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Abstract The octagon abstract domain is a widely used numeric abstract domain expressing
relational information between variables whilst being both computationally efficient and
simple to implement. Each element of the domain is a system of constraints where each
constraint takes the restricted form± xi ± x j ≤ c. A key family of operations for the octagon
domain are closure algorithms, which check satisfiability and provide a normal form for
octagonal constraint systems. We present new quadratic incremental algorithms for closure,
strong closure and integer closure and proofs of their correctness. We highlight the benefits
and measure the performance of these new algorithms.

Keywords Abstract interpretation · Octagons · Incremental closure

1 Introduction

The view that simplicity is a virtue in competing scientific theories and that, other things
being equal, simpler theories should be preferred to more complex ones, is widely advocated
by scientists and engineers. Preferences for simpler theories are thought to have played a role
in many episodes in science, and the field of abstract domain design is no exception. Abstract
domains that have enduring appeal are typically those that are conceptually simple. Of all the
weakly relational domains, for example, octagons [22] are arguably the most popular. One
might claim that octagons are more elegant than, say, the two variable per inequality (TVPI)
domain [32], and certainly they are easier to understand and implement. Yet one important
operation for this popular domain has remained elusive: incremental closure.
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Inequalities in the octagon domain take the restricted form of ± xi ± x j ≤ c, where xi and
x j are variables and c is a numerical constant. Difference bound matrices (DBMs) can be
adapted to represent systems of octagonal constraints, for which a key family of operations
is closure. Closure, in its various guises, provides normal forms for DBMs, allowing satisfi-
ability to be observed and equality to be checked. Closure also underpins operations such as
join and projection (the forget operator), hence the concept of closure is central to the design
of the whole domain. Closure uses shortest path algorithms, such as Floyd-Warshall [13,36],
to check for satisfiability. However, octagons can encode unary constraints, which require a
stronger notion of closure, known as strong closure, to derive a normal form. Moreover, a
refinement to strong closure, called integer closure, is required to detect whether octagonal
constraints have an integral solution.

A frequent use-case in program analysis is adding a single new octagonal constraint to a
closedDBMand then closing the augmented system. This is incremental closure. Incremental
closure not only arises when an octagon for one line is adjusted to obtain an octagon for the
next: incremental closure also occurs in integer wrapping [31] which involves repeatedly
partitioning a space into two (by adding a single constraint), closing and then performing
translation. Incremental closure is useful in access-based localisation [25], which analyses
each procedure using abstractions defined over only those variables it accesses. One way to
adapt localisation to octagons [5] is to introduce fresh variables, called anchors, that maintain
the relationships which hold when a procedure is entered. One anchor is introduced for each
variable that is accessed within the procedure. The body of the callee is analysed to capture
how a variable changes relative to its anchor, and then this change is propagated into the
caller. The abstraction of the callee is amalgamated with that of the caller by replacing
the variables in the caller abstraction with their anchors, imposing the constraints from the
callee abstraction, and then eliminating the anchors. If there are only a few non-redundant
constraints in the callee [2] then incremental closure is attractive for combining caller and
callee abstractions. Nevertheless, the experimental results focus on the use-case of adding a
single constraint encountered on one line to an octagon that summaries the previous line.

In SMT solving, difference logic [24] is widely supported, suggesting that an incremental
solver for the theory of octagons [28] would also be useful. Furthermore afield in constraint
solving, relational and mixed integer-real abstract domains show promise for enhancing con-
straint solvers [26] and octagons have been deployed for solving continuous constraints [27].
In this context, a split operator is used to divide the solution space into two sub-spaces by
adding opposing constraints such as xi − x j ≤ c and x j − xi ≤ −c. Splitting is repeatedly
applied until a set of octagons is derived that cover the entire solution space, within a given
precision tolerance. Propagation is applied after every split, which suggests incremental clo-
sure, and a scheme in which incremental closure is applied whenever a propagator updates a
variable. This use-case is also examined experimentally.

Closing an augmented DBM is less general than closing an arbitrary DBM and there-
fore one would expect incremental closure to be both efficient and conceptually simple.
However the running time of the algorithm originally proposed for incremental closure [21,
Section 4.3.4] is cubic in the number of variables (see Sect. 4.1 for an explanation of the
impact of row and column swaps). The algorithms presented in this paper stem from the
desire to understand incremental closure by providing correctness proofs that would, in turn,
provide a pathway to mechanisation. Yet the act of restructuring the proofs for [10], exposed
a degenerate form of propagation and revealed fresh algorithmic insights. The resulting fam-
ily of closure algorithms includes: a new algorithm for increment closure; a new algorithm
for strong closure that performs strengthening on-the-fly, rather than a separate pass over
the whole DBM; a further refinement to strong closure applicable when the input DBM is
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strongly closed; and finally a new incremental closure algorithm for integer DBMs. All algo-
rithms significantly outperform the incremental algorithm ofMiné [21, Section 4.3.4], whilst
entirely recovering closure, as is demonstrated from their deployment in an off-the-shelf
abstract interpretation and a continuous constraint solver. The dramatic speedups underscore
the importance of this domain operation.

1.1 Contributions

We summarise the contributions of our work as follows:

– Using new insights, we present new incremental algorithms for closure, strong closure
and integer closure (Sects. 4, 5 and 6 respectively). We show how code hoisting can
be applied to incremental closure and how strength reduction can be applied to strong
incremental closure.

– We prove our algorithms correct and show how proofs for existing closure algorithms can
be simplified, paving the way for mechanised formalisation. (To keep the length of the
papermanageable, the proofs are relegated to “AppendixA”. The exception is Lemma 6.1
since the argument is itself a significant conceptual advance, hence is included in the body
of the paper.)

– We give detailed proofs for in-place versions of our algorithms (Sect. 7).
– We implement these new algorithms which show significant performance improvements

over existing closure algorithms in real-world setting (Sect. 8).

The paper is structured as follows: Sect. 2 contextualises this study and Sect. 3 provides
the necessary preliminaries. Section 4 critiques the incremental algorithm of Miné, intro-
duces a new incremental quadratic algorithm. Section 5 shows how to recover strong closure
incrementally and do so, again, in a single DBM pass. Section 6 explains how to extend
incrementally to integer closure. Section 7 suggest various optimisations to the incremental
algorithms including in-place update. Experimental results are presented in Sects. 8 and 9
concludes.

2 Related work

Since the thesis of Miné [21] and his subsequent magnum opus [22], algorithms for manipu-
lating octagons, and even their representations, have continued to evolve. Early improvements
showed how strengthening, the act of combining pairs of unary octagon constraints to improve
binary octagon constraints, need not be applied repeatedly, but instead can be left to a single
post-processing step [2]. This result,whichwas justifiedby an inventive correctness argument,
led to a performance improvement of approximately 20% [2]. Showing that integer octagonal
constraints admit polynomial satisfiability represented another significant advance [1], espe-
cially since dropping either the two variable or unary coefficient property makes the problem
NP-complete [19].

Octagonal representations have come under recent scrutiny [18, Chapter 8]. In Coq, it is
natural to realise DBMs as map from pairs of indices (represented as bit sequences) to matrix
entries. Look-up becomes logarithmic in the dimension of the DBM, but the DBM itself can
be sparse. Strengthening, which combine bounds on different variables, can populate a DBM
with entries for binary constraints.Dropping strengthening thus improves sparsity, albeit at the
cost of sacrificing a canonical representation. Join can be recovered by combining bounds dur-
ing join itself, in effect, strengthening on-the-fly. Quite independently, sparse representations
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have recently been developed for differences [14]. Further field, O(mn) decision procedures
have been proposed for unit two variable per inequality (UTVPI) constraints [20] where m
and n are the number of constraints and variables respectively. Subsequently an incremental
version was proposed for UTVPI [30] with time complexity O(m + n log(n) + p) where
p is the number of constraints tightened by the additional inequality. Certifying algorithms
have also been devised for UTVPI constraints [34], supported by a graphical representation
of these constraints, which aids the extraction of a certificate for validating unsatisfiability.
DBMs, however, offer additional support for other operations that arise in program analysis
such as join and projection. Moreover, there is no reason why each DBM entry could not be
augmented with a pair of row and column coordinates which records how it was updated,
allowing a proof for unsatisfiability to be extracted from a negative diagonal entry.

Other recent work [33] has proposed factoring octagons into independent sub-systems,
which reduces the size of the DBM. Domain operations are applied point-wise to the inde-
pendent sub-matrices of the DBM, echoing [15]. The work also shows how the regular access
patterns of DBMs enable vectorisation, the step beyond which is harnessing general purpose
GPUs [3]. Packs [8] have also been proposed as a factoring device in which the set of pro-
grams variables is covered by a sets of variables called packs (or clusters). An octagon is
computed for each pack to abstract the DBM as a set of low-dimensional DBMs. Recent
work has even explored how packs can be introduced automatically using preanalysis and
machine learning [16].

The alternative to simplifying the DBM representation is to assume that the DBM satisfies
some prerequisites so that a domain operation need not be applied in full generality.Miné [21]
showed that an incremental version of the closure could be derived by observing that a new
constraint is independent of the first c variables of the DBM. This paper stems from an
earlier work [10] that extends an incremental algorithm for disjunctive spatial constraints
which originates in planning [4]. The work was motivated by the desire to augment [10]
with conceptually simple correctness proofs, that revealed a deficiency in the propagation
algorithm of [10] which prompted a more thorough study of incrementality.

Further afield, closure of octagons echos path consistency in temporal constraint net-
works [12],which also uses the Floyd-Warshall algorithm to tighten constraints. Furthermore,
IncStrongClose, which processes key entries (staggered diagonal entries) first, tallies with
how extremal values are first processed in constraint propagation [7]. Difference constraints
can be generalised to Allen constraints [29] to express set theoretic properties, such as over-
lap. Solving Allen constraints is also polynomial, but each variable can be updated many
times when calculating the fixpoint. By way of contrast, the restricted form of octagons
means that each element in the DBM is updated at most once, which is key to the efficiency
of incremental closure.

3 Preliminaries

This section serves as a self-contained introduction to the definitions and concepts required in
subsequent sections. Formore details, we invite the reader to consult both the seminal [21,22]
and subsequent [2,10] works on the octagon abstract domain.

3.1 The octagon domain and its representation

An octagonal constraint is a two variable inequality of the form ± xi ± x j ≤ d where xi
and x j are variables and d is a constant. An octagon is a set of points satisfying a system of
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octagonal constraints. The octagon domain is the set of all octagons that can be defined over
the variables x0, . . . , xn−1.

Implementations of the octagon domain reuse the machinery developed for solving dif-
ference constraints of the form xi − x j ≤ d . Miné [22] showed how to translate octagonal
constraints to difference constraints over an extended set of variables x ′

0, . . . , x
′
2n−1. A single

octagonal constraint translates into a conjunction of one or more difference constraints as
follows:

xi − x j ≤ d � x ′
2i − x ′

2 j ≤ d ∧ x ′
2 j+1 − x ′

2i+1 ≤ d
xi + x j ≤ d � x ′

2i − x ′
2 j+1 ≤ d ∧ x ′

2 j − x ′
2i+1 ≤ d

−xi − x j ≤ d � x ′
2i+1 − x ′

2 j ≤ d ∧ x ′
2 j+1 − x ′

2i ≤ d
xi ≤ d � x ′

2i − x ′
2i+1 ≤ 2d

−xi ≤ d � x ′
2i+1 − x ′

2i ≤ 2d

A common representation for difference constraints is a difference bound matrix (DBM)
which is a square matrix of dimension n × n, where n is the number of variables in the
difference system. The value of the entry d = mi, j represents the constant d of the inequality
xi − x j ≤ d where the indices i, j ∈ {0, . . . , n − 1}. An octagonal constraint system over
n variables translates to a difference constraint system over 2n variables, hence a DBM
representing an octagon has dimension 2n × 2n.

Example 1 Figure 1 serves as an example of how an octagon translates to a system of differ-
ences. The entries of the upper DBMcorrespond to the constants in the difference constraints.
Note how differences which are (syntactically) absent from the system lead to entries which
take a symbolic value of ∞. Observe too how that DBM represents an adjacency matrix for
the illustrated graph where the weight of a directed edge abuts its arrow.

The interpretation of a DBM representing an octagon is different to a DBM representing
difference constraints. Consequently there are two concretisations for DBMs: one for inter-
preting differences and another for interpreting octagons, although the latter is defined in
terms of the former:

Definition 3.1 Concretisation for rational (Qn) solutions:

γdiff(m) = {〈v0, . . . , vn−1〉 ∈ Qn | ∀i, j.vi − v j ≤ mi, j }
γoct(m) = {〈v0, . . . , vn−1〉 ∈ Qn | 〈v0,−v0, . . . , vn−1,−vn−1〉 ∈ γdiff(m)}

where the concretisation for integer (Zn) solutions can be defined analogously.

Example 2 Since octagonal inequalities are modelled as two related differences, the upper
DBM contains duplicated entries, for instance,m1,2 = m3,0.

Operations on a DBM representing an octagon must maintain equality between the two
entries that share the same constant of an octagonal inequality. This requirement leads to the
definition of coherence:

Definition 3.2 (Coherence) A DBM m is coherent iff ∀i. j.mi, j = mj̄ ,ı̄ where ı̄ = i + 1 if
i is even and i − 1 otherwise.

Example 3 For the upper DBM observe m0,3 = 6 = m2,1 = m3̄,0̄. Coherence holds in a
degenerate way for unary inequalities, notem2,3 = 4 = m2,3 = m3̄,2̄.
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The bar operation can be realised without a branch using ı̄ = i xor 1 [21, Section 4.2.2].
Care should be taken to preserve coherence when manipulating DBMs, either by carefully
designing algorithms or by using a data structure that enforces coherence [21, Section 4.5].
For clarity, we abstract away from the question of how to represent a DBM by present-
ing all algorithms for square matrices, rather than triangular matrices as introduced in [21,
Section 4.5]. One final property is necessary for satisfiability:

Definition 3.3 (Consistency) A DBM m is consistent iff ∀i.mi,i ≥ 0.

Intuitively, consistencymeans that there is not negative cycle in the DBM,which corresponds
to unsatisfiability [6].

3.2 Definitions of closure

Closure properties define canonical representations of DBMs, and can decide satisfiability
and support operations such as join and projection. Bellman [6] showed that the satisfiability
of a difference system can be decided using shortest path algorithms on a graph representing
the differences. If the graph contains a negative cycle (a cycle whose edge weights sum to
a negative value) then the difference system is unsatisfiable. The same applies for DBMs
representing octagons. Closure propagates all the implicit (entailed) constraints in a system,
leaving each entry in the DBM with the sharpest possible constraint entailed between the
variables. Closure is formally defined below:

Definition 3.4 (Closure) A DBM m is closed iff

– ∀i.mi,i = 0
– ∀i, j, k.mi, j ≤ mi,k + mk, j

Example 4 The top right DBM in Fig. 1 is not closed. By running an all-pairs shortest path
algorithm we get the following DBM:

⎡
⎢⎢⎣

x ′
0 x ′

1 x ′
2 x ′

3

x ′
0 11 6 11 6
x ′
1 6 11 5 9
x ′
2 9 6 11 4
x ′
3 5 11 16 11

⎤
⎥⎥⎦

Notice that the diagonal values have non-negative elements implying that the constraint
system is satisfiable. Running shortest path closure algorithms propagates all constraints and

Fig. 1 Example of an octagonal system and its DBM representation
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Fig. 2 Intuition behind strong
closure: two closed graphs
representing the same octagon:
x ≤ 2 ∧ y ≤ 4

makes every explicit all constraints implied by the original system. Once satisfiability has
been established, we can set the diagonal values to zero to satisfy the definition of closure.

Closure is not enough to provide a canonical form for DBMs representing octagons. Miné
defined the notion of strong closure in [21,22] to do so:

Definition 3.5 (Strong closure) A DBM m is strongly closed iff

– m is closed
– ∀i, j.mi, j ≤ mi,ı̄/2 + mj̄ , j/2

The strong closure of DBM m can be computed by Str(m), the code for which is given
in Fig. 4. The algorithm propagates the property that if x ′

j − x ′̄
j ≤ c1 and x ′̄

ı − x ′
i ≤ c2

both hold then x ′
j − x ′

i ≤ (c1 + c2)/2 also holds. This sharpens the bound on the difference
x ′
j − x ′

i using the two unary constraints encoded by x ′
j − x ′̄

j ≤ c1 and x ′̄
ı − x ′

i ≤ c1, namely,
2x ′

j ≤ c1 and −2x ′
i ≤ c2. Note that this constraint propagation is not guaranteed to occur

with a shortest path algorithm since there is not necessarily a path from a mi,ı̄ and mj̄ , j .
An example in Fig. 2 shows such a situation: the two graphs represent the octagon, but a
shortest path algorithm will not propagate constraints on the left graph; hence strengthening
is needed to bring the two graphs to the same normal form. Strong closure yields a canonical
representation: there is a unique strongly closed DBM for any (non-empty) octagon [22].
Thus any semantically equivalent octagonal constraint systems are represented by the same
strongly closed DBM. Strengthening is the act of computing strong closure.

Example 5 The lower right DBM in Fig. 1 gives the strong closure of the upper right DBM.
Strengthening is performed after the shortest path algorithm.

For octagonal constraints over integers, the strong closure property may result in non-integer
values due to the division by two. The definition of strong closure for integer octagonal
constraints thus needs to be refined. If xi is integral then xi ≤ c tightens to xi ≤ �c�. Since
xi ≤ c translates to the difference x ′

2i − x ′
2i+1 ≤ 2c, tightening the unary constraint is

achieved by tightening the difference to x ′
2i − x ′

2i+1 ≤ 2�c/2�.
Definition 3.6 (Tight closure) A DBM m is tightly closed iff

– m is strongly closed
– ∀i.mi,ı̄ is even

For the integer case, a tightening step is required before strengthening. Tightening a closed
DBMresults in aweaker formof closure, calledweak closure. Strong closure can be recovered
from weak closure by strengthening [1]. Note, however, that we introduce the property for
completeness of exposition because our formalisation and proofs do not make use of this
notion.
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Fig. 3 High-level overview of closure algorithms for octagons

Definition 3.7 (Weak closure) A DBM m is weakly closed iff

– ∀i.mi,i = 0
– ∀i, j, k.mi,k + mk, j ≥ min(mi, j ,mi,ı̄/2 + mj̄ , j/2)

3.3 High-level overview

Figure 3 gives a high-level overviewof closure calculation. First a closure algorithm is applied
to a DBM. Next, consistency is checked by observing the diagonal has non-negative entries
indicating the octagon is satisfiable. If satisfiable, then the DBM is strengthened, resulting
in a strongly closed DBM. Note that consistency does not need to be checked again after
strengthening. The dashed lines in the figure show the alternative path taken for integer
problems: to ensure that the DBM entries are integral, a tightening step is applied which is
then followed by an integer consistency check and strengthening.

Figure 4 shows how this architecture can be instantiated with algorithms for non-
incremental strong closure. A Floyd-Warshall all-pairs shortest path algorithm [13,36] can
be applied to a DBM to compute closure, which is cubic in n. The check for consistency
involves a pass over the matrix diagonal to check for a strictly negative entry, as illustrated in
the figure. (Note that CheckConsistent resets a strictly positive diagonal entry to zero as
in [2,22], but the incremental algorithms presented in this paper never relax a zero diagonal
entry to a strictly positive value. Hence the reset is actually redundant for the incremental
algorithms that follow.) The consistency check is linear in n. Strong closure can be addition-
ally obtained by following closure with a single call to Str, the code for which is also listed
in the figure. This is quadratic in n.

4 Incremental closure

We are interested in the specific use case of adding a new octagonal constraint to an existing
closed octagon. Miné designed an incremental algorithm for this very task, which can be
refactored into computing closure and then separately strengthening, as depicted in Fig. 3.
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Fig. 4 Non-incremental closure and strengthening

His incremental algorithm, and a refinement, are discussed in Sect. 4.1. Section 4.2 presents
our new incremental algorithm with improved performance.

4.1 Classical incremental closure

Miné designed an incremental algorithm based on the observation that a new constraint will
not affect all the variables of the octagon [21, Section 4.3.4]. Without loss of generality,
suppose the inequality x ′

a − x ′
b ≤ d is added to the DBM (unary constraints are supported

by putting b = ā). Adding x ′
a − x ′

b ≤ d implies that the equivalent constraint x ′̄
b
− x ′̄

a ≤ d is
added too, and the entriesma,b andmb̄,ā are updated to d to reflect this. Figure 5 presents a
version of the incremental algorithm of Miné, specialised for adding x ′

a − x ′
b ≤ d to a closed

DBM.The algorithm relies on the observation that updatingma,b andmb̄,ā will only (initially)
mutate the rows and columns for the x ′

a, x
′
b, x

′̄
a, x

′̄
b
variables. Put v = min(a, b, ā, b̄). Since

m was closed, despite the updates, it still follows that if k < v then mi, j ≤ mi,k + mk, j

for all 0 ≤ i < 2n and 0 ≤ j < 2n. This is the inductive property which is established
after the first v iterations of the outermost for loop of the standard Floyd-Warshall algorithm.
Therefore, to restore closure it only necessary to apply the remaining 2n − v iterations of
Floyd-Warshall, which leads to the algorithm of Fig. 5.

The incremental closure of Fig. 5 reduces the number of min operations from 8n3 to
(2n − v)4n2 (notwithstanding those in Str). Prior to the updates, one could conceivably
reconfigure theDBMby swapping rows and columns so that, say,a = 2n−4, ā = 2n−3, b =
2n − 2, b̄ = 2n − 1. Then v = 2n − 4 reducing incremental closure to 16n2. However, after
closure, the rows and columns would need to be swapped back to maintain a consistent
representation. Observe too that x ′

a − x ′
b ≤ d and x ′

e − x ′
f ≤ d can be added to the DBM

simultaneously by putting v = min(a, b, ā, b̄, e, f, ē, f̄ ) and then applying incremental
closure once.

4.2 Improved incremental closure

To give the intuition behind our new incremental closure algorithm, consider adding the
constraint x ′

a − x ′
b ≤ d and x ′̄

b
− x ′̄

a ≤ d to the closed DBM m. The four diagrams given
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Fig. 5 Incremental closure of
Miné

Fig. 6 Four ways to reduce the distance between x ′
i and x ′

j

in Fig. 6 illustrate how the path between variables x ′
i and x ′

j can be shortened. The distance
between x ′

i and x ′
j is c (mi, j = c), the distance between x ′

i and x ′
a is c1 (mi,a = c1), etc.

The wavy lines denote the new constraints x ′
a − x ′

b ≤ d and x ′̄
b

− x ′̄
a ≤ d and the heavy

lines indicate short-circuiting paths between x ′
i and x ′

j . The bottom left path of the figure
illustrates how the distance between x ′

i and x ′
a can be reduced from c1 by the x ′̄

b
− x ′̄

a ≤ d
constraint. The same path illustrates how to shorten the distance between x ′̄

a and x ′
j from c′

2
using the x ′

a − x ′
b ≤ d constraint. The bottom right path of the figure gives two symmetric

cases in which c′
1 and c2 are sharpened by the addition of x ′

a − x ′
b ≤ d and x ′̄

b
− x ′̄

a ≤ d
respectively. Note that we cannot have the two paths from x ′

i to x ′
a and from x ′

b to x ′
j both

shortened: at most one of them can change. The same holds for the two paths from x ′
i to x ′̄

b
and x ′̄

a to x ′
j . These extra paths lead to the following strategy for updatingm′

i, j :
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Fig. 7 Incremental closure (without and with code hoisting)

m′
i, j ← min

⎛
⎜⎜⎜⎜⎝

mi, j ,

mi,a + d + mb, j ,

mi,b̄ + d + mā, j ,

mi,b̄ + d + mā,a + d + mb, j

mi,a + d + mb,b̄ + d + mā, j

⎞
⎟⎟⎟⎟⎠

This leads to the incremental closure algorithm listed in top of Fig. 7. Quintic min can be
realised as four binary min operations, hence the total number of binary min operations
required for IncClose is 16n2, which is quadratic in n. The listing in the bottom of the
figure shows how commonality can be factored out so that each iteration of the inner loop
requires a single ternary min to be computed. Factorisation reduces the number of binary min
operations to 2n(2+4n) = 8n2+4n in IncCloseHoist. Moreover, this form of code hoisting
is also applicable algorithms that follow (though this optimisation is not elaborated in the
sequel). Furthermore, like IncClose, IncCloseHoist is not sensitive to the specific traversal
order of the DBM, hence has potential for parallelisation. In additional, both IncClose and
IncCloseHoist do not incur any checks.

Example 6 To illustrate how the incremental closure algorithm of [10], from which the
above is derived, omits a form of propagation, consider adding x0 − x1 ≤ 0, or equivalently
x ′
0 − x ′

2 ≤ 0, to the system on the left
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Fig. 8 Before and after adding x0 − x1 ≤ 0

x0 ≤ 7,
x1 ≤ 0,
x0 − x1 ≤ 7,
x0 + x1 ≤ 0

m =
⎡
⎢⎢⎣

x ′
0 x ′

1 x ′
2 x ′

3

x ′
0 0 14 7 7
x ′
1 ∞ 0 ∞ ∞
x ′
2 ∞ 7 0 0
x ′
3 ∞ 7 ∞ 0

⎤
⎥⎥⎦

whose DBM m is given on right. The system is illustrated spatially on the left hand side
of Fig. 8; the right hand side of the same figure shows the effect of adding the constraint
x0 − x1 ≤ 0. Adding x0 − x1 ≤ 0 using the incremental closure algorithm from [10] gives
the DBM m′; IncClose gives the DBM m′′:

m′ =
⎡
⎢⎢⎣

x ′
0 x ′

1 x ′
2 x ′

3

x ′
0 0 7 0 0
x ′
1 ∞ 0 ∞ ∞
x ′
2 ∞ 0 0 0
x ′
3 ∞ 0 ∞ 0

⎤
⎥⎥⎦

m′′ =
⎡
⎢⎢⎣

x ′
0 x ′

1 x ′
2 x ′

3

x ′
0 0 0 0 0
x ′
1 ∞ 0 ∞ ∞
x ′
2 ∞ 0 0 0
x ′
3 ∞ 0 ∞ 0

⎤
⎥⎥⎦

The DBM m′ represents the constraint x ≤ 7
2 but m′′ encodes the tighter constraint x ≤ 0.

The reason for the discrepancy between entries m′
0,1 and m′′

0,1 is shown by the following
calculations:

m′
0,1 = min

⎛
⎝
m0,1

m0,0 + 0 + m2,1

m0,2̄ + 0 + m0̄,1

⎞
⎠ = min

⎛
⎝
14,
0 + 0 + 7
7 + 0 + 0

⎞
⎠ = 7

m′′
0,1 = min

⎛
⎜⎜⎜⎜⎝

m0,1

m0,0 + 0 + m2,1

m0,2̄ + 0 + m0̄,1
m0,0 + 0 + m2,2̄ + 0 + m0̄,1
m0,2̄ + 0 + m0̄,0 + 0 + m2,1

⎞
⎟⎟⎟⎟⎠

= min

⎛
⎜⎜⎜⎜⎝

14
0 + 0 + 7
7 + 0 + 0
0 + 0 + 0 + 0 + 0
7 + 0 + ∞ + 0 + 7

⎞
⎟⎟⎟⎟⎠

= 0

The entry at m′
0,1 is calculated using m2,1, but this entry will itself reduce to 0; m′

0,1 must
take into account the change that occurs tom2,1. More generally, when calculatingm′

i, j , the
min expression of [10] overlooks how the added constraint can tighten mi,a , mi,b, mi,b̄ or
mā, j . ��

The new incremental algorithm is justified by Theorem 4.1 which, in turn, is supported by
the following lemma:
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Lemma 4.1 Suppose m is a closed DBM, m′ = IncClose(m, o) and o = (x ′
a − x ′

b ≤ d).
Thenm′ is consistent if and only if:

– mb,a + d ≥ 0
– mā,b̄ + d ≥ 0
– mā,a + d + mb,b̄ + d ≥ 0

Theorem 4.1 (Correctness of IncClose)Supposem is a closedDBM,m′ = IncClose(m, o)
and o = (x ′

a − x ′
b ≤ d). Then m′ is either closed or it is not consistent.

Note that unsatisfiability can be detected without applying any min operations at all,
though for brevity this is omitted in the presentation of the algorithms. Fast unsatisfiability
checking is justified by the following corollary of Lemma 4.1:

Corollary 4.1 Supposem is a closed DBM,m′ = IncClose(m, o) and o = (x ′
a − x ′

b ≤ d).
If

– mb,a + d < 0 or
– mā,b̄ + d < 0 or
– mb,b̄ + d + mā,a + d < 0

then m′ is not consistent.

4.3 Properties of incremental closure

By design IncClose recovers closure, but it should also be natural for the algorithm to
preserve and enforce other properties too. These properties are not just interesting within
themselves; they provide scaffolding for results that follow:

Proposition 4.1 Suppose m ≤ m′ (pointwise) and o = (x ′
a − x ′

b ≤ d). Then
IncClose(m, o) ≤ IncClose(m′, o).

Proposition 4.2 Suppose m is coherent, m′ = IncClose(m, o) and o = (x ′
a − x ′

b ≤ d).
Thenm′ is coherent.

An important property of IncClose is idempotence: it formalises the idea that an octagon
should not change shape if it is repeatedly intersectedwith the same inequality. If idempotence
did not hold then there would exist m′ = IncClose(m, o) and m′′ = IncClose(m′, o) for
which m′ �= m′′. This would suggest that IncClose did not properly tighten m using the
inequality o, but overlooked some propagation, which is the form of suboptimal behaviour
we are aiming to avoid.

Proposition 4.3 Suppose that m is a closed DBM, m′ = IncClose(m, o), m′′ =
IncClose(m′, o) and o = (x ′

a − x ′
b ≤ d). Then either m′ is consistent and m′′ = m′

or m′′ is not consistent.

5 Incremental strong closure

We now turn our attention from recovering closure to recovering strong closure, which
generates a canonical representation for any (non-empty) octagon.
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5.1 Classical strong closure

The classical strong closure byMiné repeatedly invokes Strwithin the main Floyd-Warshall
loop, but it was later shown by Bagnara et al. [2] that this was equivalent to applying Str just
once after the main loop. The following theorem [2, Theorem 3] justifies this tactic, though
the proofs we present have been revisited and streamlined:

Theorem 5.1 Supposem is a closed, coherentDBMandm′ = Str(m). Thenm′ is a strongly
closed DBM.

5.2 Properties of strong closure

We establish a number of properties about Str which will be useful when we prove in-place
versions of our incremental strong (and tight) closure algorithms.

Proposition 5.1 Supposem be a DBM andm′ = Str(m). Thenm′ = Str(m′).

Proposition 5.2 Supposem1 ≤ m2 (pointwise). Then Str(m1) ≤ Str(m2).

Proposition 5.3 Supposem is a DBM and m′ = Str(m). Thenm′ ≤ m.

Proposition 5.4 Suppose m is a closed, coherent DBM. Then m′ = Str(m) is a coherent
DBM.

5.3 Incremental strong closure

Theorem5.1 states that a strongly closedDBMcanbeobtained by calculating closure and then
strengthening. This is realised by calling IncClose, from Fig. 7, followed by a call to Str.
Although this is conventional wisdom, it incurs two passes over the DBM: one by IncClose
and the other by Str. The two passes can be unified by observing that strengthening m′
critically depends on the entriesm′

i,ı̄ where i ∈ {0, . . . , 2n − 1}. Furthermore, these entries,
henceforth called key entries, are themselves not changed by strengthening because:

min(m′
i,ı̄ , (m

′
i,ı̄ + m′̄

ı̄,ı̄
)/2) = min(m′

i,ı̄ , (m
′
i,ı̄ + m′

i,ı̄ )/2) = m′
i,ı̄

This suggests precomputing the key entries up front and then using them in the main loop of
IncClose to strengthen on-the-fly. This insight leads to the algorithm listed in Fig. 9. Line 3
generates the key entries which are closed by construction and unchanged by strengthening.
Once the key entries are computed, the algorithm iterates over the rest of the DBM, closing
and simultaneously strengthening each entrymi, j at line 8.

The total number of binarymin operations required for IncStrongClose is 8n+10n(2n−
1) = 20n2 − 2n, which improves on following IncClose by Str, which requires 16n2 +
4n2 = 20n2. Furthermore, since m is coherent mi,a + d + mb,ı̄ = mā,ı̄ + d + mi,b̄ =
mi,b̄ + d + mā,ı̄ so that the quintic min on line 4 becomes quartic, reducing the min count
for IncClose to 20n2 − 4n. Furthermore, the entrymi,ı̄ can be cached in a linear array ai of
dimension 2n and the expression (m′

i,ı̄ +m′
j̄ , j )/2 in line 8 can be replaced with (ai +aj̄ )/2,

thereby avoiding two lookups in a two-dimensionalmatrix.We omit the algorithm using array
caching for space reasons as this is a simple change to Fig. 9.

The following theorem justifies the correctness of the new incremental strong closure
algorithm:
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Fig. 9 Incremental strong closure

Theorem 5.2 (Correctness of IncStrongClose) Suppose m is a DBM,
m′ = IncStrongClose(m, o),m† = IncClose(m, o),m∗ = Str(m†)ando = (x ′

a−x ′
b ≤

d). Thenm′ = m∗.

Code is duplicated in IncStrongClose in the assignments of m′
i,ı̄ and m′

i, j on lines 3
and 8 respectively. Figure 10 shows how this can be factored out in that line 3 of IncStrong-
CloseMotion need only consider updates stemming from mi,a + d + mb,ı̄ . Moreover, the
guard on line 7 of Fig. 9 is eliminated but moving the remainder of them′

i,ı̄ calculation into
the main loop. This increases the min count by 2n but reduces code size. This can potentially
be a good exchange because min is itself essentially a check (though it can be implemented
as straight-line code for machine integers [35]), and eliminating the guard from the main loop
avoids 4n2 checks, giving a saving overall. However, putting asymptotic arguments aside,
whether IncStrongCloseMotion outperforms IncStrongClose depends on the relative
cost of the integer comparison on line 7 of Fig. 9 to the comparison implicit in line 3 of
Fig. 10, which is performed in the underlying number system. The following result justifies
this form of code motion:

Theorem 5.3 (Correctness of IncStrongCloseMotion) Supposem is a strongly closed,
coherent DBM and letm∗ = IncStrongClose(m, o) where o = (x ′

a − x ′
b ≤ d) and

m′′
i, j = min

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

mi, j ,

mi,a + d + mb, j ,

mi,b̄ + d + mā, j ,

mi,b̄ + d + mā,a + d + mb, j ,

mi,a + d + mb,b̄ + d + mā, j ,

(mi,a + d + mb,ı̄ + mj̄ , j )/2,
(mi,ı̄ + mj̄ ,a + d + mb, j )/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Fig. 10 Incremental strong
closure with code motion

Then either m∗ = m′′ orm∗ is not consistent and m′′ is not inconsistent.

The force of the above result is that m′
i, j is only affected by a change to m′

i,ı̄ via mi,a +
d +mb,ı̄ or a change tom′

j̄ , j viamj̄ ,a + d +mb, j . Thus the initial loop on line 3, need only
check whethermi,ı̄ is shortened bymi,a + d +mb,ı̄ in order to correctly update an arbitrary
entrymi, j in the loop on line 8. Note thatm is not just required to be closed, but also strongly
closed and coherent.

6 Incremental tight closure

The strong closure algorithms previously presented have to be modified to support integer
octagonal constraints. If xi is integral then xi ≤ c can be tightened to xi ≤ �c�. Since xi ≤ c
is represented as the difference x ′

2i − x ′
2i+1 ≤ 2c, tightening is achieved by sharpening the

difference to x ′
2i − x ′

2i+1 ≤ 2�c/2�, so that the constant 2�c/2� is even. This is achieved by
applying Tighten(m), the code for which is given in Fig. 11. As suggested by Fig. 3, closure
does not need to be reapplied after tightening to check for consistency; it is sufficient to check
that mi,ı̄ + mı̄,i < 0 [2], which is the role of CheckZConsistent(m). One subtlety that is
worthy of note is that after running tighten(m) on a closed DBMm, the resulting DBMwill
not necessarily be closed but will instead satisfy a weaker property, namely weak closure.
Strong closure can be recovered fromweak closure, however, by strengthening [2]. However,
we do not use this approach in the sequel: insteadweuse tightening and strengthening together
to avoid having to work with weakly closed DBMs. First we prove that tightening followed
by strengthening will return a closed DBM when the resulting system is satisfiable:

Lemma 6.1 Supposem is a closed, coherent integer DBM. Let m′ be defined as follows:

m′
i, j = min

(
mi, j ,

⌊mi,ı̄

2

⌋
+

⌊mj̄ , j

2

⌋)

Thenm′ is either closed or it is not consistent.
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Fig. 11 Tight closure

Proof Suppose m′ is consistent. Because m is closed m′
i,i ≤ mi,i = 0 and since m′ is

consistent 0 ≤ m′
i,i hencem′

i,i = 0. Now to showm′
i,k + m′

k, j ≥ m′
i, j .

1. Supposem′
i,k = mi,k and m′

k, j = mk, j . Becausem is closed:

m′
i,k + m′

k, j = mi,k + mk, j ≥ mi, j ≥ m′
i, j

2. Supposem′
i,k �= mi,k andm′

k, j = mk, j .

(a) Supposemk̄,k is even. Because m is closed and coherent:

m′
i,k + m′

k, j =
⌊mi,ı̄

2

⌋
+

⌊
mk̄,k

2

⌋
+ mk, j =

⌊mi,ı̄

2

⌋
+ mk̄,k + 2mk, j

2

≥
⌊mi,ı̄

2

⌋
+ mk̄, j + mk, j

2
=

⌊mi,ı̄

2

⌋
+ mj̄ ,k + mk, j

2

≥
⌊mi,ı̄

2

⌋
+ m j,j̄

2
≥

⌊mi,ı̄

2

⌋
+

⌊m j,j̄

2

⌋
≥ m′

i, j

(b) Supposemk̄,k is odd. Then

m′
i,k + m′

k, j =
⌊mi,ı̄

2

⌋
+

⌊
mk̄,k

2

⌋
+ mk, j =

⌊mi,ı̄

2

⌋
+ (mk̄,k − 1) + 2mk, j

2

Because m is closed and coherent:

(mk̄,k − 1) + 2mk, j

2
≥ mk̄, j + mk, j − 1

2
= mj̄ ,k + mk, j − 1

2
≥ mj̄ , j − 1

2

i. Supposemk̄,k + 2mk, j = mj̄ , j . Sincemk̄,k is oddmj̄ , j is odd thus

mj̄ , j − 1

2
=

⌊mj̄ , j

2

⌋
and m′

i,k + m′
k, j ≥

⌊mi,ı̄

2

⌋
+

⌊mj̄ , j

2

⌋
≥ m′

i, j

ii. Supposemk̄,k + 2mk, j > mj̄ , j . Thus (mk̄,k − 1) + 2mk, j ≥ mj̄ , j

m′
i,k + m′

k, j ≥
⌊mi,ı̄

2

⌋
+ mj̄ , j

2
≥

⌊mi,ı̄

2

⌋
+

⌊mj̄ , j

2

⌋
≥ m′

i, j
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3. Supposem′
i,k = mi,k and m′

k, j �= mk, j . Symmetric to the previous case.
4. Supposem′

i,k �= mi,k andm′
k, j �= mk, j . Then

m′
i,k + m′

k, j =
⌊mi,ı̄

2

⌋
+

⌊
mk̄,k

2

⌋
+

⌊
mk,k̄

2

⌋
+

⌊mj̄ , j

2

⌋

Sincem is closed andm′ is consistent:

0 ≤ m′
k̄,k̄ = min

(
mk̄,k̄,

⌊
mk̄,k

2

⌋
+

⌊
mk,k̄

2

⌋)
= min

(
0,

⌊
mk̄,k

2

⌋
+

⌊
mk,k̄

2

⌋)

Therefore⌊
mk̄,k

2

⌋
+

⌊
mk,k̄

2

⌋
≥ 0 and m′

i,k + m′
k, j ≥

⌊mi,ı̄

2

⌋
+

⌊mj̄ , j

2

⌋
≥ m′

i, j

��
It should be noted that the above proof by-passes the notion of weak closure which was
previously thought to be necessary [2, pp. 28–31] greatly simplifying the proofs. Using the
proof that tighten and strengthening gives a closed DBM, it can now be shown that the
resulting DBM is also tightly closed:

Theorem 6.1 ([2, Theorem 4]) Suppose m is a closed, coherent integer DBM. Let m′ be
defined as follows:

m′
i, j = min

(
mi, j ,

⌊mi,ı̄

2

⌋
+

⌊mj̄ , j

2

⌋)

Thenm′ is either tightly closed or it is not consistent.

Notice that the proof of tight closure does not use the concept of weak closure as advocated
in [2]. The above proof goes directly from a closed DBM to a tightly closed DBM relying
only on simple algebra; it is not based on showing that tightening gives a weakly closed
(intermediate) DBM which can be subsequently strengthen to give a tightly closed DBM
(see Fig. 3).

Tight closure requires the key entries, and only these, to be tightened. This suggests
tightening the key entries on-the-fly immediately after they have been computed by closure.
This leads to the algorithm given in Fig. 12 which coincides with IncStrongClose(m)

except in one crucial detail: line 4 tightens the key entries as they are computed. Moreover
the key entries are strengthened, with the other entries of the DBM, in the main loop in
tandem with the closure calculation, thereby ensuring strong closure. Thus tightening can be
accommodated, almost effortlessly, within incremental strong closure.

Theorem 6.2 (Correctness of IncZClose) Suppose m is an integer DBM and m′ =
IncZClose(m, o)where o = x ′

a−x ′
b ≤ d. Letm† = IncClose(m, o),m‡ = Tighten(m†)

andm∗ = Str(m‡). Thenm∗ = m′.

6.1 Properties of tight closure

We prove a number of properties about Tighten which will be useful when we justify the
in-place versions of our incremental tight closure algorithm.

Proposition 6.1 Supposem is a DBM and m′ = Tighten(m). Thenm′ = Tighten(m′).
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Fig. 12 Incremental tight closure

Proposition 6.2 Supposem1 ≤ m2 (pointwise). Then Tighten(m1) ≤ Tighten(m2).

Proposition 6.3 Supposem is a DBM and m′ = Tighten(m). Thenm′ ≤ m.

Proposition 6.4 Letm be a coherent DBM andm′ = Tighten(m). Thenm′ is coherent.

7 In-place update

Closure algorithms are traditionally formulated in a way that is simple to reason about
mathematically (see [21, Def. 3.3.2]), typically using a series of intermediate DBMs and
then present the algorithm itself using in-place update (see [21, Def. 3.3.3]). An operation on
a DBM will conceptually calculate an output DBM from the input DBM. Since this requires
two DBMs, the input and the output, to be stored simultaneously, it is attractive to mutate
the input DBM to derive the output DBM. This is called in-place update. The subtlety of
in-place update, in the context of a DBM operation, is that one element can be calculated in
terms of others, some of which may have already been updated. The question of equivalence
between the mathematical formulation and the practical in-place implementation is arguably
not given the space it should. Miné, in his magnus opus [21], merely states that equivalence
can be shown by using an argument for the Floyd-Warshall algorithm [11, Section 26.2].
However that in-place argument is itself informal. Later editions of the book do not help,
leaving the proof as an exercise for the reader. But the question of equivalence is more subtle
again for incremental closure. Correctness is therefore argued for incremental closure in
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Fig. 13 In-place incremental
closure

Sect. 7.1, incremental strong closure in Sect. 7.2 and incremental tight closure in Sect. 7.3,
one correctness argument extending another.

7.1 In-place incremental closure

Figure 13 gives an in-place version of IncClose algorithm listed in Fig. 7. At first glance one
might expect that mutating the entriesmi,a ,mb,ı̄ ,mi,b̄,mā,ı̄ ,mā,a ormb,b̄ could potentially
perturb those entries ofm which are updated later. The following theorem asserts that this is
not so. Correctness follows from Corollary 7.1 which is stated below:

Corollary 7.1 Suppose that m is a closed DBM, m′ = IncClose(m, o),
o = (x ′

a − x ′
b ≤ d) and m′ is consistent. Then the following hold:

– m′
i, j ≤ m′

i,a + d + m′
b, j

– m′
i, j ≤ m′

i,b̄ + d + m′
ā, j

– m′
i, j ≤ m′

i,b̄ + d + m′
ā,a + d + m′

b, j

– m′
i, j ≤ m′

i,a + d + m′
b,b̄ + d + m′

ā, j

The following theorem asserts that in-place update does not compromise correctness. It is
telling that the correctness argument does not refer to the entriesmi,a ,mb,ı̄ ,mi,b̄,mā,ı̄ ,mā,a

or mb,b̄ at all. This is because the corollary on which the theorem is founded follows from
the high-level property of idempotence. Notice too that the theorem is parameterised by the
traversal order overm and therefore is independent of it.

Theorem 7.1 (Correctness of InplaceIncClose) Suppose ρ : {0, . . . , 2n − 1}2 →
{0, . . . , 4n2 − 1} is a bijective map, m is a closed DBM, m′ = IncClose(m, o), o =
(x ′

a − x ′
b ≤ d),m0 = m and

mk+1
i, j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

mk
i, j if ρ(i, j) �= k

min

⎛
⎜⎜⎜⎜⎝

mk
i, j ,

mk
i,a + d + mk

b, j ,

mk
i,b̄ + d + mk

ā, j ,

mk
i,a + d + mk

b,b̄ + d + mk
ā, j ,

mk
i,b̄ + d + mk

ā,a + d + mk
b, j

⎞
⎟⎟⎟⎟⎠

if ρ(i, j) = k

Then either m′ is consistent and
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Fig. 14 In-place incremental strong closure

– ∀0 ≤ � < k.mk
ρ−1(�)

= m′
ρ−1(�)

– ∀k ≤ � < 4n2.mk
ρ−1(�)

= mρ−1(�)

or m4n2 is inconsistent.

7.2 In-place incremental strong closure

The in-place version of the incremental strong closure algorithm is presented in Fig. 14.
The following lemma shows that running incremental closure followed by strengthening

refines the entries in theDBM to their tightest possible valuewith respect to the newoctagonal
constraint.

Lemma 7.1 Suppose m is a closed, coherent DBM and m′ = IncClose(m, o), m′′ =
Str(m′),m′′′ = IncClose(m′′, o) and o = (x ′

a − x ′
b ≤ d). Then eitherm′ is consistent and

m′′′ = m′′ or m′′′ is not consistent.

Now we move onto the theorem showing the correctness of InplaceIncStrongClose.
We show that the in-place version of the algorithm produces the same DBM as the non-in
place version of the algorithm. A bijective map used in the proof to process key entries first
before processing non-key entries: the condition ∀0 ≤ i < 2n.ρ(i, ı̄) < 2n ensures this
property. Note that this is the only caveat on the order produced by the map: the order in
which key entries themselves are ordered is irrelevant and similarly for non-key entries.

Theorem 7.2 (Correctness of InplaceIncStrongClose) Supposem is a closed, coherent
DBM,m′ = IncClose(m, o),m′′ = Str(m′), o = (x ′

a − x ′
b ≤ d), ρ : {0, . . . , 2n − 1}2 →

{0, . . . , 4n2 − 1} is a bijective map with ∀0 ≤ i < 2n.ρ(i, ı̄) < 2n, m0 = m and
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mk+1
i, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mk
i, j if ρ(i, j) �= k

min

⎛
⎜⎜⎜⎜⎝

mk
i,ı̄ ,

mk
i,a + d + mk

b,ı̄ ,

mk
i,b̄ + d + mk

ā,ı̄ ,

mk
i,b̄ + d + mk

ā,a + d + mk
b,ı̄ ,

mk
i,a + d + mk

b,b̄ + d + mk
ā,ı̄

⎞
⎟⎟⎟⎟⎠

if ρ(i, j) = k ∧ j = ı̄

min

⎛
⎜⎜⎜⎜⎜⎜⎝

mk
i, j ,

mk
i,a + d + mk

b, j ,

mk
i,b̄ + d + mk

ā, j ,

mk
i,a + d + mk

b,b̄ + d + mk
ā, j ,

mk
i,b̄ + d + mk

ā,a + d + mk
b, j ,

(mk
i,ı̄ + mk

j̄ , j )/2

⎞
⎟⎟⎟⎟⎟⎟⎠

if ρ(i, j) = k ∧ j �= ı̄

Then either m′ is consistent and
– ∀0 ≤ � < k.mk

ρ−1(�)
= m′′

ρ−1(�)

– ∀k ≤ � < 4n2.mk
ρ−1(�)

= mρ−1(�)

or m4n2 is inconsistent.

7.3 In-place incremental tight closure

The in-place version of the incremental tight closure algorithm is presented in Fig. 14, the only
difference with incremental strong closure is that for key entries we also run a tightening step
(line 3). As in the previous section, we have a helper lemma for the main theorem, showing
that incremental closure followed by tightening and strengthening refines the entries in the
DBM to the tightest value with respect to the new octagonal constraint.

Lemma 7.2 Suppose m is a closed, coherent DBM and m′ = IncClose(m, o), m′′ =
Tighten(m′, o), m′′′ = Str(m′′, o), m∗ = IncClose(m′′′, o) and m∗ = m′′′ or m∗ is
inconsistent.

The following theorem is analogous to the theorem for in-place strong closure (Fig. 15):

Theorem 7.3 (Correctness of InplaceIncZClose) Supposem is a closed, coherent DBM,
m′ = IncClose(m, o), m′′ = Tighten(m′), m′′′ = Str(m′), o = (x ′

a − x ′
b ≤ d), that

ρ : {0, . . . , 2n − 1}2 → {0, . . . , 4n2 − 1} is a bijective map with ∀0 ≤ i < 2n.ρ(i, ı̄) < 2n,
m0 = m and

mk+1
i, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mk
i, j if ρ(i, j) �= k

2

⎢⎢⎢⎢⎢⎢⎢⎣
min

⎛
⎜⎜⎜⎜⎝

mk
i,ı̄ ,

mk
i,a + d + mk

b,ı̄ ,

mk
i,b̄ + d + mk

ā,ı̄ ,

mk
i,b̄ + d + mk

ā,a + d + mk
b,ı̄ ,

mk
i,a + d + mk

b,b̄ + d + mk
ā,ı̄

⎞
⎟⎟⎟⎟⎠

/2

⎥⎥⎥⎥⎥⎥⎥⎦
if ρ(i, j) = k ∧ j = ı̄

min

⎛
⎜⎜⎜⎜⎜⎜⎝

mk
i, j ,

mk
i,a + d + mk

b, j ,

mk
i,b̄ + d + mk

ā, j ,

mk
i,a + d + mk

b,b̄ + d + mk
ā, j ,

mk
i,b̄ + d + mk

ā,a + d + mk
b, j ,

(mk
i,ı̄ + mk

j̄ , j )/2

⎞
⎟⎟⎟⎟⎟⎟⎠

if ρ(i, j) = k ∧ j �= ı̄
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Fig. 15 In-place incremental tight closure

Then either m′ is consistent and

– ∀0 ≤ � < k.mk
ρ−1(�)

= m′′′
ρ−1(�)

– ∀k ≤ � < 4n2.mk
ρ−1(�)

= mρ−1(�)

or m4n2 is inconsistent.

8 Experimental evaluation

For a fair and robust evaluation, the algorithms were implemented using machinery provided
in the Apron library [17]. The library provides implementations of the box, polyhedra and
octagon abstract domains, the latter used for purposes of comparison. Apron is realised in C,
and provides bindings for OCaml, C++ and Java. IncClose and IncStrongClose where
then compared against the optimised implementation of incremental closure provided by
Apron. Three sets of experiments were performed. First, the closure algorithms were applied
to randomly generated DBMs, subject to various size constraints, to systematically exercise
the algorithms on a range of problem size. Henceforth these randomly generated problems
will be referred to as the micro-benchmarks. Second, to investigate the performance of the
algorithms in a real-world setting, the algorithms were integrated into Frama-C, which is
an industrial-strength static analysis tool for C code. The tool was then applied to a collec-
tion of C programs drawn from the Frama-C benchmarks repository. Third, the algorithms
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Fig. 16 (1) Representing a DBM as an array; (2) representing a DBM as a CoDBM

were integrated into AbSolute solver [26] and evaluated against benchmarks drawn from
continuous constraint programming.

All experiments were performed on a 32-core Intel Xeon workstation with 128GB of
memory.

8.1 Apron library

The Apron library [17] supports various number systems, such as single precision floating-
point numbers and GNUmultiple-precision (GMP) rationals. The default number system for
theOCaml bindings is rationals, but it must be appreciated that the computational overhead of
allocating memory for the rationals dominates the runtime, potentially masking the benefits
of IncStrongClose over IncClose. (Recall that IncStrongClose saves a separate pass
over the DBM relative to IncClose, avoiding counter increments and integer comparisons.)

InApron, numbers are represented by a typebound_t, which depending on compile-time
options, will select a specific header file containing concrete implementations of operations
involving numbers extended to the symbolic values of−∞ and+∞. Everybound_t object
has to be initialised via a call to bound_init, which in the case of rationals will invoke
malloc and initialise space for the rational number. DBMs are stored taking advantage of
the half-matrix nature of octagonal DBMs which follows by the definition of coherence. An
array of bound_t objects is then used to represent the half-matrix, as shown in Fig. 16,
subfigure (1). If i ≥ j or i = j̄ then the entry at (i, j) in the DBM is stored at index j+�i2/2�
in the array. Otherwise (i, j) is stored at the array element reserved for entry (j̄ , ı̄). A DBM
of size n requires an array of size 2n(n + 1) which gives a significant space reduction over
a naive representation of size 4n2.

8.2 Compact DBMs

Unexpectedly, initial experiments with Frama-C suggested that much of its runtimewas spent
in memory management rather than the domain operations themselves. Further investigation
using Callgrind showed that 36% of all function calls emanated from malloc-like routines.
In response, the underlying DBMdata structure was refactored to ensure that this undesirable
memory management feature did not artificially perturb the experiments. The refactoring is
fully described in a separate work [9], but to keep the paper self-contained the main idea is
summarised in the following paragraph.
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Fig. 17 Micro-benchmark timings for rationals

The DBM representation was changed from a matrix storing numbers to a matrix storing
pointers to numbers stored in a cache. This reduces the amount of memory used by a DBM as
shown in Fig. 16. The modified data structure has been dubbed a compact DBM or CoDBM
for short. The cache is an array initialised to contain ∞ as its first entry, augmented with
an ordered table which enables the pointer for any given number to be found (if it exists) in
the cache using the bisection search method. As new numbers are created they are added to
the cache, and the table is extended in sync. This representation which, crucially, factors out
the overhead of storing a number repeatedly, has a significant impact on the memory usage
of the Apron library. It also rebalances the proportion of time spend in domain operations.
Further performance debugging of Frama-C, for instance to speed up parsing, would only
increase the fraction of time spend on the domain operations and closure in particular.

8.3 Micro-benchmarks

Each micro-benchmark suite was a collection of 10 problems, each problem consisting of a
random octagon and a randomly generated octagonal constraint. Each random octagon was
generated from a prescribed number of octagonal constraints, so as to always contain the
origin, for a given number for variables. Each octagon was then closed. A single randomly
generated octagonal constraint, not necessarily containing the origin, was then added to
the closed octagon using incremental closure. IncClose and IncStrongClose where then
timed and compared against the Apron version for DBMs over rationals. The resulting DBMs
were then all checked for equality against Close. All timings were averaged over 10 runs
and, moreover, all algorithms were exercised on exactly the same collection of problems.
Figure 17 presents timings for the micro-benchmark suites. The results show that IncClose
outperforms the original Apron implementation by a factor of 3–4 and IncStrongClose
offers an additional 4–9% speedup over IncClose.

8.4 Frama-C benchmarks

The EVA plugin of Frama-C implements an abstract interpreter over the internal interme-
diate language used by Frama-C. The plugin uses the Apron library to perform an octagon
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Table 1 Benchmark suite of C programs

Name Benchmark LOC Description

lev levenstein 187 Levenstein string distance library

sol solitaire 334 Card cipher

2048 2048 435 2048 game

kh khash 652 Hash code from klib C library

taes Tiny-AES 813 Portable AES-128 implementation

qlz qlz 1168 Fast compression library

mod libmodbus 7685 Library to interact with Modbus protocol

mgmp mini-gmp 11,787 Subset of GMP library

unq unqlite 64,795 Embedded NoSQL DB

bzip bzip-single-file 74,017 bzip single file for static analysis benchmarking

domain analysis, and so by modifying Apron, Frama-C can make direct use of IncClose
and IncStrongClose (and specially their IncCloseHoist and IncStrongCloseMotion
variants). Table 1 lists the benchmark programs passed to EVA to interpret the programs
over the octagon domain. It should be noted that EVA is a prototype (which may explain its
memory behaviour) and as such does not use widely used heuristics and optimisations such
as variable packing [8,16] or localisation techniques [5,25] to enable the analysis to scale.
Nonetheless, the octagon analysis successfully terminated over the selected benchmarks.

Figure 18 gives the timings of benchmarks for rational (above) and floating point arith-
metic (below), normalised to the time required by the Apron implementation. For rationals,
normalised timings are given for both DBMs and CoDBMs. The relative speedup obtained
from deploying IncClose and IncStrongClose over Apron algorithm is variable, ranging
from a large speedup for taes to a modest slowdown for qlz. Table 2 amplifies the relative
timings presented in the bar chart, giving the exact timings in seconds. The table shows that
the longest running analyses (which correspond to those employing the largest DBMs) are
best served by IncClose and IncStrongClose.

Cachegrind [23] profiling sheds light on qlz: some of the refined incremental algorithms
actually increase the number of first-level data cache misses, giving a net slowdown. This
cache anomaly might arise because the DBMs generated by qlz are tiny. Cachegrind also
suggests this is the exception, revealing that the large speedup on bzip, mod and taes for
CoDBMs over DBMs stems from a reduction in the number of misses to level 3 unified data
and instruction cache. In fact, for bzip, mod and taes, the number of level 3 cache misses is
reduced to zero. This validates theCoDBMdata-structure. It also illustrates that optimisations
which match the architecture can have surprising impact.

Floating point arithmetic is much faster than rationals, so the proportion of the overall
execution time spent in closure is decreased, hence one would expect the relative speedup
from IncClose and IncStrongClose over Apron to be likewise reduced. Figure 18 and
Table 2 shows that this is the general pattern. CoDBMs timings are not given for floats
because floats have a much denser representation than GMP rationals. Nevertheless, the
longest running analysis, which arises on taes, significantly benefits from both IncClose
and IncStrongClose.
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Fig. 18 Normalised timings of Frama-C for rationals (above) and floating point (below)

8.5 AbSolute constraint solver benchmarks

The AbSolute constraint solver [26] applies principles from abstract interpretation to
continuous constraint programming. Continuous constraint programming uses interval
approximations to approximate solutions to continuous constraints: in essence a solution
enclosed by a single interval is successively refined to a set of intervals covering the solution
(provided one exists).

The AbSolute solver deploys octagons rather than intervals to obtain a more precise and
scalable solver. It uses Apron to implement its abstract domain operations, working over
floats rather than rationals. The benchmarks selected to exercise AbSolute are a strict subset
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Table 2 Absolute timings of Frama-C for rationals (above) and floating point (below)

Benchmark Apron IncClose DBM IncStrongClose IncClose CoDBM IncStrongClose

lev 33.16 14.98 14.21 9.23 9.05

sol 49.80 49.76 49.19 26.17 26.03

2048 33.16 26.10 26.26 13.39 13.23

kh 1.80 1.37 1.40 1.00 1.02

taes 1817.91 814.77 810.00 430.60 421.32

qlz 1.08 1.21 1.18 1.08 1.20

mod 463.46 343.05 349.62 141.17 138.60

mgmp 2.09 1.97 2.03 1.21 1.18

unq 1.49 1.49 1.46 1.49 1.42

bzip 621.53 607.88 602.78 53.51 52.63

cumulative 3025.48 1862.58 1858.13 678.85 665.68

Benchmark Apron IncClose DBM IncStrongClose

lev 2.61 2.46 2.47

sol 12.62 12.99 13.00

2048 4.48 4.48 4.44

kh 0.60 0.60 0.58

taes 113.26 93.26 88.47

qlz 1.35 1.29 1.33

mod 57.59 54.43 53.41

mgmp 1.00 0.99 0.96

unq 1.44 1.46 1.45

bzip 22.69 22.60 22.52

cumulative 217.64 194.56 188.63

of those contained in the AbSolute repository (some problems fail to parse while others
contain trigonometric functions not supported by the Apron library).

Figure 19 summaries the relative performance of Apron, IncClose and IncStrong-
Close; Table 3 gives the exact timings in seconds. All but one benchmarks show an
improvement with IncClose and IncStrongClose, even though the size of the DBMs
are small compared to those that arise in the Frama-C benchmarks.

9 Concluding discussion

The octagon domain is used for many applications due to its expressiveness and its easy of
implementation, relative to other relational abstract domains. Yet the elegance of their domain
operations is at odds with the subtlety of the underlying ideas, and the reasoning needed to
justify refinements that appear to be straightforward, such as tightening and in-place update.

This paper has presented novel algorithms to incrementally update an octagonal constraint
system.More specifically, we have developed new incremental algorithms for closure, strong
closure and integer closure, and their in-place variants. Experimental results with a prototype
implementation demonstrate significant speedups over existing closure algorithms. We leave
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Fig. 19 Normalised timings for the absolute constraint solver (doubles)

Table 3 Absolute timing for the
AbSolute constraint solver
(doubles)

Benchmark Apron IncClose IncStrongClose

boxdifference 8.72 8.42 8.39

diseq 18.25 18.11 18.07

diseq2 15.62 14.80 14.75

disjunction 4.30 4.17 4.15

eclipse 42.39 41.91 41.14

heart 1014.13 947.32 944.04

lin1 12.15 11.77 11.76

nonlin1 2.38 2.35 2.35

nonlin2 4.05 3.92 3.97

octo_hole 2.11 2.05 2.06

power 24.57 22.97 23.13

question 5.30 5.36 5.37

root 13.53 12.92 13.00

strict_large 4.52 4.26 4.31

two_circles 11.99 11.95 11.95

cumulative 1192.38 1112.28 1108.44

as future work the generalisation of the in-place update results to parallel evaluation and the
application of our incremental algorithms for modelling machine arithmetic [31] in binary
analysis which, incidentally, was the problem that motivated this thread of work.

Acknowledgements We thank Jacques-Henri Jourdan for stimulating discussions on Verasco at POPL’16 in
St. Petersburg and the “Verified Trustworthy Software Systems” Royal Society event in London.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and

123

http://creativecommons.org/licenses/by/4.0/


Form Methods Syst Des

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

A Proof Appendix

A. 1 Proofs for the correctness of incremental closure

Proof (for Lemma 4.1) We first prove the if case: sincem′ is consistentm′
ā,ā ≥ 0 hence

min

⎛
⎜⎜⎜⎜⎝

mā,ā,

mā,a + d + mb,ā,

mā,b̄ + d + mā,ā,

mā,b̄ + d + mā,a + d + mb,ā,

mā,a + d + mb,b̄ + d + mā,ā

⎞
⎟⎟⎟⎟⎠

= m′
ā,ā ≥ 0

Therefore mā,b̄ + d + mā,ā ≥ 0 and mā,a + d + mb,b̄ + d + mā,ā ≥ 0. Since m is closed
mā,ā = 0 hencemā,b̄ + d ≥ 0 and mā,a + d + mb,b̄ + d ≥ 0.

Repeating the argumentm′
b,b ≥ 0 hence

min

⎛
⎜⎜⎜⎜⎝

mb,b,

mb,a + d + mb,b,

mb,b̄ + d + mā,b,

mb,b̄ + d + mā,a + d + mb,b,

mb,a + d + mb,b̄ + d + mā,b

⎞
⎟⎟⎟⎟⎠

= m′
b,b ≥ 0

Thereforemb,a + d + mb,b ≥ 0. Sincemb,b = 0 it follows thatmb,a + d ≥ 0.
Now suppose that mb,a + d ≥ 0, mā,b̄ + d ≥ 0 and mā,a + d + mb,b̄ + d ≥ 0. To show
consistency we need to show that ∀i.m′

i,i ≥ 0. Pick an arbitrary i , then:

m′
i,i = min

⎛
⎜⎜⎜⎜⎝

mi,i ,

mi,a + d + mb,i ,

mi,b̄ + d + mā,i ,

mi,b̄ + d + mā,a + d + mb,i ,

mi,a + d + mb,b̄ + d + mā,i

⎞
⎟⎟⎟⎟⎠

Wewill show thatm′
i,i ≥ 0. Recall thatm is closed, and thus the second line above simplifies

to:mi,a+d+mb,i ≥ mb,a+d ≥ 0. Similarly the third line:mi,b̄+d+mā,i ≥ mā,b̄+d ≥ 0,
the fourth line :mi,b̄ + d + mā,a + d + mb,i ≥ mb,b̄ + d + mā,a + d and the fifth line:
mi,a + d + mb,b̄ + d + mā,i ≥ mā,a + d + mb,b̄ + d ≥ 0. Thus every entry in the min
expression is greater than 0 and thus ∀i.mi,i ≥ 0 as required. ��
Proof (for Theorem4.1) Supposem′ is consistent. Becausem is closed 0 = mi,i ≥ m′

i,i ≥ 0
hencem′

i,i = 0. It therefore remains to show ∀i, j, k.m′
i,k + m′

k, j ≥ A where

A = min

⎛
⎜⎜⎜⎜⎝

mi, j ,

mi,a + d + mb, j ,

mi,b̄ + d + mā, j ,

mi,b̄ + d + mā,a + d + mb, j ,

mi,a + d + mb,b̄ + d + mā, j

⎞
⎟⎟⎟⎟⎠

There are 5 cases for m′
i,k and 5 for m′

k, j giving 25 in total:
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1-1. Supposem′
i,k = mi,k andm′

k, j = mk, j . Becausem is closed:

m′
i,k + m′

k, j = mi,k + mk, j ≥ mi, j ≥ A

1-2. Supposem′
i,k = mi,k andm′

k, j = mk,a + d + mb, j . Becausem is closed:

m′
i,k + m′

k, j = mi,k + mk,a + d + mb, j ≥ mi,a + d + mb, j ≥ A

1-3. Supposem′
i,k = mi,k andm′

k, j = mk,b̄ + d + mā, j . Becausem is closed:

m′
i,k + m′

k, j = mi,k + mk,b̄ + d + mā, j ≥ mi,b̄ + d + mā, j ≥ A

1-4. Supposem′
i,k = mi,k andm′

k, j = mk,b̄ +d +mā,a +d +mb, j . Becausem is closed:

m′
i,k + m′

k, j = mi,k + mk,b̄ + d + mā,a + d + mb, j

≥ mi,b̄ + d + mā,a + d + mb, j ≥ A

1-5. Supposem′
i,k = mi,k andm′

k, j = mk,a +d +mb,b̄ +d +mā, j . Becausem is closed:

m′
i,k + m′

k, j = mi,k + mk,a + d + mb,b̄ + d + mā, j

≥ mi,a + d + mb,b̄ + d + mā, j ≥ A

2-1. Supposem′
i,k = mi,a + d + mb,k andm′

k, j = mk, j . Symmetric to case 1-2.
2-2. Supposem′

i,k = mi,a + d +mb,k andm′
k, j = mk,a + d +mb, j . Becausem is closed

and by Lemma 4.1:

m′
i,k + m′

k, j = mi,a + d + mb,k + mk,a + d + mb, j

≥ mi,a + d + mb,a + d + mb, j ≥ mi,a + d + mb, j ≥ A

2-3. Supposem′
i,k = mi,a +d +mb,k andm′

k, j = mk,b̄ +d +mā, j . Becausem is closed:

m′
i,k + m′

k, j = mi,a + d + mb,k + mk,b̄ + d + mā, j

≥ mi,a + d + mb,b̄ + d + mā, j ≥ A

2-4. Supposem′
i,k = mi,a + d +mb,k andm′

k, j = mk,b̄ + d +mā,a + d +mb, j . Because
m is closed and by Lemma 4.1:

m′
i,k + m′

k, j = mi,a + d + mb,k + mk,b̄ + d + mā,a + d + mb, j

≥ mi,a + d + mb,b̄ + d + mā,a + d + mb, j

≥ mi,a + d + mb, j ≥ A

2-5. Supposem′
i,k = mi,a + d +mb,k andm′

k, j = mk,a + d +mb,b̄ + d +mā, j . Because
m is closed and by Lemma 4.1:

m′
i,k + m′

k, j = mi,a + d + mb,k + mk,a + d + mb,b̄ + d + mā, j

≥ mi,a + d + mb,a + d + mb,b̄ + d + mā, j

≥ mi,a + d + mb,b̄ + d + mā, j ≥ A

3-1. Supposem′
i,k = mi,b̄ + d + mā,k andm′

k, j = mk, j . Symmetric to case 1-3.
3-2. Supposem′

i,k = mi,b̄+d+mā,k andm′
k, j = mk,a+d+mb, j . Symmetric to case 2-3.
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3-3. Supposem′
i,k = mi,b̄ + d +mā,k andm′

k, j = mk,b̄ + d +mā, j . Becausem is closed
and by Lemma 4.1:

m′
i,k + m′

k, j = mi,b̄ + d + mā,k + mk,b̄ + d + mā, j

≥ mi,b̄ + d + mā,b̄ + d + mā, j

≥ mi,b̄ + d + mā, j ≥ A

3-4. Supposem′
i,k = mi,b̄ + d +mā,k andm′

k, j = mk,b̄ + d +mā,a + d +mb, j . Because
m is closed and by Lemma 4.1:

m′
i,k + m′

k, j = mi,b̄ + d + mā,k + mk,b̄ + d + mā,a + d + mb, j

≥ mi,b̄ + d + mā,b̄ + d + mā,a + d + mb, j

≥ mi,b̄ + d + mā,a + d + mb, j ≥ A

3-5. Supposem′
i,k = mi,b̄ + d +mā,k andm′

k, j = mk,a + d +mb,b̄ + d +mā, j . Because
m is closed and by Lemma 4.1:

m′
i,k + m′

k, j = mi,b̄ + d + mā,k + mk,a + d + mb,b̄ + d + mā, j

= mi,b̄ + d + mā,a + d + mb,b̄ + d + mā, j

= mi,b̄ + d + mā, j ≥ A

4-1. Supposem′
i,k = mi,b̄+d+mā,a+d+mb,k andm′

k, j = mk, j . Symmetric to case 1-4.
4-2. Supposem′

i,k = mi,b̄+d+mā,a+d+mb,k andm′
k, j = mk,a+d+mb, j . Symmetric

to case 2-4.
4-3. Supposem′

i,k = mi,b̄+d+mā,a+d+mb,k andm′
k, j = mk,b̄+d+mā, j . Symmetric

to case 3-4.
4-4. Supposem′

i,k = mi,b̄+d+mā,a +d+mb,k andm′
k, j = mk,b̄+d+mā,a +d+mb, j .

Because m is closed and by Lemma 4.1:

m′
i,k + m′

k, j = mi,b̄ + d + mā,a + d + mb,k + mk,b̄ + d + mā,a + d + mb, j

≥ mi,b̄ + d + mā,a + d + mb,b̄ + d + mā,a + d + mb, j

≥ mi,b̄ + d + mā,a + d + mb, j ≥ A

4-5. Supposem′
i,k = mi,b̄+d+mā,a +d+mb,k andm′

k, j = mk,a +d+mb,b̄+d+mā, j .
Because m is closed and by Lemma 4.1:

m′
i,k + m′

k, j = mi,b̄ + d + mā,a + d + mb,k + mk,a + d + mb,b̄ + d + mā, j

≥ mi,b̄ + d + mā,a + d + mb,a + d + mb,b̄ + d + mā, j

≥ mi,b̄ + d + mā,a + d + mb,b̄ + d + mā, j

≥ mi,b̄ + d + mā, j ≥ A

5-1. Supposem′
i,k = mi,a+d+mb,b̄+d+mā,k andm′

k, j = mk, j . Symmetric to case 1-5.
5-2. Supposem′

i,k = mi,a+d+mb,b̄+d+mā,k andm′
k, j = mk,a+d+mb, j . Symmetric

to case 2-5.
5-3. Supposem′

i,k = mi,a+d+mb,b̄+d+mā,k andm′
k, j = mk,b̄+d+mā, j . Symmetric

to case 3-5.
5-4. Supposem′

i,k = mi,a +d+mb,b̄+d+mā,k andm′
k, j = mk,b̄+d+mā,a +d+mb, j .

Symmetric to case 4-5.
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5-5. Supposem′
i,k = mi,a +d+mb,b̄+d+mā,k andm′

k, j = mk,a +d+mb,b̄+d+mā, j .
Because m is closed and by Lemma 4.1:

m′
i,k + m′

k, j = mi,a + d + mb,b̄ + d + mā,k + mk,a + d + mb,b̄ + d + mā, j

≥ mi,a + d + mb,b̄ + d + mā,a + d + mb,b̄ + d + mā, j

≥ mi,a + d + mb,b̄ + d + mā, j ≥ A

��
A.2 Proofs for properties of incremental closure

Proof (for Proposition 4.2)

– Supposem′
i, j = mi, j . Becausem is coherent m′

i, j = mj̄ ,ı̄ ≥ m′
j̄ ,ı̄ .

– Suppose m′
i, j = mi,a + d + mb, j . Because m is coherent m′

i, j = mj̄ ,b̄ + d + mā,ı̄ ≥
m′

j̄ ,ı̄ .
– Supposem′

i, j = mi,b̄ + d + mā, j . Similar to the previous case.
– Suppose m′

i, j = mi,b̄ + d + mā,a + d + mb, j . Because m is coherent m′
i, j = mj̄ ,b̄ +

d + mā,a + d + mb,ı̄ ≥ m′
j̄ ,ı̄ .

– Supposem′
i, j = mi,a + d + mb,b̄ + d + mā, j . Similar to the previous case.

Sincem′
i, j ≥ m′

j̄ ,ı̄ it follows m′
j̄ ,ı̄ ≥ m′

i, j hencem′
i, j = m′

j̄ ,ı̄ as required. ��

Proof (for Proposition 4.3) Supposem′ is consistent.ByLemma4.1 it follows thatmb,a+d ≥
0, mā,b̄ + d ≥ 0,mā,a + d + mb,b̄ + d ≥ 0 andmb,b̄ + d + mā,a + d ≥ 0. Therefore

m′
ā,a = min

⎛
⎜⎜⎜⎜⎝

mā,a,

mā,a + d + mb,a,

mā,b̄ + d + mā,a

mā,a + d + mb,b̄ + d + mā,a

mā,b̄ + d + mā,a + d + mb,a

⎞
⎟⎟⎟⎟⎠

= mā,a

Likewise m′
b,b̄ = mb,b̄. Using the same inequalities it follows

m′
i,a = min

(
mi,a,mi,b̄ + d + mā,a

)
m′

b, j = min
(
mb, j ,mb,b̄ + d + mā, j

)
m′

i,b̄ = min
(
mi,b̄,mi,a + d + mb,b̄

)
m′

ā, j = min
(
mā, j ,mā,a + d + mb, j

)

Therefore

m′
i,a + d + m′

b, j = min

⎛
⎜⎜⎝

mi,a + d + mb, j

mi,a + d + mb,b̄ + d + mā, j

mi,b̄ + d + mā,a + d + mb, j

mi,b̄ + d + mā,a + d + mb,b̄ + d + mā, j

⎞
⎟⎟⎠

≥ min

⎛
⎜⎜⎝

mi,a + d + mb, j

mi,a + d + mb,b̄ + d + mā, j

mi,b̄ + d + mā,a + d + mb, j

mi,b̄ + d + mā, j

⎞
⎟⎟⎠ ≥ m′

i, j
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Likewise m′
i,b̄ + d + m′

ā, j ≥ m′
i, j . Now consider

m′
i,a + d + m′

b,b̄ + d + m′
ā, j

= min

⎛
⎜⎜⎝

mi,a + d + mb,b̄ + d + mā, j

mi,a + d + mb,b̄ + d + mā,a + d + mb, j

mi,b̄ + d + mā,a + d + mb,b̄ + d + mā, j

mi,b̄ + d + mā,a + d + mb,b̄ + d + mā,a + d + mb, j

⎞
⎟⎟⎠

≥ min

⎛
⎜⎜⎝

mi,a + d + mb,b̄ + d + mā, j

mi,a + d + mb, j

mi,b̄ + d + mā, j

mi,b̄ + d + mā,a + d + mb, j

⎞
⎟⎟⎠ ≥ m′

i, j

Likewise m′
i,b̄ + d + m′

ā,a + d + m′
b, j ≥ m′

i, j . Thus m′′
i, j = m′

i, j . Now suppose m′ is
not consistent. Sincem′′

i,i ≤ m′
i,i then m′′ is not consistent. ��

A.3 Proofs for incremental strong closure

Proof (forTheorem5.1)Observe thatm′
i,ı̄ = min(mi,ı̄ , (mi,ı̄+mi,ı̄ )/2) = mi,ı̄ and likewise

m′
j,j̄ = m j,j̄ . Therefore

m′
i,ı̄ + m′

j̄ , j

2
= mi,ı̄ + mj̄ , j

2
≥ min

(
mi, j

mi,ı̄+mj̄ , j
2

)
= m′

i, j

Because m is closed 0 = mi,i ≤ mi,ı̄ + mı̄,i and thus

m′
i,i = min(mi,i , (mi,ı̄ + mı̄,i )/2) = min(0, (mi,ı̄ + mı̄,i )/2) = 0

To showm′
i, j ≤ m′

i,k + m′
k, j we proceed by case analysis:

– Supposem′
i,k = mi,k and m′

k, j = mk, j . Becausem is closed:

m′
i, j ≤ mi, j ≤ mi,k + mk, j = m′

i,k + m′
k, j

– Supposem′
i,k �= mi,k andm′

k, j = mk, j . Becausem is closed and coherent:

2m′
i,k + 2m′

k, j = mi,ı̄ + mk̄,k + 2mk, j ≥ mi,ı̄ + mk̄, j + mk, j

= mi,ı̄ + mj̄ ,k + mk, j ≥ mi,ı̄ + mj̄ , j ≥ 2m′
i, j

– Supposem′
i,k = mi,k and m′

k, j �= mk, j . Symmetric to the previous case.
– Supposem′

i,k �= mi,k andm′
k, j �= mk, j . Because m is closed:

2m′
i,k + 2m′

k, j = mi,ı̄ + mk̄,k + mk,k̄ + mj̄ , j

≥ mi,ı̄ + mk̄,k̄ + mj̄ , j = mi,ı̄ + 0 + mj̄ , j ≥ 2m′
i, j

��
Proof (for Proposition 5.1) Let m′′ = Str(m′). Observe m′

i,ı̄ = min(mi,ı̄ , (mi,ı̄ +
mi,ı̄ )/2) = mi,ı̄ and likewise m′

j̄ , j = mj̄ , j . Therefore

m′′
i, j = min(m′

i, j , (m′
i,ı̄ + m′

j̄ , j )/2)
= min(min(mi, j , (mi,ı̄ + mj̄ , j )/2), (mi,ı̄ + mj̄ , j )/2)
= min(mi, j , (mi,ı̄ + mj̄ , j )/2) = m′

i, j

��
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Proof (for Proposition 5.2)

Str(m2
i, j ) = min(m2

i, j ,
m2

i,ı̄+m2
j̄ , j

2 )

≥ min
(
m1

i, j ,
m1

i,ı̄+m1
j̄ , j

2

)
= Str(m1

i, j )

��
Proof (for Proposition 5.3)

m′
i, j = min

(
mi, j ,

mi,ı̄ + mj̄ , j

2

)
≤ mi, j

��
Proof (for Proposition 5.4)

m′
i, j = min(mi, j ,

mi,ı̄ + mj̄ , j

2
) = min(mj̄ ,ı̄ ,

mj̄ , j + mi,ı̄

2
) = m′

j̄ ,ı̄

��
Proof (for Theorem 5.2) We prove that ∀i, j.m′

i, j = m∗
i, j . Pick some i, j .

– Suppose j = ı̄ . Then

m∗
i,ı̄ = min(m†

i,ı̄ ,m†
i,ı̄/2 + m†

i,ı̄/2) = m†
i,ı̄

= min

⎛
⎜⎜⎜⎜⎝

mi,ı̄ ,

mi,a + d + mb,ı̄ ,

mi,b̄ + d + mā,ı̄ ,

mi,b̄ + d + mā,a + d + mb,ı̄ ,

mi,a + d + mb,b̄ + d + mā,ı̄

⎞
⎟⎟⎟⎟⎠

= m′
i,ı̄

– Suppose j �= ı̄ . Then

m∗
i, j = min(m†

i, j ,m†
i,ı̄/2 + m†

j,j̄ /2)

= min(m†
i, j ,m′

i,ı̄/2 + m′
j,j̄ /2)

= min

⎛
⎜⎜⎜⎜⎜⎜⎝

mi, j ,

mi,a + d + mb, j ,

mi,b̄ + d + mā, j ,

mi,b̄ + d + mā,a + d + mb, j ,

mi,a + d + mb,b̄ + d + mā, j ,

(m′
i,ı̄ + m′

j̄ , j )/2

⎞
⎟⎟⎟⎟⎟⎟⎠

= m′
i, j

��
Proof (for Theorem 5.3) Supposema,b + d ≥ 0. Then it is sufficient to show that:

min

⎛
⎜⎜⎜⎜⎜⎜⎝

mi, j ,

mi,a + d + mb, j ,

mi,b̄ + d + mā, j ,

mi,b̄ + d + mā,a + d + mb, j ,

mi,a + d + mb,b̄ + d + mā, j ,

(m′
i,ı̄ + m′

j̄ , j )/2

⎞
⎟⎟⎟⎟⎟⎟⎠

= min

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

mi, j ,

mi,a + d + mb, j ,

mi,b̄ + d + mā, j ,

mi,b̄ + d + mā,a + d + mb, j ,

mi,a + d + mb,b̄ + d + mā, j ,

(mi,a + d + mb,ı̄ + mj̄ , j )/2,
(mi,ı̄ + mj̄ ,a + d + mb, j )/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where

m′
i,ı̄ = min

⎛
⎜⎜⎝
mi,ı̄ ,

mi,a + d + mb,ı̄ ,

mi,b̄ + d + mā,a + d + mb,ı̄ ,

mi,a + d + mb,b̄ + d + mā,ı̄ ,

⎞
⎟⎟⎠

m′
j̄ , j = min

⎛
⎜⎜⎝

mj̄ , j ,

mj̄ ,a + d + mb, j ,

mj̄ ,b̄ + d + mā,a + d + mb, j ,

mj̄ ,a + d + mb,b̄ + d + mā, j ,

⎞
⎟⎟⎠

Using the above, (m′
i,ı̄ + m′

j̄ , j )/2 expands into one of the following cases:

1-1 Suppose m′
i,ı̄ = mi,ı̄ and m′

j̄ , j = mj̄ , j . By strong closure
mi,ı̄+mj̄ , j

2 ≥ mi, j . Thus
this case is redundant.

1-2 Supposem′
i,ı̄ = mi,ı̄ andm′

j̄ , j = mj̄ ,a + d + mb, j . This case is not redundant.
1-3 Suppose m′

i,ı̄ = mi,ı̄ and m′
j̄ , j = mj̄ ,b̄ + d + mā,a + d + mb, j . By strong closure

and coherence:

mi,ı̄ + (mj̄ ,b̄ + d + mā,a + d + mb, j )

2

= mi,ı̄ + mā,a

2
+ 2d + mj̄ ,b̄ + mb, j

2
≥ mi,a + 2d + 2mb, j

2
= mi,a + d + mb, j

1-4 Suppose m′
i,ı̄ = mi,ı̄ and m′

j̄ , j = mj̄ ,a + d + mb,b̄ + d + mā, j . By strong closure
and coherence:

mi,ı̄ + (mj̄ ,a + d + mb,b̄ + d + mā, j )

2

= mi,ı̄ + mb,b̄

2
+ 2d + mj̄ ,a + mā, j

2
≥ mi,b̄ + 2d + 2mā, j

2
= mi,b̄ + d + mā, j

2-1 Supposem′
i,ı̄ = mi,a + d + mb,ı̄ andm′

j̄ , j = mj̄ , j . This case is not redundant.
2-2 Suppose m′

i,ı̄ = mi,a + d + mb,ı̄ and m′
j̄ , j = mj̄ ,a + d + mb, j . Observe that if

x ≤ y then x ≤ (x + y)/2 ≤ y and if y ≤ x then y ≤ (x + y)/2 ≤ x . Thus
(x + y)/2 ≥ min(x, y) hence

(mi,a + d + mb,ı̄ ) + (mj̄ ,a + d + mb, j )

2
≥ min(mi,a + d + mb,ı̄ ,mj̄ ,a + d + mb, j )

Thus this case is redundant.
2-3 Suppose m′

i,ı̄ = mi,a + d + mb,ı̄ and m′
j̄ , j = mj̄ ,b̄ + d + mā,a + d + mb, j . By

coherence and using (x + y)/2 ≥ min(x, y):

(mi,a + d + mb,ı̄ ) + (mj̄ ,b̄ + d + mā,a + d + mb, j )

2

= (mi,a + d + mb, j ) + (mi,b̄ + d + mā,a + d + mb, j )

2
≥ min(mi,a + d + mb, j ,mi,b̄ + d + mā,a + d + mb, j )

Thus this case is redundant.
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2-4 Suppose m′
i,ı̄ = mi,a + d + mb,ı̄ and m′

j̄ , j = mj̄ ,a + d + mb,b̄ + d + mā, j . By
coherence and using (x + y)/2 ≥ min(x, y):

(mi,a + d + mb,ı̄ ) + (mj̄ ,a + d + mb,b̄ + d + mā, j )

2

= (mi,a + d + mb,b̄ + d + mā, j ) + (mi,b̄ + d + mā, j )

2
≥ min(mi,a + d + mb,b̄ + d + mā, j ,mi,b̄ + d + mā, j )

Thus this case is redundant.
3-1 Supposem′

i,ı̄ = mi,b̄ + d + mā,a + d + mb,ı̄ andm′
j̄ , j = mj̄ , j . Symmetric to 1-3.

3-2 Supposem′
i,ı̄ = mi,b̄ +d+mā,a +d+mb,ı̄ andm′

j̄ , j = mj̄ ,a +d+mb, j . Symmetric
to case 2-3.

3-3 Supposem′
i,ı̄ = mi,b̄ +d+mā,a +d+mb,ı̄ andm′

j̄ , j = mj̄ ,b̄ +d+mā,a +d+mb, j .
Then

(mi,b̄ + d + mā,a + d + mb,ı̄ ) + (mj̄ ,b̄ + d + mā,a + d + mb, j )

2

= (mi,b̄ + d + mā,a + d + mb, j ) + (mi,b̄ + d + mā,a + d + mb, j )

2

= (mi,b̄ + d + mā,a + d + mb, j ) + (mi,b̄ + d + mā,a + d + mb, j )

2
= mi,b̄ + d + mā,a + d + mb, j

Thus this case is redundant.
3-4 Supposem′

i,ı̄ = mi,b̄ +d+mā,a +d+mb,ı̄ andm′
j̄ , j = mj̄ ,a +d+mb,b̄ +d+mā, j .

By coherence, strong closure and becausemb,a + d ≥ 0:

(mi,b̄ + d + mā,a + d + mb,ı̄ ) + (mj̄ ,a + d + mb,b̄ + d + mā, j )

2

= mā,a + mb,b̄

2
+ 4d + 2mi,b̄ + 2mā, j

2
≥ mā,b̄ + 2d + mi,b̄ + mā, j

= (mb,a + d) + mi,b̄ + d + mā, j ≥ mi,b̄ + d + mā, j

Thus this case is redundant.
4-1 Suppose m′

i,ı̄ = mi,a + d + mb,b̄ + d + mā,ı̄ and m′
j̄ , j = mj̄ , j . Symmetric to case

1-4.
4-2 Supposem′

i,ı̄ = mi,a +d+mb,b̄ +d+mā,ı̄ andm′
j̄ , j = mj̄ ,a +d+mb, j . Symmetric

to case 2-4.
4-3 Supposem′

i,ı̄ = mi,a +d+mb,b̄ +d+mā,ı̄ andm′
j̄ , j = mj̄ ,b̄ +d+mā,a +d+mb, j .

By coherence, strong closure and becausemā,b̄ + d ≥ 0:

(mi,a + d + mb,b̄ + d + mā,ı̄ ) + (mj̄ ,b̄ + d + mā,a + d + mb, j )

2

= mā,a + mb,b̄

2
+ 4d + 2mi,a + 2mb, j

2
≥ mā,b̄ + 2d + mi,a + mb, j

= (mb,a + d) + mi,a + d + mb, j ≥ mi,a + d + mb, j

Thus this case is redundant.
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4-4 Supposem′
i,ı̄ = mi,a +d+mb,b̄ +d+mā,ı̄ andm′

j̄ , j = mj̄ ,a +d+mb,b̄ +d+mā, j .
By coherence:

(mi,a + d + mb,b̄ + d + mā,ı̄ ) + (mj̄ ,a + d + mb,b̄ + d + mā, j )

2

= (mi,a + d + mb,b̄ + d + mā, j ) + (mi,a + d + mb,b̄ + d + mā, j )

2
= (mi,a + d + mb,b̄ + d + mā, j )

Now suppose thatma,b + d < 0. By Corollary 4.1 IncClose(m, o) is not consistent and
sincem∗ ≤ IncClose(m, o) andm′′ ≤ IncClose(m, o) it follows that bothm∗ andm′′ are
not consistent as required. ��
A.4 Proofs for incremental tight closure

Proof (for Lemma 6.1) Supposem′ is consistent. By Lemma 6.1 it follows thatm′ is closed.
We will now show that m′ is strongly closed i.e ∀i, j.m′

i, j ≤ m′
i,ı̄/2 + m′

j̄ , j/2.

– Supposem′
i,ı̄ = mi,ı̄ andm′

j̄ , j = mj̄ , j . Then

m′
i,ı̄

2
+ m′

j̄ , j

2
= mi,ı̄

2
+ mj̄ , j

2
≥

⌊mi,ı̄

2

⌋
+

⌊mj̄ , j

2

⌋
≥ m′

i, j

– Supposem′
i,ı̄ �= mi,ı̄ and m′

j̄ , j = mj̄ , j . Then

m′
i,ı̄

2
+ m′

j̄ , j

2
= �mi,ı̄

2 � + �mi,ı̄
2 �

2
+ mj̄ , j

2

=
⌊mi,ı̄

2

⌋
+ mj̄ , j

2
≥

⌊mi,ı̄

2

⌋
+

⌊mj̄ , j

2

⌋
≥ mi, j = m′

i, j

– Supposem′
i,ı̄ = mi,ı̄ andm′

j̄ , j �= mj̄ , j . Symmetric to the previous case.
– Supposem′

i,ı̄ �= mi,ı̄ and m′
j̄ , j �= mj̄ , j . Then

m′
i,ı̄

2
+ m′

j̄ , j

2
=

⌊mi,ı̄
2

⌋ + ⌊mi,ı̄
2

⌋

2
+

⌊mj̄ , j
2

⌋ + ⌊mj̄ , j
2

⌋

2

=
⌊mi,ı̄

2

⌋
+

⌊mj̄ , j

2

⌋
≥ m′

i, j

Thus, ifm′ is consistent, it is strongly closed. It remains to show that ∀i.m′
i,ı̄ is even. Observe

that:

m′
i,ı̄ = min(mi,ı̄ ,

⌊mi,ı̄

2

⌋
+

⌊mi,ı̄

2

⌋
) = min

(
mi,ı̄ , 2

⌊mi,ı̄

2

⌋)

– Supposemi,ı̄ is even. Then 2
⌊mi,ı̄

2

⌋ = mi,ı̄ = m′
i,ı̄ which is even.

– Supposemi,ı̄ is odd. Then 2
⌊mi,ı̄

2

⌋ = mi,ı̄ − 1 = m′
i,ı̄ which is even. ��

Proof (for Theorem 6.2) We prove that ∀i, j.mi, j = m′
i, j . Pick some i, j .
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– Suppose j = ı̄ . Then

m∗
i,ı̄ = min(m‡

i,ı̄ ,m‡
i,ı̄/2 + m‡

i,ı̄/2) = m‡
i,ı̄ = 2�m†

i,ı̄/2�

= 2

⎢⎢⎢⎢⎢⎢⎢⎣
min

⎛
⎜⎜⎜⎜⎝

mi,ı̄ ,

mi,a + d + mb,ı̄ ,

mi,b̄ + d + mā,ı̄ ,

mi,b̄ + d + mā,a + d + mb,ı̄ ,

mi,a + d + mb,b̄ + d + mā,ı̄

⎞
⎟⎟⎟⎟⎠

/2

⎥⎥⎥⎥⎥⎥⎥⎦
= m′

i,ı̄

– Suppose j �= ı̄ . Then

m∗
i, j = min(m‡

i, j ,m‡
i,ı̄/2 + m‡

j̄ , j/2) = min(m†
i, j ,m′

i,ı̄/2 + m′
j̄ , j/2)

= min

⎛
⎜⎜⎜⎜⎜⎜⎝

mi, j ,

mi,a + d + mb, j ,

mi,b̄ + d + mā, j ,

mi,b̄ + d + mā,a + d + mb, j ,

mi,a + d + mb,b̄ + d + mā, j ,

(m′
i,ı̄ + m′

j̄ , j )/2

⎞
⎟⎟⎟⎟⎟⎟⎠

= m′
i, j

��
Proof (for Proposition 6.1) Letm′′ = Tighten(m′).

– Suppose j �= ı̄ . Thenm′′
i, j = m′

i, j .

– Suppose j = ı̄ . Thenm′′
i,ı̄ = 2

⌊
m′

i,ı̄
2

⌋
= 2

⌊
2
⌊mi,ı̄

2

⌋

2

⌋
= 2

⌊mi,ı̄
2

⌋ = m′
i,ı̄

��
Proof (for Proposition 6.2)

– Suppose j �= ı̄ . Then Tighten(m2
i, j ) = m2

i, j ≥ m1
i, j = Tighten(m1

i, j ).

– Suppose j = ı̄ . Then Tighten(m2
i,ı̄ ) = 2

⌊
m2

i,ı̄
2

⌋
≥ 2

⌊
m1

i,ı̄
2

⌋
= Tighten(m1

i,ı̄ )

��
Proof (for Proposition 6.3)

– Suppose j = ı̄ . Thenm′
i, j = m′

i,ı̄ ≤ 2
⌊mi,ı̄

2

⌋ = mi,ı̄ = mi, j .
– Suppose j �= ı̄ . Thenm′

i, j = mi, j .

��
Proof (for Proposition 6.4)

– Suppose j = ı̄ . Thenm′
j̄ ,ı̄ = 2

⌊mj̄ ,ı̄
2

⌋ = 2
⌊mi, j

2

⌋ = m′
i, j .

– Suppose j �= ı̄ . Thenm′
j̄ ,ı̄ = mj̄ ,ı̄ = mi, j = m′

i, j .

��
A.5 Proofs for in-place update

Proof (for Corollary 7.1) By Proposition 4.3 it follows m′ = IncClose(m′, o). The result
then follows from Theorem 4.1.
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Proof (for Theorem 7.1) Supposem′ is consistent.
Let k = 0. It vacuously follows that ∀0 ≤ � < k.mk

ρ−1(�)
= m′

ρ−1(�)
. Moreover ∀k ≤ � <

4n2.mk
ρ−1(�)

= mρ−1(�) since m
0 = m.

Now let k > 0 and suppose ρ(i, j) = k and consider

mk+1
i, j = min

⎛
⎜⎜⎜⎜⎝

mk
i, j

mk
i,a + d + mk

b, j

mk
i,b̄ + d + mk

ā, j

mk
i,a + d + mk

b,b̄ + d + mk
ā, j

mk
i,b̄ + d + mk

ā,a + d + mk
b, j

⎞
⎟⎟⎟⎟⎠

If ρ−1(i, a) < k then mk
i,a = m′

i,a whereas if ρ−1(i, a) ≥ k then mk
i,a = mi,a ≥ m′

i,a .
Thus mk

i,a ≥ m′
i,a and likewise mk

b, j ≥ m′
b, j . By Corollary 7.1 it follows mk

i,a + d +
mk

b, j ≥ m′
i,a + d + m′

b, j ≥ m′
i, j . By a similar argument mk

i,b̄ + d + mk
ā, j ≥ m′

i, j ,
mk

i,a+d+mk
b,b̄+d+mk

ā, j ≥ m′
i, j and likewisemk

i,b̄+d+mk
ā,a+d+mk

b, j ≥ m′
i, j .

Since mk
i, j = mi, j ≥ m′

i, j it follows mk+1
i, j ≥ m′

i, j . But mk ≤ m and by Proposi-
tion 4.1mk+1

i, j ≤ m′
i, j hencemk+1

i, j = m′
i, j . Hence it follows∀0 ≤ � < k+1.mk+1

ρ−1(�)
=

m′
ρ−1(�)

. Moreover ∀k + 1 ≤ � < 4n2.mk+1
ρ−1(�)

= mρ−1(�).

Suppose m′ is inconsistent hence m′
i,i < 0. Put k = ρ(i, i). But mk ≤ m and by

Proposition 4.1m4n2
i,i = mk+1

i,i ≤ m′
i,i < 0 as required. ��

Proof (for Lemma 7.1) Supposem′ is consistent. By Proposition 4.2 m′ is coherent.

1. To showm′′
i, j ≤ m′′

i,a + d + m′′
b, j .

– Supposem′′
i,a = m′

i,a andm′′
b, j = m′

b, j . Becausem′ is consistent byCorollary 7.1
it follows:

m′′
i,a + d + m′′

b, j = m′
i,a + d + m′

b, j ≥ m′
i, j ≥ m′′

i, j

– Supposem′′
i,a = (m′

i,ı̄ +m′
ā,a)/2 andm′′

b, j = m′
b, j . Becausem′ is consistent by

Corollary 7.1 it followsm′
ā, j ≤ m′

ā,a + d +m′
b, j andm′

j̄ , j ≤ m′
j̄ ,a + d +m′

b, j .
Hence

m′′
i,a + d + m′′

b, j = (m′
i,ı̄ + m′

ā,a + 2d + 2m′
b, j )/2

≥ (m′
i,ı̄ + m′

ā, j + d + m′
b, j )/2

≥ (m′
i,ı̄ + m′

j̄ , j )/2 ≥ m′′
i, j

– Supposem′′
i,a = m′

i,a andm′′
b, j = (m′

b,b̄ + m′
j̄ , j )/2. Symmetric to the previous

case.
– Suppose m′′

i,a = (m′
i,ı̄ + m′

ā,a)/2 and m′′
b, j = (m′

b,b̄ + m′
j̄ , j )/2. Because m′

is consistent by Corollary 7.1 it follows m′
ā,b̄ ≤ m′

ā,a + d + m′
b,b̄ and m′

i,a ≤
m′

i,a + d + m′
b,a thus 0 ≤ d + m′

b,a . Hence

m′′
i,a + d + m′′

b, j = (m′
i,ı̄ + m′

ā,a + 2d + m′
b,b̄ + m′

j̄ , j )/2

≥ (m′
i,ı̄ + m′

ā,b̄ + d + m′
j̄ , j )/2

≥ (m′
i,ı̄ + m′

j̄ , j )/2 ≥ m′
i, j

2. To showm′′
i, j ≤ m′′

i,b̄ + d + m′′
ā, j . Analogous to the previous case.

3. To showm′′
i, j ≤ m′′

i,b̄ + d + m′′
ā,a + d + m′′

b, j .

123



Form Methods Syst Des

– Supposem′′
i,b̄ = m′

i,b̄ andm
′′
b, j = m′

b, j . Sincem′′
ā,a = m′

ā,a and becausem′ is
consistent by Corollary 7.1 it follows

m′′
i,b̄ + d + m′′

ā,a + d + m′′
b, j

= m′
i,b̄ + d + m′

ā,a + d + m′
b, j ≥ m′

i, j ≥ m′′
i, j

– Suppose m′′
i,b̄ = (mi,ı̄ + mb,b̄)/2 and m′′

b, j = m′
b, j . Because m′ is consistent by

Corollary 7.1 it follows m′
ā, j ≤ m′

ā,a + d + m′
b, j , m′

j̄ , j ≤ m′
j̄ ,a + d + m′

b, j ,
m′

b,a ≤ m′
b,b̄ + d + m′

ā,a and 0 ≤ d + m′
b,a . Therefore

m′′
i,b̄ + d + m′′

ā,a + d + m′′
b, j

= (m′
i,ı̄ + m′

b,b̄ + 2m′
ā,a + 4d + 2m′

b, j )/2

≥ (m′
i,ı̄ + m′

b,b̄ + m′
ā,a + 3d + m′

ā, j + m′
b, j )/2

≥ (m′
i,ı̄ + m′

b,b̄ + m′
ā,a + 2d + m′

j̄ , j )/2

≥ (m′
i,ı̄ + m′

b,a + d + m′
j̄ , j )/2

≥ (m′
i,ı̄ + m′

j̄ , j )/2 ≥ m′′
i, j

– Supposem′′
i,b̄ = m′

i,b̄ andm
′′
b, j = (m′

b,b̄ + m′
j̄ , j )/2. Symmetric to the previous

case.
– Suppose m′′

i,b̄ = (mi,ı̄ + mb,b̄)/2 and m′′
b, j = (m′

b,b̄ + m′
j̄ , j )/2. Because m′ is

consistent by Corollary 7.1 it followsm′
b,a ≤ m′

b,b̄ +d +m′
ā,a and 0 ≤ d +m′

b,a .
Therefore

m′′
i,b̄ + d + m′′

ā,a + d + m′′
b, j

= (m′
i,ı̄ + m′

b,b̄ + 4d + 2m′′
ā,a + 2m′

b,b̄ + m′
j̄ , j )/2

≥ (m′
i,ı̄ + 2m′

b,a + 2d + m′
j̄ , j )/2

≥ (m′
i,ı̄ + m′

j̄ , j )/2 ≥ m′′
i, j

4. To showm′′
i, j ≤ m′′

i,a + d + m′′
b,b̄ + d + m′′

ā, j . Analogous to the previous case.

It therefore follows that m′′′ = m′′. Now suppose m′ is not consistent. Hence m′′ is not
consistent thusm′′′ is not consistent. ��

Proof (for Theorem 7.2) Supposem′ is consistent.
Let k = 0. It vacuously follows that ∀0 ≤ � < k.mk

ρ−1(�)
= m′′

ρ−1(�)
. Moreover ∀k ≤ � <

4n2.mk
ρ−1(�)

= mρ−1(�) since m
0 = m.

Suppose 0 < k and ρ(i, j) = k. Now suppose j = ı̄ . Then

mk+1
i,ı̄ = min

⎛
⎜⎜⎜⎜⎝

mk
i,ı̄ ,

mk
i,a + d + mk

b,ı̄ ,

mk
i,b̄ + d + mk

ā,ı̄ ,

mk
i,b̄ + d + mk

ā,a + d + mk
b,ı̄ ,

mk
i,a + d + mk

b,b̄ + d + mk
ā,ı̄

⎞
⎟⎟⎟⎟⎠

If ρ(i, a) < k then mk
i, j = m′′

i,a otherwise ρ(i, a) ≥ k then mk
i,a = mi,a ≥ m′′

i,a

which implies mk
i,a ≥ m′′

i,a . Likewise mk
b,ı̄ ≥ m′′

b,ı̄ . By Lemma 7.1 and Corollary 7.1
it follows mk

i,a + d + mk
b, j ≥ m′′

i,a + d + m′′
b, j ≥ m′′

i, j . By a similar argument
mk

i,b̄ + d + mk
ā, j ≥ m′′

i, j , mk
i,a + d + mk

b,b̄ + d + mk
ā, j ≥ m′′

i, j and likewise
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mk
i,b̄ + d + mk

ā,a + d + mk
b, j ≥ m′′

i, j . Thus mk+1
i, j ≥ m′′

i, j . Now to show m′′
i, j ≥

mk+1
i, j . Observe

m′′
i,ı̄ = m′

i,ı̄ = min

⎛
⎜⎜⎜⎜⎝

mi, j ,

mi,a + d + mb, j ,

mi,b̄ + d + mā, j ,

mi,b̄ + d + mā,a + d + mb, j ,

mi,a + d + mb,b̄ + d + mā, j

⎞
⎟⎟⎟⎟⎠

≥ min

⎛
⎜⎜⎜⎜⎝

mk
i, j ,

mk
i,a + d + mk

b, j ,

mk
i,b̄ + d + mk

ā, j ,

mk
i,b̄ + d + mk

ā,a + d + mk
b, j ,

mk
i,a + d + mk

b,b̄ + d + mk
ā, j

⎞
⎟⎟⎟⎟⎠

= mk+1
i,ı̄

Hence ∀0 ≤ � < k.mk
ρ−1(�)

= m′′
ρ−1(�). Moreover ∀k + 1 ≤ � < 4n2.mk+1

ρ−1(�)
= mρ−1(�)

follows from the inductive hypothesis and the definition ofmk+1
i, j .

Now suppose that j �= ı̄ . Then 2n < ρ(i, j) and consider

mk+1
i, j = min

⎛
⎜⎜⎜⎜⎜⎜⎝

mk
i, j

mk
i,a + d + mk

b, j

mk
i,b̄ + d + mk

ā, j

mk
i,a + d + mk

b,b̄ + d + mk
ā, j

mk
i,b̄ + d + mk

ā,a + d + mk
b, j ,

(mk
i,ı̄ + mk

j̄ , j )/2

⎞
⎟⎟⎟⎟⎟⎟⎠

Notice that mk
i,ı̄ + mk

j̄ , j/2 = m′′
i,ı̄ + m′′

j̄ , j/2, since ρ(i, ı̄) < 2n ≤ ρ(i, j) = k and
ρ(j̄ , j) < ρ(i, j) = k. By

Lemma 5.1, m′′
i,ı̄ + m′′

j̄ , j/2 ≥ m′′
i, j . Repeating the argument above it follows that

mk
i, j ≥ m′′

i, j Hence ∀0 ≤ � < k.mk
ρ−1(�)

= m′′
ρ−1(�). Now to show m′′

i, j ≥ mk+1
i, j .

Observe that:

m′′
i, j = min

(
m′

i, j ,
mi,ı̄ + mj̄ , j

2

)

= min

⎛
⎜⎜⎜⎜⎝
min

⎛
⎜⎜⎜⎜⎝

mi, j ,

mi,a + d + mb, j ,

mi,b̄ + d + mā, j ,

mi,b̄ + d + mā,a + d + mb, j ,

mi,a + d + mb,b̄ + d + mā, j

⎞
⎟⎟⎟⎟⎠

,
mi,ı̄ + mj̄ , j

2

⎞
⎟⎟⎟⎟⎠

≥ min

⎛
⎜⎜⎜⎜⎝
min

⎛
⎜⎜⎜⎜⎝

mk
i, j ,

mk
i,a + d + mk

b, j ,

mk
i,b̄ + d + mk

ā, j ,

mk
i,b̄ + d + mk

ā,a + d + mk
b, j ,

mk
i,a + d + mk

b,b̄ + d + mk
ā, j

⎞
⎟⎟⎟⎟⎠

,
m′

i,ı̄ + m′
j̄ , j

2

⎞
⎟⎟⎟⎟⎠

= mk+1
i, j

Hence it follows ∀0 ≤ � < k + 1.mk+1
ρ−1(�)

= m′′
ρ−1(�)

. Note ∀k + 1 ≤ � < 4n2.mk+1
ρ−1(�)

=
mρ−1(�) follows from the inductive hypothesis and the definition ofmk+1

i, j .

123



Form Methods Syst Des

Suppose m′ is inconsistent hence m′
i,i < 0. Put k = ρ(i, i). But mk ≤ m and by

Proposition 4.1m4n2
i,i = mk+1

i,i ≤ m′
i,i < 0 as required. ��

Proof (for Lemma 7.2) Suppose m′′′ is consistent. By Proposition 5.3 m′′′ ≤ m′′ and by
Proposition 6.3m′′ ≤ m′ thusm′ is consistent. By Theorem 4.1m′ is closed hencem′

a,a =
m′

b,b = m′
ā,ā = m′

b̄,b̄ = 0. By Corollary 7.1 it follows thatm′
a,b ≤ m′

a,a +d+m′
b,b = d

andm′
b̄,ā ≤ m′

b̄,b̄+d+m′
ā,ā = d thereforem′′′

a,b ≤ d andm′′′
b̄,ā ≤ d . By Proposition 4.2

m′ is coherent hencem′′′ is closed by Lemma 5.1.

– To showm′′′
i,a + d + m′′′

b, j ≥ m′′′
i, j . Since m′′′ is closed it follows

m′′′
i,a + d + m′′′

b, j ≥ m′′′
i,a + m′′′

a,b + m′′′
b, j ≥ m′′′

i,b + m′′′
b, j ≥ m′′′

i, j

– To showm′′′
i,b̄ + d + m′′′

ā, j ≥ m′′′
i, j . Since m′′′ is closed it follows

m′′′
i,b̄ + d + m′′′

ā, j ≥ m′′′
i,b̄ + m′′′

b̄,ā + m′′′
ā, j ≥ m′′′

i,ā + m′′′
ā, j ≥ m′′′

i, j

– To showm′′′
i,a + d + m′′′

b,b̄ + d + m′′′
ā, j ≥ m′′′

i, j . Since m′′′ is closed

m′′′
i,a + d + m′′′

b,b̄ + d + m′′′
ā, j ≥ m′′′

i,a + m′′′
a,b + m′′′

b,b̄ + m′′′
b̄,ā + m′′′

ā, j

≥ m′′′
i,b + m′′′

b,b̄ + m′′′
b̄,ā + m′′′

ā, j

≥ m′′′
i,b̄ + m′′′

b̄,ā + m′′′
ā, j

≥ m′′′
i,ā + m′′′

ā, j ≥ m′′′
i, j

– To showm′′′
i,b̄ + d + m′′′

ā,a + d + m′′′
b, j ≥ m′′′

i, j . Since m′′′ is closed

m′′′
i,b̄ + d + m′′′

ā,a + d + m′′′
b, j ≥ m′′′

i,b̄ + m′′′
b̄,ā + m′′′

ā,a + m′′′
a,b + m′′′

b, j

≥ m′′′
i,ā + m′′′

ā,a + m′′′
a,b + m′′′

b, j

≥ m′′′
i,a + m′′′

a,b + m′′′
b, j

≥ m′′′
i,b + m′′′

b, j ≥ m′′′
i, j

By Proposition 4.3 it follows that m∗ = m′′′. ��

Proof (for Theorem 7.3) Supposem′ is consistent.
Let k = 0. It vacuously follows that ∀0 ≤ � < k.mk

ρ−1(�)
= m′′

ρ−1(�)
. Moreover ∀k ≤

� < 4n2.mk
ρ−1(�)

= mρ−1(�) since m
0 = m. Now let k > 0 and suppose ρ(i, j) = k. Now

suppose that j = ı̄ . Then

mk+1
i, j = 2

⎢⎢⎢⎢⎢⎢⎢⎣
min

⎛
⎜⎜⎜⎜⎝

mk
i,ı̄ ,

mk
i,a + d + mk

b,ı̄ ,

mk
i,b̄ + d + mk

ā,ı̄ ,

mk
i,b̄ + d + mk

ā,a + d + mk
b,ı̄ ,

mk
i,a + d + mk

b,b̄ + d + mk
ā,ı̄

⎞
⎟⎟⎟⎟⎠

/2

⎥⎥⎥⎥⎥⎥⎥⎦

If ρ−1(i, a) < k then mk
i,a = m′′′

i,a whereas if ρ−1(i, a) ≥ k then mk
i,a = mi,a ≥

m′′′
i,a : this implies that mk

i,a ≥ m′′′
i,a and likewise mk

b, j ≥ mb, j . By Lemma 7.2 and
Corollary 7.1 it follows that mk

i,a + d + mk
b, j ≥ m′′′

i,a + d + m′′′
b, j . By a similar

argumentmk
i,b̄+d+mk

ā, j ≥ m′′′
i, j ,mk

i,a +d+mk
b,b̄+d+mk

ā, j ≥ m′′′
i, j and likewise

mk
i,b̄+d+mk

ā,a+d+mk
b, j ≥ m′′′

i, j .Moreover (m′′
i,ı̄+m′′

j̄ , j )/2 ≥ min(m′′
i, j , (m′′

i,ı̄+
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m′′
j̄ , j )/2) = m′′′

i, j . Thusmk
i, j ≥ m′′′

i, j . Now to showm′′′
i, j ≥ mk+1

i, j .

m′′′
i,ı̄ = m′′

i,ı̄ = 2
⌊
m′

i,ı̄/2
⌋ = 2

⎢⎢⎢⎢⎢⎢⎢⎣
min

⎛
⎜⎜⎜⎜⎝

mi,ı̄ ,

mi,a + d + mb,ı̄ ,

mi,b̄ + d + mā,ı̄ ,

mi,b̄ + d + mā,a + d + mb,ı̄ ,

mi,a + d + mb,b̄ + d + mā,ı̄

⎞
⎟⎟⎟⎟⎠

/2

⎥⎥⎥⎥⎥⎥⎥⎦

≥ 2

⎢⎢⎢⎢⎢⎢⎢⎣
min

⎛
⎜⎜⎜⎜⎝

mk
i,ı̄ ,

mk
i,a + d + mk

b,ı̄ ,

mk
i,b̄ + d + mk

ā,ı̄ ,

mk
i,b̄ + d + mk

ā,a + d + mk
b,ı̄ ,

mk
i,a + d + mk

b,b̄ + d + mk
ā,ı̄

⎞
⎟⎟⎟⎟⎠

/2

⎥⎥⎥⎥⎥⎥⎥⎦

= mk+1
i,ı̄

Hence it follows ∀0 ≤ � < k+1.mk+1
ρ−1(�)

= m′′
ρ−1(�)

. Moreover ∀k+1 ≤ � < 4n2.mk+1
ρ−1(�)

=
mρ−1(�) follows from the inductive hypothesis and the definition ofmk+1

i, j .
Now suppose that j �= ı̄ and consider

mk+1
i, j = min

⎛
⎜⎜⎜⎜⎜⎜⎝

mk
i, j

mk
i,a + d + mk

b, j

mk
i,b̄ + d + mk

ā, j

mk
i,a + d + mk

b,b̄ + d + mk
ā, j

mk
i,b̄ + d + mk

ā,a + d + mk
b, j ,

(mk
i,ı̄ + mk

j̄ , j )/2

⎞
⎟⎟⎟⎟⎟⎟⎠

Notice that (mk
i,ı̄ + mk

j̄ , j )/2 ≥ (m′′′
i,ı̄ + m′′′

j̄ , j )/2 since ρ(i, ı̄) < 2n ≤ ρ(i, j) = k
and similarly ρ(j̄ , j) < ρ(i, j) = k. By Lemma 7.2 m′′′

i,ı̄ + m′′′
j̄ , j/2 ≥ m′′′

i, j and thus
(mk

i,ı̄ +mk
j̄ , j )/2 ≥ m′′′

i, j . Repeating the argument above it follows thatmk+1
i, j ≥ m′′′

i, j .
Now to showm′′′

i, j ≥ mk+1
i, j observe:

m′′′
i, j = m′′

i, j = min

(
m′

i, j ,
m′

i,ı̄ + m′
j̄ , j

2

)

= min

⎛
⎜⎜⎜⎜⎝
min

⎛
⎜⎜⎜⎜⎝

mi, j ,

mi,a + d + mb, j ,

mi,b̄ + d + mā, j ,

mi,b̄ + d + mā,a + d + mb, j ,

mi,a + d + mb,b̄ + d + mā, j

⎞
⎟⎟⎟⎟⎠

,
m′

i,ı̄ + m′
j̄ , j

2

⎞
⎟⎟⎟⎟⎠

= min

⎛
⎜⎜⎜⎜⎝
min

⎛
⎜⎜⎜⎜⎝

mk
i, j ,

mk
i,a + d + mk

b, j ,

mk
i,b̄ + d + mk

ā, j ,

mk
i,b̄ + d + mk

ā,a + d + mk
b, j ,

mk
i,a + d + mk

b,b̄ + d + mk
ā, j

⎞
⎟⎟⎟⎟⎠

,
m′

i,ı̄ + m′
j̄ , j

2

⎞
⎟⎟⎟⎟⎠

= mk+1
i, j

Hence it follows ∀0 ≤ � < k + 1.mk+1
ρ−1(�)

= m′′
ρ−1(�)

. Note ∀k + 1 ≤ � < 4n2.mk+1
ρ−1(�)

=
mρ−1(�) follows by inductive hypothesis and definition ofmk+1

i, j .
Suppose m′ is inconsistent hence m′

i,i < 0. Put k = ρ(i, i). But mk ≤ m and by

Proposition 4.1m4n2
i,i = mk+1

i,i ≤ m′
i,i < 0 as required. ��

123



Form Methods Syst Des

References

1. Bagnara R, Hill PM, Zaffanella E (2008) An improved tight closure algorithm for integer octagonal
constraints. In: International conference on verification, model checking, and abstract interpretation.
volume 4905 of LNCS. Springer, pp 8–21

2. Bagnara R, Hill PM, Zaffanella E (2009) Weakly-relational shapes for numeric abstractions: improved
algorithms and proofs of correctness. Form Methods Syst Des 35(3):279–323

3. Banterle F, Giacobazzi R (2007) A fast implementation of the octagon abstract domain on graphics
hardware. In: Static analysis symposium, volume 4634 of LNCS. Springer, pp 315–335

4. Baykan Can A, Fox Mark S (1997) Spatial synthesis by disjunctive constraint satisfaction. Artif Intell
Eng Des Anal Manuf 11(4):245–262

5. Beckschulze E, Kowalewski S, Brauer J (2012) Access-based localization for octagons. Electron Notes
Theor Comput Sci 287:29–40

6. Bellman R (1958) On a routing problem. Q Appl Math 16:87–90
7. Bessiere C (2006) Constraint propagation. In: Rossi F, van Beek P, Walsh T (eds) Handbook of constraint

programming. Elsevier, Amsterdam, pp 39–81
8. Blanchet B, Cousot P, Cousot R, Feret J, Mauborgne L, Miné A, Monniaux D, Rival X (2003) A static

analyzer for large safety-critical software. In: Programming language design and implementation, pp
196–207

9. ChawdharyA, KingA (2017) Compact difference boundmatrices. In: Asian symposium on programming
languages and systems, volume 10695 of LNCS. Springer, pp 471–490

10. Chawdhary A, Robbins E, King A (2014) Simple and efficient algorithms for octagons. In: Asian sym-
posium on programming languages and systems, volume 8858 of LNCS. Springer, pp 296–313

11. Cormen TH, Leiserson CE, Rivest RL (1990) Introduction to algorithms. The MIT Press, Cambridge
12. Dechter R, Meiri I, Pearl J (1991) Temporal constraint networks. Artif Intell 49:61–95
13. Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5(6):345–345
14. GangeG,Navas JA, Schachte P, SøndergaardH, StuckeyPJ (2016)Exploiting sparsity in difference-bound

matrices. In: Static analysis symposium, volume 9837 of LNCS, pp 189–211
15. Halbwachs N, Merchat D, Gonnord L (2006) Some ways to reduce the space dimension in polyhedra

computations. Form Methods Syst Des 29:79–95
16. Heo K, Oh H, Yang H (2016) Learning a variable-clustering strategy for octagon from labeled data

generated by a static analysis. In: Static analysis symposium, volume 9837 of LNCS, pp 237–256
17. Jeannet B,Miné A (2009) Apron: a library of numerical abstract domains for static analysis. In: Computer

aided verification, volume 5643 of LNCS. Springer, pp 661–667
18. Jourdan J-H (2016) Verasco: a formally verified C static analyzer. PhD thesis, Université Paris Diderot

(Paris 7) Sorbonne Paris Cité, May 2016. https://jhjourdan.mketjh.fr/thesis_jhjourdan.pdf
19. Lagarias JC (1985) The computational complexity of simultaneous diophantine approximation problems.

SIAM J Comput 14(1):196–209
20. Lahiri S, Musuvathi M (2005) An efficient decision procedure for UTVPI constraints. In: Frontiers of

combining systems, volume 3717 of LNAI. Springer, pp 168–183
21. Miné A (2004) Weakly relational numerical abstract domains. PhD thesis, École Polytechnique En Infor-

matique. https://www-apr.lip6.fr/~mine/these/these-color.pdf
22. Miné A (2006) The octagon abstract domain. High Order Symb Program 19(1):31–100
23. NethercoteN (2004)Dynamic binary analysis and instrumentation. PhD thesis, TrinityCollege,University

of Cambridge
24. Nieuwenhuis R, Oliveras A (2005) DPLL(T) with exhaustive theory propagation and its application to

difference logic. In: Computer aided verification, volume 3576 of LNCS. Springer, pp 321–334
25. Oh H, Brutschy L, Yi K (2011) Access analysis-based tight localization of abstract memories. In: Inter-

national conference on verification, model checking, and abstract interpretation, volume 6538 of LNCS,
pp 356–370

26. Pelleau M, Miné A, Truchet C, Benhamou F (2013) A constraint solver based on abstract domains. In:
International conference on verification, model checking, and abstract interpretation, volume 7737 of
LNCS. Springer, pp 434–454

27. Pelleau M, Truchet C, Benhamou F (2014) The octagon abstract domain for continuous constraints.
Constraints 19(3):309–337

28. Robbins E, Howe JM, King A (2015) Theory propagation and reification. Sci Comput Program 111(1):3–
22

29. Roy P, PerezG, Régin J-C, Papadopoulos A, Pachet F,MarchiniM (2016) Enforcing structure on temporal
sequences: the Allen constraint. In: Principles and practice of constraint programming, volume 9892 of
LNCS, pp 786–801

123

https://jhjourdan.mketjh.fr/thesis_jhjourdan.pdf
https://www-apr.lip6.fr/~mine/these/these-color.pdf


Form Methods Syst Des

30. Schutt A, Stuckey PJ (2010) Incremental satisfiability and implication for UTVPI constraints. INFORMS
J Comput 22(4):514–527

31. Simon A, King A (2007) Taming the wrapping of integer arithmetic. In: Static analysis symposium,
volume 4634 of LNCS. Springer, pp 121–136

32. Simon A, King A, Howe JM (2010) The two variable per inequality abstract domain. High Order Symb
Program 31(1):182–196. http://kar.kent.ac.uk/30678

33. Singh G, Püschel M, Vechev M (2015) Making numerical program analysis fast. Programming language
design and implementation. ACM Press, New York, pp 303–313

34. Subramani K, Wojciechowski P (2015) A graphical theorem of the alternative for UTVPI constraints. In:
ICTAC, volume 9399 of LNCS. Springer, pp 328–345

35. Warren HS (2002) Hacker’s delight. Addison-Wesley, Boston
36. Warshall S (1962) A theorem on Boolean matrices. J ACM 9(1):11–12

123

http://kar.kent.ac.uk/30678

