∼ MVN (0,Wt) (4.11a)

βt = Tβt−1 + vt vt ∼ MVN (0, Rt), (4.11b)

where T =
(
φτ 0
0 φh

)
, Yt =

(yt
xt

)
, Z =

( 1 1
ατ αh

)
, c =

(µ
η

)
and A =

(
0 0
0 0

)
.

Two main issues (see Strickland et al. (2008) and Kim et al. (1998)) arise when these

representations are used for estimating model parameters. Firstly, the standard rep-

resentation is affected by simulation inefficiency which leads to non-convergence of

the MCMC for model parameters. Secondly, if the non-centered representation is

the choice for estimation, the MCMC efficiency is hampered if the volatility of the

latent process in equation 4.10b is very small or the latent process itself is highly per-
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sistent. Yu and Meng (2011) introduced a novel approach known as the Ancillarity-

Sufficiency Interweaving Strategy (ASIS) to boost the simulation efficiency. The intu-

ition behind ASIS is to estimate the model parameters by interweaving between the

centered and non-centered representations through the transformation from βt to β∗
t

and vice-versa. Kastner and Frühwirth-Schnatter (2014) provides an example using

the stochastic volatility model. In this chapter and the next, we have implemented

the ASIS to improve the simulation efficiency for the sampling of µ and η.

4.3 Empirical Analysis

Details of the empirical estimation are provided in this section. We use volume and

bid-ask spread of the cleaned data which we described in chapter 2. Table 4.1 is a

summary of the logarithm of total daily volume and daily average relative bid-ask

spread which we use in this chapter. The Gibbs Sampler was run for 100, 000 sweeps

with a burn-in period of 30, 000 for both assets from 3rd June 2013 to 15th April

2015. In Tables 4.2 and 4.3 we present summaries of posterior means, lower and upper

credible limits for parameters of model A1 and A2 respectively. The posterior densities

of parameters in model A1 are shown in Figure 4.1. The estimates of µ for ASH and

IBM in Table 4.2 are respectively 11.319 and 13.071. These estimates are very close

to the respective

yt xt
ASH IBM ASH IBM

Minimum 9.809 11.753 -8.103 -8.669
Maximum 12.907 14.765 -1.954 -2.118
Median 11.331 13.071 -2.757 -2.836
Mean 11.357 13.077 -2.755 -2.835
Skewness 0.097 0.128 0.009 -0.005
Kurtosis 3.334 3.237 3.086 2.850
Variance 0.248 0.208 0.067 0.054

Table 4.1 Descriptive statistics of data



94 Learning About Informed Trading Via Volume - Spread Relationship

empirical mean shown in Table 4.1. Similarly, estimates −7.385 and −8.032 of η for

ASH and IBM respectively are of comparable magnitude to the empirical minimums

shown in Table 4.1.

ASH IBM
Est Stdev Lci Uci Est Stdev Lci Uci

µ 11.319 0.054 11.21 11.425 13.071 0.041 12.988 13.152
η -7.385 0.022 -7.429 -7.341 -8.032 0.017 -8.066 -7.996
ατ -0.253 0.060 -0.379 -0.140 -0.258 0.054 -0.369 -0.155
αh 0.212 0.062 0.098 0.343 0.216 0.049 0.123 0.318
φτ 0.861 0.049 0.750 0.941 0.849 0.038 0.768 0.918
φh 0.904 0.029 0.842 0.955 0.881 0.029 0.819 0.936
σ2
ϵy 0.069 0.010 0.051 0.090 0.046 0.005 0.035 0.058
σ2
ϵx 0.031 0.003 0.025 0.037 0.025 0.002 0.021 0.029
σ2
ϵτ 0.058 0.010 0.040 0.082 0.044 0.006 0.032 0.058
σ2
ϵh

0.051 0.009 0.035 0.071 0.042 0.006 0.031 0.055
νy 22.520 17.910 5.778 75.044 39.529 24.922 11.379 106.764
νx 21.318 12.355 7.891 56.693 48.540 23.367 18.021 105.015
ντ 38.524 22.881 11.003 100.045 41.142 21.940 13.690 95.730
νh 40.877 20.663 13.685 94.900 40.135 22.402 13.157 95.676

Table 4.2 Model A1 - Posterior estimates

ASH IBM
Est Stdev Lci Uci Est Stdev Lci Uci

µ∗ 4.412 0.604 3.498 6.230 3.435 0.497 2.420 4.417
η∗ -2.970 0.350 -3.665 -2.303 -3.493 0.324 -3.665 -2.912
ατ -0.290 0.088 -0.469 -0.124 -0.176 0.074 -0.328 -0.038
αh 0.099 0.071 0.004 0.263 0.064 0.051 0.002 0.192
ρy 0.611 0.053 0.451 0.691 0.737 0.038 0.662 0.814
ρx 0.597 0.047 0.503 0.687 0.565 0.040 0.487 0.637
φτ -0.337 0.108 -0.528 -0.103 -0.311 0.107 -0.504 -0.081
φh -0.152 0.162 -0.413 0.255 -0.232 0.120 -0.452 0.018
σ2
ϵy 0.067 0.011 0.047 0.091 0.048 0.007 0.035 0.063
σ2
ϵx 0.042 0.005 0.032 0.053 0.034 0.002 0.029 0.040
σ2
ϵτ 0.065 0.011 0.045 0.089 0.048 0.007 0.036 0.064
σ2
ϵh

0.065 0.011 0.046 0.089 0.048 0.007 0.036 0.063
νy 33.031 20.487 8.460 86.799 36.143 20.819 10.291 89.289
νx 27.303 20.114 8.108 85.709 46.852 26.235 15.134 113.669
ντ 34.018 22.602 9.787 95.932 39.233 26.599 11.043 112.453
νh 31.913 22.026 8.085 93.430 37.057 23.518 10.097 101.201

Table 4.3 Model A2 - Posterior estimates
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The effect of uninformed trading on bid-ask spread which is captured by the parameter

ατ for ASH and IBM are −0.253 and −0.258 respectively. The proxies of informed

and uninformed trading are significantly persistent for both assets as shown by their

respective estimates φASHτ = 0.861, φIBMτ = 0.849, φASHh = 0.904 and φIBMh = 0.881.

The estimates of αh, ατ , φh and φτ are all significant as their respective credible

intervals do not include the value zero.

In Figures 4.2 and 4.3 we present the relative bid-ask spread, volume and the latent

components of volume for ASH and IBM respectively in model A1. It can be observed

that both latent components of informed and uninformed trading in both assets change

over time. A closer look at the uninformed (τt) and informed (ht) trading processes

show that there are certain trading days when both are high, both are low or one

of them is high and the other is low. The persistence and dynamic behaviour of the

informed and uninformed trading processes provide support for the decomposition

of volume and the modelling approach we employ. The latent components exhibit

a cyclical pattern which coincides with quarterly earnings announcement days. Our

model structure is thus flexible and is able to accommodate all possible behaviours of

informed and uninformed trading.

The empirical results of model A2 indicate that the effect of informed trading (αh) on

spread is significant but weak. The informed trading is noise. Even though the effect

of the uninformed (ατ ) is significantly negative, the process is noisy. The dynamics of

the informed and uninformed in model A2 imply that all relevant information about

informed and uninformed trading are already captured in the lag volume. In contrast

in model A1, τt and ht have accumulated information about previous informed and

uninformed trading.
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(a) ASH

(b) IBM

Fig. 4.1 Model A1 - Posterior distributions of parameters
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In a situation where τt and ht are both high, bid-ask spread is expected to be wide.

Volume on the other hand may also be high because a sudden increase in informed

trading relative to uninformed trading may lead to increased volume. Notice that

trading days labelled E*, F* and H* in Figure 4.2 as well as A and E in Figure

4.3 both the informed and uninformed trading components were high. Figures 4.2e,

4.2f, 4.3e and 4.3f show that as expected, the bid-ask spread increased on these days

when both components of volume were high. It can also be observed that the volume

was high on these days.

According to theory, it is expected that bid-ask spread will be narrow when uniformed

trading is high relative to informed trading. The corresponding volume will also see an

increase due to the increased trading from uninformed traders. Trading days marked

B*, D* and I* for ASH show that τt is high and ht is low. The bid-ask spread on

these days are narrow as expected. The respective volumes on those days are also

high. We observe similar patterns in IBM one 18th March 2014 and 16th March 2015

which are marked C and F respectively on Figure 4.3.

It is expected that the bid-ask spread will be wide when informed trading is high and

uninformed trading low. The traded volume in such a scenario is also expected to be

high. Points B (22nd January 2014) and D are two trading days where we observe such

dynamics of the information proxies for IBM. The 22nd January 2014 is a day after

IBM had reported weak performance claimed to be driven by fallen revenues in the

so-called BRIC countries (Brazil, Russia, India and China). The dynamics of τt and

ht on this day provides evidence in support of the argument that investors interpret

public information differently. For ASH we observe the same dynamics of the informed

and uniformed proxies on the days labelled C* and G* in Figure 4.2.
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(a) ASH τt (b) ASH ht

(c) ASH - Volume and τt (d) ASH - Volume and ht

(e) ASH - Spread and τt (f) ASH - Spread and ht

Fig. 4.2 ASH model A1 - latent processes, volume and relative spread
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(a) IBM τt (b) IBM ht

(c) IBM - Volume and τt (d) IBM - Volume and ht

(e) IBM - Spread and τt (f) IBM - Spread and ht

Fig. 4.3 IBM model A1 - latent processes, volume and relative spread
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(a) ASH τt (b) IBM τt

(c) ASH ht (d) IBM ht

Fig. 4.4 Model A2 - latent processes

On the 20th October 2014 (point labelled D ), the CEO of IBM confirmed that IBM

is to pay GlobalFoundries $1.5 billion to take on its ailing semiconductor technologies

business. IBM also abandoned its promise of delivering a $20 earnings per share by the

year 2015 as the company also announced another round of layoffs. The news on the

deal between IBM and GlobalFoundries was revealed on Sunday 19th via Bloomberg.

From Figures 4.3a and 4.3b, the informed component of volume started increasing

about a week and a half before the earnings announcement while the uniformed com-

ponent (τt) decreased. The uninformed component only started increasing once the

news about the deal had been revealed via Bloomberg on the 19th. It is reasonable to

conjecture that before the 19th October 2014 some investors traded on their superior

information which drove uninformed trading down.
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In Figure 4.5, we present a comparison of the informed trading process in our model

with the daily probability of informed trading of chapter 2.

(a) ASH - 5min based PIN and ht

(b) IBM -5min based daily PIN and ht

Fig. 4.5 Comparison of daily PIN and ht

It is clear from the graph that while both ht and PIN are time varying, the PIN is

more stable than the ht. The daily PIN is calculated from 5 minute sampled buyer and

seller initiated trades. Since the PIN model assume that over short intervals volume

is constant, one would expect that PIN estimated from buy and sell trades sampled
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over such short intervals will not change very much. Intuitively one would expect a

positive correlation between the 2 series and simultaneous jumps. However this is not

clear from the plots possibly due to the approaches taken.

4.4 Concluding Remarks

In this chapter, we have exploited existing market microstructure theory about the

relationship between volume and bid-ask spread to develop an alternative and comple-

mentary approach of inferring the components of trading volume. We depart from the

use of derived order flow imbalance variables such as buyer or seller initiated trades

but rather we use observed market data to infer information asymmetry. An addi-

tional advantage of our modelling approach is that we can account for the uncertainty

about model parameters and the unobserved processes. Prior beliefs about effects of

various components of volume on bid-ask spread are also easily incorporated in to the

estimation.

The empirical analysis carried out shows that uninformed and informed trading com-

ponents of traded volume are both persistent. The effect of the uninformed component

of volume on bid-ask spread is relatively higher in ASH compared with IBM. The com-

ponents which have been used as proxies for informed and liquidity trading seem to

capture the effects of news events of the assets considered in this thesis. Our model

also shows that the informed trading component of volume increases in anticipation

either to favourable or unfavourable news about the asset.

A limitation of our model is that the effect of informed trading on bid-ask spread is

unidirectional. It can be argued that there is a feedback relationship between informed

trading and bid-ask spread. This feature has not been addressed in our model. In

future work, it is our intention to incorporate this feedback effect into our model. We
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believe this will enhance the performance of the model in capturing the latent process

as well as to infer the direction of the next periods’ liquidity. Model parameters in our

model are invariant to changes in the market and general economic conditions. This

is left for future work where we consider a time-varying parameter state space model

structure.





Chapter 5

Investigating The Link Between

Volatility, Informed And

Uninformed Trading

5.1 Introduction

Volatility is an important unobservable characteristic of assets associated with infor-

mation flow in financial markets. It is vital in financial markets because it is used

as an input for risk management, asset allocation and derivative pricing. Due to its

importance, research on volatility has seen the development of numerous models of

varying complexity.

The information held by investors is revealed to the market through the volume of the

orders they submit. Traded volume has therefore been used in the literature as a proxy

for volatility. Clark (1973) used the mixture of distributions hypothesis (MDH) to ini-

tiate the idea and discussion on the link between volume and volatility. The MDH

postulates that changes in the price of an asset and traded volume are jointly de-
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pendent on a common unobserved information process. This unobserved information

process is normally interpreted as volatility. The MDH has spurred on a vast liter-

ature of volatility models including Andersen (1996) who decompose traded volume

into two components. The decomposition of volume into two components in Andersen

(1996) is based on market microstructure theory of informational heterogeneity among

investors.

The effect of informed trading on volatility has been studied extensively in the litera-

ture (see for example Foster and Viswanathan (1994), Admati and Pfleiderer (1988), Mad-

havan et al. (1997), Amihud and Mendelson (1980), Harris (1987) and Kyle (1984)).

These studies and others have reported mixed findings on the relationship between

informed trading and volatility. For example Foster and Viswanathan (1994) find

that informed trading and volatility are negatively related. They argue that informed

traders trade competitively among themselves. The competitive trading between in-

formed traders leads to the revelation of more private information and hence a re-

duction in the uncertainty about the value of the asset. The uncertainty about the

value of the asset, therefore, leads to a reduced return volatility. Admati and Pflei-

derer (1988) looks at a market in which some uninformed traders are strategic and

can choose the timing of their trades. Since the uninformed traders do not want their

trades to impact the price of the asset, they tend to trade at the same time. Informed

traders also have the incentive to trade when uninformed traders cluster in the market

so that they can also conceal their information. Admati and Pfleiderer (1988) also

argue that if informed traders have the same piece of information, then an increase

in informed trading will have no effect on volatility. However, if the informed traders

have diverse pieces of information about the asset trading, then more private informa-

tion will be generated. The excess diverse private information generated will increase

the uncertainty about the fundamental value of the asset hence volatility.
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In chapter 3, we employed the idea of a market comprising of informed and uniformed

investors to separate volume into two components. The decomposition of volume in

chapter 3 is in the spirit of Andersen (1996) which is based on the joint dependence of

volume and returns on volatility as postulated in the MDH. There is also evidence of a

relationship between volatility and bid-ask spread. Bollerslev and Melvin (1994) found

a positive relationship between bid-ask spread and volatility in the foreign exchange

market. In their paper, the author’s treated volatility and bid-ask spread exogenous to

each other. They used a GARCH model to estimate volatility from daily returns and

then used the estimated volatility as an explanatory variable in a probit regression

model in which the bid-ask spread is the response variable. Wang and Yau (2000)

also find evidence of a joint dependence of bid-ask spread and volatility in the futures

market. In their work, they found that there is a negative relationship between volume

and bid-ask spread while volume and price volatility exhibited a positive relationship.

Also, they found that the bid-ask spread and volatility have a positive relationship.

The previous days’ trading volume also had a negative relationship with volatility.

Harris (2002) suggested that volatility, information asymmetry are the most important

determinants of the bid-ask spread and that volatility has a strong indirect effect on

bid-ask spread. Therefore a joint model of volume, volatility and bid-ask spread can

offer an avenue to learn more about the relationship between volatility, informed and

uniformed trading.

Our objective in this chapter is to examine the relationship between informed trad-

ing, uninformed trading and volatility. We exploit the volume decomposition idea

and model developed in chapter 3 for this investigation. The resulting model has the

potential to be used to forecast volatility. Four volatility models are considered and

compared with the Heterogeneous Autoregressive (HAR) and Autoregressive (AR)

models of realized variance. In the empirical implementation of our models, we di-
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vide our data into in-sample and out-of-sample periods. We employ the Bayesian

methodology in discussed in chapter 3 on the in-sample data to estimate the model

parameters and also to filter the unobserved informed and uninformed components

of volume. We use the samples drawn from the marginal posterior distributions of

model parameters in the in-sample-period as discrete approximations for the model

parameters in the out-of-sample period. Similarly, we use the unobserved informed

and uninformed trading processes obtained from the Kalman filter as prior distribu-

tions for the unobserved informed and uninformed trading processes out-of-sample

period. Using a Sequential Monte Carlo (SMC) method we update our knowledge

of the unobserved informed and uninformed trading as new observations of volume,

bid-ask spread and realized variance become available. Simultaneously, we generate

one day ahead volatility forecasts. Another advantage of using the SMC approach is

that the entire history of the observed data will not be needed for making forecasts.

This is because all relevant information needed for forecasting are accumulated in the

current state of unobserved informed trading components.

5.2 The Models

Let yt = lnVt, xt = lnSt and zt = lnRVt be the logarithm of daily volume (Vt), average

relative bid-ask spread (St) and realized variance (RVt) of an asset respectively. Since

proxies for volatility are subject to jumps and other microstructure noise, we used

the realized kernel matlab function of the Oxford MFE Toolbox that is robust to

microstructure noise to calculate the realized variance of our data set.

In what follows we describe the models considered in this chapter. The rationale for

the first model we consider is to revisit the volume-volatility relationship. In this

model τ̃t is the underlying volume which is assumed to evolve smoothly over time and



5.2 The Models 109

changes with the arrival of information about the asset. The model is as follows:

C1 : yt = τ̃t + εy,t, εy,t ∼ N
(

0,
σ2
εy

κt

)
(5.1a)

zt = β0 + βτ̃ τ̃t + εz,t, εz,t ∼ N
(

0, σ
2
εz

ξt

)
(5.1b)

τ̃t = φτ̃ τ̃t−1 + ετ̃ ,t, ετ̃ ,t ∼ N
(

0,
σ2
ετ̃

ωt

)
. (5.1c)

Fluctuations in volume due to transitory information arrival are modelled through

εy,t. We expect the parameter βτ̃ to be positive in line with the mixture of distributions

hypothesis. Model C1 does not provide us with a way to discern the behaviour of

the informed and uninformed components of volume and their respective effects on

volatility. We therefore consider an alternative model which allows for the learning of

the effect of informed and uninformed trading on volatility and bid-ask spread. The

model is an extension of model A1 which we considered in chapter 3. Our interest is to

know whether bid-ask spread provides additional information beyond what is already

contained in the volume-volatility relationship in model C1. The alternative model is

given as

C2 : yt = µ+ τt + ht + εy,t, εy,t ∼ N
(

0,
σ2
εy

κt

)
(5.2a)

zt = β0 + βττt + βhht + εz,t, εz,t ∼ N
(

0, σ
2
εz

ξt

)
(5.2b)

xt = η + αττt + αhht + εx,t, εx,t ∼ N
(

0, σ
2
εx

ϕt

)
(5.2c)

τt = φττt−1 + ετ,t, ετ,t ∼ N
(

0, σ
2
ετ

ωt

)
(5.2d)

ht = φhht−1 + εh,t, εh,t ∼ N
(

0,
σ2
εh

δt

)
. (5.2e)

The previous days’ volatility (zt−1) has been commonly used in AR (1) type models

as a predictor of present day volatility (zt). Model C2 makes no provision for lag

volatility as a predictor of present day volatility. In the next model we incorporate lag
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volatility (zt−1) and exploit only the effect of ht on volatility. To investigate the extent

to which ht reduce or increase the impact of lag volatility on present day volatility, we

consider the following model:

C3 : yt = µ+ τt + ht + εy,t, εy,t ∼ N
(

0,
σ2
εy

κt

)
(5.3a)

zt = β0 + β1(zt−1 − β0) + βhht + εz,t, εz,t ∼ N
(

0, σ
2
εz

ξt

)
(5.3b)

xt = η + αττt + αhht + εx,t, εx,t ∼ N
(

0, σ
2
εx

ϕt

)
(5.3c)

τt = φττt−1 + ετ,t, ετ,t ∼ N
(

0, σ
2
ετ

ωt

)
(5.3d)

ht = φhht−1 + εh,t, εh,t ∼ N
(

0,
σ2
εh

δt

)
. (5.3e)

Model C3 assumes that the proxy for uninformed trading effect the bid-ask spread only

but not volatility. It is however likely that both informed and uninformed trading effect

volatility in different ways. For example Li and Wu (2006) found that uninformed

trading reduces volatility. In the next model, both τt and ht are included in the

volatility model to confirm or otherwise the effect of τt on volatility. If all information

is reflected in zt−1 then we expect the estimates of βh and βτ to be zero. The proxy

for uninformed and informed trading in this model affects both volatility and bid-ask

spread. The extended model we investigate is

C4 : yt = µ+ τt + ht + εy,t, εy,t ∼ N
(

0,
σ2
εy

κt

)
(5.4a)

zt = β0 + β1(zt−1 − β0) + βττt + βhht + εz,t, εz,t ∼ N
(

0, σ
2
εz

ξt

)
(5.4b)

xt = η + αττt + αhht + εx,t, εx,t ∼ N
(

0, σ
2
εx

ϕt

)
(5.4c)

τt = φττt−1 + ετ,t, ετ,t ∼ N
(

0, σ
2
ετ

ωt

)
(5.4d)

ht = φhht−1 + εh,t, εh,t ∼ N
(

0,
σ2
εh

δt

)
. (5.4e)
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In models C2, C3 and C4, we expect the estimate of βh to be positive as the literature

posit simultaneous increases in volatility and bid-ask spread on the arrival of private

information. Persistence in uninformed and informed trading are given by the parame-

ters φτ and φh respectively. The term exp(η) is the minimum average relative bid-ask

spread. The effect of informed and uninformed components of volume on bid-ask

spread are modelled through αh and ατ respectively. The other assumption we make

in all the models is that conditional on τt and ht, bid-ask spread, volume and volatility

are independent. To account for fat-tails in our models, we use a scale mixture of nor-

mals for the distribution of the error terms εz,t, εy,t, εx,t, ετ,t and εh,t. Geweke (1993)

proved that this formulation is equivalent to a specification that assumes a Student-t

distribution for the error terms. By introducing a t-distribution in the shock structure,

we can capture extreme changes in the observed and unobserved processes. Thus we

have an effective way of dealing with outliers and extreme events. Since we estimate

the parameters of the models above in a Bayesian setting, we choose η ∼ N (µη, σ2
η),

β0 ∼ N (µβ0 , σ
2
β0),

β1 ∼ N (µβ1 , σ
2
β1),

βh ∼ N (µβh
, σ2

βh
),

βτ ∼ N (µβτ , σ
2
βτ

),

φτ ∼ N (µφτ , σ
2
φτ

),

φh ∼ N (µφh
, σ2

φh
)

µ ∼ N (µµ, σ2
µ),

ατ ∼ N
(
µατ , σ

2
ατ

)
,

αh ∼ N
(
µαh

, σ2
αh

)
,

κt ∼ Ga
(
νy

2 ,
νy

2

)
,

ϕt ∼ Ga
(
νx

2 ,
νx

2

)
,

ωt ∼ Ga
(
ντ

2 ,
ντ

2

)
,

ξt ∼ Ga
(
νz

2 ,
νz

2

)
,

δt ∼ Ga
(
νh

2 ,
νh

2

)
,

νy ∼ Ga(a, b),

νx ∼ Ga(a, b),

νz ∼ Ga(a, b),

νh ∼ Ga(a, b), and

ντ ∼ Ga(a, b),

σ2
ετ

∼ IG(r, s),

σ2
εh ∼ IG(r, s),

σ2
εy

∼ IG(r, s),

σ2
εz

∼ IG(r, s),

σ2
εx

∼ IG(r, s)

as the prior distributions for the model parameters; where Ga(.), N (.) and IG(.) are

the distributions of the gamma, normal and inverse gamma random variables. We

choose conjugate priors so that the posterior distributions will have kernels that can

easily be sampled using the Gibbs sampler. We set the hyper-parameters of the priors

for νz, νy, νx, ντ , and νh as follows a = 0.16 and b = 0.04. This sets the prior degrees

of freedom of the distribution of the error terms at 4. The variance of the prior degrees
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of freedom is 100, which reflects how uncertain we are about the true values of these

parameters. Similarly we choose the following µβ0 = µβ1 = µβτ = µβh
= µαh

= µη =

µφτ = µατ = µφh
= µµ = 0 and σ2

β0 = σ2
β1 = σ2

βτ
= σ2

βh
= σ2

αh
= σ2

η = σ2
φτ

=

σ2
ατ

= σ2
φh

= σ2
µ = σ2

φh
= σ2

µ = 100. These hyper-parameter choices mean that before

observing the data, β0, βh, βτ , αh, ατ , φh, and φτ have no effect and can take on any

value. The uncertainty is expressed through the large prior variance 100. Finally,

the hyper-parameters of σ2
ετ

, σ2
εh

, σ2
εy

, σ2
εz

, and σ2
εx

are set to be r = s = 1 resulting

in relatively flat priors which place little weight on any part of the parameter space.

Thus we assume relatively no knowledge about the level and uncertainty of the model

parameters. These choices imply that in the estimation of the model parameters, more

weight on the information held in the observed data. In addition, the estimation of

the model parameters are not sensitive to the choice of the hyper-parameters since

the MCMC algorithm converges to the most probable space of the parameter after

the burnin period. The corresponding full conditional posterior distributions similar

to the ones in chapter 3 were derived and used for the MCMC sampling.

As indicated earlier, the models specified above may be used to forecast volatility.

We, therefore, compare their performance with the models listed below which we refer

to as benchmark models. Defining z
(w)
t and z

(m)
t as the logarithm of weekly and

monthly realized variance, the benchmark models are

AR (1) : zt = β0 + β1(zt−1 − β0) + εz,t, εz,t ∼ N
(

0, σ2
εz

)
(5.5a)

HAR : zt = β0 + β1zt−1 + βwz
(w)
t + βmz

(m)
t + εz,t, εz,t ∼ N

(
0, σ2

εz

)
(5.5b)

C5 : zt = β0 + β1zt−1 + λyt−1 + εz,t, εz,t ∼ N
(

0, σ2
εz

)
. (5.5c)

Corsi (2009) used the idea of heterogeneity of investors with different investment time

horizons to develop the Heterogeneous Autoregressive (HAR) model of realized vari-
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ance. The model has become a common benchmark model due to its simplicity and

forecasting performance. Because of this, we compare our models against it. Similarly,

AR (1) models are also popular in the volatility forecasting literature hence its inclu-

sion in the benchmark models. Lag volume is reported to contain information that

can be used to forecast volatility. For this reason model C5 is used as an additional

comparator model. Model C5, HAR and AR (1) models are estimated in the ordinary

least square regression model framework.

5.3 Model Estimation

Models C1, C2, C3, and C4, can be represented in a state space form. We combine

the Gibbs Sampling algorithm in chapter 3 with a Sequential Monte Carlo (SMC)

method to estimate our models. In what follows we give a brief description of the

SMC method.

Sequential Monte Carlo Methods

Sequential Monte Carlo methods, often referred to as particle filters, are simulation-

based algorithms developed to aid the approximation of intractable integrals. Due to

their flexibility and efficiency in filtering complex models, SMC methods have been

widely applied in finance and econometric research. Among the numerous research

applying SMC are Chib et al. (2002) and Lopes and Tsay (2011). The SMC is flex-

ible in the sense that there is no need to store the entire history of data but rather

only the most recent observation. SMC methods use discrete probability distributions

consisting of weighted draws from posterior distributions known as particles to ap-

proximate continuous probability distributions. Prado and West (2010) and Sekerke

(2015) provide‘ a detailed exposition to the theory and application of SMC.
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As a new observation of the variable(s) being modelled become available the particles

are updated based on their weights. Let Θ be the collection of model parameters, a

general representation of our state space model can be stated as

Yt ∼ p(Yt|βt,Θ) (5.6a)

βt ∼ p(βt|βt−1,Θ) (5.6b)

p0 ∼ p(β0|Θ), t = 1, . . . , N, (5.6c)

where p(β0) is the prior distribution of the latent state βt. Defining ψ0:t =
(
ψ0, ψ1, . . . , ψt

)
and z1:t =

(
z1, z2, . . . , zt

)
, suppose

{
ψ

(i)
0:t, ω

(i)
t

}M
i=1

can be used to characterise a pos-

terior probability distribution p(ψ0:t|z1:t) of a latent state vector at some point t con-

ditional on some observed variable z1:t. If δ(.) is the dirac delta function, then the

posterior distribution at time t may be approximated as

p(ψ0:t|z1:t, θ) ≈
M∑
i=1

ωitδ(ψ0:t − ψ
(i)
0:t), (5.7)

which is a discrete weighted approximation to the true posterior. Using importance

sampling, the weights can be calculated. The importance sampling procedure relies on

the following insight. Suppose that it is difficult to draw samples from the probability

density p(ψ). However it is possible to draw samples from the probability density

π(ψ) and that p(ψ) ∝ π(ψ). Assuming that ψi ∼ q(ψ), i = 1, . . .M are samples easily

drawn from q(.), the importance density, then a weighted approximation to the density

p(ψ) is given as follows

p(ψ) ≈
M∑
i=1

ω
(i)
t δ(ψ − ψ(i)), (5.8)

where the normalised weights are defined as wit ∝ π(ψi)
q(ψi) . This means that samples ψ0:t
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drawn from an importance density q(ψ0:t|z1:t) have weights in equation (5.7) given as

wit ∝ p(ψi0:t|z1:t,Θ)
q(ψi0:t|z1:t,Θ) . (5.9)

Now returning to our case and defining β0:t = (β0, β1, . . . , βt) and Y1:t = (Y1, Y2, . . . , Yt), if

at every point we have samples approximating the density p(β0:t−1|Y1:t−1,Θ), we are

interested in updating this density to p(β0:t|Y1:t,Θ) as new observations become avail-

able at t. If the importance density can be factorised as follows

q(β0:t|Y1:t,Θ) = q(βt|β0:t−1, Y1:t,Θ)q(β0:t−1|Y1:t−1,Θ), (5.10)

then it is possible to draw samples βi0:t ∼ q(β0:t−1|Y1:t,Θ). In order to calculate the

weights we first express the posterior density p(β0:t|Y1:t) in terms of the prior distribu-

tion p(β0:t−1|Y1:t−,Θ), likelihood p(Yt|βt,Θ) and transition p(βt|βt−1,Θ). The posterior

density is given as

p(β0:t|Y1:t,Θ) = p(Yt|β0:t, Y1:t−1,Θ)p(βt|βt−1,Θ)
p(Yt|Y1:t−1,Θ)

= p(Yt|βt,Θ)p(βt|βt−1,Θ)
p(Yt|Yt−1,Θ) p(β0:t−1|Y1:t−1,Θ)

∝ p(Yt|βt,Θ)p(βt|βt−1,Θ)p(β0:t−1|Y1:t−1,Θ). (5.11)

Substituting equation 5.10 and 5.11 into equation 5.9 we have the following updated

weights

wit ∝
p(Yt|βit ,Θ)p(βit|βit−1,Θ)p(βi0:t−1|Y1:t−1,Θ)
q(βit|βi0:t−1, Y1:t,Θ)q(βi0:t−1|Y1:t−1,Θ)

= ωit−1
p(Yt|βit ,Θ)p(βit|βit−1,Θ)
q(βit|βi0:t−1, Y1:t,Θ) . (5.12)

With these weights the posterior density of the state vector can be approximated as
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follows

p̂(β0:t|Y1:t,Θ) ≈
M∑
i=1

ω
(i)
t δ(β0:t − β

(i)
0:t). (5.13)

It can be shown that as the number of particles M becomes large the approximation

in 5.13 approaches the true posterior density p(β0:t|Y1:t). Various algorithms based on

the importance sampling have been proposed in the literature to extract the latent

states. In this thesis we employ the algorithm of Liu and West (2001) described below.

The Liu and West (2001) allows the estimation of model parameters as well as the

filtering of the unobserved state vector.

Liu and West (2001) Algorithm

1. Start with a set of initial particles
{
β

(i)
0 ,Θ(i)

0

}M
i=1

with weights w(i)
0 = 1

M
.

2. For each trading day t = 1, . . . , N .

(a) For each particle i = 1, . . . ,M , we calculate point estimates

m
(i)
t = γΘ(i) + (1 − γ)Θ̄

µ
(i)
t = E(βt|β(i)

t−1,Θ(i))

of the pair (βt,Θ) where γ and Θ̄ = E[Θ(i)] are a shrinkage parameter and

the mean model parameters.
(b) For j = 1, . . . ,M :

i. Draw an auxiliary integer variable k, with probability

p(k) ∝ w
(j)
t−1p

(
Yt|µ(j)

t ,m
(j)
t

)

ii. Sample a new parameter vector Θ(j) ∼ N
(

m
(k)
t , (1 − γ)2Σ

)
, where

Σ = V ar[Θ] is the variance of model parameters.

iii. Sample a value of current state vector β(k)
t from p

(
βt|β(k)

t−1,Θ(kj)
)
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iv. Assign each particle β(k)
t with a corresponding importance weight

w̃
(k)
t ∝

p
(
Yt|β(k)

t ,Θ(k)
)

p
(
Yt|µ(k)

t ,m
(k)
t

)
(c) Normalize the weights

w
(j)
t = w̃

(j)
t

M∑
s=1

w̃
(s)
t

3. Repeating Step 2 a large number of times produces the triplet (Θ(k), β
(k)
t , ω

(k)
t )

for k = 1, . . . ,M as the posterior approximation
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5.4 Empirical Analysis

We use 1 minute sampled returns to calculate daily realized variance. The Gibbs

Sampling algorithm described in chapter 3 is implemented on observed data from 3rd of

June 2013 to 4th November 2014 for each asset. The sampler is run for 100, 000 sweeps

with a burn-in period 30, 000. We use the remaining 70, 000 draws from the posterior

distributions of the model parameters and the Kalman filter as initial particles for the

Sequential Monte Carlo algorithm. The SMC is applied on the observed data for the

period 15th November 2014 to 15th April 2015. The out of sample period, therefore,

has 103 and 102 trading days for ASH and IBM respectively. The Liu and West (2001)

particle filtering and parameter smoothing algorithm is then employed to extract the

latent information processes and also to compute one day ahead forecasts. Ordinary

least square estimates of AR (1), HAR and model C5 are shown in Table 5.1.

AR (1) HAR Model C5
ASH IBM ASH IBM ASH IBM

β0 Est -14.651 -15.643 -5.275 -7.228 -10.251 -10.829
Sdev 0.024 0.021 1.227 1.338 1.099 1.274
LCI -14.655 -15.646 -5.449 -7.418 -10.423 -11.029
UCI -14.648 -15.640 -5.100 -7.037 -10.078 -10.628

β1 Est 0.450 0.505 0.200 0.275 0.408 0.433
Sdev 0.046 0.045 0.065 0.064 0.049 0.051
LCI 0.443 0.499 0.191 0.266 0.401 0.425
UCI 0.456 0.511 0.209 0.284 0.416 0.441

λ Est 0.138 0.149
Sdev 0.054 0.051
LCI 0.130 0.141
UCI 0.147 0.158

βw Est 0.449 0.445
Sdev 0.099 0.092
LCI 0.435 0.432
UCI 0.463 0.458

βm Est -0.007 -0.182
Sdev 0.105 0.094
LCI -0.022 -0.195
UCI 0.007 -0.168

σ2
ϵz Est 0.215 0.174 0.201 0.161 0.212 0.171

Table 5.1 Estimates from benchmark models
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The mean, standard error and credible intervals of the posterior distributions of the

model parameters are summarised in Tables 5.2 and 5.3 for models C2, C3 and C4.

C1 C2 C3 C4 C1 C2 C3 C4
µ Est 11.360 11.366 11.362 σ2

ϵy Est 0.105 0.065 0.068 0.064
Sdev 0.054 0.055 0.052 Sdev 0.016 0.010 0.010 0.009
LCI 11.243 11.248 11.250 LCI 0.075 0.047 0.049 0.046
UCI 11.458 11.468 11.456 UCI 0.140 0.086 0.091 0.085

β0 Est -24.239 -14.725 -14.731 -14.726 σ2
ϵz Est 0.154 0.092 0.097 0.089

Sdev 1.321 0.046 0.050 0.045 Sdev 0.022 0.013 0.014 0.013
LCI -26.934 -14.825 -14.836 -14.823 LCI 0.111 0.068 0.071 0.064
UCI -21.755 -14.639 -14.638 -14.642 UCI 0.199 0.119 0.126 0.117

β1 Est -0.029 -0.052 σ2
ϵx Est 0.026 0.028 0.027

Sdev 0.063 0.062 Sdev 0.003 0.003 0.002
LCI -0.153 -0.173 LCI 0.021 0.022 0.021
UCI 0.097 0.072 UCI 0.033 0.034 0.033

βτ̃/βτ Est 0.837 -0.340 -0.368 σ2
ϵτ̃
/σ2

ϵτ Est 0.045 0.059 0.067 0.059
Sdev 0.115 0.160 0.169 Sdev 0.007 0.010 0.012 0.010
LCI 0.620 -0.664 -0.709 LCI 0.032 0.041 0.046 0.041
UCI 1.073 -0.037 -0.042 UCI 0.062 0.082 0.093 0.082

βh Est 0.763 0.936 0.821 σ2
ϵh

Est 0.057 0.051 0.057
Sdev 0.137 0.185 0.163 Sdev 0.009 0.008 0.009
LCI 0.503 0.603 0.517 LCI 0.040 0.036 0.041
UCI 1.042 1.323 1.158 UCI 0.079 0.069 0.078

η Est -7.404 -7.408 -7.405 νy Est 14.59 32.345 25.533 25.522
Sdev 0.023 0.024 0.023 Sdev 9.470 23.327 19.458 16.637
LCI -7.453 -7.460 -7.453 LCI 4.803 7.555 6.465 6.729
UCI -7.361 -7.362 -7.363 UCI 41.713 100.697 80.998 69.395

ατ Est -0.388 -0.224 -0.392 νz Est 16.758 13.716 16.192 14.506
Sdev 0.093 0.044 0.093 Sdev 13.156 9.901 12.970 10.739
LCI -0.576 -0.314 -0.578 LCI 5.572 4.886 5.013 5.038
UCI -0.209 -0.138 -0.213 UCI 53.434 42.597 54.020 45.789

αh Est 0.348 0.421 0.355 νx Est 43.580 39.648 44.564
Sdev 0.080 0.095 0.081 Sdev 26.353 23.702 24.423
LCI 0.197 0.244 0.204 LCI 12.738 11.952 13.426
UCI 0.512 0.615 0.523 UCI 113.230 102.242 106.647

φτ̃/φτ Est 0.999 0.757 0.801 0.751 ντ̃/ντ Est 39.857 34.518 36.319 36.363
Sdev 0.001 0.077 0.066 0.076 Sdev 23.247 21.764 21.002 24.423
LCI 0.997 0.600 0.660 0.599 LCI 11.306 10.340 10.885 10.753
UCI 1.001 0.901 0.919 0.896 UCI 100.979 90.996 89.810 105.933

φh Est 0.866 0.881 0.862 νh Est 26.248 31.921 26.091
Sdev 0.046 0.042 0.046 Sdev 17.730 20.751 16.915
LCI 0.771 0.790 0.767 LCI 7.396 9.168 7.596
UCI 0.950 0.957 0.949 UCI 71.256 88.117 72.427

Table 5.2 ASH - Posterior estimates
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C1 C2 C3 C4 C1 C2 C3 C4
µ Est 13.066 13.069 13.062 σ2

ϵy Est 0.061 0.043 0.044 0.044
Sdev 0.040 0.039 0.041 Sdev 0.007 0.006 0.006 0.006
LCI 12.984 12.990 12.978 LCI 0.046 0.032 0.034 0.033
UCI 13.145 13.146 13.141 UCI 0.077 0.057 0.058 0.057

β0 Est -22.909 -15.684 -15.683 -15.687 σ2
ϵz Est 0.160 0.068 0.065 0.063

Sdev 0.903 0.042 0.041 0.042 Sdev 0.015 0.009 0.011 0.010
LCI -24.674 -15.772 -15.767 -15.774 LCI 0.131 0.050 0.046 0.046
UCI -21.132 -15.603 -15.607 -15.607 UCI 0.191 0.088 0.088 0.086

β1 Est -0.057 -0.065 σ2
ϵx Est 0.022 0.023 0.022

Sdev 0.056 0.057 Sdev 0.002 0.002 0.002
LCI -0.166 -0.177 LCI 0.018 0.019 0.018
UCI 0.054 0.048 UCI 0.027 0.028 0.027

βτ̃/βτ Est 0.554 -0.101 -0.145 σ2
ϵτ̃
/σ2

ϵτ Est 0.051 0.049 0.052 0.049
Sdev 0.069 0.157 0.168 Sdev 0.007 0.007 0.007 0.007
LCI 0.417 -0.423 -0.493 LCI 0.038 0.036 0.038 0.036
UCI 0.689 0.190 0.160 UCI 0.068 0.066 0.069 0.066

βh Est 1.123 1.234 1.177 σ2
ϵh

Est 0.052 0.050 0.052
Sdev 0.153 0.162 0.165 Sdev 0.008 0.007 0.008
LCI 0.848 0.916 0.866 LCI 0.038 0.037 0.038
UCI 1.445 1.554 1.516 UCI 0.070 0.066 0.070

η Est -8.042 -8.042 -8.042 νy Est 34.001 39.927 41.272 42.413
Sdev 0.018 0.018 0.018 Sdev 22.840 23.012 27.244 23.615
LCI -8.078 -8.079 -8.079 LCI 9.010 11.591 10.807 11.884
UCI -8.007 -8.007 -8.007 UCI 92.999 98.691 112.424 102.130

ατ Est -0.324 -0.272 -0.337 νz Est 31.129 39.384 41.730 35.196
Sdev 0.083 0.033 0.083 Sdev 20.776 25.677 27.171 21.080
LCI -0.495 -0.339 -0.509 LCI 8.400 10.399 11.133 9.552
UCI -0.169 -0.208 -0.183 UCI 88.706 105.937 115.984 89.901

αh Est 0.344 0.369 0.336 νx Est 51.648 50.326 50.875
Sdev 0.070 0.069 0.076 Sdev 26.161 25.558 26.852
LCI 0.205 0.235 0.195 LCI 16.663 17.651 16.678
UCI 0.507 0.511 0.492 UCI 117.716 116.8702 118.608

φτ̃/φτ Est 0.999 0.807 0.822 0.799 ντ̃/ντ Est 38.908 39.741 37.135 41.981
Sdev 0.000 0.052 0.044 0.052 Sdev 24.041 23.829 21.294 24.384
LCI 0.997 0.697 0.732 0.690 LCI 10.991 11.562 11.518 13.358
UCI 1.001 0.904 0.904 0.895 UCI 100.429 105.321 93.264 106.017

φh Est 0.806 0.804 0.810 νh Est 28.651 30.445 28.432
Sdev 0.052 0.053 0.051 Sdev 19.618 20.029 18.598
LCI 0.699 0.697 0.706 LCI 9.154 8.749 8.431
UCI 0.905 0.905 0.907 UCI 77.799 83.472 76.932

Table 5.3 IBM - Posterior estimates

The posterior estimate βASHτ̃ = 0.837 of model C1 shown in Table 5.2 indicates a

positive relationship between volume and volatility. The underlying volume τ̃ in model

C1 for ASH is significantly persistent as given by the posterior estimate φASHτ̃ = 0.999.
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We obtain similar results for IBM which can be found in Table 5.3. Intuitively we

expect the previous period’s volatility (zt−1) to have a positive and significant effect

on the current period (zt−1) volatility. It can be observed from Table 5.1 that for

the benchmark models the effect of zt−1 modelled via β1 is positive and significant.

On the contrary, the effect of zt−1 in the comparable proposed model namely C3 and

C4 is negative and insignificant as can be seen in Tables 5.2 and 5.3. This negative

insignificant effect is likely to be as a result of the βh capturing the expected positive

effect. Hence a possible remnant of the negative effect of uniformed trading being

captured by β1

Impact Of Informed Trading On Volatility - βh

From Table 5.2, the posterior estimate of informed trading on volatility for ASH in

model C2 is βASHh = 0.763. Its confidence interval (0.503, 1.042) is an indication of

a significant positive effect of informed trading on volatility. Similarly βASHh = 0.936

for model C3 is also positive and significant. The effect of ht on volatility in model

C3 is larger than that in model C2. The value βASH1 = −0.029 shows the insignificant

effect of zt−1 on zt. The estimate in model C4, βASHh = 0.821, also shows that the

effect is significantly positive. In comparison this estimate in model C4 is larger than

the estimate in model C2.

The results for models C2, C3 and C4 for IBM shown in Table 5.3 are very similar to

that obtained for ASH. The posterior estimates of the effect of informed trading on

volatility are βIBMh = 1.123, βIBMh = 1.234 and βIBMh = 1.177 for models C2, C3 and

C4 respectively. Their corresponding credible intervals also tells us that the effect is

positive and significant. From these results, there is evidence that zt−1 provides no

additional information in the models.
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Impact Of Uninformed Trading On Volatility - βτ

Posterior estimates of uninformed trading on volatility for ASH in models C2 and C4

are respectively βASHτ = −0.340 and βASHτ = −0.368. These are also negative and

significant. The effect is marginally high in model C4 compared with model C2. The

estimates βIBMτ = −0.101 and βIBMτ = −0.145, also show that the effect of uninformed

trading on volatility is negative. However the credible intervals (−0.423, 0.190) for

model C2 and (−0.493, 0.160) for model C4 indicate that the effect of uninformed

trading on volatility in IBM is insignificant. From these results, there is evidence that

zt−1 provides no additional information.

Additional Learning Of αh And ατ From Realized Variance

From Table 5.2 and 5.3 it can be observed that αh and ατ for both assets are significant

across all models. For ASH, the posterior estimate for model C2 is αASHh = 0.348 with

a credible interval (0.197, 0.512). This estimate is higher than αASHh = 0.212 obtained

from model A1 in chapter 3. Similarly the estimate αIBMh = 0.344 for IBM is also

higher than that obtained in the previous chapter.

Likewise, the effect of the uninformed trading on bid-ask spread αASHτ = −0.253

and αIBMτ = −0.258 in the previous chapter are higher than the respective effects

αASHτ = −0.388 and αIBMτ = −0.324 obtained in model C2. These results is an

indication that volatility provides additional information that can be used to infer the

effect of informed and uninformed trading on bid-ask spread.

Persistence Of τt And ht

The estimates of φ in the unobserved informed and uninformed trading for both assets

across all models are considerably high. The estimates of persistence in the informed
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trading for models C2, C3 and C4 for ASH are φASHh = 0.866, φASHh = 0.881 and

φASHh = 0.862 respectively. Their respective credible intervals show that these are

highly significant. We obtain similar significant and high persistence in the informed

trading for IBM. The estimates of persistence in uniformed trading are similarly sig-

nificant for both assets and across all models.

In all the models considered, the posterior estimates of the parameters νy, νz, νx, νh

and ντ show that the distribution of log of the observed series and latent processes are

approximately Gaussian in both assets. The parameter estimates are stable across all

models for both assets.

Temporal Behaviour Of Volatility, Informed And Uninformed Trading

We compare the components of volume inferred from models C2, C3 and C4 with

the realized variance for ASH and IBM in Figures 5.1 and 5.2 respectively. On the

days marked E*, F* and H* in Figure 5.1, both the informed and uninformed trading

components were high. It can be observed that volatility of ASH on these days are high

as expected. Likewise, the volatility of IBM was high on the days where both informed

and uninformed trading were high. This relationship between volatility, informed and

uninformed trading can be seen in Fig 5.2.

A trading day with low informed trading and a high uninformed trading is predicted to

result in low volatility. We notice this relationship on the days marked B* and D* in

Figure 5.1 as well as points marked C and F in Figure 5.2.

On the other hand, a trading day with high informed trading and a low uninformed

trading is predicted to have high volatility. We notice this relationship on the days

marked C* in Figure 5.1 as well as points marked B, and D in Figure 5.2.
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The findings above is an indication that we can use the joint relationships between vol-

ume, realized variance and bid-ask spread to understand the effects of latent liquidity

risk on volatility.

(a) Model C2 (b) Model C3

(c) Model C4 (d) Realized variance

Fig. 5.1 ASH - realized variance compared with ht and τt
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(a) Model C2 (b) Model C3

(c) Model C4 (d) Realized variance

Fig. 5.2 IBM - realized variance compared with ht and τt
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5.5 One Day Ahead Volatility Forecasting

The models developed in the preceding sections may be utilised to produce volatility

forecasts. In what follows we provide a brief summary of Bayesian forecasting approach

we take. The forecasts from the state space model are based on the posterior predictive

distribution, the draws of the parameters and the latent state. Conditional on the

information available Y1:t, the one step ahead predictive density of latent state process

βt can be computed as

p(βt+1|Y1:t,Θ) =
∫
p(βt+1|βt, Y1:t,Θ)p(βt|Y1:t,Θ)dβt. (5.15)

The one step ahead predictive density of the observable Yt+1, conditional on informa-

tion available at time t is also computed as

p(Yt+1|Y1:t) =
∫
p(Yt+1|βt+1,Θ)p(βt+1|Y1:t,Θ)p(Θ|Y1:t)dβt+1dΘ. (5.16)

There are three uncertainties which are in the predictive density shown in equation

5.16. Firstly the uncertainty about the model parameters are captured by the posterior

distribution p(Θ|Y1:t). Secondly there is uncertainty about the future evolution of the

latent state vector which is represented by p(βt+1|βt,Θ, Y1:t). Finally the uncertainty

about the future realizations of observed data is captured in p(Yt+1|βt+1,Θ).

For model C5, AR (1) and the HAR model, we use the parameter estimates obtained

from the entire history of the observed series up to time t− 1 to compute the forecast

for the period t. The one day ahead forecast is then computed using the lag 1 value of

the observed series. On the other hand, the forecasts from the SMC are just based on

the current observed data point and the most recent values of the unobserved state βt

which contains all the needed knowledge accumulated from the history of the observed
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series.

In Figure 5.3 below, we present the one day ahead forecasts and 95% confidence

intervals of the AR (1) and model C5 compared with the HAR model. The daily

forecast, which is the mean of the predictive distribution with corresponding 95%

credible intervals for models C1, C1, C3, and C4 compared with the HAR model

forecasts are shown in Figure 5.4. For a well calibrated interval forecast, it is expected

that observed data points fall inside the 95% credible intervals. It can be noted that

the HAR, AR (1) and model C5 are unable to capture peaks and troughs in the

volatility dynamics. In contrast, the high and low periods of the volatility dynamics

are better modelled in models C1, C2, C3 and C4. Comparisons of forecasts for all

models are also shown in Figures 5.5 and 5.6

(a) ASH Model AR (1) (b) IBM Model AR (1)

(c) ASH Model C5 (d) IBM Model C5

Fig. 5.3 Benchmark models - comparison of one day ahead volatility forecasts.
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(a) ASH Model C1 (b) IBM Model C1

(c) ASH Model C2 (d) IBM Model C2

(e) ASH Model C3 (f) IBM Model C3

(g) ASH Model C4 (h) IBM Model C4

Fig. 5.4 HAR versus other models - comparison of one day ahead volatility forecasts.
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(a)

(b)

(c)

Fig. 5.5 ASH - Comparison of one day ahead volatility forecasts
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(a)

(b)

(c)

Fig. 5.6 IBM - Comparison of one day ahead volatility forecasts
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In a Bayesian estimation setting, the predictive likelihood is of particular relevance

when the objective is to choose between models based on forecast comparisons. We

employ the log predictive score to assess the fit of the models. To assess the forecasting

accuracy of the models, the root mean square of the forecast errors (RMSE) are

computed for each model. Let Ŷt denote the one day ahead forecast of the observed Yt,

the RMSE and average log predictive score for a one-day ahead forecast are respectively

given as

RMSE =

√√√√ 1
(N − T )

N∑
t=T+1

(Ŷt − Yt)2 (5.17)

and

LPS = − 1
(N − T )

N∑
t=T+1

log p(Yt|Yt−1, Θ̂), (5.18)

whereM is the number of particles used in the SMC, Ŷt = 1
M

M∑
i=1

Y i
t and log p(Yt|Yt−1, Θ̂) =

1
M

M∑
i=1

log p(Yt|Θ(i), Y1:t, β
(i)
t−1). The number of days in the training sample and the

number of days for which one-step ahead forecasts were generated are T and N − T

respectively.

The LPS provides guidance on the overall fit of the model. A smaller value of LPS is an

indication of a better model fit. In making decisions about the comparative analysis

of model fit, we base our evaluation of the models solely on the LPS. We do this

because model evaluation based on point forecasts typically disregards the uncertainty

surrounding predictions. The LPS and RMSE for all models are presented in Table

5.4. The RMSE of the HAR and AR(1) models for IBM are respectively given as

0.47992 and 0.49216. These estimates show that the HAR model does a better job at

forecasting the one day ahead volatility of IBM than the AR (1). In addition, for IBM,

the HAR and AR(1) models have less forecasting accuracy in comparison with models

C1, C2, C3 and C4 since the RMSE of these models are smaller albeit marginal than

that of the HAR and AR(1) models. Thus, the bid-ask spread in models C2, C3 and
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RMSE LPS

Model ASH IBM ASH IBM
Full Model C1 12.56415 12.07233

C2 12.21805 11.65621
C3 12.31803 11.57342
C4 12.14872 11.54800

Realized AR (1) 0.46512 0.49216
HAR 0.45517 0.47992
C1 0.44867 0.43728
C2 0.47347 0.47133
C3 0.48708 0.45031
C4 0.48883 0.47350
C5 0.49991 0.49486

Table 5.4 RMSE and LPS of one day ahead volatility forecasts

C4 provide additional information that can be used in forecasting short term volatility

of IBM. For IBM, model C5 has the largest RMSE amongst all the models. We obtain

mixed results for ASH. The RMSE of ASH for model C1 is the smallest as in the case

of IBM. However the RMSE of ASH for the HAR and AR (1) models are smaller in

comparison with C2, C3, C4 and C5 which is the opposite results we found for IBM.

Amongst the models we propose, the RMSE of model C1 for IBM is the smallest in

comparison with models C2, C3 and C4 all of which include bid-ask spread as an

additional variable. Similar results for ASH were obtained. These results seem to

suggest that additional sources of information beyond that contained in volume is

needed for the prediction of short term volatility of the asset. For both assets, model

C5 is the worst performing models it has the largest RMSE. From the results, it seems

model one performs better than other models. In model C1 we don not separate out

the informed and liquidity components. It is likely that without the separation of the

components some information is masked hence through some smoothing out effect.

This might account for its seemingly relative good performance.

Using the results from the RMSE and LPS it is not clear which of the models is
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superior in forecasting the volatility. Hansen et al. (2011) introduced a method that

can be used to rank several models in terms of their superiority. In what follows

we utilise the Model Confidence Set of Hansen et al. (2011) to provide a ranking of

the models considered in this chapter. We first describe briefly the methodology and

the proceed to utilise the mcs matlab function of the Oxford MFE Toolbox for the

empirical implementation.

Given that we have and observed quantity Yt and a corresponding forecast from model

i as Ŷi,t. Let Li,t = L(Yt, Ŷi,t) be a loss function for i = 1, . . . ,M models. Hansen et al.

(2011) defines a relative performance measure dij,t = Li,t − Lj,t, i, j ∈ M between

models i and j respectively. The following sample loss statistics are computed

d̄ij ≡ 1
(N − T )

N∑
t=T+1

dij,t, tij = d̄ij√
V ar(d̄ij)

, ∀i, j ∈ M

d̄i. ≡ − 1
M

∑
j∈M

d̂ij, ti. = d̄i.√
V ar(d̄i.)

∀i, j ∈ M,

where d̂ij measures the relative sample loss between the ith and jth models. The

sample loss of the ith model relative to the average across all models in the set M

is given by d̄i.. The quantities V ar(d̄ij) and V ar(d̄i.) are the bootstrap variances of

d̄ij and d̄i. respectively. Under this method the null hypothesis is that all models

are of equal predictive power. By sequentially comparing the competing models and

retaining the superior ones, we arrive at the Model Confidence Set. In our case we

chose the loss function to be the difference between the observed value an its forecast,

that is Li,t = Yt − Ŷi,t. The results of the empirical implementation is given in Table

5.5.

The results in Table 5.5 gives mixed findings. In respect of ASH, only three models

were retained with C4 being ranked as superior. However in the case of IBM, two
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Model p-value Rank

IBM C2 0.688 2
C5 1 1

ASH C3 0.954 3
C5 0.978 2
C4 1 1

Table 5.5 Model Confidence Set for one day ahead volatility forecasts

models were retained. Model C5 is ranked as superior to model C2. Model C2 was

ranked to be the next superior model. The results above suggests a further look at

the alternative models deeper.

5.6 Concluding Remarks

In this chapter, we have exploited the relationship between volume, bid-ask spread

and volatility. The relationship provided insight on the temporal relationship between

volatility, informed and uninformed trading. The empirical findings are that informed

trading has a significant positive effect on volatility for the assets considered. On

the other hand, uninformed trading seems to significantly effect relatively illiquid

assets while it has no effect on liquid assets. Since we had only two assets in this

study, it would be interesting to implement this model on a large number of assets.

Implementing our model on a large number of data sets will provide us with a broader

picture of the link between volatility, informed and uninformed trading.

Secondly, we have undertaken a comparison of some alternative volatility forecasting

models. The empirical analysis carried out indicates that our models have the potential

to be used in forecasting volatility. Using the log predictive score as a measure of model

fit, we find that bid-ask spread contributes additional information to the volume-

volatility relationship for the forecasting of short-term volatility. From the results,

one would be inclined to say that models C2, C3 and C4 compare equally with the
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AR (1) and HAR models. However, in the estimation process, the parameters of the

AR (1) and HAR models were recalculated with the entire history of the realized

variance every time a new forecast is generated. This is in contrast to the assumption

of invariant model parameters in models C1, C2, C3 and C4. Using the SMC we did

not have the need for the entire history of the volume, bid-ask spread and realized

variance yet we obtained results that are comparable and in certain cases superior to

the AR (1) and HAR. Thus the relationship between volume, volatility and bid-ask

spread is very insightful for the forecasting of volatility.





Chapter 6

Conclusions And Further Research

The contribution of this thesis is threefold. First, we provide an alternative method

for the empirical estimation of the Probability of Informed Trading. Second, we pro-

pose a new method of inferring liquidity and informed trading. Finally, we show that

the information contained in bid-ask spread can be used to forecast volatility. We

summarise the main conclusions of this thesis and then discuss some areas for possible

future research.

In Chapter 2 we developed a Bayesian estimation methodology for the PIN measure.

The main conclusions of this work were:

• The Bayesian estimation method provides a way to circumvent the numerical

instability problem of the MLE which has been reported in some papers that

studied PIN.

• PIN is higher when computed on high frequency data than on low frequency

data. Thus PIN estimated from daily buy and sell trades may underestimate

information asymmetry.

• High frequency data collected over the most recent few days is sufficient to

compute the risk of informed trading.
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• Maximum likelihood estimation of PIN is dependent on initial values and the

factorised form of the likelihood function.

The methodology developed in Chapter 2 was then applied to high frequency buy

and sell trades in Chapter 3. The findings of a comparison between PIN and VPIN

indicates that the VPIN gives better insight on times series behaiour information

asymmetry risk.

Chapter 4 utilised the theoretical relationship between traded volume and the bid-ask

spread to extract and learn about the dynamics of informed trading. This is the first

attempt to infer informed trading from the joint relationship between volume and bid

–ask spread using Bayesian methods. Our findings are as follows

• The dynamics of inferred informed trading component of volume mimics patterns

in corporate events of the assets considered.

• The informed and liquidity driven components of volume are time-varying and

persistent.

Finally in Chapter 5, we investigated the relationship between volatility, informed and

uninformed trading using the model developed in Chapter 3. These models are based

on the intuition behind the link between volume, bid – ask spread and volatility. The

models were also bench-marked against the AR(1) and HAR volatility models. The

main conclusions from the chapter are:

• Informed trading effect positively on volatility in all assets studied.

• Uninformed trading does not effect volatility of liquid assets but has a significant

negative effect on less liquid assets.

• The out-of–sample forecasting performance of the models considered in this the-

sis are comparable to the HAR and AR (1) models.
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• The bid-ask spread provides additional information that can be used for the

forecasting of short-term (i.e., daily) volatility.

In Chapters 4 and 5, model parameters were considered to be fixed. However as market

conditions change over time, it is reasonable to conjecture that the parameters would

change with the economic conditions. Secondly, we also assumed that the relationship

between informed trading and bid-ask spread is unidirectional from informed trading

to bid-ask spread. There is evidence to suggest that there is a feedback relationship

between these variables. The models considered can be re-stated to account for the

feedback relationship. In the thesis, we have focused on daily information and volatil-

ity. It is desirable to explore the informed trading and volatility in almost real time.

This will require the implementation of the models in this thesis on high frequency

data. Future research is intended to be carried out using long time series for a large

number of assets.

Lastly, the impact of trade on asset price which is a measure if the liquidity of an asset

changes over time. The Kyle (1985) parameter (lambda) is a measure of the price

impact of trade. However, the Kyle (1985) parameter has been treated as fixed over

sample periods. Using SMC techniques, it is possible to estimate the time-varying

liquidity in Kyle (1985) model as a stochastic process. We intend to consider this

problem in future.
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