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ABSTRACT

We consider the problem of constructing dissipative extensions of given dissipative

operators.

Firstly, we discuss the dissipative extensions of symmetric operators and give a

sufficient condition for when these extensions are completely non-selfadjoint. Moreover,

given a closed and densely defined operator A, we construct its closed extensions which

we parametrize by suitable subspaces of D(A∗).

Then, we consider operators A and Ã that form a dual pair, which means that

A ⊂ Ã∗, respectively Ã ⊂ A∗. Assuming that A and (−Ã) are dissipative, we present

a method of determining the proper dissipative extensions Â of this dual pair, i.e. we

determine all dissipative operators Â such that A ⊂ Â ⊂ Ã∗ provided that D(A)∩D(Ã)

is dense in H. We discuss applications to symmetric operators, symmetric operators

perturbed by a relatively bounded dissipative operator and more singular differential

operators. Also, we investigate the stability of the numerical ranges of the various

proper dissipative extensions of the dual pair (A, Ã).

Assuming that zero is in the field of regularity of a given dissipative operator A, we

then construct its Krĕın–von Neumann extension AK , which we show to be maximally

dissipative. If there exists a dissipative operator (−Ã) such that A and Ã form a dual

pair, we discuss when AK is a proper extension of the dual pair (A, Ã) and if this is not

the case, we propose a construction of a dual pair (A0, Ã0), where A0 ⊂ A and Ã0 ⊂ Ã

such that AK is a proper extension of (A0, Ã0).

After this, we consider dual pairs (A, Ã) of sectorial operators and construct proper

sectorial extensions that satisfy certain conditions on their numerical range. We apply

this result to positive symmetric operators, where we recover the theory of non-negative

selfadjoint and sectorial extensions of positive symmetric operators as described by

Birman, Krĕın, Vishik and Grubb.

Moreover, for the case of proper extensions of a dual pair (A, Ã) of sectorial opera-

tors, we develop a theory along the lines of the Birman–Krĕın–Vishik theory and define

an order in the imaginary parts of the various proper dissipative extensions of (A, Ã).



We finish with a discussion of non-proper extensions: Given a dual pair (A, Ã) that

satisfies certain assumptions, we construct all dissipative extensions of A that have

domain contained in D(Ã∗). Applying this result, we recover Crandall and Phillip’s de-

scription of all dissipative extensions of a symmetric operator perturbed by a bounded

dissipative operator. Lastly, given a dissipative operator A whose imaginary part in-

duces a strictly positive closable quadratic form, we find a criterion for an arbitrary

extension of A to be dissipative.
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CHAPTER 1

Historical overview and results of the thesis

A densely defined operator A on a Hilbert space is called dissipative if and only if

its numerical range is contained in the upper complex plane. 1.1 Moreover, it is called

maximally dissipative if it has no non-trivial dissipative operator extensions. Maximally

dissipative operators play a very important role in mathematics as well as in physics as

they generate C0-semigroups of contractions and can for example be used to describe

physical systems that fail to conserve energy [35]. In general, dissipative operators

have many interesting applications in physics like (magneto-) hydrodynamics, lasers

or nuclear scattering (for details and more examples, see the Pseudospectra Gateway

website www.comlab.ox.ac.uk/pseudospectra). Thus, if one starts with a dissipative

operator that is not maximally dissipative (like e.g. a Schrödinger operator with a

suitable complex potential defined on the set of compactly supported smooth functions),

one has to construct suitable maximally dissipative extensions. The purpose of this

thesis is to contribute towards the theory of dissipative extensions.

1.1. On the development of extension theory

The study of abstract extension problems for operators on Hilbert spaces goes at

least back to von Neumann [34, Chapters V-VIII], who considered the problem of

characterizing all selfadjoint extensions of a given symmetric operator. His well-known

von Neumann formulae provide a full characterization of all selfadjoint extensions of a

given closed symmetric operator S with equal defect indices (for a presentation in a more

modern terminology, see e.g. [1, Vol. II, Sect. 80] or [44, Satz 10.9]). The main tool

(“Der wesentliche Kunstgriff”, [34, p. 62]) of his analysis is the Cayley transform of S,

formally given by C := (S−i)(S+i)−1 with domain ran(S+i), which is an isometry if S

is symmetric. Von Neumann showed that there is a one-to-one correspondence between

all selfadjoint extensions of S and all unitary extensions of C, which are parametrized

1.1According to Dolph [16, p. 30] the name “dissipative operator” was first introduced by Mukminov in [33].
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by all unitary maps U from ker(S∗ − i) to ker(S∗ + i). Moreover, in the same paper,

von Neumann also discussed semibounded symmetric operators S with lower bound

C > −∞, where he managed to prove that for any ε > 0, it is possible to construct a

selfadjoint extension Sε of S such that Sε is bounded from below by (C − ε) ([34, Satz

43]). In particular, if C > 0, this proves the existence of positive selfadjoint extensions

of symmetric operators with positive semibound. The proof of this result relies on the

construction of a non-negative selfadjoint extension SK of a given positive symmetric

operator S, which is commonly known as the Krĕın–von Neumann extension of S (cf.

[34, Satz 42]). In a footnote to the statement of [34, Satz 43], he also conjectured the

existence of a selfadjoint extension with the same lower bound as the initial symmetric

operator.

This conjecture was answered in the affirmative by Friedrichs in [21], who con-

structed what is nowadays known as the Friedrichs extension. Its construction exploits

the fact that the quadratic form induced by a semibounded symmetric operator S is

always closable with its closure being the quadratic form associated to a selfadjoint

extension SF that has the same lower bound as S. See also [41, Chapter 2.2] for a

textbook presentation of the construction of the Friedrichs extension.

In [27], Krĕın treated the problem of determining all non-negative selfadjoint exten-

sions of a non-negative closed symmetric operator S by considering the fractional linear

transformation F := (S−1)(S+1)−1 on ran(S+1), whose compression (Pran(S+1)F ) to

ran(S + 1) is selfadjoint (Pran(S+1) denotes the orthogonal projection onto ran(S + 1)).

Moreover, if S is non-negative, we have that F is a contraction (‖Fϕ‖ ≤ ‖ϕ‖ for all

ϕ ∈ D(F ), resp. ‖(S − 1)f‖ ≤ ‖(S + 1)f‖ for all f ∈ D(S)). He showed that the

problem of finding all non-negative selfadjoint extensions of S is equivalent to finding all

selfadjoint contractive extensions F ′ of F that are defined on the entire Hilbert space

H. Furthermore, he proved that there exist two special extensions of S, the above

mentioned Krĕın–von Neumann extension SK and the Friedrichs extension SF . They

are extremal in the sense that any other non-negative selfadjoint extension Ŝ satisfies

(SF + 1)−1 ≤ (Ŝ + 1)−1 ≤ (SK + 1)−1 ,
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which is equivalent to

(1.1) SK ≤ Ŝ ≤ SF

in the quadratic form sense. Recall that for two non-negative selfadjoint operators A

and B on a Hilbert space H, the relation A ≤ B is defined as

A ≤ B :⇔ D(A1/2) ⊃ D(B1/2) and ‖A1/2f‖ ≤ ‖B1/2f‖

for all f ∈ D(B1/2). As done in [2], we extend this definition to the case that B

is selfadjoint on a closed subspace K ⊂ H. For example, let K be a closed proper

subspace of H and define 0K and 0H to be, respectively, the zero operators on K and H.

According to this definition, we then would get that 0H ≤ 0K. In [2], the convention

B :=∞ on D(B)⊥ is introduced to make this more apparent. For a brief introduction

into Krĕın’s construction, cf. also [39, Sect. 125].

The further investigations of Vishik and Birman [42, 13] resulted in the following

characterization of all non-negative selfadjoint extensions of a positive closed symmetric

operator S:

Proposition 1.1 (Mainly following the notation and presentation of [2]). Let S > 1

be a closed symmetric operator. Then, there is a one-to-one correspondence between all

non-negative selfadjoint extensions of S and all pairs (M, B), where M ⊂ ker(S∗)

is a closed subspace and B is a non-negative selfadjoint auxiliary operator in M (in

particular, D(B) = M). These non-negative selfadjoint extensions are given by

SM,B : D(SM,B) = D(S)+̇{(S−1
F B + 1)f : f ∈ D(B)}+̇{S−1

F g : g ∈M⊥ ∩ ker(S∗)}

SM,B = S∗ �D(SM,B) .

These results have also been obtained and extended by Grubb in [23, Chapter II

§2], who was also able to characterize (maximally) sectorial and (maximally) accretive

extensions Ŝ of S such that S ⊂ Ŝ ⊂ S∗ by allowing the auxiliary operator B to be

(maximally) sectorial and (maximally) accretive (cf. also the addendum acknowledging

Grubb’s contributions to the field [3]). While these approaches predominantly relied

on operator methods, the presentation of Alonso and Simon in [2] emphasizes form
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methods. They obtain the following description of the quadratic form induced by the

operators SM,B:

S
1/2
M,B : D(S

1/2
M,B) = D(S

1/2
F )+̇D(B1/2)

‖S1/2
M,B(f + η)‖2 = ‖S1/2

F f‖2 + ‖B1/2η‖2 ,

where f ∈ D(S
1/2
F ) and η ∈ D(B1/2). From this, it immediately follows that

SB ≤ SB′ ⇔ B ≤ B′

and in particular, this implies (1.1), where SF = S{0},0 and SK = Sker(S∗),0.

There has been a large number of contributions towards the problem of determin-

ing all (maximally) sectorial and (maximally) accretive extensions of a given sectorial

operator A with contributions from authors like Arlinskĭı, Derkach, Kovalev, Malamud,

Mogilevskii and Tsekanovskĭı (cf. the surveys [8, 11] and all the references therein).

We will focus on just a few main results.

Friedrichs’ construction of a selfadjoint extension of a given non-negative symmetric

operator can be generalized to the sectorial case. A densely defined operator A is called

sectorial (or more precisely “α-sectorial”), if its numerical range is confined to a sector

of the complex plane with semi-angle α, i.e. if there exists an α ∈ [0, π/2) such that

NA ⊂ {z ∈ C : −α ≤ arg(z) ≤ α} ,

where NA := {〈f, Af〉 : f ∈ D(A), ‖f‖ = 1} is the numerical range of A. In this case,

the quadratic form a induced by A, which is given by

a : D(a) = D(A), f 7→ 〈f, Af〉

is still closable. This follows from the sectoriality of A, which implies that the quadratic

form a satisfies

|a(f)| ≤ (1 + tan(α)) · Re(a(f))

for any f ∈ D(a). Moreover, it can be shown that the closure of a corresponds to a

maximally sectorial operator AF , which is the Friedrichs extension of A. It is well-known

that AF is the unique maximally sectorial extension of A that has domain contained in

the form domain Q(AF ) of AF , and the numerical range of A lies dense in the numerical

range of AF . (For the details, cf. [26, Chap. VI, §1-2].)
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In [4, Thm. 1], Ando and Nishio have found a useful description of the Krĕın–von

Neumann extension SK of a given symmetric non-negative operator S. Arlinskĭı used

this result and generalized it to a description of the Krĕın–von Neumann extension AK

of a given α-sectorial operator A (cf. the survey [8, Thm. 3.6]). In particular, it can

be shown that AK is maximally α-sectorial and that the form domain Q(Ŝ) of any

maximally α-sectorial extension Â of A has to satisfy Q(AF ) ⊂ Q(Â) ⊂ Q(AK), cf. [6].

Analogously to Krĕın’s construction of non-negative selfadjoint extensions of a given

non-negative symmetric operator, Arlinskĭı considered the fractional linear transforma-

tion F given by F := (A − 1)(A + 1)−1 and defined on ran(A + 1). He found that A

being α-sectorial (here: 0 < α < π/2) implies that F satisfies

(1.2) ‖F sinα± i cosα‖ ≤ 1 ,

which can be shown to imply that F is a contraction. A contraction F satisfying

(1.2) is said to belong to the class C(α). In [5], it was shown that — via the fractional

transform and its inverse — there is a one-to-one correspondence between all maximally

β-sectorial extensions of A and all everywhere defined contractive extensions of F that

belong to the class C(β).

Arlinskĭı and Popov also solved the problem of determining all (maximally) accre-

tive and (maximally) sectorial extensions of a given densely defined sectorial operator in

terms of abstract boundary conditions [8, 10]. Arlinskĭı also constructed parametriza-

tions of m-accretive extensions of a given coercive sectorial operator in the spirit of the

Birman–Vishik–Grubb formulas in the symmetric case.

The so called Phillips–Kato problem (cf. [11]) in its fullest generality is the problem

of determining all (maximally) accretive extensions of a given accretive operator A.1.1

Unlike in the sectorial case, it is not possible to construct a Friedrichs extension for ac-

cretive operators. In [35], Phillips was the first to consider this problem in a systematic

way, for which he provided a full solution in [36] in terms of so called boundary spaces.

We follow [18, Sect. 2] and [11] for a short presentation of his results. Phillips’ main

idea is to consider the graph Γ(A) of a closed accretive operator A in a Hilbert space

1.1A densely defined operator is called accretive if its numerical range is contained in the right half-plane Π+ = {z ∈

C : Re(z) ≥ 0}. Of course, this extension problem is equivalent to the problem of finding all the dissipative extensions

of a dissipative operator.
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H as a positive closed subspace of the indefinite inner product space (H, Q), where

H = H×H and the inner product Q is given by

Q(~u,~v) := 〈u1, v2〉+ 〈u2, v1〉 ,

where ~u = (u1, u2) and ~v = (v1, v2). Moreover, (H, Q) allows for the fundamental

decomposition

(1.3) H = H+ ⊕Q H− ,

where H± := {(ψ,±ψ) : ψ ∈ H} are maximally positive/negative subspaces of H and

⊕Q denotes a direct sum of spaces that are orthogonal with respect to Q(·, ·).1.2 This

means that (H, Q) is a Krĕın space. The graph of any maximally accretive extension Â of

A is a maximally positive subspace of H containing Γ(A). Then, Γ(Â)⊥Q is a maximally

negative subspace of H, where Γ(Â)⊥Q denotes the Q-orthogonal companion of Γ(Â) in

H. Also, for any densely defined operator T it can be shown that Γ(T )⊥Q = Γ(−T ∗).

The so called Phillips boundary space ĤP is now given by ĤP = M+ ⊕Q M−
Q

, where

M+ = Γ(−A∗)∩H+ and M− is obtained by decomposing the graph of −A∗ as follows:

Γ(−A∗) = M+ ⊕Q M− .

We get that M+ = Γ(−A∗) ∩ H+ is already closed with respect to Q and M−
Q

is the

closure of M− with respect to norm induced by Q on the strictly negative space M−.

Moreover, it can be shown that M+ = {(ψ, ψ) : ψ ∈ ker(A∗ + 1)}, which means that

M+ is finite-dimensional in the case of finite defect index m. In this case, ĤP is a

Pontryagin space with m positive squares. Phillips showed the following

Proposition 1.2 ([36, Thm. 5.2]). There is a one-to-one correspondence between

all maximally negative subspaces N̂ of ĤP and the graphs of all maximally accretive

restrictions Â∗ of A∗ via

Γ(−Â∗) = N̂ ∩ Γ(−A∗) .

This result has been used [18, 19] to construct the accretive extensions of strictly

positive even-order differential operators, however in many applications, it seems to be

1.2A subspace K of a Krĕın-space is called positive if Q(u, u) ≥ 0 for all u ∈ K and negative if Q(u, u) ≤ 0 for all

u ∈ K.
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quite difficult to construct manageable realizations of the Phillips boundary space (cf.

also the remark in [14, p. 148]).

Thus, in [14], Crandall and Phillips considered a special class of dissipative operators

A that were of the form1.3

A = S + iV ,

where S is symmetric and V ≥ 0 is non-negative and selfadjoint (but possibly un-

bounded). By non-negativity and selfadjointness of V it follows that the operator

(1+V ) is a boundedly invertible bijection fromD(V ) ontoH. Crandall and Phillips then

introduce the weighted Hilbert space H+1 which is the linear space D(V 1/2) equipped

with the inner product 〈f, g〉+1 := 〈(1 + V )1/2f, (1 + V )1/2g〉. Using standard ideas

of the construction of Gel’fand triples, they associate every element f of H with an

element `f of the dual space H∗+1 of H+1 via

`f (g) := 〈f, g〉 for any g ∈ H+1 ,

which has norm equal to

‖`f‖ = ‖(1 + V )−1/2f‖ =: ‖f‖−1 .

The space H−1 is then obtained as the completion of H in H∗+1 with respect to ‖ · ‖−1.

Since for any f ∈ D(V 1/2) and for any g ∈ H we have that ‖f‖ ≤ ‖(1+V )1/2f‖ = ‖f‖+1

and ‖g‖ ≥ ‖(1 + V )−1/2g‖ = ‖g‖−1, we obtain the following inclusions:

H+1 ⊂ H ⊂ H−1 .

In particular, this implies that V is bounded as an operator from H+1 to H−1 — a

feature which Crandall and Phillips use in order to determine all maximally dissipative

extensions of A as an operator from H+1 to H−1 [14, Thm. 1.1]. Having obtained a

maximally dissipative operator Â from H+1 to H−1, they then construct a dissipative

extension Â0 of A (as an operator in H) via

Â0 : D(Â0) = {f ∈ D(Â) : Âf ∈ H}, Â0f := Âf .

1.3In [14], a densely defined operator is called dissipative if its numerical range is confined to the left half plane

Π− := {z ∈ C : Re(z) < 0}. Since we will call an operator dissipative if its numerical range is confined to the upper

complex plane, we have changed the presentation of the results in [14] accordingly.

12



If V is bounded, this provides a full characterization of all maximally dissipative ex-

tensions of A, since the spaces H+1,H and H−1 are equivalent in this case. For the

unbounded case, this construction yields at best dissipative extensions of A that have

domain contained in D(V 1/2), which does not always provide a full description of all

maximally dissipative extensions of A (cf. [14, Example 2]). Also, even if Â is a maxi-

mally dissipative operator from H+1 to H−1, it is possible that Â0 is not a maximally

dissipative operator in H [14, Example 1]. However, Crandall and Phillips prove a

necessary and sufficient condition for when all maximally dissipative extensions Â from

H+1 to H−1 induce also a maximally dissipative extension Â0 in H [14, Thm. 3.3].

Another approach towards the problem of extending a given closed dissipative oper-

ator A in a Hilbert space H makes use of the fact that its Cayley transform C :=

(A− i)(A+ i)−1 with domain ran(A+ i) is a contraction if A is dissipative. Moreover,

via the inverse Cayley transform, one obtains a one-to-one correspondence between all

maximally dissipative extensions of A and all contractive extensions of C that are de-

fined on the entire Hilbert space H. This has been used by Crandall [15, Thm. I and

Cor. I] to give a full solution to the extension problem. He established that if C is a

contraction defined on a closed subspace C of a Hilbert space H and mapping to H, all

contractive extensions C̃ of C can be described via

C̃ = CPC + (1− CPC(CPC)∗)1/2B(1− PC) ,

where PC is the orthogonal projection onto C and B is an arbitrary contraction on H.

Using the inverse Cayley transform of C̃, given by Ã := i(1 + C̃)(1 − C̃)−1, we then

obtain all maximally dissipative extensions Ã of A. However, for concrete applications,

the operators involved in this construction are often very difficult to compute. (See

also [12] for the construction of all possible contractive extensions of a given matrix

contraction.)
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1.2. Structure and results of the thesis

We will proceed as follows:

In Chapter 2, we introduce dissipative operators and present some important already-

known results. We will define the Cayley transform CA of a dissipative operator A,

which is known to be a contraction and show that there is one-to-one correspondence

between dissipative extensions of A and certain contractive extensions of CA. Moreover,

we will introduce the notion of a dual pair of operators.

In Chapter 3, we will investigate the dissipative extensions of symmetric operators.

We will show that any dissipative extension of a symmetric operator S has to be a

restriction of S∗. In addition to that we will give a criterion for a dissipative extension

of a symmetric operator to be completely non-selfadjoint.

In Chapter 4, we study a more abstract extension problem. Given a densely defined

closed operator A, we construct its closed extensions. To this end, we use certain subsets

M of D(A∗) in order to parametrize closable extensions BM of A. Furthermore, we

construct restrictions CM ⊂ A∗ and show that B∗M = CM. Then, we find a necessary and

sufficient condition on M to ensure that CM is densely defined. Using that C∗M = BM

is a closed extension of A, this provides a full characterization of the closed extensions

of A.

In Chapter 5, we introduce the common core property of a dual pair (A, Ã), which

ensures that the dual pair under consideration provides us with a convenient way of

defining an operator V that corresponds to the “imaginary part” of A.

It will be the square root of the selfadjoint Krĕın–von Neumann extension of V —

denoted by V
1/2
K — which will play an important role. The description of V

1/2
K obtained

by Ando and Nishio [4] will allow us to give a necessary and sufficient condition (The-

orem 5.2.8) for an extension of (A, Ã) to be dissipative, which we only have to check

on the space by which we extend the operator A rather than on the whole domain

of the extension. From this result, we proceed to give a description of all dissipative

extensions of the dual pair (A, Ã) in terms of contractions from one “small” auxiliary

space to another. We also generalize our results to the case that the common core

property is not satisfied by the dual pair as long as D(A) ∩ D(Ã) is still dense. As a

first application, we start by considering symmetric operators with relatively bounded

14



dissipative perturbations and after that, we consider more singular dissipative opera-

tors — our first examples being such that the associated imaginary part V is already

essentially selfadjoint and our last example being such that there is a family of self-

adjoint extensions of V . Finally, we find lower bounds for the numerical range of the

dissipative extensions we have obtained and apply this result to the examples from the

previous section. The results of this chapter were obtained in collaboration with Ian

Wood and Sergey Naboko and have been published in [20].

In Chapter 6, we define the Krĕın-von Neumann extension AK of a dissipative

operator A with zero in its field of regularity and show that it is maximally dissipative.

We will see that for typical dual pairs (A, Ã), the Krĕın-von Neumann extension cannot

be a proper extension of (A, Ã). Thus, we will construct restrictions A0 ⊂ A and Ã0 ⊂ Ã

such that AK is a proper extension of the dual pair (A0, Ã0). Moreover, we will discuss

when these restrictions are densely defined.

In Chapter 7, we apply the results of Chapter 5 in order to construct proper sec-

torial extensions of dual pairs of sectorial operators (A, Ã). We apply this result to

obtain Grubb’s description of (maximally) sectorial extensions of positive symmetric

operators and we use a similar idea to construct the (maximally) dissipative extensions

of symmetric operators with at least one real point in their field of regularity. After

this, we introduce the Friedrichs extension AF of a sectorial operator A and show that

for dual pairs (A, Ã) of sectorial operators that have the common core property, we

have that AF = Ã∗F . We finish this chapter with a detailed discussion of the proper

sectorial and dissipative extensions of the operator − d2

dx2 + i γ
x2 , where γ > 0, and its

formal adjoint.

In Chapter 8, we develop a parametrization of dissipative extensions of a dual pair

of sectorial operators along the lines of the Birman-Krĕın-Vishik theory of positive

selfadjoint extensions of positive symmetric operators as presented in [2]. We use

auxiliary operators D that have domain contained in ker(Ã∗) and map into ker(A∗) in

order to describe these extensions, which we will denote by AD. Moreover, we will find a

necessary and sufficient condition for when the quadratic form imD,0 : f 7→ Im〈f, ADf〉

is closable and show that the selfadjoint operator VD associated to the closure of imD,0
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is an extension of the imaginary part V as defined in Chapter 5. This will allow us to

define a partial order in the imaginary parts of the extensions AD.

Finally, in Chapter 9, we discuss more general dissipative extensions of a given

dissipative operator A. We start again by considering dual pairs (A, Ã) that have the

common core property, but we construct extensions of A that have domain contained

in D(Ã∗) but do not preserve the action of Ã∗. As an application, we use our results

to provide a full description of all dissipative extensions of dissipative operators with

bounded imaginary part — a result that has already been obtained by Crandall and

Phillips. Lastly, we consider dissipative operators A for which the quadratic form

f 7→ Im〈f, Af〉 is strictly positive and closable. Under this assumption, we find a

necessary and sufficient condition for an extension B of A to be dissipative. We apply

this result to a singular differential operator and to the problem of finding accretive

extensions of strictly positive symmetric operators.

16



CHAPTER 2

Introduction

Let us introduce some notation and terminology as well as gather some useful results

that we will need later.

2.1. Elementary definitions

Throughout this thesis, we will only consider complex Hilbert spaces H with scalar

product 〈·, ·〉 : H ×H → C. Note that we define our scalar product to be antilinear

in the first component and linear in the second component, i.e. for any f, g ∈ H and

λ ∈ C, we get 〈λf, g〉 = λ〈f, g〉 = 〈f, λg〉.

Moreover, for an operator A in H, we use D(A), ran(A) and ker(A) to denote its

domain, range and kernel respectively.

Also, ρ(A) denotes its resolvent set and ρ̂(A) is the field of regularity of A, which is

given by

ρ̂(A) = {λ ∈ C : ∃k(λ) > 0 such that ‖(A− λ)f‖ ≥ k(λ)‖f‖ ∀ f ∈ D(A)} .

Note that if λ ∈ C \ {−1, 1}, we write (A− λ) rather than (A− λ1), where 1 denotes

the identity operator.

An operator B is called an extension of A, which we denote by A ⊂ B, if D(A) ⊂

D(B) and for any f ∈ D(A), we have Af = Bf . Note that D(A) ⊂ D(B) does not

mean that D(A) is a proper subset of D(B), i.e. it is in particular true that A ⊂ A.

Conversely, if for two operators A and B we have A ⊂ B, then A is called a restriction

of B. Let A be an operator in H and let D ⊂ D(A). The operator A �D is called “the

restriction of A to D” and is given by

A �D: D(A �D) = D, A �D f = Af ,

for any f ∈ D.

Also, we call an operator S symmetric if and only if it is densely defined and satisfies

S ⊂ S∗. If in addition, it holds that S = S∗, then we call S selfadjoint.
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Moreover, since we will mainly apply our results to closable differential operators,

we will use Hn(Ω) to denote the nth Sobolev space of square-integrable functions over

Ω that possess a square-integrable nth weak derivative.

Lastly, B(H) denotes the set of bounded operators on H.

2.2. Dissipative operators

Let us now give a few basic definitions and results on dissipative operators.

Definition 2.2.1. An operator A on a Hilbert space H is said to be dissipative if

and only if it is densely defined and

Im〈f, Af〉 ≥ 0

for all f ∈ D(A). An operator Ã is called antidissipative if and only if (−Ã) is

dissipative and accretive if and only if (iÃ) is dissipative.

Note that we require A to be densely defined for it to be dissipative. Finally, let

us remark that any operator A, which is dissipative in the above sense, is also closable

with its closure A being dissipative as well [29, Proposition 6.9].

Example 2.2.2. Consider a bounded operator A ∈ B(H). Then, A is dissipative if

and only if the operator ImA := 1
2i

(A− A∗) is non-negative:

Im〈f, Af〉 =
1

2i
(〈f, Af〉 − 〈Af, f〉) = 〈f, 1

2i
(A− A∗)f〉 = 〈f, (ImA)f〉 .

For instance, let H = C2 and consider the matrix

A =

a b

c d

 ⇒ Im A =

Im a b−c
2i

c−b
2i

Im d

 ,

which implies that A is dissipative if and only if

Im a ≥ 0 and (Im a)(Im d) ≥ |b− c|
2

4
.

Definition 2.2.3. A dissipative operator A is said to be maximally dissipative

if for any dissipative operator extension A ⊂ A′ we get that A = A′. Analogously, an

operator Ã is maximally antidissipative if and only if (−Ã) is maximally dissipative

and maximally accretive if and only if (iÃ) is maximally dissipative.

18



Let us remark at this point that the distinction between m-dissipative and max-

imally dissipative operators as it can be found in the literature (cf. e.g. [17, Sec. 3]

for accretive operators) is not needed if one only considers densely defined dissipative

operators as they coincide for this case.

Example 2.2.4. Let H = L2(R) and consider the operator A given by

A : D(A) = C∞c (R)

(Af)(x) = −f ′′(x) + iV (x)f(x) ,

where we assume that V ∈ L∞(R) and V (x) ≥ 0 almost everywhere. Using integration

by parts, we get

Im〈f, Af〉 = Im

(∫ ∞
−∞

f(x)(−f ′′(x) + iV (x)f(x))dx

)
=

∫ ∞
−∞

V (x)|f(x)|2dx ≥ 0 ,

which shows that A is dissipative. However, A is not maximally dissipative since the

operator B given by

B : D(B) = H2(R)

(Bf)(x) = −f ′′(x) + iV (x)f(x)

is a dissipative extension of A. Here, f ′′ denotes the second weak derivative of f .

The following result is a well-known fact:

Proposition 2.2.5 ([35, Theorems 1.1.1, 1.1.2 and 1.1.3]). Let A be dissipative.

Then, the following are equivalent:

• A is maximally dissipative.

• There exists a λ ∈ C with Im(λ) < 0 such that λ ∈ ρ(A).

• C− := {z ∈ C : Im(z) < 0} ⊂ ρ(A).

• (−A∗) is dissipative.

• iA is the generator of a strongly continuous semigroup of contractions on H.

Example 2.2.6 (Continuation of Example 2.2.4). Let us use Proposition 2.2.5 to

show that the operator B defined in Example 2.2.4 is maximally dissipative. To this
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end, observe that B = S + iV , where S is the selfadjoint Laplace operator on the real

axis:

S : D(S) = H2(R), f 7→ −f ′′

and V is the operator of multiplication by V (x). Since S is selfadjoint, we know that

for any τ > 0 we have that −iτ ∈ ρ(S). Since V is a bounded operator, we can choose

τ large enough such that ‖V (S + iτ)−1‖ ≤ ‖V ‖‖(S + iτ)−1‖ ≤ τ−1‖V ‖ < 1 from which

we get that

ran(S + iV + iτ) = ran((1 + iV (S + iτ)−1)(S + iτ)) = H ,

which implies that −iτ ∈ ρ(B) and thus by Proposition 2.2.5, we have shown that B

is maximally dissipative.

2.3. The Cayley transform

Let us now define the Cayley transform of a dissipative (antidissipative) operator,

which is a useful theoretical tool for the study of dissipative extensions of a given

dissipative operator.

Definition 2.3.1. Let A be a closed and dissipative (antidissipative) operator. For

any λ ∈ C− (λ ∈ C+), its associated Cayley transform CA(λ) is given by

CA(λ) : ran(A− λ)→ ran(A− λ)

(A− λ)f 7→ (A− λ)f .(2.3.1)

Convention 2.3.2. Let A be dissipative. We adopt the convention that for λ = −i,

we will write CA instead of CA(−i).

We will now prove a few well-known properties of the Cayley transform of a given

dissipative (antidissipative) operator. For example, it is a well-known fact that the

Cayley transform of a dissipative (antidissipative) operator is a contraction, i.e. it

satisfies

‖CA(λ)ψ‖ ≤ ‖ψ‖

for all ψ ∈ D(CA(λ)), where either A is dissipative and λ ∈ C− or A is antidissipative

and λ ∈ C+. However, in the literature (up to a suitable multiplication by i cf. [35,
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Thm. 1.1.1]) this is often only shown for one specific value of λ and only for the case

of A being dissipative. Let us therefore give our own proof of this fact:

Theorem 2.3.3. Let A be dissipative (antidissipative). Then, for any λ ∈ C− (λ ∈

C+) we have that CA(λ) is a contraction. Moreover, we have that ker(1−CA(λ)) = {0}.

Proof. Let (A− λ)f ∈ ran(A− λ) = D(CA(λ)) and consider

‖CA(λ)(A− λ)f‖2 = ‖(A− λ)f‖2 = ‖Af‖2 + 2Re〈Af, λf〉+ |λ|2‖f‖2

= ‖Af‖2 + 2 ((Reλ)Re〈f, Af〉+ (Imλ)Im〈f, Af〉) + |λ|2‖f‖2

≤ ‖Af‖2 + 2 ((Reλ)Re〈f, Af〉 − (Imλ)Im〈f, Af〉) + |λ|2‖f‖2

= ‖(A− λ)f‖2 ,

where we have used that sgn((Imλ)Im〈f, Af〉) ≤ 0 in the dissipative case as well as in

the antidissipative case. Let us now assume that there exists a (A − λ)f ∈ ker(1 −

CA(λ)). This (A− λ)f would satisfy

0 = (1− CA(λ))(A− λ)f = (A− λ)f − (A− λ)f = (λ− λ)f ,

which implies that f = 0 and consequently (A− λ)f = 0 since λ ∈ ρ̂(A). This finishes

the proof. �

Given a contraction C such that ker(1 − C) = {0}, we can use it to define a

dissipative or an antidissipative operator:

Definition 2.3.4. Let C be a contraction such that ker(1 − C) = {0}. For any

λ ∈ C \ R, we define its inverse Cayley transform AC(λ), via

AC(λ) : D(AC(λ)) = ran(1− C)

(1− C)f 7→ (λ− λC)f .

Let us now show that AC(λ) is dissipative for λ ∈ C− and antidissipative for λ ∈ C+:

Theorem 2.3.5. Let D be a contraction such that ker(1 − D) = {0}. Then, for

λ ∈ C− (λ ∈ C+), we have that its inverse Cayley transform AD(λ) is dissipative

(antidissipative). Moreover, we have that CAD(λ)(λ) = D, i.e. the Cayley transform
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of the inverse Cayley transform of D yields the contraction D. Conversely, if B is

dissipative (antidissipative), we get that the inverse Cayley transform applied to the

Cayley transform of B yields the operator B, i.e. ACB(λ)(λ) = B, where λ ∈ C− (λ ∈

C+).

Proof. Let us start by showing that AD(λ) is densely defined. To see this, we will

show that ker(1 − D∗) = {0}, from which we get that H = ran(1−D) = D(AD(λ))

proving that AD(λ) is densely defined. Assume that there exists f ∈ ker(1−D∗). We

then get that

0 = ‖(1−D∗)f‖2 = ‖f‖2 + ‖D∗f‖2 − 2Re〈f,D∗f〉 = ‖f‖2 + ‖f‖2 − 2Re〈Df, f〉

≥ ‖f‖2 + ‖Df‖2 − 2Re〈f,Df〉 = ‖(1−D)f‖2 ≥ 0 ,

from which follows that f ∈ ker(1−D) and thus f = 0.

Let us now show that AD(λ) is dissipative (antidissipative) for λ ∈ C− (λ ∈ C+).

To this end, take any (1−D)ψ ∈ D(AD(λ)) and consider

Im〈(1−D)ψ,AD(λ)(1−D)ψ〉 = Im〈(1−D)ψ, (λ− λD)ψ〉

=− (Imλ)
(
‖ψ‖2 − ‖Dψ‖2

)
− Im (〈ψ, λDψ〉+ 〈λDψ, ψ〉) = −(Imλ)

(
‖ψ‖2 − ‖Dψ‖2

)
,

which is non-negative for λ ∈ C− and non-positive for λ ∈ C+. Thus, AD(λ) is dissipa-

tive (antidissipative).

Let us now show that CAD(λ)(λ) = D. Let us begin with determiningD(CAD(λ)(λ)) =

ran(AD(λ)− λ). Let φ ∈ D(D) and consider

(AD(λ)− λ)(1−D)φ = (λ− λD)φ− λφ+ λDφ = (λ− λ)φ ,(2.3.2)

which implies that (λ − λ)φ ∈ D(CAD(λ)(λ)) and thus D(D) ⊂ D(CAD(λ)(λ)). Con-

versely, since both maps (AD(λ) − λ) and (1 − D) are injective, we get that for any

ξ ∈ D(CAD(λ)(λ)) there exists a unique φξ ∈ D(D) such that ξ = (AD(λ)−λ)(1−D)φξ.

By (2.3.2), φξ is simply given by φξ = (λ−λ)−1ξ, which implies that ξ ∈ D(D). Let us

now show that (CAD(λ)(λ))ξ = Dξ for any ξ ∈ D(CAD(λ)(λ)) = D(D). By (2.3.2), we

get that

ξ =
(AD(λ)− λ)(1−D)ξ

λ− λ
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and applying CAD(λ)(λ) to it, we obtain

CAD(λ)(λ)ξ =
CAD(λ)(λ)(AD(λ)− λ)(1−D)ξ

λ− λ
=

(AD(λ)− λ)(1−D)ξ

λ− λ

=
λξ − λDξ − λξ + λDξ

λ− λ
= Dξ .

The fact that ACB(λ)(λ) = B follows from completely analogous reasoning as before

using that for any f ∈ D(B), we have that

(1− CB(λ))(B − λ)f = Bf − λf −Bf + λf = (λ− λ)f ,

from which we may argue as before that D(B) = D(ACB(λ)(λ)). Moreover, since for

any f ∈ D(B) we have that

f =
(1− CB(λ))(B − λ)f

λ− λ
to which we apply ACB(λ)(λ) to get

ACB(λ)(λ)f =
ACB(λ)(λ)(1− CB(λ))(B − λ)f

λ− λ
=

(λ− λCB(λ))(B − λ)f

λ− λ

=
λBf − |λ|2f − λBf + |λ|2f

λ− λ
= Bf .

This finishes the proof. �

The previous results allow us to show that the problem of determining dissipative

(antidissipative) extensions of dissipative (antidissipative) operators is equivalent to

finding contractive extensions of a given contraction (cf. [35, Thm. 1.1.1]).

Corollary 2.3.6. Fix λ ∈ C− (λ ∈ C+). Then, for any dissipative (antidissipa-

tive) A, there exists a unique contraction C with ker(1−C) = {0} such that A = AC(λ).

Conversely, for any contraction C with ker(1 − C) = {0}, there exists a unique dissi-

pative (antidissipative) operator A such that C = CA(λ). Moreover, B is a dissipative

(antidissipative) extension of A if and only if CB(λ) is a contractive extension of CA(λ).

Proof. The first part of the Corollary follows immediately from Theorem 2.3.5.

The fact that B is a dissipative (antidissipative) extension of A if and only if CB(λ)

is a contractive extension of CA(λ) follows directly from the definition of the Cayley

transform and of the inverse Cayley transform, since ran(A − λ) ⊂ ran(B − λ) and

ran(1− CA(λ)) ⊂ ran(1− CB(λ)). �
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Remark 2.3.7. By virtue of this result and by Proposition 2.2.5, A is maximally

dissipative if and only if CA(λ) is a contraction and D(CA(λ)) = H, since λ ∈ ρ(A) in

this case.

Finally, let us state a lemma on by how many linearly independent vectors the

domain of a given closed dissipative operator with finite defect index has to increase in

order to obtain a maximally dissipative extension.

Lemma 2.3.8. Let A be a closed and dissipative linear operator on a separable Hilbert

space H such that dim ran(A+ i)⊥ <∞. Moreover, let A′ be a dissipative extension of

A. Then, A′ is maximally dissipative if and only if

dimD(A′)/D(A) = dim[ran(A+ i)]⊥ .

Proof. “A′ maximally dissipative ⇒ dimD(A′)/D(A) = dim ran(A+ i)⊥”:

A′ being maximally dissipative implies that the domain of its Cayley transform CA′

is given by D(CA′) = H (cf. Remark 2.3.7). Moreover, by Theorem 2.3.3, CA′ is a

contraction with ker(1− CA′) = {0}. Using D(A′) = ran(1− CA′), we get that

D(A′) = ran(1− CA′) = (1− CA′)H = (1− CA′)
(
ran(A+ i)⊕ ran(A+ i)⊥

)
,

where we also made use of the fact that ran(A+ i) = ran(A + i) by closedness and

dissipativity of A. Next, we want to show that

(1− CA′)ran(A+ i) ∩ (1− CA′)ran(A+ i)⊥ = {0} .

Assume this is not true. Then there would exist 0 6= f ∈ ran(A + i) and 0 6= g ∈

ran(A+ i)⊥ such that

(1− CA′)f = (1− CA′)g

or, equivalently,

(1− CA′)(f − g) = 0 .

As f ⊥ g, this implies that f − g 6= 0, which would mean that f − g ∈ ker(1 − CA′),

which is a contradiction. Thus, D(A′) can be expressed as

D(A′) = (1−CA′)(ran(A+ i))+̇(1−CA′)(ran(A+ i)⊥) = D(A)+̇(1−CA′)(ran(A+ i)⊥) ,
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which implies that

dimD(A′)/D(A) = dim[(1− CA′)ran(A+ i)⊥] = dim ran(A+ i)⊥ ,

where the last equality follows from the injectivity of (1− CA′).

“A′ maximally dissipative ⇐ dimD(A′)/D(A) = dim ran(A+ i)⊥”:

Let dimD(A′)/D(A) = dim ran(A+ i)⊥, i.e. there exists a subspaceM with dimM =

dim ran(A+ i)⊥ such that

D(A′) = D(A)+̇M .

We need to show that ran(A′ + i) = H. It holds that

(2.3.3) ran(A′+ i) = (A′+ i)D(A′) = (A′+ i)(D(A)+̇M) = (A′+ i)D(A)+(A′+ i)M .

Let us show that (A′ + i)D(A) ∩ (A′ + i)M = {0}. To see this, let us assume this is

not true. This would mean that there exist 0 6= f ∈ D(A) and 0 6= g ∈M such that

(A′ + i)f = (A′ + i)g ⇔ (A′ + i)(f − g) = 0 ⇔ A′(f − g) = −i(f − g) ,

which would contradict the dissipativity of A′ as f − g 6= 0. Hence, as (A′ + i)D(A) =

ran(A+ i), Equation (2.3.3) reads

ran(A′ + i) = ran(A+ i)+̇(A′ + i)M.

Moreover, as (A′ + i) is injective, it holds that

dim[(A′ + i)M] = dimM = dim ran(A+ i)⊥ .

But if we have a closed infinite-dimensional space A and a finite-dimensional space B

such that A ∩ B = {0} and dimA⊥ = dimB, it holds that

A+̇B = A⊕A⊥ = H ,

which applies to our situation. This proves the lemma. �
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2.4. Dual pairs

Let us introduce the notion of a dual pair of operators (see also [31] for more details).

Definition 2.4.1. Let (A, Ã) be a pair of densely defined and closable operators.

We say that they form a dual pair if

A ⊂ Ã∗ resp. Ã ⊂ A∗ .

In this case, A is called a formal adjoint of Ã and vice versa.

Given a densely defined closable operator A, it is a well-known fact that another

densely defined closable operator Ã can always be found such that (A, Ã) forms a dual

pair as can be seen from the trivial choice Ã := A∗. A dual pair can be considered as a

pair consisting of a “maximal” operator (in our notation Ã∗) and a “minimal” operator

(here: A). In this sense, any extension of A that is a restriction of Ã∗ can be interpreted

as preserving the formal action of Ã∗:

Definition 2.4.2. Let (A, Ã) be a dual pair. An operator A′ is said to be a proper

extension of the dual pair (A, Ã) if

A ⊂ A′ ⊂ Ã∗ resp. Ã ⊂ (A′)∗ ⊂ A∗ .

Let us quote two useful results on the existence of proper extensions of certain dual

pairs. The first proposition guarantees the existence of a proper extension of a dual

pair (A, Ã) with λ ∈ ρ̂(A) and λ ∈ ρ̂(Ã). This applies in particular if A is dissipative,

which means that C− ⊂ ρ̂(A) and if Ã is antidissipative, which implies C+ ⊂ ρ̂(Ã).

Proposition 2.4.3 ([23, Chapter II, Lemma 1.1]). Let (A, Ã) be a dual pair with

λ ∈ ρ̂(A) and λ ∈ ρ̂(Ã). Then there exists a proper extension Â of (A, Ã) such that

λ ∈ ρ(Â) and D(Ã∗) can be expressed as

(2.4.1) D(Ã∗) = D(A)+̇(Â− λ)−1 ker(A∗ − λ)+̇ ker(Ã∗ − λ) .

Likewise, we get the following description for D(A∗):

D(A∗) = D(Ã)+̇(Â∗ − λ)−1 ker(Ã∗ − λ)+̇ ker(A∗ − λ) .
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Example 2.4.4. Let 0 < γ < 1/2 and consider the dual pair of operators

A0 : D(A0) = C∞c (0, 1), (A0f)(x) := if ′(x) +
iγ

x
f(x)

Ã0 : D(Ã0) = C∞c (0, 1), (Ã0f)(x) := if ′(x)− iγ

x
f(x) ,

where A0 is dissipative and Ã0 is antidissipative. Since γ
x
> γ for x ∈ (0, 1), this implies

that

Im〈f, A0f〉 ≥ γ‖f‖2 and Im〈f, Ã0f〉 ≤ −γ‖f‖2

for all f ∈ C∞c (0, 1). We therefore get that 0 ∈ ρ̂(A0) ∩ ρ̂(Ã0) and we will thus use

Equation (2.4.1) from Proposition 2.4.3 with the choice λ = 0 to describe D(Ã∗). Since

for any f ∈ C∞c (0, 1), we get

‖f‖2
Γ(A0) = ‖f‖2 +

∥∥∥∥if ′ + iγ

x
f

∥∥∥∥2

= ‖f‖2 + ‖f ′‖2 +

∥∥∥∥γfx
∥∥∥∥2

+

∫ 1

0

(
f ′(x)

γf(x)

x
+ f ′(x)

γf(x)

x

)
dx

= ‖f‖2 + ‖f ′‖2 + (γ2 + γ)

∥∥∥∥fx
∥∥∥∥2

≥ ‖f‖
2 + ‖f ′‖2

≤ ‖f‖2 + (1 + 4γ2 + 4γ)‖f ′‖2

,

where the estimate from above is obtained using Hardy’s inequality. This implies that

the graph norm of A0, ‖ · ‖Γ(A0), is equivalent to the H1-norm. Thus, we get that

D(A) = C∞c (0, 1)
‖·‖H1

= H1
0 (0, 1). Moreover, it can be shown that Ã∗ and A∗ are given

by

Ã∗ : D(Ã∗) =

{
f ∈ H1

loc(0, 1) ∩ L2(0, 1) : if ′ +
iγ

x
f ∈ L2(0, 1)

}
(Ã∗f)(x) = if ′(x) +

iγ

x
f(x)

A∗ : D(A∗) =

{
f ∈ H1

loc(0, 1) ∩ L2(0, 1) : if ′ − iγ

x
f ∈ L2(0, 1)

}
(A∗f)(x) = if ′(x)− iγ

x
f(x) ,(2.4.2)

which we use to determine ker(Ã∗) and ker(A∗):

(2.4.3) if ′(x)± iγ

x
f(x) = 0 ⇔ f(x) = x∓γ .
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Hence, using Equation (2.4.1) for λ = 0 yields that

(2.4.4) D(Ã∗) = D(A)+̇Â−1span{xγ}+̇span{x−γ}

and since Â ⊂ Ã∗, we get

Â−1xγ = φ(x) ⇒ Ã∗
(
Â−1xγ

)
= xγ = (Ã∗φ)(x) = iφ′(x) +

iγ

x
φ(x) ,

which has a one-dimensional solution space given by

−ixγ+1

2γ + 1
+̇span{x−γ} .

This allows us to rewrite (2.4.4) as follows:

D(Ã∗) = D(A)+̇span{xγ+1, x−γ} = H1
0 (0, 1)+̇span{xγ+1, x−γ} .

The following proposition guarantees the existence of a proper maximally dissipative

extension for any dual pair (A, Ã), where A is dissipative and Ã is antidissipative. Up

to a suitable multiplication by i, a proof for this can be found in [37, Chapter IV,

Proposition 4.2].

Proposition 2.4.5. Let (A, Ã) be a dual pair, where A is dissipative and Ã is

antidissipative. Then there exists a maximally dissipative proper extension of (A, Ã).

Let us now show that the requirement that A is dissipative and Ã is antidissipative

is absolutely necessary to make sure that the dual pair (A, Ã) allows for a proper

maximally dissipative extension:

Corollary 2.4.6. Let (A, Ã) be a dual pair and assume that A is dissipative. Then,

(A, Ã) admits a proper maximally dissipative extension if and only if Ã is antidissipative.

Proof. The fact that Ã being antidissipative is sufficient for the dual pair (A, Ã)

to admit a proper maximally dissipative extension follows from Proposition 2.4.5. To

see that it is also necessary, assume that Ã is not antidissipative but there still exists a

proper maximally dissipative extension Â of the dual pair (A, Ã). This means that

A ⊂ Â ⊂ Ã∗ ⇔ Ã ⊂ Â∗ ⊂ A∗ .

However, by Proposition 2.2.5, Â being maximally dissipative implies that Â∗ is an-

tidissipative, which is impossible since Ã is not antidissipative and we have Ã ⊂ Â∗. �
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Finally, let us introduce some convenient notation for complementary subspaces:

Definition 2.4.7. Let N be a (not necessarily closed) linear space and M⊂ N be

a (not necessarily closed) subspace. With the notation N //M we mean any subspace

of N , which is complementary to M, i.e.

(N //M) +M = N and (N //M) ∩M = {0} .
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CHAPTER 3

Properties of dissipative extensions of symmetric operators

As a warm-up, let us begin with a discussion of the dissipative extensions of symmet-

ric operators. We will start by showing that any dissipative extension of a symmetric

operator S has to be a restriction of S∗. After that, we will discuss the complete

non-selfadjointness of these extensions.

3.1. Dissipative extensions of symmetric operators

As the Cayley transform CS of a symmetric operator S is a partially defined isom-

etry, this restricts our choices for extending CS to a contraction on the whole Hilbert

space:

Lemma 3.1.1. Let S be a closed symmetric operator on a Hilbert space H. Then,

for any λ ∈ C \ R, any contractive extension C ⊃ CS(λ) has to map ker(S∗ − λ) into

ker(S∗ − λ), where

‖Cφλ‖ ≤ ‖φλ‖

for any φλ ∈ ker(S∗ − λ).

Proof. As S is a symmetric operator, CS(λ) is an isometry that maps ran(A− λ)

onto ran(A−λ) ([44, Satz 10.5] for λ = −i; for other λ ∈ C−, this follows analogously).

Now, let C be a contractive extension of CS(λ).

Assume that C does not map ker(S∗− λ) into ker(S∗− λ), which means that there

exist λ, µ ∈ C, ψ ∈ ker(S∗ − λ), φ ∈ ker(S∗ − λ) and g ∈ ran(S − λ) such that

Cψ = λg + µφ ,

where we assume that ‖ψ‖ = ‖φ‖ = ‖g‖ = 1 and λ 6= 0. Moreover, as CS(λ) maps

ran(S−λ) isometrically onto ran(S−λ), there exists a normalized vector f ∈ ran(S−λ)
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such that Cf = CS(λ)f = g. Now, let α, β ∈ C and consider

‖C(αf + βψ)‖2 = ‖αCf + βCψ‖2 = ‖αg + β(λg + µφ)‖2

= |α + βλ|2‖g‖2 + |βµ|2‖φ‖2 = |α|2 + 2Re(αβλ) + |β|2(|λ|2 + |µ|2)

Since f ⊥ ψ implies that ‖αf +βψ‖2 = |α|2 + |β|2, we only need to show that ‖C(αf +

βψ)‖2 > |α|2 + |β|2 in order to lead this to a contradiction, since C would not be a

contraction in this case. As we can always consider α̂ := αeiϕ instead of α, where ϕ is

chosen such that 2Re(α̂βλ) = 2|α||β||λ|, we just need to find α and β such that

(3.1.1) |α|2 + 2|α||β|λ|+ |β|2(|λ|2 + |µ|2) ≤ |α|2 + |β|2

is violated. However, as C is assumed to be contraction, it is a necessary condition that

‖Cφ+‖2 = ‖λg + µφ−‖2 = |λ|2 + |µ|2 ≤ 1 .

This, together with the choice

|α| > (1− |λ|2 − |µ|2)|β|
2|λ|

shows that (3.1.1) can be violated for λ 6= 0. �

The previous lemma shows that our choices for extending the Cayley transform CS

of a symmetric operator S to a contraction defined on H are rather limited. In the first

proof of the following theorem, we will use this in order to show that this implies that

any dissipative extension of S has to be a restriction of S∗. This idea of proof can also

be found in [35, Lemma 1.1.5]. The second proof, which we believe to be new, is direct

and does not make any explicit use of the Cayley transform.

Theorem 3.1.2. Let S be a closed symmetric operator. Then, all dissipative exten-

sion of S are restrictions of S∗.

First proof. Let N± := ker(S∗ ∓ i). By the first von Neumann formula (cf. [44,

Satz 10.9]), we know that

D(S∗) = D(S)+̇N++̇N−

and

S∗(f0 + ψ+ + ψ−) = Sf0 + iψ+ − iψ− ,

where f0, ψ+ and ψ− denote arbitrary elements of D(S), N+ and N− respectively.
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Let Ŝ be an arbitrary dissipative extension of S. By Theorem 2.3.5, we have that CŜ

is a contractive extension of the isometry CS. Thus, there exists a subspaceM+ ⊂ N+

such that

D(CŜ) = D(CS)⊕M+, CŜ �D(CS)= CS .

Moreover, since S is a closed and symmetric operator, Lemma 3.1.1 implies that

CŜM+ ⊂ N−. From this we get that

D(Ŝ) = ran(1− CŜ) = D(S)+̇{ψ+ − CŜψ+ : ψ+ ∈M+} ⊂ D(S)+̇N++̇N− = D(S∗) ,

i.e. it just remains to show that S∗ �D(Ŝ)= Ŝ. To this end, note that by the inverse

Cayley transform we get Ŝ = i(1 + CŜ)(1 − CŜ)−1 and therefore for any element in

D(Ŝ) we see from the first von Neumann formula (cf. [44, Satz 10.9])

Ŝ(f0 + (1− CŜ)ψ+) = Sf0 + i(1 + CŜ)(1− CŜ)−1(1− CŜ)ψ+

= Sf0 + iψ+ − i(−CŜψ+) = S∗(f0 + (1− CŜ)ψ+) ,

which completes the proof. �

Second proof. Let T be an extension of S. Now, for any f ∈ D(S) and v ∈

D(T )//D(S), consider

Im〈f + v, T (f + v)〉 = Im (〈f, Sf〉+ 〈v, Tv〉+ 〈v, Sf〉+ 〈f, Tv〉)

= Im (〈v, Tv〉+ 〈v, Sf〉+ 〈f, Tv〉)(3.1.2)

Now, if v /∈ D(S∗), we can pick a normalized sequence {fn}n ⊂ D(S), such that

limn→∞ Im(〈v, Sfn〉) = −∞, while all other terms in (3.1.2) stay bounded. Thus, for T

to be dissipative, it is necessary that D(T ) ⊂ D(S∗). Hence, we can rewrite (3.1.2) as

Im〈f + v, T (f + v)〉 = Im〈v, Tv〉+ Im〈(S∗ − T )v, f〉 .

Now, if T 6⊂ S∗, this means that there exists at least one ṽ ∈ D(S∗)//D(T ) such that

(S∗ − T )ṽ 6= 0. But again this would imply that T cannot be dissipative in this case

since by denseness of D(S), we can always pick an f̃ ∈ D(S) such that 〈(S∗−T )v, f̃〉 6= 0

and by replacing f̃ 7→ λf̃ , where λ ∈ C, we would get

Im〈λf̃ + ṽ, T (λf̃ + ṽ)〉 = Im〈ṽ, T ṽ〉+ Im〈(S∗ − T )ṽ, λf̃〉 .
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This will be less than zero, if we choose λ to have a suitable phase and sufficiently large

modulus. Thus, for any v ∈ D(T )//D(S), we conclude that v ∈ D(S∗) and Tv = S∗v,

which shows that T being dissipative implies that T ⊂ S∗.

�

3.2. Completely non-selfadjoint extensions of symmetric operators

It is a well-known result ([37, Chapter IV, Prop. 4.3] up to a suitable multiplication

by a factor of ±i) that any maximally dissipative operator A on a Hilbert space H can

be uniquely decomposed into its selfadjoint and completely non-selfadjoint part. As we

will define below, this means that A = Asa⊕Acnsa acting according to the decomposition

H = Hsa⊕Hcnsa, where Asa is selfadjoint in Hsa and Acnsa is completely non-selfadjoint

as an operator in Hcnsa. The proof for this relies on the fact that the Cayley trans-

form CA of a maximally dissipative operator is an everywhere defined contraction (cf.

Thm. 2.3.5), which can be uniquely decomposed into its unitary part (corresponding

to the selfadjoint part of A) and its completely non-unitary part (corresponding to the

completely non-selfadjoint part of A). This was shown in [30]. However, for concrete

applications, it is often very difficult to compute the Cayley transform of a maximally

dissipative operator and determine its unitary and completely non-unitary subspace.

In this section, we are going to focus on the special question of whether a maximally

dissipative extension of a symmetric operator S is completely non-selfadjoint or if there

exists a reducing subspace on which it is selfadjoint. As we shall see, our result will

depend on decomposing the symmetric operator S into its selfadjoint part and its com-

pletely non-selfadjoint part.

Following [43, Exercise 5.39] we define the notion of a reducing subspace:

Definition 3.2.1 (Reducing subspace). Let S be an operator on a Hilbert space H.

A closed subspace M ⊂ H is called a reducing subspace of S, or is said to reduce

the operator S, if

D(S) = D(S) ∩M +D(S) ∩M⊥

and if S(D(S) ∩M) ⊂M and S(D(S) ∩M⊥) ⊂M⊥ .

If Ŝ is maximally dissipative, we know by Proposition 2.2.5 that C− ⊂ ρ(Ŝ). If

the resolvent set is non-empty it is often more convenient to deal with the bounded
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resolvent (Ŝ−λ)−1, where λ ∈ ρ(Ŝ), rather than with the possibly unbounded operator

Ŝ itself. The following result is mentioned in [37, Chapter IV, after Equation 4.12],

however no formal proof is given. For the sake of completeness, we will prove it here.

Lemma 3.2.2. Let Ŝ be a maximally dissipative operator on a Hilbert space H and

let M be a closed subspace of H. Then, M reduces Ŝ if and only if M reduces CŜ(λ)

for any λ ∈ C−.

Proof. Firstly, observe that since CŜ(λ) = (Ŝ−λ)(Ŝ−λ)−1 = 1−(λ−λ)(Ŝ−λ)−1,

this means that M reduces CŜ(λ) if and only if it reduces the resolvent (Ŝ−λ)−1. Hence,

the lemma is equivalent to showing that M reduces Ŝ if and only if M reduces (Ŝ−λ)−1

for any λ ∈ C.

Now, let us show that M reducing Ŝ implies that it also reduces (Ŝ − λ)−1 for

any λ ∈ C−. To this end, take any f0 ∈ M. Since C− ⊂ ρ(Ŝ), we get that for any

λ ∈ C−, there exists a unique gλ ∈ D(Ŝ), such that f0 = (Ŝ − λ)gλ. We will show that

gλ ∈ D(Ŝ) ∩M. To this end, decompose gλ = g
(0)
λ + g⊥λ , where g

(0)
λ ∈ D(Ŝ) ∩M and

g⊥λ = D(Ŝ) ∩M⊥. Since f0 ∈M and (Ŝ − λ)g
(0)
λ ∈M as well as (Ŝ − λ)g⊥λ ∈M⊥, this

implies that (Ŝ − λ)g⊥λ = 0. However, since λ ∈ ρ(Ŝ), it follows that g⊥λ = 0. Thus,

we have f0 = (Ŝ − λ)g
(0)
λ . Applying (Ŝ − λ)−1 to this yields (Ŝ − λ)−1f0 = g

(0)
λ ∈ M.

Analogously, we may argue that for any f⊥ ∈M⊥, we get (Ŝ − λ)−1f⊥ ∈M⊥.

Let us now show that if M reduces (Ŝ − λ)−1 for some λ ∈ C−, this implies that

M reduces Ŝ.3.2.1 Since λ ∈ ρ(Ŝ), we have that for any g ∈ D(Ŝ), there exists a unique

f ∈ H such that g = (Ŝ − λ)−1f . Decomposing f = f0 + f⊥, where f0 ∈ M and

f⊥ ∈M⊥, we obtain g = (Ŝ − λ)−1f0 + (Ŝ − λ)−1f⊥, where (Ŝ − λ)−1f0 ∈ D(Ŝ) ∩M

and (Ŝ − λ)−1f⊥ ∈ D(Ŝ)∩M⊥, which follows from the fact that M reduces (Ŝ − λ)−1.

This shows that D(Ŝ) = D(Ŝ)∩M+D(Ŝ)∩M⊥. Next, observe that trivially, M reduces

Ŝ if and only if it reduces (Ŝ−λ). Let us now argue that any element g0 ∈ D(Ŝ)∩M is

of the form g0 = (Ŝ−λ)−1f0 for a unique f0 ∈M. Again, since (Ŝ−λ)−1 is a bijection,

there exists a unique f ∈ H, such that g0 = (Ŝ − λ)−1f . Decomposing f = f0 + f⊥,

where f0 ∈ M and f⊥ ∈ M⊥, we use that M reduces (Ŝ − λ)−1 to conclude that

(Ŝ−λ)−1f0 ∈M and (Ŝ−λ)−1f⊥ ∈M⊥. But since M 3 g0 = (Ŝ−λ)−1f0+(Ŝ−λ)−1f⊥,

3.2.1This readily implies that M reduces (Ŝ−λ)−1 for any λ ∈ C− by what has been argued in the first part of the

proof of this lemma.
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this implies that (Ŝ − λ)−1f⊥ = 0, from which we get that f⊥ = 0 since (Ŝ − λ)−1 is

bijective. This shows that (Ŝ − λ)g0 = f0 ∈ M. Analogously, it can be shown that

(Ŝ − λ)(D(Ŝ) ∩M⊥) ⊂M⊥. Altogether, this shows that M reduces Ŝ if and only if it

reduces (Ŝ − λ)−1 for any λ ∈ C. This shows the lemma. �

Let us now define what it means for an operator to be completely non-selfadjoint:

Definition 3.2.3 (Completely non-selfadjoint operator). Let S be a densely defined

operator. We say that S is completely non-selfadjoint if the only reducing subspace

of S on which S is selfadjoint is the trivial space {0}.

Remark 3.2.4 (On the terminology). Note that according to this definition, a

symmetric operator that is completely non-selfadjoint may have selfadjoint extensions.

In the literature, completely non-selfadjoint symmetric operators are also referred to as

simple symmetric operators; for example in [1, Vol. II, Sect. 81].

The following result, which is due to Krĕın [28] (for a more recent English version of

the proof, see also [22, Chapter 1, Thm. 2.1]), implies that any closed symmetric oper-

ator S can be uniquely decomposed into its selfadjoint and completely non-selfadjoint

part. Firstly, let us introduce some convenient notation:

Definition 3.2.5. Let {Vσ}σ∈S be a family of closed subspaces of a Hilbert space

H. Then, we define ∨
σ∈S

Vσ := span{Vσ : σ ∈ S} ,

i.e.
∨
σ∈S Vσ denotes the closure of the linear span of all Vσ’s.

Let us now state the main proposition on the decomposition of a closed symmetric

operator S into its selfadjoint and completely non-selfadjoint part.

Proposition 3.2.6 ([28]). Let S be a closed symmetric operator and define

M :=
∨

λ∈C\R

ker(S∗ − λ) .

Then, M is a reducing subspace for S. Moreover, S is selfadjoint on M⊥ and completely

non-selfadjoint on M.
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Let us apply this result to two examples:

Example 3.2.7. Consider the symmetric momentum operator p defined as

p : D(p)

={f ∈ H1(−∞,−1)⊕H1(−1, 1)⊕H1(1,∞) : f(−1−) = f(1+) = 0, f(−1+) = f(1−)}

f 7→ if ′ ,

(3.2.1)

where f ′ denotes the weak derivative of f taken over the respective segments of the real

line. The adjoint p∗ is given by

p∗ : D(p∗) = {f ∈ H1(−∞,−1)⊕H1(−1, 1)⊕H1(1,∞) : f(−1+) = f(1−)}

(3.2.2)

f 7→ if ′ .(3.2.3)

We claim that

(3.2.4) M :=
∨

λ∈C\R

ker(p∗ − λ) = L2(−∞,−1)⊕ L2(1,∞)

and therefore

M⊥ = L2(−1, 1) .

According to Proposition 3.2.6 we have that M is a reducing subspace for p and that

p �M is completely non-selfadjoint and that p �M⊥ is selfadjoint. Thus, let us show that

(3.2.4) holds. To this end, let us compute ker(p∗ − λ):

if ′(x) = λf(x)⇔ f(x) = e−iλx .

Thus, we get that

ker(p∗ − λ) = span{e−iλxχ(1,∞)(x)} if Im(λ) > 0

ker(p∗ − λ) = span{e−iλxχ(−∞,−1)(x)} if Im(λ) < 0 ,

where the fact that the functions are only supported on the respective half-lines follows

from −sgn(Re(−iλ)) = sgn(Im(λ)) and the boundary conditions inside the interval

(−1, 1). For any λ ∈ C \ R we have that dim ker(p∗ − λ) = 1. Let us denote the
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normalized element of ker(p∗ − λ) by φλ, which is unique up to a phase. Since it holds

that

supp(φλ) ⊂ (−∞,−1) ∪ (1,∞) for all λ ∈ C \ R ,

we have that M ⊂ L2(−∞,−1) ⊕ L2(1,∞). To show the other inclusion, let us show

that M⊥ ⊂ L2(−1, 1). Thus, assume that ψ ∈M⊥, which implies

(3.2.5) 〈φλ, ψ〉 = 0 ∀λ ∈ C \ R.

For all λ such that Im λ > 0, consider the function g(λ) given by

g(λ) := 〈φλ, ψ〉 =

∫ ∞
1

eiλxψ(x)dx =

∫ ∞
0

eiλx
[
χ(1,∞)(x) · ψ(x)

]
dx .

Interpreting χ(1,∞)(x) · ψ(x) as an element of L2(R+), we have by [40, Thm. 5.9.5 a)]

that g is an element of the Hardy space H2(C+) and since by Equation (3.2.5) we have

that g(λ) = 0 for any λ ∈ C+, we get

‖g‖2
H2 = sup

0<y<∞

(∫ ∞
−∞
|g(x+ iy)|2dx

)
= 0 .

Now, again by [40, Thm. 5.9.5 a)], we have that 0 = ‖g‖H2 =
√

2π‖χ(1,∞)ψ‖L2 , which

implies that χ(1,∞)(x)ψ(x) = 0 almost everywhere in L2(R+). Now, let us consider all

−λ, where Im λ > 0, which obviously is the same as considering all λ with negative

imaginary part. Equation (3.2.5) now reads as

0 = 〈φ−λ, ψ〉 =

∫ −1

−∞
e−iλxψ(x)dx =

∫ ∞
0

eiλx
[
χ(1,∞)(x)ψ(−x)

]
dx ∀ λ ∈ C+ .

By the same reasoning as above — using [40, Thm. 5.9.5 a)] — we get that

χ(1,∞)(x)ψ(−x) = 0

almost everywhere in L2(R+). Altogether, this means that ψ(x)χ(−∞,−1)∪(1,∞)(x) = 0

almost everywhere in L2(R), respectively that ψ ∈ L2(−1, 1). This shows that M⊥ ⊂

L2(−1, 1).

By Proposition 3.2.6 we have shown that p �L2(−1,1) is selfadjoint. Indeed, it is the

momentum operator on the interval with periodic boundary conditions. On the other

hand, we have that p �L2(−∞,−1)⊕L2(1,∞) is a completely non-selfadjoint symmetric op-

erator.
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Example 3.2.8. Let Ω = (0, π)× (0,∞) be the half-strip and consider the Hilbert

space H = L2(Ω). Let the symmetric operator L be defined as

L : D(L) = {f ∈ H2(Ω) : f �∂Ω= 0, ∂yf �y=0= 0}

f 7→ −∆f = −(∂2
xf + ∂2

yf) ,

where the derivatives have to be understood in the weak sense. A short calculation

shows that its adjoint L∗ is given by

L∗ : D(L∗) = {f ∈ H2(Ω) : f �x=0= f �x=π= 0}

f 7→ −∆f = −(∂2
xf + ∂2

yf) .

For any given λ ∈ C\R let us find elements ζ ∈ ker(L∗−λ) using a factorization ansatz

of the form ζ(x, y) = f(x)g(y):

(3.2.6) −∆(f(x)g(y)) = −f ′′(x)g(y)− f(x)g′′(y)=λf(x)g(y) .

For n ∈ N define φn(x) := sin(nx) and for µ ∈ C+ define µ(λ, n) to be the solution

of µ(λ, n)2 = n2 − λ, which has negative real part (Re µ(λ, n) < 0). Note that such a

solution always exists for λ /∈ R and that it is unique. Defining ψλ,n(y) := eµ(λ,n)y, we

find that the function ζλ,n(x, y) := φn(x)ψλ,n(y) is a L2(Ω)-solution to Equation (3.2.6)

satisfying all boundary conditions such that it is an element of D(L∗). Thus, we have∨
n∈N

span{ζλ,n} ⊂ ker(L∗ − λ)

and therefore ∨
λ∈C\R

(∨
n∈N

span{ζλ,n}

)
⊂M .

Let us now show that M = H, i.e. that L is completely non-selfadjoint by Proposition

3.2.6. Assume that χ ∈M⊥. Observe that the following two sets are equal:

{(λ, n) : λ ∈ C \ R, n ∈ N} = {(λ− n2, n) : λ ∈ C \ R, n ∈ N} ,

which implies that

∨
λ∈C\R

(∨
n∈N

span{ζλ,n}

)
=

∨
λ∈C\R

(∨
n∈N

span{ζλ−n2,n}

)
.
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Using Fubini’s Theorem, for all λ ∈ C \ R and all n ∈ N, it holds that

0 = 〈χ, ζλ−n2,n〉 =

∫ ∞
0

ψλ−n2,n(y)

(∫ π

0

φn(x)χ(x, y)dx

)
dy

=

∫ ∞
0

ey
√
−λ
(∫ π

0

φn(x)χ(x, y)dx

)
dy ,(3.2.7)

where
√
−λ again denotes the solution of z2 = −λ which has negative real part. By

this definition of
√
−λ we have that {−i

√
−λ : λ ∈ C \ R} = {µ ∈ C+ : Re µ 6= 0}.

Thus, Equation (3.2.7) can be rewritten in this form:

(3.2.8)

0 =

∫ ∞
0

eiµy
(∫ π

0

φn(x)χ(x, y)dx

)
dy =

∫ ∞
0

eiµyG(n)(y)dy ∀n ∈ N, ∀µ ∈ C+ \ iR+ ,

where we have defined G(n)(y) :=
∫ π

0
φn(x)χ(x, y)dx for all n ∈ N. It is not hard

to check that G(n) ∈ L2(0,∞) for all n ∈ N. If we can extend Equation (3.2.8) to

hold for µ ∈ iR+ as well for all n ∈ N, we may conclude that G(n)(y) = 0 almost

everywhere in L2(0,∞) by the same reasoning as in Example 3.2.7. To show this, pick

an arbitrary sequence of non-zero real numbers {σj}j such that limj→∞ σj = 0. Given

an arbitrary µ ∈ iR+ consider the sequence of functions {ei(µ+σj)y}j, which converges

to eiµy pointwise. Thus,∣∣∣∣∫ ∞
0

eiµyG(n)(y)dy

∣∣∣∣ ≤ ∣∣∣∣∫ ∞
0

(
eiµy − ei(µ+σj)y

)
G(n)(y)dy

∣∣∣∣+

∣∣∣∣∫ ∞
0

ei(µ+σj)yG(n)(y)dy

∣∣∣∣︸ ︷︷ ︸
(3.2.8)

= 0

≤
∫ ∞

0

|eiµy||1− eiσjy||G(n)(y)|dy j→∞−→ 0 ,

which follows from dominated convergence since

|eiµy||1− eiσjy||G(n)(y)| ≤ 2|eiµy||G(n)(y)| ∈ L1(0,∞)

for all j and all n. Thus, for almost every y it holds that

G(n)(y) =

∫ π

0

φn(x)χ(x, y)dx = 0

for all n ∈ N. Denote the set of these y’s by En and define E :=
⋂
n∈N En, which is a

full measure set since it is the countable intersection of full measure sets. Now, for any

y ∈ E we have that

〈χ(·, y), φn〉 = 0 ∀n ∈ N ,
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which implies that χ(x, y) = 0 for almost every x, since {φn}n = {sin(nx)}n is total

in L2(0, π). Since the product of two full measure sets is again of full measure, we

have shown that χ(x, y) = 0 almost everywhere with respect to Lebesgue measure on

Ω. This shows that M⊥ = {0}, which implies that L is completely non-selfadjoint by

Proposition 3.2.6.

Lemma 3.2.9. Let S be symmetric and let Ŝ be a dissipative (antidissipative) exten-

sion of S. Assume that for some subspace V ⊂ D(Ŝ) that is complementary to D(S) in

D(Ŝ), i.e.

D(S) ∩ V = {0} and D(Ŝ) = D(S) + V

we have that

Im〈v, Ŝv〉 > 0 (Im〈v, Ŝv〉 < 0)

for any nonzero v ∈ V. Then, for any subspace V ′ ⊂ D(Ŝ) that is complementary to

D(S) in D(Ŝ), we may conclude that

Im〈v′, Ŝv′〉 > 0 (Im〈v′, Ŝv′〉 < 0)

for any nonzero v′ ∈ V ′.

Proof. Let V ′ ⊂ D(Ŝ) be complementary to D(S) in D(Ŝ). Then, for any v′ ∈ V ′,

there exists a unique f ∈ D(S) and a unique v ∈ V , such that v′ = f + v. Note that

for v′ 6= 0, we get that v 6= 0. Moreover, by Theorem 3.1.2, we get that a dissipative

extension Ŝ of a symmetric operator S has to be a restriction of S∗. For any v′ 6= 0, we

then get

Im〈v′, Ŝv′〉 = Im〈f + v, Ŝ(f + v)〉 = Im〈f, Sf〉+ Im(〈f, S∗v〉+ 〈v, Sf〉) + Im〈v, Ŝv〉

= Im(2Re〈Sf, v〉) + Im〈v, Ŝv〉 = Im〈v, Ŝv〉 > 0 ,

which shows the lemma for the dissipative case. �

Given a symmetric operator S, we have that the Cayley transform of any maximally

dissipative (antidissipative) extension Ŝ has to be defined on the whole Hilbert space:

D(CŜ(λ)) = H. Since D(CŜ(λ)) coincides with D(CS(λ)) on ran(S − λ), this means

that we have to define the action of CŜ(λ) on ker(S∗ − λ) to describe the extension.
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By Lemma 3.1.1, we know that CŜ(λ) has to map ker(S∗ − λ) into ker(S∗ − λ). Now,

since H = ran(S − λ)⊕ ker(S∗ − λ), we get that

D(Ŝ) = (1− CŜ(λ))H = (1− CS(λ))ran(S − λ)+̇(1− CŜ(λ)) ker(S∗ − λ)

= D(S)+̇(1− CŜ(λ)) ker(S∗ − λ) .

Thus, if Ŝ is a maximally dissipative (antidissipative) extension of S we may define

Vλ := (1− CŜ(λ)) ker(S∗ − λ), which is complementary to D(S) in D(Ŝ). We are now

prepared to prove the following result:

Lemma 3.2.10. Let S be symmetric and Ŝ be a maximally dissipative (antidissipa-

tive) extension of S such that

Im〈v, Ŝv〉 > 0 (Im〈v, Ŝv〉 < 0)

for all nonzero v ∈ V, where V ⊂ D(Ŝ) is complementary to D(S) in D(Ŝ). We then

get that for any λ ∈ C− (λ ∈ C+), the Cayley transform CŜ(λ) satisfies

‖CŜ(λ)φλ‖ < ‖φλ‖

for all nonzero φλ ∈ ker(S∗ − λ).

Proof. For simplicity, we restrict ourselves to the dissipative case, since the an-

tidissipative case can be shown completely analogously. By Lemma 3.2.9, we know that

for any λ ∈ C− we have that

Im〈vλ, Ŝvλ〉 > 0

for any nonzero vλ ∈ Vλ. Since any such vλ can be written as vλ = (1−CŜ(λ))φλ for a

unique nonzero φλ ∈ ker(S∗ − λ), we then get

0 < Im〈vλ, Ŝvλ〉 = Im〈(1− CŜ(λ))φλ, Ŝ(1− CŜ(λ))φλ〉

= Im〈(1− CŜ(λ))φλ, (λ− λCŜ(λ))φλ〉 = −(Im(λ))
〈
φλ, (1− CŜ(λ)∗CŜ(λ))φλ

〉
,

which is equivalent to

‖CŜ(λ)φλ‖ < ‖φλ‖

for any nonzero φλ ∈ ker(S∗ − λ). This shows the lemma. �
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Theorem 3.2.11. Let S be symmetric and assume that∨
λ∈C\R

ker(S∗ − λ) = H .

Moreover, let Ŝ be a maximally dissipative extension of S and let V ⊂ D(Ŝ) be a

subspace complementary to D(S) in D(Ŝ). If

Im〈v, Ŝv〉 > 0

for all nonzero v ∈ V, then Ŝ is completely non-selfadjoint.

Proof. To begin with, let us show that for any λ ∈ C−, we have that ker(S∗ − λ)

is a reducing subpsace for the operator [1 − CŜ(λ)∗CŜ(λ)]. Clearly, this is equiva-

lent to showing that for any λ ∈ C−, we have that ker(S∗ − λ) reduces the operator

CŜ(λ)∗CŜ(λ). We start by showing CŜ(λ)∗CŜ(λ) ker(S∗−λ) ⊂ ker(S∗−λ). To see this,

fix λ ∈ C− and let φλ be an arbitrary element of ker(S∗−λ). Since Ŝ is a dissipative ex-

tension of the symmetric operator S, we get by Lemma 3.1.1 that CŜ(λ)φλ ∈ ker(S∗−λ).

Now, take any f ∈ H and decompose it into f = f0 + f⊥, where f0 ∈ ran(S − λ) and

f⊥ ∈ ker(S∗ − λ). Thus, for any f ∈ H, we get

〈CŜ(λ)∗CŜ(λ)φλ, f〉 = 〈CŜ(λ)φλ, CŜ(λ)f〉 = 〈CŜ(λ)φλ, CŜ(λ)(f0 + f⊥)〉

= 〈CŜ(λ)φλ, CŜ(λ)f⊥〉 = 〈CŜ(λ)∗CŜ(λ)φλ, f
⊥〉 ,

where we have used that CŜ(λ)f0 ∈ ran(S − λ) by definition of the Cayley transform,

which means that it is orthogonal to CŜ(λ)φλ. This shows that

〈CŜ(λ)∗CŜ(λ)φλ, f0〉 = 0

for any f0 ∈ ran(S − λ), which means that CŜ(λ)∗CŜ(λ)φλ ∈ ker(S∗ − λ). This shows

that ker(S∗ − λ) is invariant under [1− CŜ(λ)∗CŜ(λ)].

Let us now argue that ker(S∗ − λ)⊥ = ran(S − λ) is invariant under CŜ(λ)∗CŜ(λ),

too. Since S is symmetric, its Cayley transform CS(λ) is an isometry from ran(S−λ) to

ran(S−λ). Thus, we get CŜ(λ)∗CŜ(λ)ran(S−λ) ⊂ ran(S−λ) since CŜ(λ)∗CŜ(λ)ψ = ψ

for any ψ ∈ ran(S − λ). Altogether, this shows that ker(S∗ − λ) reduces the operator

[1 − CŜ(λ)∗CŜ(λ)]. Analogously, for any λ ∈ C+, it can be shown that ker(S∗ − λ)

reduces [1− CŜ∗(λ)∗CŜ∗(λ)].
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Next, let us argue that for any λ ∈ C−, the operator

KŜ(λ) := [1− CŜ(λ)∗CŜ(λ)] �ker(S∗−λ)

has range dense in ker(S∗−λ). (For λ ∈ C+, it will follow completely analogously that

the range of KŜ∗(λ) := [1 − CŜ∗(λ)∗CŜ∗(λ)] �ker(S∗−λ) is dense in ker(S∗ − λ).) Since

CŜ(λ) is the Cayley transform of a dissipative operator and therefore a contraction

by Theorem 2.3.5, we have that KŜ(λ) is a non-negative selfadjoint operator in the

Hilbert space ker(S∗ − λ). Moreover, by Lemma 3.2.10, we have for any non-zero

φλ ∈ ker(S∗ − λ) that

0 < ‖φλ‖2 − ‖CŜ(λ)φλ‖2 = 〈φλ, KŜ(λ)φλ〉 = ‖K1/2

Ŝ
(λ)φλ‖2 ,

which implies that ker(KŜ(λ)1/2) = ker(KŜ(λ)) = {0}. Thus, KŜ(λ) is a selfadjoint

operator on the Hilbert space ker(S∗ − λ) = ran(KŜ(λ)) ⊕ ker(KŜ(λ)) = ran(KŜ(λ)),

which shows that KŜ(λ) has range dense in ker(S∗ − λ).

Now, assume that Ŝ is not completely non-selfadjoint, i.e. that there exists a re-

ducing subspaceM for Ŝ on which Ŝ is selfadjoint. By Lemma 3.2.2, we have thatM

reduces CŜ(λ) for any λ ∈ C−. Moreover, CŜ(λ) �M is unitary since it is the Cayley

transform of a selfadjoint operator. Thus, for any λ ∈ C− and any m ∈M we get

〈φλ,m〉 = 〈φλ, CŜ(λ)∗CŜ(λ)m〉 = 〈CŜ(λ)∗CŜ(λ)φλ,m〉

for all φλ ∈ ker(S∗ − λ), which implies that

(3.2.9) 〈[1− CŜ(λ)∗CŜ(λ)]φλ,m〉 = 0

for all φλ ∈ ker(S∗ − λ). But since the range of [1−CŜ(λ)∗CŜ(λ)] �ker(S∗−λ) is dense in

ker(S∗ − λ), we get from (3.2.9) that M⊥ ker(S∗ − λ) for any λ ∈ C−.

To finish the proof, observe that if M is a reducing subspace for Ŝ on which it is

selfadjoint, M is also a reducing subspace for the maximally antidissipative operator

Ŝ∗ on which it is selfadjoint. This means that the Cayley transform CŜ∗(λ) is unitary

on M. Analogously as before, we therefore may argue that for any λ ∈ C+ and any

m ∈M, we get that

〈φλ,m〉 = 〈φλ, CŜ∗(λ)∗CŜ∗(λ)m〉 = 〈CŜ∗(λ)∗CŜ∗(λ)φλ,m〉
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for all φλ ∈ ker(S∗ − λ). We therefore get that

〈[1− CŜ∗(λ)∗CŜ∗(λ)]φλ,m〉 = 0

and since the range of [1−CŜ∗(λ)∗CŜ∗(λ))] �ker(S∗−λ) is dense in ker(S∗−λ) we get that

M⊥ ker(S∗ − λ) for any λ ∈ C+. However, since we assumed that∨
λ∈C\R

ker(S∗ − λ) = H ,

it follows thatM⊥ H, i.e. M = {0}, which means that Ŝ is completely non-selfadjoint.

�

Let us now combine the results of Proposition 3.2.6 and Theorem 3.2.11 to treat

dissipative extensions of symmetric operators that may have a reducing selfadjoint part:

Corollary 3.2.12. Let S be symmetric and assume that∨
λ∈C\R

ker(S∗ − λ) = M ⊂ H

and let Ŝ be a maximally dissipative extension of S. Moreover, assume that for some

subspace V ⊂ D(Ŝ) that is complementary to D(S) in D(Ŝ), it holds that

Im〈v, Ŝv〉 > 0

for all nonzero v ∈ V. Then, M reduces Ŝ, where Ŝ �M is completely non-selfadjoint

and Ŝ �M⊥ is selfadjoint.

Proof. We start by showing that M reduces the operator Ŝ. By Proposition 3.2.6,

we already know that M reduces the symmetric operator S, which is completely non-

selfadjoint on M and selfadjoint on M⊥. We therefore write S = S �M ⊕S �M⊥ with

the understanding that they act according to the decomposition H = M ⊕M⊥. We

then get that its adjoint S∗ is given by S∗ = S∗ �M ⊕S �M⊥ and since any dissipative

extension Ŝ has to be a restriction of S∗ by Theorem 3.1.2, we get that Ŝ has to be

of the form Ŝ = Ŝ �M ⊕S �M⊥ , where S �M⊂ Ŝ �M⊂ S∗ �M as operators in M. This

shows that M reduces Ŝ and that Ŝ �M⊥ is selfadjoint.
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Let us therefore consider the symmetric operator S �M as an operator on the Hilbert

space M and use Theorem 3.2.11 on S �M to show that Ŝ �M is completely non-

selfadjoint. Since M reduces Ŝ, we can uniquely decompose any v ∈ V as v = vM+vM⊥ ,

where vM ∈ D(Ŝ) ∩M and vM⊥ ∈ D(Ŝ) ∩M⊥ and since S �M⊥= Ŝ �M⊥ , we have that

vM⊥ ∈ D(S). This means that VM := PMV is complementay to D(S) in D(Ŝ), where

PM denotes the orthogonal projection onto M. We then get

0 < Im〈v, Ŝv〉 = Im〈vM + vM⊥ , Ŝ(vM + vM⊥)〉 = Im〈vM, ŜvM〉 ,

for all vM ∈ VM. This means that the operator S �M is a symmetric operator in

the Hilbert space M with the maximally dissipative extension Ŝ �M with D(Ŝ �M) =

D(S �M)+̇VM satisfying the assumptions of Theorem 3.2.11. Thus, Ŝ �M is completely

non-selfadjoint. This proves the corollary. �

Example 3.2.13 (Continuation of Example 3.2.7). Previously, we have shown that

the symmetric momentum operator p given by (3.2.1) is reduced by M = L2(−∞,−1)⊕

L2(1,∞) on which it is completely non-selfadjoint, while p is selfadjoint on M⊥ =

L2(−1, 1). Moreover, its adjoint p∗ is given by (3.2.2). Using the the von Neumann

formula for the description of D(p∗) (cf. [44, Satz 10.9 a)]) we get

D(p∗) = D(p)+̇span{exχ(−∞,−1)(x)}+̇span{e−xχ(1,∞)(x)} ,

which means that we can parametrize all maximally dissipative extension of p us-

ing the complex parameter ρ, where |ρ| ≤ 1. Defining Vρ := span{exχ(−∞,−1)(x) +

ρe−xχ(1,∞)(x)} and

pρ : D(pρ) = D(p)+̇Vρ, pρ = p∗ �D(pρ)

describes all maximally dissipative extensions of p. Now, since

Im〈exχ(−∞,−1)(x) + ρe−xχ(1,∞)(x), pρ(e
xχ(−∞,−1)(x) + ρe−xχ(1,∞)(x))〉 =

1− |ρ|2

2
,

we get that pρ satisfies the assumptions of Corollary 3.2.12 for |ρ| < 1. (The case

|ρ| = 1 describes the selfadjoint extensions of p.) Hence, for |ρ| < 1, the operator pρ is

a maximally dissipative extension of p that is selfadjoint on L2(−1, 1) and completely

non-selfadjoint on L2(−∞,−1)⊕ L2(1,∞).
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CHAPTER 4

The closed extensions of a closed operator

In this chapter, we are going to obtain a description of all closed extensions of a

given densely defined closed operator A.

4.1. The general construction

To this end, we will analyze when an extension B of A is the adjoint of a densely

defined restriction of A∗. Then, the following lemma will allow us to conclude that B

is closed:

Lemma 4.1.1. Let A be densely defined and closed. Then, there is a one-to-one cor-

respondence between all closed extensions of A and all densely defined closed restrictions

of A∗.

Proof. Let A ⊂ B. Then, by [44, Satz 4.9 a)], B is closable if and only if B∗ is

densely defined. In this case, we have that B ∗ = B∗ and that B∗ is a closed densely

defined restriction of A∗. Let A ⊂ B and assume that B is closed. By [44, Satz 4.9

a)], this implies that B∗ is densely defined and since A ⊂ B implies that B∗ ⊂ A∗, we

get that B∗ is a densely defined closed restriction of A∗. Moreover, since for any closed

operator B we have that B = B∗∗, this shows that ∗ : B 7→ B∗ is a bijection between

the set of all closed extensions of A and the set of all densely defined restrictions of

A∗. �

Let us now construct closable extensions BM of A, which we will parametrize using

subspaces M ⊂ D(A∗):

Lemma 4.1.2. Let A be densely defined and closed. Moreover, let M ⊂ D(A∗) be

such that

(4.1.1) kerA∗ ∩M
‖·‖Γ(A∗) = {0} and {A∗φ : φ ∈M

‖·‖Γ(A∗)} ∩ D(A) = {0} ,
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where M
‖·‖Γ(A∗) denotes the closure of M with respect to the graph norm of A∗. (Recall

that for any f ∈ D(A∗) its graph norm ‖f‖Γ(A∗) is given by ‖f‖2
Γ(A∗) = ‖f‖2 +‖A∗f‖2.)

Then, the operator

BM : D(BM) = D(A)+̇{A∗φ : φ ∈M}

f + A∗φ 7→ Af − φ

is closable and its closure is given by

BM : D(BM) = D(A)+̇{A∗φ : φ ∈M
‖·‖Γ(A∗)}

f + A∗φ 7→ Af − φ .(4.1.2)

Proof. Firstly, observe that the operators BM and BM as described in the state-

ment of the lemma are well defined, which follows from the assumptions made on M.

Next, let us show that D(A) and {A∗φ : φ ∈ M} are orthogonal with respect to the

inner product induced by the graph norm of BM:

〈f, A∗φ〉Γ(BM) = 〈f, A∗φ〉+ 〈BMf,BMA
∗φ〉 = 〈f, A∗φ〉+ 〈Af,−φ〉 = 0 .

This implies that

Γ(BM) = Γ(A)⊕′ {(A∗φ,−φ) : φ ∈M} ,

where ⊕′ denotes the orthogonal sum in H ⊕H. Closing with respect to the norm of

H⊕H therefore yields

Γ(BM) = Γ(A)⊕′ {(A∗φ,−φ) : φ ∈M} .

Since A is closed by assumption, we get that Γ(A) = Γ(A). Let us now show that

{(A∗φ,−φ) : φ ∈M} = {(A∗φ,−φ) : φ ∈M
‖·‖Γ(A∗)} .

We begin by showing the “ ⊂ ” inclusion:

Let (ψ,−χ) ∈ {(A∗φ,−φ) : φ ∈M}, which means that there exists a sequence

{(A∗φn,−φn)}n, where {φn}n ⊂M, such that

‖ψ − A∗φn‖2 + ‖χ− φn‖2 n→∞−→ 0 ,

which means in particular that φn → χ and A∗φn → ψ. Since A∗ is closed, this implies

that χ ∈ D(A∗) and ψ = A∗χ. Hence, any element of {(A∗φ,−φ) : φ ∈M} is actually of
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the form (A∗χ,−χ) where χ ∈ D(A∗). Furthermore, there exists a sequence {φn}n ⊂M

such that

‖A∗(χ− φn)‖2 + ‖χ− φn‖2 = ‖χ− φn‖2
Γ(A∗)

n→∞−→ 0 ,

which means that χ ∈M
‖·‖Γ(A∗) .

Next, let us show the “ ⊃ ” inclusion:

To see this, we need to show that if φ ∈ M
‖·‖Γ(A∗) , this implies that (A∗φ,−φ) ∈

{(A∗φ,−φ) : φ ∈M}. But if φ ∈ M
‖·‖Γ(A∗) , there exists a sequence {φn}n ⊂ M such

that

‖φ− φn‖2
Γ(A∗)

n→∞−→ 0

and since

‖φ− φn‖2
Γ(A∗) = ‖φ− φn‖2 + ‖A∗(φ− φn)‖2 = ‖(A∗φ,−φ)− (A∗φn,−φn)‖2

H⊕H ,

this shows that (A∗φ,−φ) ∈ {(A∗φ,−φ) : φ ∈M}. We therefore have shown that

Γ(BM) = Γ(A)⊕′ {A∗φ : φ ∈M
‖·‖Γ(A∗)} .

Let us finish by arguing that Γ(BM) is the graph of an operator, which means that

we need to show that (0, g) ∈ Γ(BM) implies that g = 0. But any element of Γ(BM)

is of the form (f + A∗φ,Af − φ), where f ∈ D(A) and φ ∈ M
‖·‖Γ(A∗) . Moreover,

by (4.1.1), we have that f + A∗φ = 0 if and only if f = 0 and A∗φ = 0. Since

— again by (4.1.1) — we have that A∗φ = 0 if and only if φ = 0, this yields that

(f + A∗φ,Af − φ) = (0, Af − φ) = (0, 0), which implies that Γ(BM) is the graph of

the closure BM of BM, which is given by (4.1.2). This implies in particular that BM is

closable and thus the lemma. �

The following equivalent description of BM will be useful later:

Corollary 4.1.3. Let the operator DM be given by:

DM : D(DM) = {f ∈ H : ∃φ ∈M such that f − A∗φ ∈ D(A)}

DMf = A(f − A∗φ)− φ .

Then, DM = BM.
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Proof. “BM ⊂ DM”: Any f0 + A∗φ with f0 ∈ D(A) and φ ∈M is also in D(DM)

as (f0 + A∗φ− A∗φ) ∈ D(A). Now, consider

DM(f0 + A∗φ) = A(f0 + A∗φ− A∗φ)− φ = Af0 − φ = BM(f0 + A∗φ) ,

which shows the first inclusion.

“BM ⊃ DM”: Observe that for any f ∈ D(DM), there exists a φ ∈ M such that f

can be written as f = (f − A∗φ) + A∗φ, where (f − A∗φ) ∈ D(A). This implies that

f ∈ D(BM) as well. To finish the proof, consider

BMf = BM(f − A∗φ+ A∗φ) = A(f − A∗φ)− φ = DMf .

�

Next, let us construct the adjoint of BM:

Lemma 4.1.4. Let M ⊂ D(A∗) and BM be defined as in Lemma 4.1.2. Moreover,

let the operator CM be defined as:

CM : D(CM) = {f ∈ D(A∗) : 〈f, φ〉+ 〈A∗f, A∗φ〉 = 0 for all φ ∈M}

CM = A∗ �D(CM) .

Then, B∗M = CM.

Proof. “CM ⊂ B∗M”: Let g ∈ D(CM), f ∈ D(A) and φ ∈M and consider

〈g,BM(f + A∗φ)〉 = 〈g, Af − φ〉 = 〈A∗g, f + A∗φ〉 ,

where we have used that g ∈ D(A∗) and −〈g, φ〉 = 〈A∗g, A∗φ〉. This shows that

g ∈ D(B∗M) and B∗Mg = A∗g = CMg.

“CM ⊃ B∗M”: Let g ∈ D(B∗M), which means that there exists a g̃ ∈ H such that

(4.1.3) 〈g̃, f + A∗φ〉 = 〈g,BM(f + A∗φ)〉 = 〈g, Af − φ〉

for all f ∈ D(A) and all φ ∈ M. This holds in particular for the choice φ = 0, from

which we get that

〈g̃, f〉 = 〈g,BMf〉 = 〈g, Af〉
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for all f ∈ D(A). This implies that g ∈ D(A∗) and that g̃ = A∗g. Now, consider again

Equation (4.1.3):

〈A∗g, f + A∗φ〉 = 〈g̃, f + A∗φ〉 = 〈g, Af − φ〉 = 〈A∗g, f〉 − 〈g, φ〉 ,

which implies that

〈g, φ〉+ 〈A∗g, A∗φ〉 = 0

for all φ ∈ M. This shows that g ∈ D(CM) and B∗Mg = A∗g = CMg, from which the

lemma follows. �

Let us now analyze when the operator CM is a densely defined restriction of A∗:

Theorem 4.1.5. The operator CM as defined in Lemma 4.1.4 is a closed restriction

of A∗. Moreover, CM is densely defined if and only if

(4.1.4) kerA∗ ∩M
‖·‖Γ(A∗) = {0} and {A∗φ : φ ∈M

‖·‖Γ(A∗)} ∩ D(A) = {0}

Proof. The fact that CM is a restriction of A∗ follows immediately from its defi-

nition. Since A is densely defined and A ⊂ BM, it trivially follows that BM is densely

defined as well. Thus, CM is closed because it is the adjoint of the densely defined

operator BM.

Let us now show that Condition (4.1.4) is necessary for CM to be densely defined. As-

sume that there exists a 0 6= φ ∈ M
‖·‖Γ(A∗) such that A∗φ ∈ D(A). This would mean

that there exists a sequence {φn}n ⊂M such that

lim
n→∞

(
‖φn − φ‖2 + ‖A∗φn − A∗φ‖2

)
= 0 .

Since for any n ∈ N and any f ∈ D(CM) we have

〈f, φn〉+ 〈A∗f, A∗φn〉 = 0

and

〈f, φ〉+ 〈A∗f, A∗φ〉 = lim
n→∞

(〈f, φn〉+ 〈A∗f, A∗φn〉) = 0 ,

we obtain the condition

〈f, (1 + AA∗)φ〉 = 0
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for all f ∈ D(CM). This means that D(CM) ⊥ span{(1 + AA∗)φ}, which implies that

CM is not densely defined.

Let us now show that Condition (4.1.4) is sufficient for CM to be densely defined. By

Lemma 4.1.2, BM is closable and by Lemma 4.1.4, CM = B∗M. Thus, since CM is the

adjoint of a closable operator, it is densely defined by [44, Satz 4.9 a)]. �

Let us summarize all the previous results with the following:

Theorem 4.1.6. Let A be a densely defined and closed operator. Then, there is a

one-to-one correspondence between all closed extensions of BM of A and all subspaces

M ⊂ D(A∗) that are closed with respect to the graph norm ‖ · ‖Γ(A∗) and that satisfy the

conditions given in (4.1.1). The operator BM is given by

BM : D(BM) = D(A)+̇{A∗φ : φ ∈M}

f + A∗φ 7→ Af − φ .(4.1.5)

Proof. Let B be any closed extension of A. By [44, Satz 4.9 a)], this implies that

B∗ is densely defined and since B∗ ⊂ A∗, this means that B∗ is a closed densely defined

restriction of A∗. Thus,

Γ := Γ(A∗)	 Γ(B∗)

is a closed subspace of Γ(A∗) and moreover we have Γ(B∗) = Γ(A∗)	 Γ = Γ(A∗)∩ Γ⊥.

Defining M := {φ ∈ D(A∗) : (φ,A∗φ) ∈ Γ}, we then may write

B∗ : D(B∗) = {f ∈ D(A∗) : 〈f, φ〉+ 〈A∗f, A∗φ〉 = 0 for all φ ∈M}

B∗ = A∗ �D(B∗) .(4.1.6)

Moreover, since Γ is closed in H ⊕ H, observe that M is closed with respect to the

graph norm ‖ · ‖Γ(A∗), since for any φ ∈M we have

‖φ‖2
Γ(A∗) = ‖φ‖2 + ‖A∗φ‖2 = ‖(φ,A∗φ)‖2

H⊕H .

Now, (4.1.6) means that B∗ ≡ CM, where CM is defined as in Lemma 4.1.4. By

Theorem 4.1.5, B∗ = CM being densely defined implies that M satisfies the conditions

from (4.1.1). Moreover, by Lemma 4.1.4, we have that B∗M = CM, where BM is given

by (4.1.5). Also, since M is closed with respect to the graph norm ‖ · ‖Γ(A∗), we have by

Lemma 4.1.2 that BM is closed. Finally, since CM = B∗M = B∗ and B as well as BM are
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closed, we get that B ≡ BM, i.e. any closed extension B of A is of the form B = BM,

where M is a subspace of D(A∗) that is closed with respect to the graph norm ‖ · ‖Γ(A∗)

and satisfies the conditions given by (4.1.1). This finishes the proof. �

4.2. The finite-dimensional case

In the finite-dimensional case, we have also a direct proof that CM is densely defined.

It is an abstract generalization of a result shown in [38, Hilfssatz 1].

Theorem 4.2.1. Let A∗ be a densely defined closed operator on a Hilbert space H.

Moreover, for some non-zero φ ∈ D(A∗) let the set D be defined as

D := {f ∈ D(A∗) : 〈f, φ〉+ 〈A∗f, A∗φ〉 = 0} .

Then D is dense if and only if A∗φ /∈ D(A).

Proof. As in the proof of Theorem 4.1.5, it is easy to show that A∗φ /∈ D(A)

is necessary for D to be dense. Since A∗φ ∈ D(A) would imply that the condition

〈f, φ〉 + 〈A∗f, A∗φ〉 = 0 could be rewritten as 〈f, (1 + AA∗)φ〉 = 0, we would get that

D ⊥ span{(1 + AA∗)φ}, which would mean that D would not be dense.

To show that it is sufficient, assume that A∗φ /∈ D(A) and that D is not dense, i.e.

that there exists a ψ ∈ H such that 〈ψ, f〉 = 0 for all f ∈ D. Now, fix any g ∈ D(A∗).

Moreover, since A∗φ /∈ D(A), there exists a sequence {wn}n ⊂ D(A∗) with ‖wn‖ = 1

such that

(4.2.1) lim
n→∞

|〈A∗wn, A∗φ〉| =∞ .

Define the numbers zn by

(4.2.2) zn := − 〈g, φ〉+ 〈A∗g, A∗φ〉
〈wn, φ〉+ 〈A∗wn, A∗φ〉

,

which implies that g + znwn ∈ D for all n. (Observe that this expression is certainly

well-defined for sufficiently large n as the second term in the denominator goes to

infinity.) Using Equation (4.2.1), we get that

(4.2.3) lim
n→∞

|zn| = 0 .

Now, since g + znwn ∈ D and ψ ⊥ D, we get 〈ψ, g + znwn〉 = 0, which implies that

|〈ψ, g〉| = |〈ψ, znwn〉| ≤ |zn|‖ψ‖‖wn‖ = |zn|‖ψ‖
n→∞−→ 0 .
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However, since g ∈ D(A∗) was arbitrary, this implies that ψ ⊥ D(A∗), i.e. ψ = 0 since

D(A∗) is dense. �

Let us now generalize our result to arbitrary finite-dimensional restrictions of A∗:

Corollary 4.2.2. Let M ⊂ D(A∗) be finite-dimensional. The set

DM = {f ∈ D(A∗) : 〈f, φ〉+ 〈A∗f, A∗φ〉 = 0 ∀φ ∈M}

is dense if and only if for all non-zero φ ∈M, we have A∗φ /∈ D(A).

Proof. Again, it is obvious that the condition A∗φ /∈ D(A) for all φ ∈ M is

necessary for DM to be dense. We use induction over the dimension of M to show

that it is also sufficient. The base case corresponding to dimM = 1 has been shown in

Theorem 4.2.1. Let us now show that if for a subspace N ⊂M with dim(M	N) = 1,

we have that DN is dense, this also implies that DM is dense. To this end, observe

firstly that DM can be rewritten as

DM = {f ∈ DN : 〈f, ξ〉+ 〈A∗f, A∗ξ〉 = 0} ,

where ξ spans the one-dimensional space M 	 N. We may now mimic the proof of

Theorem 4.2.1, where we only have to take care of the fact that g must be chosen to

be an element of DN and the normalized sequence {wn}n has to lie in DN as well. It

is still possible to choose {wn}n such that limn→∞ |〈A∗wn, A∗ξ〉| = ∞ since otherwise

we would have that the functional w 7→ 〈A∗w,A∗ξ〉 would be bounded on a dense set,

which would contradict the assumption that A∗ξ /∈ D(A). Again, we would get that

any ψ orthogonal to DM would have to be orthogonal to all g ∈ DN, from which we

would get that ψ = 0 and thus the corollary. �

4.3. A few examples

Let us illustrate the results of the previous two sections with a few examples.

Example 4.3.1 (One dimensional restrictions of a selfadjoint operator). Let A = A∗

be selfadjoint. From Theorem 4.1.6, it follows that all restrictions Cφ ⊂ A∗ with
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dim(D(A∗)/D(Cφ)) = 1 can be described via

Cφ : D(Cφ) = {f ∈ D(A) : 〈φ, f〉+ 〈A∗φ,A∗f〉 = 0}

= {f ∈ D(A) : 〈φ, f〉+ 〈Aφ,Af〉 = 0}

Cφ = A �D(Cφ) ,

where 0 6= φ ∈ D(A) = D(A∗) has to be such that A∗φ = Aφ /∈ D(A), in order to

ensure that Cφ is densely defined (cf. Theorem 4.1.5 or 4.2.1). Moreover, since A is a

selfadjoint extension of Cφ, it is clear that Cφ has to be symmetric, which implies that

Cφ ⊂ C∗φ, where C∗φ is given by

C∗φ : D(C∗φ) = D(A)+̇span{Aφ}

f + λAφ 7→ Af − λφ .

In order to determine all selfadjoint and maximally dissipative extensions of Cφ, let us

firstly compute the defect spaces ker(C∗φ ∓ i):

0 = (C∗φ ∓ i)(f + λAφ) = (A∓ i)f + λ(−φ∓ iAφ)⇔

f = λ(A∓ i)−1(φ± iAφ) ,

which implies that

ker(C∗φ ∓ i) = span{(A∓ i)−1(φ± iAφ) + Aφ} = span{(A± i)φ} .

By Lemma 3.1.1, we know that all maximally dissipative extensions of Cφ can be

parametrized by contractions from ker(C∗φ − i) into ker(C∗φ + i) and are therefore given

by

Cφ,ρ : D(Cφ,ρ) = D(Cφ)+̇span{(A+ i)φ+ ρ(A− i)φ}

f + λ((A+ i)φ+ ρ(A− i)φ) 7→ Af + iλ((A+ i)φ− ρ(A− i)φ) ,(4.3.1)

where |ρ| ≤ 1 describes maximally dissipative extensions of Cφ and — more precisely —

|ρ| = 1 selfadjoint ones. Note that, independently to the choice of φ, we have Cφ,−1 = A.

This follows from the fact that φ /∈ D(Cφ) but D(Cφ,−1) = D(Cφ)+̇span{φ} ⊂ D(A),

from which we get equality by a dimension counting argument. Let us now determine

54



the resolvents of the extensions Cφ,ρ, which have to coincide on ran(Cφ+i) = span{(A+

i)φ}⊥. Moreover, since we have

(Cφ,ρ + i) [(A+ i)φ+ ρ(A− i)φ] = 2i(A+ i)φ ∈ ker(C∗φ − i) ,

we get that

(4.3.2) (Cφ,ρ + i)−1(A+ i)φ =
1

2i
[(A+ i)φ+ ρ(A− i)φ] .

Hence, since (Cφ,ρ + i)−1 �ran(Cφ+i)= (A+ i)−1 �ran(Cφ+i) and by (4.3.2), we get

[
(Cφ,ρ + i)−1 − (A+ i)−1

]
(A+ i)φ =

1 + ρ

2i
(A− i)φ ,

which implies that — as an identity of operators — we have

(4.3.3) (Cφ,ρ + i)−1 = (A+ i)−1 +
1 + ρ

2i
|(A− i)φ〉〈(A+ i)φ| .

Altogether, this shows the following:

Theorem 4.3.2. Let A = A∗ be selfadjoint. Then, any maximally dissipative (self-

adjoint) operator Cφ,ρ whose resolvent (Cφ,ρ + i)−1 differs from (A+ i)−1 by a rank-one

operator is given by (4.3.1), where |ρ| ≤ 1 (|ρ| = 1) and 0 6= φ ∈ D(A) is such that

Aφ /∈ D(A). Moreover, the resolvents (Cφ,ρ + i)−1 are given by (4.3.3).

Remark 4.3.3. Clearly, this idea can be generalized to resolvent differences of higher

rank. We only consider the rank-one case for simplicity of presentation.

Example 4.3.4 (A Friedrichs model operator). Let A = A∗ be the selfadjoint

maximal multiplication operator by x:

A : D(A) =

{
f ∈ L2(R) :

∫
R
x2|f(x)|2dx <∞

}
(Af)(x) = xf(x) .

Now, let us choose φ(x) := 1
1+x2 , where the function φ(x) = 1

1+x2 ∈ D(A∗) but

(A∗φ)(x) = (Aφ)(x) = x
1+x2 /∈ D(A) = D(A∗), which means that M := span{φ}

satisfies the assumptions of Theorem 4.1.6. (Obviously, since M is one-dimensional, it
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is closed with respect to the graph norm ‖ · ‖Γ(A∗).) Hence, the operator given by

Bφ : D(Bφ) = D(A)+̇span

{
x

1 + x2

}
f(x) + λ

(
x

1 + x2

)
7→ xf(x)− λ

(
1

1 + x2

)
is a closed extension of A. Next, let us compute the adjoint of Bφ, which we know is

densely defined. Firstly, let us use Lemma 4.1.4 in order to determine

D(B∗φ) =

{
f ∈ D(A) :

〈
f,

1

1 + x2

〉
+

〈
xf,

x

1 + x2

〉
= 0

}
.

However, since〈
f,

1

1 + x2

〉
+

〈
xf,

x

1 + x2

〉
=

∫
R

f(x)

1 + x2
dx+

∫
R

x2f(x)

1 + x2
dx =

∫
R
f(x)dx ,

we can describe B∗φ as

B∗φ : D(B∗φ) =

{
f ∈ L2(R) : xf(x) ∈ L2(R) and

∫
R
f(x)dx = 0

}
f(x) 7→ xf(x) .

Moreover, in order to be in accordance with the notation of Theorem 4.3.2, define Cφ :=

B∗φ. Then, by the same theorem, all maximally dissipative extensions of Cφ ⊂ Cφ,ρ are

given by

Cφ,ρ : D(Cφ,ρ)

=

{
f ∈ L2(R) : xf(x) ∈ L2(R),

∫
R
f(x) = 0

}
+̇span

{
(x+ i) + ρ(x− i)

1 + x2

}
f(x) + λ

(x+ i) + ρ(x− i)
1 + x2

7→ xf(x) + iλ
(x+ i)− ρ(x− i)

1 + x2
,

where |ρ| ≤ 1. For any ψ ∈ L2(R), the resolvents (Cφ,ρ + i)−1 act as follows

(
(Cφ,ρ + i)−1ψ

)
(x) =

ψ(x)

x+ i
+

1 + ρ

2i

1

x+ i

∫
R

ψ(t)

t+ i
dt .

Example 4.3.5 (An infinite-dimensional example). Let us now construct two ex-

amples, where M has infinite dimension and where for any 0 6= φ ∈ M we have that

A∗φ /∈ D(A), but only one of them describes a closable extension of A, respectively

56



a densely defined restriction of A∗. Firstly, for any λ ∈ R, let us define the function

φλ(x) := exp(−|x− λ|). Now, define

MZ = span{φλ : λ ∈ Z}

MQ = span{φλ : λ ∈ Q}

i.e. the set of finite linear combinations of vectors φλ, where λ ∈ Z,Q. Consider the

selfadjoint momentum operator A = A∗ on the real axis:

A : D(A) = H1(R)

f 7→ if ′ .

Observe that (A∗φλ)(x) = −sgn(x− λ) exp(−|x− λ|) /∈ D(A) = H1(R) for any λ ∈ R.

Now, let us show that MR := span{φλ : λ ∈ R} ⊂MQ
‖·‖Γ(A∗) . To see this let λ ∈ R and

just pick any sequence {λn}n ⊂ Q such that λn → λ and consider

lim
n→∞

‖φλ − φλn‖2
Γ(A∗)

= lim
n→∞

(
‖e−|x−λ| − e−|x−λn|‖2 + ‖sgn(x− λ)e−|x−λ| − sgn(x− λn)e−|x−λn|‖2

)
= 0 ,

which follows from dominated convergence. Next, let us determine M
⊥Γ(A∗)
R , i.e. we

want to determine all f ∈ D(A∗) = H1(R) such that

(4.3.4) 〈f, φ〉+ 〈f ′, φ′〉 = 0 for all φ ∈MR ,

and hence in particular for all φλ, where λ ∈ R. Integration by parts shows that

Condition (4.3.4) implies

0 = 〈f, φλ〉+ 〈f ′, φ′λ〉 = f(λ) for all λ ∈ R ,

meaning that (
MQ

‖·‖Γ(A∗)
)⊥Γ(A∗)

⊂M
⊥Γ(A∗)
R = {0} .

From this, we get that MQ
‖·‖Γ(A∗) = L2(R). Hence,

MQ
‖·‖Γ(A∗) ∩ D(A) = L2(R) ∩H1(R) = H1(R) 6= {0} ,
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which means that MQ does not satisfy the assumptions of Theorem 4.1.5 and thus the

operator CMQ given by

CMQ : D(CMQ) = {f ∈ H1(R) : 〈f, φ〉+ 〈A∗f, A∗φ〉 = 0 for all φ ∈MQ}

f 7→ if ′

is not densely defined.

Let us now consider the case MZ. It is not difficult to see that

M
⊥Γ(A∗)
Z = {f ∈ H1(R) : f(z) = 0 for all z ∈ Z} .

In particular, we have that C∞c (R\Z) ⊂M
⊥Γ(A∗)
Z and thus, any function g ∈MZ

‖·‖Γ(A∗) =(
M
⊥Γ(A∗)
Z

)⊥Γ(A∗)
has to satisfy

(4.3.5) 〈f, g〉+ 〈f ′, g′〉 = 0 ,

for all f ∈ C∞c (R\Z). Now, assume that the condition {A∗φ : φ ∈MZ
‖·‖Γ(A∗)}∩D(A) =

{0} is not satisfied, i.e. that there exists a g̃ ∈ D(A) such that g̃′ ∈MZ
‖·‖Γ(A∗) ∩ D(A)

(observe that kerA = {0}). Then, we could perform another integration by parts in

(4.3.5) and we would obtain

〈f, g̃〉+ 〈f ′, g̃′〉 = 〈f, g̃ − g̃′′〉 = 0 for all f ∈ C∞c (R \ Z) .

However, this implies that g̃ − g̃′′ = 0 since f is an arbitrary element of the dense set

C∞c (R \ Z). Moreover, since there is no L2(R)-solution to the equation g̃ = g̃′′, we get

that g̃ = 0. Thus, by Lemma 4.1.2, the operator BMZ is closable.
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CHAPTER 5

The proper dissipative extensions of a dual pair

In this chapter, we will consider dual pairs (A, Ã), where A is dissipative and Ã is

antidissipative. Under the assumption that D(A)∩D(Ã) is dense in H, we will show a

necessary and sufficient condition for a proper extension Â of (A, Ã) to be dissipative.

This criterion can be written in a particularly nice way, if D(A)∩D(Ã) is a core for

A as well as for Ã, in which case we will say that (A, Ã) has the common core property.

If (A, Ã) has the common core property, we can define the “imaginary part” of A by

V := (2i)−1(A− Ã) �D(A)∩D(Ã) ,

which is a symmetric operator. It turns out that the square root of the Krĕın-von

Neumann extension of V , which we denote by V
1/2
K , plays an important role for the

main theorem of this chapter (Theorem 5.2.8). For the proof of this theorem, we will

use a description of V
1/2
K that was obtained by Ando and Nishio (Proposition 5.2.3).

As a first application, we start by considering symmetric operators with relatively

bounded dissipative perturbations and after that, we consider more singular dissipative

operators — our first examples being such that the associated imaginary part V is

already essentially selfadjoint and our last example being such that there is a family of

selfadjoint extensions of V .

Finally, we find lower bounds for the numerical range of the dissipative extensions

and apply this result to the examples from the previous section.

The results of this chapter were obtained in collaboration with Sergey Naboko and

Ian Wood and have been published in [20].

5.1. The common core property

In many situations one considers dual pairs of operators, which are constructed by

firstly defining them on a common core and then taking closures:
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Definition 5.1.1. Let (A, Ã) be a dual pair of closed operators. We say that it has

the common core property if A �D(A)∩D(Ã) = A and Ã = Ã �D(A)∩D(Ã).

Example 5.1.2. Consider the dissipative momentum operator T given by

T : D(T ) = {f ∈ H1(0, 1), f(0) = ρf(1)}, f 7→ if ′ ,

where |ρ| < 1. Here, f ′ denotes the weak derivative of f . Its adjoint T ∗ is given by

T ∗ : D(T ∗) = {f ∈ H1(0, 1), ρf(0) = f(1)}, f 7→ if ′ .

Clearly, (T, T ∗) is a dual pair. However, since

D := D(T ) ∩ D(T ∗) = {f ∈ H1(0, 1), f(0) = f(1) = 0} ,

this dual pair does not have the common core property, as S := T �D is symmetric and

a proper restriction of T .

More generally, let S be a closed and symmetric (in particular densely defined) operator.

Moreover, let S ′ be any closed (not necessarily symmetric) extension of S such that

S ⊂ S ′ ⊂ S∗. This readily implies that (S, S ′) is a dual pair. However, since D(S) ∩

D(S ′) = D(S), we get S = S ′ �D(S)∩D(S′). Thus, the only dual pair of this form, which

has the common core property is (S, S). Furthermore, let V ≥ 0 be S∗-bounded with

S∗-bound less than 1. In particular, this implies that V is S ′-bounded with S ′-bound

less than 1 (for a definition of relative boundedness, see e.g. [26]). By the Hess–Kato

Theorem [25, Corollary 1], we have that (S ′+ iV )∗ = S ′∗− iV ⊂ S∗− iV . This implies

again that any pair of the form (S+ iV, S ′− iV ) is a dual pair. However, again observe

that the only dual pair with the common core property is (S + iV, S − iV ).

The following lemma shows in particular that if we have a dual pair (A, Ã) with the

common core property, then A being dissipative, implies that Ã is antidissipative.

Lemma 5.1.3. Let (A, Ã) be a dual pair of closed operators, which has the common

core property. Moreover, let NA := {〈f, Af〉 : f ∈ D(A), ‖f‖ = 1} be the numerical

range of A and let N ∗
Ã

:= {〈f, Ãf〉 : f ∈ D(Ã), ‖f‖ = 1} be the complex conjugate

of the numerical range of Ã. Then, the closures of the numerical range of A and the

complex conjugate of the numerical range of Ã coincide:
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NA = N ∗
Ã
.

Proof. Let f ∈ D(A) be normalized. Since D(A) ∩ D(Ã) is a core for A, there

exists a normalized sequence {fn}n ⊂ D(A) ∩ D(Ã) such that fn → f and Afn → Af

for n→∞. Using that 〈fn, Afn〉 = 〈fn, Ãfn〉, we get that

lim
n→∞

〈fn, Ãfn〉 = lim
n→∞

〈fn, Afn〉 = 〈f, Af〉 .

Since {〈fn, Ãfn〉}n is a sequence of elements in N ∗
Ã

, we get that 〈f, Af〉 is a limit point

of N ∗
Ã

, which means that

NA ⊂ N ∗Ã .

By similar reasoning, we get that

N ∗
Ã
⊂ NA,

which — after taking closures — yields the lemma. �

Remark 5.1.4. If A is closed and dissipative and D(A)∩D(A∗) is a core for A, i.e.

A = A �D(A)∩D(A∗), we can define Ã := A∗ �D(A)∩D(A∗), to construct a dual pair (A, Ã),

which has the common core property. This is in particular possible for the case that

D(A) ⊂ D(A∗) (cf. [37, Corollary to Proposition IV, 4.2]).

5.2. The main theorem

For a dual pair (A, Ã) that has the common core property, let us now give a necessary

and sufficient condition for a proper extension to be dissipative.

As any dissipative operator is closable with its closure being dissipative as well

[29, Proposition 6.9], it is necessary and sufficient to check dissipativity of an operator

restricted to a core.

Lemma 5.2.1. Let A be a closed, densely defined operator and let C ⊂ H be a core for

A. Moreover, assume that B is an extension of A, i.e. A ⊂ B and D(B) = D(A)+̇M.

Then, C+̇M is a core for B.
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Proof. Since C is a core for A, this means that for every f ∈ D(A) there exists a

sequence {fn}n ⊂ C such that fn → f and Afn → Af and therefore for any element of

D(B) 3 (f +m), where f ∈ D(A) and m ∈M we get

(fn +m)→ (f +m) and B(fn +m) = (Afn +Bm)→ (Af +Bm) = B(f +m) ,

which is the desired result. �

For the following result we need the Krĕın-von Neumann extension of a symmetric

non-negative operator, which is defined as follows.

Definition 5.2.2. Let V be symmetric and non-negative operator, i.e. 〈f, V f〉 ≥ 0

for all f ∈ D(V ). Then, the Krĕın–von Neumann extension of V , which we denote

by VK, is the smallest non-negative selfadjoint extension of V , i.e. for any V̂ = V̂ ∗

with V ⊂ V̂ and V̂ ≥ 0 we have that

0 ≤ VK ≤ V̂ .

It is a well-known fact that such an extension VK always exists and that it is unique

(cf. [27]).

For the special case that V is strictly positive, i.e. there exists an ε > 0 such

〈f, V f〉 ≥ ε‖f‖2 for all f ∈ D(V ), we have the following characterization of VK [2]:

VK : D(VK) = D(V )+̇ kerV ∗, VK = V ∗ �D(VK)

and for V
1/2
K we get

V
1/2
K : D(V

1/2
K ) = D(V

1/2
F )+̇ kerV ∗

〈V 1/2
K (f + k), V

1/2
K (f + k)〉 = 〈V 1/2

F f, V
1/2
F f〉 ,(5.2.1)

with f ∈ D(V
1/2
F ), k ∈ kerV ∗, where VF is the Friedrichs extension of V .

For the proof of the main theorem without having to assume that the imaginary

part is strictly positive, we will make use of an equivalent description for non-negative

V
1/2
K proved by Ando and Nishio.
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Proposition 5.2.3 (T. Ando, K. Nishio, [4, Thm. 1]). Let V be a non-negative

closed symmetric operator. The selfadjoint and non-negative square root of the Krĕın–

von Neumann extension of V , which we denote by V
1/2
K , can be characterized as follows:

D(V
1/2
K ) =

{
h ∈ H : sup

f∈D(V ):V f 6=0

|〈h, V f〉|2

〈f, V f〉
<∞

}
,

for any h ∈ D(V
1/2
K ) : ‖V 1/2

K h‖2 = sup
f∈D(V ):V f 6=0

|〈h, V f〉|2

〈f, V f〉
.

Remark 5.2.4. Let us point out a slight difference in the manner Proposition 5.2.3

was stated in [4], where the supremum is taken over all f ∈ D(V ) (without the extra

condition that V f 6= 0). This only makes sense if one assumes that kerV = {0}. The

extra condition V f 6= 0 is a remedy for this problem and is a direct result from the

reasoning of [4].

For our purposes, it will be more convenient to use the following characterization

of D(V
1/2
K ) and ‖V 1/2

K h‖ for any h ∈ D(V
1/2
K ):

Corollary 5.2.5. Let V be a non-negative closed symmetric operator on a Hilbert

space H. Then, the square root of its Krĕın–von Neumann extension can be character-

ized as follows

D(V
1/2
K ) =

h ∈ H : sup
g∈ran(V

1/2
F �D(V )):‖g‖=1

|〈h, V 1/2
F g〉| <∞

 ,(5.2.2)

for any h ∈ D(V
1/2
K ) : ‖V 1/2

K h‖2 = sup
g∈ran(V

1/2
F �D(V )):‖g‖=1

|〈h, V 1/2
F g〉|2 .(5.2.3)

Proof. Let us consider any f ∈ D(V ) such that V f 6= 0. We then get

|〈h, V f〉|2

〈f, V f〉
=
|〈h, V 1/2

F V
1/2
F f〉|2

‖V 1/2
F f‖2

=

∣∣∣∣∣
〈
h, V

1/2
F

(
V

1/2
F f

‖V 1/2
F f‖

)〉∣∣∣∣∣
2

.

Now, observe that
V

1/2
F f

‖V 1/2
F f‖

is a normalized element of ran(V
1/2
F �D(V )). Conversely, for

any normalized g ∈ ran(V
1/2
F �D(V )), there exists a f ∈ D(V ) with V f 6= 0 such that
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g =
V

1/2
F f

‖V 1/2
F f‖

. This implies that

sup
f∈D(V ):V f 6=0

∣∣∣∣∣
〈
h, V

1/2
F

(
V

1/2
F f

‖V 1/2
F f‖

)〉∣∣∣∣∣
2

= sup
g∈ran(V

1/2
F �D(V )):‖g‖=1

|〈h, V 1/2
F g〉|2 ,

which — together with (5.2.2) — implies the corollary. �

For the main theorem, we will make use of the fact that the dual pair under consid-

eration has a common core D, allowing us to define an “imaginary part” on D. It will

therefore be helpful to show that the supremum in Proposition 5.2.3 has need only be

taken over D.

Lemma 5.2.6. Let V be a non-negative closed symmetric operator and C be a core

for V . Then, for any h ∈ H we have that

sup
f∈D(V ):V f 6=0

|〈h, V f〉|2

〈f, V f〉
= sup

f∈C:V f 6=0

|〈h, V f〉|2

〈f, V f〉
.

Moreover, for any h ∈ H, we have

sup
g∈ran(V

1/2
F �D(V )):‖g‖=1

|〈h, V 1/2
F g〉| = sup

g∈ran(V
1/2
F �C):‖g‖=1

|〈h, V 1/2
F g〉| .(5.2.4)

Proof. Let s ∈ R+ ∪ {∞} be defined as

s := sup
f∈D(V ):V f 6=0

|〈h, V f〉|2

〈f, V f〉
.

This means that there exists a sequence {fn}n ⊂ D(V ) with V fn 6= 0 such that

lim
n→∞

|〈h, V fn〉|2

〈fn, V fn〉
= s .

On the other hand, since C is a core for V , for any fn ∈ D(V ), there exists a sequence

{fn,m}m ⊂ C such that

lim
m→∞

fn,m = fn and lim
m→∞

V fn,m = V fn .

Thus, for any fixed h ∈ H and fn ∈ D(V ) such that V fn 6= 0, we have also 〈fn, V fn〉 6= 0

and therefore

lim
m→∞

|〈h, V fn,m〉|
〈fn,m, V fn,m〉

=
|〈h, V fn〉|
〈fn, V fn〉

.

Hence, a diagonal sequence argument yields the first part of the lemma.
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Equation (5.2.4) follows from a similar reasoning as in the proof of Corollary 5.2.5,

using that for any f ∈ C with V f 6= 0, we have that V
1/2
F f/‖V 1/2

F f‖ is a normalized

element of ran(V
1/2
F �C) and that for any normalized g ∈ ran(V

1/2
F �C) there exists an

f ∈ C with V f 6= 0 such that g = V
1/2
F f/‖V 1/2

F f‖ . �

Definition 5.2.7. Let V ⊂ D(Ã∗)//D(A) be a subspace. Then, the operator AV is

defined as

AV : D(AV) = D(A)+̇V , AV = Ã∗ �D(AV ) .

Theorem 5.2.8. Let (A, Ã) be a dual pair of operators having the common core

property, where A is dissipative and let D ⊂ (D(A) ∩ D(Ã)) be a common core for A

and for Ã. Then, the operator V := A−Ã
2i

defined on D is a non-negative symmetric

operator. Moreover, let V ⊂ D(Ã∗)//D(A) be a linear space. Then, the operator AV is

dissipative if and only if V ⊂ D(V
1/2
K ) and

Im〈v, Ã∗v〉 ≥ ‖V 1/2
K v‖2 for all v ∈ V .

Proof. Since Im〈f, Af〉 ≥ 0 for all f ∈ D(A), this implies by Lemma 5.1.3 that

Im〈f, Ãf〉 ≤ 0 for all f ∈ D(Ã) and hence, Ã is antidissipative. Next, let us show that

V is symmetric and non-negative. For any f ∈ D we get

(5.2.5) 〈f, V f〉 =
1

2i

(
〈f, Af〉 − 〈f, Ãf〉

)
=

1

2i
(〈f, Af〉 − 〈Af, f〉) = Im〈f, Af〉 ≥ 0

by assumption. Let us now prove the criterion for dissipativity. By Lemma 5.2.1, it

is sufficient to check dissipativity for all elements of D(AV) of the form f + v, where

f ∈ D and v ∈ V . Thus, it suffices to show that

Im〈f + v, Ã∗(f + v)〉 ≥ 0 for all f ∈ D, v ∈ V

if V ⊂ D(V
1/2
K ) and Im〈v, Ã∗v〉 ≥ ‖V 1/2

K v‖2 for all v ∈ V . Then by (5.2.5):

Im〈f + v, Ã∗(f + v)〉 = Im〈f, Af〉+ Im〈v, Ã∗v〉+ Im
(
〈f, Ã∗v〉+ 〈v,Af〉

)
=〈f, V f〉+ Im〈v, Ã∗v〉 − Im〈(A− Ã)f, v〉 = 〈f, V f〉+ Im〈v, Ã∗v〉 − Im〈2iV f, v〉 .
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Observe that for any given v, one can always consider eiϑv instead of v, where ϑ ∈ [0, 2π)

is chosen such that Im〈2iV f, eiϑv〉 = −2 |〈V f, v〉| without changing the other two terms,

which means that showing

(5.2.6) 〈f, V f〉+ Im〈v, Ã∗v〉 − 2|〈V f, v〉| ≥ 0 for all f ∈ D, v ∈ V

is necessary and sufficient for AV to be dissipative.

Let us begin by showing that V ⊂ D(V
1/2
K ) and Im〈v, Ã∗v〉 ≥ ‖V 1/2

K v‖2 is sufficient for

AV to be dissipative. Thus, let us now assume that these two assumptions are satisfied.

Since V ⊂ V ⊂ VK and D(V ) ⊂ D(VK) ⊂ D(V
1/2
K ), this means that we can write

V f = VKf =
(
V

1/2
K

)(
V

1/2
K f

)
. We therefore get that

〈f,V f〉+ Im〈v, Ã∗v〉 − 2|〈V f, v〉| = ‖V 1/2
K f‖2 + Im〈v, Ã∗v〉 − 2|〈V 1/2

K f, V
1/2
K v〉|

≥ ‖V 1/2
K f‖2 + Im〈v, Ã∗v〉 − 2‖V 1/2

K f‖‖V 1/2
K v‖

≥ ‖V 1/2
K f‖2 + ‖V 1/2

K v‖2 − 2‖V 1/2
K f‖‖V 1/2

K v‖

=
(
‖V 1/2

K f‖ − ‖V 1/2
K v‖

)2

≥ 0 .

Next, let us show that the condition V ⊂ D(V
1/2
K ) is necessary for AV to be dissipative.

Thus, let us assume that V 6⊂ D(V
1/2
K ), i.e. that there exists a v ∈ V such that

v /∈ D(V
1/2
K ). Using that D(V ) = D is a core for V , we have by Proposition 5.2.3 and

by Lemma 5.2.6 that there exists a sequence {fn}n ⊂ D(V ) with V fn 6= 0 and therefore

〈fn, V fn〉 6= 0, such that

lim
n→∞

|〈v, V fn〉|√
〈fn, V fn〉

= +∞ .

Define the sequence {hn}n ⊂ D(V ) by hn := fn/
√
〈fn, V fn〉 and observe that

|〈v, V fn〉|√
〈fn, V fn〉

=
|〈v, V hn〉|√
〈hn, V hn〉

and
√
〈hn, V hn〉 = 1 for all n ∈ N .

From this we get that

lim
n→∞

(
Im〈v, Ã∗v〉+ 〈hn, V hn〉 − 2|〈V hn, v〉|

)
= Im〈v, Ã∗v〉+ 1− 2 lim

n→∞

|〈v, V hn〉|√
〈hn, V hn〉

= −∞ ,

which shows that Condition (5.2.6) can never be satisfied in this case.

Let us finish the proof by showing that Im〈v, Ã∗v〉 ≥ ‖V 1/2
K v‖2 for all v ∈ V is necessary
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for AV to be dissipative. By (5.2.6), it suffices to show that for any v ∈ D(V
1/2
K ), there

exists a sequence {gn}n ⊂ D(V ) such that

(5.2.7) 2|〈V gn, v〉| − 〈gn, V gn〉
n→∞−→ ‖V 1/2

K v‖2 .

For the case V
1/2
K v = 0, this sequence would just be given by fn = 0 for all n, therefore

let us assume V
1/2
K v 6= 0 from now on. By Proposition 5.2.3, we know that there exists

a sequence {fn}n ⊂ D(V ) with V fn 6= 0 such that

|〈v, V fn〉|2

〈fn, V fn〉
n→∞−→ ‖V 1/2

K v‖2 .

Define the positive numbers µn by µn := |〈v, V fn〉|/〈fn, V fn〉 and observe that the

sequence {gn}n, where gn := µnfn, is exactly as required for (5.2.7):

2|〈µnV fn, v〉| − 〈µnfn, µnV fn〉 = 2|〈V fn, v〉|
|〈V fn, v〉|
〈fn, V fn〉

− |〈V fn, v〉|
2

〈fn, V fn〉2
〈fn, V fn〉

=
|〈V fn, v〉|2

〈fn, V fn〉
n→∞−→ ‖V 1/2

K v‖2 .

This finishes the proof. �

Corollary 5.2.9. Let (A, Ã) be a dual pair satisfying the assumptions of Theorem

5.2.8. If for some λ ∈ C− we have that

(5.2.8) ker(Ã∗ − λ) ∩ D(V
1/2
K ) = {0} ,

then there exists exactly one proper maximally dissipative extension of the dual pair

(A, Ã).

Proof. By Proposition 2.4.5, we know that there exists a proper maximally dissi-

pative extension Â and by Proposition 2.2.5, we know that C− ∈ ρ(Â). Moreover, by

[23] we have that

D(Â) = D(A)+̇(Â− λ)−1 ker(A∗ − λ)

as well as

D(Ã∗) = D(A)+̇(Â− λ)−1 ker(A∗ − λ)+̇ ker(Ã∗ − λ) .

By Theorem 5.2.8, we know that (Â − λ)−1 ker(A∗ − λ) ⊂ D(V
1/2
K ). Note that any

other proper extension AV of (A, Ã) that is not a restriction of Â can be characterized

by a subspace V that without loss of generality we can assume to be contained in
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(Â − λ)−1 ker(A∗ − λ)+̇ ker(Ã∗ − λ), where V 6⊂ (Â − λ)−1 ker(A∗ − λ). Thus, there

needs to exist at least one element in v ∈ V , which is of the form v = (Â−λ)−1kλ + k̃λ,

where kλ ∈ ker(A∗ − λ) and k̃λ ∈ ker(Ã∗ − λ) with k̃λ 6= 0. However, by (5.2.8), we

have that v /∈ D(V
1/2
K ) which implies that AV cannot be dissipative. �

Remark 5.2.10. A corresponding result for sectorial operators was shown in [8,

Thm. 3.6.5].

Remark 5.2.11. In Example 5.4.7 below, we will discuss an operator, for which

Corollary 5.2.9 applies.

Remark 5.2.12. It is not necessary that (5.2.8) hold in order for a dual pair to have

only one proper maximally dissipative extension as we will see in Example 5.4.6 below.

Theorem 5.2.13. In addition to the assumptions of Theorem 5.2.8, assume that

dimD(Ã∗)/D(A) <∞ .

Moreover, let W := (D(Ã∗)//D(A)) ∩ D(V
1/2
K ). Let the quadratic form q(·) be defined

as

(5.2.9) q(w) := Im〈w, Ã∗w〉 − ‖V 1/2
K w‖2 ,

which has domain W and let M be the selfadjoint operator associated to the unique

sesquilinear form induced by q(·) by polarization. Let us decomposeW =W+⊕W0⊕W−,

where W+ denotes the positive spectral subspace, W0 denotes kerM and W− denotes

the negative spectral subspace of M . Furthermore, define

M± := ±MPW± ,

which allows us to write M = M+ −M−. Note that M± > 0 and that M+ and M−

are invertible on W+, resp. on W−. Let C be a contraction (‖C‖ ≤ 1) from W+ ⊕W0

into W−. Then, there is a one-to-one correspondence between all proper dissipative

extensions of (A, Ã) and all pairs (M, C), where M is a subspace of W+ ⊕W0 and C

is a contraction from W+ into W− with D(C) = PW+M. These extensions and the
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correspondence are given by

D(AM,C) = D(A)+̇{w +
√
M−

−1
C
√
M+w,w ∈M}

AM,C = Ã∗ �D(AM,C) .(5.2.10)

Moreover, for an extension D(AM,C) to be maximally dissipative, it is necessary that

M =W+ ⊕W0.

Proof. By virtue of Theorem 5.2.8, we firstly need to show that

q(v) ≥ 0 for all v ∈ {w +
√
M−

−1
C
√
M+w,w ∈M}

if C is a contraction. By definition of M and M±, we have that

q(v) = 〈v,Mv〉 =
〈
w +

√
M−

−1
C
√
M+w,M

(
w +

√
M−

−1
C
√
M+w

)〉
= 〈w,M+w〉 − 〈w,

√
M+C

∗
√
M−

−1
M−
√
M−

−1
C
√
M+w〉

= 〈w,
√
M+(1− C∗C)

√
M+w〉 = 〈

√
M+w, (1− C∗C)

√
M+w〉 ,(5.2.11)

which is non-negative if C is a contraction on
√
M+M = PW+M = D(C).

Let us now show that any proper dissipative extension has to be of this form. To this

end, let A′ be a proper dissipative extension of (A, Ã) and let M′ ⊂ W be such that

D(A′)//D(A) = M′. Clearly, W− ∩M′ = {0}, since otherwise we would have that

q(w) = 〈w,Mw〉 = −〈w,M−w〉 < 0

for some non-zero w ∈ W− ∩ M′, violating the necessary condition obtained from

Theorem 5.2.8 for A′ to be dissipative. This means that any w ∈M′ can be written as

w = w⊥− + w− where w⊥− ∈ W+ ⊕W0, w⊥− 6= 0 and w− ∈ W− is possibly zero. Since

W− ∩M = {0}, it is easy to see that w− is uniquely determined by w⊥−. Therefore,

there exists a linear operator B : PM′(W+ ⊕W0)→W− such that w = w⊥− + Bw⊥− for

any w ∈ M′. Next observe that if for any such w⊥− we have that w⊥− ∈ W0, it follows

that Bw⊥− = 0. If this were not true, we would get

q(w⊥− +Bw⊥−) = 〈w⊥−,M+w
⊥
−〉︸ ︷︷ ︸

=0

−〈Bw⊥−,M−Bw⊥−〉 = −〈Bw⊥−,M−Bw⊥−〉 ,
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which again would violate the necessary condition from Theorem 5.2.8 for A′ to be

dissipative. Plugging this into the quadratic form q yields:

q(w⊥− +Bw⊥−) = 〈w⊥−,M+w
⊥
−〉 − 〈Bw⊥−,M−Bw⊥−〉 = 〈w⊥−, (M+ −B∗M−B)w⊥−〉

= 〈
√
M+w

⊥
−,
(
1−

√
M+

−1
B∗
√
M−
√
M−B

√
M+

−1
)√

M+w
⊥
−〉 ,

with the understanding that
√
M+

−1
is defined only on ran

√
M+ = ranM+. This

is equivalent to saying that the operator C :=
√
M−B

√
M+

−1
is a contraction on

√
M+PW+M

′ = PW+M
′, or equivalently, B =

√
M−

−1
C
√
M+, with C being a con-

traction from PW+M
′ to W−. The condition that M = W+ ⊕ W0 for AM,C to be

maximally dissipative follows from the fact that one could always extend the operator

AM,C to AW+⊕W0,Ĉ
, where Ĉ is an extension of C which is just set equal to zero on

(W+ ⊕W0)	M. �

Remark 5.2.14. For the case that the dual pair (A, Ã) has only one unique max-

imally dissipative proper extension Â, this means that Â = AW+⊕W0,0. In particular,

when the assumptions of Corollary 5.2.9 are satisfied, we get that W− = {0} since

(D(Ã∗)//D(A)) ∩ D(V
1/2
K ) =W+ ⊕W0.

Remark 5.2.15. Let us show that for a very special situation, the spaces W±
coincide with the defect spaces of a symmetric operator S. (As an example, take the

momentum operator i d
dx

with domain {f ∈ H1(R), f(0) = 0}, whose defect spaces

are one-dimensional and spanned by exponential functions supported on different half-

lines.) Assume that S has finite-dimensional defect spaces N± := ker(S∗ ∓ i). It is a

well-known fact [43] that

D(S∗) = D(S)+̇N++̇N− ,

where N± := ker(S∗∓i) are the defect spaces. Assume in addition the rather restrictive

condition that N+ ⊥ N− (orthogonal with respect to the Hilbert space inner product).

Choosing the dual pair (S, S), which trivially has the common core property, we find

that VK = 0H, with VK being defined as in Theorem 5.2.8. Define

q(v) := Im〈v, S∗v〉 with v ∈ N+ ⊕N− .

A calculation shows that the operator M associated to q(·) is given by M = PN+−PN− ,

i.e. M± = PN± , W± = N± and W0 = {0}. Thus, by Theorem 5.2.13, all maximally

70



dissipative extensions of such an operator S are given by

D(SC) = D(S)+̇{n+ + Cn+, n+ ∈ N+}, SC = S∗ �D(SC) ,

where C is any contraction into N− such that D(C) = N+. Thus, for the very special

case N+ ⊥ N−, this readily implies the von Neumann theory of selfadjoint/maximally

dissipative extensions of symmetric operators. (cf. e.g. [43, Thm. 8.12], for the selfad-

joint and [9, Theorem 2.4], for the more general maximally dissipative case)

Remark 5.2.16. For concrete problems, it can be impractical to construct W+,W0

andW− as well as M+ and M−. However, this result allows us to calculate the number of

independent complex parameters required to describe all proper maximally dissipative

extensions of a dual pair, which is given by the number of parameters that describe all

contractions C from W+ into W−, which is in turn equal to dimW+ · dimW− .

See also the operators considered in Section 5.4.3 for a discussion of the spacesW+,W−
and W0 for a few concrete examples.

Remark 5.2.17. As a reference to [32], let us point out that this result means

that we can characterize all proper dissipative extensions of such a dual pair using the

terminology of operator balls. For any three operators Z,Rl, Rr ∈ B(E), where E is an

arbitrary Hilbert space, recall that the set of all operators K ∈ B(E) such that there

exists a contraction C from ran(Rr) to D(Rl) such that

K = Z +RlCRr ,

is called an operator ball B(Z,Rl, Rr) with center point Z, left radius Rl and right

radius Rr. With the identification E = W , Z = PW+ + PW0 , Rl =
√
M−

−1
and

Rr =
√
M+ defined on W−, respectively on W+, and the result from Theorem 5.2.13,

we can characterize all proper dissipative extensions of a dual pair (A, Ã) satisfying the

assumptions of Theorem 5.2.13. This is achieved via:

AK : D(AK) = D(A)+̇{Kw : w ∈ W}, AK = Ã∗ �D(AK) ,(5.2.12)

where K ∈ B(PW+ + PW0 ,
√
M−

−1
,
√
M+).

71



5.3. The non-common core case

Let us now extend this idea to the case where the dual pair (A, Ã) does not have

the common core property. If we assume D(A)∩D(Ã) still to be dense, we can restrict

A and Ã to D(A)∩D(Ã) to obtain a dual pair of operators which has the common core

property:

Corollary 5.3.1. Let A and Ã be a dual pair of operators, where A is dissipative.

Moreover, let D(A) ∩ D(Ã) be dense in H. Define the operators A′ and Ã′ as follows:

A′ := A �D(A)∩D(Ã) and Ã′ := Ã �D(A)∩D(Ã) .

Furthermore, let V ′0 denote the operator 1
2i

(A′ − Ã′) on D(A) ∩D(Ã) and V ′K its corre-

sponding Krĕın extension.

Now, let V ⊂ D(Ã′∗)//D(A′) be a subspace. The operator A′V is a proper dissipative

extension of the dual pair A and Ã if and only if all of the following conditions are

satisfied

• V ⊂ D(V ′K
1/2)

• Im〈v, Ã∗v〉 ≥ ‖V ′K
1/2v‖2 for all v ∈ V

• D(A) ⊂ D(A′V)

• V ⊂ D(Ã∗) .

Proof. Since D(A)∩D(Ã) is dense, the operator A �D(A)∩D(Ã) is a densely defined

dissipative operator and thus closable. Moreover, since

Im〈ψ,Aψ〉 = Im〈Ãψ, ψ〉 = −Im〈ψ, Ãψ〉 ≥ 0 for all ψ ∈ D(A) ∩ D(Ã) ,

this shows that Ã �D(A)∩D(Ã) is a densely defined antidissipative operator. Thus, by

construction, the operators A′ and Ã′ are closed operators, which have the common

core property. Moreover,

A′ ⊂ A ⊂ Ã∗ ⊂ Ã′∗ ,

from which it follows that any proper dissipative extension of the dual pair (A, Ã) is a

proper extension of the dual pair (A′, Ã′) as well. The corollary now follows from the

observation that its first two conditions simply correspond to an application of Theorem

5.2.8 for the dual pair (A′, Ã′) (which has the common core property) to ensure that
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A′V is a dissipative extension of A′. The latter two conditions ensure that A′V is not just

a proper extension of the dual pair (A′, Ã′) but also of (A, Ã). �

Remark 5.3.2. Since the dual pair (A′, Ã′) has the common core property and A

is a proper dissipative extension of this dual pair, Theorem 5.2.13 implies that there

exists a contraction C from W ′+ into W ′− and a subspace M′ ⊂ W ′+ ⊕ W ′0 such that

A = A′M′,C , where the notation is the same as employed in (5.2.10). As any proper

dissipative extension of the dual pair (A, Ã) has to be a proper dissipative extension

of (A′, Ã′) as well, to which Theorem 5.2.13 applies, this means that the problem of

finding the proper dissipative extensions of (A, Ã) is equivalent to determining (N, Ĉ),

where M′ ⊂ N and Ĉ is a contractive extension of C with the additional constraint

that AN,Ĉ ⊂ Ã∗ . For a full discussion of determining the contractive extensions of a

given contraction, see [12].

5.4. Illustrating examples

In the following, we are going to apply our results to various ODE examples, which

we have chosen to illustrate our results without having to worry too much about tech-

nicalities.

5.4.1. Weakly perturbed symmetric operators. As a first application of The-

orem 5.2.8, let us consider dual pairs of operators of the form A = S+iV and Ã = S−iV ,

where S is closed and symmetric and V is a positive symmetric operator, which has

S∗-bound less than one.5.4.1 For convenience, let us recall the definition of relative

boundedness:

Definition 5.4.1. Let A and B be two operators on a Hilbert space H. We say

that B is relatively bounded with respect to A if D(A) ⊂ D(B) and there exists numbers

a, b ≥ 0 such that

(5.4.1) ‖Bf‖ ≤ a‖f‖+ b‖Af‖

for all f ∈ D(A). The infimum over all possible b such that there still exists an a such

that (5.4.1) is still satisfied is called the A-bound of B.

5.4.1Actually, we could consider dual pairs of the form (S + D,S + D̃), where (D, D̃) is a dual pair of dissipa-

tive/antidissipative perturbations, which are both relatively bounded with respect to S∗ with relative bound less than

1.
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Theorem 5.4.2. Let S be a closed symmetric operator and V be a non-negative

symmetric operator with S∗-bound less than 1. Moreover, let d(A, Ã) denote the set

of proper dissipative extensions of the dual pair (A, Ã). Then, the set of all proper

dissipative extensions of the dual pair S + iV and S − iV is given by

d(S + iV, S − iV ) = {Ŝ + iV : Ŝ ∈ d(S, S)} .

Proof. Firstly, let us apply Theorem 5.2.8 to the dual pair (S, S), where S is closed

and symmetric. In this case, the operator (S−S)/(2i) is identical to the zero operator

on D(S), which has a unique bounded selfadjoint extension to the zero operator 0H on

the whole Hilbert space H. Thus, for any extension SV , where V ⊂ D(S∗)//D(S), we

trivially have V ⊂ D(0H) = H. Thus, V needs only to satisfy the condition

(5.4.2) Im〈v, S∗v〉 ≥ 0 for all v ∈ V .

Next, let us consider the dual pair (S + iV, S − iV ). By the Hess–Kato Theorem [25,

Corollary 1], we get that (S − iV )∗ = S∗ + iV , which we use together with Theorem

5.2.8. By relative boundedness, we therefore have D((S − iV )∗) = D(S∗) as well as

D(S + iV ) = D(S), which means that we can choose D((S − iV )∗)//D(S + iV ) =

D(S∗)//(S). Now, observe that

Im〈v, (S − iV )∗v〉 = Im〈v, (S∗ + iV )v〉 = Im〈v, S∗v〉+ 〈v, V v〉

and that

〈v, V v〉 = ‖V 1/2
K v‖2 for all v ∈ D(S∗) = D(S∗ + iV ) ,

which follows from relative boundedness of V with respect to S∗. Hence, again we have

that V ⊂ D(V
1/2
K ) is always satisfied for any V ⊂ D((S − iV )∗)//D(S + iV ). This

implies that V only needs to satisfy

Im〈v, (S−iV )∗v〉 ≥ ‖V 1/2
K v‖2 which is equivalent to Im〈v, S∗v〉 ≥ 0 for all v ∈ V .

However, since this is equivalent to Condition (5.4.2), we get that (S+iV )V is dissipative

if and only if SV is dissipative. �

Let us start with the elementary example of a first order differential operator.
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Example 5.4.3. Consider the closed symmetric operator on L2(0, 1), given by

S : D(S) = {f ∈ H1(0, 1) : f(0) = f(1) = 0}, f 7→ if ′ ,

where f ′ denotes the weak derivative of f . Its adjoint S∗ is given by

S∗ : D(S∗) = H1(0, 1), f 7→ if ′ .

Since for any f ∈ D(S∗), we have that

Im〈f, S∗f〉 =
1

2

[
|f(1)|2 − |f(0)|2

]
,

it follows that all dissipative extensions of S are given by

Sc : D(Sc) :=
{
f ∈ H1(0, 1) : f(0) = cf(1)

}
, Sc = S∗ �D(Sc) ,

where c is any complex number such that |c| ≤ 1. Using Lemma 2.3.8, it is in fact not

hard to see that these extensions are also maximal.

Moreover, let V be the selfadjoint maximal multiplication operator by a non-negative

and non-zero L2-function V (x):

V : D(V ) =

{
f ∈ L2(0, 1) :

∫ 1

0

|V (x)f(x)|2dx <∞
}
, (V f) (x) = V (x)f(x) .

For example, one could pick V (x) = x−α with 0 < α < 1/2. Using that H1(0, 1) com-

pactly embeds into the bounded continuous functions C([0, 1]) we may use that by

Ehrling’s Lemma there exists for any ε > 0 a C(ε) such that

(5.4.3) ‖f‖∞ ≤ ε‖f ′‖+ C(ε)‖f‖ ,

for all f ∈ H1(0, 1). This allows us to show that V is S∗-bounded with S∗-bound equal

to zero:

‖V f‖2 ≤ ‖V ‖2‖f‖∞
(5.4.3)

≤ ε‖V ‖2‖f ′‖2 + C(ε)‖V ‖2‖f‖2 ,

where ε‖V ‖2 can be made arbitrarily small. Thus, for any non-negative V ∈ L2(0, 1),

we may conclude that all proper dissipative extensions of the dual pair S + iV and

S − iV are given by Sc + iV by virtue of Theorem 5.4.2.
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Remark 5.4.4. Using that V is S∗-bounded with relative bound equal to zero, we

have in particular that V is Sc-bounded with relative bound equal to zero as well. Thus,

by the Hess–Kato Theorem [25, Corollary 1]

−(Sc + iV )∗ = −(Sc)
∗ + iV .

By Proposition 2.2.5, we have that −(Sc)
∗ is dissipative, which makes −(Sc)

∗+ iV dis-

sipative. By the same proposition, we therefore may conclude that Sc+iV is maximally

dissipative.

5.4.2. Differential operators with dissipative potentials. For any n ∈ N, let

pn0 be the symmetric differential operator defined as follows

pn0 : D(pn0 ) = C∞0 (0, 1), f 7→ inf (n) ,

where f (n) denotes the nth derivative of f . Moreover, let W ∈ L2
loc(0, 1) be a locally

square-integrable potential function with W ≥ 0 almost everywhere. This means that

the dual pair of operators

A0 : D(A0) = C∞0 (0, 1), (A0f) (x) = inf (n)(x) + iW (x)f(x)(5.4.4)

and

Ã0 : D(Ã0) = C∞0 (0, 1),
(
Ã0f

)
(x) = inf (n)(x)− iW (x)f(x)(5.4.5)

is well defined. Moreover, their closures A := A0 and Ã := Ã0 have the common core

property by construction. In Theorem 5.2.8, the operator V is defined as A−Ã
2i

on a

common core D ⊂ (D(A) ∩ D(Ã)) and we choose D = C∞c (0, 1). Since V is already

essentially selfadjoint, this implies that the Krĕın extension of V coincides with its

closure VK = V and is given by the maximal multiplication operator by the function

W (x). Thus, V
1/2
K is given by

V
1/2
K : D(V

1/2
K ) =

{
f ∈ L2(0, 1) :

∫ 1

0

W (x)|f(x)|2dx <∞
}

(VKf) (x) =
√
W (x)f(x) .
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Moreover, it can be easily shown that the domains of A∗ and Ã∗ are given by

Ã∗ : D(Ã∗) =
{
f ∈ L2(0, 1) : f ∈ Hn

loc(0, 1) ∩ L2(0, 1); inf (n) + iWf ∈ L2
}

f 7→ inf (n) + iWf ,

A∗ : D(A∗) =
{
f ∈ L2(0, 1) : f ∈ Hn

loc(0, 1) ∩ L2(0, 1); inf (n) − iWf ∈ L2
}

f 7→ inf (n) − iWf ,

with the understanding that f (n) denotes the nth weak derivative of f . By Theorem

5.2.8, the operator AV (cf. Definition 5.2.7) is only maximally dissipative if V ⊂ D(V
1/2
K ).

Thus for any v ∈ V

(5.4.6)

∫ 1

0

|v(x)|2W (x)dx <∞

and since v ∈ D(Ã∗) ⊂ L2(0, 1), which implies that inv(n) + iWv ∈ L2(0, 1), it follows

that

v(x)inv(n)(x) + i|v(x)|2W (x) ∈ L1(0, 1) .(5.4.7)

From the above — together with (5.4.6) and an application of the reverse triangle

inequality — it follows that ∫ 1

0

∣∣∣v(x)inv(n)(x)
∣∣∣ dx <∞ ,

i.e. vv(n) ∈ L1(0, 1). Hence, given that v ∈ D(V
1/2
K ) the necessary and sufficient

condition for AV to be dissipative

Im〈v, Ã∗v〉 ≥ ‖W 1/2v‖2 for all v ∈ V

simplifies to

(5.4.8) Im〈v, inv(n)〉 ≥ 0 for all v ∈ V .

5.4.3. First order differential operators with singular potentials. Let us

apply the result of the previous subsection to the simplest case n = 1. For any ε > 0,

any x0 ∈ (0, 1) and any v ∈ H1
loc(0, 1) ∩ L2(0, 1) we have that

|v(ε)|2 = |v(x0)|2 − 2Im

∫ x0

ε

v(x)iv′(x)dx

77



and since vv′ ∈ L1(0, 1), we have by an explicit calculation

lim
ε↓0
|v(ε)|2 = lim

ε↓0

(
|v(x0)|2 − 2Im

∫ x0

ε

v(x)iv′(x)dx

)
= |v(x0)|2−2Im

∫ x0

0

v(x)iv′(x)dx.

The same reasoning can be applied to show the existence of limε↓0 |v(1 − ε)|2, which

shows that |v|2 is continuous up to the boundary of the interval. Defining, at least

formally,

|v(0)|2 := lim
ε↓0
|v(ε)|2 and |v(1)|2 := lim

ε↓0
|v(1− ε)|2

we get that

(5.4.9) Im〈v, iv′〉 =
1

2

(
|v(1)|2 − |v(0)|2

)
for all v ∈ H1

loc(0, 1) : vv′ ∈ L1 .

Let us now consider a few different potentials:

Example 5.4.5. Let 1/2 ≤ α < 1 and let the potential function be given by W (x) =

1−α
xα

, where the numerator (1− α) is chosen for convenience (the case 0 < α < 1/2 has

been covered in Example 5.4.3). By an explicit calculation, it can be shown that

D(Ã∗) = D(A)+̇span

{
exp(−x1−α), exp(−x1−α)

∫ x

0

exp(2t1−α)dt

}
and it is easy to see that

D(Ã∗)//D(A) = span

{
exp(−x1−α), exp(−x1−α)

∫ x

0

exp(2t1−α)dt

}
⊂ D(V

1/2
K ) = D(x−

α
2 ) ,

where the last inclusion is guaranteed by the choice α < 1. A standard linear trans-

formation shows that it is possible to define two vectors φ, ψ ∈ D(Ã∗)//D(A) such

that

D(Ã∗) = D(A)+̇span{φ, ψ}

and φ, ψ satisfy the boundary conditions

ψ(0) = 1, ψ(1) = 0, φ(0) = 0, φ(1) = 1 .

Thus, if we choose two complex numbers (c1, c2) ∈ C2 \ {(0, 0)} in order to parametrize

all one-dimensional proper extensions of (A, Ã) as

Ac1,c2 : D(Ac1,c2) = D(A)+̇span{c1φ+ c2ψ}, Ac1,c2 = Ã∗ �D(Ac1,c2 )
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and plug vc1,c2 := c1φ+ c2ψ into (5.4.9), we get the condition that

Im〈vc1,c2 , iv′c1,c2〉 =
1

2

(
|c1|2 − |c2|2

)
≥ 0 ,

i.e. |c1| ≥ |c2|. Thus, we can parametrize all maximally dissipative proper extensions

using only one complex parameter c = c2/c1 with |c| ≤ 1 and get {Ac : |c| ≤ 1}, where

Ac : D(Ac) = D(A)+̇span{φ+ cψ}, Ac = Ã∗ �D(Ac)

as a complete description of the set of all proper maximally dissipative extensions.

Let us now consider examples, where the singularity of the potential is of “same

strength” as the differential operator (α = 1).

Example 5.4.6. Let 0 < γ < 1/2 and consider the potential

W (x) =
γ

1− x
.

Note that this is equivalent to considering the operator −i d
dy

+ iγ
y

after the coordinate

change (1− x) 7→ y, which leads to a change of sign in front of the differential part of

the operator, changing the situation significantly compared to Example 5.4.7.

In this case, a calculation shows that for our range of γ, we have

D(Ã∗) = D(A)+̇span{(1− x)γ, (1− x)1−γ} .

Since 0 < γ < 1/2, it is true that

span{(1− x)γ, (1− x)1−γ} ⊂ D(V
1/2
K ) = D

(
1√

1− x

)
and since dim kerA∗ = 1, all proper dissipative extensions of A will be at most one-

dimensional extensions, i.e. of the form

D(Ac1,c2) := D(A)+̇span{c1(1− x)γ + c2(1− x)1−γ} ,

where (c1, c2) ∈ C2 \ {(0, 0)}. Plugging vc1,c2 := c1(1− x)γ + c2(1− x)1−γ into Equation

(5.4.9), we get the condition

(5.4.10) Im〈vc1,c2 , iv′c1,c2〉 = −|c1 + c2|2

2
≥ 0 ,
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which is satisfied if and only if c1 = −c2. Thus, there exists a unique proper maximally

dissipative extension of the dual pair (A, Ã), which is given by

A′ : D(A′) = D(A)+̇span{(1− x)γ − (1− x)1−γ}, A′ = Ã∗ �D(A′) .

This is an example of a dual pair (A, Ã) with a unique proper maximally dissipative

extension, which does not satisfy the assumptions of Corollary 5.2.9.

Next, let us compute the spaces W+,W0 and W− as defined in Theorem 5.2.13. Since

the form q as defined in Equation (5.2.9) is given by

q(v) = Im〈v, iv′〉 =
1

2
(|v(1)|2 − |v(0)|2)

and is non-positive for v ∈ span{(1 − x)γ, (1 − x)1−γ} by virtue of Equation (5.4.10),

we have found the maximizer of 〈v,Mv〉 which corresponds to the eigenvalue zero:

W0 = kerM = span{(1− x)γ − (1− x)1−γ}

and — using the Gram-Schmidt procedure — we compute

W− = span{(4γ2 − 8γ − 5)(1− x)γ − (4γ2 − 8γ + 3)(1− x)1−γ︸ ︷︷ ︸
=:w−

}

with eigenvalue λ− =
〈w−,Mw−〉
〈w−, w−〉

=
1
2
(|w−(1)|2 − |w−(0)|2)∫ 1

0
|w−(x)|2dx

= − 2

−4γ2 + 4γ + 7
.

Example 5.4.7. Let 0 < γ < 1/2 and consider the potential

W (x) =
γ

x
.

In this case, a calculation shows that D(Ã∗) = D(A)+̇span{x−γ, x1+γ}. This is an

example, for which Corollary 5.2.9 applies, since ker Ã∗ = span{x−γ} has trivial inter-

section with D(V
1/2
K ) = {f ∈ L2(0, 1),

∫ 1

0
|f(x)|2x−1dx <∞}. Hence, the only possible

candidate for a proper maximally dissipative extension for the dual pair (A, Ã) is the

operator Â, which is given by

Â : D(Â) = D(A)+̇span{x1+γ}, Â = Ã∗ �D(Â) .

By Proposition 2.4.5, it is already clear that Â has to be a proper maximally dissipa-

tive extension. This can also be verified explicitly by by plugging v(x) := x1+γ into
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Condition (5.4.9).

In this concrete case, we have that W0 = W− = {0} and W+ = span{x1+γ}. A short

calculation shows that the corresponding eigenvalue of M is given by

λ+ =
〈x1+γ,Mx1+γ〉
〈x1+γ, x1+γ〉

=
3

2
+ λ .

5.4.4. A second order example. Let us now apply our results to an example,

where the operator V as defined in the statement of Theorem 5.2.8 is not essentially

selfadjoint. To this end, consider the dual pair of operators given by

A0 : D(A0) = C∞c (0, 1), (A0f) (x) = −if ′′(x)− γ f(x)

x2
,

Ã0 : D(Ã0) = C∞c (0, 1),
(
Ã0f

)
(x) = if ′′(x)− γ f(x)

x2
.

Since we have

Im〈f, A0f〉 = Im

∫ 1

0

f(x)

(
−if ′′(x)− γ f(x)

x2

)
dx =

∫ 1

0

|f ′(x)|2dx

for all f ∈ C∞c (0, 1), we can estimate Im〈f, A0f〉 from below by the lowest eigenvalue

of the Dirichlet-Laplacian on the unit interval, which is π2, i.e.

(5.4.11) Im〈f, A0f〉 ≥ π2‖f‖2 for all ψ ∈ D(A0) .

Now, define A := A0 and Ã := Ã0, which means that the dual pair (A, Ã) has the

common core property by construction. Also, (5.4.11) implies in particular that 0 ∈

ρ̂(A). By a simple calculation, it can be shown that the operator Ã∗ is given by:

D(Ã∗) =

{
f ∈ H2

loc(0, 1) ∩ L2(0, 1) :

∫ 1

0

∣∣∣∣−if ′′(x)− γ f(x)

x2

∣∣∣∣2 dx <∞

}
(
Ã∗f

)
(x) = −if ′′(x)− γ f(x)

x2
.

A calculation, using Formula (2.4.1) for λ = 0, yields

(5.4.12) D(Ã∗) = D(A)+̇span
{
xω, xω+2

}
,

where ω := (1 +
√

1 + 4iγ)/2. Here we have assumed that γ ≥
√

3. This choice for

γ ensures that dim ker Ã∗ = dim kerA∗ = 1, which will make our calculations sim-

pler. Also, observe that Ã∗ = JA∗J , where the conjugation operator J is defined as

(Jf)(x) := f(x). From this it immediately follows that D(A∗) = JD(Ã∗) = {f : f ∈
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D(Ã∗)}. Now, let us apply the result of Theorem 5.2.8 in order to construct maximally

dissipative extensions of the dual pair (A, Ã). Let D = C∞c (0, 1), which is a common

core for A and Ã and define V := 1
2i

(A− Ã) �D, which is given by

V : D(V ) = C∞c (0, 1), f 7→ −f ′′ .

As the norm induced by ‖ · ‖V := ‖ · ‖ + 〈·, V ·〉 is the H1-norm, closing D(V ) =

C∞c (0, 1) with respect to ‖·‖V yields that D(V
1/2
F ) = H1

0 (0, 1). Moreover, since kerV ∗ =

span{1, x} and since by (5.2.1) we have D(V
1/2
K ) = D(V

1/2
F )+̇ kerV ∗, it is clear that

D(V
1/2
K ) = H1(0, 1) and moreover that

(5.4.13) ‖V 1/2
K f‖2 = ‖V 1/2

F [f(x)− f(0)− x(f(1)− f(0))] ‖2 = ‖f ′‖2− |f(1)− f(0)|2 ,

where the first equality follows from the decomposition (5.2.1) and the second from an

explicit calculation. Using this, we can show that the form q(v) := Im〈v, Ã∗v〉−‖V 1/2
K v‖2

defined on D(Ã∗)//D(A) = span{xω, xω+2} is given by

(5.4.14) q(v) = −Re
(
v(1)v′(1)

)
+ |v(1)|2 .

By Lemma 2.3.8, any maximally dissipative proper extension of (A, Ã) can be parametrized

by a one-dimensional subspace of span{xω, xω+2}. A convenient basis for this is given

by the two functions

ψ(x) :=
(2 + ω+)xω+ − ω+x

ω++2

2 + ω+ − ω+

and φ(x) :=
−xω+ + xω++2

2 + ω+ − ω+

,

which satisfy the boundary conditions ψ(1) = 1, ψ′(1) = 0, φ(1) = 0 and φ′(1) = 1.

Now define ξρ := ρψ + φ, where ρ ∈ C has to be determined such that q(ξρ) ≥ 0. A

short explicit calculation shows that this is the case if and only if∣∣∣∣ρ− 1

2

∣∣∣∣ ≥ 1

2
,

i.e. if and only if ρ lies in the exterior of the open circle with radius and center point 1
2
.

Since q(ψ) = 1 > 0, we have that ξ∞ := ψ describes a maximally dissipative extension

as well. Thus the set of all proper maximally dissipative extensions of (A, Ã) is given

by

Aρ : D(Aρ) = D(A)+̇span{ξρ}, Aρ = Ã∗ �D(Aρ) ,(5.4.15)

82



where

(5.4.16) ρ ∈
{
z ∈ C,

∣∣∣∣z − 1

2

∣∣∣∣ ≥ 1

2

}
∪ {∞} .

5.5. Stability of the numerical range

Let us now prove a useful result that allows us to estimate the lower bound of the

imaginary part of the numerical range of the extensions of a dual pair (A, Ã):

Lemma 5.5.1. Let the dual pair (A, Ã) satisfy the assumptions of Theorem 5.2.8 and

let V be a subspace of D(Ã∗)//D(A) such that D(AV) is a proper dissipative extension

of the dual pair (A, Ã). Moreover, for v ∈ V, let q(v) := Im〈v, Ã∗v〉 − ‖V 1/2
K v‖2. Then,

for all f ∈ D(A), v ∈ V it is true that

Im〈(f + v), AV(f + v)〉 = ‖V 1/2
K (f + v)‖2 + q(v) ≥ ‖V 1/2

K (f + v)‖2 .

Proof. Let f ∈ D and v ∈ V . As in the proof of Theorem 5.2.8, we use Lemma

5.2.1, from which we know that it is sufficient to check the assertion for only such f

and v. From an explicit calculation, we get

Im〈(f + v), AV(f + v)〉 = Im〈(f + v), Ã∗(f + v)〉

= Im〈f, Af〉+ Im〈v, Ã∗v〉+ Im(〈f, Ã∗v〉+ 〈v, Ã∗f〉)

= Im〈f, Af〉+ q(v) + ‖V 1/2
K v‖2 + Im(〈f, Ã∗v〉+ 〈v, Ã∗f〉) .(5.5.1)

Now, we can use that Im〈f, Af〉 = 〈f, V f〉, which implies in particular that f ∈ D ⊂

D(VK) ⊂ D(V
1/2
K ) since VK is a selfadjoint extension of V . Thus, we have that

Im〈f, Af〉 = 〈f, V f〉 = ‖V 1/2
K f‖2

and another calculation — similar to that in the proof of Theorem 5.2.8 — shows that

Im(〈f, Ã∗v〉+ 〈v, Ã∗f〉) = 2Re〈V 1/2
K f, V

1/2
K v〉 .

Plugging these two identities back into (5.5.1) yields

Im〈(f + v), Ã∗(f + v)〉 = ‖V 1/2
K f‖2 + 2Re〈V 1/2

K f, V
1/2
K v〉+ ‖V 1/2

K v‖2 + q(v)

= ‖V 1/2
K (f + v)‖2 + q(v) .
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Since by Theorem 5.2.8 we have that q(v) ≥ 0 for all v ∈ V it trivially follows that

Im〈f + v, AV(f + v)〉 ≥ ‖V 1/2
K (f + v)‖2

for all f ∈ D(A) and v ∈ V . �

Example 5.5.2. As a first example, consider the dual pair (A, Ã) from Section

5.4.4, with the maximally dissipative extensions Aρ as described in (5.4.15) and (5.4.16).

Again, it suffices to find a lower bound of Im〈f + v, Ã∗(f + v)〉 for all f ∈ C∞c (0, 1) and

all v ∈ span{ξρ}, where ξρ was defined in Section 5.4.4. Observe that

Im〈f + v, Aρ(f + v)〉 = ‖f ′ + v′‖2 − Re(ρ)

|ρ|2
|v(1)|2 =: a(f + v)

and C∞c (0, 1)+̇span{ξρ} ⊂ C, where C := {f ∈ H1(0, 1) : f(0) = 0}. For the special

cases ρ = 0 and ρ =∞, we have

Im〈f + v, Aρ(f + v)〉 = ‖f ′ + v′‖2 =: a(f + v) .

Now, since C equipped with the norm induced by a is a Hilbert space, this implies that

Im〈f + v, AV(f + v)〉 ≥ λρ‖f + v‖2, where λρ is the lowest eigenvalue of the selfadjoint

operator Sρ associated to (a,C). This operator is given by

Sρ : D(Sρ) =

{
f ∈ H2(0, 1) : f(0) = 0 and f ′(1) =

Re(ρ)

|ρ|2
f(1)

}
, f 7→ −f ′′ ,

with the understanding that the case ρ = 0 corresponds to a Dirichlet boundary

condition at one. As it is not difficult to solve the eigenvalue equation Sρf = λρf ,

where λρ is the smallest eigenvalue of Sρ, one finds that λρ is given by λρ = z2, where

z is the smallest positive solution of the transcendental equation

tan z

z
=
|ρ|2

Re(ρ)
,

where ρ ∈ {z ∈ C : z 6= 0,Re(z) = 0} corresponds to the singularity of tan z
z

at z = π
2
.

For Re(ρ) < 0, this means in particular that Im〈f + v, Aρ(f + v)〉 ≥ π2

4
‖f + v‖2 as can

easily be seen from the fact that (tan z)/z is positive in [0, π/2) and non-positive in

(π/2, π]. See also the graph of tan(z)/z:
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Remark 5.5.3. In this example, the estimate on the lower bound of the imaginary

parts is also sharp. This follows from the fact that closing C∞0 (0, 1)+̇span{ξρ} with

respect to the norm induced by a yields C for ρ 6= 0 and closing C∞0 (0, 1)+̇span{ξ0}

with respect to the H1-norm yields H1
0 (0, 1).

Theorem 5.5.4. Let the dual pair (A, Ã) satisfy the same conditions as in Theorem

5.2.8. If in addition we have that V ⊂ D(V
1/2
F ), we get that the imaginary part of the

numerical range stays stable, i.e.

inf
z∈NA

Imz = inf
z∈NAV

Imz ,

where NC denotes the numerical range of an operator C and AV is the extension of A as

described in Definition 5.2.7. This is true in particular for any dissipative extension of a

dual pair of operators (A, Ã), where the associated operator V is essentially selfadjoint.

Proof. For f ∈ D(A) ∩ D(Ã), we have that f ∈ D(V ) ⊂ D(V
1/2
F ). Now, since by

assumption V ⊂ D(V
1/2
F ), we get by virtue of Lemma 5.5.1 that

(5.5.2) Im〈(f + v), Ã∗(f + v)〉 ≥ ‖V 1/2
K (f + v)‖2 = ‖V 1/2

F (f + v)‖2 ,

for all f ∈ D(A)∩D(Ã) and for all v ∈ V . Using that for all f ∈ D(A)∩D(Ã) we have

that

Im〈f, Af〉 = 〈f, V f〉 ,

which implies that

inf
z∈NA

Imz = inf
x∈NV

x = inf
x∈NVF

x ,
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where the last equality follows from the fact that the numerical range of the Friedrichs

extension of a semibounded operator stays stable. Using Inequality (5.5.2), we therefore

get

inf
z∈NAV

Imz ≥ inf
x∈NVF

x = inf
z∈NA

Imz ,

which together with the trivial estimate for taking the infimum over a larger set

inf
z∈NAV

Imz ≤ inf
z∈NA

Imz

yields the theorem. �

Example 5.5.5. As an example, consider the operators (A0, Ã0) as described in

Section 5.4.2, (5.4.4) and (5.4.5). Since the operator V = 1
2i

(A0 − Ã0) is given by

V : D(V ) = C∞c (0, 1), (V f)(x) = W (x)f(x) ,

which is essentially selfadjoint, we get that V
1/2
K = V

1/2
F = V

1/2
is the maximal multi-

plication operator by
√
W (x). Hence by virtue of Theorem 5.5.4, we get that for any

proper maximally dissipative extension AV , we have

Im〈f + v, AV(f + v)〉 ≥ w‖f + v‖2 ,

where w := ess infx∈(0,1)W (x) = inff∈D(A):‖f‖=1 Im〈f, Af〉.
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CHAPTER 6

A construction to obtain proper Krĕın–von Neumann

extensions

In this chapter, we will introduce the Krĕın–von Neumann extension AK of a dis-

sipative operator A with zero in its field of regularity ρ̂(A). After showing that it is

a maximally dissipative extension of A, we discuss the condition under which AK is

a proper extension of a dual pair (A, Ã). After that, we propose a construction that

yields restrictions A0 ⊂ A and Ã0 ⊂ Ã such that AK is proper extension of (A0, Ã0).

6.1. The Krĕın–von Neumann extension

For strictly positive closed symmetric operators S (S ≥ ε > 0), it was already

established by von Neumann in [34, Satz 42] that the extension SK given by

SK : D(SK) = D(S)+̇ ker(S∗f), SK = S∗ �D(SK)

is a non-negative selfadjoint extension of S. The analysis of Krĕın ([27]) showed that

SK is the “smallest” non-negative extension of S. For a closed dissipative operator A

with 0 ∈ ρ̂(A), one can still define its Krĕın–von Neumann extension AK via

AK : D(AK) = D(A)+̇ker(A∗), (f + k) 7→ Af ,(6.1.1)

where f ∈ D(A) and k ∈ ker(A∗). (See also [8, 10] for a definition of the Krĕın–

von Neumann extension of a sectorial operator A even without the requirement that

0 ∈ ρ̂(A).) In order to prove that AK is well-defined in the dissipative case, we will need

the following lemma in order to justify the use of the direct sum “+̇” in the definition

of D(AK):

Lemma 6.1.1. Let A be closed and dissipative such that 0 ∈ ρ̂(A). This implies that

D(A) ∩ ker(A∗) = {0} .
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Proof. Assume that this is not true, i.e. that there exists at least one f ∈ D(A)∩

ker(A∗) with f 6= 0. For any g ∈ D(A), we then get

Im〈f + g, A(f + g)〉 = Im〈f, Af〉+ Im〈f, Ag〉+ Im〈g, Af〉+ Im〈g, Ag〉

= Im〈A∗f, f〉+ Im〈A∗f, g〉+ Im〈g, Af〉+ Im〈g, Ag〉 = Im〈g, Af〉+ Im〈g, Ag〉 .

Next, observe that there exists at least one ĝ ∈ D(A) such that 〈ĝ, Af〉 6= 0, since

otherwise we would get that Af = 0 by density of D(A). But Af = 0 is a contradiction

since 0 ∈ ρ̂(A) implies that ker(A) = {0}. This means that we can choose a suitable

λ ∈ C with appropriate phase and sufficiently large modulus such that

Im〈λf + ĝ, A(λf + ĝ)〉 = Im〈ĝ, Aĝ〉 − |λ||〈ĝ, Af〉| < 0 ,

which contradicts the dissipativity of A. This shows the lemma. �

Even though we will not need it in the remainder of this thesis, let us also prove

the following corollary:

Corollary 6.1.2. Let A be a closed dissipative operator such that 0 ∈ ρ̂(A). Then

there exists a boundedly invertible extension Â, i.e. A ⊂ Â and 0 ∈ ρ(Â).

Remark 6.1.3. Note that we do not claim that Â is dissipative.

Proof. As 0 ∈ ρ̂(A), the inverse of A on its range is well defined and bounded:

A−1 : ran(A)→ D(A), Af 7→ f .

We claim that the extension A−1 ⊂ T−1, with

T−1 : D(T−1) = H, T−1(Af + k) = f + k ,

where Af ∈ ran(A) and k ∈ kerA∗, is bounded and has trivial kernel ker(T−1) = {0}.

This would imply that the operator

T : D(T ) = D(A)+̇ ker(A∗), T (f + k) = Af + k
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is an extension of A with the desired properties.

Firstly, let us show that T−1 is bounded:

‖T−1(Af + k)‖2 = ‖f + k‖2 ≤ 2(‖f‖2 + ‖k‖2) ≤ 2ε−2‖Af‖2 + 2‖k‖2

≤ Cε(‖Af‖2 + ‖k‖2) = Cε‖Af + k‖2 ,

where we have used that from the fact that 0 ∈ ρ̂(A), there exists a ε > 0 such that

‖Af‖ ≥ ε‖f‖ for all f ∈ D(A).

Let us now show that ker(T−1) = {0}. As (Af + k) ∈ ker(T−1) means T−1(Af + k) =

f +k = 0, we would have f = −k, where f ∈ D(A) and k ∈ ker(A∗). This would imply

that f, k ∈ D(A)∩ker(A∗). But from Lemma 6.1.1, we know that D(A)∩ker(A∗) = {0},

which implies f = k = 0 and therefore (Af + k) = 0. This shows that ker(T−1) = {0},

which finishes the proof. �

Let us now show that AK is a maximally dissipative extension of A:

Theorem 6.1.4. Let A be closed and dissipative and assume that 0 ∈ ρ̂(A). Then

the operator AK given by (6.1.1) is a maximally dissipative extension of A.

Proof. By Lemma 6.1.1, we know that D(A) ∩ ker(A∗) = {0}, which means that

AK is well-defined. Moreover, for any f ∈ D(A) and any k ∈ ker(A∗), we have

Im〈f + k,AK(f + k)〉 = Im〈f, Af〉+ Im〈k,Af〉

= Im〈f, Af〉+ Im〈A∗k, f〉 = Im〈f, Af〉 ≥ 0 ,

which implies that AK is dissipative. Let us now show that AK is maximally dissipative.

Assume it is not, i.e. that Â is a non-trivial dissipative extension of AK . Hence, there

exists a 0 6= v ∈ D(Â) such that v /∈ D(AK). In order for Â to be dissipative, in

particular it must satisfy

(6.1.2) Im〈v + k, Â(v + k)〉 = Im〈v, Âv〉+ Im〈k, Âv〉 ≥ 0 ,

for any k ∈ ker(A∗). This implies that Âv ⊥ ker(A∗), since otherwise, there would exist

a k̃ ∈ ker(A∗) such that 〈k̃, Âv〉 = 1. With a suitable choice of τ > 0 large enough, we

then would get

Im〈v + iτ k̃, Â(v + iτ k̃)〉 = Im〈v, Âv〉 − τ < 0 ,
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which means that (6.1.2) would be violated in this case. Thus, for Â to be dissipative,

it is necessary that Âv ⊥ ker(A∗), or equivalently that Âv ∈ ran(A). Here we have

used that A is closed and that 0 ∈ ρ̂(A), which implies that ran(A) is closed. But

Âv ∈ ran(A) means that there exists a unique ` ∈ D(A) such that

(6.1.3) Âv = A` .

Now, for any f ∈ D(A) consider

Im〈f + v − `, Â(f + v − `)〉 = Im〈f + v − `, Af + Âv − A`〉
(6.1.3)

= Im〈f + v − `, Af + A`− A`〉 = Im〈f + v − `, Af〉

=Im〈f, Af〉+ Im〈v − `, Af〉 .

Next, let us show that (v − `) /∈ ker(A∗). Assume this is not true, i.e. that there

exists a k ∈ ker(A∗) such that (v − `) = k. Since ` ∈ D(A), this would mean that

v = (` + k) ∈ D(AK), which is impossible. Thus, there exists a f̃ ∈ D(A) such that

〈v − `, Af̃〉 = 1. Mimicking the argument from before, considering

Im〈f̃ + iτ(v − `), Â[f̃ + iτ(v − `)]〉 = Im〈f̃ , Af̃〉 − τ < 0 ,

where τ > Im〈f̃ , Af̃〉 is chosen suitably large, shows that Â cannot be dissipative.

Thus we conclude that there exists no dissipative extension of AK , which therefore is

maximally dissipative. This finishes the proof. �

Now, consider a dual pair (A, Ã), where A is dissipative and Ã is antidissipative

such that 0 ∈ ρ̂(A) ∩ ρ̂(Ã). The purpose of the next result is to describe when the

Krĕın–von Neumann extension AK is a proper extension of (A, Ã):

Theorem 6.1.5. Let (A, Ã) be a dual pair of densely defined operators, where A is

dissipative and Ã is antidissipative. Moreover, assume that 0 ∈ ρ̂(A)∩ ρ̂(Ã). Then, the

Krĕın–von Neumann extension AK as defined in (6.1.1) satisfies A ⊂ AK ⊂ Ã∗ if and

only if ker(A∗) ⊂ ker(Ã∗).

Proof. Since (A, Ã) is a dual pair, we have that D(A) ⊂ D(Ã∗). Moreover, it

trivially holds that ker(Ã∗) ⊂ D(Ã∗). Thus, if ker(A∗) ⊂ ker(Ã∗), this implies that
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D(AK) = D(A)+̇ ker(A∗) ⊂ D(Ã∗). Now, let f ∈ D(A) and k ∈ ker(A∗) ⊂ ker(Ã∗).

We then get

Ã∗(f + k) = Af + Ã∗k = Af = Af + AKk = AK(f + k) ,

which shows that AK is a proper extension of (A, Ã).

Now, assume that ker(A∗) 6⊂ ker(Ã∗), but AK is still a restriction of Ã∗, which we

want to lead to a contradiction. The assumptions ker(A∗) 6⊂ ker(Ã∗) and AK ⊂ Ã∗

imply that there exists at least one non-zero k̂ ∈ ker(A∗) such that k̂ /∈ ker(Ã∗).

Moreover, since we assumed that AK ⊂ Ã∗ this implies in particular that k̂ ∈ D(Ã∗).

We therefore get

Ã∗k̂ = AK k̂ = 0 ,

i.e. k̂ ∈ ker(Ã∗), which is a contradiction. This shows the theorem. �

In the following example, we will discuss dual pairs of the form (S+iV, S−iV ), where

S is symmetric and V ≥ 0 is a bounded non-negative operator in order to demonstrate

that ker(A∗) ⊂ ker(Ã∗) is a rather restrictive condition:

Example 6.1.6. Consider the dual pair (A, Ã) := (S + iV, S − iV ), where S is a

closed symmetric (but not maximally symmetric) operator and V ≥ 0 is a bounded and

non-negative operator. Since (S ± iV )∗ = (S∗ ∓ iV ), the condition ker(A∗) ⊂ ker(Ã∗)

reads as ker(S∗ − iV ) ⊂ ker(S∗ + iV ). Thus, if ker(S∗ − iV ) ⊂ ker(S∗ + iV ), any

k ∈ ker(S∗ − iV ) has to satisfy

S∗k = iV k and S∗k = −iV k ,

which implies that iV k = −iV k, which is only satisfied if k ∈ ker(V ). This implies that

for ker(S∗−iV ) ⊂ ker(S∗+iV ) to hold, it is necessary that ker(S∗−iV ) ⊂ ker(V ), which

in turn is equivalent to ker(S∗− iV ) ⊂ ker(S∗). Thus, for ker(S∗− iV ) ⊂ ker(S∗ + iV )

to be satisfied, it is necessary that ker(S∗ − iV ) ⊂ (ker(V ) ∩ ker(S∗)). Since it is also

easy to check that this is sufficient, we have that

ker(S∗ − iV ) ⊂ ker(S∗ + iV ) if and only if ker(S∗ − iV ) ⊂ (ker(V ) ∩ ker(S∗)) .

91



6.2. Construction of suitable restrictions

Now, given a dual pair (A, Ã) of closed operators, where A is dissipative and Ã is

antidissipative with the additional assumption that 0 ∈ ρ̂(A) ∩ ρ̂(Ã), we construct a

restriction of Ã, which we denote by Ã0 such that AK is a proper extension of the dual

pair (A, Ã0).

Theorem 6.2.1. Let (A, Ã) be a dual pair of closed operators, such that A is dis-

sipative and Ã is antidissipative. Moreover, assume that 0 ∈ ρ̂(A) ∩ ρ̂(Ã) and that the

preimage Ã−1(ran(A)∩ ran(Ã)) = {f ∈ D(Ã) : Ãf ∈ ran(A)∩ ran(Ã)} is dense. Define

the operator Ã0 as follows:

(6.2.1) Ã0 : D(Ã0) = Ã−1(ran(A) ∩ ran(Ã)), Ã0 = Ã �D(Ã0) .

Then, Ã0 is a closed and antidissipative restriction of Ã. Moreover, (A, Ã0) is a dual

pair and AK — the Krĕın–von Neumann extension of A — satisfies A ⊂ AK ⊂ Ã∗0, i.e.

it is a proper maximally dissipative extension of the dual pair (A, Ã0).

Proof. By assumption, Ã0 is a densely defined restriction of Ã, from which we get

that A ⊂ Ã∗ ⊂ Ã∗0, which means that (A, Ã0) is a dual pair. Moreover, Ã0 ⊂ Ã implies

in particular that Ã0 is antidissipative and that 0 ∈ ρ̂(Ã0). Now, since 0 ∈ ρ̂(A)∩ ρ̂(Ã)

and since A and Ã are closed by assumption, this implies that ran(A) and ran(Ã) are

closed. From this, we get that ran(Ã0) = ran(A) ∩ ran(Ã) is the intersection of two

closed subspaces and therefore closed itself. This, together with 0 ∈ ρ̂(Ã0) implies that

Ã0 is closed as well. Moreover, since ran(Ã0) = ran(A) ∩ ran(Ã), we get

ker(Ã∗0) = ran(Ã0)⊥ =
(

ran(A) ∩ ran(Ã)
)⊥

= ker(A∗) + ker(Ã∗) ,

where the last equality follows from Lemma 9.3.7 which is proved in the Appendix.

This implies that ker(A∗) ⊂ ker(Ã∗0), which means that the dual pair (A, Ã0) satisfies

the assumptions of Theorem 6.1.5. Hence, A ⊂ AK ⊂ Ã∗0, which means that AK is a

proper maximally dissipative extension of the dual pair (A, Ã0). �

Remark 6.2.2. Later, we will also use the operator A0 given by

(6.2.2) A0 : D(A0) = A−1(ran(A) ∩ ran(Ã)), A0 = A �D(A0) .
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By a completely analogous reasoning as in the proof of Theorem 6.2.1, A0 is a closed

dissipative restriction with 0 ∈ ρ̂(A0). Moreover, since A0 ⊂ A ⊂ Ã∗ ⊂ Ã∗0 we have

that (A0, Ã0) is a dual pair.

Let us also describe the action of Ã∗0:

Corollary 6.2.3. Let A, Ã and Ã0 be defined as in Theorem 6.2.1. Moreover, let

Â be a proper extension of (A, Ã) such that 0 ∈ ρ(Â), which we know by Proposition

2.4.3 to always exist. Then, the operator Ã∗0 is given by

(6.2.3) Ã∗0 : D(Ã∗0) = D(Â)+̇ker(A∗) + ker(Ã∗), (f + k) 7→ Âf ,

where f ∈ D(Â) and k ∈ ker(A∗) + ker(Ã∗). Moreover, if

ker(A∗) + ker(Ã∗) = ker(Ã∗)+̇ ker(A∗) ,

this implies that

(6.2.4) Ã∗0 : D(Ã∗0) = D(Ã∗)+̇ ker(A∗) , f + k 7→ Ã∗f ,

Proof. The description of Ã∗0 as given in (6.2.3) follows from an application of

Proposition 2.4.3 to the dual pair (A, Ã0) with the choice λ = 0 using that Â ⊂ Ã∗

implies that Â ⊂ Ã∗0. Under the additional assumption that ker(Ã∗) + ker(A∗) =

ker(Ã∗)+̇ ker(A∗), we may use that D(Ã∗) = D(Â)+̇ ker(Ã∗), which can again be seen

from an application of Proposition 2.4.3 to the dual pair (A, Ã). We then get that

D(Ã∗0) = D(Â)+̇ker(Ã∗) + ker(A∗) = D(Â)+̇ ker(Ã∗)+̇ ker(A∗) = D(Ã∗)+̇ ker(A∗) .

Since Ã∗ ⊂ Ã∗0 and ker(A∗) ⊂ ker(Ã∗0), this also proves that Ã∗0(f + k) = Ã∗f for any

f ∈ D(Ã∗) and any k ∈ ker(A∗). �

In the statement of Theorem 6.2.1, we have assumed that Ã0 is densely defined.

Under the assumption that ker(A∗) + ker(Ã∗) = ker(A∗) + ker(Ã∗), which is always

satisfied in the finite-dimensional case, let us give a necessary and sufficient condition

for A0 and Ã0 to be densely defined:

Lemma 6.2.4. Let (A, Ã) be a dual pair of closed operators such that 0 ∈ ρ̂(A) ∩

ρ̂(Ã). Moreover, assume that ker(A∗) + ker(Ã∗) = ker(A∗) + ker(Ã∗) and let D(A0) :=
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A−1(ran(A) ∩ ran(Ã)) and D(Ã0) = Ã−1(ran(A) ∩ ran(Ã)) . Then, D(A0) is dense in

H if and only if

D(A∗) ∩ ker(Ã∗) ⊂ ker(A∗)

and D(Ã0) is dense in H if and only if

D(Ã∗) ∩ ker(A∗) ⊂ ker(Ã∗) .

Proof. We will only show that D(A0) is dense if and only if

D(A∗) ∩ ker(Ã∗) ⊂ ker(A∗) ,

since the condition for D(Ã0) being dense follows from completely analogous reasoning.

We start by showing that if there exists a ψ ∈ D(A∗) ∩ ker(Ã∗) such that ψ /∈

ker(A∗), we have that D(A0) is not dense. Since ψ ∈ ker(Ã∗) = ran(Ã)⊥, we get for all

f ∈ (ran(A) ∩ ran(Ã))

0 = 〈ψ, f〉 = 〈ψ,AA−1f〉 = 〈A∗ψ,A−1f〉 ,

which means that A∗ψ ⊥ A−1(ran(A) ∩ ran(Ã)) = D(A0). Since ψ /∈ ker(A∗), we have

A∗ψ 6= 0, which implies that A∗ψ ⊥ D(A0), i.e. D(A0) is not dense.

Conversely, let us now show that if D(A∗) ∩ ker(Ã∗) ⊂ ker(A∗), this implies that

D(A0) is dense. Let ψ ⊥ D(A0), which means that

(6.2.5) 〈ψ,A−1f〉 = 0

for all f ∈ (ran(A) ∩ ran(Ã)). Since 0 ∈ ρ̂(A) ∩ ρ̂(Ã), Proposition 2.4.3 implies that

there exists an extension A ⊂ Â ⊂ Ã∗ such that 0 ∈ ρ(Â) and moreover, A−1 ⊂ Â−1,

where D(Â−1) = H. Then, for any f ∈ ran(A) ∩ ran(Ã), (6.2.5) reads as

0 = 〈ψ,A−1f〉 = 〈ψ, Â−1f〉 = 〈(Â−1)∗ψ, f〉 = 〈(Â∗)−1ψ, f〉 ,

which implies that (Â∗)−1ψ ∈ (ran(A) ∩ ran(Ã))⊥ = ker(A∗) + ker(Ã∗), where the

last identity follows from (9.3.13). Note that (Â−1)∗ = (Â∗)−1 follows from the fact

that Â is boundedly invertible (see e.g. [44, Satz 2.49 b)]). Since we have assumed

that ker(A∗) + ker(Ã∗) = ker(A∗) + ker(Ã∗), there exists a (not necessarily unique)

k ∈ ker(A∗) and a (not necessarily unique) k̃ ∈ ker(Ã∗) such that (Â∗)−1ψ = k + k̃.
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Moreover, since A ⊂ Â ⊂ Ã∗, which implies that Ã ⊂ Â∗ ⊂ A∗, we get that (Â∗)−1ψ ∈

D(A∗) and since k ∈ D(A∗), this implies that k̃ ∈ D(A∗), too. Thus, k̃ ∈ D(A∗) ∩

ker(Ã∗) and if D(A∗) ∩ ker(Ã∗) ⊂ ker(A∗), this implies that k̃ ∈ ker(A∗). We therefore

conclude that k + k̃ = (Â∗)−1ψ ∈ ker(A∗), which implies that 0 = A∗((Â∗)−1ψ) =

Â∗(Â∗)−1ψ = ψ, i.e. that ψ = 0. Hence, D(A∗) ∩ ker(Ã∗) ⊂ ker(A∗) and ψ ⊥ D(A0)

imply that ψ = 0, which means that D(A0) is dense in H. This shows the lemma. �

Remark 6.2.5. Obviously, D(A∗)∩ ker Ã∗ = {0} is a sufficient condition for D(A0)

being dense.

Next, assume that D(Ã0) is dense and define the Krĕın–von Neumann extension of

Ã0 — denoted by Ã0,K — as

Ã0,K : D(Ã0,K) = D(Ã0)+̇ ker(Ã∗0), (f̃ + k̃) 7→ Ã0f̃ ,

where f̃ ∈ D(Ã0) and k̃ ∈ ker(Ã∗0). By a reasoning similar to the proof of Theorem 6.1.4

(e.g. by considering the dissipative operator (−Ã0)), we have that Ã0,K is maximally

antidissipative. In the following theorem, we will show that A∗0,K = Ã0,K :

Theorem 6.2.6. Let (A, Ã) satisfy the assumptions of Theorem 6.2.1 and moreover,

assume that the operator A0 as defined in Remark 6.2.2 is densely defined. We then get

that A0,K is a maximally dissipative proper extension of (A0, Ã0) and moreover that

A0,K = Ã∗0,K .

Proof. Firstly, observe that

ker(A∗0) = ran(A0)⊥ = (ran(A)∩ ran(Ã))⊥ = ker(A∗) + ker(Ã∗) = ran(Ã0)⊥ = ker(Ã∗0) ,

which means by Theorems 6.1.4 and 6.1.5 that the Krĕın–von Neumann extension A0 ⊂

A0,K is a proper maximally dissipative extension of the dual pair (A0, Ã0). Likewise,

the Krĕın–von Neumann extension Ã0 ⊂ Ã0,K is a proper maximally antidissipative

extension of the dual pair (Ã0, A0) and therefore Ã∗0,K is a proper maximally dissipative

extension of the dual pair (A0, Ã0). Let us now show that A0,K = Ã∗0,K . Since A0,K as

well as Ã∗0,K are both maximally dissipative extensions of A0, it suffices to show that
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A0,K ⊂ Ã∗0,K . To this end, let f ∈ D(A0), k1, k2 ∈ ker(A∗0) = ker(Ã∗0) and f̃ ∈ D(Ã0)

and consider

〈f + k1, Ã0,K(f̃ + k2)〉 = 〈f, Ã0f̃〉+ 〈k1, Ã0f̃〉

=〈A0f, f̃〉=〈A0f, f̃ + k2〉 = 〈A0,K(f + k1), f̃ + k2〉 ,

which shows that A0,K ⊂ Ã∗0,K . This finishes the proof. �

Example 6.2.7. Let H = L2(0, 1). As in Example 2.4.4, let 0 < γ < 1/2 and

consider the dual pair (A, Ã∗), where A := A00 and Ã := Ã00, where A00 and Ã00 are

given by

A00 : D(A00) = C∞c (0, 1), (A00f)(x) = if ′(x) +
iγ

x
f(x)

Ã00 : D(Ã00) = C∞c (0, 1), (Ã00f)(x) = if ′(x)− iγ

x
f(x) .

Remark 6.2.8. Note that we have slightly changed the notation for the preminimal

operators A00 and Ã00 as compared to previous sections. This is to avoid any confusion

with the operators A0 and Ã0 as defined in (6.2.1) and (6.2.2).

In (2.4.3), we have already computed ker(Ã∗) = span{x−γ} and ker(A∗) = span{xγ},

which implies that ran(A) = span{xγ}⊥ and ran(Ã) = span{x−γ}⊥. Now, consider the

operators Â and
̂̃
A given by

Â : D(Â) =

{
f ∈ L2(0, 1) : ∃ψ ∈ L2(0, 1) : f(x) = −ix−γ

∫ x

0

yγψ(y)dy

}
(Âf)(x) = if ′(x) +

iγ

x
f(x) = ψ(x)

̂̃
A : D(

̂̃
A) =

{
f ∈ L2(0, 1) : ∃ψ ∈ L2(0, 1) : f(x) = −ixγ

∫ x

0

y−γψ(y)dy

}
(
̂̃
Af)(x) = if ′(x)− iγ

x
f(x) = ψ(x) .

Clearly, ker(Â) = ker(
̂̃
A) = {0} as well as ran(Â) = ran(

̂̃
A) = H. Moreover, the inverse

operators Â−1 and
̂̃
A
−1

can be read off immediately from the definition of Â and
̂̃
A:

Â−1 : (Â−1ψ)(x) = −ix−γ
∫ x

0

yγψ(y)dy

̂̃
A
−1

: (
̂̃
A
−1

ψ)(x) = −ixγ
∫ x

0

y−γψ(y)dy .

96



From a direct calculation, it follows that the Hilbert–Schmidt norms of Â−1 and
̂̃
A
−1

are given by

‖Â−1‖2
HS =

1

2 + 4γ
and

∥∥∥∥̂̃A−1
∥∥∥∥2

HS

=
1

2− 4γ
,

which means in particular that Â−1 and
̂̃
A
−1

are bounded. Hence, we have that 0 ∈

ρ(Â) ∩ ρ(
̂̃
A). Next, let us argue that A00 ⊂ Â ⊂ Ã∗ and Ã00 ⊂

̂̃
A ⊂ A∗. Firstly,

observe that C∞c (0, 1) ⊂ D(Â) and C∞c (0, 1) ⊂ D(
̂̃
A), which can be seen from the fact

that for any f ∈ C∞c (0, 1), we can choose ψ±(x) := if ′(x) ± iγ
x
f(x). Thus, A00 ⊂ Â

and Ã00 ⊂
̂̃
A. ], it is obvious that D(Â) ⊂ H1

loc(0, 1) and D(
̂̃
A) ⊂ H1

loc(0, 1) and by

a direct calculation, it can be checked that for f ∈ D(Â) and f̃ ∈ D(
̂̃
A), we have

if ′(x) + iγ
x
f(x) = ψ(x) ∈ L2(0, 1) and if̃ ′(x)− iγ

x
f̃(x) = ψ̃(x) ∈ L2(0, 1), which implies

that Â ⊂ Ã∗ and
̂̃
A ⊂ A∗ (see (2.4.2) for domain and action of Ã∗ and A∗). Moreover,

since 0 ∈ ρ(Â) ∩ ρ(
̂̃
A), we get that Â and

̂̃
A are closed, which therefore implies that

A ⊂ Â and Ã ⊂ ̂̃A. Using that D(A) = Â−1ran(A) and D(Ã) =
̂̃
A
−1

ran(Ã), we obtain

the following characterization of A and Ã:

A : D(A) =

{
f ∈ L2(0, 1) : ∃ψ ⊥ xγ : f(x) = −ix−γ

∫ x

0

yγψ(y)dy

}
(Af)(x) = if ′(x) +

iγ

x
f(x) = ψ(x)

Ã : D(Ã) =

{
f ∈ L2(0, 1) : ∃ψ ⊥ x−γ : f(x) = −ixγ

∫ x

0

y−γψ(y)dy

}
(Ãf)(x) = if ′(x)− iγ

x
f(x) = ψ(x) .

Now, observe that since ker(A∗) 6⊂ ker(Ã∗), we have by Theorem 6.1.5 that the Krĕın–

von Neumann extension of A ⊂ AK would not be a proper extension of the dual pair

(A, Ã). Following the construction of the restrictions A0 ⊂ A and Ã0 ⊂ Ã as presented

in (6.2.2) and (6.2.1), we define the domains

D(A0) := Â−1(ran(A) ∩ ran(Ã)) and D(A0) :=
̂̃
A
−1

(ran(A) ∩ ran(Ã)) ,

where ran(A) ∩ ran(Ã) = span{xγ, x−γ}⊥. Moreover, observe that(
i

d

dx
± iγ

x

)
x±γ = ±2iγx±γ−1 /∈ L2(0, 1) ,
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which implies that ker(Ã∗) ∩ D(A∗) = ker(A∗) ∩ D(Ã∗) = {0}. Thus, by Lemma 6.2.4,

we get that D(A0) and D(Ã0) are dense. We therefore get

A0 : D(A0) =

{
f ∈ L2(0, 1) : ∃ψ ⊥ span{xγ, x−γ} : f(x) = −ix−γ

∫ x

0

yγψ(y)dy

}
(A0f)(x) = if ′(x) +

iγ

x
f(x) = ψ(x)

Ã0 : D(Ã0) =

{
f ∈ L2(0, 1) : ∃ψ ⊥ span{xγ, x−γ} : f(x) = −ixγ

∫ x

0

y−γψ(y)dy

}
(Ã0f)(x) = if ′(x)− iγ

x
f(x) = ψ(x) .

Moreover, by Corollary 6.2.3, Equation (6.2.4), the operators A∗0 and Ã∗0 are given by

Ã∗0 : D(Ã∗0) = D(Ã∗)+̇span{xγ}, f̃ + λxγ 7→ Ã∗f̃

A∗0 : D(A∗0) = D(A∗)+̇span{x−γ}, f + µx−γ 7→ A∗f ,

where f̃ ∈ D(Ã∗), f ∈ D(A∗) and λ, µ ∈ C. The Krĕın–von Neumann extension of

A0 ⊂ A0,K is given by

A0,K : D(A0,K) = D(A0)+̇span{xγ, x−γ}, f + λxγ + µx−γ 7→ A0f ,

where f ∈ D(A0) and λ, µ ∈ C. By Theorem 6.2.6, we know that A0,K is a proper

maximally dissipative extension of (A0, Ã0) and that A0,K = Ã∗0,K , where Ã0,K is given

by

Ã0,K : D(A0,K) = D(Ã0)+̇span{xγ, x−γ}, f̃ + λxγ + µx−γ 7→ Ã0f̃ ,

where f̃ ∈ D(Ã0) and λ, µ ∈ C.
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CHAPTER 7

Sectorial operators and the Friedrichs extension

In this chapter, we will apply the results of Chapter 5 in order to construct proper

dissipative and sectorial extensions of a given dual pair of sectorial operators.

Moreover, we will introduce the Friedrichs extension of sectorial operators and dis-

cuss some of its properties.

7.1. Sectorial operators

Let us introduce the class of operators whose numerical range is contained in a

sector:

Definition 7.1.1. Let α, β ∈ [−π, π) and α ≤ β. A densely defined operator A is

said to belong to the class Sα,β if and only if its numerical range NA is contained in

the sector {z ∈ C : α ≤ arg(z) ≤ β}, i.e.

A ∈ Sα,β :⇔ NA ⊂ {z ∈ C : α ≤ arg(z) ≤ β} .

If an operator A is an element of the class Sα,β and it has no non-trivial operator

extensions that are in the class Sα,β as well, we say that A is a maximal element of

the class Sα,β.

Remark 7.1.2. Note that this definition is only reasonable if (β − α) ≤ π, since

NA is a convex set by the Toeplitz-Hausdorff Theorem.

Example 7.1.3. According to this definition, S0,π is the set of all dissipative oper-

ators, S−π
2
,π
2

the set of all accretive operators and for 0 ≤ η < π
2
, S−η,η is the set of all

sectorial operators with semi-angle η as defined in [26], p. 280.

Later, we will introduce the Friedrichs extension of operators of class Sα,β, where

β−α < π and discuss some of its properties. In [26], this is only done for operators that

belong to the class S−η,η, where 0 ≤ η < π/2. For technical reasons, let us therefore

introduce the following terminology:
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Definition 7.1.4. If A ∈ Sα,β such that β − α < π, then A is called sectorial. If

in addition, there exists an η ∈ [0, π/2) such that A ∈ S−η,η, we call A sectorial in

the sense of Kato.

Our first result is obtained by a repeated application of Theorem 5.2.8 to an operator

of class Sα,β, for α, β ∈ [0, π] and a suitably rotated version:

Theorem 7.1.5. Let (A, Ã) be a dual pair of operators that has the common core

property. Moreover, assume that A ∈ Sα,β and let 0 ≤ α′ ≤ α and β ≤ β′ ≤ π such

that α′ 6= β′. For ϕ ∈ [−α, π − β] define

Vϕ : D(Vϕ) = D(A) ∩ D(Ã)

Vϕ =
eiϕA− e−iϕÃ

2i
�D(A)∩D(Ã) ,

which is a symmetric and non-negative operator. Denote its Krĕın–von Neumann ex-

tension by Vϕ,K. Moreover, let V ⊂ D(Ã∗)//D(A) be a linear space and let AV be

defined as in Theorem 5.2.8. Then, AV ∈ Sα′,β′ if and only if

(7.1.1) V ⊂ D(V
1/2
−α′,K) ∩ D(V

1/2
π−β′,K)

and the following two inequalities are satisfied for all v ∈ V:

Im〈v, e−iα′Ã∗v〉 ≥ ‖V 1/2
−α′,Kv‖

2

Im〈v, ei(π−β′)Ã∗v〉 ≥ ‖V 1/2
π−β′,Kv‖

2 .(7.1.2)

In the case α′ = β′ /∈ {0, π}, which of course is only possible if α = β = α′ = β′ in the

first place, the conditions that AV ∈ Sα′,β′ = Sα,α read as

V ⊂ D(V
1/2

0,K ), Im〈v, e−iαÃ∗v〉 = 0 and

Re〈v, e−iαÃ∗v〉 ≥ 1

sinα
‖V 1/2

K v‖2 ∀v ∈ V .

Proof. Since ϕ ∈ [−α, π − β] and A ∈ Sα,β we have that eiϕA is dissipative.

Moreover, e−iϕÃ is its formal adjoint and (eiϕA, e−iϕÃ) is a dual pair, which has the

common core property. Thus we may copy the reasoning of Theorem 5.2.8, where we

showed that V = A−Ã
2i

�D(A)∩D(Ã) is a non-negative symmetric operator. The proposition

now follows from the observation that the numerical range of AV will be contained in
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the sector {z ∈ C : α′ ≤ arg(z) ≤ β′} if and only if e−iα
′
AV and ei(π−β

′)AV are both

dissipative at the same time. Thus, Condition (7.1.1) and Equations (7.1.2) are just

a rephrasing of the necessary and sufficient condition given in Theorem 5.2.8 for this

case.

In the special case, where α = β = α′ = β′ observe that the dual pair (A, Ã) must be

of the form A = eiαS and Ã = e−iαS, where S is a non-negative symmetric operator.

Moreover, for any ϕ ∈ [−α, π − α], the operator Vϕ is given by Vϕ = sin(α + ϕ)S and

since D(S∗) ⊂ D(S
1/2
K ), all elements of D(Ã∗)//D(A) = D(S∗)//D(S) are in D(V

1/2
ϕ,K),

which means that Condition (7.1.1) is automatically satisfied if V ⊂ D(V
1/2

0,K ) = D(S
1/2
K ).

Now, impose the two conditions that

Im〈v, e−iαÃ∗v〉 ≥ ‖V 1/2
−α,Kv‖

2 = 0

Im〈v, ei(π−α)Ã∗v〉 = −Im〈v, e−iαÃ∗v〉 ≥ ‖V 1/2
π−α,Kv‖

2 = 0 ∀v ∈ V ,

which is equivalent to Im〈v, e−iαÃ∗v〉 = Im〈v, S∗v〉 = 0 for all v ∈ V . This ensures that

the numerical range of AV is contained in the ray {z ∈ C, arg(±z) = α}. To exclude

the possibility that {z ∈ C : arg(−z) = α} ⊂ NAV observe that AV ∈ Sα,α if and only

if AV ∈ Sα−ε,α+ε for all ε > 0. In terms of our previous result, this means that for all

ε > 0, it needs to be true that

Im〈v, eiεS∗v〉 ≥ sin ε · ‖S1/2
K v‖2

−Im〈v, e−iεS∗v〉 ≥ sin ε · ‖S1/2
K v‖2 ∀v ∈ V .

Plugging eiε = cos ε+ i sin ε into this equation and using that Im〈v, cos ε S∗v〉 = cos ε ·

Im〈v, S∗v〉 = 0 by the previous reasoning yields the condition that

Re〈v, S∗v〉 = Re〈v, e−iαÃ∗v〉 ≥ ‖S1/2
K v‖2 =

1

sinα
‖V 1/2

K v‖2 ∀v ∈ V ,

which finishes the proof. �

Remark 7.1.6 (Continuation of Remark 5.2.17). [32] describes all proper sectorial

extensions of a given dual pair of operator using intersections of operator balls. In

Remark 5.2.17, we pointed out how all proper dissipative extensions of a dual pair

could be described using an operator K ∈ B(PW+ +PW0 ,
√
M−

−1
,
√
M+) (cf. (5.2.12)).

Let us introduce qϕ(v) := Im〈v, eiϕÃ∗v〉−‖V 1/2
ϕ,Kv‖2 and letMϕ denote the corresponding
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self-adjoint operator onWϕ = (D(Ã∗)//D(A))∩D(V
1/2
ϕ,K). Moreover, let us assume that

Wϕ = W , i.e. that it is independent of ϕ and let Mϕ denote the selfadjoint operator

associated to qϕ. Moreover, let Wϕ
± denote its positive/negative spectral subspace, Wϕ

0

its kernel and Mϕ
± the corresponding positive and negative part of Mϕ. Characterizing

a proper extension of class Sα′,β′ using an operator K ∈ B(W) as done in Equation

(5.2.12), we may apply Theorems 5.2.13 and 7.1.5 in order to get that

K ∈B
(
PW−α′+

+ PW−α′0
,

√
M−α′
−

−1

,

√
M−α′

+

)
∩B

(
PWπ−β′

+
+ PWπ−β′

0
,

√
Mπ−β′
−

−1

,

√
Mπ−β′

+

)
.

7.2. Extensions of strictly positive symmetric operators and symmetric

operators with at least one real regular point

Firstly, let us apply our results in order to determine all proper sectorial and accre-

tive extensions of a positive symmetric operator. While this is a well-known result (see

e.g. [23]), we want to show that it can also be obtained from the above shown results.

Example 7.2.1 (Proper sectorial and accretive extensions of a positive symmetric

operator). Let S be a non-negative symmetric operator, where we assume that there

exists an ε > 0 such that 〈f, Sf〉 ≥ ε‖f‖2 for all f ∈ D(S). Clearly, finding all proper

sectorial and accretive extensions of (S, S) is equivalent to finding all proper extensions

of the dual pair iS ∈ Sπ
2
,π
2

and −iS that lie in the classes Sα,β, where α ∈ [0, π
2
] and

β ∈ [π
2
, π]. Clearly, iS and −iS have the common core property and for ϕ ∈ [−π

2
, π

2
] we

have that

Vϕ =
eiϕiS + e−iϕiS

2i
= cosϕ · S ,

which implies that V
1/2
ϕ,K =

√
cosϕ · S1/2

K . Moreover, it is true that [2, Lemma 2.5,

Lemma 2.7]

D(S∗) = D(S)+̇S−1
F ker(S∗)+̇ ker(S∗) = D(SF )+̇ ker(S∗)

and

D(S
1/2
K ) = D(S

1/2
F )+̇ ker(S∗) ⊃ D(SF )+̇ ker(S∗) = D(S∗) .
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This means that any v ∈ S−1
F ker(S∗)+̇ ker(S∗) can be written as v = k1 +S−1

F k2, where

k1, k2 ∈ ker(S∗). Thus, for any V ⊂ S−1
F ker(S∗)+̇ ker(S∗), observe that the set

B := {(k1, k2) ∈ ker(S∗)× ker(S∗) : k1 + S−1
F k2 ∈ V}

defines a linear relation. Moreover, since D(S∗) ⊂ D(S
1/2
K ), Condition (7.1.1) will

always be satisfied for any α, β. Thus, for any ϕ ∈ [−π
2
, π

2
] we get

Im〈v, ieiϕS∗v〉 = Im〈k1 + S−1
F k2, ie

iϕS∗(k1 + S−1
F k2)〉 = Im〈k1 + S−1

F k2, ie
iϕk2〉

= cosϕ · 〈S−1
F k2, k2〉+ Im〈k1, ie

iϕk2〉 .

On the other hand, we get

‖V 1/2
ϕ,K(k1 + S−1

F k2)‖2 = ‖
√

cos(ϕ)S
1/2
F S−1

F k2‖2 = cosϕ · 〈S−1
F k2, k2〉 .

Thus, the condition

Im〈(k1 + S−1
F k2, ie

iϕS∗(k1 + S−1
F k2)〉 ≥ ‖V 1/2

ϕ,K(k1 + S−1
F k2)‖2 ∀(k1, k2) ∈ B

for k1, k2 ∈ ker(S∗) is equivalent to the condition that

(7.2.1) Im〈k1, ie
iϕk2〉 ≥ 0 ∀(k1, k2) ∈ B .

Let us introduce the subspace B(0) := {k2 : (0, k2) ∈ B} ⊂ kerS∗ and observe that

for any (0, k2) ∈ (0,B(0)), Condition (7.2.1) is automatically satisfied. Thus it suffices

to show that Condition (7.2.1) is satisfied for all (k1, k2) ∈ B	 (0,B(0)), which is the

graph of an operator B:

Im〈k1, ie
iϕk2〉 = Im〈k1, ie

iϕBk1〉 ≥ 0 ∀(k1, k2) = (k1, Bk1) ∈ B	 (0,B(0)) = Γ(B) .

Note that B 	 (0,B(0)) denotes the orthogonal complement of (0,B(0)) in B, with

respect to the inner product

〈(k1, k2), (l1, l2)〉 = 〈k1, l1〉+ 〈k2, l2〉 ,

for (k1, k2) and (l1, l2) being elements of H ×H. This implies that B(0) is orthogonal

to the range of the operator B:

(7.2.2) B(0) ⊥ ran(B) .
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Moreover, in order that Condition (7.2.1) be satisfied it is necessary that D(B) ⊥

B(0). To see this, assume it is not true, i.e. assume that there exists a (k1, k2) ∈ B

with k1 6= 0 (which means that k1 ∈ D(B)) and (0, k̃2) ∈ B such that k1 6⊥ k̃2. Clearly,

(k1, k2 + λk̃2) ∈ B as well for any λ ∈ C. Now consider

Im〈k1, ie
iϕ(k2 + λk̃2)〉 = Im〈k1, ie

iϕk2〉+ Im(λ〈k1, ie
iϕk̃2〉) ,

which can be made an arbitrary negative number by a suitable choice of λ and thus

violates Condition (7.2.1). This means that B has to be an operator on B(0)⊥ (orthog-

onal complement in kerS∗). Thus by Theorem 7.1.5, for any α ∈ [0, π
2
] and β ∈ [π

2
, π],

a necessary and sufficient condition for AV being an element of Sα,β is given by

Im〈k, ie−iαBk〉 ≥ 0

Im〈k, iei(π−β)Bk〉 ≥ 0 ∀k ∈ D(B) ,

which means that iB ∈ Sα,β. This is formally also correct for the special case that

α = β = π
2
, i.e. for the case that we want to determine all non-negative symmetric

extensions of S. This follows from the special result as proved in the second part of

Theorem 7.1.5. Let us now show that

SB : D(SB) = D(S)+̇{k1 + S−1
F k2 : (k1, k2) ∈ B}

SB = S∗ �D(SB)

is a maximal element of Sα,β if and only if D(B)⊕B(0) = kerS∗ and B is a maximal

element of Sα,β. Thus, firstly assume that D(B) ⊕ B(0) = ker(S∗) and that B is

maximal. Then, we need to show that

ran(iSB + i) = ran(SB + 1) = H ,

since this means that iSB is maximally dissipative by Proposition 2.2.5 which in turn

implies that iSB is a maximal element of Sα,β. Let φ ∈ H such that φ ⊥ ran(SB + 1).

Since

ran(SB + 1) = (SB + 1)(D(S)+̇{k1 + S−1
F k2 : (k1, k2) ∈ B})

= ran(S + 1)+̇{k1 + (1 + S−1
F )k2 : (k1, k2) ∈ B} ,(7.2.3)
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this means in particular that φ ∈ ker(S∗+1). Moreover, since the operator 1−(SF+1)−1

is a bijection between ker(S∗) and ker(S∗ + 1) (cf. [22, Chapter 1.2.1, right before

Theorem 2.1]), there exists a unique ψ ∈ ker(S∗) such that

(7.2.4) φ = [1− (SF + 1)−1]ψ .

Now, decompose ψ = ψ1 + ψ2, where ψ1 ∈ D(B) and ψ2 ∈ B(0). Firstly, let us show

that ψ2 = 0. As ψ2 ∈ B(0) means that (0, ψ2) ∈ B, we get by Equation (7.2.3) that

(1 + S−1
F )ψ2 ∈ ran(SB + 1). Hence, since φ ⊥ ran(SB + 1), this means that

0 = 〈φ, (1 + S−1
F )ψ2〉

(7.2.4)
= 〈(1− (SF + 1)−1)(ψ1 + ψ2), (1 + S−1

F )ψ2〉

= 〈ψ1 + ψ2, (1− (SF + 1)−1)(1 + S−1
F )ψ2〉

= 〈ψ1 + ψ2, (1− (SF + 1)−1 + S−1
F − (SF + 1)−1S−1

F )ψ2〉

= 〈ψ1, ψ2〉+ ‖ψ2‖2 = ‖ψ2‖2 ,

where we have used the first resolvent identity −(SF +1)−1 +S−1
F = (SF +1)−1S−1

F for

the last step. Next, let us show that ψ1 = 0 as well. Since it is true that ψ1 ∈ D(B)

and by the above reasoning, we get that D(B) ⊥ B(0) as well as ran(B) ⊥ B(0).

Moreover, since we assume thatD(B)⊕B(0) = kerS∗, this implies that ran(B) ⊂ D(B).

Therefore, B is a densely defined operator on the Hilbert space D(B), i.e. from D(B)

into D(B). Furthermore, iB is of class Sα,β and maximal by assumption, we have that

ran(iB + i) = ran(B + 1) = D(B). Thus for all k ∈ D(B), we get

0 = 〈(1− (SF + 1)−1)ψ1, k + (1 + S−1
F )Bk〉 = 〈ψ1, (1− (SF + 1)−1)k +Bk〉

= 〈ψ1, (B + 1)k − (SF + 1)−1k〉 .

Since ran(B+1) = D(B) this means that there exists k ∈ D(B) such that (B+1)k = ψ1:

0 = 〈ψ1, ψ1〉 − 〈ψ1, (SF + 1)−1(B + 1)−1ψ1〉 ≥ ‖ψ1‖2 − ‖(SF + 1)−1ψ1‖‖(B + 1)−1ψ1‖

≥
(

1− 1

1 + ε

)
‖ψ1‖2 ,

where we have used Cauchy–Schwarz for the first estimate. For the second estimate, we

use 〈f, SFf〉 ≥ ε‖f‖2 for all f ∈ D(SF ) by assumption, implying that ‖(SF + 1)−1‖ ≤
1

1+ε
and ‖(B + 1)−1‖ ≤ 1. This implies that ψ1 = 0 from which we get that φ = 0, i.e.

ran(iSB + i) = H. Moreover, observe that the conditions that D(B)
⊥
∩ kerS∗ = B(0)
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and iB being a maximal operator of class Sα,β are optimal in the sense that they

characterize all maximal extensions of the dual pair (iS,−iS) that are of class Sα,β:

For the case that D(B) ⊕ B(0) is a proper subset of kerS∗, we could always extend

the multivalued part B(0) of the linear relation B by (D(B) ⊕ B(0))⊥ (orthogonal

complement in kerS∗), which we have shown to correspond to an operator of class

Sα,β, which obviously would be a proper extension of SB.

If on the other hand we have that iB is not a maximal operator of class Sα,β, we can

take a maximal extension of iB, denoted by iB′, which is of class Sα,β and the linear

relation

B′ = Γ(B′)⊕ (0,B(0))

corresponds to an operator SB′ ∈ Sα,β, which is maximal again by the above reasoning.

The existence of such an operator B′ follows from Proposition 7.3.3 for the sectorial

case and is obvious in the dissipative case (since otherwise, B would have already been

maximally dissipative). We thus have shown the following result:

Theorem 7.2.2. Let S be symmetric and semibounded with semibound ε > 0. Then,

for α, β ∈ [0, π], there is a one-to-one correspondence between all maximal proper ex-

tensions of iS that are of class Sα,β and all maximal operators iB of class Sα,β, that

are densely defined on an arbitrary closed subspace of kerS∗. This correspondence is

given by

D(SB) = D(S)+̇{S−1
F k : k ∈ kerS∗ ∩ D(B)⊥}+̇{k + S−1

F Bk : k ∈ D(B)}

iSB = iS∗ �D(SB) .

Example 7.2.3 (Dissipative extensions of a symmetric operator). Very similar to

the above statement, we can show a result on maximally dissipative extensions of sym-

metric operators that are boundedly invertible on their range. This could for example

be used to analyze the dissipative extensions of periodic operators or massive Dirac

operators:
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Theorem 7.2.4. Let S be a symmetric operator and let 0 ∈ ρ̂(S)7.2.1. Then, there

is a one-to-one correspondence between all maximally dissipative extensions of S and

all maximally dissipative operators B that are densely defined on an arbitrary closed

subspace of kerS∗. This correspondence is given by

D(SB) = D(S)+̇{Ŝ−1k : k ∈ kerS∗ ∩ D(B)⊥}+̇{k + Ŝ−1Bk : k ∈ D(B)}

SB = S∗ �D(SB) ,

where Ŝ is any selfadjoint extension of S such that 0 ∈ ρ(Ŝ).

Proof. By [44, Satz 2.67], there always exists a selfadjoint extension Ŝ of S such

that 0 ∈ ρ(Ŝ). Again, (S, S) has the common core property with S = S̃ being its own

formal adjoint. From this, we find that V = S−S
2i

�D(S)= 0 �D(S) on D(S), which is

essentially selfadjoint. Hence, the Krĕın–von Neumann extension of V , is given by the

zero operator VK = 0H defined on the entire Hilbert space and its square root is given

by the zero-operator too: V
1/2
K = 0H. Thus, we have for all v ∈ D(S∗)//D(S) that

v ∈ D(V
1/2
K ) = H and clearly it is true that ‖V 1/2

K v‖2 = 0 for all v ∈ D(S∗)//D(S).

Using Proposition 2.4.3 for λ = 0, we get

D(S∗) = D(S)+̇Ŝ−1 ker(S∗)+̇ kerS∗ ,

which means that there exists a one-to-one correspondence between all subspaces V ⊂

S̃−1 kerS∗+̇ kerS∗ and linear relations B = {(k1, k2) ∈ kerS∗×kerS∗ : k1+Ŝ−1k2 ∈ V}.

Thus, the condition from Theorem 5.2.8 for SV being a dissipative extension reads as:

Im〈k1 + Ŝ−1k2, S
∗(k1 + Ŝ−1k2)〉 = Im〈k1 + Ŝ−1k2, k2〉 = Im〈k1, k2〉 ≥ 0 ∀(k1, k2) ∈ B .

The condition for SB being maximally dissipative now follows from completely analo-

gous reasoning to that in the previous example. �

Example 7.2.5 (Taken from [2]). Let H = L2(R+) and consider the operator

A : D(A) = {f ∈ H2(R+), f(0) = f ′(0) = 0}, f 7→ −f ′′ + f .

The adjoint of this operator is given by

A∗ : D(A∗) = {f ∈ H2(R+)}, f 7→ −f ′′ + f

7.2.1This can easily be generalized to any symmetric operator with at least one real point in is field of regularity

107



and the Friedrichs extension AF corresponds to a Dirichlet boundary condition at the

origin:

AF : D(AF ) = {f ∈ H2(R+), f(0) = 0}, f 7→ −f ′′ + f .

It is easy to check that kerA∗ = span{e−x} and A−1
F (e−x) = 1

2
xe−x. Since kerA∗

has dimension 1, there are only two possible choices for D(B): either D(B) = {0},

which corresponds to the Friedrichs extension or D(B) = kerA∗. In the latter case, all

dissipative operators from D(B) to kerA∗ are given by the multiplication by b, where

Im b ≥ 0. Thus, all maximally dissipative extensions of A, which are different from the

Friedrichs extension, are given by

Ab : D(Ab) = D(A)+̇span

{
b

2
xe−x + e−x

}
=

{
f ∈ H2(R+), f ′(0) =

(
b

2
− 1

)
f(0)

}
f 7→ −f ′′ + f ,

where Im b ≥ 0. Finally, let us check the dissipativity of Ab by a direct calculation:

Im〈f, Abf〉 =
1

2i

[
−
∫ ∞

0

(
f(x)f ′′(x)− f ′′(x)f(x)

)
dx

]
=

1

2i

[
f(0)f ′(0)− f ′(0)f(0)

]
=

1

2i

[(
b

2
− 1

)
|f(0)|2 −

(
b

2
− 1

)
|f(0)|2

]
=

(
Im

b

2

)
|f(0)|2 ≥ 0 .

Example 7.2.6. (The Dirac-operator on the half-line; following the notation and

definitions of [45, Chapter 15]). This example is supposed to show that our results

work also in the case that the operator is not semibounded but has a real number in

its regularity domain.

Let H = L2(R+;C2) and let

τf = τ

 f1

f2

 :=

 −1 d
dx

− d
dx

1

 f1

f2

 =

 −f1 + f ′2

−f ′1 + f2

 .

Then, we define the maximal operator T on H as follows.

T : D(T ) = {f = (f1, f2)t ∈ L2(R+;C2) :

f is absolutely continuous in R+, τf ∈ L2(R+;C2)}

f 7→ τf .
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The minimal operator T0 is given by

T0 : D(T0) =

f ∈ D(T ) :

 f1(0)

f2(0)

 =

 0

0


f 7→ τf .

It holds that T0 is symmetric and that (−1, 1) ⊂ ρ̂(T0). Moreover, it holds that T ∗0 = T .

Finally, we need one self-adjoint extension of T0 with zero in its resolvent set. To this

end, consider

T̂ : D(T̂ ) =
{
f = (f1, f2)t ∈ D(T ) : f2(0) = 0

}
f 7→ τf ,

which has the desired properties. A short calculation shows that

kerT ∗0 = kerT = span


 e−x

−e−x


and

T̂−1

 e−x

−e−x

 =

 −e−x
0

 .

As in Example 7.2.5, we have that dim kerT ∗0 = 1. Therefore, there are only two

possibilities for the choice of D(B): either D(B) = {0}, which corresponds to T̂ or

D(B) = kerT ∗0 . Thus, all maximally dissipative extensions of T0 that are different from

T̂ are given by

T̂b : D(T̂b) = D(T0)+̇span


 (1− b)e−x

−e−x


= {f = (f1, f2)t ∈ D(T ) : f1(0) = (b− 1)f2(0)}

f 7→ τf ,
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where Im b ≥ 0. Again, let us verify that these operators are dissipative, i.e. for all

f ∈ D(T̂b), consider

Im

〈 f1

f2

 ,

 −1 d
dx

− d
dx

1

 f1

f2

〉 =
1

2i
[〈f1, f

′
2〉 − 〈f ′2, f1〉+ 〈f ′1, f2〉 − 〈f2, f

′
1〉]

=
1

2i
[f1(0)f2(0)− f1(0)f2(0)] = (Im b)|f2(0)|2 ≥ 0 .
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7.3. The Friedrichs extension in the common core case

For convenience, let us recall the definition of a closable quadratic form:

Definition 7.3.1 (Closable quadratic form, cf. [26, VI, §1, Sec. 4]). Let q be a

quadratic form. Then, q is called closable if and only if for any sequence {fn}n ⊂ D(q),

we have that if

‖fn‖
n→∞−→ 0 and q(fn − fm)

n,m→∞−→ 0 ,

then this implies that

q(fn)
n→∞−→ 0 .

Remark 7.3.2. If q is closable, its closure q′ is given by [26, VI, Thm. 1.17]

q′ : D(q′) = {f ∈ H : ∃{fn}n ⊂ D(q) s.t. ‖fn − f‖
n→∞−→ 0 and q(fn − fm)

n,m→∞−→ 0}

q′(f) = lim
n→∞

q(fn) .

For an operator A which is of class Sα,β with β−α < π, we can define its Friedrichs

extension AF . In the literature (e.g. in [26]), this is usually done for sectorial operators

with angle η, i.e. for operators which have numerical range contained in the set {z ∈

C : −η ≤ arg(z) ≤ η} for some 0 ≤ η < π
2
:

Proposition 7.3.3. Let T be sectorial in the sense of Kato and let sT be the

sesquilinear form induced by T , i.e.

sT : D(sT ) = D(T )×D(T )

(ϕ, ψ) 7→ sT (ϕ, ψ) := 〈ϕ, Tψ〉 .

Then, sT is closable, where we denote its closure by sTF . The form domain Q(T ) of

sTF is defined as Q(T ) := D(T )
‖·‖T

, where the norm ‖ · ‖T is given by

(7.3.1) ‖ψ‖2
T := ‖ψ‖2 + Re〈ψ, Tψ〉 .
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The Friedrichs extension of T — denoted by TF — is the operator associated to sTF ,

i.e. it is given by

TF : D(TF ) = {f ∈ Q(T ) : ∃w ∈ H s.t. sTF (f, g) = 〈w, g〉 ∀g ∈ Q(T )}

f 7→ w .

Here, sTF (·, ·) denotes the sesquilinear form associated to sTF that can be obtained by

polarization.

The operator TF is maximally sectorial and the closures of the numerical ranges of

T and TF coincide.

Moreover, we have the following description of T ∗F :

T ∗F : D(T ∗F ) = Q(T ) ∩ D(T ∗)

T ∗F = T ∗ �D(T ∗F ) .(7.3.2)

Proof. For the construction of the Friedrichs extension, we refer to [26, VI, The-

orem 1.27, Theorem 2.1, Corollary 2.4 and VI, §2.3]. For (7.3.2), cf. [7, Remarks right

after Thm. 1]. �

Let us now define the Friedrichs extension of an arbitrary sectorial operator T . The

(mathematically almost trivial) idea is to rotate such an operator by multiplying it by

a suitable phase eiϕ such that one obtains an operator eiϕT that is sectorial in the sense

of Kato.

Definition 7.3.4. Let T ∈ Sα,β with β − α < π and let eiϕ be such that eiϕT is

sectorial in the sense of Kato. The Friedrichs extension of T is defined as

TF := e−iϕ
(
eiϕT

)
F
,

where (eiϕT )F denotes the Friedrichs extension of the operator eiϕT that is sectorial in

the sense of Kato as it is defined in [26, p. 280].

The following lemma guarantees that the Friedrichs extension does not depend on

the specific choice of ϕ as long as eiϕT is sectorial in the sense of Kato:
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Lemma 7.3.5. Let S be an operator which is sectorial in the sense of Kato with

semi-angle η < π
2
, i.e.

(7.3.3) |Im〈ψ, Sψ〉| ≤ tan η · Re〈ψ, Sψ〉 for all ψ ∈ D(S) .

Moreover, let ϕ be such that | ± η + ϕ| < π
2
, which means that eiϕS is still sectorial.

We then get that

(7.3.4)
(
eiϕS

)
F

= eiϕSF .

Proof. This follows from the fact that the norms induced by the real parts of S

and eiϕS as defined in (7.3.1) are equivalent. For simplicity, assume that ϕ ≥ 0. Since

Re〈ψ, eiϕSψ〉 = cosϕ · Re〈ψ, Sψ〉 − sinϕ · Im〈ψ, Sψ〉

≥ cosϕ · Re〈ψ, Sψ〉 − sinϕ · |Im〈ψ, Sψ〉|
(7.3.3)

≥ cos(η + ϕ)

cos η
Re〈ψ, Sψ〉

and

Re〈ψ, eiϕSψ〉 = cosϕ · Re〈ψ, Sψ〉 − sinϕ · Im〈ψ, Sψ〉

≤ cosϕ · Re〈ψ, Sψ〉+ sinϕ · |Im〈ψ, Sψ〉|
(7.3.3)

≤ cos(η − ϕ)

cos η
Re〈ψ, Sψ〉

we get thatQ(S) = Q(eiϕS), using that η+ϕ < π
2
. Moreover, sinceD(S∗) = D((eiϕS)∗),

the lemma follows from (7.3.2). �

Remark 7.3.6. With this generalization of the Friedrichs extension for any operator

T ∈ Sα,β with β − α < π and the previous lemma, we get that

(7.3.5) (eiϕT )F = eiϕTF ,

where ϕ ∈ [0, 2π) is arbitrary.

For the main theorem of this section, we will need the following result:

Lemma 7.3.7. Let S0 be sectorial and let S be its closure: S = S0. Then, the

Friedrichs extension of S0, which we denote by S0,F and the Friedrichs extension of S,

denoted by SF coincide: S0,F = SF .
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Proof. The fact that S0 ⊂ S implies that S0,F ⊂ SF by construction of the

Friedrichs extensions of both operators. On the other hand S0 ⊂ S0,F implies that

S∗0,F ⊂ S∗0 = S∗, from which we conclude that S ⊂ S0,F . But again we may argue

that this implies SF ⊂ (S0,F )F , where (S0,F )F denotes the Friedrichs extension of S0,F .

However, by [26, VI, Thm. 2.9], we know that S0,F = (S0,F )F , from which it follows

that SF ⊂ S0,F and thus the lemma. �

Let us now show that for a dual pair of sectorial operators (T, T̃ ) that has the

common core property we have that TF = T̃ ∗F .

Theorem 7.3.8. Let (T, T̃ ) be a dual pair of operators, which has the common core

property. Moreover, assume that T is of class Sα,β such that β−α < π and let T0 and T̃0

denote the corresponding restrictions of T and T̃ to a common core D ⊂ D(T )∩D(T̃ ).

Then we have TF = T̃ ∗F . In particular TF is a proper maximal class Sα,β extension of

the dual pair (T, T̃ ).

Proof. Since we have that β−α < π, there always exists a complex phase eiϑ such

that S := eiϑT and S̃ := e−iϑT̃ are sectorial in the sense of Kato, i.e. of class S−η,η

for some η < π
2
. Let S0 and S̃0 denote the corresponding restrictions of S and S̃ to a

common core D ⊂ (D(T ) ∩ D(T̃ )). Since T has the common core property, it is true

that

S0 = S and S̃0 = S̃ .

The sesquilinear forms induced by S0 and S̃0 are given by

sS0 : D(sS0) = D(S0)×D(S0)

sS0(ϕ, ψ) = 〈ϕ, S0ψ〉

sS̃0
: D(sS̃0

) = D(S̃0)×D(S̃0) = D(S0)×D(S0) = D(sS0)

sS̃0
(ϕ, ψ) = 〈ϕ, S̃0ψ〉 .
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and their real parts as defined in [26, VI, §1.2], can be shown to be equal:

sReS0
(ϕ, ψ) =

1

2
(sS0(ϕ, ψ) + s∗S0

(ϕ, ψ)) =
1

2
(sS0(ϕ, ψ) + sS0(ψ, ϕ))

=
1

2
(〈ϕ, S0ψ〉+ 〈S0ϕ, ψ〉) =

1

2
(〈ϕ, S̃0ψ〉+ 〈S̃0ϕ, ψ〉)

=
1

2
(sS̃0

(ϕ, ψ) + sS̃0
(ψ, ϕ)) =

1

2
(sS̃0

(ϕ, ψ) + s∗
S̃0

(ϕ, ψ))

= sRe
S̃0

(ϕ, ψ) .

Note that the adjoint form s∗S0
is defined via s∗S0

(ϕ, ψ) = sS0(ψ, ϕ). Now, let ‖ · ‖S0 and

‖ · ‖S̃0
denote the norms induced by the real parts of the sesquilinear forms sS0 and sS̃0

:

‖ψ‖2
S0

= ‖ψ‖2 + sReS0
(ψ, ψ) = ‖ψ‖2 + sRe

S̃0
(ψ, ψ) = ‖ψ‖2

S̃0
,

which are equal by the above reasoning. Then

Q(S0) := D(S0)
‖·‖S0

and

Q(S̃0) := D(S̃0)
‖·‖

S̃0

are equal, i.e. Q(S0) = Q(S̃0). Let sS0,F
and sS̃0,F

denote the sesquilinear forms

associated to the closure of the quadratic forms induced by sS0 and sS̃0
. By Proposition

7.3.3, we know that they give rise to two maximally sectorial operators S0,F and S̃0,F .

By construction, we know that for any ϕ ∈ Q(S0) and for any ψ ∈ Q(S0) there exist

two sequences {ϕn}n ⊂ D(S0) and {ψn}n ⊂ D(S0) such that

ϕn → ϕ and ψn → ψ and 〈ϕn, S0ψn〉 → sS0,F
(ϕ, ψ) .

Hence, for all ϕ, ψ ∈ Q(S0) = Q(S̃0)

sS0,F
(ϕ, ψ) = lim

n→∞
〈ϕn, S0ψn〉 = lim

n→∞
〈S̃0ϕn, ψn〉

= lim
n→∞
〈ψn, S̃0ϕn〉 = sS̃0,F

(ψ, ϕ) = s∗
S̃0,F

(ϕ, ψ) .

But, from [26, VI, Thm. 2.5] it follows that s∗
S̃0,F

= sS̃∗0,F
, which implies that S0,F = S̃∗0,F

and by Lemma 7.3.7, this implies that

(7.3.6) SF = S̃∗F .
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Since S ⊂ SF and S̃ ⊂ S̃F , respectively S̃∗F ⊂ S̃∗, this yields S ⊂ SF
(7.3.6)

= S̃∗F ⊂ S̃∗,

which — after a suitable multiplication by e−iϑ is the desired result. �

Theorem 7.3.9. Let (T, T̃ ) be a dual pair of sectorial operators with the common

core property. Let TF be the Friedrichs extension of T . Then for all ϕ ∈ [0, 2π) such

that eiϕT is dissipative and for all v ∈ D(TF ) it is true that

Im〈v, eiϕT̃ ∗v〉 = Im〈v, eiϕTFv〉 = ‖V 1/2
ϕ,Kv‖

2 = ‖V 1/2
ϕ,F v‖

2 ,

where Vϕ,F and Vϕ,K are the Friedrichs and the Krĕın extension of

Vϕ :=
1

2i
(eiϕT − e−iϕT̃ ) �D(T )∩D(T̃ ) .

This implies in particular that D(TF ) ⊂ D(V
1/2
ϕ,F ). Moreover, this is equivalent to saying

that the quadratic form qϕ as defined by

qϕ(v) := Im〈v, eiϕT̃ ∗v〉 − ‖V 1/2
ϕ,Kv‖

2

(cf. Equation (5.2.9)) vanishes identically on D(TF ), i.e.

qϕ �D(TF )≡ 0 .

Proof. Firstly, observe that by Lemma 7.3.5, we only have to consider the case

ϕ = 0, which is why will drop the index ϕ from now on. Moreover, as we will show

in Lemma 9.1.2, we have that ‖V 1/2
K v‖2 = ‖V 1/2

F v‖2 for all v ∈ D(V
1/2
F ). Now, let us

define T0 := T �D(T )∩D(T̃ ) and T̃0 := T̃ �D(T )∩D(T̃ ) and let v ∈ D(TF ). This means that

there exists a sequence {vn}n ⊂ D(T ) such that

vn → v and 〈vn, T vn〉 → 〈v, TFv〉

and thus in particular

Im〈vn, T vn〉 → Im〈v, TFv〉 .

By Lemma 7.3.7, we may choose {vn}n even such that {vn}n ⊂ D(T0). By Theorem

7.3.8, we know that TF ⊂ T̃ ∗ and thus

Im〈v, T̃ ∗v〉 = Im〈v, TFv〉 = lim
n→∞

Im〈vn, T0vn〉 = lim
n→∞

1

2i
(〈vn, T0vn〉 − 〈T0vn, vn〉)

= lim
n→∞

1

2i

(
〈vn, T0vn〉 − 〈vn, T̃0vn〉

)
= lim

n→∞
〈vn, V0vn〉 .
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Since vn → v and we know that 〈vn, V0vn〉 converges, this implies that v ∈ D(V
1/2
F ) and

that limn→∞〈vn, V0vn〉 = ‖V 1/2
F v‖2 from which follows that

Im〈v, T̃ ∗v〉 = ‖V 1/2
F v‖2 for all v ∈ D(TF ) ,

which finishes the proof. �

Corollary 7.3.10. Let T and T̃ satisfy the assumptions of Theorem 7.3.9 and let

ϕ ∈ [0, 2π) be such that eiϕT is still dissipative. In addition, assume that

dimD(T̃ ∗)//D(T ) <∞ .

Then, for Wϕ
+,W

ϕ
0 and Wϕ

− as defined in Theorem 5.2.13 for qϕ, we get

(7.3.7) dimWϕ
+ ≤ dimWϕ

−

as well as

(7.3.8) dimWϕ
+ + dimWϕ

0 = dim ker(T ∗ − i) .

Proof. Since (eiϕT, e−iϕT̃ ) is a dual pair satisfying the conditions of this corollary,

and by (7.3.5), it again suffices to only consider the case ϕ = 0. By Theorem 7.3.8, we

know that the Friedrichs extension TF is a proper maximally dissipative extension of

the dual pair T and T̃ . Moreover, from Theorem 5.2.13 it follows that there exists a

contraction from W+ into W− such that

D(TF ) = D(T )+̇{(1 +
√
M−

−1
C
√
M+)w+, w+ ∈ W+}+̇W0 .

For any (1 +
√
M−

−1
C
√
M+)w+ + w0, with w+ ∈ W+ and w0 ∈ W0, we have shown

that

q((1 +
√
M−

−1
C
√
M+)w+ + w0)

(5.2.11)
= 〈

√
M+w+, (1− C∗C)

√
M+w+〉 .

On the other hand, by Theorem 7.3.9, it is true that q �D(TF )≡ 0, which means that

the contraction C has to be an isometry from W+ into W− and since isometries are

injective, it immediately follows that dimW+ ≤ dimW−.
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Equation (7.3.8) now follows from the fact that TF is a maximally dissipative proper

extension of the dual pair T and T̃ . Using Lemma 2.3.8, we get that

dimD(TF )/D(T ) = dim ker(T ∗ − i)

and since

dimD(TF )/D(T ) = dim
(
{(1 +

√
M−

−1
C
√
M+)w+, w+ ∈ W+}+̇W0

)
= dimW+ + dimW0

the result follows. �

Example 7.3.11. For γ > 0, consider the dual pair of differential operators (A0, Ã0):

A0 : D(A0) = C∞0 (0, 1)

(A0f)(x) = −f ′′(x) +
iγ

x2
f(x)

Ã0 : D(Ã0) = C∞0 (0, 1)

(Ã0f)(x) = −f ′′(x)− iγ

x2
f(x) .

Moreover, define A := A0 and Ã := Ã0, which means that the dual pair (A, Ã) has the

common core property by construction. Since

〈f, A0f〉 =

∫ 1

0

f(x)

(
−f ′′(x) +

iγ

x2
f(x)

)
dx =

∫ 1

0

|f ′(x)|2dx+ iγ

∫ 1

0

|f(x)|2

x2
dx

for all f ∈ C∞c (0, 1), we have that NA ⊂ {z ∈ C : Rez ≥ π2, Imz ≥ γ}, where the

lower bound for the real part of the numerical range is estimated by the first Dirichlet

eigenvalue of the Laplacian on the interval and the estimate for the imaginary part is

an immediate consequence of 1
x
> 1 for x ∈ (0, 1). This implies that A is of class S0,π

2

and that 0 ∈ ρ̂(A). Let us now determine the Friedrichs extension of A. To this end,

consider the real part of the form induced by B0 := e−i
π
4A0:

‖f‖2
B0

= ‖f‖2 + Re〈f, e−i
π
4A0f〉 = ‖f‖2 +

√
2

2

(
‖f ′‖2 + γ

∫ 1

0

|f(x)|2

x2
dx

)
.(7.3.9)

This can be shown to be equivalent to the first Sobolev norm:

(7.3.10)

√
2

2
(‖f‖2 + ‖f ′‖2) ≤ ‖ψ‖2

B0
≤ max

{
1,

√
2

2
+ 2
√

2γ

}
(‖f‖2 + ‖f ′‖2) ,
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where the second inequality follows from an application of Hardy’s inequality in order

to estimate
∫ 1

0
|f(x)|2
x2 dx. Thus, we have that the form domain of the Friedrichs extension

AF is given by

(7.3.11) Q(AF ) = C∞0 (0, 1)
‖·‖B0 = H1

0 (0, 1) ,

i.e. the first Sobolev space with Dirichlet boundary conditions at 0 and 1. A calculation

— using Formula (2.4.1) for λ = 0 — shows that we have to distinguish two cases for

D(Ã∗):

• The case γ <
√

3. Define the numbers ω± := 1±
√

1+4iγ
2

. Then we get

D(Ã∗) = D(A)+̇span{xω+ , xω−}+̇span{xω++2, xω−+2} .

• For the case γ ≥
√

3, we get

D(Ã∗) = D(A)+̇span{xω+}+̇span{xω++2} ,

because γ ≥
√

3 implies that Reω− ≤ −1
2
, from which follows that xω− /∈

L2(0, 1).

Also, observe that Ã∗ = JA∗J , where the conjugation J is defined as (Jf)(x) := f(x).

From this it immediately follows that D(A∗) = JD(Ã∗) = {f : f ∈ D(Ã∗)}. Using

Equation (7.3.11) and that D(AF ) = D(Ã∗F ) = Q(AF )∩D(Ã∗), where the first equality

follows from Theorem 7.3.8 and the second from (7.3.2), we get

• For γ <
√

3:

D(AF ) = D(A)+̇span{xω+ − xω++2, xω+ − xω−+2} .

• For γ ≥
√

3:

D(AF ) = D(A)+̇span{xω+ − xω++2} .

Now, let us apply the results of Theorem 5.2.8 and Theorem 7.1.5 in order to construct

sectorial extensions of the dual pair (A, Ã). To this end, define Aϕ := eiϕA and Ãϕ :=

e−iϕÃ for ϕ ∈
[
0, π

2

]
. As in Theorem 7.1.5, define the operators Vϕ := 1

2i
(Aϕ − Ãϕ) �D,

where D is a common core for Aϕ and Ãϕ as its domain (we may pick e.g. D = C∞0 (0, 1)).

A calculation shows that for any f ∈ C∞0 (0, 1) we have that

(Vϕf) (x) = −(sinϕ)f ′′(x) + (cosϕ)
γf(x)

x2
.
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Observe that for ϕ = 0, the operator Vϕ=0 is essentially selfadjoint, with its unique

selfadjoint extension being the maximal multiplication operator by the function γx−2.

For ϕ 6= 0, firstly observe that the norm induced by Vϕ is equivalent to the first Sobolev

norm. This follows from completely analogous reasoning to that in Equations (7.3.9)

and (7.3.10). Hence, we get

(7.3.12) Q(Vϕ,F ) = H1
0 (0, 1) for all ϕ ∈ (0, π/2] .

Moreover, it is not very hard to check that 〈f, Vϕf〉 ≥ γ‖f‖2 for all ϕ ∈ [0, π/2] and

for all f ∈ C∞0 (0, 1), which implies that the form domain of the Krĕın–von Neumann

extension of Vϕ is given by

(7.3.13) Q(Vϕ,K) = Q(Vϕ,F )+̇ kerV ∗ϕ for all ϕ ∈ (0, π/2] .

Moreover, it can be shown that

kerV ∗ϕ =

span
{
x

1+
√

1+4γ cotϕ
2 , x

1−
√

1+4γ cotϕ
2

}
if cotϕ < 3

4γ
,

span
{
x

1+
√

1+4γ cotϕ
2

}
else .

Now, define kϕ(x) := x
1+
√

1+4γ cotϕ
2 and observe that for any f ∈ (D(Ã∗)//D(A)) ∩

D(V
1/2
ϕ,K), the following is true:

Im〈f, eiϕÃ∗f〉 − ‖V 1/2
ϕ,Kf‖

2 = Im〈f, eiϕÃ∗f〉 − ‖V 1/2
ϕ,F (f − f(1)kϕ)‖2 ,

where we have decomposed f(x) = (f(x)− f(1)kϕ(x))︸ ︷︷ ︸
∈Q(VF )

+ f(1)kϕ(x)︸ ︷︷ ︸
∈kerV ∗ϕ

according to Equa-

tion (7.3.13). Note that this decomposition is independent of whether x
1−
√

1+4γ cotϕ
2 is in

kerV ∗ϕ or not, since this function never matches the required boundary conditions at 0.

Also, observe that for γ ≥
√

3, we have that D(Ã∗)//D(A) ⊂ D(V
1/2
K ), but for γ <

√
3

note that xω− /∈ D(V
1/2
ϕ,K), which yields

(7.3.14) (D(Ã∗)//D(A)) ∩ D(V
1/2
ϕ,K) = D(A)+̇span{xω+ , xω++2, xω−+2} .

A calculation now shows that for all f ∈ (D(Ã∗)//D(A)) ∩ D(V
1/2
ϕ,K), we can simplify

qϕ(f) :=Im〈f, eiϕÃ∗f〉 − ‖V 1/2
ϕ,F (f − f(1)kϕ)‖2

=− Im
(
f(1)eiϕf ′(1)

)
+ |f(1)|2 sinϕ

1 +
√

1 + 4γ cotϕ

2
.(7.3.15)
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By formally letting ϕ→ 0, we also obtain the correct expression for the case ϕ = 0

(cf. Equation (5.4.8) after an integration by parts), which we will include from now on.

Also, note that the sesquilinear form, which is associated to qϕ on (D(Ã∗)//D(A)) ∩

D(V
1/2
ϕ,K) is given by:

(7.3.16) sϕ(f, g) =
−f(1)eiϕg′(1) + f ′(1)e−iϕg(1)

2i
+ f(1)g(1) sinϕ

1 +
√

1 + 4γ cotϕ

2
.

Let us now discuss the two cases depending on the value of γ:

• The case γ <
√

3: Since dim ker Ã∗ = 2, this means that any maximal extension

of A needs to be two-dimensional. Also, since A is sectorial, we know by

Corollary 7.3.10 that dimWϕ
+ + dimWϕ

0 = 2, which together with the fact that

dim
((
D(Ã∗)/D(A)

)
∩ D(V

1/2
ϕ,K)

)
= 3

implies that dimWϕ
− = 1. Here, the additional index ϕ for Wϕ

∗ , where ∗ ∈

{+, 0,−}, indicates the spectral subspaces as defined above for the selfadjoint

operators Mϕ associated to the quadratic forms qϕ. Another consequence of

Corollary 7.3.10 is that dimWϕ
+ ≤ 1, which readily implies that 1 ≤ dimWϕ

0 ≤

2. From the expression of the sesquilinear form sϕ given in Equation (7.3.16), it

can be directly seen that a function χ ∈ span{xω+ , xω++2, xω−+2} with χ(1) =

χ′(1) = 0 has to lie in kerMϕ. It can be easily verified that the function

χ(x) := (ω+ − ω− − 2)(xω+ − xω++2)− (ω+ − ω+ − 2)(xω+ − xω−+2)

satisfies these conditions and thus χ ∈ kerMϕ for all ϕ ∈ [0, π/2]. Moreover,

define the two functions

ψ(x) :=
(2 + ω+)xω+ − ω+x

ω++2

2 + ω+ − ω+

and φ(x) :=
−xω+ + xω++2

2 + ω+ − ω+

,(7.3.17)

which satisfy the boundary conditions

ψ(1) = 1 ψ′(1) = 0

φ(1) = 0 φ′(1) = 1 .

Now, observe that for any ϕ ∈ [0, π/2], we have

q(ψ − ie−iϕεφ) = ε+ sinϕ
1 +
√

1 + 4γ cotϕ

2
,
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which certainly is positive, if we choose ε > 0. It follows that dimWϕ
+ ≥ 1

and consequently dimWϕ
+ = dimWϕ

0 = 1. As we already have established that

χ ∈ kerMϕ, this implies that Wϕ
0 = kerMϕ = span{χ}. By Theorem 5.2.13,

this implies that any proper maximally dissipative extension of Aϕ must have

span{χ} in its domain and since the extension has to be two-dimensional, it

also needs to contain a suitable linear combination of ψ and φ, whose structure

we will discuss after having treated the case γ ≥
√

3.

• The case γ ≥
√

3: Since dim ker Ã∗ = 1 in this case, this means that any max-

imal extension of A needs to be one-dimensional. By analogous reasoning to

that in the case γ <
√

3, we may conclude that dimWϕ
+ + dimWϕ

0 = 1. More-

over, the fact that dim((D(Ã∗)/D(A))∩D(V
1/2
K )) = 2 implies that dimWϕ

− = 1.

In order to determine dimWϕ
+, observe that the functions ψ and φ as defined in

Equation (7.3.17), can also be defined for the case γ ≥
√

3 and they still have

the property that ψ, φ ∈ (D(Ã∗)//D(A)) ∩ D(V
1/2
K ). Thus, by mimicking the

reasoning for the case γ <
√

3, where we have considered q(ψ−ie−iϕεφ) ≥ ε > 0,

we may again conclude that dimWϕ
+ = 1 and consequently that dimWϕ

0 = 0

for all ϕ ∈ [0, π/2]. Since kerMϕ is trivial in this case, all proper maximally

dissipative extensions have to be suitable linear combinations of ψ and φ, which

we will discuss next.

Firstly, let us exclude the case ϕ = 0, which needs to be treated separately. To begin

with, look at linear combinations of ψ and φ that are of the form

ξρ := ρψ + φ ,

where ρ ∈ C has to be determined. Note that ρ = 0 corresponds to an element in the

domain of the Friedrichs extension. Plugging ξρ into the Equation for qϕ as given in

(7.3.15), we get — after a short calculation — that qϕ(ξρ) ≥ 0 if and only if

(7.3.18)

∣∣∣∣ρ+
ieiϕ

2κ(ϕ)

∣∣∣∣ ≥ 1

2κ(ϕ)
,

where the function κ(ϕ) is given by

κ(ϕ) = sinϕ · k′ϕ(1) = sinϕ
1 +
√

1 + 4γ cotϕ

2
.

122



Moreover, for the case ϕ = 0 we get that q0(ξρ) ≥ 0 if and only if

Imρ ≥ 0 .

Finally, we have to include the case ξ∞ := ψ, for which we get qϕ(ξ∞) = κ(ϕ) ≥ 0 for

all ϕ ∈ [0, π/2].

We thus have found a full description of all proper maximally dissipative and max-

imally sectorial extensions of the dual pair (A, Ã):

• For the case γ <
√

3 all proper maximally dissipative extensions of (A, Ã) are

given by

Aρ : D(Aρ) = D(A)+̇span{ξρ}+̇span{χ}

Aρ = Ã∗ �D(Aρ) ,(7.3.19)

where

(7.3.20) ρ ∈ {z ∈ C : Imz ≥ 0} ∪ {∞} .

If in addition, we require that the numerical range of Aρ is contained in the

sector S0,π−ϕ = {z ∈ C : 0 ≤ arg z ≤ π−ϕ}, where ϕ ∈ (0, π/2], the parameter

ρ has to satisfy

(7.3.21) ρ ∈
(
{z ∈ C : Imz ≥ 0} ∩

{
z ∈ C :

∣∣∣∣z +
ieiϕ

2κ(ϕ)

∣∣∣∣ ≥ 1

2κ(ϕ)

})
∪ {∞} .

• For the case γ ≥
√

3, we can describe all proper maximally dissipative exten-

sions of (A, Ã) as follows:

Aρ : D(Aρ) = D(A)+̇span{ξρ}

Aρ = Ã∗ �D(Aρ) ,(7.3.22)

where ρ has to satisfy (7.3.20). If we require in addition that the numerical

range of Aϕ be contained in S0,π−ϕ, Condition (7.3.21) has to be satisfied as

well.

For the case γ = 1, Figures 1 and 2 display the sets (upper figure) of ρ ∈ C such that the

numerical range of the operator Aρ is contained in the sector S0,π−ϕ (lower figure). For

any fixed ϕ ∈
(
0, π

2

]
, one obtains this set by intersecting the closed upper half plane

with the exterior of the open circle having center point equal to − ieiϕ

2κ(ϕ)
and passing
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through the origin. The set C :=
{
− ieiϕ

2κ(ϕ)
: ϕ ∈

(
0, π

2

]}
is shown in purple on these

figures. The center point − ieiϕ

2κ(ϕ)
can be obtained by intersecting C with the straight

line, which encloses an angle of ϕ with the negative imaginary axis. Observe that ρ = 0,

which by construction describes the Friedrichs extension, is the unique point, which is

contained in the intersection of the boundaries of the sets

Kϕ :=

{
z ∈ C :

∣∣∣∣z +
ieiϕ

2κ(ϕ)

∣∣∣∣ ≥ 1

2κ(ϕ)

}
∪ {∞}

for ϕ ∈ (0, π/2] and

K0 := {z ∈ C : Imz ≥ 0} ∪ {∞} .

This is a consequence of Theorem 7.3.9, which states that the quadratic form qϕ has

to vanish identically for all elements in the domain of the Friedrichs extension for all

ϕ. However, the quadratic form vanishing for ξρ corresponds to ρ being an element of

∂Kϕ.
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Im(ρ)

Re(ρ)ϕ

•
••

•

Im(z)

Re(z)
ϕ

Figure 1. The upper figure depicts the set of all ρ such that Aρ has numerical range

contained in the sector S0,π2
, which is shown in the lower figure. This means that

ϕ = π
2 .
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Im(ρ)

Re(ρ)
ϕ
•
••

•

Im(z)

Re(z)
ϕ

Figure 2. The upper figure depicts the set of all ρ such that Aρ has numerical range

contained in the sector S0, 3π4
, which is shown in the lower figure. This means that

ϕ = π
4 .
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CHAPTER 8

A generalized Birman–Krĕın–Vishik theory for sectorial

operators

In the following, we are going to develop an analog of the Birman–Krĕın–Vishik

theory of selfadjoint extensions, where we want to define a partial order in the imagi-

nary parts of the different extensions of a dual pair of sectorial operators. If the dual

pair (A, Ã) under consideration has the common core property, we have seen that the

“imaginary part” of A can be defined as V := (2i)−1(A−Ã) �D, where D is the common

core. It turns out that the proper maximally dissipative extensions of (A, Ã) can be

parametrized by auxiliary operators D that map from a subspace of ker Ã∗ ∩ D(V
1/2
K )

into kerA∗. We will denote these extensions by AD. After that, we will show that

— provided it is closable — the closure of the quadratic form f 7→ Im〈f, ADf〉 corre-

sponds to a non-negative selfadjoint extension of the imaginary part V . This enables

us to apply the results of Birman–Krĕın–Vishik in order to define an order between the

imaginary parts of the extensions AD. In order to present our result a way similar to

Proposition 1.1, we need to introduce a modified sesquilinear form.

Definition 8.1. Let (A, Ã) be a dual pair which has the common core property,

where 0 ∈ ρ̂(A). Moreover, assume that A is sectorial and dissipative. Let us define the

following non-Hermitian sesquilinear form:

[·, ·] : D(V
1/2
K )×H → C

[f, g] := 〈f, g〉 − 2i〈V 1/2
K f, V

1/2
K A−1

F g〉

Since AF is maximally dissipative, we get D(AF ) ⊂ D(V
1/2
K ), which means that [·, ·]

is well-defined. Moreover, for any subset A ⊂ D(V
1/2
K ), let us define its orthogonal

companion A[⊥] as

A[⊥] := {g ∈ H : [f, g] = 0 for all f ∈ A} .
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Remark 8.2. It is not necessary to compute V
1/2
K explicitly in order to determine

[f, g], as it is sufficient to know the action of the quadratic form ψ 7→ ‖V 1/2
K ψ‖2. The

value of 〈V 1/2
K f, V

1/2
K A−1

F g〉 can then be obtained by polarization.

Since we have chosen to investigate extensions of dissipative sectorial operators, let

us make the following convention:

Convention 8.3. When speaking of a sectorial operator A ∈ Sα,β, where (β−α) <

π, let us assume once and for all that α, β ∈ [0, π].

Let us now use auxiliary operators D from ker Ã∗∩D(V
1/2
K ) to kerA∗ and subspaces

M of (kerA∗ ∩ D(D)[⊥]) in order to parametrize the proper dissipative extensions of

(A, Ã):

Theorem 8.4. Let (A, Ã) be a dual pair with common core property, where A is

sectorial and 0 ∈ ρ̂(A). Then all proper dissipative extensions of (A, Ã) can be described

by all pairs of the form (D,M), where

• D is an operator from ker Ã∗ ∩ D(V
1/2
K ) to kerA∗ that satisfies

(8.1) Im[k̃, Dk̃] ≥ ‖V 1/2
K k̃‖2 for all k̃ ∈ D(D)

• M ⊂
(
kerA∗ ∩ D(D)[⊥]

)
.

The corresponding dissipative extensions can be described by

AD,M : D(AD,M) = D(A)+̇{A−1
F Dk̃ + k̃ : k̃ ∈ D(D)}+̇{A−1

F k : k ∈M}

AD,M = Ã∗ �D(AD,M)

Moreover, AD,M is maximally dissipative if and only if M =
(
kerA∗ ∩ D(D)[⊥]

)
and D

is maximal in the sense that there exists no extension of D ⊂ D′ such that kerA∗ ∩

D(D)[⊥] = kerA∗ ∩ D(D′)[⊥] and D′ still satisfies (8.1).

Proof. Since A is sectorial and the dual pair (A, Ã) has the common core property,

we have by Theorem 7.3.8 that it allows for the Friedrichs extension AF , which is proper:

A ⊂ AF ⊂ Ã∗. Moreover, by Proposition 7.3.3, we have that 0 ∈ ρ(AF ), which means

by Proposition 2.4.3 that we can write

D(Ã∗) = D(A)+̇A−1
F kerA∗+̇ ker Ã∗ .
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Hence, we can choose D(Ã∗)//D(A) = A−1
F kerA∗+̇ ker Ã∗. Now, all possible subspaces

of A−1
F kerA∗+̇ ker Ã∗ will be of the form

VD,M := {A−1
F Dk̃ + k̃ : k̃ ∈ D(D)}+̇{A−1

F k : k ∈M} ,

where D is a map from D(D) ⊂ ker Ã∗ to kerA∗ and M ⊂ kerA∗. We therefore

use the pairs (D,M) to parametrize all proper extensions of the dual pair (A, Ã) via

AVD,M =: AD,M. Thus, by Theorem 5.2.8, AD,M is dissipative if and only if we have

[(A−1
F Dk̃ + k̃) + A−1

F k] ∈ D(V
1/2
K ) and

q((A−1
F Dk̃ + k̃) + A−1

F k) :=

Im〈(A−1
F Dk̃ + k̃) + A−1

F k, Ã∗[(A−1
F Dk̃ + k̃) + A−1

F k]〉

− ‖V 1/2
K (A−1

F Dk̃ + k̃ + A−1
F k)‖2 ≥ 0 ,(8.2)

for all k̃ ∈ D(D) and k ∈M. Since AF is a proper maximally dissipative extension of

(A, Ã) we have by Theorem 7.3.9 that D(AF ) ⊂ D(V
1/2
K ), which means that the first

condition is satisfied if and only if D(D) ⊂ D(V
1/2
K ). Let us rewrite (8.2):

q((A−1
F Dk̃ + k̃) + A−1

F k)

= Im〈(A−1
F Dk̃ + k̃) + A−1

F k, Ã∗[(A−1
F Dk̃ + k̃) + A−1

F k]〉 − ‖V 1/2
K (A−1

F Dk̃ + k̃ + A−1
F k)‖2

= Im〈A−1
F Dk̃ + A−1

F k,AF [A−1
F Dk̃ + A−1

F k]〉+ Im〈k̃, Dk̃ + k〉

− ‖V 1/2
K (A−1

F Dk̃ + A−1
F k)‖2 − ‖V 1/2

K k̃‖2 − 2Re〈V 1/2
K k̃, V

1/2
K (A−1

F Dk̃ + A−1
F k)〉

= Im
(
〈k̃, Dk̃〉 − 2i〈V 1/2

K k̃, V
1/2
K A−1

F Dk̃〉
)

+ Im
(
〈k̃, k〉 − 2i〈V 1/2

K k̃, V
1/2
K A−1

F k〉
)
− ‖V 1/2

K k̃‖2

= Im[k̃, Dk̃] + Im[k̃, k]− ‖V 1/2
K k̃‖2 ≥ 0 ,

where we have used that by, Theorem 7.3.9,

(8.3) Im〈A−1
F Dk̃ + A−1

F k,AF [A−1
F Dk̃ + A−1

F k]〉 = ‖V 1/2
K (A−1

F Dk̃ + A−1
F k)‖2 .

Now, assume that

(8.4)

M ⊂ (kerA∗ ∩ D(D)[⊥]) and that Im[k̃, Dk̃]− ‖V 1/2
K k̃‖2 ≥ 0 for all k̃ ∈ D(D) .
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Hence, we get that

q((A−1
F Dk̃+ k̃) +A−1

F k) = Im[k̃, Dk̃] + Im[k̃, k]−‖V 1/2
K k̃‖2 = Im[k̃, Dk̃]−‖V 1/2

K k̃‖2 ≥ 0 ,

for all k̃ ∈ D(D) and all k ∈ M. This means that Condition (8.4) being satisfied is

sufficient for AD,M to be dissipative. Let us now show that it is also necessary. Thus,

assume that Condition (8.4) is not satisfied. If there exists a k̃ ∈ D(D) such that

Im[k̃, Dk̃] − ‖V 1/2
K k̃‖2 < 0, this means that (8.2) cannot be satisfied in this case as

we can choose k = 0. Moreover, if there exists a k ∈ M and a k̃ ∈ D(D) such that

[k̃, k] 6= 0, this means that we can replace k 7→ λk, where λ ∈ C is suitably chosen such

that

q((A−1
F Dk̃ + k̃) + A−1

F λk) = Im[k̃, Dk̃] + Im[k̃, λk]− ‖V 1/2
K k̃‖2 < 0 ,

which means that AD,M cannot be dissipative in this case either.

Let us now prove that AD,M is maximally dissipative if and only if D is maximal in

the sense as stated in the theorem and M = kerA∗ ∩ D(D)[⊥]. Clearly, if there exists

a D ⊂ D′ such that Im[k̃, D′k̃] ≥ ‖V 1/2
K k̃‖2 for all k̃ ∈ D(D′) and (kerA∗ ∩ D(D)[⊥]) =

(kerA∗∩D(D′)[⊥]) or a M ⊂M′ ⊂ (kerA∗∩D(D)[⊥]), we get that AD′,M′ is a dissipative

extension of AD,M.

For the other direction, let us assume that AD,M is not maximally dissipative. It is

clear that the operator AD,M̂, where M̂ = kerA∗ ∩ D(D)[⊥], is a dissipative extension

of AD,M and from now on, we will therefore only consider this case. By Proposition

2.4.5, we know that there exists a proper maximally dissipative extension Â of the

dual pair (AD,M̂, Ã) and by what we have shown above, there exists an operator D′

that satisfies (8.1) and a subspace M′ ⊂ (kerA∗ ∩ D(D′)[⊥]) such that Â = AD′,M′ ,

where D ⊂ D′ and (kerA∗ ∩ D(D)[⊥]) = M̂ ⊂ M′. However, D(D) ⊂ D(D′) implies

that D(D)[⊥] ⊃ D(D′)[⊥], from which it immediately follows that (kerA∗ ∩ D(D)[⊥]) ⊃

(kerA∗ ∩ D(D′)[⊥]). This implies that (kerA∗ ∩ D(D)[⊥]) = (kerA∗ ∩ D(D′)[⊥]), which

shows that D was not maximal in the sense as stated in the theorem. �

Remark 8.5. Note that the correspondence between the pairs (D,M) and the

proper maximally dissipative extensions AD,M of (A, Ã) is not one-to-one. This follows

from the fact that for any k̃ ∈ D(D) and any k ∈ (kerA∗ ∩ D(D)[⊥]), we can write

span{A−1
F Dk̃ + k̃}+̇span{A−1

F k} = span{A−1
F (Dk̃ + k) + k̃}+̇span{A−1

F k} ,
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i.e. if we have an auxiliary operator D′ with D(D′) = D(D) and D′k̃−Dk̃ ∈ (kerA∗ ∩

D(D)[⊥]) for all k̃ ∈ (kerA∗ ∩D(D)[⊥]) we would get that AD′,M = AD,M. However, we

could for example restrict our considerations to auxiliary operators that satisfy Dk̃ ⊥ k

for all k̃ ∈ D(D) and all k ∈ (kerA∗ ∩ D(D)[⊥]). With this additional requirement,

the correspondence between (D,M) and proper dissipative extensions AD,M of (A, Ã)

becomes one-to-one.

Remark 8.6. For the case that D(D) is finite-dimensional the maximality condition

on D is automatically satisfied. In this case, AD,M is therefore maximally dissipative if

and only if M = (kerA∗ ∩ D(D)[⊥]).

Remark 8.7. This parametrization of all maximally dissipative extensions of the

dual pair (A, Ã), where A is sectorial can be generalized to truly dissipative dual pairs in

some situations. The proof of Theorem 8.4 still carries through as long as one assumes

the existence of a proper maximally dissipative extension Â such that 0 ∈ ρ(Â) and an

analog of (8.3) is still valid, i.e. we would need that for all v ∈ D(Â)//D(A) it holds

that

(8.5) Im〈v, Âv〉 = ‖V 1/2
K v‖2 .

Theorem 8.4 could then be reformulated with Â taking the role of the Friedrichs ex-

tension AF . For the case of finite-dimensional defect indices, this means that it is

necessary that there exists an isometry from W+ into W−, i.e. it is necessary that

dimW+ ≤ dimW−, where W+ and W− have been introduced in Theorem 5.2.13. See

Example 5.4.7 for a dissipative operator for which dimW+ = 1 and dimW− = 0, which

means that no proper maximally dissipative extension Â of (A, Ã) can satisfy (8.5) in

this case. This means that the parametrization of Theorem 8.4 could not be used in

this case.

Remark 8.8. Observe that this theorem reduces to the result of Theorem 7.2.2

in the case of (maximally) dissipative extensions of a dual pair of strictly positive

symmetric operators (S, S), where we have V = (2i)−1(S − S) = 0, since the condition

Im[k̃, Dk̃] ≥ ‖V 1/2
K k̃‖2 is equivalent to the condition Im〈k̃, Dk̃〉 ≥ 0 for all k̃ ∈ D(D) in

this case. This is of course the same as requiring that D be a dissipative operator from
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D(D) ⊂ kerS∗ into kerS∗. The condition that SD is maximally dissipative if and only

if D is a maximally dissipative operator in D(D) follows also from this theorem since

(kerS∗ ∩ D(D)⊥) = (kerS∗ ∩ D(D′)⊥) is equivalent to D(D) = D(D′).

Convention 8.9. If AD,M is a maximally dissipative extension of the dual pair

(A, Ã) as defined in Theorem 8.4, we know that M is determined by the choice of D:

M = kerA∗ ∩ D(D)[⊥]. Thus, if AD,M is maximally dissipative let us just write AD

instead of AD,M.

Example 8.10. As in Section 5.4.4, let γ > 0 and H = L2(0, 1) and consider

the dual pair A0 = −i d2

dx2 − γ
x2 and Ã0 = i d2

dx2 − γ
x2 with domain C∞c (0, 1) and let

A, Ã denote their respective closures. As imaginary part, we may choose V = − d2

dx2

with domain C∞c (0, 1). Recall that the domain of V
1/2
K is given by H1(0, 1) and since

kerV ∗ = span{1, x}, we have that

‖V 1/2
K f‖2 = ‖V 1/2

F (f(x)− (1− x)f(0)− xf(1))‖2 = ‖f ′‖2 − |f(1)− f(0)|2 .

Define the numbers ω± := 1±
√

1+4iγ
2

. As already shown in Section 5.4.4, we have

that:

• For 0 < γ <
√

3: ker Ã∗ = span{xω+ , xω−} and kerA∗ = span{xω+ , xω−}.

However, we have xω− /∈ H1(0, 1) = D(V
1/2
K ), since Re(ω−) < 1/2. This means

that ker Ã∗ ∩ D(V
1/2
K ) = span{xω+}. Hence, the only two choices for D(D) are

either D(D) = {0} or D(D) = span{xω+}. As D(D) = {0} just corresponds to

the Friedrichs extension of A, let us now focus on the case D(D) = span{xω+}.

Rather than determining D(D)[⊥] ∩ kerA∗ = span{xω+}[⊥] ∩ span{xω+ , xω−},

which we could obtain by finding the solution space of

〈xω+ , λxω+ + µxω−〉 − 2i〈V 1/2
K xω+ , V

1/2
K A−1

F (λxω+ + µxω−)〉 = 0 ,

we use that, in Section 5.4.4, we have already shown that any proper dissipative

extension of (A, Ã) was of the form

(8.6) D(Aρ) = D(A)+̇span{ξρ}+̇span{χ} .

Here, {ξρ}ρ is a family of functions that is characterized by one complex pa-

rameter ρ that has to satisfy (5.4.16), while the function χ, which is given
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by

χ(x) := (ω+ − ω− − 2)(xω+ − xω++2)− (ω+ − ω+ − 2)(xω+ − xω−+2)

has to lie in the domain of any proper maximally dissipative extension of (A, Ã).

Comparing the structure of (8.6) to the structure of the proper maximally

dissipative extensions as described in Theorem 8.4, we see that χ is a natural

candidate for χ = A−1
F k, where k ∈ (D(D)[⊥] ∩ kerA∗). Indeed, a lengthy

but not difficult calculation shows that [xω+ , k] = [xω+ , AFχ] = 〈xω+ , AFχ〉 −

2i〈V 1/2
K xω+ , V

1/2
K χ〉 = 0.

• For γ ≥
√

3: ker Ã∗ = span{xω+} and kerA∗ = span{xω+}. Moreover, xω+ ∈

H1(0, 1) = D(V
1/2
K ) from which we get that (kerA∗ ∩ D(V

1/2
K )) = span{xω+}.

For γ ≥
√

3, any map from span{xω+} into span{xω+} has to be of the form

(8.7) Dxω+ = dxω+ ,

where d ∈ C. For the case 0 < γ <
√

3, let us argue that it is also sufficient to only

consider maps D of the form (8.7). This follows from what has been said in Remark

8.5. To see this, assume that the map D is of the form

Dxω+ = d+x
ω+ + d−x

ω− .

Then, since (A−1
F xω±) ∝ (xω±+2 − xω+) we can find numbers λ, µ ∈ C such that

(A−1
F Dxω+ + λχ(x)) = µ(xω++2 − xω+) ∝ A−1

F xω+ ,

which means that there exists another number ν ∈ C such that

(8.8) (A−1
F Dxω+ + λχ(x)) = A−1

F (Dxω+ + λAFχ(x)) = νA−1
F xω+ .

Thus, the operator D′ given by

D′xω+ = Dxω+ + λAFχ(x)

maps span{xω+} into span{xω+}, which follows from (8.8) and the fact that A−1
F is

injective. Moreover, since AFχ ∈ (kerA∗ ∩ D(D)[⊥]), we have that AD = AD′ . Hence,
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for any γ > 0, we only need to consider auxiliary operators of the form (8.7). A

calculation shows that

[xω+ , Dxω+ ] = d[xω+ , xω+ ]

=
−d

i(ω+ + 2)(ω+ + 1)− γ

[
ω+(ω+ + 2)

2ω+ + 1
− |ω+|2

ω+ + ω+ − 1

]
= d · σ(ω+) ,

where we have defined

σ(ω+) :=
−1

i(ω+ + 2)(ω+ + 1)− γ

[
ω+(ω+ + 2)

2ω+ + 1
− |ω+|2

ω+ + ω+ − 1

]
.

From another calculation, we get

‖V 1/2
K xω+‖2 = ‖(xω+)′‖2 − 1 =

|ω+ − 1|2

ω+ + ω+ − 1
=: τ(ω+) .

Thus, AD is dissipative if and only if the condition

(8.9) Im(dσ(ω+)) = Re(d)Im(σ(ω+)) + Im(d)Re(σ(ω+)) ≥ τ(ω+)

is satisfied, which means that d has to lie in a half-plane of the complex plane.

Next, we want to investigate what can be said about the quadratic form associated to

the imaginary part of a maximally dissipative extension of a dual pair (A, Ã) satisfying

the assumptions of Theorem 8.4. Hence, let us define

Definition 8.11. Let (A, Ã) be a dual pair satisfying the assumptions of Theorem

8.4. For any proper maximally dissipative extension AD of (A, Ã) let us define the

associated non-negative quadratic form imD,0:

imD,0 : D(imD,0) = D(AD)

imD,0(ψ) = Im〈ψ,ADψ〉 .

Moreover, if imD,0 is closable let us denote its closure by imD := imD,0. Recall that imD

is given by:

imD :

D(imD) = {f ∈ H : ∃{fn}n ⊂ D(imD,0) s.t. ‖fn − f‖
n→∞−→ 0 and ‖fn − fm‖imD

n,m→∞−→ 0}

imD(f) := lim
n→∞

imD,0(fn) ,
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where ‖ · ‖imD denotes the norm induced by imD,0:

‖f‖2
imD

:= ‖f‖2 + imD,0(f) = ‖f‖2 + Im〈f, ADf〉 for all f ∈ D(AD) .

Moreover, let us denote the non-negative selfadjoint operator associated to imD by VD.

By [26, Thm. VI, 1.27] each non-negative selfadjoint operator S induces a closable

quadratic form. However, it is not always the case that the form imD,0 is closable. Let

us now give a necessary and sufficient condition for imD,0 to be closable.

Theorem 8.12. Let AD be defined as in Theorem 8.4 and assume that V ≥ ε > 0

as well as dimD(D) <∞. Then, imD,0 is closable if and only if we have that

(8.10) q(A−1
F Dk̃ + k̃) = Im[k̃, Dk̃]− ‖V 1/2

K k̃‖2 = 0 for all k̃ ∈ D(D) ∩ D(V
1/2
F ) .

Proof. Firstly, let us show that (8.10) is necessary for imD,0 to be closable. Thus,

assume that there exists a k̃ ∈ D(D) ∩D(V
1/2
F ) such that q(A−1

F Dk̃ + k̃) 6= 0. Since by

Theorem 7.3.9, we have that A−1
F Dk̃ + k̃ ∈ D(V

1/2
F ), there exists a sequence {fn}n ⊂

D(V ) that is Cauchy with respect to ‖ · ‖2 + 〈·, V ·〉 such that

‖fn + A−1
F Dk̃ + k̃‖2 + ‖V 1/2

F (fn + A−1
F Dk̃ + k̃)‖2 n→∞−→ 0 .

This means in particular that the sequence gn := fn + A−1
F Dk̃ + k̃ converges to 0:

lim
n→∞

‖gn‖ = 0 .

Also, since {fn}n ⊂ D(V ) ⊂ D(V
1/2
F ), we can show that {gn}n is Cauchy with respect

to ‖ · ‖imD :

‖gn − gm‖2
imD

= ‖fn − fm‖2
imD

= ‖fn − fm‖2 + ‖V 1/2
F (fn − fm)‖2 n,m→∞−→ 0 .

However, by Lemma 5.5.1 we have that

Im〈gn, ADgn〉 = Im〈fn + A−1
F Dk̃ + k̃, AD(fn + A−1

F Dk̃ + k̃)〉

= ‖V 1/2
K (fn + A−1

F Dk̃ + k̃)‖2 + q(A−1
F Dk̃ + k̃) .

Moreover, since ‖V 1/2
K (fn + A−1

F Dk̃ + k̃)‖ = ‖V 1/2
F (fn + A−1

F Dk̃ + k̃)‖, we get

‖gn‖2
imD

= ‖fn + A−1
F Dk̃ + k̃‖2 + ‖V 1/2

F (fn + A−1
F Dk̃ + k̃)‖2

+ q(A−1
F Dk̃ + k̃)

n→∞−→ q(A−1
F Dk̃ + k̃) 6= 0 ,
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which shows that imD,0 is not closable.

Now, let us show that (8.10) being satisfied implies that imD,0 is closable. To this end,

let us firstly show that AD being dissipative and (8.10) imply that

(8.11) q(A−1
F D(k̃1 + k̃2) + k̃1 + k̃2) = q(A−1

F Dk̃1 + k̃1)

for all k̃2 ∈ D(D) ∩ D(V
1/2
F ). Since q(A−1

F Dk̃2 + k̃2) = 0, for any λ ∈ C, we get

(8.12)

q(A−1
F Dk̃1+k̃1+λ(A−1

F Dk̃2+k̃2)) = q(A−1
F Dk̃1+k̃1)+2Re[λq(A−1

F Dk̃1+k̃1, A
−1
F Dk̃2+k̃2)],

where q(·, ·) denotes the sesquilinear form associated to q. This implies that q(A−1
F Dk̃1+

k̃1, A
−1
F Dk̃2 + k̃2) = 0, since otherwise, we could choose λ ∈ C such that the right hand

side of (8.12) is negative. This, however, would contradict the dissipativity of AD, from

which we have q(A−1
F Dk̃1 + k̃1 + λ(A−1

F Dk̃2 + k̃2)) ≥ 0. Next, let us define the opera-

tor P to be the projection onto kerV ∗ along D(V
1/2
F ) according to the decomposition

D(V
1/2
K ) = D(V

1/2
F )+̇ kerV ∗:

P : D(P) = D(V
1/2
K ) = D(V

1/2
F )+̇ kerV ∗

P(vF + v∗) = v∗ ,(8.13)

where vF ∈ D(V
1/2
F ) and v∗ ∈ kerV ∗. Moreover, let us define D2 := D(D) ∩ D(V

1/2
F )

and decompose

(8.14) D(D) = D2+̇D(D)//D2 .

Now, let {fn}n ⊂ D(AD) be a sequence that converges to 0 and that is Cauchy with

respect to ‖ · ‖imD . In general form, it can be written as

fn := f0,n + A−1
F kn + A−1

F Dk̃(1)
n + k̃(1)

n + A−1
F Dk̃(2)

n + k̃(2)
n ,

where {f0,n}n ⊂ D(V ), {kn}n ⊂ (kerA∗ ∩ D(D)[⊥]),
{
k̃

(1)
n

}
n
⊂ (D(D)//D2) and{

k̃
(2)
n

}
n
⊂ D2. At this point it becomes clear that it does not matter which spe-

cific decomposition we have chosen in (8.14) since any component (1−P)k̃(1) could be

absorbed into k̃(2). For convenience, let us define

vF,n := (1− P)fn = f0,n + A−1
F kn + A−1

F Dk̃(1)
n + (1− P)k̃(1)

n + A−1
F Dk̃(2)

n + k̃(2)
n ,
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from which we get fn = vF,n +P k̃(1)
n , where {vF,n}n ⊂ D(V

1/2
F ) and {P k̃(1)

n }n ⊂ kerV ∗.

Then, we have

(8.15) lim
n→∞

‖fn‖ = lim
n→∞

‖vF,n + P k̃(1)
n ‖ = 0

as well as

‖fn − fm‖2
imD

= ‖fn − fm‖2 + ‖V 1/2
F (vF,n − vF,m)‖2

+ q(A−1
F D(k̃(1)

n − k̃(1)
m ) + (k̃(1)

n − k̃(1)
m ) + A−1

F D(k̃(2)
n − k̃(2)

m ) + (k̃(2)
n − k̃(2)

m ))
n,m→∞−→ 0 ,

which — using (8.10) and (8.11) — simplifies to

‖fn − fm‖2
imD

=‖fn − fm‖2 + ‖V 1/2
F (vF,n − vF,m)‖2 + q(A−1

F D(k̃(1)
n − k̃(1)

m ) + (k̃(1)
n − k̃(1)

m ))
n,m→∞−→ 0 .

Now, since

ε‖vF,n − vF,m‖ ≤ ‖V 1/2
F (vF,n − vF,m)‖ n,m→∞−→ 0

we have that {vF,n}n converges to an element vF ∈ D(V
1/2
F ). Since fn = vF,n+P k̃(1)

n
n→∞−→

0, we have that {P k̃(1)
n }n converges to−vF . However, since PD(D) is finite-dimensional,

{P k̃(1)
n }n converges to an element of PD(D) ⊂ kerV ∗, from which we get vF ∈ kerV ∗.

But since D(V
1/2
F )∩kerV ∗ = {0}, we get that vF = limn→∞ vF,n = − limn→∞P k̃(1)

n = 0.

Moreover, the projection P is injective on (D(D)//D2), which is finite-dimensional.

Thus, there exists a number ε′ > 0 such that

ε′‖k̃(1)
n ‖ ≤ ‖P k̃(1)

n ‖
n→∞−→ 0 ,

which implies that

(8.16) ‖k̃(1)
n ‖

n→∞−→ 0 .

Now, since dimD(D) <∞, there exists a constant M <∞ such that

(8.17) q(A−1
F Dk̃(1)

n + k̃(1)
n ) ≤M‖k̃(1)

n ‖2 n→∞−→ 0 by (8.16) .

Altogether, this shows that limn→∞ ‖fn‖imD = 0:

‖fn‖2
imD

= ‖fn‖2 + Im〈fn, ADfn〉

= ‖vF,n + P k̃(1)
n ‖2 + ‖V 1/2

F vF,n‖2 + q(A−1
F Dk̃(1)

n + k̃(1)
n )

n→∞−→ 0 ,
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where we have used (8.15) and (8.17) as well as the fact {vF,n}n is a sequence of

elements in D(V
1/2
F ) that converges to 0 and that is Cauchy with respect to ‖V 1/2

F · ‖,

which implies that V
1/2
F vF,n

n→∞−→ 0 as well. This shows that imD,0 is closable. This

finishes the proof. �

Example 8.13. Let us give an example of a dual pair (A, Ã) satisfying the assump-

tions of Theorem 8.4 for which there exists a proper maximally dissipative extension

AD for which imD,0 is not closable. Let H = L2(0, 1) and consider the dual pair of

operators

A0 : D(A0) = C∞c (0, 1), (A0f)(x) = −f ′′(x) +
iγ

x2
f(x)

Ã0 : D(Ã0) = C∞c (0, 1), (Ã0f)(x) = −f ′′(x)− iγ

x2
f(x) ,

where for simplicity, we choose γ ≥
√

3 in order to ensure that dim kerA∗ = dim ker Ã∗ =

1. In this example, the imaginary part V is just given by the multiplication by the func-

tion γx−2, where we may choose D = C∞c (0, 1). Since V is essentially selfadjoint, we

get that VF = VK = V , which is the maximal multiplication operator by the function

γx−2. In particular, since V ≥ γ > 0, we have that kerV ∗ = kerV = {0}. By Lemma

5.5.1, we know that for any proper maximally dissipative extension AD of the dual pair

(A, Ã), we have that

(8.18) Im〈f + v, AD(f + v)〉 = ‖V 1/2
K (f + v)‖2 + q(v) ,

where f ∈ D(A) and v ∈ V = D(AD)//D(A). Moreover, using Equation (5.4.8) for

n = 2, an integration by parts yields that the form q(v) = Im〈v, Ã∗v〉 − ‖V 1/2
K v‖2 is

equal to

(8.19) q(v) = −Im(v(1)v′(1)) .

In Example 7.3.11, we have parametrized all maximally dissipative extensions of (A, Ã)

by the family of operators {Aρ}Imρ≥0
∪{AF}, where Aρ was given by (7.3.19) for γ <

√
3

and by (7.3.22) for γ ≥
√

3. This means that (C∞c (0, 1)+̇span{ξρ}) ⊂ D(Aρ). By (8.18)
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and (8.19) we get for ρ 6=∞ that the form imD(ρ),0 is given by

imD(ρ),0 : D(imD(ρ),0) = D(A)+̇span{ξρ}

imD(ρ),0(f + λξρ) = ‖V 1/2
K (f + λξρ)‖2 + |λ|2Im(ρ) ,

where f ∈ D(A) and λ ∈ C. For ρ =∞, we just get that

imD(∞),0 : D(imD(∞),0) = D(A)+̇span{ξ∞}

imD(∞),0(f + λξ∞) = ‖V 1/2
K (f + λξ∞)‖2 .

Here, the notation D(ρ) indicates that for any ρ such that Im(ρ) ≥ 0, there exists

an auxiliary operator D(ρ) from ker Ã∗ into kerA∗ such that Aρ = AD(ρ). Since ξρ ∈

D(V
1/2
K ) = D(V

1/2
F ), we have by Theorem 8.12 that imD(ρ),0 is closable if and only if

q(ξρ) = Im(ρ) = 0 or ρ = ∞, since D(D) = {0} in this case. Indeed, assume that

ρ 6= ∞ and that Imρ > 0. Since C∞c (0, 1) is a core for V
1/2
F , we can pick a sequence

{fn}n ⊂ C∞c (0, 1) such that

‖fn − ξρ‖2 + ‖V 1/2
F (fn − ξρ)‖2 n→∞−→ 0 ,

which means that the sequence gn := fn − ξρ converges to 0 with respect to the graph

norm of V
1/2
F . Moreover, {gn}n ⊂ D(AD(ρ)) is Cauchy with respect to ‖ · ‖imD(ρ),0

:

‖gn − gm‖2
imD(ρ),0

= ‖fn − fm‖2 + ‖V 1/2
F (fn − fm)‖2 n,m→∞−→ 0 .

However imD(ρ),0 is not closable, which follows from

‖gn‖2
imD(ρ),0

= ‖fn − ξρ‖2 + ‖V 1/2
F (fn − ξρ)‖+ Im(ρ)

n→∞−→ Im(ρ) 6= 0 .

Remark 8.14. If (−iAD) is sectorial in the sense of Kato, recall that by [26, Chapter

VI, Thm. 1.27], the form imD,0 is always closable.

If imD,0 is closable, there exists a selfadjoint operator VD associated to the closure

imD. Let us now show that this operator is an extension of V :

Lemma 8.15. Let (A, Ã) be a dual pair that satisfies the assumptions of Theorem

8.4. Also, let D be a common core for (A, Ã) and define V := 1
2i

(A− Ã) �D. Moreover,

assume that imD,0 is closable. Then, V ⊂ VD.
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Proof. Let f ∈ D(imD) and g ∈ D(V ). Moreover, let imD(·, ·) be the sesquilinear

form associated to imD. Since D(imD) is the closure of D(AD) with respect to ‖ · ‖imD ,

this means that there exists a sequence {fn}n ⊂ D(AD) such that

(8.20) imD(f, g) = lim
n→∞

imD(fn, g) .

Now, for any fn ∈ D(AD) and g ∈ D(V ) observe that imD(fn, g) can be written as

imD(fn, g) =
1

2i
(〈fn, ADg〉 − 〈ADfn, g〉) =

1

2i
(〈fn, Ã∗g〉 − 〈Ã∗fn, g〉)

= 〈fn,
1

2i
(A− Ã)g〉 = 〈fn, V g〉 ,(8.21)

from which we get

imD(f, g)
(8.20)
= lim

n→∞
imD(fn, g)

(8.21)
= lim

n→∞
〈fn, V g〉 = 〈f, V g〉

for all f ∈ D(imD) and all g ∈ D(V ), which implies that V ⊂ VD and thus, in addition,

the lemma. �

Next, let us determine the form domain of VD. Using that VD is a non-negative

selfadjoint extension of V , we know by the Birman–Krĕın–Vishik theory of non-negative

selfadjoint extensions that VK ≤ VD ≤ VF . This implies that D(V
1/2
F ) ⊂ D(V

1/2
D ) and

that there exists a subspace M ⊂ kerV ∗ such that D(V
1/2
D ) = D(V

1/2
F )+̇M. In the

case that PD(D) is finite-dimensional, we will show thatM = PD(D), i.e. the part of

D(D) that can be projected onto kerV ∗.

Lemma 8.16. Let V be strictly positive, i.e. V ≥ ε > 0 and assume that imD,0 is

closable. Then, the domain of V
1/2
D is given by

D(V
1/2
D ) = D(V

1/2
F )+̇PD(D)

‖·‖imD
.

In particular, if dim (PD(D)) <∞, we get

D(V
1/2
D ) = D(V

1/2
F )+̇PD(D) .

Proof. By Theorem 7.3.9, we have that D(AF ) ⊂ D(V
1/2
F ), which implies that any

element of

D(AD) = D(A)+̇{A−1
F Dk̃ + k̃ : k̃ ∈ D(D)}+̇{A−1

F k : k ∈ kerA∗ ∩ D(D)[⊥]}
140



can be written as

f + A−1
F Dk̃ + k̃ + A−1

F k = (f + A−1
F Dk̃ + (1− P)k̃ + A−1

F k)︸ ︷︷ ︸
∈D(V

1/2
F )

+ P k̃︸︷︷︸
∈PD(D)

,

which implies that D(AD) ⊂ D(V
1/2
F )+̇PD(D). On the other hand, we have by Lemma

8.15 that VD is a positive selfadjoint extension of V , from which we get by [2] that

D(V
1/2
F ) ⊂ D(V

1/2
D ). As any P k̃ ∈ PD(D) can be written as

P k̃ = (A−1
F Dk̃ + k̃)︸ ︷︷ ︸
∈D(AD)

− (A−1
F Dk̃ + (1− P)k̃)︸ ︷︷ ︸

∈D(V
1/2
F )

and since D(AD) ⊂ D(V
1/2
D ) and D(V

1/2
F ) ⊂ D(V

1/2
D ), this implies that P k̃ ∈ D(V

1/2
D ),

and thus PD(D) ⊂ D(V
1/2
D ). Consequently, we have D(AD) ⊂ D(V

1/2
F )+̇PD(D) ⊂

D(V
1/2
D ) and since D(AD)

‖·‖imD = D(V
1/2
D ), we get

D(V
1/2
D ) = D(AD)

‖·‖imD ⊂ D(V
1/2
F )+̇PD(D)

‖·‖imD ⊂ D(V
1/2
D ) ,

which proves the first assertion of the lemma. Next, let us show that D(V
1/2
F ) is a closed

subspace of D(V
1/2
D ) with respect to ‖ · ‖imD . This follows from the fact that for any

f ∈ D(V ) we get that

‖f‖2
imD

= ‖f‖2 + Im〈f, ADf〉 = ‖f‖2 + 〈f, V f〉 ,

which means that D(V )
‖·‖imD = D(V

1/2
F ). Since dim(PD(D)) < ∞, we have by [24,

Problem 13] that D(V
1/2
F )+̇PD(D) is a closed subspace of D(V

1/2
D ) with respect to the

‖ · ‖imD -norm and by what we have shown before, this yields

D(V
1/2
D ) = D(V

1/2
F )+̇PD(D)

‖·‖imD
= D(V

1/2
F )+̇PD(D) ⊂ D(V

1/2
D ) ,

which is the desired result. �

Finally, let us determine the action of imD.

Theorem 8.17. Let V be as in Lemma 8.16 and moreover, assume that

dimPD(D) <∞ .
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Then, there exists a non-negative selfadjoint operator B with D(B) = PD(D) such that

for any vF ∈ D(V
1/2
F ) and any η ∈ PD(D), we have

imD(vF + η) = ‖V 1/2
D (vF + η)‖2 = ‖V 1/2

F vF‖2 + qB(η) ,

where qB denotes the quadratic form associated to B. It is given by

qB(η) = Im[P−1η,DP−1η]− ‖V 1/2
K P

−1η‖2 .

Here, P−1 denotes the inverse of P restricted to a subspace of D(D) that is comple-

mentary to D(D) ∩ D(V
1/2
F ). The form qB does not depend on the specific choice of

this subspace. Moreover, if we choose {ηi}ni=1 to be an orthonormal basis of PD(D),

the elements of the matrix representation of B with respect to {ηi}ni=1 are given by

B = (bij)
n
i,j=1 where

bij =
1

2i

(
[P−1ηi, DP−1ηj]− [DP−1ηi,P−1ηj]

)
− 〈V 1/2

K P
−1ηi, V

1/2
K P

−1ηj〉 .

Proof. For any η ∈ PD(D), there exists a k̃ ∈ D(D) such that η = P k̃. In the

case that D(V
1/2
F )∩D(D) is non-trivial, which means that ker(P)∩D(D) is non-trivial,

this choice of k̃ is not unique as for any χ ∈ D(D) ∩ D(V
1/2
F ) we would still have that

P(k̃ + χ) = η. However, if we choose a subspace of S ⊂ D(D) that is complementary

to D(V
1/2
F ) ∩ D(D) in D(D), then we can define the inverse of P on S:

P−1 : D(P−1) = PS

P k̃ 7→ k̃, k̃ ∈ S .

Now, for any vF ∈ D(V
1/2
F ) and k̃ ∈ S, let us pick a sequence {fn}n ⊂ D(V ) such that

‖ · ‖imD − lim
n→∞

fn =
[
vF − A−1

F Dk̃ − (1− P)k̃
]
∈ D(V

1/2
F ) ,

where “‖ · ‖imD − lim ” denotes the limit with respect to the ‖ · ‖imD -norm. This implies

that the sequence gn := fn +A−1
F Dk̃ + k̃ converges to vF + P k̃ in the usual norm ‖ · ‖.

Next, let us show that {gn}n is Cauchy with respect to ‖ · ‖imD :

‖gn − gm‖2
imD

= ‖fn − fm‖2 + ‖V 1/2
F (fn − fm)‖2 = ‖fn − fm‖2

imD

n,m→∞−→ 0 ,
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since {fn}n has a limit with respect to ‖ · ‖imD . Thus, we get

‖vF + P k̃‖2
imD

= lim
n→∞

‖gn‖2
imD

= lim
n→∞

(‖gn‖2 + ‖V 1/2
F (fn + A−1

F Dk̃ + (1− P)k̃)‖2 + q(A−1
F Dk̃ + k̃))

= ‖vF + P k̃‖2 + ‖V 1/2
F vF‖2 + q(A−1

F Dk̃ + k̃)

= ‖vF + P k̃‖2 + ‖V 1/2
F vF‖2 + Im[k̃, Dk̃]− ‖V 1/2

K k̃‖2

and since for any φ ∈ D(imD) we have ‖φ‖2
imD

= ‖φ‖2 + imD(φ), this allows us to read

off

imD(vF + P k̃) = ‖V 1/2
F vF‖2 + Im[k̃, Dk̃]− ‖V 1/2

K k̃‖2 .

However, if D(V
1/2
F )∩D(D) is non-trivial, we could have added a χ ∈ (D(V

1/2
F )∩D(D))

such that P(k̃+χ) = P k̃ = η. But since imD,0 was assumed to be closable, we have by

Theorem 8.12 that q(A−1
F Dχ+ χ) = 0 and by (8.11), we have in addition that

(8.22) q(A−1
F Dk̃ + k̃ + A−1

F Dχ+ χ) = q(A−1
F Dk̃ + k̃) .

Thus, the specific choice of S ⊂ D(D) — as long as it is complementary to (D(D) ∩

D(V
1/2
F )) in D(D) — does not affect the value of imD(vF + η), where vF ∈ D(V

1/2
F ) and

η ∈ PD(D), where η = P k̃ for a unique k̃ ∈ S. Hence, by Equation (8.22), we get

(8.23) imD(vF + η) = imD(vF + P k̃η) = ‖V 1/2
F vF‖2 + Im[k̃η, Dk̃η]− ‖V 1/2

K k̃η‖2 ,

where k̃η is the unique element of S such that P k̃η = η, or in other words, we get

k̃η = P−1η. Plugged into (8.23), this yields

(8.24) imD(vF + η) = ‖V 1/2
F vF‖2 + Im[P−1η,DP−1η]− ‖V 1/2

K P
−1η‖2 .

Now, since we have shown in Lemma 8.15 that VD is a non-negative selfadjoint extension

of V , we know by [2] that there exists a subspace D(B) ⊂ kerV ∗ and a non-negative

auxiliary operator B from D(B) into D(B) such that

(8.25) imD(vF + η) = ‖V 1/2
D (vF + η)‖2 = ‖V 1/2

F vF‖2 + qB(η) ,
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where vF ∈ D(V
1/2
F ) and η ∈ D(B). The form qB is given by qB(η) = 〈η,Bη〉 for all

η ∈ D(B).8.1 Comparing Equations (8.25) and (8.24), we can read off that

(8.26) qB(η) = Im[P−1η,DP−1η]− ‖V 1/2
K P

−1η‖2 ,

which is the desired result. To determine the entries of the non-negative matrix (bij)ij,

we use that the sesquilinear form qB(·, ·) associated to qB is given by

qB(ηi, ηj) =
1

2i
([P−1ηi, DP−1ηj]− [DP−1ηi,P−1ηj])− 〈V 1/2

K P
−1ηi, V

1/2
K P

−1ηj〉 .

This immediately follows from the fact that imD(η, η) = imD(η), which can be seen by

direct inspection. Now, since bij = 〈ηi, Bηj〉 = qB(ηi, ηj), this finishes the proof. �

The previous result allows us to deduce a way of comparing the imaginary parts

VD1 and VD2 of two different extensions AD1 and AD2 :

Corollary 8.18. Let D1 and D2 parametrize two different proper maximally dis-

sipative extensions of (A, Ã) and let B1 and B2 be the two associated non-negative

auxiliary operators whose quadratic form is given in (8.26). Then B1 ≥ B2 if and only

if PD(D1) ⊂ PD(D2) and

(8.27) Im[k̃, D1k̃] ≥ Im[k̃, D2k̃]

for all k̃ ∈ D(D1).

Proof. By definition, B1 ≥ B2 as operators on a finite-dimensional space if and

only if D(B1) ⊂ D(B2) and qB1(η) ≥ qB2(η) for all η ∈ D(B1). Since D(B1,2) =

PD(D1,2), this shows the first condition of the corollary. Now, for any η ∈ D(B1) =

PD(D1) we have by (8.26)

qB1(η)− qB2(η)

= Im[P−1η,D1P−1η]− ‖V 1/2
K P

−1η‖2 − (Im[P−1η,D2P−1η]− ‖V 1/2
K P

−1η‖2)

= Im[P−1η,D1P−1η]− Im[P−1η,D2P−1η] ,(8.28)

which is non-negative for all η ∈ D(B1) if and only if

Im[P−1η,D1P−1η] ≥ Im[P−1η,D2P−1η]

8.1Note that we are only considering the finite-dimensional case, which means that we do not have to worry about

closures and domains.
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for all η ∈ D(B1) = PD(D1). Thus, Condition (8.27) being satisfied is sufficient for

B1 ≥ B2. Let us now show that it is also necessary. Assume that there exists a

k̃ ∈ D(D1) such that

Im[k̃, D1k̃] < Im[k̃, D2k̃] ⇔ Im[k̃, D1k̃]− ‖V 1/2
K k̃‖2 < Im[k̃, D2k̃]− ‖V 1/2

K k̃‖2 .

Observe that by Theorem 8.12, this means that k̃ ∈ (D(V
1/2
F ) ∩ D(D1)) is not possible

in this case, since this would imply that Im[k̃, D2k̃]−‖V 1/2
K k̃‖2 = 0, but by dissipativity

of AD1 we have by virtue of Theorem 8.4 that Im[k̃, D1k̃] − ‖V 1/2
K k̃‖2 ≥ 0. Hence,

0 6= P k̃ =: η ∈ PD(D1) or P−1η = k̃. Therefore we get

qB1(η)− qB2(η) = Im[k̃, D1k̃]− Im[k̃, D2k̃] < 0 ,

which shows that B1 6≥ B2 if Condition (8.27) is not satisfied, which therefore is neces-

sary for B1 ≥ B2 to be true. This shows the corollary. �

Remark 8.19. These results allow us to give first estimates of the lower bound of

the imaginary part. From [2, Thm. 2.13], it follows that

(8.29)
αδ

1 + δ
≤ inf

06=ψ∈D(AD)

Im〈ψ,ADψ〉
‖ψ‖2

≤ αδ ,

where α is the lower bound of the imaginary part of A and δ is the lower bound of the

quadratic form qB:

α := inf

{
Im〈ψ,Aψ〉
‖ψ‖2

: ψ ∈ D(A), ψ 6= 0

}
and δ := inf

{
qB(η)

‖η‖2
: η ∈ PD(D), η 6= 0

}
.

As mentioned in [2, Thm. 2.13], this means in particular that

inf

{
Im〈ψ,ADψ〉
‖ψ‖2

: ψ ∈ D(AD), ψ 6= 0

}
= 0

if and only if δ = 0. (Recall that we have assumed that α ≥ ε > 0.)

Example 8.20 (Continuation of Example 8.10). Consider the dual pair (A, Ã) as

defined in Example 8.10. Now, since D(D) = span{xω+} and

xω+ = (xω+ − x)︸ ︷︷ ︸
∈D(V

1/2
F )

+ x︸︷︷︸
∈kerV ∗

,

we get PD(D) = span{x}. In particular, we have that D(D) ∩ D(V
1/2
F ) = {0} from

which we see by virtue of Theorem 8.12 that imD,0 is closable. Moreover, the operator
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P �D(D) is injective and thus, we define P−1x = xω+ . By Lemma 8.16, the associated

operator VD has form domain

D(V
1/2
D ) = D(V

1/2
F )+̇Pspan{xω+} = D(V

1/2
F )+̇span{x} = H1

0 (0, 1)+̇span{x}

and the quadratic form acts like

‖VD1/2(f + λx)‖2 = ‖V 1/2
F f‖2 + |λ|2

(
Im[P−1x,DP−1x]− ‖V 1/2

K P
−1x‖2

)
= ‖V 1/2

F f‖2 + |λ|2 (Im(dσ(ω+))− τ(ω+)) ,

where f ∈ D(V
1/2
F ). The operator BD associated to the quadratic form is a map from

span{x} to span{x} and is therefore of the form BDx = bx, where b ∈ C. By Theorem

8.17, we have that b is given by

b = Im[P−1(
√

3x), DP−1(
√

3x)]− ‖V 1/2
K P

−1
√

3x‖2 = 3(Im(dσ(ω+))− τ(ω+)) ,

where the factor
√

3 comes from normalizing the function x. Now, for two different

maximally dissipative extensions AD1 and AD2 , we have that if Im(d1σ) = Im[k̃, D1k̃] ≥

Im(d2σ) = Im[k̃, D2k̃], this implies that BD1 ≥ BD2 .

Finally, let us construct the selfadjoint operators VD using the Birman–Krĕın–Vishik

theory for positive symmetric operators. For D(D) = {0} we get the Friedrichs exten-

sion. The other possibility is that D(D) = span{xω+} with Pspan{xω+} = span{x}.

We then get

VD : D(VD) = D(V )+̇span{V −1
F BDx+ x}+̇span{V −1

F (2− 3x)}

= D(V )+̇span
{

3[Im(dσ(ω+))− τ(ω+)]V −1
F x+ x

}
+̇span{V −1

F (2− 3x)}

f 7→ −f ′′ ,

where the last span comes from the fact that (2 − 3x) ⊥ x. Also, note that it is not

difficult to compute V −1
F 1 and V −1

F x:

V −1
F 1 =

x2 − x
2

and V −1
F x =

x3 − x
6

.
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CHAPTER 9

More general dissipative extensions

In this chapter, we are going to discuss ideas on how to construct non-proper exten-

sions of a dissipative operator A. As a starting point, we will consider dual pairs (A, Ã)

that satisfy the common core condition and try to construct dissipative extensions of A

whose domain is contained in D(Ã∗). We will apply our results to symmetric operators

with bounded dissipative perturbations and obtain a full description of their dissipa-

tive extensions. After this, we consider dissipative operators A for which the quadratic

form ψ 7→ Im〈ψ,Aψ〉 is closable and strictly positive and give necessary and sufficient

conditions for an arbitrary extension A ⊂ B to be dissipative.

9.1. Construction of non-proper extensions using dual pairs

Let A be dissipative and Ã be antidissipative and assume that (A, Ã) is a dual pair

satisfying the common core condition. In this section, we will construct all dissipative

extensions of A that have domain contained in D(Ã∗). We will need the following two

lemmas:

Lemma 9.1.1. Let V be a non-negative symmetric operator. Then, ran(V
1/2
F �D(V ))

is dense in ran(V
1/2
F ).

Proof. By construction of the Friedrichs extension, we know that for any ψ ∈

D(V
1/2
F ), there exists a sequence {ψn}n ⊂ D(V ), such that

lim
n→∞

(‖ψ − ψn‖2 + ‖V 1/2
F (ψ − ψn)‖2) = 0 ,

which implies in particular that limn→∞ V
1/2
F ψn = V

1/2
F ψ, i.e. ran(V

1/2
F ) ⊂ ran(V

1/2
F �D(V )).

On the other hand, since ran(V
1/2
F �D(V )) ⊂ ran(V

1/2
F ), the assertion follows from taking

closures. �

Lemma 9.1.2. Let V be a non-negative symmetric operator and let VF and VK denote

its Friedrichs, resp. its Krĕın extension. Then there exists a partial isometry U on H
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such that

(9.1.1) V
1/2
K h = UV 1/2

F h

for all h ∈ D(V
1/2
F ). The map U is an isometry on ran(V

1/2
F ) and its range ran(U) is

contained in ran(V
1/2
K ).

Proof. Since we have that VK ≤ VF , it is clear that D(V
1/2
F ) ⊂ D(V

1/2
K ). Moreover,

by Proposition 5.2.3, for any h ∈ D(V
1/2
F ) ⊂ D(V

1/2
K ), we have that

‖V 1/2
K h‖2 = sup

f∈D(V ):V f 6=0

|〈h, V f〉|2

〈f, V f〉
= sup

f∈D(V ):V f 6=0

|〈h, V 1/2
F V

1/2
F f〉|2

〈f, V 1/2
F V

1/2
F f〉

= sup
f∈D(V ):V f 6=0

|〈V 1/2
F h, V

1/2
F f〉|2

‖V 1/2
F f‖2

= ‖V 1/2
F h‖2 ,

where we have used that ran(V
1/2
F �D(V )) is dense in ran(V

1/2
F ) by Lemma 9.1.1. This

implies that the linear map

U0 : ran(V
1/2
F )→ ran

(
V

1/2
K �D(V

1/2
F )

)
V

1/2
F h 7→ V

1/2
K h

is isometric. Since, trivially, ran(V
1/2
F ) is dense in ran(V

1/2
F ), there exists a unique

isometric extension U0 ⊂ U on ran(V
1/2
F ). Setting Uk = 0 for all k ∈ ker(V

1/2
F ) =

ran(V
1/2
F )⊥ defines U as a partial isometry on the whole Hilbert space H. Moreover,

since

ran(U0) = ran
(
V

1/2
K �D(V

1/2
F )

)
⊂ ran(V

1/2
K ) ,

this implies that ran(U) is contained in ran(V
1/2
K ) and thus the lemma. �

It will be convenient to introduce the following notation:

Definition 9.1.3. Let (A, Ã) be a dual pair, where A is dissipative and Ã is an-

tidissipative. Let V ⊂ D(Ã∗)//D(A) and let L be a linear operator from V into H.

Then, the operator AV,L is given by

AV,L : D(AV,L) = D(A)+̇V

(f + v) 7→ Ã∗(f + v) + Lv ,
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where f ∈ D(A) and v ∈ V. Clearly, if we choose L to be the zero-operator, i.e. L = 0,

we get the previous description of a proper extension: AV,0 = AV . (Cf. Definition 5.2.7)

We now want to find conditions on V and L for AV,L to be dissipative. To this

end, we will look at Im〈f + v, AV,L(f + v)〉 for any f ∈ D and any v ∈ V , where

D ⊂ D(A) ∩ D(Ã) is a common core for (A, Ã). We therefore will get

(9.1.2) Im〈(f+v, AV,L(f+v)〉 = 〈f, V f〉+Im〈v, 2iV f〉+Im〈v, (Ã∗+L)v〉−Im〈Lv, f〉.

For the case of proper extensions (L = 0), we have seen that it is necessary that

V ⊂ D(V
1/2
K ) for AV to be dissipative. The idea was that for any v /∈ D(V

1/2
K ), there

exists a normalized sequence {V 1/2
F fn}n ⊂ ran(V

1/2
F �D(V )) such that

lim
n→∞

Im〈v, 2iV 1/2
F V

1/2
F fn〉 = −∞ ,

which means that

Im〈(fn + v, AV(fn + v)〉 = 1 + Im〈v, 2iV 1/2
F V

1/2
F fn〉+ Im〈v, Ã∗v〉 n→∞−→ −∞ .

Now, for L 6= 0 it could happen that the last term in (9.1.2) does not stay bounded

either and instead “competes” against the part of (9.1.2) that would go to −∞ . Since

— at least formally — 〈Lv, f〉 = 〈Lv, V −1/2
F V

1/2
F f〉, this might be the case if Lv /∈

D(V
−1/2
F ) = ran(V

1/2
F ). Thus, in the situation v /∈ D(V

1/2
K ) and Lv /∈ ran(V

1/2
F ) it is

not clear whether it is in general possible that AV,L is dissipative. Moreover, since it is

difficult to compute V
1/2
F , V

−1/2
F and V

1/2
K explicitly, we were not able to construct such

an example. (The elementary case of V being a multiplication operator or — more

generally — an essentially selfadjoint operator will be discussed in Lemma 9.1.6.)

However, if one of the two cases V ⊂ D(V
1/2
K ) or ran(L) ⊂ D(V

1/2
F ) are given, we can

show that the other one must be true as well for AV,L to have a chance to be dissipative.

Lemma 9.1.4. Let (A, Ã) be a dual pair satisfying the common core condition, where

A is dissipative.

i) If ran(L) ⊂ ran(V
1/2
F ), then it is necessary that V ⊂ D(V

1/2
K ) for AV,L to be

dissipative.

ii) If V ⊂ D(V
1/2
K ), then it is necessary that ran(L) ⊂ ran(V

1/2
F ) for AV,L to be

dissipative.

149



Proof. i) If ran(L) ⊂ ran(V
1/2
F ), this means that for any v ∈ V there exists a φv

such that Lv = V
1/2
F φv. Thus, we can rewrite (9.1.2) as

(9.1.3)

Im〈(f+v, AV,L(f+v)〉 = ‖V 1/2
F f‖2+Im〈v, 2iV 1/2

F V
1/2
F f〉+Im〈v, (Ã∗+L)v〉−Im〈φv, V 1/2

F f〉.

Now, assume that there exists a v ∈ V such that v /∈ D(V
1/2
K ). By Corollary 5.2.5, this

means that there exists a normalized sequence {V 1/2
F fn}n ⊂ ran(V

1/2
F �D(V )) such that

lim
n→∞

Im〈v, 2iV 1/2
F V

1/2
F fn〉 = −∞ .

Since all other terms in (9.1.3) stay bounded, this shows that AV,L cannot be dissipative

in this case.

ii) We start by showing that in this case, it is necessary that Lv ⊥ kerV
1/2
F . Assume

this is not the case, i.e. that there exists a v ∈ V and a k ∈ ker(V
1/2
F ) such that

〈Lv, k〉 6= 0. Without loss of generality we may assume that Im〈Lv, k〉 = 1. Now, since

D(V ) is a core for V
1/2
F , we can pick a sequence {fn}n ⊂ D(V ) such that fn → λk and

V
1/2
F fn → λV

1/2
F k = 0, where λ ∈ C is an arbitrary complex number. We then get

lim
n→∞

Im〈(fn + v,AV,L(fn + v)〉

= lim
n→∞

(
‖V 1/2

F fn‖2 + Im〈v, 2iV 1/2
K V

1/2
K fn〉+ Im〈v, (Ã∗ + L)v〉 − Im〈Lv, fn〉

)
(9.1.1)

= lim
n→∞

(
‖V 1/2

F fn‖2 + Im〈V 1/2
K v, 2iUV 1/2

F fn〉+ Im〈v, (Ã∗ + L)v〉 − Im〈Lv, fn〉
)

= lim
n→∞

(
‖V 1/2

F fn‖2 + Im〈U∗V 1/2
K v, 2iV

1/2
F fn〉+ Im〈v, (Ã∗ + L)v〉 − Im〈Lv, fn〉

)
= Im〈v, (Ã∗ + L)v〉 − Imλ ,

which is negative if we choose Imλ large enough. This contradicts the dissipativity

of AV,L. Hence ran(L) ⊂ (kerV
1/2
F )⊥ = ran(V

1/2
F ). Now, since kerV

1/2
F is a reducing

subspace for V
1/2
F , we have that the operator V

−1/2
F given by

V
−1/2
F : D(V

−1/2
F ) = ranV

1/2
F → D(V

1/2
F ) ∩ ran(V

1/2
F )

V
1/2
F f 7→ f

is a well-defined non-negative selfadjoint operator on the Hilbert space ran(V
1/2
F ), which

reduces V
1/2
F . Now, assume that there is a v ∈ V , such that Lv /∈ ran(V

1/2
F ) = D(V

−1/2
F ).
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Since V
1/2
F = V

1/2
F �D(V ), we have ran(V

1/2
F ) = ran(V

1/2
F �D(V )). This means that we can

pick a sequence {V 1/2
F fn}n ⊂ ran (V

1/2
F �D(V )), where ‖V 1/2

F fn‖ = 1 for all n, such that

lim
n→∞

Im〈Lv, V −1/2
F V

1/2
F fn〉 = +∞ ,

since otherwise the map g 7→ 〈Lv, V −1/2
F g〉 would be a bounded linear functional on

ran(V
1/2
F �D(V )), which is dense in ran(V

1/2
F ) — a contradiction to Lv /∈ D(V

−1/2
F ).

Thus, we get

Im〈(fn + v, AV,L(fn + v)〉

=‖V 1/2
F fn‖2 + Im〈U∗V 1/2

K v, 2iV
1/2
F fn〉+ Im〈v, (Ã∗ + L)v〉 − Im〈Lv, fn〉

≤1 + 2‖U∗V 1/2
K v‖+ Im〈v, (Ã∗ + L)v〉 − Im〈Lv, V −1/2

F V
1/2
F fn〉

n→∞−→ −∞ ,

which means that AV,L cannot be dissipative in this case either. This shows the lemma.

�

Remark 9.1.5. If V is strictly positive, i.e. if there exists an ε > 0 such that

Im〈f, Af〉 ≥ ε‖f‖2

for all f ∈ D, we have that V
−1/2
F is a bounded operator onH. In this case, the condition

ran(L) ⊂ ran(V
1/2
F ) = H is always satisfied. Hence, in this case it is necessary that

V ⊂ D(V
1/2
K ) for AV,L to be dissipative.

For the special case that V is essentially selfadjoint, we will prove that both condi-

tions, V ⊂ D(V
1/2

) and ran(L) ⊂ ran(V
1/2

) are independently necessary for AV,L to be

dissipative.

Lemma 9.1.6. Let (A, Ã) be as in Lemma 9.1.4 and assume in addition that the

imaginary part V is essentially selfadjoint. Then, for AV,L to be dissipative it is neces-

sary that V ⊂ D(V
1/2

) and ran(L) ⊂ ran(V
1/2

).

Proof. Since V
1/2

= V
1/2
F = V

1/2
K , we only need to show that V ⊂ D(V

1/2
) is

necessary for AV,L to be dissipative. The condition ran(L) ⊂ ran(V
1/2

) will then just

follow from Lemma 9.1.4, ii). Thus, assume that there exists a v ∈ V such that
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v /∈ D(V
1/2

). In this case, we will show that

inf
f∈D(V )

(〈f, V f〉+ Im(〈v, 2iV f〉 − 〈Lv, f〉)) = −∞ .

Since V
1/2
F = V

1/2
K = V

1/2
, we get that ran(V

1/2
F �D(V )) = ran(V

1/2
�D(V )). Hence,

if v /∈ D(V
1/2

) = D(V
1/2
K ), we have by Corollary 5.2.5 that there exists a sequence

{V 1/2
fn}n ⊂ ran(V

1/2
�D(V )) ⊂ ran(V

1/2
�D(V )) such that ‖V 1/2

fn‖ = 1 for all n ∈

N and limn→∞ |〈v, 2iV
1/2
V

1/2
fn〉| = +∞. Now, let P denote the projection-valued

measure corresponding to V and define P1 := P ([0, 1)) and P2 := P ([1,∞)) as well as

H1,2 := P1,2H. Since V ≥ 0, we have P1 + P2 = 1, resp. H1 ⊕H2 = H. For any n ∈ N,

define f̃n := P2fn, which is an element of D(V ) since H2 reduces V . We now claim that

the sequence {V 1/2
f̃n}n satisfies

‖V 1/2
f̃n‖ ≤ 1 and lim

n→∞
|〈v, 2iV 1/2

V
1/2
f̃n〉| = +∞ .

The first statement follows from

(9.1.4) ‖V 1/2
f̃n‖ = ‖V 1/2

P2fn‖ = ‖P2V
1/2
fn‖ ≤ ‖V

1/2
fn‖ = 1 .

To see the second statement consider

|〈v, 2iV 1/2
V

1/2
fn〉| = |〈v, 2iV

1/2
V

1/2
(P1 + P2)fn〉|

≤|〈v, 2iV 1/2
V

1/2
P1fn〉|+ |〈v, 2iV

1/2
V

1/2
P2fn〉|

≤2‖v‖‖V 1/2
P1V

1/2
fn‖+ |〈v, 2iV 1/2

V
1/2
f̃n〉|

=2‖v‖
√∫

[0,1)

λ d‖P (λ)(V
1/2
fn)‖2 + |〈v, 2iV 1/2

V
1/2
f̃n〉|

≤2‖v‖
√∫

[0,1)

d‖P (λ)(V
1/2
fn)‖2 + |〈v, 2iV 1/2

V
1/2
f̃n〉|

=2‖v‖‖P1V
1/2
fn‖+ |〈v, 2iV 1/2

V
1/2
f̃n〉|

≤2‖v‖ ‖V 1/2
fn‖︸ ︷︷ ︸

=1

+|〈v, 2iV 1/2
V

1/2
f̃n〉| = 2‖v‖+ |〈v, 2iV 1/2

V
1/2
f̃n〉| .

152



Now, since |〈v, 2iV 1/2
V

1/2
fn〉|

n→∞−→ ∞, this implies that |〈v, 2iV 1/2
V

1/2
f̃n〉|

n→∞−→ ∞.

Next, observe that

(9.1.5) ‖f̃n‖2 =

∫
[1,∞)

d‖P (λ)f̃n‖2 ≤
∫

[1,∞)

λd‖P (λ)f̃n‖2 = ‖V 1/2
f̃n‖2

(9.1.4)

≤ 1 .

For any n ∈ N choose φn ∈ [0, 2π) such that

Im〈v, 2iV 1/2
V

1/2
eiφn f̃n〉 = −|〈v, 2iV 1/2

V
1/2
f̃n〉| .

Altogether, we get

‖V 1/2
eiφn f̃n‖2 + Im〈v, 2iV 1/2

V
1/2
eiφn f̃n〉 − Im〈Lv, eiφn〉

≤ 1− |〈v, 2iV 1/2
V

1/2
f̃n〉|+ ‖Lv‖‖f̃n‖

(9.1.5)

≤ 1− |〈v, 2iV 1/2
V

1/2
f̃n〉|+ ‖Lv‖

n→∞−→ −∞ .(9.1.6)

Let us now show that

inf
f∈D(V )

Im〈f + v, AV,L(f + v)〉

=Im〈v, (Ã∗ + L)v〉+ inf
f∈D(V )

(〈f, V f〉+ Im〈v, 2iV f〉 − Im〈Lv, f〉) = −∞ .

Assume that this is not true, i.e. that there exists a K > −∞ such that

(9.1.7)

Im〈f + v,AV,L(f + v)〉 = Im〈v, (Ã∗ + L)v〉+ 〈f, V f〉+ Im〈v, 2iV f〉 − Im〈Lv, f〉 ≥ K

for all f ∈ D(V ). Now, by (9.1.6), we can choose an N ∈ N big enough such that

Im〈v, (Ã∗+L)v〉+‖V 1/2
eiφN f̃N‖2 +Im〈v, 2iV 1/2

V
1/2
eiφN f̃N〉−Im〈Lv, eiφN f̃N〉 ≤ K−1 .

Since D(V ) is a core for V , we get that for f̃N ∈ D(V ), there exists a sequence

{f̃N,m}m ⊂ D(V ) such that f̃N,m
m→∞−→ f̃N and V f̃N,m

m→∞−→ V f̃N , which clearly im-

plies that

K − 1 ≥Im〈v, (Ã∗ + L)v〉+ 〈f̃NV f̃N〉+ Im〈v, 2iV eiφN f̃N〉 − Im〈Lv, eiφN f̃N〉

=Im〈v, (Ã∗ + L)v〉+ lim
m→∞

(〈f̃N,mV f̃N,m〉

+Im〈v, 2iV eiφN f̃N,m〉 − Im〈Lv, eiφN f̃N,m〉) .
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Hence, for m big enough we get that

Im〈eiφN f̃N,m + v, AV,L(eiφN f̃N,m + v)〉 < K

in contradiction to (9.1.7). This shows the lemma. �

Remark 9.1.7. This result applies in particular to the case of V being bounded.

Under the assumption that the conditions V ⊂ D(V
1/2
K ) and ran(L) ⊂ ran(V

1/2
F ) are

satisfied, let us now show a necessary and sufficient condition for AV,L to be dissipative.

Before we do this, we will need the following lemma:

Lemma 9.1.8. Let V be a symmetric and non-negative operator and let VK denote its

selfadjoint Krĕın–von Neumann extension. Then, ran(V
1/2
K �D(V )) is dense in ran(V

1/2
K ).

Proof. Any element of ran(V
1/2
K ) is of the form V

1/2
K h, where h ∈ D(V

1/2
K ). By

Proposition 5.2.3, we have that

‖V 1/2
K h‖2 = sup

f∈D(V ):V f 6=0

|〈h, V f〉|2

〈f, V f〉
,

where |〈h,V f〉|
2

〈f,V f〉 can be rewritten as

|〈h, V f〉|2

〈f, V f〉
=

∣∣∣∣∣
〈
V

1/2
K h,

V
1/2
K f

‖V 1/2
K f‖

〉∣∣∣∣∣
2

.

This allows us to rewrite

‖V 1/2
K h‖2 = sup

{
|〈h, V f〉|2

〈f, V f〉
, f ∈ D(V ) : V f 6= 0

}
= sup

{
|〈V 1/2

K h, g〉|2, g ∈ ran(V
1/2
K �D(V )) : ‖g‖ = 1

}
.(9.1.8)

But this implies that ran(V
1/2
K �D(V )) is dense in ran(V

1/2
K ). To see why, assume that

there exists a ϕ ∈ ran(V
1/2
K ) such that ‖ϕ‖ = 1 and 〈ϕ, g〉 = 0 for all g ∈ ran(V

1/2
K �D(V )).

Take a V
1/2
K h ∈ ran(V

1/2
K ), with ‖V 1/2

K h‖ = 1 such that ‖V 1/2
K h − ϕ‖2 < ε for some

0 < ε < 1 small enough. Then, for any g ∈ ran(V
1/2
K �D(V )), we get

|〈V 1/2
K h, g〉|2 = |〈V 1/2

K h− ϕ, g〉|2 ≤ ‖V 1/2
K h− ϕ‖2‖g‖2 ≤ ε‖g‖2 .

Taking the supremum over all g ∈ ran(V
1/2
K �D(V )) with ‖g‖ = 1, we arrive at a

contradiction, since the supremum of the left hand side is 1 whereas the supremum of

the right hand side is ε < 1. This shows the lemma. �
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We are now prepared to show the main theorem:

Theorem 9.1.9. Let (A, Ã) be a dual pair that has the common core property, where

A is dissipative. Moreover, for any V ∈ D(Ã∗)//D(A) and L being a linear map from

V into H, let the operator AV,L be defined as in Definition 9.1.3. Moreover, assume

that

v ∈ D(V
1/2
K ) and Lv ∈ ran(V

1/2
F ) = D(V

−1/2
F )

for all v ∈ V. Then, AV,L is dissipative if and only if for all v ∈ V we have

(9.1.9) Im〈v, (Ã∗ + L)v〉 ≥ 1

4
‖UV −1/2

F Lv + 2iV
1/2
K v‖2 .

Here, V
−1/2
F denotes the inverse of V

1/2
F as an operator in ran(V

1/2
F ) and U is the partial

isometry as defined in Lemma 9.1.2.

Proof. Let us start be showing that the above conditions are sufficient. As usual,

let D denote a common core for A and Ã. For any f ∈ D and any v ∈ V , we then get

Im〈f + v, AV,L(f + v)〉 = Im〈f + v, Ã∗(f + v)〉+ Im〈f + v,Lv〉

= 〈f, V f〉+ Im〈v, 2iV f〉+ Im〈v, (Ã∗ + L)v〉+ Im〈f,Lv〉

= ‖V 1/2
K f‖2 + Im〈v, 2iV 1/2

K V
1/2
K f〉+ Im〈v, (Ã∗ + L)v〉+ Im〈V −1/2

F V
1/2
F f,Lv〉

= ‖V 1/2
K f‖2 + Im〈V 1/2

K v, 2iV
1/2
K f〉+ Im〈v, (Ã∗ + L)v〉+ Im〈UV 1/2

F f,UV −1/2
F Lv〉

= ‖V 1/2
K f‖2 + Im〈V 1/2

K v, 2iV
1/2
K f〉+ Im〈v, (Ã∗ + L)v〉+ Im〈V 1/2

K f,UV −1/2
F Lv〉

= ‖V 1/2
K f‖2 + Im〈v, (Ã∗ + L)v〉+ Im〈V 1/2

K f, (UV −1/2
F L+ 2iV

1/2
K )v〉

≥ ‖V 1/2
K f‖2 +

1

4
‖UV −1/2

F Lv + 2iV
1/2
K v‖2 + Im〈V 1/2

K f, (UV −1/2
F L+ 2iV

1/2
K )v〉

≥ ‖V 1/2
K f‖2 +

1

4
‖UV −1/2

F Lv + 2iV
1/2
K v‖2 − ‖V 1/2

K f‖‖(UV −1/2
F L+ 2iV

1/2
K )v‖

=

(
‖V 1/2

K f‖ − 1

2
‖UV −1/2

F Lv + 2iV
1/2
K v‖

)2

≥ 0 .

Let us now show that Condition (9.1.9) is also necessary. Assume that it is not satisfied,

i.e. that there exists a v ∈ V such that

(9.1.10) Im〈v, (Ã∗ + L)v〉 − 1

4
‖UV −1/2

F Lv + 2iV
1/2
K v‖2 ≤ −ε
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for some ε > 0. By Lemma 9.1.2, we have that (UV −1/2
F Lv + 2iV

1/2
K v) ∈ ran(V

1/2
K ). By

Lemma 9.1.8, there exists a sequence {V 1/2
K fn}n ⊂ ran(V

1/2
K �D(V )) such that

V
1/2
K fn

n→∞−→ −i
2

(UV −1/2
F Lv + 2iV

1/2
K v) ,

which means by (9.1.10) that

Im〈fn + v,AV,L(fn + v)〉

= ‖V 1/2
K fn‖2 + Im〈v, (Ã∗ + L)v〉+ Im〈V 1/2

K fn,UV −1/2
F Lv + 2iV

1/2
K v〉 n→∞−→ −ε < 0 .

This shows the theorem. �

Since one would need further knowledge of the explicit form of the operators V
1/2
F

and V
1/2
K in order to compute U , this result seems not to be very useful for practical

applications. However, in the following, we will describe three special situations where

significant simplifications occur:

Firstly let us consider the case when the imaginary part V is strictly positive, i.e. when

there exists a positive number ε > 0 such that 〈f, V f〉 ≥ ε‖f‖2 for all f ∈ D(V ).

Corollary 9.1.10. Let (A, Ã) be a dual pair satisfying the common core property,

where A is dissipative. Moreover, let the imaginary part V be strictly positive. Then,

AV,L is dissipative if and only if V ⊂ D(V
1/2
K ) and for all v ∈ V we have that

(9.1.11) Im〈v, Ã∗v〉+ Im〈Pv,Lv〉 ≥ 1

4
‖V −1/2

F Lv‖2 + ‖V 1/2
K v‖2 .

Here, P denotes the projection onto kerV ∗ along D(V
1/2
F ), according to the decomposi-

tion D(V
1/2
K ) = D(V

1/2
F )+̇ kerV ∗ as defined in (8.13).

Proof. Since V ≥ ε > 0, we have that ran(VF ) = ran(V
1/2
F ) = H, which means

that the condition ran(L) ⊂ ran(V
1/2
F ) is always satisfied. Thus, by Lemma 9.1.4, it is

necessary that V ⊂ D(V
1/2
K ) for AV,L to be dissipative.

Since V ≥ ε > 0, we have that D(VK) = D(V )+̇ kerV ∗ with VK = V ∗ �D(VK). This

implies that kerV ∗ = kerVK and since VK is non-negative, we also get that kerV
1/2
K =
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kerV ∗. By (5.2.1), it is known that D(V
1/2
K ) = D(V

1/2
F )+̇ kerV ∗. Thus, we can rewrite

1

4
‖UV −1/2

F Lv + 2iV
1/2
K v‖2 =

1

4
‖UV −1/2

F Lv + 2iV
1/2
K (1− P)v‖2

(9.1.1)
=

1

4
‖U(V

−1/2
F Lv + 2iV

1/2
F (1− P))v‖2 =

1

4
‖V −1/2

F Lv + 2iV
1/2
F (1− P)v‖2

=
1

4
‖V −1/2

F Lv‖2 + ‖V 1/2
F (1− P)v‖2 + Im〈V 1/2

F (1− P)v, V
−1/2
F Lv〉

=
1

4
‖V −1/2

F Lv‖2 + ‖V 1/2
K v‖2 + Im〈(1− P)v,Lv〉 .

With this, Condition (9.1.9) from Theorem 9.1.9 can be rewritten as

Im〈v, Ã∗v〉+ Im〈Pv,Lv〉 ≥ 1

4
‖V −1/2

F Lv‖2 + ‖V 1/2
K v‖2 ,

which is the desired result. �

Remark 9.1.11. For explicit computations, it seems useful to use the fact that

ran(VF ) = H. This means that any Lv can be written as Lv = VFφv for some φv ∈

D(VF ). Then, we can rewrite (9.1.11) as follows

(9.1.12) Im〈v, Ã∗v〉+ Im〈Pv, VFφv〉 ≥
1

4
‖V 1/2

F φv‖2 + ‖V 1/2
K v‖2 ,

which is more accessible to explicit computations. A similar idea for generic non-

negative imaginary parts V will be discussed in Corollary 9.1.13.

Example 9.1.12. As in Section 5.4.4, consider the dual pair (A0, Ã0), given by

A0 : D(A0) = C∞c (0, 1), (A0f) (x) = −if ′′(x)− γ f(x)

x2
,

Ã0 : D(Ã0) = C∞c (0, 1),
(
Ã0f

)
(x) = if ′′(x)− γ f(x)

x2
.

Define the dual pair (A, Ã), where A := A0 and Ã := Ã0. By construction, (A, Ã) has

the common core property, where we choose C∞c (0, 1) =: D to be the common core.

The “imaginary part” V is given by

V : D(V ) = C∞c (0, 1)

f 7→ −f ′′ ,

which is a strictly positive operator, since in (5.4.11), we have already argued that

〈f, V f〉 ≥ π2‖f‖2 for all f ∈ C∞c (0, 1) .

157



For simplicity, assume that γ ≥
√

3, which ensures that dim ker Ã∗ = dim kerA∗ = 1.

Recall that D(Ã∗) can be written as

D(Ã∗) = D(A)+̇span{xω+ , xω++2} ,

where we have defined ω+ := (1 +
√

1 + 4iγ)/2. We therefore choose D(Ã∗)//D(A) =

span{xω+ , xω++2}. Recall that in (5.4.15), we have parametrized all proper one-dimensional

extensions of (A, Ã), with the family of operators {Aρ}ρ∈C∪{∞} given by

Aρ : D(Aρ) = D(A)+̇span{ξρ}, Aρ = Ã∗ �D(Aρ) ,

where

span{xω+ , xω++2} 3 ξρ(x) :=

ρ
(

(2+ω+)xω+−ω+x
ω++2

2+ω+−ω+

)
− xω+−xω++2

2+ω+−ω+
for ρ ∈ C

(2+ω+)xω+−ω+x
ω++2

2+ω+−ω+
for ρ =∞

satisfies the boundary conditions

ξρ(0) = ξ′ρ(0) = 0 for ρ ∈ C ∪ {∞}

ξρ(1) = ρ, ξ′ρ(1) = 1 for ρ ∈ C and ξρ(1) = 1, ξ′ρ(1) = 0 for ρ =∞ .

Next, observe that for ρ ∈ C, we get Pξρ(x) = ρx, whereas for ρ =∞, we get Pξ∞(x) =

x. This follows from the fact that D(V
1/2
F ) = H1

0 (0, 1) and for any ρ ∈ C, we have

ξρ(0) = ξ∞(0) = 0 as well as ξρ(1) = ρ and ξ∞(1) = 1. Now, since V is strictly positive,

we know that its Friedrichs extension VF is bijective, which means that any function

Lξρ ∈ L2(0, 1) can be written as Lξρ = VFφ = −φ′′ for some unique φ ∈ D(VF ) = {φ ∈

H2(0, 1), φ(0) = φ(1) = 0}. Hence, let us use the parameter ρ ∈ C ∪ {∞} and the

functions φ ∈ D(VF ) to label all one-dimensional extensions of D(A) that have domain

contained in D(Ã∗). They are given by

Aρ,φ : D(Aρ,φ) = D(A)+̇span{ξρ}

[Aρ,φ(f + λξρ)](x) = (−if ′′(x)− λiξ′′ρ(x))− γ f(x) + λξρ(x)

x2
− λφ′′(x) ,

where f ∈ D(A) and λ ∈ C. By (9.1.12), we have that Aρ,φ is dissipative if and only if

Im〈ξρ, Ã∗ξρ〉 − ‖V 1/2
K ξρ‖2 ≥ 1

4
‖V 1/2

F φ‖2 − Im〈Pξρ, VFφ〉 .
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is satisfied. In (5.4.14), we have shown that for any v ∈ span{xω+ , xω++2}, we have

Im〈v, Ã∗v〉 − ‖V 1/2
K v‖2 = −Re

(
v(1)v′(1)

)
+ |v(1)|2 ,

which means that

Im〈ξρ, Ã∗ξρ〉 − ‖V 1/2
K ξρ‖2 =

|ρ|
2 − Re(ρ) if ρ ∈ C

1 if ρ =∞ .

Moreover, since ‖V 1/2
F φ‖ = ‖φ′‖ and

(9.1.13) Im

(∫ 1

0

xφ′′(x)dx

)
= Im(φ′(1))

for any φ ∈ D(VF ), the above yields the conditions for Aρ,φ to be dissipative:

1

4
‖φ′‖2 + Im(ρφ′(1)) ≤ |ρ|2 − Reρ for ρ ∈ C

1

4
‖φ′‖2 + Im(φ′(1)) ≤ 1 for ρ =∞ .

For the case of proper extensions Aρ,φ=0 we had the condition that either ρ = ∞ or

|ρ|2 − Reρ ≥ 0 for Aρ,φ=0 to be dissipative. In the non-proper case, for a suitable

choice of φ, it is no longer necessary that ρ satisfies this condition. For instance, let

φ(x) := x2 − x ∈ D(VF ). We then get the condition

1

4
‖φ′‖2 + Im(ρφ′(1)) =

1

12
− Im(ρ) ≤ |ρ|2 − Reρ

for Aρ,(x2−x) to be dissipative. This condition is for example satisfied by ρ = 1
2

+ 3
8
i,

i.e. A( 1
2

+ 3
8
i),(x2−x) is dissipative, while A( 1

2
+ 3

8
i),φ=0 is not. In Corollary 9.1.15, we will

show that the phenomenon that we have a dissipative non-proper extension, defined on

a domain on which the corresponding proper extension would not be dissipative, can

only occur if V is not essentially selfadjoint.

Next, let us consider the special case that ran(L) ⊂ ran(VF ).

Corollary 9.1.13. Let (A, Ã) be dual pair satisfying the common core property,

where A is dissipative. Moreover, assume that ran(L) ⊂ ran(VF ). In this case, we write

Lv = VFφv, where φv ∈ D(VF ). Then, AV,L is dissipative if and only if V ⊂ D(V
1/2
K )

and for all v ∈ V, we have that

(9.1.14) Im〈v, Ã∗v〉+ Im〈v, VFφv〉 ≥
1

4
‖V 1/2

K (φv + 2iv)‖2 .
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Proof. Since ran(L) ⊂ ran(VF ) ⊂ ran(V
1/2
F ) by assumption, it follows from Lemma

9.1.6 that it is necessary that V ⊂ D(V
1/2
K ) for AV,L to be dissipative. Again, condition

(9.1.14) follows from (9.1.9), where we substitute Lv = VFφv to get

Im〈v, Ã∗v〉+ Im〈v, VFφv〉 ≥
1

4
‖UV −1/2

F VFφv + 2iV
1/2
K v‖2 =

1

4
‖V 1/2

K (φv + 2iv)‖2 ,

which is the desired result. �

Example 9.1.14. Let H = L2(0,∞) and consider the dual pair of closed operators

(A, Ã) given by

A : D(A) = H2
0 (0,∞), f 7→ −if ′′

Ã : D(Ã) = H2
0 (0,∞), f 7→ if ′′ ,

which has the common core property since D(A) = D(Ã) and (A, Ã) are closed. Their

adjoints are given by

Ã∗ : D(Ã∗) = H2(0,∞), f 7→ −if ′′

A∗ : D(A∗) = H2(0,∞), f 7→ if ′′ .

Moreover, the “imaginary part” V and its adjoint V ∗ are given by

V : D(V ) = H2
0 (0,∞), f 7→ −f ′′

V ∗ : D(V ∗) = H2(0,∞), f 7→ −f ′′ .

As A = iV and Ã = −iV , we get that Ã∗ = iV ∗ and A∗ = −iV ∗. Since

ker(V ∗ ± i) = span

{
exp

(
−1± i√

2
x

)}
,

and

D(Ã∗) = D(V ∗) = D(V )+̇ ker(V ∗+ i)+̇ ker(V ∗− i) = D(A)+̇ ker(V ∗+ i)+̇ ker(V ∗− i) ,

we may choose

D(V ∗)//D(V ) = D(Ã∗)//D(A)

= span

{
exp

(
−1 + i√

2
x

)
, exp

(
−1− i√

2
x

)}
= span{σ, τ} .
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The functions σ and τ are suitable linear combinations of the elements of D(Ã∗)//D(A)

such that σ(0) = τ ′(0) = 1 and σ′(0) = τ(0) = 0. For ρ ∈ C, define the function

ζρ(x) := σ(x) + ρτ(x) and let ζ∞(x) := τ(x). In order to be able to use Corollary

9.1.13, we will only consider Lζρ ∈ ran(VF ), i.e. we can write Lζρ = VFφ for some

φ ∈ D(VF ) = {f ∈ H2(0,∞), f(0) = 0}. Thus, as in Example 9.1.12, let us use the

parameter ρ ∈ C ∪ {∞} and the function φ ∈ D(VF ) to describe all extensions Aρ,φ of

the form

Aρ,φ : D(Aρ,φ) = D(A)+̇span{ζρ}

f + λζρ 7→ −i(f ′′ + λζ ′′ρ )− λφ′′ ,

where f ∈ D(A) and λ ∈ C. Next, let us use Corollary 9.1.13 to find the conditions on

ρ and φ for Aρ,φ to be dissipative. Firstly, observe that VK is the Neumann-Laplacian

on the half-line. This can be seen from

(9.1.15) 〈f, V ∗f〉 = f(0)f ′(0) +

∫ ∞
0

|f ′(x)|2dx

for all f ∈ D(V ∗). In order to find the selfadjoint restrictions of V ∗, observe that any

additional selfadjoint boundary condition has to be of the form f ′(0) = rf(0), where

r ∈ R. The choice r = ∞ corresponds to a Dirichlet condition at 0, i.e. f(0) = 0 and

describes the Friedrichs extension of V . For any r < 0, we get that 〈f, V ∗f〉 can be

made negative, which therefore does not describe a non-negative selfadjoint extension of

V . For r ≥ 0, it is obvious that r = 0 describes the smallest non-negative extension of

V . Hence, the Krĕın–von Neumann extension is given by the Neumann-Laplacian with

domain D(VK) = {f ∈ H2(0,∞), f ′(0) = 0}. It is also not hard to see that if we close

D(VK) with respect to the norm induced by (9.1.15), we get D(V
1/2
K ) = H1(0,∞). Now,

since D(Ã∗)//D(A) ⊂ H1(0,∞) = D(V
1/2
K ), we get that the first necessary condition

for Aρ,φ to be dissipative is satisfied for any ρ ∈ C ∪ {∞}. Next, let us determine for

which ρ ∈ C ∪ {∞} and φ ∈ D(VF ) Condition (9.1.14) is satisfied. For ρ ∈ C, it reads
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as

Im〈ζρ,−iζ ′′ρ 〉+ Im〈ζρ,−φ′′〉 ≥
1

4
‖φ′ + 2iζ ′ρ‖2 =

1

4
‖φ′‖2 + ‖ζ ′ρ‖2 + Re〈φ′, iζ ′ρ〉

⇔Im(ζρ(0)iζ ′ρ(0)) + ‖ζ ′ρ‖2 + Im〈φ′′, ζρ〉 ≥
1

4
‖φ′‖2 + ‖ζ ′ρ‖2 + Im〈φ′′, ζρ〉+ Im(φ′(0)ζρ(0))

⇔Reρ ≥ 1

4
‖φ′‖2 − Im(φ′(0)) .

For ρ =∞, we get the condition that

0 ≥ 1

4
‖φ′‖2 ,

which means that the only allowed choice is φ(x) ≡ 0 in this case.

Finally, let us consider the case that V is essentially selfadjoint.

Corollary 9.1.15. Let (A, Ã) be dual pair satisfying the common core property,

where A is dissipative. Moreover, let the imaginary part V be essentially selfadjoint.

Then, AV,L is dissipative if and only if V ⊂ D(V
1/2

), ran(L) ⊂ ran(V
1/2

) and for all

v ∈ V we have that

(9.1.16) Im〈v, Ã∗v〉 ≥ 1

4
‖V −1/2Lv‖2 + ‖V 1/2

v‖2 .

In particular, this implies that for AV,L to be dissipative, it is necessary that AV is

dissipative.

Proof. The conditions that V ⊂ D(V
1/2

) and ran(L) ⊂ ran(V
1/2

) for AV,L to be

dissipative follow from Lemma 9.1.6. Condition (9.1.16) follows from (9.1.9) using that

VK = VF = V , which implies that U acts like the identity on ran(V
1/2

). Moreover, by

Theorem 5.2.8, AV is dissipative if and only if V ⊂ D(V
1/2

) and Im〈v, Ã∗v〉 ≥ ‖V 1/2
v‖2

for all v ∈ V . Thus, if AV is not dissipative then it is either true that V 6⊂ D(V
1/2

) or

we have V ⊂ D(V
1/2

) but there exists a v ∈ V such that

Im〈v, Ã∗v〉 − ‖V 1/2
v‖2 < 0 .

In the first case, AV,L would not be dissipative, since by what we have just shown, it is

necessary that V ⊂ D(V
1/2

) for AV,L to be dissipative. In the second case, Condition

(9.1.16) would read as

0 > Im〈v, Ã∗v〉 − ‖V 1/2
v‖2 ≥ 1

4
‖V −1/2Lv‖2 ,
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which is impossible. This shows the corollary. �

Example 9.1.16. Let 0 < γ < 1
2

and let (A, Ã) be the dual pair as discussed in

Example 2.4.4, where we have chosen D = C∞c (0, 1) to be the common core. Recall

that we have D(Ã∗)//D(A) = span{x−γ, xγ+1} and that the imaginary part V is the

multiplication operator by the function γ
x

which has closure to the selfadjoint maximal

multiplication operator by γ
x
. As argued before, x−γ /∈ D(V

1/2
), which means that the

only choice for V ⊂ span{x−γ, xγ+1} in order to have a chance for AV,L to be dissipative

is V := span{xγ+1}. Let us define v(x) := xγ+1 and Lv =: ` ∈ H and let us use the

functions v and ` to label AV,L := Av,`. Since 〈f, V f〉 ≥ ‖f‖2 for all f ∈ D(V ), we get

that V and V
1/2

are both boundedly invertible, in particular that ran(V
1/2

) = H. Thus,

by Corollary 9.1.15, it only remains to check whether Condition (9.1.16) is satisfied,

which reads as

Im〈v, Ã∗v〉 − ‖V 1/2
v‖2 ≥ 1

4
‖V −1/2

`‖2 .

In (5.4.9), we have already shown that

Im〈v, Ã∗v〉 − ‖V 1/2
v‖2 (5.4.9)

=
1

2

(
|v(1)|2 − |v(0)|2

)
=

1

2
.

Hence, Av,` is dissipative if and only if

‖V −1/2
`‖2 =

1

γ

∫ 1

0

x|`(x)|2dx ≤ 2 .

This means that all dissipative extension of A that have domain contained in D(Ã∗)

are given by

Av,` : D(Av,`) = D(A)+̇span{v}

(Av,`(f + λv)) (x) = if ′(x) + iλv′(x) + iγ
f(x) + λv(x)

x
+ λ`(x) ,(9.1.17)

where f ∈ D(A) and λ ∈ C. The function ` ∈ L2(0, 1) has to satisfy

(9.1.18)

∫ 1

0

x|`(x)|2dx ≤ 2γ .

Moreover, by Lemma 2.3.8, we have that Av,` is maximally dissipative since it is a

one-dimensional extension of A.
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9.2. Application: Operators with bounded imaginary part

Let us apply the result of Corollary 9.1.15 in order to construct all dissipative

extensions of a dissipative operator with bounded imaginary part. To start with, let

us show that it is sufficient to only consider operators of the form S + iV , where S is

symmetric and V ≥ 0 is bounded:

Lemma 9.2.1. Let A be a dissipative operator and assume that the quadratic form

q given by

q : D(q) = D(A), f 7→ Im〈f, Af〉

is bounded. Then there exists a unique symmetric operator S with D(S) = D(A) and a

unique selfadjoint bounded operator V ≥ 0 such that A = S + iV .

Proof. Firstly, observe that the quadratic form q is closable and let V be the

selfadjoint operator associated to the closure of q. Define the operator S = A− iV with

D(S) = D(A), which is symmetric:

Im〈f, Sf〉 = Im〈f, (A− iV )f〉 = Im〈f, Af〉 − 〈f, V f〉 = 0 .

Thus, A = S + iV , where D(S) = D(A).

To show that this choice is unique, assume that there exists another symmetric S ′ with

D(S ′) = D(A) and a bounded V ′ ≥ 0, such that A = S ′ + iV ′. Then, for all f ∈ D(A),

we get

〈f, [(S − S ′) + i(V − V ′)] f〉 = 0 ,

which means in particular that for all f ∈ D(A), we have:

Re〈f, ((S − S ′) + i(V − V ′))f〉 = 〈f, (S − S ′)f〉 = 0

and

Im〈f, ((S − S ′) + i(V − V ′))f〉 = 〈f, (V − V ′)f〉 = 0 .

By Lemma 9.3.8, we get that S = S ′ and V �D(A)= V ′ �D(A) and as V and V ′ coincide on

a dense set, so do their unique continuous extensions to H. This shows the lemma. �

Next, let us show that for any dissipative extension of S + iV , it is necessary that

its domain is contained in D(S∗):
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Lemma 9.2.2. Let A := S+ iV , where S is symmetric and V ≥ 0 is bounded. Then,

for an extension A ⊂ B to be dissipative, it is necessary that D(B) ⊂ D(S∗).

Proof. Assume that D(B) 6⊂ D(S∗), i.e. that there exists a v ∈ D(B) such that

v /∈ D(S∗). For any f ∈ D(A) = D(S), consider

Im〈f + v,B(f + v)〉 = Im〈f, (S + iV )f〉+ Im〈v, (S + iV )f〉+ Im〈f + v,Bv〉

= 〈f, V f〉+ Im〈v, Sf〉+ Im〈v, iV f〉+ Im〈f + v,Bv〉

≤ ‖V ‖‖f‖2 + Im〈v, Sf〉+ ‖V ‖‖v‖‖f‖+ ‖f‖‖Bv‖+ ‖v‖‖Bv‖ .(9.2.1)

Since v /∈ D(S∗), there exists a normalized sequence {fn}n ⊂ D(S) such that

lim
n→∞

Im〈v, Sf〉 = −∞ .

Using (9.2.1), we therefore get

Im〈fn + v,B(fn + v)〉 ≤ ‖V ‖+ ‖V ‖‖v‖+ ‖Bv‖+ ‖v‖‖Bv‖+ Im〈v, Sfn〉
n→∞−→ −∞ ,

which shows that B cannot be dissipative in this case. This finishes the proof. �

We are now able to describe all dissipative extensions of A = S + iV :

Theorem 9.2.3. Let A = S + iV be a dissipative operator with bounded imaginary

part. Moreover, let V ⊂ D(S∗)//D(S) and let L be a linear map from V into H. Define

the operator SV,L via

SV,L : D(SV,L) = D(S)+̇V

SV,L(f + v) = S∗(f + v) + Lv ,(9.2.2)

where f ∈ D(S) and v ∈ V. Then SV,L + iV is a dissipative extension of S + iV if and

only if for all v ∈ V we have that Lv ∈ ran(V 1/2) and the condition

(9.2.3) Im〈v, S∗v〉 ≥ 1

4
‖V −1/2Lv‖2

is satisfied. As before, V −1/2 denotes the inverse of V 1/2 on the reducing subspace

ran(V 1/2). Moreover, all dissipative extensions of S + iV are of this form.

165



Proof. Since V is bounded, SV,L is an extension of S if and only if AV,L = SV,L+iV

is an extension of A := S + iV . Clearly, for A := S + iV and Ã := S − iV , we have

that (A, Ã) is a dual pair and we get that D(A) = D(Ã) = D(S), which means that

it has the common core property. Moreover, by boundedness of V , we get that Ã∗ =

S∗ + iV , where D(Ã∗) = D(S∗). Also, observe that V �D(S) is essentially selfadjoint,

which means that we can apply Corollary 9.1.15. Since V is bounded, we have that

D(V 1/2) = D(V ) = H, which means that the Condition that V ⊂ D(V 1/2) is always

satisfied. Thus, by Corollary 9.1.15, it is necessary that ran(L) ⊂ ran(V 1/2) for AV,L to

be dissipative. Condition (9.1.16) reads as

Im〈v, (S∗ + iV )v〉 ≥ ‖V 1/2v‖2 +
1

4
‖V −1/2Lv‖2 ⇔ Im〈v, S∗v〉 ≥ 1

4
‖V −1/2Lv‖2 ,

which is the desired result. Let us finish by showing that all dissipative extensions

of S + iV are parametrized by the operators SV,L + iV . By Lemma 9.2.2, we know

that all dissipative extensions have domain contained in D(S∗) = D(Ã∗). On the other

hand, since V is an arbitrary subspace of D(S∗)//D(S), the extensions SV,L as defined

in (9.2.2) describe all possible extensions of S that have domain contained in D(S∗).

As they are dissipative if and only if V and L satisfy the assumptions of this Theorem,

we have found all dissipative extensions of (S + iV ). �

Remark 9.2.4. This is not a new result, it was first shown by Crandall and Phillips

[14, Theorem 1].

From Condition (9.2.3), we see that if Im〈v, S∗v〉 ≡ 0 on V , it is necessary that

Lv = 0 for all v ∈ V :

Corollary 9.2.5. Let V ⊂ D(S∗)//D(S).

a) If SV is symmetric, then (SV + iV ) is the only dissipative extension of (S + iV )

with domain equal to D(SV). Moreover, the imaginary part of any other extension of

the form (SV,L + iV ) is not bounded from below, i.e. for L 6= 0, there exists no γ ∈ R+

such that

(9.2.4) inf
ψ∈D(SV,L):‖ψ‖=1

Im〈ψ, (SV,L + iV )ψ〉 ≥ −γ‖ψ‖2 .
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b) On the other hand, if there exists an ε > 0 such that

Im〈v, SVv〉 ≥ ε‖v‖2

for all v ∈ V and if the operator L is bounded, we get that

(9.2.5) Im〈ψ, SV,Lψ〉 ≥ −
‖L‖2

4ε
‖ψ‖2

for all ψ ∈ D(SV,L). This implies in particular that for any bounded V ≥ ‖L‖2
4ε

, we get

Im〈ψ, (SV,L + iV )ψ〉 ≥ 0

for all ψ ∈ D(SV,L).

Proof. a) By Theorem 9.2.3, Condition (9.2.3), it is necessary that

Im〈v, S∗v〉 ≥ 1

4
‖V −1/2Lv‖2

for all v ∈ V . But since SV = S∗ �D(SV ) is symmetric, we get Im〈v, S∗v〉 = 0 for all

v ∈ V , which makes it necessary that Lv = 0 for all v ∈ V for (SV,L + iV ) to be

dissipative. In other words, only for L ≡ 0 do we have that AV,L=0 = (SV,L=0 + iV )

is dissipative. For the second part of a), assume that the imaginary part of AV,L is

semibounded with semibound −γ (cf. (9.2.4)). This would mean that the operator

SV,L + i(V + γ) is dissipative, which by Condition (9.2.3) means that for all v ∈ V , it

is necessary that

0 = Im〈v, S∗v〉 ≥ 1

4
‖(V + γ)−1/2Lv‖2 ,

which is impossible if L 6= 0.

b) Assume now that there exists an ε > 0 such that Im〈v, SVv〉 = Im〈v, S∗v〉 ≥ ε‖v‖2

for all v ∈ V . If L = 0, (9.2.5) clearly holds with ‖L‖ = 0. Now, let L 6= 0. Again, by

Condition (9.2.3) of Theorem 9.2.3, the operator SV,L + i‖L‖
2

4ε
is dissipative if and only

if

(9.2.6) Im〈v, S∗v〉 ≥ 1

4

∥∥∥∥∥
(
‖L‖2

4ε

)−1/2

Lv

∥∥∥∥∥
2

for all v ∈ V . Since for all v ∈ V we may estimate

1

4

∥∥∥∥∥
(
‖L‖2

4ε

)−1/2

Lv

∥∥∥∥∥
2

≤ 4ε

4‖L‖2
‖Lv‖2 ≤ ε‖v‖2 ≤ Im〈v, S∗v〉 ,
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this proves that (9.2.6) is satisfied. Hence the operator SV,L+ i‖L‖
2

4ε
is dissipative, which

is equivalent to

Im〈ψ, SV,Lψ〉 ≥ −
‖L‖2

4ε
‖ψ‖2

for all ψ ∈ D(SV,L). This finishes the proof. �

Example 9.2.6 (Schrödinger operator on the half-line). Let H = L2(R+) and con-

sider the closed symmetric operator S given by:

S : D(S) = {f ∈ H2(R+) : f(0) = f ′(0) = 0}, f 7→ −f ′′ .

Its adjoint is given by

S∗ : D(S∗) = H2(R+), f 7→ −f ′′ ,

where in both cases, f ′′ denotes the second weak derivative of f . Since for any f ∈ D(S∗)

we have

Im〈f, S∗f〉 = −Im

(∫ ∞
0

f(x)f ′′(x)dx

)
= Im

(
f(0)f ′(0)

)
,

this shows that all maximally dissipative extensions of S are parametrized by the bound-

ary condition

Sh : D(Sh) = {f ∈ H2(R+) : f ′(0) = hf(0)}

f 7→ −f ′′ ,

where Im(h) ≥ 0. Since S is symmetric, we may choose

D(S∗)//D(S) = ker(S∗ + i)+̇ ker(S∗ − i) .

Now pick ηh ∈ D(S∗)//D(S) such that η′h(0) = h and ηh(0) = 1, which means that

D(Sh) = D(S)+̇span{ηh} with the understanding that h =∞ corresponds to Dirichlet

boundary conditions at the origin. This implies that

(9.2.7) Im〈ηh, S∗ηh〉 = Imh ,

where we introduce the convention that Im(∞) = 0 since S∞ is selfadjoint. By Theorem

9.2.3, Condition (9.2.3), we get that for h =∞ the only linear map L that describes a

dissipative extension SV∞,L is given by L ≡ 0, which corresponds to a proper dissipative

extension. Here, V∞ := span{η∞}. Hence, we will not treat this case anymore from

168



now on. Now, for h 6=∞, the map L from V = span{ηh} has to be of the form Lηh = k

for some k ∈ H. Thus, any f ∈ D(Sh) can be written as f = (f − f(0)ηh) + f(0)ηh,

where (f − f(0)ηh) ∈ D(S). This means that the operator SV,L is given by

SV,L : D(SV,L) = D(Sh)

SV,Lf = −f ′′ + f(0)k .

Since SV,L only depends on our choice of h ∈ C and k ∈ H, let us use these two parame-

ters to label SV,L = Sh,k. Let us now consider a few bounded dissipative perturbations:

• Let us start with a rank-one perturbation of the form V = α|ϕ〉〈ϕ|, where

α > 0 and ‖ϕ‖ = 1. Since ranV = ranV 1/2 = span{ϕ}, the first condition of

Theorem 9.2.3 yields that k ∈ span{ϕ}. Moreover, on span{ϕ}, the operator

V −1/2 is given by ϕ 7→ α−1/2ϕ. Thus, the second condition of Theorem 9.2.3

reads as

(9.2.8)
1

4
‖α−1/2λϕ‖2 ≤ Imh ⇔ |λ|2 ≤ 4αImh ,

where we have parametrized k = λϕ. Thus, all (maximally) dissipative exten-

sions of the operator

A : D(A) = {f ∈ H2(R+) : f(0) = f ′(0) = 0}

f 7→ −f ′′ + iα〈ϕ, f〉ϕ

are given by the family of operators Ah,λ, where |λ|2 ≤ 4αImh:

Ah,λ : D(Ah,λ) = {f ∈ H2(R+) : f ′(0) = hf(0)}

f 7→ −f ′′ + f(0)λϕ+ iαϕ〈ϕ, f〉 .

• Let us generalize the previous case to V ≥ 0 being compact. In this case, V

can be written as V =
∑∞

i=1 αi|ϕi〉〈ϕi|, where αi ≥ αi+1 > 0 for all i ∈ N and

limi→∞ αi = 0. This implies that V 1/2 =
∑∞

i=1 α
1/2
i |ϕi〉〈ϕi|. Clearly, ranV =

span{ϕi}i, however, V is certainly not boundedly invertible on its range. Thus,

the function k ∈ ranV such that Lηh = k therefore has to satisfy the additional

requirement
∞∑
i=1

|〈k, ϕi〉|2

αi
<∞ ,
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which guarantees that k ∈ D(V −1/2). Now, the second condition of Theorem

9.2.3 reads as

(9.2.9)
∞∑
i=1

|〈k, ϕi〉|2

αi
≤ 4Imh .

We therefore have constructed the (maximally) dissipative extensions of the

operator

A : D(A) = {f ∈ H2(R+) : f(0) = f ′(0) = 0}

f 7→ −f ′′ + i
∞∑
i=1

αiϕi〈ϕi, f〉 ,

which are given by the family of operators Ah,k:

Ah,k : D(Ah,λ) = {f ∈ H2(R+) : f ′(0) = hf(0)}

f 7→ −f ′′ + f(0)k + i
∞∑
i=1

λiϕi〈ϕi, f〉 ,

where k ∈ ranV satisfies (9.2.9).

• Now, let V be the multiplication operator by an a.e. non-negative function

V (x) ∈ L∞(R+). Clearly, ranV = L2(ess suppV (x)), where we recall that

ess suppV (x) is the smallest closed subset of R+ such that V (x) = 0 a.e.

in R+ \ (ess suppV (x)). Hence, the first condition of Theorem 9.2.3 yields

the requirement that ess supp(k(x)) ⊂ ess supp(V (x)). Next, k ∈ D(V −1/2)

implies that k has to be such that∫
ess supp(V (x))

|k(x)|2

V (x)
dx <∞ .

Lastly, the second condition of Theorem 9.2.3 reads as∫
ess supp(V (x))

|k(x)|2

V (x)
dx ≤ 4Imh .

Thus, all (maximally) dissipative extensions of the operator

A : D(A) = {f ∈ H2(R+) : f(0) = f ′(0) = 0}

(Af)(x) = −f ′′(x) + iV (x)f(x)
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are given by the family of operatorsAh,k, where k ∈ H such that ess supp(k(x)) ⊂

ess supp(V (x)) and∫
ess supp(V (x))

|k(x)|2

V (x)
dx ≤ 4Imh .

They are given by:

Ah,k : D(Ah,λ) = {f ∈ H2(R+) : f ′(0) = hf(0)}

(Ah,kf)(x) = −f ′′(x) + f(0)k(x) + iV (x)f(x) .

9.3. Dissipative extensions of operators with closable imaginary part

In this section, we are going to determine the dissipative extensions of dissipative

operators A for which the form given by

qA : D(qA) = D(A)

f 7→ Im〈f, Af〉(9.3.1)

is closable (cf. Definition 7.3.1). This is not always the case as the following counterex-

ample illustrates:

Counterexample 9.3.1. Let H = L2(0, 1)⊕ L2(0,∞) and consider the operator

A : D(A) = {(f1, f2) ∈ H : f1 ∈ H1(0, 1), f1(0) = f1(1) = 0, f2 ∈ H1(0,∞)}

(f1, f2) 7→ (−if ′1,−if ′2) .

For any (f1, f2) ∈ D(A), we have — using integration by parts —

Im〈(f1, f2), A(f1, f2)〉 = Im〈(f1, f2), (−if ′1,−if ′2)〉 =
|f2(0)|2

2
≥ 0 ,

which means that A is dissipative. However, since we have added the first Hilbert space

L2(0, 1), the operator is not maximally dissipative. Now, the form given by

qA((f1, f2)) := Im〈(f1, f2), A(f1, f2)〉 =
|f2(0)|2

2

is not closable. To see this, pick e.g. the sequence gn = (0, g
(2)
n ), where

g(2)
n (x) =

1− nx for x ∈ [0, 1/n]

0 for x > 1/n .
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A calculation shows that ‖gn‖2 = 1
3n
→ 0 and qA(gn − gm) = 0 for all n,m. However,

for any n we have that qA(gn) = 1 6→ 0, which means that qA is not closable.

Remark 9.3.2. If A is dissipative and there exists an antidissipative Ã such that

(A, Ã) is a dual pair that has the common core property with common core D, then

the form qA �D is closable since qA(f) = 〈f, 1
2i

(A − Ã) �D f〉, where 1
2i

(A − Ã) �D is

symmetric (cf. [26, Thm. VI, 1.27]). Hence, in this case, we could consider extensions

of the operator A0 := A �D instead. Thus, if we have found a dissipative extension B0

of A0, where B0 6⊂ A, we can use Lemma 5.2.1 and close B0 to obtain a dissipative

extension B := B0 of A.

Let A be dissipative and assume that it induces a strictly positive closable imaginary

part. In the following, we will determine a necessary and sufficient condition for an

extension A ⊂ B to be dissipative.

Theorem 9.3.3. Let A be dissipative and let qA be the quadratic form as defined in

(9.3.1). Assume that qA is closable and that there exists an ε > 0 such that

(9.3.2) qA(f) ≥ ε‖f‖2

for all f ∈ D(A) = D(qA). Let V be the selfadjoint operator associated to the closure

of qA. Moreover, let W be the operator given by

W : D(W ) = ran(V 1/2 �D(A))

g 7→ AV −1/2g .

An extension A ⊂ B is dissipative if and only if for any v ∈ D(B)//D(A) we have

v ∈ D(W ∗) and it satisfies the inequality

(9.3.3) Im〈v,Bv〉 ≥ 1

4
‖(V −1/2B −W ∗)v‖2 .

Proof. We need to show that Im〈f + v,B(f + v)〉 ≥ 0 for any f ∈ D(A) and any

v ∈ D(B)//D(A). Using that for any f ∈ D(A), we get Im〈f, Af〉 = ‖V 1/2f‖2, we can
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write

Im〈f + v,B(f + v)〉 = Im〈f, Af〉+ Im〈v,Bv〉+ Im〈f,Bv〉+ Im〈v, Af〉

= ‖V 1/2f‖2 + Im〈v,Bv〉+ Im〈f,Bv〉+ Im〈v, Af〉 .

Now, since V ≥ ε, it follows that V 1/2 is boundedly invertible. Hence, for any f ∈

D(A) ⊂ D(V 1/2), there exists a unique g ∈ H such that f = V −1/2g. Moreover, note

that ran(V 1/2 �D(A)) is dense in H. This follows from the fact that ran(V 1/2) = H and

that for any V 1/2f , where f ∈ D(V 1/2), there exists a sequence {fn}n ⊂ D(A) such

that V 1/2fn → V 1/2f since D(A) is a core for V 1/2. This means that W is a densely

defined operator. Now, let us write

Im〈f + v,B(f + v)〉 = Im〈V −1/2g + v,B(V −1/2g + v)〉

= ‖V 1/2V −1/2g‖2 + Im〈v,Bv〉+ Im〈V −1/2g,Bv〉+ Im〈v,AV −1/2g〉

= ‖g‖2 + Im〈v,Bv〉+ Im〈g, V −1/2Bv〉+ Im〈v,Wg〉 .(9.3.4)

Assume that v /∈ D(W ∗). This means that the map g 7→ 〈v,Wg〉 is an unbounded

linear functional on D(W ) = ran(V 1/2 �D(A)). Hence, there exists a normalized sequence

{gn}n ⊂ D(W ) such that Im〈v,Wgn〉
n→∞−→ −∞. Looking back at Equation (9.3.4), we

see

‖gn‖2 + Im〈v,Bv〉+ Im〈gn, V −1/2Bv〉+ Im〈v,Wgn〉

≤1 + Im〈v,Bv〉+ ‖V −1/2Bv‖+ Im〈v,Wgn〉
n→∞−→ −∞ ,

which means that B cannot be dissipative in this case. Thus, suppose that for any

v ∈ D(B)//D(A), we have v ∈ D(W ∗) from now on. Let us now show that if (9.3.3) is

satisfied for all v ∈ D(B)//D(A), we get that B is dissipative. We proceed to estimate

(9.3.4):

‖g‖2 + Im〈v,Bv〉+ Im〈g, V −1/2Bv〉+ Im〈v,Wg〉
(9.3.3)

≥ ‖g‖2 +
1

4
‖(V −1/2B −W ∗)v‖2 + Im〈W ∗v, g〉 − Im〈V −1/2Bv, g〉

≥‖g‖2 +
1

4
‖(V −1/2B −W ∗)v‖2 − ‖g‖‖(V −1/2B −W ∗)v‖

=

(
‖g‖ − 1

2
‖(V −1/2B −W ∗)v‖

)2

≥ 0 ,
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which shows that (9.3.3) is sufficient for B to be dissipative. Let us finish the proof

by showing that it is also necessary. To this end, assume that there exists a v ∈

D(B)//D(A) such that

(9.3.5) Im〈v,Bv〉 − 1

4
‖(V −1/2B −W ∗)v‖2 ≤ −ε

for some ε > 0. Since D(W ) is dense, we may pick a sequence {gn}n ⊂ D(W ) such that

gn
n→∞−→ −i

2
(V −1/2B −W ∗)v. Plugging this sequence into (9.3.4), we get

‖gn‖2 + Im〈v,Bv〉+ Im〈(W ∗ − V −1/2B)v, gn〉

n→∞−→ Im〈v,Bv〉 − 1

4
‖(V −1/2B −W ∗)v‖2

(9.3.5)

≤ −ε .

This shows that B cannot be dissipative in this case either. This finishes the proof. �

Note that even though by construction we have that D(A) ⊂ D(V 1/2), it is not in

general true that D(A) ⊂ D(V ) as the following counterexample shows:

Counterexample 9.3.4. Let b be such that Re(b) ≥ 0 and Im(b) 6= 0 and consider

the maximally dissipative operator A on H = L2(0,∞) given by

A : D(A) = {ψ ∈ H2(0,∞) : ψ′(0) = bψ(0)}

f 7→ −if ′′ + if .

The quadratic form qA induced by the imaginary part is given by

qA(ψ) = Im〈ψ,Aψ〉 = Im

(∫ ∞
0

ψ(x) (−iψ′′(x)) dx

)
+ ‖ψ‖2

= Im

(
ψ(0)iψ′(0) + i

∫ ∞
0

|ψ′(x)|dx
)

+ ‖ψ‖2

= Im(ib) · |ψ(0)|2 + ‖ψ′‖2 + ‖ψ‖2

= Re(b) · |ψ(0)|2 + ‖ψ′‖2 + ‖ψ‖2 ≥ 0

and since

(9.3.6)
∣∣|ψ(0)|2

∣∣ =

∣∣∣∣∫ ∞
0

2Re(ψ(x)ψ′(x))dx

∣∣∣∣ ≤ 2

∫ ∞
0

|ψ(x)||ψ′(x)|dx ≤ ‖ψ‖2 + ‖ψ′‖2

we have that

‖ψ‖2 + ‖ψ′‖2 ≤ qA(ψ)
(9.3.6)

≤ (1 + Re(b))
(
‖ψ‖2 + ‖ψ′‖2

)
,
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which means that the norm induced by qA is equivalent to the first Sobolev norm (it

is in particular closable). Closing D(A) with respect to this norm just yields the first

Sobolev space H1(0,∞) and the selfadjoint operator V associated to the closed form is

given by

V : D(VF ) = {v ∈ H2(0,∞) : ψ′(0) = Re(b)ψ(0)}

f 7→ −f ′′ + f .

Hence, we have constructed an example, where D(A) 6⊂ D(V ).

Even though the previous theorem provides us with a criterion for an extension to

be dissipative under rather mild assumptions on the original operator, it seems rather

difficult to apply it to concrete problems, since it can be quite difficult to compute the

operator W . In the following, we are going to discuss two examples, where Theorem

9.3.3 can be used.

Example 9.3.5. As in Example 2.4.4, consider the dissipative operator A0 on the

Hilbert space H = L2(0, 1) given by

A0 : D(A0) = C∞c (0, 1), (A0f)(x) = if ′(x) + i
γ

x
f(x) ,

where γ > 0. As shown in Example 2.4.4, we have that its closure A := A0 has domain

D(A) = H1
0 (0, 1). Moreover, since 0 ∈ ρ̂(A) and dim kerA∗ = 1, we have by Lemma

2.3.8 that all maximally dissipative extensions Â have to satisfy dim(D(Â)/D(A)) = 1,

i.e. there exists a v /∈ H1
0 (0, 1) such that D(Â) = D(A)+̇span{v}. Now, since C∞c (0, 1)

is a core for A, we get from Lemma 5.2.1 that C∞c (0, 1)+̇span{v} is a core for Â.

Thus, we apply Theorem 9.3.3 to extensions B0 of A0, whose domain is of the form

D(B0) = D(A0)+̇span{v}, where v /∈ H1
0 (0, 1). If B0 is dissipative, then we get that

B := B0 is a maximally dissipative extension of A. We start by determining the

“imaginary part” V . Since we have that qA0 is given by

qA0 : D(qA0) = C∞c (0, 1)

f 7→ Im〈f, A0f〉 = γ

∫ 1

0

|f(x)|2

x
dx ,
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this means that V is given by the selfadjoint maximal multiplication operator by the

function γ
x
, which implies that V −1/2 is the bounded selfadjoint operator of multipli-

cation by
√

x
γ
. In order to be able to apply Theorem 9.3.3, let us firstly determine

D(W ∗). To this end, observe that D(W ) = ran(V 1/2 �D(A0)) = C∞c (0, 1). This follows

from the fact that D(A0) = C∞c (0, 1) and that V 1/2 — the operator of multiplication

by
√

γ
x

— is a bijection from C∞c (0, 1) to C∞c (0, 1). We therefore get

W : D(W ) = C∞c (0, 1)

(Wf)(x) =

(
i

d

dx
+ i

γ

x

)(√
x

γ
f(x)

)
=

√
x

γ

(
if ′(x) + i

2γ + 1

2x
f(x)

)
.

Now, v ∈ D(W ∗) means that the map

f 7→
∫ 1

0

v(x)

√
x

γ

(
if ′(x) + i

2γ + 1

2x
f(x)

)
dx

is a bounded linear functional on C∞c (0, 1). This implies that v ∈ D(W ∗) if and only if(
v(x)

√
x
γ

)
∈ D(K∗), where K is the operator given by

D(K) = C∞c (0, 1), (Kf)(x) = if ′(x) + i
2γ + 1

2x
f(x) .

But K is of the same structure as the operator A0, which means that we can consider

the dual pair (K, K̃0), where K̃0 is given by

D(K̃0) = C∞c (0, 1), (K̃0f)(x) = if ′(x)− i2γ + 1

2x
f(x) .

Using Proposition 2.4.3 for this dual pair for λ = 0, we get from completely analogous

reasoning as in Example 2.4.4 that

K∗ : D(K∗) = D(K̃)+̇span{xγ+ 1
2}, (K∗f)(x) = if ′(x)− i2γ + 1

2x
f(x) .(9.3.7)

Here, K̃ denotes the closure of the operator K̃0. However, note that since 2γ+1
2

> 1
2
, we

have that dim(D(K∗)/D(K)) = 1, since x−
2γ+1

2 /∈ L2(0, 1) in this case. Thus we get

W ∗ : D(W ∗) =
{
v ∈ L2(0, 1) : (

√
xv(x)) ∈ D(K̃)+̇span{xγ+ 1

2}
}

(W ∗v)(x) =

(
i

d

dx
− i2γ + 1

2x

)(√
x

γ
v(x)

)
= i

(√
x

γ
v(x)

)′
− i2γ + 1

2
√
γx

v(x) ,(9.3.8)
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where we assume in addition that v /∈ H1
0 (0, 1) to ensure that C∞c (0, 1)+̇span{v} is a

core of a maximally dissipative extension of A. Let us now denote Bv =: κ and use

v ∈ D(W ∗), where v /∈ H1
0 (0, 1) and κ ∈ L2(0, 1) to parametrize all such extensions via

A0,v,κ : D(A0,v,κ) = C∞c (0, 1)+̇span{v}

f + λv 7→ A0f + λκ ,

where f ∈ C∞c (0, 1) and λ ∈ C. Now, by (9.3.3), A0,v,κ is dissipative if and only if

Im〈v,Bv〉 ≥ 1

4
‖(V −1/2B −W ∗)v‖2

⇔Im〈v, κ〉 ≥ 1

4

∫ 1

0

∣∣∣∣√x

γ
κ(x)− i

(√
x

γ
v(x)

)′
+ i

2γ + 1

2
√
γx

v(x)

∣∣∣∣2 dx .(9.3.9)

Hence, if A0,v,κ satisfies this condition, we can close it (Av,κ := A0,v,κ) to obtain a

maximally dissipative extension of A:

Av,κ : D(Av,κ) = D(A)+̇span{v}

(f + λv) 7→ Af + λκ ,

where f ∈ D(A) = H1
0 (0, 1) and λ ∈ C. Let us compare this result to Example 9.1.16,

where we have constructed all dissipative extensions of A that have domain contained

in D(Ã∗). This meant that the only choice we had was adding v(x) := xγ+1 to the

domain of D(A). Firstly, observe that v ∈ D(W ∗), since we already know by Example

9.1.16 that D(A)+̇span{v} is the domain of a dissipative extension of A and note that

v /∈ H1
0 (0, 1). From (9.1.17), we get that the L2(0, 1)-valued parameter ` characterizing

the extensions Av,` is related to κ in the following way:

(9.3.10) κ(x) = iv′(x) +
iγ

x
v(x) + `(x) = i(1 + 2γ)xγ + `(x) .

Plugging (9.3.10) into Condition (9.3.9) yields the condition

Im

(∫ 1

0

v(x)

[
iv′(x) +

iγ

x
v(x) + `(x)

]
dx

)
≥1

4

∫ 1

0

∣∣∣∣√x

γ

(
iv′(x) +

iγ

x
v(x) + `(x)

)
− i
(√

x

γ
v(x)

)′
+ i

2γ + 1

2
√
γx

v(x)

∣∣∣∣2 dx ,

which — after a calculation — can be shown to be equivalent to the condition∫ 1

0

x|`(x)|2dx ≤ 2γ ,
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which is in accordance with (9.1.18).

As a second example, we apply Theorem 9.3.3 in order to determine the accretive

extensions of a strictly positive symmetric operator.

Example 9.3.6. Let the dissipative operator A be of the form A = iS, where

S ≥ ε > 0 is a strictly positive and closed symmetric operator. Clearly, the form qA is

closable, since for any f ∈ D(A) = D(S), we have

qA(f) = Im〈f, iSf〉 = 〈f, Sf〉 .

Closablility of qA follows from [26, Thm. VI, 1.27] and we get that V = SF , where —

as usual — SF denotes the Friedrichs extension of S. Let us now determine W and

W ∗. The operator W is given by

W : D(W ) = ran(S
1/2
F �D(S))

f 7→ iSS
−1/2
F f .

We now claim that its adjoint W ∗ is given by

W ∗ : D(W ∗) = D(S
1/2
K ) = D(S

1/2
F )+̇ kerS∗

f 7→ −iS1/2
F (1− P)f ,

where P is the projection onto kerS∗ along D(S
1/2
F ) according to the decomposition

D(S
1/2
K ) = D(S

1/2
F )+̇ kerS∗ as defined in (8.13). To see that this is true, let us start by

assuming that v ∈ D(S
1/2
K ). For any f ∈ ran(S

1/2
F �D(S)), we then get that

〈v,Wf〉 = 〈v, iSS−1/2
F f〉 = 〈v, iS1/2

K S
1/2
K S

−1/2
F f〉 = 〈−iS1/2

K v, S
1/2
K S

−1/2
F f〉

=〈−iS1/2
K (1− P)v, S

1/2
K S

−1/2
F f〉 = 〈−iS1/2

F (1− P)v, S
1/2
F S

−1/2
F f〉 = 〈−iS1/2

F (1− P)v, f〉 ,

which shows that D(S
1/2
K ) ⊂ D(W ∗) and that W ∗v = −iS1/2

F (1− P)v for v ∈ D(S
1/2
K ).

Let us now show that D(W ∗) ⊂ D(S
1/2
K ). Assume that this is not true, i.e. that there

exists a v ∈ D(W ∗) such that v /∈ D(S
1/2
K ). If v ∈ D(W ∗), this means that there exists

a C <∞ such that for any f ∈ D(W ) = ran(S
1/2
F �D(S)) we have

(9.3.11) |〈v,Wf〉| ≤ C‖f‖ .
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Note that |〈v,Wf〉| = |〈v, SS−1/2
F f〉| = |〈v, S1/2

F f〉|. Since v /∈ D(S
1/2
K ), it now follows

from Corollary 5.2.5, that there exists a normalized sequence {fn}n ⊂ ran(S
1/2
F �D(S))

such that limn→∞ |〈v, S1/2
F fn〉| = +∞. But this means that (9.3.11) cannot be satisfied

in this case, which shows that D(W ∗) ⊂ D(S
1/2
K ). This means that for any extensions

A ⊂ B to be dissipative, it is necessary that D(B) ⊂ D(S
1/2
K ). Let us now apply

Condition (9.3.3) of Theorem 9.3.3 to see when such a B is dissipative. To this end,

let V ⊂ D(B)//D(A). Since S ≥ ε, we get that SF is a bijection, which means

that for any v ∈ V there exists a unique φv ∈ D(SF ) such that Bv = iSFφv. We

therefore parametrize all extensions of A using complementary subspaces V ⊂ D(S
1/2
K )

and operators Φ : V → H such that Φv = φv for all v ∈ V . These extensions are given

by

AV,Φ : D(AV,Φ) = D(A)+̇V

(f + v) 7→ iSf + iSFφv ,

where f ∈ D(A) = D(S) and v ∈ V . Plugged into (9.3.3), we get the condition

Im〈v, iSFφv〉 ≥
1

4
‖S−1/2

F (iSF )φv + iS
1/2
F (1− P)v‖2

⇔ Re〈v, SFφv〉 ≥
1

4
‖S1/2

F (φv + (1− P)v)‖2

⇔ Re〈v, SFφv〉 ≥
1

4
‖S1/2

K (φv + v)‖2 .(9.3.12)

Let us apply this result to the operator A = iS on L2(R+), where S is given by

S : D(S) = H2
0 (R+)

f 7→ −f ′′ + f .

Clearly, S is symmetric and strictly positive: S ≥ 1. It is not difficult to show that

D(S
1/2
F ) = H1

0 (R+), ‖S1/2
F f‖2 = ‖f‖2 + ‖f ′‖2

D(S
1/2
K ) = H1(R+), ‖S1/2

K f‖2 = ‖f‖2 + ‖f ′‖2 − |f(0)|2 .

Since kerS∗ is one-dimensional, kerS∗ = span{exp(−x)}, we know by Lemma 2.3.8

that a one-dimensional dissipative extension of A will be maximally dissipative. Since

D(W ∗) = D(S
1/2
K ) = H1(R+), we parametrize all one-dimensional extensions of A that
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have domain contained in H1(R+) using a v ∈ H1(R+) such that v /∈ H2
0 (R+) and a

φ ∈ D(SF ) = {f ∈ H2(R+) : f(0) = 0} via

Av,φ : D(Av,φ) = H2
0 (R+)+̇span{v}

(f + λv) 7→ −if ′′ + if + λ(−iφ′′ + iφ) ,

where f ∈ H2
0 (R+) and λ ∈ C. Plugging this into (9.3.12), we see that Av,φ is dissipative

if and only if

Re〈v,−φ′′ + φ〉 ≥ 1

4
‖φ′ + v′‖2 +

1

4
‖φ+ v‖2 − |v(0)|2

4

⇔ Re
(
v(0)φ′(0) + 〈v′, φ′〉+ 〈v, φ〉

)
≥ 1

4
‖φ′ + v′‖2 +

1

4
‖φ+ v‖2 − |v(0)|2

4

⇔ |v(0)|2

4
+ Re

(
v(0)φ′(0)

)
≥ 1

4
‖φ′ − v′‖2 +

1

4
‖φ− v‖2 .
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Appendix

Lemma 9.3.7. Let M and N be subspaces. Then it holds that M⊥ ∩ N⊥ = (M +

N )⊥. Moreover, (M∩N )⊥ =M⊥ +N⊥.

Proof. Firstly, let us show that M⊥ ∩N⊥ = (M+N )⊥:

“ ⊂ ”: If 〈f,m〉 = 〈f, n〉 = 0 for all m ∈ M and n ∈ N , this implies in particular that

〈f,m+ n〉 = 0 for all m+ n ∈M+N .

“ ⊃ ”: If 〈f,m+ n〉 = 0 for all m ∈M, n ∈ N , this holds in particular for all elements

of M+N , which are of the form m+ 0 or 0 + n.

Replacing M ⇒ M⊥ and N ⇒ N⊥ in the obtained result yields M∩N = (M⊥ +

N⊥)⊥, which — after taking orthogonal complements — gives

(9.3.13) (M∩N )⊥ =M⊥ +N⊥.

�

Lemma 9.3.8. Let Z be a densely defined operator on a complex Hilbert space H

and assume that for all f ∈ D(Z), we have

〈f, Zf〉 = 0 .

Then, Z is the zero operator with domain D(Z).

Proof. Firstly, observe that by [43, Thm. 4.18], Z is symmetric. Now, pick any

two f, g ∈ D(Z) and a parameter λ ∈ C and consider

0 = 〈λf + g, Z(λf + g)〉 = |λ|2〈f, Zf〉+ λ〈f, Zg〉+ λ〈g, Zf〉+ 〈g, Zg〉 = 2Re(λ〈g, Zf〉) ,

where by varying λ, we get that for all f, g ∈ D(Z), we have

〈g, Zf〉 = 0 .

Since D(Z) is dense, this implies that Zf = 0 for all f ∈ D(Z) and thus the lemma. �

181



Remark 9.3.9. Note that this is not true for real Hilbert spaces. As a counterex-

ample, consider H = R2 and the rotation by π
2
, given by

Z =

0 −1

1 0

 .
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