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Abstract

This paper is concerned with the well known Jeffreys–Lindley paradox. In a Bayesian set

up, the so-called paradox arises when a point null hypothesis is tested and an objective prior is

sought for the alternative hypothesis. In particular, the posterior for the null hypothesis tends

to one when the uncertainty, i.e. the variance, for the parameter value goes to infinity. We

argue that the appropriate way to deal with the paradox is to use simple mathematics, and

that any philosophical argument is to be regarded as irrelevant.

Keywords Bayes factor, Bayesian hypothesis testing, Kullback–Leibler divergence, self-information

loss.

1 Introduction

The literature on the Jeffreys–Lindley paradox has been prolific since it was brought to the attention

of objective Bayesians by Lindley (1957) and by Bartlett (1957). Many authors have discussed

this so-called paradox from varying perspectives; including not only statisticians, but philosophers

too. Our aim is to consider the problem using simple mathematics.

Lindley (1957) shows that, for point null hypothesis testing, there may be a concern with the

objective Bayesian approach. In the specific example used, if the prior for the location parameter,

in the alternative model to the parameter being zero, has infinite variance, then the Bayesian
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will always select the null model, regardless of the observed data. This was first suggested as a

warning against using improper priors, but the consequences have now become far reaching with

a substantial amount of literature written about the observation.

Let us describe the mathematical setting of the problem. Suppose we wish to test the hypothesis

H0 : θ = 0 vs H1 : θ 6= 0

for the normal model N(x|θ, 1). Let ρ0 = P (M0) be the prior probability assigned to the null

hypothesis and let

π(θ) = N(θ|0, σ2),

for some σ > 0, be the prior distribution for the unknown parameter θ under the alternative model.

The problem is to set σ.

The Bayes factor for this problem is given by

B01 =
N(x|0, 1)∫

N(x|θ, 1)π(θ) dθ
,

which represents the odds in favour of the null hypothesis with respect to the alternative. The

decision on whether one rejects H0 in favour of H1 is based on the posterior probability, given by

P (M0|x) =

[
1 +

1− ρ0

ρ0

1

B01

]−1

.

This is the extent of the mathematical foundations to the problem. As Lindley noted, there are

some combinations of (ρ0, σ) yielding a P (M0|x) which one would not wish to countenance.

The natural objective choice for π(θ) involves taking σ = ∞. However, rather than a direct

plug in of this value, a more general setting has been suggested and considered by Robert (1993)

which is to let ρ0 depend on σ, i.e. we have ρ0(σ), so then it is possible to study P (M0|x) as

σ → ∞. In this case we can identify three scenarios for P (M0|x) as σ → ∞, all of which have

associated problems. That is, there is no setting, i.e. choice of ρ0(σ), in which the choice σ = ∞
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as an objective choice can work. What we mean by this is explained in Section 2. The conclusion

is that the objective idea of σ = ∞ does not work and consequently the message is not to use

it. On the other hand, we can set the pair (σ < ∞, ρ0(σ)) objectively using ideas of Type I error

calculations and a novel approach to the selection of priors for models.

It is beneficial for us to clarify what is meant by an objective approach; the most sensible

definition, and at the same time the most pragmatic, can be found in Berger (2006). In short,

objective Bayes is a collection of default methodologies which lead to the construct of a prior

distribution through a set of automated processes. In this respect, our approach will be seen to be

objective.

We also argue that the Bayesian component of the Bayes factor test is restricted to the con-

struction of the Bayesian test statistic; i.e. the Bayes factor B01 itself. Following this, the Bayes

factor test must be scrutinized according to standard testing procedures such as Type I errors.

The procedure is fully automated once the Type I error has been set, alongside the value for which

the posterior probability of the null hypothesis is regarded as just too large for it to be rejected.

The layout of the paper is as follows. In Section 2 we formalise the Jeffreys–Lindley paradox

and discuss Robert (1993) solution to it. Section 3 is dedicated to the our approach, and Section

4 is reserved to conclusions and final comments.

2 Formalisation of the paradox

In order to discuss approaches to the Jeffreys–Lindley paradox, let us first formalise it and, at the

same time, define the notation. The aim is to compare the two normal models,

M0 =
{
N(x|0, 1) = (2π)−1/2 exp(−1

2x
2)
}
,

M1 =
{
N(x|θ, 1) = (2π)−1/2 exp{−1

2(x− θ)2}
}
.

To apply the Bayesian approach, as described in Section 1, we need to define both the priors; i.e.

the value of σ, for the unknown parameter θ, and the prior for the null hypothesis; i.e. the value
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of ρ0. To be most general we will assume that ρ0 can depend on σ and hence we write it as ρ0(σ).

With this information we can compute the Bayes factor representing the odds for the null

hypothesis H0. That is

B01 =
N(x|0, 1)∫

N(x|θ, 1) ·N(θ|0, σ2) dθ
=

e−
1
2x

2

e−
1
2x

2/(1+σ2)

√
1 + σ2,

so the posterior probability for the null hypothesis is given by

P (M0|x) =

[
1 +

1− ρ0

ρ0

1

B01

]−1

=

1 +
1− ρ0

ρ0

e−
1
2x

2/(1+σ2)

e−
1
2x

2

1√
1 + σ2

−1

. (1)

We note in (1) that the quantity

m(σ) =
1− ρ0(σ)

ρ0(σ)

1√
1 + σ2

(2)

is the key term and opens the way to understanding the paradox, which we recall being associated

with σ = ∞. As we want a prior for the null hypothesis that goes to zero for σ → ∞, reflecting

an increasing uncertainty about θ = 0, we can write

ρ0(σ) = O
(
σ−β

)
, β ≥ 0,

and identify the following three cases where the decision maker specifies β to control the speed at

which ρ0(σ) goes to zero as σ →∞:

(i) 0 ≤ β < 1. Under this scenario we have the undesirable result that P (M0|x) converges to 1

regardless of the x value. This is the so-called paradoxical result. In fact, from (2) we see

that m(σ) → ∞ for σ → ∞; so, if the prior on the null hypothesis is too large as σ → ∞,

the posterior probability in the null hypothesis will converge to one.

(ii) β = 1. From (2) we have that m(σ) → c for some constant 0 < c < ∞. Under this scenario
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it is that, for large σ,

ρ0(σ) =
1

1 + c
√

1 + σ2
≈ 1

1 + cσ
.

In particular, Robert (1993) presents an objective argument for

ρ0(σ) =
1

1 +
√

2πσ
.

However, this idea leads to an undesirable inconsistency in that ρ0(σ) → 0 yet P (M0|x) is

converging to a constant bounded away from 0. Thus, with σ =∞, we have P (M0) = 0 but

P (M0|x) 6= 0, which are incoherent choices.

(iii) β > 1. Under this scenario we have m(σ)→∞, resulting in P (M0|x)→ 0. This at least now

becomes consistent with the prior probability since ρ0(σ) → 0 in this case. Yet undesirable

in that with σ =∞, P (M0|x) = 0.

These considerations clearly exclude the choice σ =∞. It simply does not work. Thus a finite

choice of σ is required. In the next section we will demonstrate how we can set (σ < ∞, ρ0(σ))

objectively.

3 An objective choice for (σ, ρ0(σ))

Given a value of σ we first, in Section 3.1, show how to obtain an objective choice for ρ0(σ). Then,

in Section 3.2, we show how σ <∞ can be selected objectively.

3.1 The prior ρ0(σ)

Our approach consists in measuring the worth of the alternative hypothesis M1 with respect to the

null M0, as outlined in Villa and Walker (2015). The quantification of the worth comes from a

result in Berk (1966) which states that, if a model is misspecified, the posterior distribution would

asymptotically accumulate on the model which is the nearest, in terms of the Kullback–Leibler

divergence (Kullback and Leibler , 1951), to the true model. Therefore, if we were to choose M0
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(and we knew θ), when M1 is the true model, the loss in information we would incur is given by the

divergence DKL(N(x|θ, 1)‖N(x|0, 1)), which can also be interpreted as the utility in keeping M1,

that is its worth. In other words, the larger the value of DKL(N(x|θ, 1)‖N(x|0, 1)) the greater the

utility (or equivalently, the smaller the loss) of choosing the alternative hypothesis M1. However,

since we do not know θ, but we can assign a prior π(θ) to it, we compute the expected loss as

l(M1) = −
∫

Θ
DKL

(
N(x|θ, 1)‖N(x|0, 1)

)
π(θ) dθ = −

∫
1
2θ

2 π(θ) dθ = −1
2σ

2. (3)

Now, if we consider the mass the be put on the alternative hypothesis, this can be linked to the

worth of M1 via the self-information loss function. The self-information loss function (also known

as the log-loss function) measures the performance of a probability statement with respect to an

outcome. For example, if we quantify the probability of outcome A of being true as P (A), the

associated self-information loss would be given by − logP (A). More details and properties of this

particular loss function can be found, for example, in Merhav and Feder (1998). We then have

a measure of the information loss of M1 related to its worth, given by (3), and a measure of the

same loss related to the self-information, given by − logP (M1). By equating the two measures we

have

− logP (M1) = −
∫

Θ
DKL

(
N(x|θ, 1)‖N(x|0, 1)

)
π(θ) dθ,

which gives

1− ρ0(σ) ∝ exp{σ2/2}.

Given that the hypothesis M0 is nested into the alternative hypothesis M1, the loss in information

in choosing M1 when M0 is the true model is zero; therefore, by applying the above framework,

we have P (M0) ∝ 1, and so we have

ρ0(σ) =
1

1 + exp{1
2σ

2}
.
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This then fits into category (iii) for large σ, which implies that P (M0|x, σ) goes to zero as P (M0)→

0. Thus there is coherence in this approach; however, we are not advocating the choice of large σ.

It has to be noted that the idea of linking the self-information with the expected loss is not new,

as in fact is originated in Bernardo (1979a) and Bernardo (1979b) where it forms the basis for

reference analysis.

3.2 Determining σ

In any classical test the Type I error is of key importance. We can use this quantity to objectively

set the value for σ. The Type I error needs to be set, and a valid objective Bayesian criterion is to

match classical benchmarks and quantities.

To determine an appropriate value for σ based on the classical concept of Type I error, we

would select σ so that

P0(reject M0) = α,

where α ∈ (0, 1) and P0 is the probability under the null hypothesis. Regardless of the surroundings,

all Bayesian experimenters in this problem would need to assign an αB value for which one would

reject H0 if P (M0|x) < αB. As is usual with the paradox, it is studied with a single observation x

and so αB needs to be set bearing this in mind. Hence, a small αB, we consider a value of 0.05, is

required. As the sample size grows we would indeed increase αB to 1
2 as a desirable large sample

value.

To have

P0

(
P (M0|x) < αB

)
= α, (4)
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we require

1

1 +m(σ) exp
{

1
2x

2 σ2

1+σ2

} < αB,

i.e. exp

{
1

2
x2 σ2

1 + σ2

}
>

1/αB − 1

m(σ)

1

2
x2 σ2

1 + σ2
> log

(
α−1
B − 1

m(σ)

)

x2 >
2(1 + σ2)

σ2
log

(
α−1
B − 1

m(σ)

)
. (5)

Therefore, if we write

ψ(σ) =
2(1 + σ2)

σ2
log

(
α−1
B − 1

m(σ)

)
,

we have (4) as

P0

(
x2 > ψ(σ)

)
= 2

[
1− Φ

(√
ψ(σ)

)]
= α. (6)

The key here is that, for αB < 1/2, ψ(σ) is decreasing as σ increases, so there is a one-to-one

correspondence between α and σ satisfying (6). The following theorem, the proof of which is in

Appendix A, gives the above result.

Theorem 1. The quantity ψ(σ) = 2(1 + σ2)/σ2 · log
(
{α−1

B − 1}/m(σ)
)
, where m(σ) is defined in

(2), is decreasing for σ →∞, for all αB < 1/2.

Figure 1 shows the behaviour of logψ(σ), given αB = 0.05, 0.40, 0.49. As it must be that

ψ(σ) > 0, we compute the functions logψ(σ) up to the appropriate value of σ which ensures

m(σ) < α−1
B − 1.

For each value of αB, expression (6) has to be solved numerically. So, for αB = α =

0.05, 0.40, 0.49, we would have σ = 2.11, 0.51, 0.15, respectively. In other words, we can be ob-

jective about σ with a finite value. The notion therefore that an objective σ and σ =∞ is the only

choice is wrong. An objective classical test requires an α value and it is this which can be linked

to the (finite) objective choice for σ.
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Figure 1: Plot of logψ(σ), with αB = 0.05, continuous black line, αB = 0.40, dashed red line, and
αB = 0.49, dotted blue line.

4 Discussion

The findings of this paper can be summarised as follows. The posterior for the point null hypothesis

is driven by the quantity m(σ); in particular, if σ = ∞ is desired as an objective criterion then

the behaviour of m(σ) as σ → ∞ is the key. If the prior ρ0(σ) is fixed, e.g. is equal to 1
2 , then

the Jeffreys–Lindley paradox arises, since the posterior probability P (M0|x) goes to one. Robert

(1993) proposed to solve the issue by having m(σ) to converge to a positive constant. Although

the direct paradox is avoided, the approach gives an incoherent result as the posterior mass on

H0 is positive whereas the prior mass is zero. Our approach gives a quantity m(σ) which goes to

infinity, for σ going to infinity, which both solves the paradox and yields zero posterior mass for

H0 when ρ0(σ) = 0, implying the prior mass for H0 is zero.

It is clear that the three types of behaviour of m(σ) for large σ rule out the possibility of having

σ =∞. As such, σ has to be determined to have a finite value. For ρ0(σ), the choice can be either

objective or subjective. Our approach allows ρ0(σ) to be determined in an objective fashion by

considering the loss in information if the true model is removed. Dellaportas et al. (2012), on the
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other hand, propose a prior for the null hypothesis that is subjective.

Dellaportas et al. (2012) focus on models for which the use of a multivariate normal prior is

appropriate, such as linear regression models, generalised linear models and standard time series

models. The idea is to set the multiplicative constant for the prior dispersion matrix, cM , which will

indicate the level of prior uncertainty. The authors aim to reduce the sensitivity of the posterior

model probabilities to the scale of the prior by suitably specifying the prior model probability.

This is done by setting

P (M) ∝ P ′(M)cdMM ,

where dM is the dimension of the model M and P ′(M) is a suitably determined base line prior

model probability. Dellaportas et al. (2012) recommend P ′(M) ∝ 1, although other choices

are possible. We see that the core of the whole approach is to make a prior model probability

dependent on the variance of the prior in the parameters, avoiding the Jeffreys–Lindley paradox.

In this aspect, hour approach and the one in Dellaportas et al. (2012) are analogous: in both

cases the paradoxical effect is avoided by incorporating the effect of the prior variance in the model

probability. However, while they use a penalty based on the dimension, we specify the model

comparison (i.e. H0 vs. H1) by choosing the Type I error.

The conclusion is that it is not possible to be objective for π(θ) by setting σ = ∞. This is

not the sole case where objective Bayes fails to deliver adoptable solutions. For example, Jeffreys’

rule prior for multidimensional parameter spaces gives prior distribution with poor performance

properties (Bernardo and Smith , 1994). It is common practice not to use Jeffreys prior in these

type of problems and opt for a different solution, such as reference priors.

However, an objective and finite value of σ can be assigned by exploiting thinking behind

classical tests and setting the Type I error. That is, there is a one-to-one correspondence between

σ and the Type I error α and it is this correspondence which permits the interpretation and

assignment of σ.

Surprisingly, or not, there have been philosophical papers attempting to find some hidden

profound explanation behind the paradox; see, for example, the recent papers of Spanos (2013)
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and Sprenger (2013). We argue that it is not necessary to philosophize, as the mathematics of

the problem are quite straightforward and a clear picture of what is happening can be understood

solely by mathematical considerations.

To discuss some of the philosophy, Spanos (2013) says: “The question that generally arises is

why the Bayesian and the likelihoodist approaches give rise to the above conflicting and confusing

results”. However, we have P (M0|x) < αB ⇔ x2 > ψ(σ), which is precisely the form of the classical

test!

The classical test is: reject H0 if x2 > cα, where P0(x2 > cα) = α. We can then set ψ(σ) = cα

to ensure a standard value for the Type I error. Consequently, Bayes makes no contribution to this

problem, since even a subjective Bayesian approach will yield a classical test, but with perhaps

a non-standard Type I error. Such an observation between Bayesian and classical tests has been

made by Shively and Walker (2013).

Although the aim of this paper is to discuss on the mathematics of the Jeffreys–Lindley paradox,

in particular on the original problem as in Lindley (1957), the above result can be seen to hold in

more general cases. Let us assume that we want to test the null hypothesisH0 : M0 = f(x|θ0) versus

the alternative hypothesis H1 : M1 = f(x|θ), where θ, θ0 ∈ Θ, and f(·|θ) is a given probability

distribution. The Bayes factor test statistic, given prior π, will then be

B =

∫
Θ f(x|θ)π(dθ)

f(x|θ0)
.

The method to obtain the prior value to be assigned to each hypothesis, given the prior on the

parameter θ, is discussed in Villa and Walker (2015). As discussed in Section 3, the prior on

the hypothesis (i.e. the models) depends on the choice of π, and it considers the expected loss in

information deriving from the wrong choice of hypothesis, which is represented by the expected

minimum Kullback–Leibler divergence from one model to the other. Therefore, for fixed α and

αB, it is possible to choose a prior π such that

P0

(
P (M0|x, π) < αB

)
= α. (7)
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In summary our general approach is as follows:

• Set the pair of values (α, αB), noting that all Bayesians need to set a value for αB.

• Obtain the prior value P (M0|π) as discussed in Villa and Walker (2015)

• Select the π such that (7) holds.

It is straightforward to see that, should we remove the assumption of known variance, the

proposed approach still holds. Let us then consider the more general normal model N(x|θ, λ),

where λ is the precision. The Bayes factor representing the odds in favour of the null hypothesis,

assuming λ ∼ Ga(ε, ε), becomes

B01 =

{
1 + T 2/(1 + nσ2)

1 + T 2

}n/2√
1 + nσ2,

where

T 2 =
nX

2

(n− 1)S2
,

with X =
∑n

i=1Xi/n being the sample mean and S2 the sample variance. Given that the normal

model now has two unknown parameters, and to have S2 properly defined, we consider n = 2.

Furthermore, the choice of a gamma prior for λ allows us to consider the Jeffreys prior π(λ) ∝ λ−1

by taking ε → 0. Similarly to the case with known variance, we have that the key quantity in

understanding the paradox is

m′(σ) =
1− ρ0(σ)

ρ0(σ)

1√
1 + 2σ2

,

and we can replicate the considerations about the behaviour of the posterior P (M0|x) discussed in

Section 1. The form of ρ0(σ) does not change; now (3) becomes

l(M1) = −
∫

Λ

∫
Θ
DKL

(
N(x|θ, λ)‖N(x|0, λ)

)
π(θ)π(λ) dθ dλ

= −
∫

Λ

∫
Θ

θ2λ

2
π(θ)π(λ) dθ dλ

= −1

2
σ2 Eλ = −1

2
σ2,
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given that we have set π(λ) = Ga(ε, ε), meaning E(λ) = ε/ε = 1. To satisfy (4), we need

P (M0|x) =

[
1 +m′(σ)

{
1 + T 2

1 + T 2/(1 + 2σ2)

}]−1

< αB

i.e. T 2 >
(α−1

B − 1)/m′(σ)− 1

1− (α−1
B − 1)/[m′(σ) ∗ (1 + 2σ2)]

.

By setting the right-hand-side to ψ′(σ), we recover the equivalent of (6) as

P0

(
T 2 > ψ′(σ)

)
= 2

[
1− F−1

(√
ψ′(σ)

)]
= α,

where F−1 is the inverse of a Student-t with 1 degree of freedom, and which numerical solution

will allow to set σ at the appropriate value.

A Proof of Theorem 1

We start by noting that we can write

m(σ) =
eσ

2/2

√
1 + σ2

,

which is increasing for σ2 increasing and m(σ) > 1. We then write

ψ(σ) = 2

(
1

σ2
+ 1

)
log

(
c

m(σ)

)
,

which is decreasing on (0, σ̂), where c = α−1
B − 1, and σ̂ satisfies m(σ̂) = c. Also, note that

ψ(0) =∞. Hence, we can find a suitable σ provided c > 1, i.e. provided αB < 1
2 .
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