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Membrane remodeling by the M2 
amphipathic helix drives influenza 
virus membrane scission
Agnieszka Martyna1, Basma Bahsoun1, Matthew D. Badham1, Saipraveen Srinivasan2, 
Mark J. Howard1,† & Jeremy S. Rossman1

Membrane scission is a crucial step in all budding processes, from endocytosis to viral budding. Many 
proteins have been associated with scission, though the underlying molecular details of how scission 
is accomplished often remain unknown. Here, we investigate the process of M2-mediated membrane 
scission during the budding of influenza viruses. Residues 50–61 of the viral M2 protein bind membrane 
and form an amphipathic α-helix (AH). Membrane binding requires hydrophobic interactions with the 
lipid tails but not charged interactions with the lipid headgroups. Upon binding, the M2AH induces 
membrane curvature and lipid ordering, constricting and destabilizing the membrane neck, causing 
scission. We further show that AHs in the cellular proteins Arf1 and Epsin1 behave in a similar manner. 
Together, they represent a class of membrane-induced AH domains that alter membrane curvature and 
fluidity, mediating the scission of constricted membrane necks in multiple biological pathways.

Membrane budding is a complex, multi-step process that is involved in many biological processes such as endo-
cytosis, intracellular vesicle trafficking and virus budding. Overall, membrane budding can be divided into four 
stages: initial deformation of the membrane, formation of a membrane bud, constriction of the membrane neck 
and membrane scission.

The most studied example of membrane scission is dynamin-dependent scission, which occurs during 
clathrin-mediated endocytosis. During clathrin-mediated endocytosis, a multitude of proteins are involved in 
deforming the membrane and forming a membrane bud on the plasma membrane. Dynamin and associated 
proteins then assemble around the membrane neck, causing a GTP-dependent constriction of the neck that 
may be sufficient to cause scission1,2. However, several accessory proteins, including the amphipathic helix (AH) 
domain-containing proteins, Amphiphysin, Endophilin and Epsin1, have also been suggested to play a role in 
completing the scission process, following Dynamin-mediated membrane constriction3,4.

AHs are involved in a wide range of membrane budding events and act by either sensing or generating mem-
brane curvature. Certain AHs such as in the Amphipathic Lipid Packing Sensor (ALPS) motif family, or helices 
found within N-Bin-Amphiphysin-Rvs (N-BAR)-domain containing proteins, insert into the membrane and 
sense curvature through hydrophobic interactions5,6. Curvature-sensing AHs can play essential roles in mem-
brane scission by properly localizing critical components to the membrane neck5. In contrast, membrane inser-
tion of cationic AH domains, such as those found in Epsin1 and in antimicrobial peptides, can induce membrane 
curvature and may play a more direct role in membrane remodeling and scission7,8. Because of their ability to 
sense and/or induce membrane curvature, AHs have been implicated in a wide range of membrane scission 
events, Arf1 for COP-vesicle budding9, Endophilin for non-clathrin-mediated endocytosis10,11, CHMP4b for 
multi-vesicular body (MVB) budding12 and M2 for influenza virus budding13. Though, additional proteins are 
involved in many of these processes and the specific mechanisms of scission often remain unknown.

Influenza virus budding is thought to be initiated by the clustering of large surface-exposed viral glycoproteins 
in lipid raft domains on the plasma membrane of infected cells14. Binding of the matrix protein to the cytoplasmic 
tails (CT) of the glycoproteins then causes a scaffolding effect, further deforming the membrane and leading to 
the formation of a membrane bud. The membrane bud is connected to the plasma membrane by a small mem-
brane neck that is constricted by matrix-protein scaffolding on the inside of the bud. It is at this membrane neck 
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that scission occurs, allowing for release of the budding virus14,15. Recent work has shown that the influenza virus 
M2 protein, which is not needed for formation of the membrane bud, is essential for completion of membrane 
scission13.

The influenza virus M2 protein is a 97 amino acid homotetrameric protein with a short ecto-domain of 
unknown function, a transmembrane domain (TMD) and an extended CT that contains a membrane-proximal 
AH16–18. The M2 protein causes alterations of membrane curvature19, and the AH domain is essential for mem-
brane scission during virus budding13. In addition, expression of the AH alone is sufficient to cause budding and 
scission in a giant unilamellar vesicle (GUV) system 13, suggesting that the completion of membrane scission is 
mediated by M2AH. However, similar to cellular AHs, the molecular mechanism by which M2AH causes mem-
brane scission remains unknown. The aim of this study was to determine the molecular mechanism of influenza 
virus membrane scission and to determine whether this represents a conserved mechanism of cellular membrane 
scission. Here, we show that hydrophobic membrane interactions drive M2AH domain formation. Insertion of 
M2AH causes both membrane curvature and ordered lipid domain formation that directly leads to membrane 
scission. We further show that AHs within Arf1, Epsin1 and possibly EndophilinA3 mediate membrane scission 
through similar mechanisms. Our results suggest that these AHs are prototypical examples of a protein motif 
capable of mediating membrane scission.

Results
M2AH forms an amphipathic helix upon membrane binding.  Protein modeling and NMR experi-
ments have suggested that the first 16 amino acids of the A/Udorn/72 influenza virus M2 protein CT (residues 
47–62) form an amphipathic helix; however, the structure of the full AH domain and its dependency on lipid 
binding for α-helix formation is not known16,17,20. To determine the secondary structure of the isolated M2AH 
we used synchrotron radiation circular dichroism (SRCD) spectroscopy to estimate α-helix formation. SRCD 
spectra were obtained for M2AH in detergent-free solution and in the presence of large unilamellar vesicles 
(LUVs). As shown in Fig. 1a, in the absence of membrane, M2AH is unstructured but rapidly forms an α-helix 
upon membrane binding.

To specifically assess M2AH structure we next determined the high-resolution nuclear magnetic resonance 
(NMR) structure of the M2AH in solution and bound to LUVs (Fig. 1b–e, S1–4, Tables S1–2). We see that the 
M2AH is unstructured in solution, with significant movement seen at the N-terminus (Fig. 1b, S2a); however, 
when bound to LUVs the peptide forms a well-structured, monomeric α​-helix from residues 50–61, with a slight 
kink between residues 58–59 (Fig. 1c–e, S2b). Interestingly, in contrast to bioinformatic predictions, the NMR 
data show that the AH does not begin until residue 50, with residues 47–49 remaining unstructured. This flexibil-
ity may allow for these residues to form the 90 degree turn required to link the TMD to the AH in the full-length 
protein. Our peptide contains a C50S mutation, used to prevent oxidation; however, in the wild-type protein, C50 
is palmitoylated, which may anchor the start of the AH and facilitate its interactions with the membrane.

M2AH binds membranes through hydrophobic and not charged interactions.  AH membrane 
binding can be driven by hydrophobic interactions, polar interactions with lipid headgroups or through a com-
bination of the two. Sequence analysis of the M2AH shows that the polar face possesses several well-conserved 
cationic residues (K49, R53, K60, R61)13, which could interact with anionic lipid headgroups. To test if charge 
interactions affect M2AH interactions with the membrane, we assessed peptide binding and helical structuring 
by CD in the presence of charged and uncharged LUVs. To investigate membrane binding by M2AH, we fluo-
rescently labeled a peptide corresponding to M2AH residues 47–62 with FITC, allowed the peptide to bind to 
LUVs and removed unbound peptide by spin filtration. The fluorescent signal from the LUV-bound M2AH was 
5.23 ±​ 0.91 fold greater than the background, whereas we detected no significant binding of FITC-dextran to 
liposomes (0.89 ±​ 0.25 fold increase over background), confirming that M2AH has intrinsic membrane binding 
capacity. We see that the presence of anionic lipids (PA, PS, PG) in the LUVs did not significantly enhance M2AH 
binding compared to LUVs containing only PC (Fig. 2a). Similarly, examination of the binding affinity of M2AH 
for LUVs by Isothermal Titration Calorimetry (ITC) shows comparable binding affinities, with a Kd of 11.4 μ​M 
in the presence of PG and 13.4 μ​M when only PC is present (Figure S5). In addition, increasing the ionic strength 
of the buffer does not reduce M2AH membrane binding (Figure S6), further suggesting that charge interactions 
are not essential for M2AH-membrane association. However, CD analysis revealed that the structuring of the 
M2AH is slightly enhanced in the presence of anionic lipids, increasing α​-helix content by an estimated 13% 
(Fig. 2b). Thus, charge interactions may not be required for M2AH-membrane binding but may facilitate domain 
formation and stability.

The hydrophobic face of the M2AH contains a significant number of strongly hydrophobic residues, thus, 
it is possible that M2AH-membrane interactions are primarily driven through hydrophobic interactions. To 
assess these interactions and determine the key residues involved, we performed saturation transfer difference 
(STD) NMR. STD results show that many hydrophobic residues interact with the membrane, including: F47, 
F48, I51, Y52, F54, F55, H57, G58 and L59, though the strongest interactions were seen with: I51, F54, F55 and 
H57 (Fig. 2c, S7, Table S3). With the exception of H57, these residues mainly group on the hydrophobic face 
of the helix and suggest that M2AH primarily interacts with the membrane through hydrophobic interactions. 
However, the identification of H57, suggests that peptide-membrane binding may also be mediated by interac-
tions with the polar lipid headgroups. H57 is seen on the polar face of the amphipathic helix (Fig. 1d) and at the 
experimental pH (~6.5) may be both protonated and deprotonated. Sequence analysis of other influenza virus 
strains shows that residue 57 is always either a histidine or another polar/charged amino acid13. These results 
suggest the M2AH interacts with the lipid bilayer through both hydrophobic interactions with the lipid tails and 
polar interactions with the lipid headgroups.
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M2AH membrane insertion alters membrane order and curvature.  Shallow insertion of an AH 
into one leaflet of a membrane bilayer can cause the separation of lipid headgroups, creating a lipid packing 
defect. This effect can be minimized through the induction of membrane curvature21. However, deep insertion 
of an AH into the bilayer, such that the AH resides below the headgroups, minimizes the generation of packing 
defects. To determine the depth of insertion of M2AH, we reconstituted Laurdan-labeled LUVs in aqueous media 
and assessed polar headgroup separation. Laurdan is a hydrophobic dye that inserts into the lipid bilayer at the 
depth of the lipid tails. Laurdan undergoes emission spectrum shifts according to the exposure of the dye to polar 
media and can be expressed as the general polarization (GP) function22. Thus, separation of the lipid headgroups 
(i.e. the generation of lipid packing defects) would increase media access to the lipid tail-associated dye, chang-
ing the emission spectra. Adding M2AH peptide to Laurdan-labeled 100 nm PC:PG LUVs caused a maximum 
dose-dependent increase in Laurdan GP of +​ 0.219 ±​ 0.004 at a P:L ratio of 1:1.5, indicating tighter packing of the 
surrounding lipids, creating an increase in lipid order which reduces the exposure of the lipid-incorporated dye 
to the aqueous environment (Fig. 3a). In contrast, addition of the M2AH peptide to Laurdan in solution caused 
a decrease in Laurdan GP of −​0.344 ±​ 0.133, indicating that the increases seen with M2AH in LUVs is attrib-
utable to a change in the hydrophobic environment and not a consequence of direct dye-peptide interactions. 

Figure 1.  M2AH forms a membrane parallel amphipathic helix upon lipid binding (A) SRCD was used to 
determine peptide secondary structure using a 500 μ​M solution of the M2AH peptide, a scrambled control 
peptide solution13 or following incubation of 500 μ​M M2AH peptide with 5 mM POPC:POPG:Ch LUVs. Traces 
are shown as per-residue molar absorption vs wavelength. Inset shows a zoomed 200–255 nm region of the 
spectra. (B) NMR structure of the M2AH in solution and (C–E) in the presence of 100 nm POPC:POPG:Ch 
LUVs shown as the structure closest to the mean of 20 structure ensembles and represented as a cartoon (B,C), 
a ribbon diagram with side-chains (D) or a space-filling model. Resides are colored based on hydrophobicity 
(with hydrophobic side chains in red, neutral in yellow and polar in green). See also Figures S1-S5 and Tables 
S1–2.
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Interestingly, the presence of anionic lipids did not affect the ability of M2AH to increase lipid order (Fig. 3a), 
further supporting the hypothesis that M2AH inserts below the lipid headgroups, into the hydrophobic core of 
the bilayer, independent of charge interactions. In contrast, the control M2AH-Helix mutant peptide13 caused 
a decrease in Laurdan GP, indicating that the peptide caused a separation of the lipid headgroups, allowing for 
increased buffer access to the dye (Fig. 3a). This suggests that the mutated peptide, which does not contain any 
bulky hydrophobic residues, does not insert as deeply into the hydrophobic core of the bilayer as the M2AH 
peptide.

Next, we analyzed the membrane phase transition temperatures of single-lipid multilamellar vesicles (MLVs) 
by differential scanning calorimetry (DSC) in order to confirm the effect of M2AH on membrane order. Increased 
membrane order results in decreased membrane fluidity, which can be detected by DSC as an increase in lipid tran-
sition temperature. As it is not possible to clearly resolve the phase transition of lipids with mixed acyl chains (e.g. 
POPC; 16:0–18:1), we evaluate the effects of M2AH in vesicles made from the related lipid DSPC containing two 
identical 18:0 acyl chains. We found that the addition of M2AH to MLVs increases the lipid transition temperature of 
the membrane (Fig. 3b), indicating an increase in lipid order and a decrease in membrane fluidity. This lipid order-
ing is not generated from existing lipid ordered domains, nor does it require the presence of anionic lipids, but can be 
created from a membrane consisting of a single lipid species. These results suggest that M2AH increases membrane 
order through hydrophobic interactions with lipid tails, possibly creating a lipid-ordered domain.

Figure 2.  M2AH binds membranes through hydrophobic but not charged interactions. (A) 100 μ​M of 
FITC-labeled M2AH peptide was incubated with 2.5 mM POPC:Ch LUVs containing 20 molar % of the 
indicated lipid for 1 hr at room temperature. LUVs were washed and unbound peptide was removed using a 
100 kDa filter concentrator. Background binding was determined as above in the absence of LUVs. Fluorescence 
was determined and is represented as the LUV-bound fluorescence ÷​ background-binding fluorescence. Values 
are the mean ±​ standard deviation of three independent repeats. No significant differences from POPC:Ch 
LUVs were detected for any of the lipid combinations using the Student’s T-test (p <​ 0.05). (B) Secondary 
structure was estimated by CD for 250 μ​M of the indicated peptide in the presence or absence of 5 mM LUVs. 
The % α​-helix was estimated using K2D3 and normalized to M2AH-bound POPC:POPG:Ch LUVs. (C) Space-
filling structure of the M2AH with the residues interacting with the membrane colored based on a percentage of 
the maximum STD transfer (red →​ blue). See also Figures S6–7 and Table S3.
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So far we have shown that M2AH forms an amphipathic α​-helix upon lipid binding and inserts deep in the 
membrane through hydrophobic interactions, causing increases in lipid order. To test if M2AH also induces 
membrane curvature, we incubated LUVs with increasing amounts of M2AH and assessed liposome morphology 
by Transmission Electron Microscopy (TEM). TEM analysis showed that M2AH alters membrane curvature of 
100 nm LUVs, leading to the formation of membrane blebs and short tubes, whereas the control M2AH-Helix 
peptide did not significantly affect vesicle morphology (Fig. 3c,d).

M2AH causes membrane scission on pre-constricted membrane necks.  Altering membrane flu-
idity and inducing positive membrane curvature at the center of the constricted neck of a budding virus would 
cause further constriction of the neck and could lead to membrane scission. To test whether the M2AH causes 
membrane scission on constricted membrane tubes, we assayed for membrane scission using SUPER Templates4. 
Adding the N-Bar-containing protein, Amphiphysin-I, to the templates caused a scaffolding reaction and the for-
mation of membrane tubes that undergo a background level of spontaneous membrane extraction, unrelated to 
scission (Fig. 4a, none). The addition of M2AH peptide, but not the M2AH-Helix peptide, to these tubes resulted 
in significant lipid release, consistent with membrane scission (Fig. 4). Importantly, the M2AH peptide did not 
cause lipid release in the absence of Amphiphysin-I mediated scaffolding, suggesting that the peptide only acts 
on specifically scaffolded lipid domains, such as would be seen at the constricted neck of a budding virus (Fig. 4a, 
M2AH no AmphI).

M2AH is a canonical member of a family of AH-mediated membrane scission proteins.  M2AH 
has features in common with cationic antimicrobial curvature-generating helices5,23. We therefore hypothesized 

Figure 3.  M2AH membrane insertion induces lipid ordering and curvature (A) 2.5 mM POPC:POPG:Ch 
(PC/PG) or POPC:Ch (PC) LUVs were incubated for 1 hr with 25 μ​M Laurdan dye in the presence or absence 
of increasing amounts of M2AH peptide or with a single concentration of the control M2AH-Helix peptide. 
Laurdan fluorescence was then measured at 440 and 490 nm and the ratio was used to calculate the General 
Polarization (GP) of Laurdan. Values are shown as GP(LUVs+peptide) – GP(LUVs) and are the mean ±​ standard 
deviation of three independent repeats. Significant differences in GP between LUVs +​ peptide and LUVs 
were determined by the Student’s T-test (p <​ 0.05) and are indicated by *. (B) DSC curves of 10 mg/ml DSPC 
MLVs (blue), DSPC MLVs reconstituted with M2AH at a P:L ratio of 1:20 (red) or M2AH alone in solution 
(black) are plotted as the first differential with the main lipid phase transition temperature noted. (C) 5 mM of 
POPC:POPG:Ch LUVs were incubated for 1 hr with (D) 12.5 μ​M or 125 μ​M of M2AH peptide or with 125 μ​M 
of the control M2AH-Helix peptide before negative staining and TEM visualization. Scale bars indicate 100 nm.
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that the M2AH may be part of a larger class of AH domains that mediate membrane scission. Searching for 
peptides with homology to M2AH did not reveal any close sequence homologues, however, analysis of the AH 
itself reveals certain identifiable characteristics. Based on bioinformatic analysis, M2AH is 16 amino acids long, 
has a hydrophobicity of 0.431, a hydrophobic moment of 0.493, a net charge of +​ 4 and a near-even proportion 
of polar and hydrophobic residues (Fig. 5a). Using these criteria, we analyzed proteins implicated in cellular 
budding events and identified similar AHs in Arf1, EndophilinA3, Epsin1 and CHMP4b (Fig. 5a). Previous stud-
ies have implicated these AHs in a variety of vesicle budding and scission events3,9,10,12. We analyzed the CD 
spectra of these AHs and found that they are unstructured in solution, with the exception of Epsin1, which is a 
partially-structured α​-helix in solution (Fig. 5b). Upon membrane binding, all peptides except CHMP4b formed 
α​-helices (Fig. 5b).

Interestingly, insertion of Arf1, EndophilinA3 and Epsin1 AHs into a lipid bilayer increased Laurdan GP val-
ues (Fig. 5c) and lipid Tm transition temperatures (Fig. 5d), suggesting that these AHs can cause lipid ordering 
similar to M2AH. Additionally, these AHs enhanced positive membrane curvature, as demonstrated by the for-
mation of membrane blebs and tubules from LUVs (Fig. 5e). CHMP4b did not alter Laurdan GP, slightly affected 
lipid Tm and did not alter LUV morphology (Fig. 5c–e), consistent with its inability to form an α​-helix. To test 
whether these AHs can also mediate the scission of constricted membrane necks, we assayed for membrane 
scission using Amphiphysin-I-scaffolded SUPER Templates. Both Arf1 and Epsin1 peptides were able to cause 
significant vesicle release, similar to the M2AH peptide, whereas scission was not observed with the CHMP4b 
peptide (Fig. 5f). The EndophilinA3 peptide also did not cause scission in this assay, consistent with previous 

Figure 4.  M2AH causes membrane scission on pre-constricted necks. DOPC:DOPS:PIP2:RhoPE-containing 
SUPER templates were tubulated with the addition of 0.5 μ​M Amphiphysin-I (where indicated) and membrane 
scission was observed after 30 min incubation in the presence or absence of 25 μ​M M2AH peptide. (A) The 
resulting supernatant was analyzed for released fluorescent lipid (RhoPE released into the supernatant as 
% of total RhoPE fluorescence of SUPER templates), shown as mean ±​ SD for three independent repeats 
performed in duplicate. Dashed red line indicates the level of background lipid release. Significant difference 
from background (None: no Amphiphysin-I or peptide) was determined by the Student’s T-test (p <​ 0.05) 
and is indicated by *. (B) The membrane remodeling events were observed using fluorescence microscopy. 
Amphiphysin-I causes tubulation of SUPER templates and addition of M2AH leads to release of lipid vesicles 
(seen as spots). Images are 35 μ​m square and represented as inverted colors.
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Figure 5.  Cellular AHs induce lipid ordering and positive membrane curvature (A) Biophysical properties of 
M2AH and the human Arf1, CHMP4b EndophilinA3 and Epsin1 AHs were calculated using HeliQuest and 
E(z)3D53,54. (B) Secondary structure was estimated by CD for 250 μ​M of the indicated peptide in the presence 
or absence of 5 mM POPC:POPG:Ch LUVs, normalized to M2AH-bound LUVs as in Fig. 2b. (C) Changes in 
Laurdan GP values were calculated from peptide-bound LUVs as in Fig. 3a. Significant difference from LUVs-
only was determined by the Student’s T-test (p <​ 0.05) and is indicated by *. (D) DSC curves of DSPC MLVs 
or DSPC MLVs reconstituted with the indicated peptides was performed as in Fig. 3b. (E) TEM analysis of 
POPC:POPG:Ch LUVs was performed using the indicated peptides as in Fig. 3c,d. Arrows indicate membrane 
blebs. Scale bars indicate 100 nm. (F) DOPC:DOPS:PIP2:RhoPE-containing SUPER templates were tubulated 
with the addition of 0.5 μ​M Amphiphysin-I and membrane scission was observed after 30 min incubation in 
the presence or absence of 25 μ​M of the indicated peptide. The resulting supernatant was analyzed for released 
fluorescent lipid (RhoPE released into the supernatant as % of total RhoPE fluorescence of SUPER templates, 
shown as mean ±​ SD for three independent repeats performed in duplicate). Dashed red line indicates the level 
of background lipid release. Significant difference from background was determined by the Student’s T-test 
(p <​ 0.05) and is indicated by *. See also Figure S8.
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reports showing that Endophilin-mediated scission is dynamin dependent24. These results suggest that AHs of 
Arf1, EndophilinA3 and Epsin1 may be functionally analogous to M2AH, and together they may represent a 
family of scission factors.

Discussion
Many different AHs have been implicated in membrane scission events, though the molecular mechanisms by 
which these small motifs accomplish scission are often unknown. Here we identify a group of AH-containing scis-
sion proteins that appear to function through a similar biophysical mechanism, including Arf1, Epsin1 and the 
influenza virus M2 protein. The M2AH region is normally unstructured, but rapidly forms a membrane-parallel 
α​-helix upon contact with membranes (Fig. 1). This binding does not require charged interactions and is medi-
ated by hydrophobic interactions between the lipid tails and several bulky hydrophobic residues on one face of the 
AH (Fig. 2). Upon binding, M2AH inserts deeply into the bilayer, below the lipid head groups, where it induces 
lipid ordering and possibly the formation of an ordered lipid domain (Fig. 3). Membrane insertion then causes 
the induction of positive membrane curvature (Fig. 3c,d), leading to scission of constricted membrane necks 
(Fig. 4).

Influenza virus budding occurs at defined lipid raft domains on the plasma membrane of infected cells25. Thus, 
the budding neck can be thought of as the lipid phase boundary between the viral membrane and the bulk plasma 
membrane. As such, lipid phase boundaries are under considerable strain, and lipid phase segregation can be 
sufficient to cause budding in artificial membrane systems, though it is unclear if phase segregation is sufficient 
to cause budding in vivo26–28. Thus, the membrane neck shows existing constriction and strain arising from the 
scaffolding and lipid phase segregation that occur as a part of the budding process. This results in a strained and 
constricted neck with a diameter of 25.97 ±​ 11.25 nm (calculated from TEM images of stalled buds formed during 
a Δ​M2 influenza virus infection)13. However, the scaffolding and phase segregation alone are not sufficient to 
cause membrane scission in the absence of M2AH13, nor is the M2AH capable of causing membrane scission in 
the absence of a constricted neck (Fig. 4, compare M2AH with M2AH no AmphI).

A constricted neck is shaped as a catenoid and has negative Gaussian curvature (NGC) that can be quantified 
as the variable K. It has been previously shown that the M2 protein can induce NGC in membranes of K = −​
0.0403 nm−2 19. Given that K(z) =​ −​sech(z/c)4/c2, where 2c is the diameter of the midpoint of the neck at z = 0, it is 
possible to determine the NGC of a constricted membrane neck by solving for K = −​1/c2. The Δ​M2 virus has a 
membrane neck of 25.97 nm, giving K = −0.00593 nm−2. Adding the K values for the Δ​M2 membrane neck with 
that of the M2 protein gives K = −0.04623 nm−2, yielding a new membrane neck diameter of 4.67 nm. This calcu-
lation assumes similar bending rigidity between the experimental SUVs used by Schmidt et al. and the membrane 
neck of a budding virus, as such it represents only an estimation of the constricting capacity of the M2 protein. 
However, this suggests that M2AH-induction of membrane curvature on pre-constricted necks may be sufficient 
to reduce the neck diameter to below 5 nm. It has been estimated that spontaneous membrane scission can occur 
when the bilayer is constricted below 5 nm29. Thus, the combination of scaffolding-induced constriction, coupled 
with curvature induction by the M2 protein may be sufficient to cause membrane scission. Furthermore, this 
calculation may underestimate the amount of curvature generated by the M2 protein in vivo. Insertion of M2AH 
into a bilayer causes increases in lipid order (Fig. 3a,b). Several proteins that mediate the analogous process of 
membrane fusion have also been found to induce lipid ordering and membrane strain, a property thought to 
significantly enhance fusion30–32. Increasing lipid order at the neck would put further strain on the constricted, 
phase-separated membrane neck, enabling additional constriction and causing membrane scission (Fig. 4). Thus, 
M2AH causes membrane scission by exploiting the underlying biophysical properties of lipid bilayers.

Our data show that AHs from Arf1 and Epsin1 may also function in a similar manner to M2AH (Fig. 5), 
suggesting that influenza virus budding, endocytosis and COP vesicle budding may share a similar mechanistic 
basis for the completion of membrane scission. Both Arf1 and Epsin1 have already been shown to play important 
roles in membrane scission during COP vesicle budding9, actin-mediated endocytosis33 and clathrin-mediated 
endocytosis3, though Dynamin is also essential for the completion of clathrin-mediated endocytosis34. The Epsin1 
AH is located within the larger Epsin N-terminal homology (ENTH) domain, which can tubulate liposomes7, 
similar to the full-length Arf1 protein35 and M2AH (Fig. 5c). Interestingly, membrane insertion of the Arf1 and 
Epsin1 AHs is specifically regulated by GTP binding35,36 and PI(4,5)P2 binding, respectively37 in the context of the 
full-length proteins; however, when expressed alone, the Arf1 and Epsin1 AH domains can insert into mem-
branes in the absence of their specific triggers (Fig. 5). This suggests that the underlying biophysical mechanism 
by which these AHs facilitate membrane scission is similar, though during in vivo budding their activity may be 
subjected to more complex regulation.

Endophilins contain AHs within N-BAR domains, cause tubulation of liposomes and have recently been 
shown to be involved in membrane scission during clathrin-independent endocytosis3,10,11,38. Our results show 
that whilst EnodphilinA3 is capable of altering membrane curvature and fluidity it does not cause scission in 
the specific conditions tested, consistent with the reported dependency on dynamin for scission24. This suggests 
that N-BAR-domain containing proteins such as EndophilinA3 and Amphiphysin-I may scaffold and constrict 
budding necks, facilitating, rather than causing, membrane scission (Fig. 5). Similarly, CHMP4b is essential for 
ESCRT-dependent MVB budding and scission12, though the protein does not cause liposome tubulation. It is 
thought that the AH functions as a protein anchor and curvature sensor rather than as a membrane deformer39. 
These results are consistent with our observations that CHMP4b does not form a membrane scission-competent 
AH (Fig. 5); thus, ESCRT-mediated membrane scission may proceed through a fundamentally different mech-
anism. However, just as with influenza virus budding, ESCRT-mediated membrane scission and COP budding 
appear to occur at membrane phase boundaries and may involve the modulation of line tension by the formation 
of specific lipid domains40,41. Thus, we speculate that membrane scission may require several alterations of mem-
brane properties, including: the induction of positive curvature, the modification of existing line tension and the 
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creation of new lipid ordering. Each of these modifications would further constrict a pre-constricted neck while 
placing the membrane under increasing strain, enabling spontaneous membrane scission to occur.

We propose that the M2AH domain is a canonical member of a class of AH domains that mediate membrane 
scission by modifying basic membrane properties. We suggest that the AHs within Arf1, Epsin1 and possibly 
EndophilinA3 are members of this novel family, and anticipate that future research will identify homologous 
domains in many other proteins that regulate membrane scission in a wide variety of essential budding processes.

Materials and Methods
All peptides were synthesized by Biomatik (DE, USA) at 98% purity, with TFA removed. Peptide sequences 
included N-terminal acylation and C-terminal amidation where indicated. Sequences were: M2AH (47–62 of 
A/Udorn/72) Ac-FFKSITRFFEHGLKRG-Am; M2AH-Scrambled (randomized version of the M2AH)13; Arf1 
(1–18) MGNIFANLFKGLFGKKEM-Am; CHMP4b (1–13) MSVFGKLFGAGGG-Am; Endophilin A3 (1–21) 
MSVAGLKKQFHKASQL FSEKI-Am; Epsin1 (1–17) MSTSSLRRQMKNIVHNY-Am. Fluorescent M2AH pep-
tide incorporates FITC conjugated to K60. Lipids were dissolved in chloroform and include: Cholesterol (Ch), 
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS), 
L-α​-phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lis-
samine rhodamine B sulfonyl) (RhPE), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1-palmitoyl-
2-oleoyl-sn-glycero-3-phosphate (POPA), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 
1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-1-rac-glycerol (POPG), 1-palmitoyl-2-oleoyl-sn-glycero-
3-phospho-L-serine (POPS) (Avanti Polar Lipids, AL, USA).

Large Unilamellar Vesicles.  LUVs were made by extrusion. Lipid solutions containing 12.5 μ​mole of lipids 
were made using a 4:1:0.025 molar ratio of POPC:POPG:Ch or a 5:0.025 molar ratio of POPC:Ch, expect where 
indicated and as previously described13. In brief, the lipid solution was dried under a stream of argon gas, resid-
ual chloroform was then removed by storage for 1 hr under vacuum. Lipid films were then dissolved in 500 μ​l  
of potassium buffer (10 mM K2HPO4, 50 mM K2SO4, 5 mM MOPS, pH 7.4) and hydrated for 30 min at 5 °C 
above the phase transition temperature of the lipid mix with vortex mixing every 5 min. Lipid solutions were 
then freeze-thawed 15 times transferring between a dry ice ethanol bath and a water bath at hydration temper-
atures before extrusion using an Avanti Mini-Extruder, 26 times with 100 nm pore-size membranes (Whatman 
Nuclepore Track-Etched Membranes, GE Healthcare Bio-Sciences, PA, USA) at hydration temperatures. LUVs 
were stored at 4 °C and used within one week.

Dynamic Light Scattering.  Vesicle size was measured using the Nano-ZS Zetasizer (Malvern Instruments, 
Malvern, UK). 4 μ​l of vesicles were mixed with 32 μ​l of water, measurements were made using Zen40 micro 
cuvettes (Malvern Instruments) at 25 °C.

Circular Dichroism.  CD experiments were performed using both the nitrogen-flushed Module B end-station 
spectrophotometer at B23 Synchrotron Radiation Circular Dichroism (SRCD) Beamline at the Diamond Light 
Source42–44 and a JASCO J-715 spectropolarimeter (Jasco, MD, USA). For SRCD measurements, the M2AH 
peptide or a scrambled control peptide was diluted in water to a final concentration of 500 μ​M. Where indi-
cated the M2AH peptide was mixed with a 5 mM solution of 100 nm POPC:POPG:Cholesterol LUVs (4:1:0.025 
molar ratio), at a final concentration of 500 μ​M. SRCD spectra were acquired using an integration time of 2 s, a 
demountable cell of 0.005 cm pathlength and 1.2 nm bandwidth at 20 °C. Spectra were normalized using average 
amino acid molecular weight of 113 and the results processed using CDApps45 and OriginLab (Origin Labs, MA, 
USA). Secondary structure estimation (SSE) from CD spectra was carried out using CDApps using Continll 
algorithm46.

For measurements on the JASCO J-715, 5 mM of lipid vesicles were mixed with 250 μ​M of the indicated pep-
tide and diluted with water to a final volume of 300 μ​l. Blank readings were made using water or 5 mM lipid 
vesicles in water, for measurement of the peptide in the solution and the peptide with lipids respectively. All meas-
urements were done in quadruplicate using 1mm path length glass cuvettes (Starna Scientific, Essex, UK) at 25 °C. 
Respective blank measurements were subtracted from all samples and the percentage of α​-helix was calculated 
using K2D3 at http://k2d3.ogic.ca/47.

Nuclear Magnetic Resonance Spectroscopy.  M2AH structures were examined using a 500 μ​M solu-
tion of the 16aa A/Udorn/72 M2AH domain in 90% H2O/10% D2O with 10 μ​M POPC:POPG:Cholesterol LUVs, 
where indicated. Samples were placed in 3mm glass tubes (Shigemi, PA, USA) and data was collected using a 14.1 T 
(600 MHz 1H) Bruker (MA, USA) Avance III NMR spectrometer with a QCI-F cryoprobe at 25 °C. Total corre-
lation spectroscopy (TOCSY) and Nuclear Overhouser effect spectroscopy (NOESY) data sets were obtained in 
a two-dimensional (2D) NMR experiment with assignments generated using CcpNmr Analysis48 and structural 
ensembles calculated using CNS49. 1H chemical shifts and through-space structural assignments were acquired from 
TOCSY and NOESY data sets. Dihedral angles were estimated using the DANGLE module of CcpNmr Analysis50. 
Hydrogen bonds were estimated using MOLMOL51 by analysing the calculated structure and distance between 
oxygen and nitrogen-bound hydrogen atoms and were added for the pairs of atoms that were less than 3 Å apart. 
The final ensemble was energy minimised in a water environment using YASARA (YASARA Biosciences, Vienna, 
Austria). The precision and quality of the calculated structures was checked by Ramachandran analysis using 
PROCHECK52.

STD-NMR studies were performed as above with 3-9-19 WATERGATE and Gaussian STD excitation pulses 
of 20ms duration and a γ​B1 of 140 Hz that were applied for 2 s at −​3ppm and −​30ppm for saturation and con-
trol respectively. 1H T1 relaxation time constants were obtained using an inversion-recovery sequence, including 

http://k2d3.ogic.ca/
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3-9-19 WATERGATE. To obtain T1 inversion-recovery 180⁰-τ​-90⁰delays in 0.1 s steps between 0.2 and 0.1 s 
were used. Intensities for STD and T1 relaxation experiments were obtained using Spectrus Processor (ACD 
Laboratories, Ontario, Canada).

Isothermal Titration Calorimetry.  ITC was performed on a MicroCal VP-ITC (Malvern) with the cell 
filled with 50 μ​M M2AH peptide, buffer matched to the LUVs, and 20 ×​ 13 μ​l injections of 5 mM lipid vesicles. 
Peak integration, curve fitting and data analysis was performed using MicroCal Origin software (Malvern) as per 
the manufacturers recommendations.

Peptide Binding Assay.  100 μ​M of M2AH FITC labeled peptide was mixed with 2.5 mM of the indicated 
lipid vesicles and diluted with water to a final volume of 50 μ​l. Controls were made with 100 μ​M of M2AH 
FITC labeled peptide and water. Samples were incubated for 1 hr at room temperature in the dark to allow for 
peptide-membrane binding. After incubation, unbound peptide was removed by washing twice through 100 kDa 
Amicon Ultra centrifugal filters (Merck Millipore, Watford, UK). Retained fluorescence was determined on the 
FLUOstart Omega fluoresecent plate reader (BMG Labtech, Bucks, UK) using a 492 nm excitation filter and a 
520 nm band pass emission filter. All data was blank corrected before processing and all experiments were per-
formed in triplicate.

Laurdan Assay.  2.5 mM of lipid vesicles were mixed with 25 μ​M Laurdan dye (Life Technologies, Paisley, 
UK) and 200 μ​M of peptide, where indicated, in a total volume of 50 μ​l. Fluorescence was measured on a Cary 
Eclipse fluorescence spectrophotometer (Agilent Technologies, CA, USA) using a 355 nm excitation filter record-
ing fluorescence emissions at 440 and 490 nm. All experiments were performed in triplicate. Laurdan GP was 
calculated using equation: GP =​ (I440−​I490)/(I440 +​ I490).

Electron Microscopy.  For analysis of LUVs, 5 mM solutions of lipid vesicles were incubated with 125 μ​M of 
the indicated peptide for 1 hr at room temperature and stained with uranyl acetate before imaging. Samples were 
imaged on a JEOL 1230 (Tokyo, Japan) electron microscope using a Gatan digital camera (CA, USA). Post image 
processing was limited to cropping and equal adjustment of image levels.

Differential Scanning Calorimetry.  Multilamellar vesicles (MLVs) were made by drying 13 mmole 
of DSPC lipid under a stream of argon gas, followed by incubation under vacuum for 1 hr to remove residual 
chloroform. Lipid films were then reconstituted in 1 mM Hepes buffer (pH 7.2) containing 650 μ​M of the indi-
cated peptide, giving a 10 mg/ml lipid solution and a peptide : lipid ratio of 1:20. MLVs were formed following 
30 min of hydration at 60 °C with regular vortexing. Samples were then analyzed on a Phox 200PC DSC (Netzsch, 
Germany) using sealed aluminum crucibles and under N2 gas. All runs were corrected to a baseline run using 
empty crucibles. Samples were scanned from 35 °C −​ 75 °C at a rate of 10 K/min with 2 min isothermal holds at 
the end of each run. All samples were scanned four times, with the first scan discarded. Subsequent scans were 
compared to ensure consistency in the identified lipid Tm. After each sample run, crucibles were weighed to 
ensure no weight loss, and thus no sample loss, had occurred. Netzsch Proteus Analysis software was used to 
graph the first differential of the data and to identify Tm peaks through the automatic peak calling function near 
the 55 °C Tm of DSPC.

SUPER Templates.  The SUPER template assay for membrane fission was performed as previously described4 
with few modifications. Briefly, 100 nm liposomes (DOPC:DOPS:PIP2:RhPE at a molar ratio of 79:15:5:1) were 
prepared in water and incubated with 2.5 μ​m silicon microspheres in 350 mM NaCl. Extensively washed, lipid 
coated beads were then incubated with 0.5 μ​M Amphiphysin and/or 25 μ​M M2AH, where indicated, (in 20 mM 
Hepes, 150 mM KCl, pH 7.5) for 30 min and the supernatant was observed for released vesicles via either flu-
orescence measurement in a plate reader setup (compared to total lipids determined by dissolving the SUPER 
Templates in 0.1% Triton X-100) or visualization using an inverted Olympus IX-70 microscope with a 100X, 1.35 
NA oil-immersion objective. Data are the average of 3 independent trails, each performed in duplicate.
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