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In large-scale distributed infrastructures, applications are realised through communications 
among distributed components. The need for methods for assuring safe interactions in 
such environments is recognised, however the existing frameworks, relying on centralised 
verification or restricted specification methods, have limited applicability. This paper 
proposes a new theory of monitored π-calculus with dynamic usage of multiparty session 
types (MPST), offering a rigorous foundation for safety assurance of distributed components 
which asynchronously communicate through multiparty sessions. Our theory establishes 
a framework for semantically precise decentralised run-time enforcement and provides 
reasoning principles over monitored distributed applications, which complement existing 
static analysis techniques. We introduce asynchrony through the means of explicit routers 
and global queues, and propose novel equivalences between networks, that capture the 
notion of interface equivalence, i.e. equating networks offering the same services to a 
user. We illustrate our static–dynamic analysis system with an ATM protocol as a running 
example and justify our theory with results: satisfaction equivalence, local/global safety 
and transparency, and session fidelity.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

One of the main challenges in the engineering of distributed systems is the comprehensive verification of distributed 
software without relying on ad hoc and expensive testing techniques. Multiparty session types (MPST) is a typing discipline 
for communication programming, that was originally developed in the π -calculus [33,6,9,23,24,16] towards tackling this 
challenge. The idea is that applications are built starting from units of design called sessions. Each type of session, involving 
multiple roles, is first modelled from a global perspective (global type) and then projected onto local types, one for each role 
involved. As a verification method, the existing MPST systems focus on static type checking of endpoint processes against 
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Fig. 1. Static/dynamic verification through global types and projection.

local types. The standard properties enjoyed by well-typed processes are communication safety (all processes conform to 
globally agreed communication protocols) and freedom from deadlocks.

The direct application of the theoretical MPST techniques to the current practice, however, presents a few obstacles. 
First, the existing type systems are targeted at calculi with first class primitives for linear communication channels and 
communication-oriented control flow; the majority of mainstream engineering languages would need to be extended in 
this sense to be suitable for syntactic type checking using session types. Unfortunately, it is not always straightforward to 
add these features to the specific host languages. Furthermore, the executable processes in a distributed system may be 
implemented in different languages. Second, for domains where dynamically typed or untyped languages are popular (e.g., 
Web programming), or in multi-organisational scenarios, the introduction of static typing infrastructure to support MPST 
may not be realistic.

Development of heterogeneous systems based on MPSTs. This article proposes a theoretical framework addressing the is-
sues discussed above, by supporting the combination of static and dynamic verification of processes communicating in a 
network. Fig. 1 illustrates the proposed framework. As standard in MPST [33,6], the first stage is to specify a global protocol 
as a global type, describing how the participants should interact in a multiparty session. The global type is then mechani-
cally projected to generate local protocols, as local types, specifying the communication behaviour expected of each role in 
the session. The global type in Fig. 1 involves three roles, yielding three local types upon projection. Next, each principal 
in a network implements one (or possibly more) local types. We call these implementations endpoint processes, or sim-
ply processes. We aim to capture the decentralised nature of distributed application development, providing support for 
heterogeneous distributed systems by allowing components to be independently implemented, using different languages, 
libraries and programming techniques. Assume that (1) the process on the right-hand side of Fig. 1 is implemented in a 
language that supports static verification with session typing techniques, and that conformance to the implemented local 
type is verified this way, and (2) the other two processes are implemented in standard Java and Python, respectively, using 
simple session programming APIs and are not amenable to static typing. To ensure that the composition of these three pro-
cesses conforms to the intended protocol we wrap the processes that cannot be statically verified with dedicated distributed 
monitors, that dynamically verify their participation in the session. In other words, our framework allows processes to be in-
dependently verified, either statically during deployment, or dynamically during execution, while retaining the strong global 
safety properties of statically verified systems.

This work is motivated in part by our ongoing collaboration with the Ocean Observatories Initiative (OOI) [44], a project 
to establish cyberinfrastructure for the delivery, management and analysis of scientific data from a large network of ocean 
sensor systems. Their architecture relies on the combination of high-level protocol specifications (to express how the infras-
tructure services should be used) and distributed run-time monitoring to regulate the behaviour of third-party applications 
in the system. An implementation of the framework in Fig. 1 is currently integrated into the OOI infrastructure. In this 
implementation, processes are specified using Scribble [47,51,31,30] (a practical incarnation of MPST) and processes are 
implemented in the Python programming language and dynamically monitored [43,34,21].

Monitored networks. Networks are organised as follows: a group of principals run processes communicating via asyn-
chronous message passing; dedicated trusted monitors (one for each principal) guard the run-time behaviour of both the 
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Fig. 2. Architecture of monitored/unmonitored networks.

environment and that principal, through the evaluation of incoming and outgoing messages. The aim is to protect the prin-
cipal from violations by other principals, and also to prevent the principal from committing violation (this can be used e.g. 
for debugging). Monitors regulate (1) the initiation, by principals, of new sessions, each specified by a well-defined global 
type, and (2) the movement of messages within each session. Fig. 2 illustrates the architecture of a network with three 
principals (α1, α2 and α3); all principals are monitored except α3, namely we assume the processes run by α3 have been 
statically checked hence its monitor can be switched-off (indeed all outgoing and incoming messages can pass through 
without dynamic checking); each principal is associated with one or more shared queues, on which all other principals can 
send invitations to join new sessions. The messages exchanged within a session are all associated to one common session ID, 
and the exchange of messages in a session is regulated by verifying that the causality of messages follows the specification 
(roughly, the ensemble of local types) of that session. In Fig. 2 each principal is associated with exactly one shared queue, 
and we denote with ai the queue associated with αi, with i ∈ {1, 2, 3}; principal α1 is currently playing role Alice in two 
sessions with session IDs s and s′ , whereas α2 and α3 are playing Bob and Carol, respectively, in just one session s (e.g., 
the invitations to join s′ have not yet been received by them).

A formal theory for dynamic verification. Our theory is based on the idea that, if the endpoint processes in a system are 
independently verified (either statically or dynamically) to conform a local type, then the corresponding global protocol is 
respected as a whole. To this goal, we propose a new formal model and a bisimulation theory for heterogeneous networks 
of monitored and unmonitored processes.

For the first time, we model dynamic verification based on types for the π -calculus. We provide an explicit account 
of the routing mechanism that is implicitly present inside the MPST framework: in a session, messages are sent to abstract 
roles (e.g. to a Seller), and a router (a dynamically updated component of the network) translates these roles into actual 
addresses.

Our approach also aims at giving a semantical equivalence for a collection of protocols (and networks), by reaching a 
formal criterion for equating services. By taking the routing feature into account when designing novel equivalences, our 
formal model can relate networks built in different ways (through different distributions or relocations of services) but 
offering the same interface to an external observer. The router, being in charge of associating roles with principals, hides 
to an external user the internal composition of a network: what distinguishes two networks is not their structure but the 
services they are able to provide, or more precisely, the local types they offer to the outside. We prove that bisimulation is 
compositional (Proposition 4.4) and that equivalent networks satisfy the same specification (Proposition 4.6).

We formally define a satisfaction relation to express when the behaviour of a network conforms to a global specification 
and we prove a number of properties of our model: local safety (Theorem 5.2) states that a monitored process respects 
its local protocol, i.e. that dynamic verification by monitoring is sound; global safety (Theorem 5.4) extends local safety 
to networks involving multiple principals; local transparency (Theorem 6.1) states that a monitored process has equivalent 
behaviour to an unmonitored but well-behaved (e.g. statically typed) process; and global transparency (Theorem 6.3) states 
that a network where each principal is monitored has equivalent behaviour to an unmonitored but well-behaved network.

Finally, we introduce a stronger property than global safety, session fidelity (Theorem 7.13), which not only guarantees 
conformance of each monitored process in a network to the ensemble of local specifications, but also requires that the 
overall flow of messages throughout the router is correct. In this way, session fidelity shows the correspondency between 
the behaviour of a monitored system and the behaviour specified by a global protocol. Together, these properties justify 
our framework for decentralised verification by allowing monitored and unmonitored processes to be safely mixed while 
preserving protocol conformance for the entire network. Technically, these properties also ensure the coherence of our 
theory, by relating the satisfaction relations with the semantics and static validation procedures.

Our theory is more involved than most of the existing works in the domain of session verification [33] as, for the first 
time, both networks and monitoring are made explicit. Our abstract model for session networks describes the evolution of 
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A ::= tt|ff|e1 = e2 |e1 < e2 |¬A | A1 ∧ A2 | A1 ∨ A2

e ::= v | e1 + e2 | e1 − e2 | e1 ∗ e2 | e1 mod e2

S ::= bool | int | string

G ::= r1→r2 : {li(xi : Si){Ai}.Gi}i∈I | G1 | G2 |μt.G | t | end

T ::= r!{li(xi : Si){Ai}.Ti}i∈I | r?{li(xi : Si){Ai}.Ti}i∈I |μt.T | t | end

Fig. 3. Global and local types with assertions.

the network at a lower-level; for instance, we introduce dynamic update of routing information: a participant taking part 
in a session does not send a message to another participant, but sends a message to a role which is then routed by the 
networks to the corresponding participant.

Contributions and outline. This work is an extended version of [7] that includes: the definitions omitted in [7], additional 
examples, and full proofs. Specifically, we extended [7] by including the following additional material:

• the formal definition of monitorability, a consistency condition on global types, together with a discussion on its rele-
vance and a statement of its decidability (§ 2.2);

• the detailed definitions, full formal statement and proofs of session fidelity and its relationship with global safety (in 
this introduction, § 5 and § 7), which is only outlined in [7];

• a simpler but less restrictive semantics of networks (e.g., a principal is now allowed to engage as different participants 
in the same session);

• a detailed formalisation for behavioural equivalences (§ 4.3);
• a formal statement on global safety in mixed (i.e., monitored and unmonitored) networks (Corollary 6.4);

§ 2 and § 3 introduce the formalisms for protocol specifications and networks, respectively. § 3 provides a formal frame-
work for monitored networks based on π -calculus processes and protocol-based run-time enforcement through monitors. 
§ 4 introduces: a semantics for specifications (§ 4.1), a novel behavioural theory for compositional reasoning over monitored 
networks through the use of equivalences (bisimilarity and barbed congruence) and the satisfaction relation (§ 4.2). Local 
and global safety are stated and proved in § 5, transparency in § 6, and session fidelity in § 7. Related works are discussed 
in § 8 and future works in § 9.

2. Monitorability in multiparty session types

This section provides basic definitions and well-formedness conditions for multiparty session types. In § 2.1 we sum-
marise the syntax of multiparty session types annotated with logical assertions (MPST), which we use to model protocols. 
In § 2.2, we introduce a condition called monitorability, enforceable on MPST, that sets the basis for the results presented in 
the next sections.

2.1. Multiparty session types with assertions

Multiparty session types with assertions [9] are abstract descriptions of the structure of interactions among the roles in a 
multiparty session (i.e., in a protocol); they specify the potential flows of messages, the conditions under which interactions 
may occur, and the constraints on the communicated values.

Global types with assertions, or just global types, describe multiparty sessions from a network perspective. Global types 
can be projected onto local types with assertions, or just local types, each describing the protocol from the perspective of a 
single role.

The syntax of global types (G, G ′, . . .) and local types (T , T ′, . . .) is defined in Fig. 3. We let values v, v ′, . . . range over 
boolean constants, numerals and strings, and e, e′, . . . range over first-order expressions. Assertions, ranged over by A, A′, . . .
are logical predicates used to express constraints on the values communicated. We consider assertions following the gram-
mar given in Fig. 3 although other decidable logics could be used. For instance, in [9,24] the logics includes existential 
quantifiers which we have omitted for simplicity (of evaluation of the assertions by the run-time monitors), and because 
they are not necessary for our run-time theory. The sorts of exchanged values (S, S ′, . . .) consists of atomic types.

Global types with assertions. r1→r2 : {li(xi : Si){Ai}.Gi}i∈I models an interaction where role r1 sends role r2 one of the 
branch labels li , as well as a payload denoted by an interaction variable xi of sort Si . Interaction variable xi binds its oc-
currences in Ai and Gi . Ai is the assertion which needs to hold for r1 to select li , and which may constrain the values 
instantiating xi . G1 | G2 specifies two (independent) parallel threads in a session. We assume G | end and end | G are identi-
cal with G . μt.G is a recursive type, where G is guarded in the standard way [45,6], and end ends the session.
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Example 2.1 (ATM: the global type). Global type GATM specifies an ATM scenario. Each session of ATM involves three roles: 
a client C, a payment server S and a separate authenticator A.

GATM = C→ A : { Login(xi : string){tt}.
A→ S : { LoginOK(){tt}. A→ C : {LoginOK(){tt}. GLOOP},

LoginFail(){tt}. A→ C : {LoginFail(){tt}. end}}}
GLOOP = μ LOOP.

S→ C : { Account(xb : int){xb ≥ 0}.
C→ S : { Withdraw(xp : int){xp > 0∧ xb − xp ≥ 0}. LOOP,

Deposit(xd : int){xd > 0}. LOOP,

Quit(){tt}.end}}
At the beginning of the session C sends A payload xi (i.e., the login details); then A decides whether the authentication is 
successful or not, and informs S and C of the choice by sending either label LoginOK or LoginFail. If LoginFail is 
chosen then the session terminates. If LoginOK is chosen then C and S enter a loop specified by GLoop . In each iteration 
of GLoop , S sends C the amount xb currently available in the account. The predicate states that xb must be non-negative. 
C can then choose one of the following three labels: Withdraw (withdraws an amount xp , which must be positive and not 
exceed the current amount xb), Deposit (deposits a positive amount xd in the account), or Quit (ends the session). If 
either Withdraw or Deposit was chosen then another iteration is executed.

Local types with assertions. Each local type T is associated with a role taking part in a session. Local type r!{li(xi :
Si){Ai}.Ti}i∈I models an interaction where the role under consideration (say p) sends r a branch label li and a mes-
sage denoted by an interaction variable xi of sort Si . Its dual is the receive interaction p?{li(xi : Si){Ai}.Ti}i∈I , where the 
role under consideration (say r) receives a message from p. As customary for MPST, only global types can be composed in 
parallel, namely there is no parallel composition of local types. This is guaranteed by a well-formedness condition on global 
types (see Definition 2.4) formally defined on the projection function, and requiring a given role to appear in only one side 
of a parallel composition. The remaining local type syntax is similar to the one of global types.

Example 2.2 (On causalities in global type). Consider the following global type:

Gseq = r1 → r2 : (x : int){tt}.
r3 → r4 : (y : int){tt}.end

The interaction from r1 to r2 and the interaction from r3 to r4 are causally unrelated. In fact, due to distribution, one 
cannot enforce r3 to send y after r2 has received x (unless additional interactions are introduced, for example between r2
and r3). In fact (as in [33,6,9,23,24,16]) the global type above specifies the same behaviour as

Gpar = r1 → r2 : (x : int){tt}.end | r3 → r4 : (y : int){tt}.end

Where interactions are causally unrelated, we will use the parallel global types Gpar rather than the sequential one Gseq .
The global type below, instead, requires the completion of the first interaction before r2 can send the next message:

r1 → r2 : (x : int){tt}.
r2 → r4 : (y : int){tt}.end

In addition, due to asynchrony, causality may affect the send and receive actions of an interaction in different ways, as 
shown by the global type below.

r1 → r2 : (x : int){tt}.
r1 → r4 : (y : int){tt}.end

Variable y must be sent by r1 only after variable x is sent, but possibly before x is received by r2.

One can derive a set of local types Ti from a global type G by endpoint projection. As in [23,24], our definition of endpoint 
projection relies on a merge operator on local types which is useful to coherently assemble the behaviour that a role has in 
different branches of a global type, as illustrated in Example 2.3.

Example 2.3 (Merging local behaviours). Consider the following global type:

r1 → r2 : { l1(x : int){tt}.r2 → r3 : l3(x′ : int){tt}.end,

l2(y : string){tt}.r2 → r3 : l4(y′ : string){tt}.end}
When defining the local behaviour of r3 one must take into account that the first communication between r1 and r2 is 
not visible to r3. From the perspective of r3 the session will either be described as either r2?l3(x′ : int){tt}.end or r2?l4(y′ :
string){tt}.end. The overall behaviour of r3 is obtained by merging the two local types above into one branching as follows:

r2?{l3(x′ : int){tt}.end, l4(y′ : string){tt}.end}
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Definition 2.1. We define the union of two local types as the following partial operator:

1. T ∪ T = T

2.
r?lk{(xk : Sk){Ak}.Tk}k∈I ∪ r?lk{(xk : Sk){Ak}.Tk}k∈ J =
r?lk{(xk : Sk){Ak}.Tk}k∈I∪ J with I ∩ J = ∅

Local types are idempotent w.r.t. ∪ and is otherwise undefined when types are not both input types from the same 
sender. In this case, all possible labels, together with their associated payload, types, assertions and continuations are col-
lected into a single type.

Definition 2.2. Assume all labels are indexed and li = l j if and only if i = j. The merge operator � is a partial operator on 
local types, and is defined by the following axioms (closed by standard typed contexts):

1. T � T = T
2. r?{li(xi : Si){Ai}.Ti}i∈I � r?l j{(x′j : S ′j){A′

j}.T ′
j} j∈ J =

r?lk{(xk : Sk){Ak}.Tk}k∈I\ J ∪ r?lk{(x′k : S ′k){A′
k}.T ′

k}k∈ J\I∪
r?lk{(xk : Sk){Ak ∨ A′

k}.Tk � T ′
k}k∈I∩ J

when ∀k ∈ I ∩ J , xk = x′k, and Sk = S ′k.

By (1) each local type is idempotent w.r.t. �. Axiom (2) merges two local types receiving messages from a common role, 
say r. The resulting local type includes the union of the branches having distinguished labels (i.e. in I \ J and J \ I), and 
integrates the common labels (i.e., in I ∩ J ). When integrating the common labels, axiom (2) makes sure that they have 
the same sorts (i.e., Sk = S ′k). The merge operator in [23,24] is defined on local types without assertions. We define the 
predicate of the resulting local type to be the disjunction of the predicates of the local types being merged (i.e., Ak ∨ A′

k). 
We motivate this choice via Examples 2.4 and 2.5. The intuition is that, when allowing merging for receiving actions only, 
the message, from the point of view of the local participant, satisfies a predicate for one of the branches.

Example 2.4 (Merging assertions). Consider the following global type:

r1 → r2 : { l1(x : int){tt}.r2 → r3 : l3(x′ : int){x′ > 0}.end,

l2(y : string){tt}.r2 → r3 : l3(x′ : int){x′ > 10}.end}
This scenario differs from the one in Example 2.3 from the fact that r3 is expecting label l3 in both branches (hence the 
behaviours of the common label l3 need to be integrated). Role r3 must be able to accept a value for x′ that satisfies x′ > 0
or x′ > 10 (without knowing which branch between l1 or l2 was selected, hence to which assertion r2 must obey). Therefore 
we relax the expectation of r3 to expect either case (i.e., a value satisfying the disjunction of the predicates):

r2?{l3(x′ : int){x′ > 0∨ x′ > 10}.end}

When merging two local types, say T1 and T2, if none of the axioms in Definition 2.2 applies then we say that T1 and 
T2 are non-mergeable. As in [23,24] we let the local types for sending interactions be non-mergeable (i.e., axiom 2 can only 
be applied to receive interactions) unless the send interactions to be merged are identical (in which case one can merge by 
axiom 1). Example 2.5 illustrates the motivation of this choice.

Example 2.5 (Non-mergeability of send interactions). In the global type below

r1 → r2 : { l1(x : int){tt}.r3 → r2 : l3(x′ : int){tt}.end,

l2(y : string){tt}.r3 → r2 : l4(y′ : string){tt}.end}
Considering local behaviour of role r3 that role r3 must choose between l3 and l4 without knowing which branch was 
chosen by r1 in the first interaction. If we allowed to merge the two behaviours of r3 we would also allow, for instance, 
r3 to select l3 after r1 had selected l2. In this scenario the behaviour r3 would not conform to the expectations of r2 with 
respect to the global type. In Definition 2.2 we require, instead, that when a sender r does not know which branch was 
chosen by other roles in a previous interaction, then r must act in the same way in all branches. The following global type 
is, for instance, mergeable by axiom (1) in Definition 2.2:

r1 → r2 : { l1(x : int){tt}.r3 → r2 : l3(x′ : int){tt}.end,

l2(y : string){tt}.r3 → r2 : l3(x′ : int){tt}.end}
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Let roles(G) be the set of roles in G . Formally,

roles(r1→r2 : {li(xi : Si){Ai}.Gi}i∈I ) = {r1,r2}⋃i∈I roles(Gi)

roles(G1 | G2) = roles(G1)∪ roles(G2)

roles(μt.G) = roles(G)

roles(t)= roles(end) = ∅
We next define ftv(G), the set of free type variables in G as:

ftv(r1→r2 : {li(xi : Si){Ai}.Gi}i∈I )=∪i∈I ftv(Gi) ftv(end)= ∅
ftv(G1 | G2)= ftv(G1)∪ ftv(G2) ftv(μt.G)= ftv(G) \ {t} ftv(t)= t

The set fv(A) of free variables occurring in A is defined as follows:

fv(tt)= fv(ff)= ∅ fv(e1 = e2)= fv(e1 < e2)= fv(e1)∪ fv(e2)

fv(¬A)= fv(A) fv(A1 ∧ A2)= fv(A1 ∨ A2)= fv(A1)∪ fv(A2)

fv(x)= {x}
fv(e1 op e2)= fv(e1)∪ fv(e2) op ∈ {+,−,∗,mod}

Definition 2.3 (Projection). Assume r1, r2, r ∈ G and r1 �= r2. The projection of G on r, written G � r, is defined as follows:

(r1 → r2 : {li(xi : Si){Ai}.Gi}i∈I ) � r=⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r2!{li(xi : Si){Ai}.(Gi � r)}i∈I if r= r1

r1?{li(xi : Si){Ai}.(Gi � r)}i∈I if r= r2

�i∈I Gi � r {r1,r2} ∩ roles(Gi) �= ∅
Gi Gi = t or Gi = end

undefined otherwise

(G1 | G2) � r=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Gi � r
if roles(G1)∩ roles(G2)= ∅
and ftv(G1)∩ ftv(G2)= ∅
i ∈ {1,2} and r /∈ roles(G3−i)

undefined otherwise.

μt.G � r=
{
μt.(G � r) if r ∈ G

end otherwise
t � r= t

end � r= end

The first rule projects an interaction onto sender or receiver role. Note that, if the role is not involved in the interaction 
(r �= r2 �= r1) then the projection is the local type resulting by merging (Definition 2.2) the projections Gi � r for all i ∈ I . 
The side condition ensures that we write a parallel composition if the roles and type variables are disjoint (cf. Example 2.2). 
If some of the Gi � r are non-mergeable then the projection rule cannot be applied. (G1 | G2) � r is defined only when the 
sets of roles of G1 and G2 are disjoint; in this case, the result of the projection is the projection of the side of the parallel 
composition in which r appears (if r does not appear further, then the projection of any side can only yield end). The other 
rules are straightforward.

If none of the rules in Definition 2.3 can be applied on a global type G then G is not projectable.

Definition 2.4 (Projectability). A global type G is projectable if all of its projections to every role r ∈ roles(G) are defined by 
Definition 2.3.

Hereafter in this article we will consider only projectable global types.

Example 2.6 (ATM: the local type of C). We present the local type TC obtained by projecting GATM on role C.

TC = A!{Login(xi : string){tt}.
A?{LoginOK(){tt}. TLoop

LoginFail(){tt}. end}}

TLoop = μ LOOP.

S?{Account(xb : int){xb ≥ 0}.
S!{Withdraw(xp : int){xp > 0∧ xb − xp ≥ 0}.

LOOP,

Deposit(xd : int){xd > 0}.LOOP,

Quit(){tt}.end}}
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TC specifies the behaviour that C should follow to meet the contract of global type GATM . TC states that C should 
first authenticate with A, then receive the message Account from S, and then has the choice of sending Withdraw, or 
Deposit or Quit. If label Withdraw or Deposit is selected, otherwise the session terminates.

2.2. Monitorability of global types

When designing a global type to be used in a monitoring framework, one must ensure that the monitor associated to 
each role is always able to determine if an incoming or outgoing message conforms to the contract or not. Example 2.7
shows that this is not the case for some global types.

Example 2.7 (Non-monitorable global type). In the global type below r3 does not know which value has been given to x in 
the first interaction between r1 and r2.

Gs = r1 → r2 : (x : int){x > 5}.
r2 → r3 : (y : int){tt}.
r3 → r1 : (z : int){x > z}.end

For any value sent by r3, the monitor of r3 cannot determine whether the value sent for z by r3 is violating or not. 
Similarly (but for receive interactions) in the global type below

Gr = r1 → r2 : (x : int){x > 5}.
r2 → r4 : (y : int){y > x}.end

the monitor of r4 will not have, at run-time, information on the value of variable x, hence will not be able to determine if 
the value sent by r2 for y conforms to the assertion y > x.

We call global types as the ones illustrated in Example 2.7 non-monitorable. In the rest of this section we will give a 
formal definition of monitorability.

Definition 2.5 (Known variables). Let G ′′ be a subterm of G . We say that p knows x in G ′′ if:

• there exists G ′ subterm of G s.t. G ′ = r1→r2 : {li(xi : Si){Ai}.Gi}i∈I ,
• p ∈ {r1, r2},
• for some j ∈ I , G ′′ is a subterm of G j and x = x j .

Namely, p knows a variable x in a subterm G ′′ of G if x is introduced in an interaction of G that occurs before G ′′ and 
that involves p.

Definition 2.6 (Monitorability). Let G be a subterm of G0. G is monitorable w.r.t. G0 if one of the following conditions holds:

1. G = r1 → r2 : {li(xi : inti){Ai}.Gi}i∈I , and for all i ∈ I , y ∈ fv(Ai), j ∈ {1, 2}, r j knows y in G and Gi is monitorable w.r.t. 
G0;

2. G = G1|G2, and for all j ∈ {1, 2}, G j is monitorable w.r.t. G0;
3. G =μt.G ′ and G ′ is monitorable w.r.t. G0;
4. G = t or G = end.

We say that G is monitorable if it is monitorable w.r.t. G .

Proposition 2.7 (Decidability). Let G and G0 be global types with G subterm of G0 and p ∈ roles(G0). It is decidable if:

1. p knows x in G,
2. G is monitorable w.r.t. G0 .

Proof. (1) follows directly from: (i) the finiteness of the number of subterms of G0 (and G), (ii) the finiteness of the 
number of labels in a branching (i.e., the cardinality of the set I of indices), and (iii) the decidability of inclusion in finite 
sets (e.g., p ∈ {r1, r2} and x ∈ {xi | i ∈ I} in Definition 2.5). Proposition 2.7(2) follows from: (i) the finiteness of the number 
of subterms of G , (ii) the finiteness of the number of variables in assertions, and (iii) the decidability of p knows x in G
by (1).

Knowledge of a name requires a linear search in the prefix. Monitorability requires a quadratic exploration. �
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P ::= a〈s[r] : T 〉 | a(y[r]:T ).P | k[r1,r2]!l〈e〉 | k[r1,r2]?{li(xi).Pi}i∈I |
if e then P else Q | P | Q | 0 |μX .P | X | P ; Q | (νa) P | (νs)P

N ::= [P ]α | N1 | N2 | 0 | (νa)N | (νs)N | 〈r ; h〉
r ::= ∅ | r, s[r] �→ α h ::= ∅ | h ·m m ::= a〈s[r] : T 〉 | s〈r1,r2, l〈v〉〉

r,r1, ... roles s, s′, ... session names X, Y , ... process variables
a,b, ... shared names x, y, ... variables P , Q , ... processes
α,β, ... principal names N, N ′, ... networks

Fig. 4. Processes and the network: syntax.

In the following sections we will show that, under the assumption that all underlying global types are projectable and 
monitorable, the runtime monitoring discipline we propose ensures that the interactions in a session are safe (e.g., a principal 
implementing a role never receives messages of unexpected type), and predictable (i.e., faithful to the global interaction 
pattern specified by the protocol).

Monitorability strengthens a similar property called history sensitivity in [9]. By history sensitivity, only the sender of an 
interaction must know the free variables of a predicate annotating that interaction. For instance, referring to Example 2.7, 
Gs is not history sensitive whereas Gr is. In [9] where only static verification is used, it is sufficient to check that all 
roles send values satisfying the assertions. Receivers can rely on this fact thanks to the assumption that the processes 
implementing the other roles are well-typed. In the run-time verification scenario we cannot assume that the rest of the 
network behaves safely, hence both sent and received values must be checked. The requirement posed by monitorability, on 
the other hand, allows our theory to work using a logic without existential quantifiers. On the contrary, in [9] quantifiers 
were needed, during endpoint projection, to close the assertions w.r.t. those variables that were unknown to the receivers.

3. Formal framework of processes and networks

In this section we introduce a novel monitored session calculus as a variant of the π -calculus, which we use to model 
global networks. Global networks consist of monitors and distributed programs, run by principals and implementing some 
protocols.

In our formal framework, each distributed application consists of one or more sessions among principals. A principal with 
behaviour P and name α is represented as [P ]α . A network is a set of principals together with a (unique) global transport, 
which abstractly represents the communication functionality of a distributed system. The syntax of processes, principals, 
and networks is given in Fig. 4, building on the multiparty session π -calculus from [6].

Processes. Processes, defined in Fig. 4, are ranged over by P , P ′, . . . and communicate using two types of channel: shared 
channels (or shared names) used by processes for sending and receiving invitations to participate in sessions, and session 
channels (or session names) used for communication within established sessions. Each shared name, say a, is associated to 
one principal, say α, in the sense that α can read from a; a is shared in the sense that many other principals can send 
messages to α through a. One may consider shared names as e.g., URLs or service names. The session invitation a〈s[r] : T 〉
invites, through a shared name a, another process to play r in a session s. The session accept a(y[r] :T ).P receives a session 
invitation and, after instantiating y with the received session name, behaves in its continuation P as specified by local type 
T for role r. The selection k[r1, r2]!l〈e〉 sends, through session channel k (of an established session), and as a sender r1
and to a receiver r2, an expression e with label l. The branching k[r1, r2]?{li(xi).Pi}i∈I is ready to receive one of the labels 
and a value, then behaves as Pi after instantiating xi with the received value. We omit labels when I is a singleton. The 
conditional, parallel and inaction are standard. The recursion μX .P defines X as P . Processes (νa)P and (νs)P hide shared 
names and session names, respectively.

Principals and network. Principals and networks are also formally defined in Fig. 4. A principal [P ]α , with process P and 
name α, represents a unit of behaviour (hence verification) in a distributed system. A network N is a collection of principals 
with a unique global transport. The behaviour of a principal, described in its process, includes communication over shared 
channels to create or join new sessions, the communication over session channels, and control structures such as conditional 
branching and recursion.

A global transport is a pair 〈r ; h〉 of a routing table r that associates roles to principals, and a global queue h. The 
routing table r is a finite map from session-roles and shared names to principals. If, for instance, r(a) = α then a session 
invitation message through a will be delivered to principal α. Similarly, if r(s[r]) = α then a message for r in session s
will be delivered to principal α. The global queue h is a sequence of messages a〈s[r] : T 〉 or s〈r1, r2, l〈v〉〉, ranged over by m. 
These m represent messages-in-transit, i.e. those messages which have been sent by some principal but have not yet been 
delivered. Possible shuffles changing the ordering of in-transit messages are discussed below. Networks are composed of 
principals and global transport.

Let n, n′, . . . range over shared and session channels. A network N that satisfies the following conditions is well-formed: 
(1) N contains at most one global transport; (2) two principals in N never have the same principal name; and (3) if 
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[a〈s[r] : T 〉]α | 〈r ; h〉 −→ [0]α | 〈r ; h · a〈s[r] : T 〉〉 �req�
[a(y[r] : T ).P ]α | 〈r ; a〈s[r] : T 〉 · h〉 −→ [P [s/y]]α | 〈r, s[r] �→ α ; h〉† �acc�

[s[r1,r2]!l j〈v〉]α | 〈r ; h〉 −→ [0]α | 〈r ; h · s〈r1,r2, l j〈v〉〉〉 �sel�
[s[r1,r2]?{li(xi).Pi}i]α | 〈r ; s〈r1,r2, l j〈v〉〉 · h〉 −→ [P j[v/x j]]α | 〈r ; h〉†† �bra�

[if tt then P else Q ]α −→ [P ]α [if ff then P else Q ]α −→ [Q ]α �cnd�
[P ]α | N −→ [P ′]α | N ′

[E(P )]α | N −→ [E(P ′)]α | N ′ e −→ e′
[E(e)]α −→ [E(e′)]α

N −→ N ′
E(N)−→ E(N ′) �ctx�

† : r(a)= α † † : r(s[r2])= α

E ::= ( ) | E | P | (νs)E | (νa)E | E; P | E | N | if E then P else Q | s[r1,r2]!l〈E〉
Fig. 5. Reduction for dynamic networks.

P | 0 ≡ P P | Q ≡ Q | P (P | Q ) | R ≡ P | (Q | R)

(ν u)P | Q ≡ (ν u)(P | Q ) if u ∈ {s,a}, u /∈ fn(Q ) (ν uu′)P ≡ (ν u′u)P

(ν u)0 ≡ 0
P ≡ Q

[P ]α ≡ [Q ]α (ν u)[0]α ≡ [0]α
N | [0]α ≡ N N1 | N2 ≡ N2 | N1 (N1 | N2) | N3 ≡ N1 | (N2 | N3)

(ν u)N1 | N2 ≡ (ν u)(N1 | N2) if u /∈ fn(N2) (ν uu′)N ≡ (ν u′u)N

∅ · h ≡ h
m1 ·m2 � m2 ·m1

h·m1 ·m2 ·h′ ≡ h·m2 ·m1 ·h′
r = r h ≡ h′

〈r ; h〉 ≡ 〈r′ ; h′〉
Fig. 6. Structural congruence for networks.

N ≡ (νñ)(
∏

i[Pi]αi |〈r ; h〉) then each free shared or session name in Pi and h occurs in ñ (we use 
∏

i P i to denote P1 |
P2 · · · | Pn).

Semantics. The reduction relation for networks is generated from the rules defined in Fig. 5, which model the interactions 
of principals with the global queue.

Rule �req� places an invitation to participate as role r in session s into the global queue. Dually, in �acc�, a process 
receives an invitation on a shared name from the global queue, assuming a message on a is to be routed to α. As a result, 
the routing table adds s[r] �→ α in the entry for s. Rule �sel� puts in the queue a message sent from r1 to r2, which selects 
label l j and carries v , if it is not going to be routed to α (i.e. sent to self). Dually, �bra� gets a message with label l j from 
the global queue, so that the j-th process P j receives value v . Rules �ctx� are for a closure under the reduction context E . 
The other rules are standard.

The reduction is also defined modulo the structural congruence ≡ defined by the standard laws over processes/net-
works, the unfolding of recursion (μX .P ≡ P [μX .P/X]) and the associativity and commutativity and the rules of message 
permutation in the queue [33,23]. The rules are summarised in Fig. 6 where u ∈ {s, a}. The rule for message permutation is

m1 ·m2 � m2 ·m1

h·m1 ·m2 ·h′ ≡ h·m2 ·m1 ·h′
and uses the notion of message permutation given in Definition 3.1. The rule for message permutation is needed to treat 
the inherent non-determinism arising in message orders when three or more participants are involved. The other rules are 
straightforward.

Definition 3.1 (Message permutation). For messages in the global queue, we say messages m1 and m2 are permutable, denoted 
by m1 ·m2 � m2 ·m1, if they satisfy one of the following conditions:

1. m1 = s〈r1, r2, l〈v〉〉 and m2 = s′〈r′1, r′2, l′〈v ′〉〉, where s �= s′ , or (r1 �= r′1 ∧ r2 �= r′2).
2. m1 = a〈s[r] : T 〉 and m2 = a′〈s′[r′] : T ′〉, where a �= a′ .
3. mi = a〈s[r] : T 〉 and m j = s′〈r′, r′′, l〈v〉〉 and i, j ∈ {1, 2}, i �= j, where s �= s′ , or (r �= r′ ∧ r �= r′′).

By (1) two interaction messages (i.e., in ongoing sessions) are permutable if they are not related to the same session, 
or they are related to the same session but their roles are different. By (2) two invitation messages are permutable if they 
are for different principals. By (3) an invitation message and an interaction message are permutable if they are for different 
sessions or the invited role r in the invitation message is different from both the sender and receiver of the interaction 
message.
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Example 3.1 (ATM: an implementation). We now illustrate the processes implementing the client role of the ATM protocol. 
We let PC be the process implementing TC (from Example 2.6) and communicating on session channel s.

PC = s[C,A]!Login(“alice_pwd123”);
s[A,C]?{LoginOK();μX .P ′

C,LoginFail().0}
P ′
C = s[S,C]?Account(xb); P ′′

C

P ′′
C = if getmore()∧ (xb ≥ 10)

then s[C,S]!Withdraw(10); X
else s[C,S]!Quit();0

Note that PC selects only two of the possible branches (i.e., Withdraw and Quit) and Deposit is never selected. One 
can think of PC as an ATM machine that only allows to withdraw a number of £10 banknotes, until the amount exceeds 
the current balance. This ATM machine does not allow deposits. We assume getmore() to be a local function to the principal 
running PC that returns tt if more notes are required, and ff otherwise. PS below implements the server role:

PS = s[A,S]?{LoginOK();μX .P ′
S,LoginFail().0}

P ′
S = s[S,C]!Account(getBalance()); P ′′

S

P ′′
S = s[C,S]?{Withdraw(xp).X,

Deposit(xd).X,

Quit().0 }
We assume that getBalance() is a function, local to the principal running PS , that synchronously returns the current balance 
of the client.

4. The monitored network: semantics and equivalences

In this section we formalise the specifications (based on local types) used to guard the runtime behaviour of the princi-
pals in a network. These specifications are the foundation of system monitors, each wrapping a principal to ensure that the 
ongoing communication conforms to the given specification. Then, we present a behavioural theory for monitored networks 
and their safety properties.

4.1. Semantics of global specifications

The specification of the (correct) behaviour of a principal consists of an assertion environment 〈�; �〉, where � is the 
shared environment describing the behaviour on shared channels, and � is the session environment representing the behaviour 
on session channels (i.e., describing the sessions that the principal is currently participating in). The syntax of � and � is 
given by:

� ::= ∅ | �,a : I(T [r]) | �,a : O(T [r]) � ::= ∅ |�, s[r]:T
In �, the assignment a : I(T [r]) (resp. a : O(T [r])) states that the principal can, through a, receive (resp. send) invitations 
to play role r in a session instance specified by T . In �, we write s[r] :T when the principal is playing role r of session 
s specified by T . A network is monitored with respect to collections of specifications (later, just specifications) one for each 
principal in the network. A specification �, �′, . . . is a finite map from principals to assertion environments:

� ::= ∅ |�,α :〈�;�〉
The semantics of � is defined using the following labels:

	 ::= a〈s[r] :T 〉|a〈s[r] :T 〉|s[r1,r2]!l〈v〉|s[r1,r2]?l〈v〉|τ
The first two labels are for invitation actions, the first is for requesting and the second is for accepting. Labels with s[r1, r2]
indicate interaction actions for sending (!) or receiving (?) messages within sessions. The labelled transition relation for 
specifications is defined by the rules in Fig. 7.

Rule [Req] allows α to send an invitation on a properly typed shared channel a (i.e., given that the shared environment 
maps a to T [r]). Rule [Acc] allows α to receive an invitation to be role r in a new session s, on a properly typed shared 
channel a. Rule [Bra] allows α, participating to session s as r2, to receive a message with label l j from r1, given that A j is 
satisfied after replacing x j with the received value v . After the application of this rule the specification is T j . Rule [Sel] is the 
symmetric (output) counterpart of [Bra]. We use ↓ to denote the evaluation of a logical assertion. [Spl] is the juxtaposition 
of two session environments. [Tau] says that the specification should be invariant under reduction of principals. [Par] says 
if �1 and �3 are composable, after �1 becomes as �2, they are still composable.

4.2. Semantics of dynamic monitoring

The endpoint monitor M, M′, ... for principal α is a specification α :〈�; �〉 used to dynamically ensure that the messages 
to and from α are legal with respect to � and �. A monitored network N is a network N with monitors, obtained by 
extending the syntax of networks as:
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α :〈�,a : O(T [r]);�〉 a〈s[r]:T 〉−−−−−→ α :〈�,a : O(T [r]);�〉 [Req]
s /∈ dom(�)

α :〈�,a : I(T [r]);�〉 a〈s[r]:T 〉−−−−−→ α :〈�,a : I(T [r]);�, s[r]:T 〉
[Acc]

� � v : S j, A j[v/x j ] ↓ tt, j∈I

α :〈�;�, s[r2]:r1?{li(xi : Si){Ai}.Ti}i∈I 〉
s[r1,r2]?l j 〈v〉−−−−−−−−→ α :〈�;�, s[r2]:T j[v/x j]〉

[Bra]

� �v : S j, A j[v/x j] ↓ tt, j∈ I

α :〈�;�, s[r1]:r2!{li(xi : Si){Ai}.Ti}i∈I 〉
s[r1,r2]!l j 〈v〉−−−−−−−−→ α :〈�;�, s[r1]:T j[v/x j]〉

[Sel]

α :〈�1;�1〉 	−→ α :〈�′
1;�′

1〉
α :〈�1;�1,�2〉 	−→ α :〈�′

1;�′
1,�2〉

�
τ−→�

�1
	−→ �2

�1,�3
	−→ �2,�3

[Spl,Tau,Par]

Fig. 7. Labelled transition relation for specifications.

�Req� M
a〈s[r]:T 〉−−−−−→ M′

[a〈s[r] : T 〉]α | M | 〈r ; h〉 −→ [0]α | M′ | 〈r ; h · a〈s[r] : T 〉〉

�Acc� M
a〈s[r]:T 〉−−−−−→ M′ r(a)= α

[a(y[r] : T ).P ]α | M | 〈r ; a〈s[r] : T 〉 · h〉 −→ [P [s/y]]α | M′ | 〈r ·s[r] �→ α ; h〉

�Bra� M
s[r1,r2]?l j 〈v〉−−−−−−−−→ M′ r(s[r2])= α

[s[r1,r2]?{li(xi).Pi}i]α | M | 〈r ; s〈r1,r2, l j〈v〉〉 · h〉 −→ [P j[v/x j ]]α | M′ | 〈r ; h〉

�Sel� M
s[r1,r2]!l〈v〉−−−−−−−→ M′ r(s[r2]) �= α

[s[r1,r2]!l〈v〉]α | M | 〈r ; h〉 −→ [0]α | M′ | 〈r ; h · s〈r1,r2, l〈v〉〉〉

�ReqEr� M �a〈s[r]:T 〉−−−−−→
[a〈s[r] : T 〉]α | M | 〈r ; h〉 −→ [0]α | M | 〈r ; h〉

�AccEr� M �a〈s[r]:T 〉−−−−−→
[a(y[r] : T ).P ]α | M | 〈r ; a〈s[r] : T 〉 · h〉 −→ [a(y[r] : T ).P ]α | M | 〈r ; h〉

�BraEr� M � 	−→ 	= s[r1,r2]?l j〈v〉
[s[r1,r2]?{li(xi).Pi}i]α | M | 〈r ; s〈r1,r2, l j〈v〉〉 · h〉 −→

[s[r1,r2]?{li(xi).Pi}i]α | M | 〈r ; h〉
�SelEr� M �s[r1,r2]!l〈v〉−−−−−−−→

[s[r1,r2]!l〈v〉]α | M | 〈r ; h〉 −→ [0]α | M | 〈r ; h〉
Fig. 8. Reduction for monitored networks (assume M = α :〈�;�〉).

N ::= N | M | N | N | (νs)N | (νa)N

The reduction rules for monitored networks are given in Fig. 8 and use, in the premises, the labelled transitions of monitors. 
The labelled transitions of a monitor are the labelled transitions of its corresponding specification (given in § 4.1).

The first four rules model reductions that are allowed by the monitor (i.e., in the premise). Rule �Req� inserts an invita-
tion in the global queue. Rule �Acc� is symmetric and updates the router so that all messages for role r in session s will 
be routed to α. Similarly, �Bra� (resp. �Sel�) extracts (resp. introduces) messages from (resp. in) the global queue. The error 
cases for �Req� and �Sel�, namely �ReqEr� and �SelEr�, ‘skip’ the current action (removing it from the process), and do not 
modify the queue, the router nor the state of the monitor. The error cases for �Acc� and �Bra�, namely �AccEr� and �BraEr�, 
do not affect the process, which remains ready to perform the action, and remove the violating message from the queue.

Example 4.1 (ATM: a monitored network). We illustrate the monitored network for the ATM scenario, where the routing table 
is defined as

r = a �→ α,b �→ β, c �→ γ , s[S] �→ α, s[C] �→ β, s[A] �→ γ

We consider the fragment of session where the authentication has occurred, the process of C (resp. S) is P ′
C (resp. P ′

S) from 
Example 3.1, and the process of A is 0.

NS = [P ′
S]α | MS = [s[S,C]! Account〈100〉; P ′′

S]α | MS (assuming get Balance()= 100)

NC = [P ′
C]β | MC = [s[S,C]? Account(xb).P ′′

C]β | MC

NA = [0]γ | γ : 〈c : TA[A] ; s[A] : end〉
where MS = α : 〈a : TS[S] ; s[S] : C! Account(xb : int){xb ≥ 0}.T ′

S〉 and MC is dual.
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(Req) [a〈s[r] : T 〉; P ]α a〈s[r]:T 〉−−−−−→ [0]α (Acc) [a(y[r] : T ).P ]α a〈s[r]:T 〉−−−−−→ [P [s/y]]α
(Bra) [s[r1,r2]?{li(xi : Si).Pi}i ]α

s[r1,r2]?l j 〈v〉−−−−−−−−→ [P j[v/x j]]α

(Sel) [s[r1,r2]!l j〈v〉]α
s[r1,r2]!l j 〈v〉−−−−−−−−→ [0]α (ctx)

[P ]α 	−→ [P ′]α n(	)∩ bn(E)=∅
[E(P )]α 	−→ [E(P ′)]α

(tau) M −→ M ′
M

τ−→ M ′ (res)
M

	−→ M ′ a /∈ sbj(	)

(νa)M
	\a−−→ (νa)M ′

(str)
M ≡ M0

	−→ M ′
0 ≡ M ′

M
	−→ M ′

Fig. 9. Labelled transition relation for processes and partial networks.

N1 = [s[S,C]! Account〈100〉; P ′
S]α | MS |[s[S,C]? Account(xb).P ′

C]β | MC |NA |〈r ; ∅〉
−→−→ [P ′

S]α | M′
S | [P ′

C[100/xb]]β | M′
C | NA | 〈r ; ∅〉

where M′
S = α : 〈a :TS[S] ; s[S] : T ′

S〉 and M′
C = β : 〈b : TC[C] ; s[C] : T ′

C〉.

Above, xb ≥ 0 is satisfied since xb = 100. If the server tried to communicate e.g., value −100 for xb , then the monitor (by 
rule �SelEr�) would drop the message.

Following Example 4.1, in the example that follows we show the different behaviours of monitored and unmonitored 
processes.

Example 4.2 (Compare a monitored process to an unmonitored one). Let

	 = s[S,C]!Account〈−10〉
P1 = s[S,C]! Account〈−10〉; P ′

S
MS = α : 〈a : TS[S] ; s[S] : C! Account(xb : int){xb ≥ 0}.T ′

S〉

The unmonitored principal [P1]α can make a step 	, namely [P1]α 	−→. However, the its monitored counter-part NS = [P1]α |
MS cannot make a step 	 (that is NS � 	−→) since the value −10 does not satisfy the predicate xb ≥ 0 attached to the local type 
of the session monitored by MS .

Similarly, for type violations, consider:

	 = s[S,C]!Account〈“hello”〉
P2 = s[S,C]! Account〈“hello”〉; P ′′

S

then [P2]α 	−→ but [P2]α | MS � 	−→.

4.3. Network satisfaction and equivalences

Based on the formal representations of monitored networks, we now introduce the key formal tools for analysing their 
behaviour. Concretely, we introduce two different equivalences to semantically compare networks: bisimulation and barbed 
congruence (the latter relying on the notion of interface, also given in this section). The two equivalences allow us to com-
pare networks using different granularities. On the one side, bisimilarity addresses mainly partial networks, and gives an 
equivalence that distinguishes two networks containing different components. On the other side, (barbed) congruence ad-
dresses networks (including global transport) from the point of view of an external observer; thus, two networks built from 
different components but offering the same service will be equated. We choose to give two equivalences in order to give the 
theory a way to compare session networks from two different points of views: bisimulation allows designers to equate net-
works whose structures are similar, whereas barbed congruence allows users to equate networks, seen as black boxes, which 
provide the same service. Both equivalences are compositional, as proved in Proposition 4.4. Finally, using the definition of 
congruence, we define the satisfaction relation |= N � M, used in § 5 and § 7 to prove the properties of our framework.

Bisimulations. We first define semantics for networks of components, or partial networks, on which we define bisimulation: 
we use M, M ′, ... for a partial network, that is a network without a global transport, hence allowing the global observation 
of interactions. The labelled transition relation for processes and partial networks M is defined in Fig. 9.

In (ctx), n(	) indicates the names occurring in 	 while bn(E) indicates binding induced by E . In (res), sbj(	) denotes the 
subject of 	. In (tau) the axiom is obtained either from the reduction rules for dynamic networks given in § 3 (only those 
not involving the global transport), or from the corresponding rules for monitored networks (which have been omitted in 
§ 4.2).

Hereafter we write =⇒ for τ−→∗
, 	=⇒ for =⇒ 	−→=⇒, and 	̂=⇒ for =⇒ if 	 = τ and 	=⇒ otherwise.
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Definition 4.1 (Bisimulation over partial networks). A binary relation R over partial networks is a weak bisimulation when 

M1RM2 implies: whenever M1
	−→ M ′

1 such that bn(	) ∩ fn(M2) = ∅, we have M2
	̂=⇒ M ′

2 such that M ′
1RM ′

2, and the 
symmetric case. We write M1 ≈ M2 if (M1, M2) are in a weak bisimulation.

Interface. As stated above, we build another model where two different implementations of the same service are equated. 
Bisimilarity is too strong for this aim as shown in further Example 4.3. We therefore introduce a contextual congruence 
(barbed reduction-closed congruence [32]) ∼= for networks. Intuitively, two networks are barbed-congruent when they are 
indistinguishable for any principal that connects to them. In this case we say that the two (barbed-congruent) networks 
propose the same interface to the exterior. More precisely, two networks are related with ∼= when, composed with the same 
third network, they offer the same barbs (i.e., the messages to external principals in the respective global queues are on the 
same channels), and this property is preserved under reduction.

We say that a message m is routed for α in N if N = (νñ)(M0 | 〈r ; h〉), m ∈ h, either m = a〈s[r] : T 〉 and r(a) = α or 
m = s[r1, r2]!l〈e〉 and r(s[r2]) = α.

Definition 4.2 (Barb). We write N ↓a when the global queue of N contains a message m to free a, and m is routed for a 
principal not in N . We write N ⇓a if N −→∗ N ′ ↓a .

We denote P(N) for the set of principals in N , that is P(
∏[Pi]αi ) = {α1, ..., αn}. We say N1 and N2 are composable when 

P(N1) ∩ P(N2) = ∅, the union of their routing tables remains a function, and their free session names are disjoint. If N1
and N2 are composable, we define N1  N2 = (νñ1, ̃n2)(M1 | M2 | 〈r1 ∪ r2 ; h1 ·h2〉) where Ni = (νñi)(Mi | 〈ri ; hi〉) (i = 1, 2).

Definition 4.3 (Barbed reduction-closed congruence). A relation R on networks with the same principals is a barbed r.c. con-
gruence [32] if the following holds: whenever N1RN2 we have: (1) for each composable N , N  N1RN  N2; (2) N1 −→ N ′

1
implies N2 −→∗ N ′

2 s.t. N ′
1RN ′

2 again, and the symmetric case; (3) N ′
1 ⇓a iff N ′

2 ⇓a . We write N1 ∼= N2 when N1 and N2 are 
related by a barbed r.c. congruence.

Properties. The following result states that composing two bisimilar partial networks with the same network – implying 
the same router and global transport – yields two indistinguishable networks.

Proposition 4.4 (Congruency). If M1 ≈ M2 , then (1) M1|M ≈ M2|M for each composable partial network M; and (2) M1|N ∼= M2|N
for each composable network N.

Proof. For (1) we show that the relation

R= {(M1|M, M2|M) | M1 ≈ M2, M composable with M1 and M2}

is a bisimulation. Suppose (M1|M)R(M2|M) and M1|M 	−→ M1. We discuss the shape of M1:

• If M1 = M ′
1|M , it means that M1

	−→ M ′
1. By definition of R, M2

	̂=⇒ M ′
2 and M ′

1 ≈ M ′
2, we conclude.

• If M1 = M1|M ′ , it means that M
	−→ M ′ . It is easy to conclude.

By examining the reduction rule associated to parallel composition, we observe that no reduction is induced through inter-

actions between the two networks. Hence we have covered all cases. The symmetric case (when M2|M 	−→ M2) is similar.
To prove (2) we proceed by showing that

R= {((νñ)(M1|N), (νñ)(M2|N)) |M1 ≈ M2, N composable with M1 and M2}
is a barbed congruence. First, R is clearly a congruence since it is closed under composition. Second, for (2), we take a 
composable N ′ . We have N ′  (Mi |N) = Mi |(N ′  N) for i ∈ {1, 2}. We use the definition of R to conclude. For (3), assume 
M1|N −→ N1.

• If N1 = M1|N ′ , it means that N −→ N ′ . We use the definition of R to conclude.

• If N1 = M ′
1|N ′ , it means that N = M0|〈r ; 	 ·H〉, N = M ′

0|〈r ; H〉 and M1
	−→ M ′

1. We deduce N2 = M ′
2|N ′ , with N =

M0|〈r ; 	 ·H〉, N = M ′
0|〈r ; H〉 and M2

	−→ M ′
2. We use the definition of R to conclude.

• If the reduction is induced by interaction between M1 and N , then M2 has the corresponding action, hence we can 
reason in the same way, hence done.
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For (2), we suppose that (M1|N) ⇓	 . Two cases can occur:

• Either N ⇓	 and it follows directly that (M2|N) ⇓	;

• or M1
	−→ M ′

1 and by definition of R, M2
	=⇒ M ′

2, meaning that (M2|N) ⇓a .

The symmetric case is similar. �
By definition this shows ≈⊂∼=.

Example 4.3 (Example of equivalence). We give here an example illustrating our equivalences of networks. Consider the 
following networks:

M ′
0 = [a1(y1[C] : TC).y1[C,A]!〈Login(xi)〉.y1[A,C]?LoginOK().PLOOP,C]α1

M ′
1 = [a2(y2[S] : TS).PLOOP,S]α2

| [(νs) a1〈s[C] : TC〉 | a2〈s[S] : TS〉 | a3〈s[A] : TA〉
| a3(y3[A] : TA).y3[C,A]?(Login(xi)).y3[A,S]!〈LoginOk()〉.PLOOP,A]β

M ′
2 = [a2(y2[S] : TS).PLOOP,S]α2

| [a4(y4[DB] : TDB).y4[A,DB]?(Query).y4[DB,A]!〈Answer〉]γ
| [(νs) (a1〈s[C] : TC〉 | a2〈s[S] : TS〉 | a3〈s[A] : TA〉 | a4〈s[DB] : TDB〉)
| a3(y3[A] : T ′

A).y3[C,A]?(Login(xi)).

y3[A,DB]!〈Query〉.y3[DB,A]?(Answer).PLOOP,A]β
N ′

1 = M ′
1 | 〈a1 �→ α1,a2 �→ α2,a3 �→ β ; ∅〉

N ′
2 = (νa4) (M ′

2 | 〈a1 �→ α1,a2 �→ α2,a3 �→ β,a4 �→ γ ; ∅〉)
Our networks implement the ATM example defined in 2.1. For the sake of clarity, we have to take the following shortcuts: 

(1) we only consider the login phase of the protocol, the LOOP phase is abstracted into three processes PLOOP,C , PLOOP,A , 
PLOOP,S for the three different roles, (2) to lighten the notations, we do not make the logical annotations explicit, (3) as a 
result of (2), we do not implement login validation and only write the case were the login succeeds.

We present two different networks N ′
1 and N ′

2, both are implementing the Server-Authenticator part of the ATM protocol. 
The Server part is the same in both processes (executed at principal α2), but the Authenticator part (executed at β) is 
different: N ′

1 implements straightforwardly the protocol while N ′
2 contains another indirection involving a fourth participant 

(executed at γ ): the Authenticator sends a query to a Database to retrieve additional information required in the login 
process, and the Database answers.

Thus, the protocols implemented in both networks are different, as one involves three participants and the other one 
four. Yet, the query to the Database in N ′

2 is unobservable from the outside, and an external client, such as M ′
0 cannot 

distinguish between N ′
1 and N ′

2.
This is captured by our equivalences: the two partial networks M ′

1 and M ′
2 do not contain the same components, and 

as a result, are not bisimilar: after some steps, M ′
2 is able to emit on the channel a4, which is impossible for M ′

1. However, 
when encapsulated into dynamic networks N ′

1 and N ′
2, they are barbed r.c. congruent: they will offer it the same interface 

to the same external client.

Satisfaction. We finally present a satisfaction relation for partial networks that include local principals. If M is a partial 
network, |= M � � s.t. dom(�) = P(M), it means that: the specification � allows all the outputs from the network; the 
network M is ready to receive all the inputs indicated by the specification; and this is preserved by transition.

Definition 4.5 (Satisfaction). Let sbj(	) denote the subject of 	 �= τ . A relation R from partial networks to specifications is a 
satisfaction when MR� implies:

1. If � 	−→�′ for an input 	 and M has an input at sbj(	), then M
	−→ M ′ s.t. M ′R�′ .

2. If M
	−→ M ′ for an output at 	, then � 	−→�′ s.t. M ′R�′ .

3. If M
τ−→ M ′ , then � τ−→�′ s.t. M ′R�′ (i.e. M ′R� since � τ−→� always).

When MR� for a satisfaction relation R, we say M satisfies �, denoted |= M � �. By Definition 4.5 and Proposition 4.4
we obtain:

Proposition 4.6 (Satisfaction). If M1 ∼= M2 and |= M1 � � then |= M2 � �.

That is, if two networks present the same interface, they satisfy the same specifications.
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Table 1
Networks: summary of the notations.

M monitor specification used for monitoring
M unmonitored partial network without M, without 〈r ; h〉
N unmonitored network without M, with 〈r ; h〉
N network with or without M, with 〈r ; h〉

5. Safety assurance in partial networks

In this section, we present the properties underpinning safety assurance in partial networks, that are networks without 
a global transport. By considering partial networks we focus on the properties of principals (and their respective monitors) 
with respect to specifications, abstracting from the routing mechanisms. The routing mechanisms will be taken into account 
in later sections. We first consider networks consisting of single monitored principals (local safety) and then extend the 
results to partial networks in general (global safety).

Recall that: partial networks are networks without global transport; M denotes an unmonitored partial network; N de-
notes an unmonitored network; N denotes a (monitored or unmonitored) network. Monitors, ranged over by M, are 
specifications (of the form α : 〈�; �〉) used for dynamic verification. See Table 1 for a summary of the notation.

The partial network composed by a principal guarded by its monitor can take any action expected by the specification:

Lemma 5.1. For any principal [P ]α , specification α : 〈�, �〉, and action 	, if α : 〈�, �〉 	−→ α : 〈�′, �′〉 and [P ]α 	−→ [P ′]α , then 
[P ]α | α : 〈�, �〉 	−→ [P ′]α | α : 〈�′, �′〉.

Proof. Direct, as no interaction can appear between [P ]α and its monitor with specification α : 〈�, �〉 when 	 is per-
formed. �

Local safety ensures that a monitored process always behaves well with respect to the specification used to define its 
monitor.

Theorem 5.2 (Local safety). |= [P ]α | M � α : 〈�;�〉 with M = α :〈�; �〉.

Proof. We define a relation R as:

R = {([P ]α | M, α : 〈�;�〉) | M = α :〈�;�〉}
Assume ([P0]α′ | M0, α′ : 〈�0, �0〉) ∈ R:

1. For an input 	, because M0 = α′ : 〈�0, �0〉 by assumption, that α′ : 〈�0, �0〉 	−→ α′ : 〈�′
0, �

′
0〉 and [P0]α′ | M0 having an 

input at sbj(	) together imply that [P0]α′
	−→ [P ′

0]α′ , thus by Lemma 5.1, we have [P0]α′ | α′ : 〈�0, �0〉 	−→ [P ′
0]α′ | M′

0, and 
M′

0 = α′ : 〈�′
0, �

′
0〉. Thus we have ([P ′

0]α′ | M′
0, α

′ : 〈�′
0, �

′
0〉) ∈ R .

2. For an output 	, [P0]α′ | M0
	−→ [P ′

0]α′ | M′
0 implies M0 = α′ : 〈�0, �0〉 	−→ α′ : 〈�′

0, �
′
0〉 = M′

0. Thus we have ([P ′
0]α′ |

M′
0, α

′ : 〈�′
0, �

′
0〉) ∈ R .

3. For τ , [P0]α′ | M0
τ−→ [P0]α′ | M0 implies that M0 = α′ : 〈�0, �0〉 τ−→ α′ : 〈�0, �0〉 = M0.

Therefore, by Definition 4.5, R is a satisfaction relation and |= [P ]α | M � α : 〈�;�〉 with M = α :〈�; �〉. �
We define a safety property for partial networks that may include multiple principals. It describes the fact that a moni-

tored network satisfies its specification.

Definition 5.3 (Network global safety). M | M is globally safe with respect to � if and only if |= M | M � �.

We introduce a condition on the structure of a network and on its monitors, which guarantees global safety. A par-
tial network is fully monitored w.r.t. � when all its principals are monitored and the collection of the monitors is weakly 
bisimilar to �. Formally, M | M is fully monitored w.r.t. � when M | M ≡ [P1]α1 | M1 | . . . | [Pn]αn | Mn for some n ≥ 0 and 
M1, . . . , Mn≈�. By Theorem 5.4 a fully monitored network is globally safe. Theorem 5.4 justifies monitoring by ensuring that 
fully monitored systems behave as expected.

Theorem 5.4 (Global safety). If M | M is fully monitored w.r.t. �, then |= M | M � �.
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Proof. Assume N is composed by monitored endpoints [Pi]αi | Mi, i ∈ {1, ..., n}.
M | M ≡ [P1]α1 | M1 | ... | [Pn]αn | Mn

where Mi = αi :〈�i; �i〉 for i = {1, ..., n}, � = M1, ..., Mn . Based on Theorem 5.2, for each i ∈ {1, ..., n},
|= [Pi]αi | Mi � αi :〈�i;�i〉

with Mi = αi :〈�i; �i〉. By Definition 4.5 and induction, we have

[P1]α1 | M1 | ... | [Pn]αn | Mn � α1 :〈�1;�1〉, ...,αn :〈�n;�n〉
so that |= M | M � �. �
6. Transparency of monitored networks

Whereas safety assurance focuses on preventing violations from the principals, transparency ensures that monitors do 
not affect the behaviour of well-behaved principals. We first consider transparency for partial networks consisting of one 
single principal (local transparency) and then extend the result to monitored networks with global transport.

Theorem 6.1 (Local transparency). If |= [P ]α � α : 〈�;�〉, then [P ]α ≈ ([P ]α | M) with M = α : 〈�;�〉.

That is, a correct participant is not impaired by monitoring.

Proof. Define a relation R as:

R = {([P ]α, [P ]α | M) | |= [P ]α � α :〈�;�〉}
Assume ([P ]α, [P ]α | M) ∈ R ,

• for an output 	 (the case for τ is similar), [P ]α 	−→ [P ′]α implies M 	−→ M′ due to |= [P ]α � M; by Lemma 5.1, we have 
[P ]α | M 	−→ [P ′]α | M′;

• for an input 	, [P ]α 	−→ [P ′]α only when M 	−→ M′ , which together imply that, by Lemma 5.1, [P ]α | M 	−→ [P ′]α | M′ .

By Definition 4.5, we have |= [P ′]α � M′ , so that ([P ′]α, [P ′]α | M′) ∈ R .

Symmetrically, since, by Theorem 5.2, we have |= [P ]α | M � α :〈�; �〉 with M = α :〈�; �〉,

• for an output 	 or τ , [P ]α | M 	−→ [P ′]α | M′ implies M 	−→ M′ whenever [P ]α 	−→ [P ′]α ;

• for an input 	, [P ]α | M 	−→ [P ′]α | M′ says M 	−→ M′ , which implies [P ]α 	−→ [P ′]α .

By Definition 4.5, we have |= [P ′]α | M′ � M′ , so that ([P ′]α | M′, [P ′]α) ∈ R . By Definition 4.1, [P ]α ≈ ([P ]α | M) with M = α :
〈�; �〉. �

By Proposition 4.4 and Theorem 6.1, we derive Corollary 6.2 stating that weakly bisimilar static networks combined with 
the same global transport are weakly bisimilar; i.e. monitoring does not affect routing of information to and from a correct 
principal.

Corollary 6.2 (Bisimilarity). If |= [P ]α � α :〈�; �〉, then for any 〈r ; h〉, we have ([P ]α | 〈r ; h〉) ≈ ([P ]α | M | 〈r ; h〉) with M = α :
〈�; �〉.

Global transparency (Theorem 6.3) states a collection of specifications (monitors) does not alter the behaviour of a well-
behaved networks. We consider networks with global transport to ensure that the correctness of the network is not altered 
during the routing of messages. Observe that the reduction relation for networks introduced in Fig. 5 models interactions 
with the global transport as invisible actions. In order to enable the observation of the behaviour of a network together with 
the dynamics of its global transport h we introduce a new set of rules for the labelled transitions of networks, denoted by 
	−→g, and presented in Fig. 10. The transitions in Fig. 10 allow us to globally observe, for example, that a message sent by 
[P ]α enters the global transport:

〈r ; h〉 s[r1,r2]!l j〈v〉−−−−−−−−→g 〈r ; h·s〈r1,r2, l j〈v〉〉〉
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{Req} 〈r ; h〉 a〈s[r]:T 〉−−−−−→g 〈r ; h·a〈s[r] : T 〉〉

{Acc} 〈r ; a〈s[r] : T 〉·h〉 a〈s[r]:T 〉−−−−−→g 〈r ; h〉

{Sel} 〈r ; h〉 s[r1,r2]!l〈v〉−−−−−−−→g 〈r ; h· s〈r1,r2, l〈v〉〉〉

{Bra} 〈r ; s〈r1,r2, l〈v〉〉·h〉 s[r1,r2]?l〈v〉−−−−−−−−→g 〈r ; h〉

{Net} N = [P ]α |〈r ; h〉 [P ]α 	−→ [P ′]α 〈r ; h〉 	−→g 〈r′ ; h′〉 N ′ = [P ′]α |〈r′ ; h′〉
N

	−→g N ′

{tau} N −→ N ′
N

τ−→g N ′ {res} N
	−→g N ′ a /∈ sbj(	)

(νa)N
	\a−−→g (νa)N ′

{str} N ≡ N0
	−→g N ′

0 ≡ M ′

N
	−→g N ′

{par} N1
	−→g N ′

1 bn(	)∩ fn(N2)= ∅ dest(	) /∈P(N2)

N1 ‖ N2
	−→g N ′

1 | N2

{Mon}N = N | M N
	−→g N ′ M

	−→ M′ N′ = N ′ | M′

N
	−→g N′

Fig. 10. LTS for networks.

Similarly, the parallel composition of a principal sending s[r1, r2]!l j〈v〉 and the global transport is made visible as follows:

[s[r1,r2]!l j〈v〉; P ′]α | 〈r ; h〉 s[r1,r2]!l j〈v〉−−−−−−−−→g [P ′]α | h·s〈r1,r2, l j〈v〉〉
We define dest as a partial function mapping a label, which is representing an action, to its destination as:

dest ::= a〈s[r] :T 〉 �→ a | a〈s[r] :T 〉 �→ a

| s[r1,r2]!l〈v〉 �→ s[r2] | s[r1,r2]?l〈v〉 �→ s[r2]
The notation of global observable transition 	−→g, used to denote globally observable action 	, is defined by the rules in Fig. 10.

Rules {req} and {acc} (resp. {sel} and {bra}) are for inserting and removing invitation messages (resp. messages in estab-
lished sessions) from the global transport. Rules {acc} and {bra} represent that, as a message leaves the global queue, there 
should be a local principal receiving it as an input. Similarly, rules {req} and {sel} represent that, as a message enters the 
global queue, there should be a local principal outputting it to the queue. By {Net} for unmonitored networks, as N

	−→g N ′ , 
it means ∃[P ]α ∈ N , [P ]α 	−→ [P ′]α (i.e. locally visible) such that 〈r ; h〉 	−→g 〈r′ ; h′〉 (i.e. globally visible). Rule {tau} sum-
marises the reduction rules defined in Section 3. Rules {res} and {str} are standard. Rule {par} says that, the bound names of 
action 	 should not be any free name appearing in network N2, and it should not be absorbed by any process in network N2

(i.e. its destination is not in N2). By rule {Mon} for monitored networks, N 	−→g N′ means ∃[P ]α | M ∈ N, [P ]α 	−→ [P ′]α and 

M 	−→ M′ (i.e. locally visible) such that 〈r ; h〉 	−→g 〈r′ ; h′〉 (i.e. globally visible).

Theorem 6.3 (Global transparency). Assume N and N have the same global transport 〈r ; h〉. If N is fully monitored w.r.t. � and 
N = M | 〈r ; h〉 is unmonitored but |= M � �, then we have N ≈ N.

Proof. Define a relation R:

R = {N, N | N = M | 〈r ; h〉 and |= M � �}
We prove that R is a standard strong bisimilar relation over 	−→g. Note that, M � � means ∀[Pi]αi ∈ M , we have αi :
〈�i; �i〉 ∈� and |= [Pi]αi � αi : 〈�i; �i〉.

1. As N 	−→g N′ , it implies ∃[P j]α j | M j ∈ N, [P j]α j

	−→ [P ′
j]α j and M j

	−→ M′
j such that 〈r ; h〉 	−→g 〈r′ ; h′〉, and other 

monitored processes in N are not affected. When 	 is an input, by Definition 4.5, since |= M � �, we should have 
[P j]α j

	−→ [P ′
j]α j ; when 	 is an output or a τ action, by Definition 4.5, the transition of [P j]α j

	−→ [P ′
j]α j is able to 

take place. Both cases lead to M
	−→ M ′ and 〈r ; h〉 	−→g 〈r′ ; h′〉 so that N = M | 〈r ; h〉 	−→g M ′ | 〈r′ ; h′〉 = N ′ , and 

|= [P ′]α j � α j : 〈�′
j; �′

j〉 by Definition 4.5. α j : 〈�′
j; �′

j〉 is the resulting new configuration of α j in �. Other specifica-
tions {αi : 〈�i; �i〉}i∈I\{ j} ∈ � are not affected. Let �′ = α j : 〈�′

j; �′
j〉, {αi : 〈�i; �i〉}i∈I\{ j} . Therefore, for the resulting 

new network N ′ = M ′ | 〈r′ ; h′〉, we have |= M ′ � �′ . Thus we have (N′, N ′) ∈ R .
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2. For the symmetric case, as N
	−→g N ′ , it implies ∃[P j]α j ∈ N , [P j]α j

	−→ [P ′
j]α j such that 〈r ; h〉 	−→g 〈r′ ; h′〉 and other 

processes in N are not affected. Since |= M � �, without loss of generality, let M j = α j : 〈� j; � j〉, then we have, for 

any 	, [P j]α j | M j
	−→ [P ′

j]α j | M′
j , where M′

j = α j : 〈�′
j; �′

j〉. It makes 〈r ; h〉 	−→g 〈r′ ; h′〉, so that N 	−→g N′ . Since N′ is 
a fully monitored network, for its static part, say [Pi]αi | {Mi}i∈I where {Mi}i∈I = α j : 〈�′

j; �′
j〉, {αi : 〈�i; �i〉}i∈I\{ j} , we 

have |= [Pi]αi | {Mi}i∈I ��′ where �′ = α j : 〈�′
j; �′

j〉, {αi : 〈�i; �i〉}i∈I\{ j} . Thus we have (N ′, N′) ∈ R . �
By Theorems 5.4 and 6.3, we can mix unmonitored principals with monitored principals still obtaining global safety 

assurance:

Corollary 6.4 (Mixed network). If M | M is fully monitored with respect to �, |= M ′ � �, and P(M) ∩P(M ′) = ∅, then |= (M | M) |
M ′ � �.

In the above corollary, untyped M is monitored by M which specifies �, while M ′ is unmonitored but statically checked 
to conform to �. The result shows that they can safely be composed.

7. Session fidelity

The property of session fidelity says that, whenever all the principals in a static network conform to their specifications, 
then all of the derivatives of this static network conform to evolutions of the initial global specification.

Global safety vs session fidelity. Recall that global safety (Definition 5.3) only ensures that in a network where principals 
are well-behaved with respect to their local types, all interactions conform to the collection of these local types. Session 
fidelity is a stronger property than global safety (Definition 5.3) as illustrated in Example 7.1.

Example 7.1. Consider a simple global type

G = r1 → r2 : {l1(x1){x1 > 9}.G1, l2(x2){x2 < 10}.G2}
and processes P and Q implementing roles r1 and r2 in established session s

P = s[r1,r2]!l1〈10〉.P ′
Q = s[r1,r2]?{li(xi).Q i}i∈{1,2}

Suppose that during runtime P sends out message s〈r1, r2, l1〈10〉〉 but, Q receives a message, perhaps revised by an 
attack, s〈r1, r2, l2〈8〉〉. These actions satisfy global safety since satisfy the specifications of P and Q , namely they are locally
well-behaved. This scenario (i.e., the content of the message being modified between a send and a corresponding receive 
action) does not conform to the intended global protocol. We define a property, session fidelity, that rules out the scenario 
above (Definition 7.8) and prove (Theorem 7.13) that fully monitored networks with global transport satisfy session fidelity. 
This is due to the fact that: (1) s is a private session ID that can be viewed only by the participants in the session, (2) all 
principals are guarded by monitors hence all messages reaching the global transport are valid, and (3) the global transport 
preserves the values of the messages it gets.

Configurations. We define session fidelity after giving the labelled transition relation for configurations, and a few auxiliary 
definitions.

Definition 7.2 (Configuration). A configuration is denoted by � =�; 〈r ; h〉, where all messages corresponding to the actions 
guarded by � are in h.

A configuration guides the global behaviours in a network. By including the global queue, we let configuration capture 
the global behaviour in a network, which accounts also for the correct routing and dispatch of messages. Before giving the 
semantics of configurations, it will be useful to define when and how configurations can be composed. Let P(�) be the set 
of principals involving in �.

Definition 7.3 (Parallel composition of configurations). Let �1 = �1; 〈r1 ; h1〉 and �2 = �2 ; 〈r2 ; h2〉 be configurations. We 
say that �1 and �2 are composable whenever P(�1) ∩P(�2) = ∅ and the union of their routing tables remains a function. 
If �1 and �2 are composable, then we define the composition of �1 and �2 as: �1 %�2 =�1, �2 ; 〈r1 ∪ r2 ; h1 ·h2〉.

The formal semantics of configurations is defined by the LTS in Fig. 11.
The behaviour of each principal in a network is guided by the specification �, and is observed by the global transport 

〈r ; h〉. Except rules [Acc] and [Par], all rules are straightforward from the LTS of specifications (defined in Section 4.1) and 
the one of dynamic networks (Fig. 10). We comment below on the interesting rules.
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[Req]
�

a〈s[r]:T 〉−−−−−→ �′

� ; 〈r ; h〉 a〈s[r]:T 〉−−−−−→g �′ ; 〈r ; h·a〈s[r] : T 〉〉

[Acc]
α :〈�,a : I(T [r]);�〉 ∈� �

a〈s[r]:T 〉−−−−−→ �′

� ; 〈r ; a〈s[r] : T 〉·h〉 a〈s[r]:T 〉−−−−−→g �′ ; 〈r, s[r] �→ α ; h〉

[Sel]
�

s[r1,r2]!l〈v〉−−−−−−−→ �′

� ; 〈r ; h〉 s[r1,r2]!l〈v〉−−−−−−−→g �′ ; 〈r ; h·s〈r1,r2, l〈v〉〉〉

[Bra]
�

s[r1,r2]?l〈v〉−−−−−−−−→ �′

� ; 〈r ; s〈r1,r2, l〈v〉〉·h〉 s[r1,r2]?l〈v〉−−−−−−−−→g �′ ; 〈r ; h〉

[Par]
�1

	−→g �2

�1 %�3
	−→g �2 %�3

[Tau]
�

τ−→�

�; 〈r ; h〉 τ−→g �; 〈r ; h〉
Fig. 11. Labelled transition relation for configurations.

1. Rule [Acc] indicates that, only when the invitation has been (internally) accepted by a principal in the network, the 
routing information registers s[r] �→ α. When we observe the global transport (externally), we only observe that an 
invitation is moved out from the global queue (which implies that it has been accepted). However, we do not know 
who accepts it. Only � tells which principal accepts this invitation, so that we can register it in the routing information 
using α.

2. Rule [Par] says if �1 and �3 are composable (Definition 7.3), after �1 becomes as �2, they are still composable.

Our framework relies on two structural (well-formedness) properties on specifications: consistency and coherence. Consis-
tent specifications are the ones corresponding to well-formed concrete systems (i.e., where the session initiation procedures 
are well-regulated, and where the active sessions correspond to projections of some well-formed global type).

Definition 7.4 (Consistent and coherent specifications). � = {αi :〈�i; �i〉}i∈I is consistent when

1. there is one and only one i such that �i � a : I(T [r]), and
2. as long as a : O(T [r]) exists in some �i , ∃� j such that a : I(T [r]) ∈ � j ; and
3. for any s appearing in any � j , if {s[rk] : Tk}1≤k≤n is a collection appeared in {�i}i∈I , there exists well-formed G such 

that roles(G)= {r1, .., rn} and G � ri = Ti .

Two specifications �1 and �2 are coherent when their union is a consistent specification.

Next, we define receivability, configurational consistency and conformance for configurations, which are based on the LTS 
of configurations and dynamic networks. Receivability entices the ability for a message in transit to reach its destination.

Definition 7.5 (Receivable configuration). Receivability of a configuration �; 〈r ; h〉 is defined by the following induction:

1. If h is empty then �; 〈r ; h〉 is receivable.

2. If h ≡m ·h′ , then �; 〈r ; h〉 is receivable when we have �; 〈r ; m ·h′〉 	−→g �′; 〈r′ ; h′〉, where 	 corresponding to m, and 
�′; 〈r′ ; h′〉 is receivable.

A configuration �; 〈r ; h〉 is configurationally consistent if all of its multi-step global input transition derivatives can be 
performed and the resulting specifications � is consistent (according to Definition 7.4).

Definition 7.6 (Configurational consistency). A configuration � =�; 〈r ; h〉 is configurationally consistent whenever

1. h is empty and � is consistent, or

2. h is not empty, �; 〈r ; h〉 is receivable, and after receiving all messages in h with � 	1...	n−−−−→ �′ (by the LTS in Fig. 7), 
where 	i , i = {1, ..., n} are inputs and, ∀m ∈ h, ∃	 ∈ 	1 . . . 	n such that 	 corresponds to m, we have �′ is consistent.

In other words, �; 〈r ; h〉 is configurationally consistent if, in each of its derivatives, all messages in the transport can be 
“received” by some monitors in � and, after absorbing all these messages, the resulting �′ is still consistent. Conformance 
links networks and configurations.
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Definition 7.7 (Conformance to a configuration). Assume a network N ≡ M | 〈r ; h〉 is given. We say that N conforms to 
�; 〈r ; h〉 when:

1. h is empty, |= M � � and � is consistent, or
2. h is not empty, and the following conditions hold

(a) |= M � �,
(b) all messages in h are receivable to M , and

(c) as �; 〈r ; h〉 	1...	n−−−−→g �′; 〈r′ ; ∅〉 so that M | h 	1...	n−−−−→g M ′ | ∅ where each 	i , i = {1, ..., n} is an input, �′ is consistent.

Session fidelity. Session fidelity describes the relation between a network and the configuration specifying it: all evolutions 
of the network should correspond to expected evolutions of the configuration which does not lead to ill-formed configura-
tions. We now give the formal definition of session fidelity.

Definition 7.8 (Session fidelity). Assume configuration �; 〈r ; h〉 is configurationally consistent. We say that N satisfies ses-

sion fidelity w.r.t. �; 〈r ; h〉 if and only if, for any 	, N
	−→g N ′ implies �; 〈r ; h〉 	−→g �′; 〈r′ ; h′〉 and �′; 〈r′ ; h′〉 is 

configurationally consistent and N ′ satisfies session fidelity w.r.t. �′; 〈r′ ; h′〉.

Before proving session fidelity for our monitored framework we give a few auxiliary lemmas. Lemma 7.9 states that, as 
a network conforms to some configurationally consistent configuration, the evolution of the configuration must be able to 
consume an output occurrence in the network:

Lemma 7.9. Assume a network N ≡ M|〈r ; h〉 conforms to �; 〈r ; h〉, and that �; 〈r ; h〉 is configurationally consistent. If N 	−→g N ′

with 	 being an output and �; 〈r ; h〉 	−→g �′; 〈r ; h ·m〉, then �′; 〈r ; h ·m〉 is receivable.

Proof. We only show the interesting case. When 	 = a〈s[r] : T 〉, since � is consistent, by Definitions 7.4, there exists 
a : I(T [r]) in some � of �. Because 	 does not affect the existence of a : I(T [r]), it remains in � of �′ , thus invitation 
m = a〈s[r] : T 〉 is receivable to �′ .

Let αi = 〈�i, �i〉. When 	 = s[r1, r2]!l j〈v〉, by Definitions 7.4 and 7.7, since |= M � � and � is consistent, ∃αs, αr ∈ �, 
∃G is well-formed of the form

G = r1 → r2 : {li(xi : (T [r])i){Ai}.Gi}i∈I

such that s obeys to G:

�s(s[r1])= G � r1 = r2!{li(xi : (T [r])i){Ai}.Gi � r1}i∈I

�r(s[r2])= G � r2 = r1?{li(xi : (T [r])i){A′
i}.Gi � r2}i∈I (1)

As action s[r1, r2]!l j〈v〉 fires, Equation (1) changes to

�s(s[r1])= G j � r1

�r(s[r2])= G � r2 = r1?{li(xi : (T [r])i){A′
i}.Gi � r2}i∈I

the receiving capability of r1? still remains in �r(s[r2]), where αr ∈�′ , thus m = s〈r1, r2, l j〈v〉〉 is receivable to �′ . �
As N ≡ M | H and |= M � �, the satisfaction relation of M and � remains whenever action takes place.
Lemma 7.10 says that, if the static part of a network satisfies a specification, then the evolution of the static part still 

satisfies the corresponding evolution of the specification.

Lemma 7.10. Assume N ≡ M | H and |= M � �. If N 	−→g N ′ ≡ M ′ | H ′ and � 	−→�′ , then |= M ′ � �′ .

Proof. Directly from Definition 4.5. �
Finally, Lemma 7.12 states that, if a network conforms to a configurationally consistent configuration, then any evolution 

of the network conforms to the corresponding evolution of the configuration, which is still configurationally consistent. 
Lemma 7.12 relies on the definition of routing table given below.

Definition 7.11 (Routing table). We define route(�), the routing table derived from �, as follows:

route(α : 〈�;�, s[r] : T 〉,�)= s[r] �→ α, route(α : 〈�;�〉,�)

route(α : 〈�,a : I(T [r]);�〉,�)= a �→ α, route(α : 〈�;�〉,�)

route(α : 〈�,a : O(T [r]);�〉,�)= route(α : 〈�;�〉,�)
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The routing table is used to observe inputs. Note that by Definition 7.4 (2), as long as � is consistent, the existence of 
a : O(T [r]) in � implies that the corresponding a : I(T [r]) is also in �.

Lemma 7.12. Assume configuration �; 〈r ; h〉 is configurationally consistent, and network N ≡ M|〈r ; h〉 conforms to configuration 
�; 〈r ; h〉. Then for any 	, whenever we have N 	−→g N ′ such that �; 〈r ; h〉 	−→g �′; 〈r′ ; h′〉, it holds that �′; 〈r′ ; h′〉 is configura-
tionally consistent and that N ′ conforms to �′; 〈r′ ; h′〉.

Proof. Assume N conforms to �; 〈r ; h〉, which is configurationally consistent. We prove the statement by inspection of 
each case.

(Sel) Let 	 = s[r1, r2]!l j〈v〉, N
	−→g N ′ and �; 〈route(�) ; h〉 	−→g �′; 〈r ; h ·m〉, where m = s〈r1, r2, l j〈v〉〉.

Then r = route(�) = route(�′) because there is no change to the elements in � or to the routing table.
Since � allows 	 and � is consistent, then ∃αr, αs ∈�, and ∃G well-formed of the form

G = r1 → r2{li(xi : Si){Ai}.Gi}i∈I ,

such that

�s(s[r1])= G � r1 = r2!{li(xi : Si){Ai}.Gi � r1}i∈I ,

�r(s[r2])= G � r2 = r1?{li(xi : Si){A′
i}.Gi � r2}i∈I .

�
	−→�′ implies �′ has

�s(s[r1])= G j � r1,

�r(s[r2])= r1?{li(xi : Si){A′
i}.Gi � r2}i∈I .

Case 1: h is empty. By Lemma 7.9, after receiving m, say �′ 	−→ �′′ , �′′ has s[r1] = G j � r1 and s[r2] = G j � r2, �′′
is thus consistent by Definition 7.4. By Definition 7.6, �′; 〈r ; m〉 is configurationally consistent, and |= M ′ � �′ by 
Lemma 7.10, thus N ′ conforms to �′; 〈r ; h ·m〉.
Case 2: h is not empty. Since �; 〈r ; h〉 is configurationally consistent, again, by Lemma 7.9, after receiving messages in 
h (but not m), say �′ 	0...	n−−−−→�′

1, where every action in 	0 . . . 	n corresponds to each message in h, we have �′
1; 〈r′ ; m〉

is configurationally consistent. After �′
1 receives m, say �′

1
s[p1,p2]?l〈v〉−−−−−−−−→ �′′ , where s[p1, p2]?l〈v〉 is dual to 	, with 

the same reasoning above, �′′ has s[r1] = G ′
j � r1 and s[r2] = G ′

j � r2, so that �′′ is consistent. By Definition 7.6, 
�′; 〈r ; h ·m〉 is configurationally consistent, and |= M ′ � �′ by Lemma 7.10, thus N ′ conforms to �′; 〈r ; h ·m〉.

(Bra) Let 	 = s[r1, r2]?l j〈v〉, N
	−→g N ′ and N conforms to �; 〈route(�) ; h〉.

Case 1: h is empty. Since �; 〈route(�) ; ∅〉 � 	−→g, so this case never happens.

Case 2: h is not empty. Thus, N
	−→g N ′ and

�; 〈route(�) ; h〉 	−→g �′; 〈r ; h/m〉,
where h/m means taking off message m from h, where m = s〈r1, r2, l j〈v〉〉.
We have r = route(�) = route(�′) because there is no change to the elements in � or to the routing table. By Defini-
tion 7.6, after receiving all messages in H , � is consistent, thus �′ , which has received message m is consistent after 
receiving all messages in h/m. By Lemma 7.10, we have |= M ′ � �′ thus N ′ conforms to �′; 〈r ; h/m〉.

(Req) Let 	 = a〈s[r] : T 〉. N
	−→g N ′ and

�; 〈route(�) ; h〉 	−→g �′; 〈r ; h·m〉,
where m = a〈s[r] : T 〉. Then r = route(�) = route(�′) because, by Definition 7.11, nothing new is registered to the 
routing table.
Since � allows 	 and � is consistent, by Definition 7.4, ∃�i, � j ∈ � such that a : I(T [r]) ∈ �i and a : O(T [r]) ∈ � j . 

After � 	−→�′ , by rule [Req] in the LTS of specifications, a : I(T [r]) remains in �′
i , a : O(T [r]) remains in �′

j , and thus 
they both remain in �′ .
Case 1: h is empty. By Lemma 7.9, after receiving m, say �′ a〈s[r]:T 〉−−−−−→ �′′ , both a : I(T [r]) and a : O(T [r]) remain in 
�′′ , satisfying Definition 7.4, so that �′; 〈r ; m〉 is configurationally consistent. By Lemma 7.10, we have |= M ′ � �′ , 
thus N ′ conforms to �′; 〈r ; h ·m〉.
Case 2: h is not empty. The proof is similar to the one in (Sel) and is omitted.
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(Acc) Let 	 = a〈s[r] : T 〉.
Case 1: h is empty. Since �; 〈route(�) ; ∅〉 � 	−→g, this case never happens.

Case 2: h is not empty. If N
	−→g N ′ and

�; 〈route(�) ; h〉 	−→g �′; 〈r′ ; h/m〉,
where m = a〈s[r] : T 〉. Since there exists � ∈�′ s.t. s[r] ∈�, by Definition 7.11, r′ = route(�), s[r] �→ α = route(�′).
For the same reasoning in (Bra), we have �′; 〈r ; h/m〉 is configurationally consistent. By Lemma 7.10, we have 
|= M ′ � �′ thus N ′ conforms to �′; 〈r ; h/m〉.

The proof for other cases is trivial. �
Theorem 7.13 (Session fidelity). If N is fully monitored and conforms to �; 〈r ; h〉, which is configurationally consistent, then N satisfies
session fidelity.

Proof. The proof is straightforward by Lemma 7.12 and Definition 7.8. �
Proposition 7.14. Whenever a network is fully monitored, global safety implies session fidelity.

Proof. Simply by Definitions 7.6 and 7.7 and Corollary 6.2 and Theorems 5.4 and 7.12. �
8. Related work

Monitors. Our work features a located, distributed process calculus to model dynamic monitored networks. An account of 
the state of the art of runtime monitors can be found in [29,38]. According to Havelund and Goldberg [29], specification-
based runtime verification consists of monitoring a program’s execution against a user-provided specification of the intended 
program’s behaviour. Leucker and Schallhart [38] define runtime verification as the discipline of dealing with the detection 
of violations (or satisfaction) of correctness properties. They point out the use of runtime verification for contract enforce-
ment.

Global specification languages. Message Sequence Charts (MSC), which are also known as UML sequence diagrams, have 
been the focus of many works [29,36,27,37]. Among them, Kruger et al. [37] propose a runtime monitoring framework 
based on projecting MSC to distributed monitors based on finite state machines. They use aspect-oriented programming 
techniques to inject the monitors into the implementation of the components. Gan [26] follows the same path, but with a 
centralised approach. Both works do not provide a formal model, formal guarantees of correctness, nor support behavioural 
analysis. BPEL [4,5,27] is an orchestration description language that is now a common part of many industrial distributed 
systems where web services must be used in a coordinated manner. It supports the definition of abstract specifications 
as well as their execution. BPEL specifications are designed to be run in a centralised way. Baresi et al. [4] developed a 
run-time monitoring tool with assertions based on BPEL as an execution language. When the execution of a BPEL process 
reaches the point where an assertion must be checked, the tool calls an external service to check its satisfaction. This 
work does not consider properties, such as transparency and local/global safety. On another line of research, van der Aalst 
et al. [50] use abstract BPEL process as specifications. Their work focuses on checking conformance between execution logs
(obtained by observing a number of executions based on SOAP message exchanges, and then translated into Petri Nets) 
and choreographies expressed as abstract BPEL processes. The focus of [50] is on checking conformance a posteriori, as 
well as on revealing (mining) and re-engineering choreographies according to the actual system’s behaviour. Differently 
from [50] our work establishes a theory of dynamic monitoring. The aim of our work is to observe communication as 
they occur to prevent unsafe interactions, while providing a formal framework that complements static (behavioural) typing 
techniques, and supports reasoning about equivalence of networks. Finally, WS-CDL is a more recent description language 
which aims at describing decentralised choreographies. Cambronero et al. [11] transform choreographies written in WS-CDL 
into timed-automata and verify systems against them. The work in [11] does not develop a projection algorithm nor ensures 
global conformance with respect to a choreography.

Theory of monitored networks. The work of Ferrari et al. [25] proposes an ambient-based run-time monitoring formalism, 
called guardians, targeted at access control rights for network processes, and Klaim [19] advocates a hybrid (dynamic and 
static) approach for access control against capabilities (policies) to support static checking integrated within a dynamic 
access-control procedure. These works address specific forms of access control for mobility, while our more general approach 
aims at ensuring correct behaviour in sessions through a combination of static and run-time verification.

The work of Capecchi et al. [12] presents a monitor-based information-flow analysis of multiparty sessions. The monitors 
in [12] are inline (following [14]) and control the information-flow by tagging each message with security levels. Since 
each inlined monitor is located within a local process, the interactions between endpoint processes and their corresponding 
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monitors are synchronous. We study asynchronous communications that, while being closer to an actual network imple-
mentation, introduce considerable challenges in the development of a theory. Other works on inlined monitors, such as 
[28,1,49], provide a policy specification language. The aim is to write policies into the monitors, with the guarantee that 
the specifications in the inlined monitors satisfy the original policies. Inline monitors require direct access to the code, 
whereas our approach, outline monitoring (i.e., the implantation of monitors is independent from the implementation of 
the observed applications), ensures interoperability with any language and architecture. Other related works on monitoring 
conversations are [48,2]. Simmonds et al. [48] propose a runtime monitoring approach based on MSC as a specification 
language to represent global protocols, and transform MSC specifications into automata. They provide conformance check-
ing of finite execution traces against specifications. Ancona et al. [2,40] propose a dynamic monitoring framework based 
on MPST for Multi-Agent Systems (MAS) to guard interactions between local agents and their environments. They gave a 
procedure that automatically derives a self-monitoring MAS from Jason (a MAS development platform), and verifies that a 
MAS implementation is compliant with a given global session type, which can naturally be represented as cyclic Prolog terms. 
Their monitoring is only synchronous. Their development focuses on implementation and does not involve proofs of formal 
properties.

Monitoring and MPST. An informal approach to monitoring based on MPST, and an outline of monitors are presented 
in [17]. However, [17] only gives an overview of the desired properties, and requires all local processes to be dynamically 
verified through the protections of system monitors. In this article, instead, we integrate statically and dynamically verified 
local processes into one network, and formally state the properties of this combination. Some recent works [3,18] use 
multiparty session types for dynamic updates. Anderson et al. [3] study channel conditions of running processes to be 
able to update them and ensure deadlock-freedom, while a system in Coppo et al. [18] enables to update global types 
dynamically. The work [18] is based on the formulation (without assertions) studied in this article. Recently, Jia et al. [35]
proposed a linear-logic based session-calculus close to ours describing monitor semantics for higher-order sessions which 
include rules for blame assignment.

In summary, compared to these related works, our contribution focuses on the enforcement of global safety, with pro-
tocols specified as multiparty session types with assertions. It also provides formalisms and theorems for decentralised 
run-time monitoring, targeting interaction between components written in multiple (e.g., statically and dynamically typed) 
programming languages.

9. Conclusion and future work

We proposed a new formal safety assurance framework to specify and enforce global safety of distributed systems 
through dynamic verification. We formally proved the correctness of our architectural framework through a π -calculus based 
theory, identified in two key properties of dynamic networks: global transparency and safety. We introduced a behavioural 
theory over monitored networks which allows compositional reasoning over trusted and untrusted (but monitored) compo-
nents.

Implementations. As a part of our collaboration with the Ocean Observatories Initiative [44], our theoretical framework 
is currently realised by an implementation [34,43,21], in which each monitor supports all well-formed protocols and is 
automatically self-configured, via session initiation messages, for all sessions that the endpoint participates in. Our imple-
mentation of the framework automates distributed monitoring by generating FSM from the local protocol projections. In this 
implementation, the global protocol serves as the key abstraction that helps unify the aspects of specification, implementa-
tion and verification (both static and dynamic) of distributed application development. Our experience has shown that the 
specification framework can accommodate diverse practical use cases, including real-world communication patterns used in 
the distributed services of the OOI cyberinfrastructure [44].

Future work. Our objectives include the incorporation in the implementation of more elaborate handling of error cases into 
monitor functionality, such as halting all local sessions or coercing to valid actions [46,39]. In order to reach this goal, we 
need to combine a simplification of [13] and nested sessions [20] to handle exceptions inside MPST. We aim to construct 
a simple and reliable way to raise and catch exceptions in asynchronous networks. Another direct extension of this work 
would be the addition of states (memories) to the syntax, as described in [8,15]. It would require the monitors to maintain a 
model of the state of the applications being monitored, which can be easily formalised in our setting. For the sake of clarity, 
we did not add to our local type syntax other syntactical constructs such as parallel composition but such an extension is 
possible and could be considered, as it allows one to reach greater expressiveness [22]. Our work is motivated by ongoing 
collaborations with the Savara1 and Scribble2 projects [51,31] and OOI [44]. We are continuing the development of Scribble, 
its toolsuite and associated environments towards an integration into [44]. The theoretical framework developed in this 
article is extensible as a basis for other applications as demonstrated in our recent dynamic monitoring implementations for 

1 http :/ /www.jboss .org /savara.
2 http :/ /scribble .github .io/.

http://www.jboss.org/savara
http://scribble.github.io/
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distributed actors [42] and timers [41]. For instance, the work in [41] extends run-time monitoring to real-time processes: 
monitors verify the punctuality of interactions against time constraints expressed as a timed extension of Scribble based on 
timed MPST [10].
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