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On the functional extinction of the Passenger Pigeon (Ectopistes migratorius) 1 

 2 

Abstract 3 

The Passenger Pigeon (Ectopistes migratorius) was a social breeder and it has been suggested 4 

that the species experienced functional extinction, defined as a total reproductive failure, prior to 5 

its actual extinction in the early years of the 20th century. Here, we apply a novel statistical 6 

method to a record of egg specimens and so-called skin specimens to test for functional 7 

extinction. The results indicate that the species did not become functionally extinct, suggesting 8 

that proposals to reverse its rapid decline in the late 19th century could have been successful. 9 

 10 

 11 

Introduction 12 

 At the time of the European settlement of North America, the Passenger Pigeon 13 

(Ectopistes migratorius) was arguably the most abundant bird species on Earth. By the turn of 14 

the 19th century, however, populations were declining as a result of hunting, nest disturbance, 15 

and habitat loss (Halliday 1980; Blockstein & Tordoff 1985; Bucher 1992; Jackson & Jackson 16 

2007). The species became extinct on 1 September 1914 with the death of a solitary 29-year old 17 

female called Martha in the Cincinnati Zoo (Herman 1948), with extinction in the wild around a 18 

decade earlier (Elphick et al. 2010). The decline of the Passenger Pigeon did not go unnoticed.  19 

As early as 1857, the Ohio legislature considered, but ultimately rejected, legislation to limit 20 

hunting (Greenberg 2014). Other failed efforts at the state and local level followed (Herman 21 

1948; Brewster 1889; Greenberg 2014; Schulz et al. 2014). 22 
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 Lack of social facilitation, reproductive failure, increased natural predation and Allee 23 

effects were also suggested as secondary causes of decline, once their population dropped below 24 

a certain threshold (Herman 1948; Halliday 1980; Blockstein & Tordoff 1985; Bucher 1992). 25 

The Passenger Pigeon was highly social, nesting in enormous colonies, with breeding success 26 

highly dependent on social facilitation (Hung et al. 2014; Stanton 2014). As a result, it may have 27 

experienced functional extinction – defined as permanent reproductive failure prior to true 28 

extinction (Ricciardi et al. 1998; Bull et al. 2009; Waters et al. 2013) – as its numbers collapsed 29 

near the end of the 19th century (Halliday 1980). The failure of several breeding attempts, 30 

conducted for different purposes with small captive populations (Herman 1948; Mallinson 1995; 31 

Fuller 2014; Yeoman 2014), could be also taken as an evidence of the importance of social 32 

facilitation in breeding (Mallinson 1995), although there are other plausible causes such as 33 

inbreeding or inadequate rearing conditions. The possibility of functional extinction raises the 34 

question whether the efforts to protect the species in the wild had any prospect of forestalling 35 

extinction. 36 

 While a number of methods are available to detect true extinction based on sightings of 37 

individuals (Solow 2005), functional extinction is more difficult to detect because reproductive 38 

events are typically not observed. Here, we test for functional extinction in the Passenger Pigeon 39 

using museum specimens of physical remains and eggs. The results of the analysis suggest that 40 

functional extinction was not the ultimate extinction mechanism in this species.   41 

In related work, Jarić et al. (2016) tested for functional extinction of the ship sturgeon 42 

(Acipenser nudiventris) in the Danube River. This earlier work differed from the present one in 43 

two important ways. First, the timing of reproductive events was determined from the ages of 44 
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captured specimens. Second, the species was known not to be truly extinct.  In contrast to the 45 

present study, the results suggested that the ship sturgeon is functionally extinct. As the species 46 

is not truly extinct, this result pointed to the need for a breeding program in addition to other 47 

protective measures, if it is to be saved. 48 

 49 

Materials 50 

 The Ornis2 database (http://ornis2.ornisnet.org/ accessed 20
th

 July 2015) contains records 51 

from a total of 798 Passenger Pigeon specimens. Of these, 94 are eggs and 597 are bodily 52 

remains referred to here as (but not restricted to) skins. Our basic assumption is that the former 53 

represent direct evidence of reproductive events while the latter represent traditional species 54 

sightings. We excluded duplicate specimens (e.g., eggs collected from the same nest), specimens 55 

lacking a date or location of collection (the latter potentially being indicative of captive origin), 56 

and specimens clearly of captive origin (e.g., the specimen listed as ‘Marta’). Finally, two skin 57 

specimens from 1906 were excluded as their reliability has been questioned (Reed pers. comm.; 58 

Schorger 1955). This resulted in a total of 44 eggs and 213 skins. We assume that all the 59 

specimens are correctly identified (but see Roberts et al. 2010 regarding the reliability of 60 

museum specimens). Histograms of the collection dates are shown in Figure 1.   61 

 62 

Method 63 

 The basic statistical model is that the sighting times of eggs 
m2 X,,X,X 1

 are 64 

independent and follow a discrete uniform distribution over the interval  
fτ0,  where 0 65 

corresponds to the beginning of the observation period and fτ  is the unknown functional 66 
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extinction time. Similarly, the sighting times of skins n2 Y,,Y,Y 1  are independent and follow a 67 

discrete uniform distribution over the interval  eτ0,  where 
eτ  is the unknown true extinction 68 

time with 
fe ττ  . Interest centers on testing the null hypothesis 

efo τ=τH :  that functional 69 

extinction did not occur prior to true extinction against the one-sided alternative hypothesis 70 

ef τ<τH :1  that it did. 71 

Let  mX  be the time of the most recent egg sighting and  nY  be the time of the most 72 

recent skin sighting. The likelihood under this model is: 73 

 74 
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 76 

for )(mf Xτ  , )(ne Yτ   and 0 otherwise. It is necessary to distinguish between two cases. Suppose 77 

that )()( nm YX  . In this case, under 1H , the maximum likelihood (ML) estimates of fτ  and eτ  78 

are  mX  and  nY , respectively, while under oH  both are equal to  nY . In the case that 79 

)()( nm YX  , the ML estimates of fτ  and eτ  are both equal to  mX  under both 1H  and oH . It 80 

follows that the likelihood ratio statistic for testing oH  against 1H  is an increasing function of: 81 
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so that a test based on T will give exactly the same p-value as a test based on the likelihood ratio 85 

statistic, with oH  rejected for large values of T. 86 

The significance of the observed value obsT  of T can be assessed through the so-called 87 

mid-p value: 88 

 89 

   obsobs TTprTTprp 
2

1
>  (3) 90 

 91 

where the probabilities are calculated under oH . The mid-p value is appropriate when, as here, 92 

the test statistic has a discrete component (Berry & Armitage 1995). 93 

Let the ordered values of the pooled sighting times be      n+m2 Z<<Z<Z 1  and let j be 94 

the rank of  mX  among these. Conditional on the pooled sighting times, the event 
obsT>T  is 95 

equivalent to the event that nmj ZZZ  ,,, 1j  are all skins. Under oH , the probability of this 96 

event is given by the hypergeometric distribution as 
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 102 

 The result in (4) is valid provided no sighting of either type has the same rank j as  mX . 103 

It is possible to modify the result based on the hypergeometric distribution to account for such 104 

ties. A convenient alternative, however, is to approximate the mid-p value by simulation. This 105 

would involve repeatedly distributing m egg sightings and n skin sightings randomly over the 106 

observation period, calculating the value 
T  of T, and approximating the mid-p value by the 107 

proportion of times that 
T  exceeds 

obsT  plus one-half the proportion of times 
T  equals 

obsT . 108 

 109 

Results 110 

We took the observation period to begin in 1890 (Table 1). The uniformity assumption 111 

was tested using the chi squared goodness-of-fit statistic (Snedecor & Cochran 1989) with 112 

significance assessed via simulation. The null hypothesis of uniformity can not be rejected for 113 

either egg or skin sightings. The corresponding record contained a total of 6 eggs and 27 skins. 114 

For this data set, m = 6, n = 27, and j = 29. In this case, the mid-p value given in Equation 4 is 115 

0.38 and the null hypothesis of no functional extinction can not be rejected by conventional 116 

standards of statistical significance. 117 

Particularly given the small number of egg sightings, the question arises as to the power 118 

of this test. To address this, we conducted the following simulation experiment. Keeping the 119 

observation period and the sighting record for skins fixed, we distributed 6 egg sightings 120 
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according to the discrete uniform distribution over the interval (0,
 fτ ) for selected values of 

fτ  
121 

and applied the test to the simulated data. For each value of 
fτ , we repeated the procedure 1000 122 

times and approximated the power of the test by the proportion of times that oH
 
was correctly 123 

rejected. The results are summarized in Table 2. Although the test has low power for functional 124 

extinction occurring after 1894, power jumps to 1 for functional extinction occurring in 1894 (or 125 

earlier). We conclude that, while the null hypothesis that functional extinction did not occur 126 

cannot be rejected at conventional significance levels, it would be difficult to detect it had it 127 

occurred a few years before true extinction. 128 

 129 

Discussion 130 

This paper has described a novel test for functional extinction based on sighting records 131 

of individuals and of reproductive events (in this case, eggs). As with other statistical tests, 132 

conditional on functional extinction having occurred, as the numbers of sightings in the two 133 

records increases, the null hypothesis is certain to be rejected for arbitrarily small - and therefore 134 

biologically uninteresting - values of this difference. We note that, because of the discreteness of 135 

time, functional extinction occurring prior to, but in the same year as, true extinction comports 136 

with oH . Particularly if the null hypothesis is rejected, it therefore may be of interest to 137 

construct a confidence interval for the interval eτ  - fτ  between functional extinction and actual 138 

extinction. While this issue does not arise with the Passenger Pigeon, we are currently working 139 

on the construction of such a confidence interval. 140 

It is worth noting that the maximum potential time lag observed in data following the last 141 

confirmed reproduction can not exceed the maximum longevity of a species. While there are no 142 
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data on the lifespan of Passenger Pigeon in the wild, in captivity it ranged from 15 years on 143 

average up to the maximum reported age of 29 years (Martha; Herman 1948). Although the 144 

inference of functional extinction can be more challenging in short-living species, the method 145 

presented here should provide reasonable power if the dataset contains sufficient number of 146 

records after the last egg collection.  147 

Statistical method presented here indicated that the Passenger Pigeon did not become 148 

functionally extinct prior to its actual extinction in the wild. It is important to emphasize, 149 

however, that the results do not negate the possibility that Allee effects contributed to its decline. 150 

 Although it is, of course, too late, the results presented here suggest that hunting control 151 

efforts might have been successful and that captive breeding efforts were not necessary. On a 152 

more positive note, the demise of the Passenger Pigeon was a major impetus for Federal 153 

legislation – including the Lacey Act of 1900, the Weeks-McLean Act of 1913, and the 154 

Migratory Bird Treaty Act of 1918 – to protect wild birds from the same fate. 155 

 156 
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Table 1. Sightings of Passenger Pigeon (Ectopistes migratorius) since 1890. Number of 230 

sightings in a given year indicated in parentheses. 231 

Type of sightings Sighting years 

Eggs 1891 (3), 1893 (1), 1894 (1), 1897 (1) 

Skins 1891 (4), 1892 (5), 1893 (1), 1894 (5), 1895 (5), 1896 (3), 1898 (1), 1900 

(3) 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 
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Table 2. Approximate power of the test for functional extinction for selected values of 
fτ . 248 

 249 

fτ  Approximate power 

1894 1.000 

1895 0.254 

1896 0.089 

1897 0.027 

 250 

 251 

 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 
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Figure legend 263 

 264 

Figure 1. Passenger Pigeon (Ectopistes migratorius) sighting record, based on the collection 265 

dates of eggs and skins from museum collections. 266 




