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BOUSFIELD LOCALISATIONS ALONG QUILLEN BIFUNCTORS

AND APPLICATIONS

JAVIER J. GUTIÉRREZ AND CONSTANZE ROITZHEIM

Abstract. We describe left and right Bousfield localisations along Quillen

adjunctions of two variables. These localised model structures can be used
to define Postnikov sections and homological localisations of arbitrary model

categories, and to study the homotopy limit model structure on the category

of sections of a left Quillen presheaf of localised model structures. We obtain
explicit results in this direction in concrete examples of towers and fiber prod-

ucts of model categories. In particular, we prove that the category of simplicial

sets is Quillen equivalent to the homotopy limit model structure of its Post-
nikov tower, and that the category of symmetric spectra is Quillen equivalent

to the homotopy fiber product of its Bousfield arithmetic square. For spectral

model categories, we show that the homotopy fiber of a stable left Bousfield
localisation is a stable right Bousfield localisation.

Introduction

Quillen adjunctions between spectra or spaces and other model categories are a
useful way to study homotopy structures. For example, one can gain insight into a
model category C by studying the action of the homotopy category of simplicial sets
Ho(sSet) or the stable homotopy category Ho(Sp) on the homotopy category Ho(C).

In [4] it was studied how this set-up is compatible with homological localisations
of spectra, that is, left Bousfield localisation at E∗-isomorphisms for a homology
theory E. For a stable model category C, [4] constructed a corresponding Bousfield
localisation CE of C, called stable E-familiarisation, with useful universal properties.
Namely, CE is the “closest” model category to C such that every left Quillen functor
Sp → CE factors over E-local spectra LE Sp. In this paper, we take this notion
further by studying the compatibility of Quillen adjunctions of two variables C ×
D→ E with Bousfield localisations of C or D.

Our first application is describing Postnikov sections. For the category of simpli-
cial sets sSet, the model structure Pn sSet for nth Postnikov sections is obtained via
localizing sSet with respect to the map fn : Sn+1 → Dn+2. Using our localisation
construction and combining it with the theory of framings [20] we can now consider
Postnikov sections PnC in model categories C that are not necessarily simplicial.

Together, the model categories PnC for n ≥ 0 form a left Quillen presheaf which
can be used to model Postnikov towers of objects in C. We can then study the notion
of “hypercompleteness” which encodes whether any object in C is the homotopy
limit of its Postnikov tower. The classical result that this is the case for sSet fits
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2 J.J. GUTIÉRREZ AND C. ROITZHEIM

into this framework, as does the non-simplicial example Chb(Z) of bounded below
chain complexes. Moreover, we show that the category of simplicial sets is Quillen
equivalent to the homotopy limit model structure of the left Quillen presheaf for
Postnikov towers; cf. [8, Section 4].

We also turn to applications from classical stable homotopy theory. It is well-
known that any spectrum X can be built, using Bousfield’s arithmetic square [9],
as a homotopy pullback of the diagram of homological localisations

LMZJ
X −→ LMQX ←− LMZK

X,

where J and K form any partition of the set of prime numbers. Furthermore,
the chromatic convergence theorem [26, Theorem 7.5.7] states that a finite p-local
spectrumX is the homotopy limit of its chromatic localisations LE(n)X. We present
categorified versions of these statements. Firstly, we prove that the category Sp is
Quillen equivalent to the homotopy limit model structure of the left Quillen presheaf
for Bousfield arithmetic squares of spectra. Next, we consider the homotopy limit
model structure on the left Quillen presheaf of chromatic towers Chrom(Sp) and
show that the Quillen adjunction

const : Sp −−→←− Chrom(Sp) : lim

induces a composite

Ho(Sp)fin Lconst−−−−→ Ho(Chrom(Sp))F
holim−−−→ Ho(Sp)fin

which is isomorphic to the identity. (Here, F and fin denote suitable finiteness
conditions.) This set-up is a step towards new insights into the structure of the
stable homotopy category.

As a final application we focus on a correspondence between the homotopy fibre
of a left Bousfield localisation C → LSC and certain right Bousfield localisations.
This is then used, among other examples, to understand the layers of the Post-
nikov towers established earlier, and to study the correspondence between stable
localisations and stable colocalisations.

The paper is organised as follows. In Section 1, we recall some terminology and
basic results on locally presentable categories and combinatorial model categories.
In Section 2, we discuss how Quillen bifunctors are compatible with left and right
Bousfield localisations. Given a Quillen adjunction of two variables C × D → E

we describe Bousfield localisations of E based on localisations of C or D and their
universal properties. As particular examples, we recover enriched localisations [5],
enriched colocalisations and E-familiarisations [3, 4]. Section 3 reviews the case
of k-types in combinatorial model categories. Finally, in Section 4, we recall the
injective model structure and the homotopy limit model structure on the category
of sections of a left Quillen presheaf, and we study it in the case of towers and
fiber products of model categories. Finally, we provide an explicit criterion for
hypercompleteness.

Acknowledgements. The first author would like to thank Dimitri Ara for many
useful conversations on some of the topics of this paper, and to Ieke Moerdijk for
suggesting the idea of studying towers of localised model structures. The second au-
thor would like to thank David Barnes for motivating discussions and the Radboud
Universiteit Nijmegen for their hospitality.
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1. Review of combinatorial model categories

In this section, we recall some terminology on locally presentable categories and
combinatorial model categories. The essentials of the theory of locally presentable
categories can be found in [1], [14] or [24]. Foundations on the theory of combina-
torial model categories may be found in [6], [11] and [23].

1.1. Locally presentable categories. Let λ be a regular cardinal. A small cate-
gory I is called λ-filtered if it is nonempty and satisfies the following two conditions:

(i) Given any set of objects {ai | i ∈ I} in I, where |I| < λ, there is an object
a and a morphism ai → a for each i ∈ I.

(ii) Given any set of parallel morphisms {αj : a→ a′ | j ∈ J} in I between two
fixed objects, where |J | < λ, there is a morphism γ : a′ → a′′ such that
γ ◦ αj is the same morphism for all j ∈ J .

An object X of a category C is called λ-presentable if the functor C(X,−) from C

to sets preserves λ-filtered colimits.
A category C is called λ-accessible if λ-filtered colimits exist in C and there is

a set of λ-presentable objects A such that every object of C is a λ-filtered colimit
of objects from A. In fact, if C is λ-accessible, then the collection of isomorphism
classes of λ-presentable objects Cλ is a set, and for every object X, the overcategory
(Cλ ↓ X) is λ-filtered and the canonical map

colim(Cλ ↓ X) −→ X

is an isomorphism. A category is accessible if it is λ-accessible for some regular
cardinal λ.

A full subcategory D of an accessible category C is called is accessibly embedded
if there is a regular cardinal λ such that D is closed under λ-filtered colimits in C.

A cocomplete category C is locally presentable if it is cocomplete and accessible.
Every locally λ-presentable category is equivalent to a full, reflective subcategory
closed under λ-filtered colimits of the category of presheaves on some small category;
see [1, Proposition 1.46].

1.2. Combinatorial model categories. A model category C is cofibrantly gen-
erated if there exists a set IC of generating cofibrations and a set JC of generating
trivial cofibrations that one can use to perform the small object argument (see [19,
Definition 11.1.2] or [20, Definition 2.1.17] for a precise definition).

A homotopy function complex in a model category C is a functorial choice of
a fibrant simplicial set mapC(X,Y ), for every two objects X and Y in C, whose

homotopy type is the same as the diagonal of the bisimplicial set C(X̃, Ŷ), where

X̃ is a cosimplicial resolution of X and Ŷ is a simplicial resolution of Y ; for more
details, see [19, Chapter 17]. Functorial homotopy function complexes exist in every
model category; see [19, Proposition 17.5.18].

Let C be a model category with homotopy function complex mapC(−,−) and
let i : A → B and p : X → Y be two morphisms in C. Then the pair (i, p) is a
homotopy orthogonal pair if the diagram

mapC(B,X) //

��

mapC(B, Y )

��

mapC(A,X) // mapC(A, Y )
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is a homotopy fiber square [19, Definition 17.8.1]. In particular, the pair (∅ →W,p)
is homotopy orthogonal if the induced map

p∗ : mapC(W,X) −→ mapC(W,Y )

is a weak equivalence of simplicial sets.
Recall that a model category is left proper if pushouts of weak equivalences

along cofibrations are weak equivalences, and right proper if pullbacks of weak
equivalences along fibrations are weak equivalences. A model category is proper if
it is left and right proper.

In a cofibrantly generated model category the set of generating cofibrations can
be used to detect weak equivalences. A proof of the following result can be found
in [19, Theorem 17.8.18].

Proposition 1.1. Let C be a cofibrantly generated model category and let IC be a
set of generating cofibrations. Assume that C is left proper or that the domains of
the elements of IC are cofibrant. Then, a map f in C is a weak equivalence if and
only if for every map i in IC the pair (i, f) is a homotopy orthogonal pair. �

A set of homotopy generators for a model category C consists of a small full
subcategory G such that every object of C is weakly equivalent to a filtered homotopy
colimit of objects of G. A set of homotopy generators also detects weak equivalences.

Proposition 1.2. Let C be a model category with homotopy function complex
mapC(−,−) and a set of cofibrant homotopy generators G. Then a map f : X → Y
in C is a weak equivalence if and only if for every G in G the pair (jG, f) is a
homotopy orthogonal pair, where jG denotes the morphism ∅ → G.

Proof. Let jW denote the map ∅ →W . By [19, Theorem 17.7.7] a map f : X → Y
is a weak equivalence if and only if for every object W , where jW denotes the map
∅ →W , that is, if and only if the induced map

f∗ : mapC(W,X) −→ mapC(W,Y )

is a weak equivalence. Let f̂ : X̂ → Ŷ a fibrant approximation. By assumption
every object W is weakly equivalent to a filtered homotopy colimit hocolimGα of
objects of G, and hence [19, Theorem 19.4.2(2)] and [19, Theorem 19.4.4] imply
that

mapC(hocolimGα, X̂) ' holim(mapC(Gα, X̂))

and that the map

holim(mapC(Gα, X̂)) −→ holim(mapC(Gα, Ŷ ))

is a weak equivalence. The result now follows from the fact that homotopy function
complexes are homotopy invariant; see [19, Theorem 17.7.7]. �

Let λ be a regular cardinal. A model category C is called λ-combinatorial if
it is cofibrantly generated and the underlying category is locally λ-presentable. A
model category C is called combinatorial if it is λ-combinatorial for some regular
cardinal λ.

Every combinatorial model category is Quillen equivalent to a left Bousfield
localisation of a category of diagrams of simplicial sets equipped with the projec-
tive model structure [11, Theorem 1.1] and many model categories of interest are
combinatorial. Examples are pointed or unpointed simplicial sets, pointed or un-
pointed motivic spaces, symmetric spectra over simplicial sets [21, § 3.4] or over
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motivic spaces, module spectra over a ring spectrum [27, Theorem 4.1], bounded
or unbounded chain complexes of modules over a ring [20, § 2.3], or any locally
presentable category equipped with the discrete model structure, where the weak
equivalences are the isomorphisms and all morphisms are fibrations and cofibra-
tions.

Dugger also proved in [11, Proposition 4.7] that every combinatorial model cat-
egory has a set of homotopy generators and that, moreover, they can be chosen to
be cofibrant. We denote by C ↓ X the slice category of C over an object X.

Proposition 1.3 (Dugger). Let λ be a regular cardinal and let C be a λ-combinato-
rial model category. Let Cλ the full subcategory of the λ-presentable objects. Then
every object X is a canonical filtered homotopy colimit of objects of Cλ. More
precisely, the canonical map

hocolim(Cλ ↓ X) −→ X

is a weak equivalence. Moreover, there is regular cardinal µ > λ such that the
canonical map

hocolim(Ccof
µ ↓ X) −→ X

is a weak equivalence, where Ccof
µ denotes the full subcategory of Cµ consisting of

the cofibrant objects. �

Given a combinatorial model category C, we will denote by GC the set of cofibrant
homotopy generators given by the previous proposition.

Corollary 1.4. Let C be a combinatorial model category with a set of generating
cofibrations IC and a set of cofibrant homotopy generators GC. Assume that C is
left proper or that the domains of the elements of IC are cofibrant. Then, for every
map f in C, the pair (i, f) is a homotopy orthogonal pair for all i in IC if and only
for every G in GC, the pair (jG, f) is a homotopy orthogonal pair, where jG denotes
the morphism ∅ → G.

Proof. This is a consequence of Proposition 1.1 and Proposition 1.2. �

2. Left and right Bousfield localisations along Quillen bifunctors

In this section we are going to discuss how Quillen bifunctors are compatible
with left and right Bousfield localisation.

2.1. Quillen bifunctors. Let C, D and E be categories. An adjunction of two
variables from C×D to E is given by functors

−⊗− : C×D −→ E,

Homr(−,−) : Dop × E −→ C,

Homl(−,−) : Cop × E −→ D,

and natural isomorphisms

C(X,Homr(Y,Z)) ∼= E(X ⊗ Y, Z) ∼= D(Y,Homl(X,Z)).

We will sometimes denote an adjunction of two variables from C ×D to E just
by the left adjoint C × D → E. The analog notion for model categories appears
in [20, Definition 4.2.1].
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Definition 2.1. Let C, D and E be model categories. An adjunction of two vari-
ables from C×D to E is a Quillen adjunction of two variables if for every cofibration
f : A→ B in C and every cofibration g : X → Y in D, the pushout-product

f�g : B ⊗X
∐
A⊗X

A⊗ Y −→ B ⊗ Y

is a cofibration in E which is a trivial cofibration if f or g are trivial cofibrations.
We will refer to the left adjoint ⊗ of a Quillen adjunction of two variables as a
Quillen bifunctor.

Remark 2.2. There are equivalent formulations of the previous condition satisfied

by a Quillen adjunction of two variables in terms of Hom�
r and Hom�

l , where

Hom�
r and Hom�

l denote the respective adjoints of the pushout-product; see [20,
Lemma 4.2.2].

Remark 2.3. If (⊗,Homr,Homl) is a Quillen adjunction of two variables from C×D
to E and F1 : C′ → C, F2 : D′ → D and F3 : E → E′ are left Quillen functors (with
right adjoints G1, G2 and G3, respectively), then

(F3(F1(−)⊗ F2(−)), G1 Homr(F2(−), G3(−)), G2 Homl(F1(−), G1(−)))

is a Quillen adjunction of two variables from C′ ×D′ to E′.

Example 2.4. Let sSet denote the category of simplicial sets with the Kan–Quillen
model structure. A simplicial model structure on a model category C is the same
as a Quillen bifunctor C× sSet → C. A topological model structure can be defined
similarly, by replacing simplicial sets with the category of compactly generated
Hausdorff spaces equipped with the Quillen model structure.

Let (E,⊗, I,HomE) be a closed symmetric monoidal category. A model structure
on E is called a monoidal model structure if −⊗− : E×E→ E is a Quillen bifunctor
and the unit I is cofibrant.

Let E be a monoidal model category. An E-model category is a category C

enriched, tensored and cotensored over E together with a model structure such that
the tensor, enrichment and cotensor define a Quillen adjunction of two variables.

The following two lemmas are an immediate consequence of the bifunctor ad-
junctions and we state them without proof. We will use the terminology f t g
to indicate that a morphism f has the left lifting property with respect to g (or
that g has the right lifting property with respect to f), that is, f t g if for every
commutative diagram of the form

A

f

��

i // X

g

��

B
p
//

h

??

Y,

there is a diagonal lifting h such that i = hf and p = gh.

Lemma 2.5. Let (⊗,Homr,Homl) be an adjunction of two variables from C ×D

to E and let f , g and h be morphisms in C, D and E, respectively. The following
are equivalent:

(i) (f�g) t h.

(ii) f t Hom�
r (g, h).
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(iii) g t Hom�
l (f, h). �

Lemma 2.6. Let (⊗,Homr,Homl) be an adjunction of two variables from C ×D

to E between model categories.

(i) The following are equivalent:
(a) Given a cofibration f in C and a cofibration g in D, the morphism

f�g is a cofibration in E.
(b) Given a cofibration g in D and a trivial fibration h in E, the morphism

Hom�
r (g, h) is a trivial fibration in C.

(c) Given a cofibration f in C and a trivial fibration h in E, the morphism

Hom�
l (f, h) is a trivial fibration in D.

(ii) The following are equivalent:
(a) Given a trivial cofibration f in C and a cofibration g in D, the mor-

phism f�g is a trivial cofibration in E.
(b) Given a cofibration g in D and a fibration h in E, the morphism

Hom�
r (g, h) is a fibration in C.

(c) Given a trivial cofibration f in C and a fibration h in E, the morphism

Hom�
l (f, h) is a trivial fibration in D. �

Note that if X is cofibrant in C, then X ⊗− is a left Quillen functor with right
adjoint Homl(X,−). Similarly, if Y is cofibrant in D, then −⊗ Y is a left Quillen
functor with right adjoint Homr(−, Y ).

Just as in the case of Quillen functors (see [19, Proposition 8.5.4]) we have the
following result which will be useful to test whether an adjunction of two variables
is a Quillen bifunctor. In order to prove it, we will make use the following key
result, which appears as [22, Lemma 7.14].

Lemma 2.7. A cofibration in a model category is a trivial cofibration if and only if
it has the left lifting property with respect to every fibration between fibrant objects.
Dually, a fibration in a model category is a trivial fibration if and only if it has the
right lifting property with respect to every cofibration between cofibrant objects. �

Proposition 2.8. Let (⊗,Homr,Homl) be an adjunction of two variables from
C⊗D to E between model categories. Suppose that if g is a cofibration (respectively
trivial cofibration) in D and h is a trivial fibration (respectively fibration) in E, then

Hom�
r (g, h) is a trivial fibration in C. Then the following are equivalent:

(i) (⊗,Homr,Homl) is a Quillen adjunction of two variables.

(ii) Given a cofibration g in D and a fibration between fibrant objects ĥ in E,

the morphism Hom�
r (g, ĥ) is a fibration in C.

(iii) Given a cofibration between cofibrant objects g̃ in D and a fibration h in E,

the morphism Hom�
r (g̃, h) is a fibration in C.

(iv) Given a cofibration between cofibrant objects g̃ in D and a fibration between

fibrant objects ĥ in E, the morphism Hom�
r (g̃, ĥ) is a fibration in C.

Proof. It is clear that (i) implies (ii), (iii) and (iv), that (ii) implies (iv) and that
(iii) implies (iv). It then suffices, for example, to prove that (ii) implies (i) and that
(iv) implies (ii).

In order to prove that (ii) implies (i), let g be any cofibration in D and h any

fibration in E. Then Hom�
r (g, h) is a fibration in C if and only if for every triv-

ial cofibration j in C, we have that j t Hom�
r (g, h). But by Lemma 2.5, this
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is equivalent to (j�g) t h, in other words, j�g being a trivial cofibration. By
Lemma 2.6(i), we know that j�g is a cofibration. Hence, by Lemma 2.7 the previ-

ous condition is equivalent to (j�g) t ĥ for ĥ being any fibration between fibrant

objets in E. Again, by Lemma 2.5 this is equivalent to j t Hom�
r (g, ĥ) for ĥ any

fibration between fibrant objects. Since we are assuming that Hom�
r (g, ĥ) is a fi-

bration in C, the last statement is true, so we can conclude that Hom�
r (g, h) is a

fibration for any cofibration g and fibration h as required, which was the missing
part for (⊗,Homr,Homl) to be a Quillen adjunction of two variables.

That part (iv) implies (ii) is proved in a very similar way to the previous point.

Let g be any cofibration in D and let ĥ be a fibration between fibrant objects

in E. Then Hom�
r (g, ĥ) is a fibration in C if and only if j t Hom�

r (g, ĥ) for every

trivial cofibration j in C. By Lemma 2.5 this is equivalent to g t Hom�
l (j, ĥ) for

every trivial cofibration j in C. By Lemma 2.6(ii) the morphism Hom�
l (j, ĥ) is a

fibration, and therefore, by Lemma 2.7, the previous condition is equivalent to g̃ t
Hom�

l (j, ĥ) for every cofibration g̃ between cofibrant objects in D. By adjunction,

this is equivalent to saying that j t Hom�
r (g̃, ĥ) for every trivial cofibration j in C,

every cofibration between cofibrant objects g̃ in D, and every fibration between

fibrant objects ĥ in E. But Hom�
r (g̃, ĥ) is a fibration, by assumption, hence (iv) is

equivalent to (ii), which is what we wanted to prove. �

2.2. Left and right Bousfield localisation. We recall the notion of left Bousfield
localisation and right Bousfield localisation (also called Bousfield colocalisation) for
model categories. Let C be a model category with homotopy function complex
mapC(−,−) and let S be a class of morphisms of C and K a class of objects in
C. We say that an object Z in C is S-local if it is fibrant and for every morphism
f : A→ B in S the induced map

f∗ : mapC(B,Z) −→ mapC(A,Z)

is a weak equivalence of simplicial sets. We say that a map h : X → Y in C is a
K-colocal equivalence if for every object K in K the induced map

h∗ : mapC(K,X) −→ mapC(K,Y )

is a weak equivalence of simplicial sets.
The left Bousfield localisation of C with respect to S (if it exists) is a new model

structure LSC on C such that

(i) the cofibrations of LSC are the same as those of C,
(ii) the weak equivalences of LSC are the S-local equivalences, that is, those

maps g : X → Y such that the induced map

g∗ : mapC(Y, Z) −→ mapC(X,Z)

is a weak equivalence of simplicial sets for every S-local object Z,
(iii) the fibrant objects of LSC are the S-local objects.

The S-local equivalences between S-local objects are weak equivalences in C.
The right Bousfield localisation (or Bousfield colocalisation) of C with respect

to K (if it exists) is a new model structure CKC on C such that

(i) the fibrations of CKC are the same as those of C,
(ii) the weak equivalences of CKC are the K-colocal equivalences,
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(iii) the cofibrant objects of CKC are the K-colocal objects, that is, those objects
W that are cofibrant in C and such that

h∗ : mapC(W,X) −→ mapC(W,Y )

is a weak equivalence of simplicial sets for every K-colocal equivalence h.

The K-colocal equivalences between K-colocal objects are weak equivalences in C.

Remark 2.9. Note that the definition of the S-local objects depends only on the ho-
motopy function complex, which is homotopy invariant. Therefore, we can always
replace the morphisms in S by weakly equivalent ones consisting of cofibrations be-
tween cofibrant objects, without changing the model structure LSC. Hence, without
loss of generality we will often assume that when we localize with respect to a class
of morphisms, these morphisms are cofibrations between cofibrant objects.

Similarly, we can assume without loss of generality that when we colocalise with
respect to a class of objects, they are cofibrant.

There are two main classes of model categories where localisations with respect
to a set of morphisms and colocalisations with respect to a set of objects are
always known to exist. These are the left/right proper cellular model categories
[19, Theorem 4.1.1 and Theorem 5.1.1] and the left/right proper combinatorial
model categories [5, Theorem 4.7 and Proposition 5.13]. If C is left proper and
combinatorial (or cellular) and S is a set of morphisms of C, then LSC is also left
proper and combinatorial (or cellular). If C is right proper and combinatorial (or
cellular) and K is a set of objects of C, then CKC is also right proper, but it is not
cofibrantly generated in general.

Definition 2.10. Let ⊗ : C×D→ E be a Quillen bifunctor, where D is cofibrantly
generated with set of generating cofibrations ID and set of cofibrant homotopy
generators GD. Assume that E is proper and combinatorial and let S and K be sets
of morphisms and objects in C, respectively.

(i) The S-local model structure on E, denoted by LSE, is the left Bousfield
localisation LS�IDE of E with respect to S�ID.

(ii) The K-colocal model structure on E, denoted by CKE is the right Bousfield
localisation CK⊗GD

E of E with respect to K⊗ GD.

Remark 2.11. If (⊗,Homr,Homl) is a Quillen adjunction of two variables from C×D
to E and S is a set of morphisms in D (instead of in C), then we can also define
an S-localised model structure on E as LIC�SE, where IC is the set of generating
cofibrations of C. All the results from this section can be rephrased in terms of a
set of morphisms in D, by suitably replacing Homl by Homr and vice versa. This
is due to the fact that if (⊗,Homr,Homl) is an adjunction of two variables from
C×D to E and τ : D×C→ C×D is the functor that interchanges the components,
then (⊗ ◦ τ,Homl,Homr) is an adjunction of two variables from D× C to E.

Theorem 2.12. Let (⊗,Homl,Homr) be a Quillen adjunction of two variables from
C × D to E. Let S and K be classes of morphisms and objects in C, respectively.
Assume that D is combinatorial with set of generating cofibrations ID and set of
cofibrant homotopy generators GD and that it is either left proper or the domains
of the elements of ID are cofibrant.

(i) The following are equivalent for an object Z of E:
(a) Z is S�ID-local.
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(b) Z is S⊗ GD-local.
(c) Z is fibrant and Homr(G,Z) is S-local for every G in GD.
(d) Z is fibrant and for every f : A→ B in S the induced map

f∗ : Homl(B,Z) −→ Homl(A,Z)

is a weak equivalence in D.
(ii) The following are equivalent for a morphism h : X → Y of E:

(a) h is a K⊗ GD-colocal equivalence.
(b) For every G in GD the induced map

ĥ∗ : Homr(G, X̂) −→ Homr(G, Ŷ )

is a K-colocal equivalence, where ĥ is a fibrant replacement of h.
(c) For every K in K the induced map

ĥ∗ : Homl(K, X̂) −→ Homl(K, Ŷ )

is a weak equivalence in D, where ĥ is a fibrant replacement of h.

Proof. Let Z be any object of E. Then Z is S�ID-local if and only if it is fibrant
and

mapE(B ⊗ Y, Z) −→ mapE(A⊗ Y
∐
A⊗X

B ⊗X,Z)

is a weak equivalence of simplicial sets for every map A → B in S and every
map X → Y in ID. By adjunction and the compatibility of homotopy function
complexes with Quillen pairs (see [19, Proposition 17.4.16]), the previous condition
is equivalent to the diagram

mapD(Y,Homl(B,Z)) //

��

mapD(Y,Homl(A,Z))

��

mapD(X,Homl(B,Z)) // mapD(X,Homl(A,Z))

being a homotopy fiber square. This is the same as saying that for every morphism
A → B in S and every morphism X → Y in ID, the pair given by the morphisms
X → Y and Homl(B,Z)→ Homl(A,Z) is a homotopy orthogonal pair.

By Corollary 1.4 the previous condition amounts to saying that the pair given
by ∅ → G and Homl(B,Z)→ Homl(A,Z) is a homotopy orthogonal pair for every
G in GD, that is,

mapD(G,Homl(B,Z)) −→ mapD(G,Homl(A,Z))

is a weak equivalence. Again by adjunction and the compatibility of homotopy
function complexes with Quillen adjunctions, this is equivalent to saying that

mapE(B ⊗G,Z) −→ mapE(A⊗G,Z)

is a weak equivalence for every G in GD, and this is precisely the condition of Z
being S⊗ GD-local. This proves that (a) and (b) are equivalent.

By adjunction (b) is equivalent to the fact that

mapC(B,Homr(G,Z)) −→ mapC(A,Homr(G,Z))

is a weak equivalence for every map A→ B in S. Hence (b) and (c) are equivalent.
Now, Proposition 1.2 shows that (b) is equivalent to Homl(B,Z)→ Homl(A,Z)

being a weak equivalence in D, which concludes the proof of part (i).
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To prove part (ii), first observe that a morphism h : X → Y is a K⊗ GD-colocal

equivalence if and only if ĥ : X̂ → Ŷ is a K⊗GD-colocal equivalence. This happens
if and only if

mapE(K ⊗G, X̂) −→ mapE(K ⊗G, Ŷ )

is a weak equivalence of simplicial sets for every K in K and every G in GD. As
in the proof of part (i), by adjunction and the compatibility of homotopy function
complexes with Quillen adjunctions, this is equivalent to saying that

mapC(K Homr(G, X̂)) −→ mapC(K,Homr(G, Ŷ ))

is a weak equivalence for every K in K and every G in GD, or that

mapD(GHoml(K, X̂)) −→ mapD(G,Homr(K, Ŷ ))

is a weak equivalence for every K in K and every G in GD. �

Corollary 2.13. Let C, D and E be left proper combinatorial model categories and
let ⊗ : C×D→ E be a Quillen bifunctor. Let S be a set morphisms in C and let GD

be a set of cofibrant homotopy generators of D. Then LSE = LS⊗GD
E.

Proof. The result follows immediately from Theorem 2.12 �

Proposition 2.14. Let C be a combinatorial model category and S a set of mor-
phisms. If JS is a set of generating trivial cofibrations of LSC, then LSC = LJSC.

Proof. This is [23, Proposition A.3.7.4] �

Proposition 2.15. Let C, D and E be left proper combinatorial model categories
and let ⊗ : C × D → E be a Quillen bifunctor. Let S be a set of morphisms in C.
Then ⊗ : LSC×D→ LSE is a Quillen bifunctor.

Proof. By [20, Corollary 4.2.5] it is enough to prove that the pushout-product axiom
holds for the sets of generating cofibrations and trivial cofibrations of LSC and D.
As the cofibrations in LSC and C as well as the cofibrations in LSE and E agree, it
is sufficient to only consider the following case. Let JS be a set of generating trivial
cofibrations of LSC and let ID be a set of generating cofibrations of D. Since the
cofibrations of LSC are the same as those in C, it suffices to prove that if i is in JS
and j is in ID, then i�j is a S�ID-equivalence in C. In fact, we will prove that the
JS�ID-equivalences coincide with the S�ID-equivalences.

Let GD be a set of cofibrant homotopy generators of D. By Theorem 2.12(i),
an object Z of E is S�ID-local if and only if Homr(G,Z) is S-local for every G in
GD. But by Proposition 2.14, S-local objects coincide with JS-local objects. Hence
Homr(G,Z) is JS-local for every G in GD and thus Z is JS�ID-local. �

Proposition 2.16. Let C, D and E be model categories with sets of cofibrant ho-
motopy generators GC, GD and GE, respectively. Suppose that D is left proper and
combinatorial. Let (⊗,Homl,Homr) be a Quillen adjunction of two variables from
C ×D to E and let S be a class of morphisms in C. Let f : X → Y be a map in E

and let f̂ : X̂ → Ŷ be a fibrant approximation to f in LSC
E. If the induced map

f̂∗ : Homr(G, X̂) −→ Homr(G, Ŷ )

is an S-equivalence in C for every G in GD and GE ⊂ GC ⊗ GD, then f is an
S-equivalence in E.
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Proof. By Theorem 2.12(i) the objects Homr(G, X̂) and Homr(G, Ŷ ) are both

S-local. Thus f̂∗ is an S-equivalence between S-local objects and hence a weak
equivalence in C. This implies that

mapC(W,Homr(G, X̂)) −→ mapC(W,Homr(G, Ŷ ))

is a weak equivalence of simplicial sets for every W in GC and every G in GD. By
adjunction and compatibility of homotopy function complexes with Quillen functors
this is equivalent to

mapE(W ⊗G, X̂) −→ mapE(W ⊗G, Ŷ )

being a weak equivalence of simplicial sets for every W in GC and every G in GD.

Since by assumption GE ⊂ GC ⊗ GD, this implies that f̂ is a weak equivalence
in E. Now, by the 2-out-of-3 axiom and the fact that weak equivalences in E are
S-equivalences, it follows that f is an S-equivalence. �

Definition 2.17. Let ⊗ : C×D→ E be a Quillen bifunctor and let S and be a set
of maps in C. We say that E is S-familiar if ⊗ : LSC×D→ E is a Quillen bifunctor.

Remark 2.18. In particular, it follows from Proposition 2.15 that the S-local model
structure LSE is S-familiar.

Proposition 2.19. Let (⊗,Homr,Homl) be a Quillen adjunction of two variables
from C×D to E and let S be a set of maps in C. Then E is S-familiar if and only
if Homr(X,Y ) is S-local for every X cofibrant in D and Y fibrant in E.

Proof. The “only if” part follows from the fact that if E is S-familiar and X is
cofibrant in D, then the functor Homr(X,−) : E→ LSC is right Quillen. Hence, for
every Y fibrant in E, we have that Homr(X,Y ) is fibrant is fibrant in LSC

C, that
is, SC-local.

Conversely, we want to show that if Homr(X,Y ) is S local for every cofibrant X
and fibrant Y , then LSC

C×D→ E is also a Quillen bifunctor. Let f be a cofibration
(respectively, a trivial cofibration) in D and let g be a trivial fibration (respectively,
a fibration) in E. Because C × D → E is assumed to be a Quillen bifunctor, the

map Hom�
r (f, g) is a trivial fibration in C. Therefore, by Proposition 2.8 it suffices

to prove that if f : A → B is a cofibration between cofibrant objects in D and

g : X → Y is a fibration between fibrant objects in E, then Hom�
r (f, g) is a fibration

in LSC. Consider the pullback diagram

Homr(B,X)

Hom�
r (f,g)

**

g∗

((

f∗

--

Homr(B, Y )×Homr(A,Y ) Homr(A,X) //

��

Homr(B, Y )

f∗

��

Homr(A,X)
g∗

// Homr(A, Y ).

The right vertical map f∗ is a fibration in LSC, since it is a fibration in C between
S-local objects (see [19, Proposition 3.3.16]). Since fibrations are closed under
pullbacks, the left vertical map is a also fibration in LSC

. But Homr(A,X) is S-local
(that is, fibrant in LSC) and therefore so is Homr(B, Y )×Homr(A,Y ) Homr(A,X).
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Hence, we have proved that Hom�
r (f, g) is a fibration in C between SC-local

objects. By [19, Proposition 3.3.16] this means that Hom�
r (f, g) is a fibration

in LSC. �

We have seen that for a Quillen bifunctor ⊗ : C×D→ E and a set S of morphisms
in C, the new model structure LSC

E on E gives rise to a Quillen bifunctor

⊗ : LSC×D −→ LSE.

We can now state that this model structure LSE is the “closest” model structure
to E with this property in the following sense.

Proposition 2.20. Let C, D and E be left proper combinatorial model categories
and let ⊗ : C × D → E be a Quillen bifunctor. Let F : E → E′ be a left Quillen
functor and S a set of morphisms in C. If E′ is S-familiar with respect to the
Quillen bifunctor F ◦ ⊗ : C×D→ E→ E′, then

F : LSE −→ E′

is also a left Quillen functor, that is, F factors over the S-localisation of E.

Proof. By Corollary 2.13 we have that LSE = LS⊗GD
E, where GD is a set of cofi-

brant homotopy generators of D. Thus, by [19, Proposition 3.3.18] it is enough to
show that F (f ⊗G) is a weak equivalence in E′ for every f in S and G in GD. But,
by assumption, F ◦ ⊗ : LS × D → E′, is a Quillen bifunctor. Hence F (f ⊗ G) is
a weak equivalence in E′ since f is a weak equivalence in LSC between cofibrant
objects and G is cofibrant in D. �

2.3. Examples.

2.3.1. Enriched localisations and colocalisations. Let V be a monoidal model cate-
gory and let C be a V-enriched model category. Then there is a Quillen adjunction
of two variables C×V→ C. If V is combinatorial, C is left proper combinatorial and
S is a set of maps in C, then the S-localised model structure (see Remark 2.11) is
the V-enriched left Bousfield localisation of C with respect to S, as in [5, Definition
4.42]. Similarly if K is a set of objects in C, then the K-colocalised model structure
of C along the Quillen bifunctor is the enriched right Bousfield localisation of C with
respect to K.

If V = sSet, the category of simplicial sets, then we recover left and right Bous-
field localisations of simplicial model categories.

2.3.2. Familiarisations. Let C be a spectral category. Then there is a Quillen ad-
junction of two variables C × Sp → C, where Sp denotes the model category of
symmetric spectra. Let E be any spectrum and let SE be the set of generating
trivial cofibrations of the E-local model structure LE Sp. Then the SE-localised
model structure on C is the E-familiarisation of C in the sense of [4, Section 5].

If S is a set of morphisms in Sp, then we call the S-localised model structure
on C the stable S-familiarisation.

3. k-types

3.1. The classical case: spaces. We are going to recall some results for Postnikov
towers and k-types in simplicial sets. For details, see [19, Section 1.5]. Note that
in [19] this is formulated for topological spaces rather than simplicial sets, but due
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to the compatibility of localisation with the geometric realisation and total singular
complex functors this will not be an issue; see [19, Section 1.6].

Let fk : Sk+1 −→ Dk+2 denote the morphism in sSet from the (k + 1)-sphere to
the (k+ 2)-disk. We form the left Bousfield localisation of sSet with respect to this
map, obtaining the model structure Lfk sSet. This is called the category of k-types
of simplicial sets. In fact, a simplicial set X is fk-local if and only if it is a Kan
complex and its homotopy groups vanish in degrees k + 1 and higher, for every
choice of basepoint in X. The localisation map

lk : X −→ LfkX,

which is defined as the fibrant replacement of X in Lfk sSet, is a πi-isomorphism
for i ≤ k and every choice of a basepoint in X.

Remark 3.1. The model category Lfk sSet is cofibrantly generated/cellular, since
it is a left Bousfield localisation of a cofibrantly generated/cellular model category;
see for example [19, Theorem 4.1.1].

Proposition 3.2. If a map of fibrant simplicial sets X → Y is a πi-isomorphism
for i ≤ k and every choice of a basepoint in X, then it is an fk-equivalence, that
is, a weak equivalence in Lfk sSet.

Proof. This is [19, Propositions 1.5.2 and 1.5.4]. �

As a consequence of the above, we see that the localisation map lk of a simplicial
set X to its fk-localisation is nothing but the projection of X onto its k-th Postnikov
section PkX. For details on Postnikov sections, see for instance [15, VI.3] or [18,
Section 4.3].

If i ≥ j, then LfjX is fibrant in Lfi sSet, that is, LfjX is fi-local. Hence, there
is a commutative triangle

X

li

��

lj
// PjX

PiX,

;;

since, by definition, li is a trivial cofibration in Lfi sSet.

Furthermore, let X → Y be a weak equivalence in Pk sSet. Consider the com-
mutative square

X //

��

Y

��

PkX // PkY.

We know that the vertical maps are πi-isomorphisms for i ≤ k by definition. As
the top horizontal and the two vertical maps are Pk-equivalences, then so is the
map PkX → PkY . But of course PkX and PkY are Pk-local, so the bottom map
is in fact a πi-isomorphism for all i. Thus, any weak equivalence in Pk sSet is a
πi-isomorphism for i ≤ k. Together with Proposition 3.2 we can conclude that
X → Y is a weak equivalence in Pk sSet if and only if it is a πi-isomorphism
for i ≤ k.
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3.2. The general case. Let C be now a simplicial, left proper, combinatorial
model category. Again, by fk we denote the map Sk+1 → Dk+2 in simplicial sets,
and denote Wk = IC�fk, where IC denotes the set of generating cofibrations in C.
We then form the Bousfield localisation PkC = LWk

C which we will call the model
structure for k-types in C.

When C is a model category that is not necessarily simplicial, we can still define
the model structure for k-types in C. In this case we use the technique of framings;
see [20, Section 5] or [2, Section 3] for details. Framings provide any model category
C with bifunctors

−⊗− : C× sSet −→ C,

(−)(−) : sSetop×C −→ C,

mapl(−,−) : Cop × C −→ sSet,

mapr(−,−) : Cop × C −→ sSet,

and adjunctions

C(X ⊗K,Y ) ∼= sSet(K,mapl(X,Y )) and Cop(Y K , X) ∼= sSet(K,mapr(X,Y )).

The homotopy function complex mapC(−,−) agrees with the derived functors
Rmapl(−,−) and Rmapr(−,−). Moreover, if X is a cofibrant object in C and
Y is a fibrant object in C, then

X ⊗− : sSet
//
C : mapl(X,−)oo and Y (−) : sSet

//
Cop : mapr(−, Y ).oo

are Quillen pairs; see [20, Corollary 5.4.4].
Note that a framing does not provide C with a simplicial model structure though,

as mapl and mapr only agree up to a zig-zag of weak equivalences [20, Proposi-
tion 5.4.7]. However, it does mean that Ho(C) is a closed Ho(sSet)-module category.
If C is already a simplicial model category, the action from the simplicial structure
agrees with the Ho(sSet)-action coming from framings. In our previous notation, for
a simplicial model category C, the simplicial enrichment Map(−,−) = Homl(−,−)
coincides with mapl(−,−) and mapr(−,−), and the cotensor is Homr(−,−).

Thus, if our model category C is not simplicial we can define Wk = IC�fk just
as before, where the pushout-product is constructed using the functor ⊗ coming
from the framing.

Remark 3.3. If C is a pointed model category, then it is equipped with a pointed
framing [20, Section 5.7], where the category of simplicial sets is replaced by pointed
simplicial sets sSet∗.

Definition 3.4. Let C be a left proper combinatorial model category. We call
PkC = LWk

C the model category of k-types in C. An object of C is called a k-type
if it is Wk-local, that is, fibrant in PkC.

Before we look further into the properties of this localisation, we need an ana-
logue of Theorem 2.12(ii) using framings.

Proposition 3.5. Let C be a combinatorial, left proper model category with gen-
erating cofibrations IC and set of cofibrant homotopy generators GC. Furthermore,
let S be a class of maps in sSet. Then the following are equivalent for an object Z
of C:

(i) Z is IC�S-local
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(ii) Z is GC ⊗ S-local
(iii) Z is fibrant and mapC(G,Z) is SC-local for every G in GC.
(iv) Z is fibrant and for every g : X → Y in S the induced map

g∗ : ZY −→ ZX

is a weak equivalence in C.

Proof. The proof follows exactly the same pattern as Theorem 2.12(ii), so we are
not spelling it out here. The occurring functors ⊗, Homr and Homl have been
replaced by the functors ⊗, (−)(−), mapl and mapr coming from framings. The
only properties needed are that when X is cofibrant and Y is fibrant in C, the
adjunctions (X ⊗ −,mapl(X,−)) and (Y (−),mapr(−, Y )) are Quillen pairs, and
that mapl(X,Y ) is weakly equivalent to mapr(X,Y ); see [20, Proposition 5.4.7].
As the homotopy mapping objects are also derived from framings, these are all
compatible and the necessary adjunctions hold just as before. �

Proposition 3.6. Let C be a left proper combinatorial model category with set of
cofibrant homotopy generators GC. A fibrant object Z of C is a k-type if and only if
πi(mapC(X,Z)) = 0 for all X in C and i > k, or equivalently, πi(mapC(G,Z)) = 0
for all G in GC and i > k.

Proof. By Proposition 3.5 we have that Z is Wk-local if and only if Z is fibrant in C

and mapC(G,Z) is a k-type in sSet for every G in GC. Since every object in C is
weakly equivalent to a homotopy colimit of objects of GC and those commute with
homotopy function complexes, the result follows. �

In combination with Proposition 3.5 we also have the following.

Corollary 3.7. Let C be a left proper combinatorial model category with set of
cofibrant homotopy generators GC, and let fk : Sk+1 → Dk+2 in sSet. Then the
model category of k-types PkC coincides with LGC⊗fkC. �

Remark 3.8. When C is a simplicial model category, then model structure PkC
agrees with the model structure for k-types defined by Barwick in [5, Proposi-
tion 5.28].

In the context of familiarisation as defined by [4], one would define PkC to
be LIC�Jfk

C where Jfk denotes the generating acyclic cofibrations of Lfk sSet.

However, those two model structures agree since Lfk sSet = LJfk sSet by Proposi-

tion 2.14. The reason one works with the acyclic cofibrations in [4] is to actually
cut down the localised weak equivalences of some LS sSet to a generating set if S
is not a set. However, in our case we only localize simplicial sets at one morphism,
making this technicality unnecessary.

Proposition 3.9. Let C be a left proper combinatorial model category. The model
category of k-types PkC has the following properties:

(i) Every Quillen adjunction sSet � C gives rise to a Quillen adjunction
Lfk sSet � PkC, and PkC is the closest model structure to C with this
property. This means that if C � D is a Quillen adjunction such that the
composite sSet� D factors over Lfk sSet, then PkC� D is also a Quillen
adjunction.

(ii) If C is a simplicial model category, then PkC is a Lfk sSet-model category.
(iii) For every k ≥ 0 the model structures PkPk+1C and PkC coincide.



BOUSFIELD LOCALISATIONS ALONG QUILLEN BIFUNCTORS AND APPLICATIONS 17

Proof. Let F : sSet � C : U be a Quillen adjunction. By [19, Proposition 3.3.18],
in order for this to be a Quillen adjunction between Lfk sSet and PkC, we need
to show that F (fk) is a weak equivalence in PkC. By [20, Chapter 5], all Quillen
adjunctions arise from framings, that is, they are of the form F = A⊗− for some
A ∈ C. (Every adjunction between sSet and C is of the form (A•⊗−,Hom(A•,−))
for some cosimplicial object A• ∈ C∆, and every Quillen adjunction is given by a
framing on A•[0] = A; see [20, Proposition 3.1.5 and Section 5.2] and [2, Section 3].)
So we have to show that A⊗ fk is a weak equivalence in PkC. By Proposition 3.5,
all maps of the form G⊗ fk are weak equivalences for all generators G ∈ G. But as
every A is a filtered colimit of such generators, and −⊗fk commutes with colimits,
A⊗ fk is a weak equivalence as well.

Now let F ′ : C� D : U ′ be another Quillen adjunction such that F ′(F (fk)) is a
weak equivalence in D for any left Quillen functor F as before. This means that
F ′(A ⊗ fk) is a weak equivalence in D for any A ∈ C. So in particular, F ′ sends
all morphisms G⊗ fk to weak equivalences, where G ∈ G. As PkC = LG⊗fkC, this
means that F ′ sends all the weak equivalences in PkC to weak equivalences in D,
which is what we wanted to prove.

Part (ii) follows from Proposition 2.15(ii), and part (iii) follows from the fact that
both model structures have the same cofibrations and the same fibrant objects. This
last point can be easily checked using the characterisation of local objects given in
Proposition 3.5. �

Before we move on to the next result, let us note the following. The fact that
a model category is λ-presentable only depends on the underlying category, not on
its model structure. Also, the left Bousfield localisation of a cofibrantly generated
model category is again cofibrantly generated. Thus, if a model category is com-
binatorial, so is any left Bousfield localisation of it. Also, as Bousfield localisation
does not change cofibrations and preserves weak equivalences, if GC is a set of ho-
motopy generators for a combinatorial model category C, then GC will also be a set
of homotopy generators for any left Bousfield localisation of C.

We can now characterise the weak equivalences of PkC.

Proposition 3.10. Let f : X → Y be a morphism in C. If its fibrant replacement

f̃ : X̃ → Ỹ in PkC induces a weak equivalence

f̃∗ : mapC(G, X̃) −→ mapC(G, Ỹ )

in Lfk sSet for all homotopy generators G in GC, then the morphism f is a weak
equivalence in PkC.

Proof. We have that GC ⊂ GC⊗GsSet as we can, without loss of generality, add the
single point to GsSet. Thus, the statement follows from Proposition 2.16. Note that
if C is not simplicial, then we have to replace the mapping objects in that proof by
the mapping objects given by framings. �

Corollary 3.11. If f : X → Y is a morphism in C such that its fibrant replacement

f̃ : X̃ → Ỹ in PkC induces an isomorphism

πi(f̃∗) : πi(mapC(G, X̃)) −→ πi(mapC(G, Ỹ ))

for all i ≤ k and homotopy generators G in GC, then f is a weak equivalence
in PkC. �
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3.3. Example: S-local simplicial sets. Let us consider the example of left Bous-
field localisations of pointed simplicial sets, C = LS sSet∗. We can easily describe
Postnikov sections in this model category. By definition, PkLS sSet∗ = LWk

LS sSet∗
where Wk = ILS sSet∗�fk and fk : Sk+1 → Dk+2. As the generating cofibrations
ILS sSet∗ of LS sSet∗ are the same as the generating cofibrations of sSet∗ we can
conclude that

PkLS sSet∗ = LfkLS sSet∗ .

Thus, X is fibrant in PkLS sSet∗ if and only if it is a Kan complex, S-local and
πiX = πiLSX = 0 for i > k.

3.4. Example: k-types in chain complexes. We are going to apply the results
from the previous section to the category of bounded chain complexes of R-modules,
Chb(R), where R is a commutative ring with unit. This is a particularly interesting
example as it concerns a model category that is not simplicial. We are going to
describe the k-types in Chb(R) as well as describe some of the weak equivalences.
The results are just what one would expect and fit very neatly with our general
setup.

Let Chb(R) denote the category of bounded chain complexes of R-modules with
the standard projective model structure; see [13, Section 7]. The weak equivalences
are given by quasi-isomorphisms, fibrations are morphisms which are surjective
in positive degrees, and cofibrations are monomorphisms with projective coker-
nel in every degree. Consider the model category of k-types of chain complexes,
Pk Chb(R). According to Definition 3.4, this is the left Bousfield localisation with
respect to the set

Wk = IChb(R)�{fk : Sk+1 −→ Dk+2}.
Now the generating cofibrations in the standard projective model structure are
given by the inclusions

IChb(R) = {Sn−1 −→ Dn | n ≥ 1},

where Sn−1 denotes the chain complex which is R in degree n − 1 and zero ev-
erywhere else, and Dn denotes the chain complex with R in degrees n − 1 and n
with the identity differential between them, and zero everywhere else. To avoid
notational confusion with the sphere and disk in spaces, we will use bold face for
these.

Recall that the suspension functor Σ in a pointed model category C can be
defined using pointed framings; see [20, Definition 6.1.1]. If X is a cofibrant object
then ΣX = X ⊗ S1, that is, ΣX is the pushout of the diagram

X ⊗ ∂∆[1] //

��

X ⊗∆[1]

∗
In the category Chb(R), the suspension is given by shifting. Hence, putting this
into the above definition, we obtain

Wk = {Sn+k+1 −→ Dn+k+2 | n ≥ 0},
so Pk Chb(R) is just localizing Chb(R) at the map gk : Sk+1 → Dk+2. Note that
local equivalences are closed under (positive) suspensions, and hence localizing with
respect to gk is the same as localizing with respect to {Σngk | n ≥ 0} = Wk.
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Proposition 3.12. A fibrant chain complex M in Chb(R) is a k-type if and only
if Hi(M) = 0 for all i > k.

Proof. The chain complex M is gk-local if and only if

πi(mapChb(R)(Dk+2,M)) −→ πi(mapChb(R)(Sk+1,M))

is an isomorphism for all i ≥ 0. By adjunction, this is equivalent to

[Di+k+2,M ] −→ [Si+k+1,M ]

being an isomorphism for all i ≥ 0, where the square brackets denote morphisms
in the derived category Db(R). But as the chain complex Di+k+2 is acyclic and the
right hand side equals the homology Hi+k+1(M) of M , the above is equivalent to
Hi(M) = 0 for all i > k. �

We can now say something about the weak equivalences in Pk Chb(R). Recall
that if M is a chain complex in Chb(R), we denote by M [n] the n-fold suspension
of M .

Proposition 3.13. Let f : M → N be a morphism of chain complexes such that
Hi(f) is an isomorphism for 0 ≤ i ≤ k. Then f is a weak equivalence in Pk Chb(R).

Proof. This is very similar to [19, Proposition 1.5.2]. Without loss of generality, let
f : M → N be a cofibration of chain complexes, that is, a degreewise monomorphism
with projective cokernel.

We know that f is a weak equivalence in Pk Chb(R) if and only if

mapChb(R)(N,Z) −→ mapChb(R)(M,Z)

is an acyclic fibration in simplicial sets for all gk-local Z; see [19, Section 1.3.1].
This is equivalent to having a lift in the diagram

∂∆[n] //

��

mapChb(R)(N,Z)

��

∆[n] //

77

mapChb(R)(M,Z)

for all n ≥ 0. By adjunction, this is equivalent to having a lift in the diagram

M ⊗∆[n]
∐

M⊗∂∆[n]

N ⊗ ∂∆[n] //

��

Z

��

N ⊗∆[n] //

66

0

for all n ≥ 0.
We know by Proposition 3.12 that Hj(Z) = 0 for j ≥ k + 1. Moreover, the

pushout in the top left corner of the diagram is a shift of the mapping cone of f
(that is, M [n+ 1]⊕N [n]), whereas the bottom left corner is a shift of the cone of
Y (that is, N [n+ 1]⊕N [n]). Thus, the left vertical map is also a cofibration that
is a homology isomorphism in degrees 0 to k + 1 (rather than just k). This means
that we have a square in Chb(R) where the left vertical map is a cofibration and
the right vertical map a fibration. In order to have the desired lift, one of those
maps would have to be a homology isomorphism.
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As the left vertical map is a homology isomorphism in degrees 0 to k + 1, we
can use methods analogous to [13, Section 7.7] to construct a lift in those degrees.
Then we can use the same method as in [13, Section 7.5] to inductively construct
the lift from degrees k + 2 onwards, which uses that Hj(N) = 0 for j ≥ k + 1.

So we have constructed a lift in the above square, which means that f : M → N
is a weak equivalence in Pk Chb(R). �

As a consequence of Proposition 3.12 and Proposition 3.13 we get the following.

Corollary 3.14. If M is a chain complex in Chb(R), then the Wk-localisation is
given by the k-truncation τ≥kM of X, defined by

(τ≥kM)n =

 Mn if n < k,
Mk/Bk if n = k,

0 if n > k,

where Bk = im(dk) denotes the group of k-boundaries. �

4. Towers and fiber products of model categories

In this section we recall the injective model structure on the category of sections
of diagrams of model categories. We will state the existence of this model structure
in general, although we will be mainly interested in the cases of sections of towers
and fiber products of model categories. Details about these model structures can
be found in [5, Section 2, Application II], [7], [8], [16, Section 3] and [28, Section 4].

Let I be a small category. A left Quillen presheaf on I is a presheaf of categories
F : Iop → CAT such that for every i in I the category F (i) has a model structure,
and for every map f : i → j in I the induced functor f∗ : F (j) → F (i) has a right
adjoint and they form a Quillen pair.

Definition 4.1. A section of a left Quillen presheaf F : Iop → CAT consists of a
tuple X = (Xi)i∈I, where each Xi is in F (i), and, for every morphism f : i→ j in
I a morphism ϕf : f∗Xj → Xi in F (i) such that the diagram

(f ◦ g)∗Xk

ϕf◦g
//

f∗ϕg

��

Xi

f∗Xj

ϕf

::

commutes for every pair of composable morphisms f : i→ j and g : j → k.
A morphism of sections φ : (X,ϕ)→ (Y, ϕ′) is given by morphisms φi : Xi → Yi

in F (i) such that the diagram

f∗Xj

f∗φj
//

ϕf

��

f∗Yj

ϕ′f

��

Xi
φi

// Yi

commutes for every morphism f : i→ j in I.
A section (X,ϕ) is called homotopy cartesian if for every f : i→ j, the morphism

ϕf : f∗Xj → Xi is a weak equivalence in F (i).
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As proved in [5, Theorem 2.30], the category of sections admits an injective
model structure.

Theorem 4.2. Let F : Iop → CAT be a left Quillen presheaf such that F (i) is
combinatorial for every i in I. Then there exists a combinatorial model structure
on the category of sections of F , denoted by Sect(I, F ) and called the injective
model structure, such that a morphism of sections φ is a weak equivalence or a
cofibration if φi is a weak equivalence or a cofibration in F (i) for every i in I,
respectively. Moreover, if F (i) is left or right proper for every i ∈ I, then so is the
model structure on Sect(I, F ). �

Now, in order to model the homotopy limit of a diagram of left Quillen presheaf,
we would like to construct a model structure on the category of sections whose
cofibrant objects are precisely the levelwise cofibrant homotopy cartesian sections.
This will be done by taking a right Bousfield localisation of Sect(I, F ). The resulting
model structure will be called the homotopy limit model structure.

The existence of the homotopy limit model structure as a right model structure
is proved in [5, Theorem 5.25]. It follows directly from that result that if F (i) is
right proper for every i in I, then we get a full model structure. For the reader’s
convenience we spell this out in a little more detail.

Theorem 4.3. Let F : Iop → CAT be a left Quillen presheaf such that F (i) is
right proper and combinatorial for every i in I. Then there exists a combinatorial
model structure on the category of sections of F , called the homotopy limit model
structure, with the same fibrations as Sect(I, F ) and whose cofibrant objects are the
sections that are cofibrant in Sect(I, F ) and homotopy cartesian. �

Proof. Let D be the full subcategory of Sect(I, F ) consisting of the homotopy carte-
sian sections. Consider the functor

Φ: Sect(I, F ) −→
∏

f : i→j

Arr(F (i))

defined as Φ((Xi)i∈I) =
∏
f : i→j ϕf , where f runs over all morphisms of I and

Arr(−) denotes the category of arrows.
The categories Sect(I, F ) and

∏
f : i→j Arr(F (i)) are accessible (in fact, they

are locally presentable; see [1, Corollary 1.54]) and the functor Φ is an accessible
functor since it preserves all colimits (they are computed levelwise). Hence Φ is an
accessible functor between accessible categories.

Each F (i) is combinatorial for every i in I, and hence by [23, Corollary A.2.6.6]
the subcategory of weak equivalences weq(F (i)) is an accessible and accessibly
embedded subcategory of Arr(F (i)). Therefore,

∏
f : i→j weq(F (i)) is an accessible

and accessibly embedded subcategory of
∏
f : i→j Arr(F (i)). By [1, Remark 2.50],

the preimage Φ−1(
∏
f : i→j weq(F (i))) is an accessible and accessibly embedded

subcategory of Sect(I, F ). But this preimage is precisely D.
Now, since D is accessible there exists a set K and a regular cardinal λ such

that every object of D is a λ-filtered colimit (and hence a homotopy colimit if we
choose λ big enough; see [11, Proposition 7.3]) of objects in K. Moreover, since D

is accessibly embedded this homotopy colimit lies in D.
The homotopy limit model structure is then the right Bousfield localisation

RK Sect(I, F ). (We can perform this right Bousfield localisation because every
F (i), and hence Sect(I, F ) are right proper.) The fact that the cofibrant objects of



22 J.J. GUTIÉRREZ AND C. ROITZHEIM

this new model structure are precisely the levelwise cofibrant homotopy cartesian
sections follows from [19, Theorem 5.1.5]. �

4.1. Towers of model categories. Let N be the category 0 → 1 → 2 → · · · .
A tower of model categories is a left Quillen presheaf F : Nop → CAT. The objects
of the category of sections are then sequences X0, X1, . . . , Xn, . . ., where each Xi

is an object of F (i), together with morphisms ϕi : f
∗Xi+1 → Xi in F (i) for every

i ≥ 0, where f : i→ i+ 1 is the unique morphism from i to i+ 1 in N. A morphism
between two sections φ• : X• → Y• consist of morphisms φi : Xi → Yi in F (i) such
that the diagram

f∗Xi+1
//

f∗φi+1

��

Xi

φi

��

f∗Yi+1
// Yi

commutes for every i ≥ 0.

Proposition 4.4. Let F : Nop → CAT be a tower of model categories, where each
F (i) is a combinatorial model category for every i ≥ 0. There exist a combinato-
rial model structure on the category of sections, denoted by Sect(Nop, F ), where a
map φ• is a weak equivalence or a cofibration if for every i ≥ 0 the map φn is a
weak equivalence or a cofibration in F (i), respectively. The fibrations are the maps
φ• : X• → Y• such that φ0 is a fibration in F (0) and

Xi+1 −→ Yi+1 ×f∗Yi
f∗Xi

is a fibration in F (i+ 1) for every i ≥ 0, where f∗ denotes the right adjoint to f∗.
The fibrant objects are those sections X• such that Xi is fibrant in F (i) and the
morphism

Xi+1 −→ f∗Xi

is a fibration in F (i+ 1) for every i ≥ 0.

Proof. The existence of the required model structure follows from Theorem 4.2.
The description of the fibrations follows from [16, Theorem 3.1]. �

Proposition 4.5. Let F : Nop → CAT be a tower of model categories, where each
F (i) is combinatorial and right proper for every i ≥ 0. Then there is a model
structure Tow(F ) on the category of sections of F with the following properties:

(i) A morphism φ• is a fibration in Tow(F ) if φ• is a fibration in Sect(Nop, F ).
(ii) A section X• is cofibrant in Tow(F ) if Xi is cofibrant in F (i) and the

morphism f∗Xi+1 → Xi is a weak equivalence in F (i) for every i ≥ 0.
(iii) A morphism φ• between cofibrant sections is a weak equivalence in Tow(F )

if and only if φi is weak equivalence in F (i) for every i ≥ 0.

Proof. The existence of the model structure Tow(F ) follows from Theorem 4.3
applied to the left Quillen presheaf F . The characterisation of the weak equivalences
between cofibrant objects follows since Tow(F ) is a right Bousfield localisation of
Sect(Nop, F ). �
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4.2. Postnikov towers. Let C be a left proper combinatorial model category and,
for every n ≥ 0, consider the model structure PnC of n-types in C as described in
Section 3.2. For every n < m the identity is a left Quillen functor PmC → PnC.
Thus we have a tower of model categories P•C : Nop → CAT. The objects X• of
the category of sections are sequences

· · · −→ Xn −→ · · · −→ X2 −→ X1 −→ X0

of morphisms in C, and its morphisms f• : X• → Y• are given by commutative
ladders

· · · // Xn
//

fn

��

· · · // X2
//

f2

��

X1
//

f1

��

X0

f0

��

· · · // Yn // · · · // Y2
// Y1

// Y0.

By Proposition 4.4, if C is a left proper combinatorial model category, then
there exist a left proper combinatorial model structure on the category of sections
Sect(Nop, P•C), where a map f• is a weak equivalence or a cofibration if for every
n ≥ 0 the map fn is a weak equivalence or a cofibration in PnC, respectively. The
fibrations are the maps f• : X• → Y• such that f0 is a fibration in P0C and

Xn −→ Yn ×Yn−1
Xn−1

is a fibration in PnC for every n ≥ 1. The fibrant objects can be characterised as
follows:

Lemma 4.6. Let X• be a section of P•C. The following are equivalent:

(i) X• is fibrant in Sect(Nop, P•C).
(ii) X0 is fibrant in P0C and Xn+1 → Xn is a fibration in Pn+1C for all n ≥ 0.

(iii) Xn is fibrant in PnC and Xn+1 → Xn is a fibration in C for all n ≥ 0.

Proof. This follows because a fibration in PnC is also a fibration in Pn+1C as well
as a fibration in C. �

If the model structures for n-types PnC are right proper for every n ≥ 0, then
by Proposition 4.5, the model structure Tow(P•C) exists and will be denoted by
Post(C). It has the following properties:

(i) A morphism f• is a fibration in Post(C) if f• is a fibration in Sect(Nop, P•C).
(ii) A section X• is cofibrant if Xn is cofibrant in C and Xn+1 → Xn is a weak

equivalence in PnC for every n ≥ 0.
(iii) A morphism f• between cofibrant sections is a weak equivalence if and only

if fn is a weak equivalence in PnC for every n ≥ 0.

For every n ≥ 0 the identity functors give a Quillen pair id : C� PnC : id, since
PnC is a left Bousfield localisation of C. This extends to a Quillen pair

id : CNop

inj
//
Sect(Nop, P•C) : id,oo

where CNop

inj denotes the category of Nop-indexed diagrams with the injective model

structure. Indeed weak equivalences and cofibrations in CNop

inj are defined levelwise
and every weak equivalence in C is a weak equivalence in PnC for all n ≥ 0. Hence,
there is a Quillen pair

C
const //

CNop

inj

id //

lim
oo Sect(Nop, P•C),

id
oo
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where const denotes the constant diagram functor.

Lemma 4.7. The adjunction const : C� Post(C) : lim is a Quillen pair.

Proof. It is enough to check that the left adjoint preserves trivial cofibrations and
cofibrations between cofibrant objects. If f is a trivial cofibration in C then const(f)
is a trivial cofibration in Sect(Nop, P•C). But since Post(C) is a right Bousfield
localisation of Sect(Nop, P•C) it has the same trivial cofibrations. Hence const(f)
is a trivial cofibration in Post(C).

Let f : X → Y be a cofibration between cofibrant objets in C. Then const(f)
is a cofibration between cofibrant objects in Sect(Nop, P•C). But const(X) and
const(Y) are both cofibrant in Post(C) by Proposition 4.5. Hence const(f) is a
cofibration in Post(C) if and only if it is a cofibration in Sect(Nop, P•C) (see [19,
Proposition 3.3.16(ii)]). �

If C = sSet, then the model structure Post(sSet) exists, since Pn(sSet) is right
proper for every n ≥ 0; see [10, Theorem 9.9].

Theorem 4.8. Let C = sSet be the category of simplicial sets. Then, the Quillen
pair const : sSet� Post(sSet) : lim is a Quillen equivalence.

Proof. By [20, Proposition 1.3.13] it suffices to check that the derived unit and
counit are weak equivalences. Let X be a fibrant simplicial set. Then const(X) is
cofibrant in Post(sSet), since const is a left Quillen functor. Let

· · · −→ Xn −→ · · · −→ X2 −→ X1 −→ X0

be a fibrant replacement of const(X) in Post(sSet). Hence we have that Xn is
fibrant in Pn sSet and Xn+1 → Xn is a fibration in sSet and a weak equivalence in
Pn sSet for all n ≥ 0. Now, by [15, Ch.VI, Theorem 3.5], the map X → limX• is a
weak equivalence.

Now, let X• be any fibrant and cofibrant object in Post(sSet). We have to see
that the map const(limX•) → X• is a weak equivalence in Post(sSet). This is
equivalent to seeing that the map limX• → Xn is a weak equivalence in Pn sSet for
every n ≥ 0. First note that since the category Nop

>n = · · · → n+3→ n+2→ n+1 is
homotopy left cofinal in Nop we have that limX• is weakly equivalent to limNop

>n
X•

for every n (see [19, Theorem 19.6.13]). Hence it is enough to check that the map
limNop

>n
X• → Xn is a weak equivalence in Pn sSet for all n ≥ 0. For every n ≥ 0 we

have a map of towers

· · · // Xm
//

��

· · · // X2
//

��

Xn+2
//

��

Xn+1

· · · Xn+1 · · · Xn+1 Xn+1 Xn+1,

where each vertical map is a weak equivalence in Pn+1 sSet. Applying Milnor exact
sequence (see [15, Ch.VI, Proposition 2.15]) we get a morphism of short exact
sequences

0 // lim1
Nop

>n
πi+1X• //

��

πi(limNop
>n
X•) //

��

limNop
>n
πiX• //

��

0

0 // lim1
Nop

>n
πi+1Xn+1

// πi(limNop
>n
Xn+1) // limNop

>n
πiXn+1

// 0.
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For 0 ≤ i < n the left and right morphisms are isomorphisms, hence the map
limNop

>n
X• → Xn+1 is a weak equivalence in Pn sSet. Therefore the map

limNop
>n
X• −→ Xn+1 −→ Xn

is a weak equivalence in Pn sSet for n ≥ 0. �

4.3. Chromatic towers of localisations. We can also use the homotopy limit
model structure on towers of categories to obtain a categorified version of yet an-
other classical result. The chromatic convergence theorem states that for a finite
p-local spectrum X,

X ' holimn LnX

where Ln denotes left localisation at the chromatic homology theory E(n), see [26,
Theorem 7.5.7]. We will see that the Quillen adjunction between spectra and the
left Quillen presheaf of chromatic localisations of spectra induces an adjunction
between the homotopy category of finite spectra and the homotopy category of
chromatic towers subject to a suitable finiteness condition. The chromatic con-
vergence theorem then shows that the derived unit of this adjunction is a weak
equivalence. (Note that by spectra in this section we always mean p-local spectra.)

Let C be a proper and combinatorial stable model category. Define LnC to be
the localisation of C with respect to E(n)-equivalences. This defines a left Quillen
presheaf

L•C : Nop −→ CAT .

By Proposition 4.4 we get the following.

Proposition 4.9. There is a left proper, combinatorial and stable model structure
on the category of sections Sect(Nop, L•C), such that a map is a weak equivalence
(respectively, a cofibration) if and only if each

fn : Xn −→ Yn

is a weak equivalence (respectively, a cofibration) in LnC. A map fn : Xn → Yn is
a fibration if and only if f0 is a fibration in L0C and

Xn+1 −→ Yn+1 ×Yn
Xn

is a fibration in Ln+1C for all n ≥ 1. �

Note that the resulting model structure is stable as each LnC is stable. We then
perform a right Bousfield localisation to obtain the homotopy limit model structure.
Note that this again results in a stable model category as this right localisation is
stable in the sense of [4, Definition 5.3]. As left localisation with respect to E(n) is
also stable in the sense of [4, Definition 4.2], LnC is both left and right proper if C
is; see [3, Proposition 4.7]. Hence, Proposition 4.5 implies

Proposition 4.10. Let C be a proper, combinatorial and stable model category.
There is a model structure Chrom(C) in Sect(Nop, L•C) with the following proper-
ties.

(i) A morphism is a fibration in Chrom(C) if and only if it is a fibration in
Sect(Nop, L•C).

(ii) An object X• is cofibrant in Chrom(C) if all the Xn are cofibrant in C and
Xn+1 → Xn is an E(n)-equivalence for each n.
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�
The following is useful to justify the name “homotopy limit model structure”.

Lemma 4.11. Let f : X• → Y• be a weak equivalence in Chrom(Sp). Then

holimX• −→ holimY•

is a weak equivalence of spectra.

Proof. Let f : X• → Y• be a weak equivalence in Chrom(C). This implies that

Ho(Chrom(C))(const(A), X•) −→ Ho(Chrom(C))(const(A), Y•)

is an isomorphism for all cofibrant A ∈ C. By Lemma 4.7, (const, lim) is a Quillen
pair, so the above is equivalent to

[A,holimX•] −→ [A,holimY•]

is an isomorphism for all cofibrant A ∈ C, where the square brackets denote mor-
phisms in the stable homotopy category. But as the class of all cofibrant spectra
detects isomorphisms in the stable homotopy category, this is equivalent to

holimX• −→ holimY•

being a weak equivalence of spectra as desired. �

It is important to note that we do not know if the converse is true. Looking at
the proof of this lemma, we see that the following are equivalent:

(i) There is a set of constant generators const(G) for Chrom(C) .
(ii) The weak equivalences in Chrom(C) are precisely the holim-isomorphisms.

Unfortunately, it is not known from the definition of the homotopy limit model
structure whether any of those equivalent conditions hold.

We can now turn to the main result of this subsection. For this, we need to
specify our finiteness conditions. Recall that a (p-local) spectrum is called finite if
it is in the full subcategory of the stable homotopy category Ho(Sp) which contains
the sphere spectrum and is closed under exact triangles and retracts. We denote
this full subcategory by Ho(Sp)fin.

Definition 4.12. We call a diagram X• in Chrom(Sp) finitary if holimX• is a
finite spectrum. By Ho(Chrom(Sp))F we denote the full subcategory of the finitary
diagrams in the homotopy category of Chrom(Sp).

Theorem 4.13. The Quillen adjunction const : Sp� Chrom(Sp): lim induces an
adjunction

Ho(Sp)fin −−→←− Ho(Chrom(Sp))F .

The composite

Ho(Sp)fin Lconst−−−−→ Ho(Chrom(Sp))F
holim−−−→ Ho(Sp)fin

is isomorphic to the identity.

Proof. Firstly, we notice that the derived adjunction

Lconst : Ho(Sp) −−→←− Ho(Chrom(Sp)) : R lim = holim

restricts to an adjunction

Lconst : Ho(Sp)fin −−→←− Ho(Chrom(Sp))F : R lim = holim .
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By definition, the homotopy limit of each finitary diagram is assumed to be a finite
spectrum. On the other side,

holim(Lconst(X)) ' X
is exactly the chromatic convergence theorem for finite spectra.The derived unit of
the above adjunction is a weak equivalence. For a cofibrant spectrum

X −→ (holim(const(X)) = holimn LnX)

is again the chromatic convergence theorem. �

We would really like to show that the above adjunction is an equivalence of
categories, that is, that the counit is a weak equivalence, meaning that

const(holimY•) −→ Y•

is a weak equivalence for Y• a fibrant and cofibrant finitary diagram in Chrom(Sp)).
However, to show this we would need to know that the weak equivalences in
Chrom(Sp) are exactly the holim-isomorphisms; see earlier remark. Furthermore,
we would not just have to know that Chrom(Sp) has a constant set of generators
but also that those generators are finitary, that is, have finite homotopy limit.

4.4. Homotopy pullbacks of model categories. Let I be the small category

1
α←− 0

β−→ 2.

A pullback diagram of model categories is a left Quillen presheaf F : Iop → CAT.
The objects X• of the category of sections are given by three objects X0, X1 and
X2 in F (0), F (1) and F (2), respectively, together with morphisms

α∗X1 −→ X0 ←− β∗X2

in F (0). A morphism φ• : X• → Y• consists of morphisms φi : Xi → Yi in F (i) for
i = 0, 1, 2, such that the diagram

α∗X1
//

α∗φ1

��

X0

φ0

��

β∗X2
oo

β∗φ2

��

α∗Y1
// Y0 β∗Y2
oo

commutes.

Proposition 4.14. Let F : Iop → CAT be a pullback diagram of model categories
such that each F (i) combinatorial model category for every i in I. Then there exist a
combinatorial model structure on the category of sections Sect(Iop, F ), where a map
φ• is a weak equivalence or a cofibration if φi is a weak equivalence or cofibration
in F (i) for every i in I. The fibrations are the maps φ• : X• → Y• such that f0 is
a fibration in F (0) and

X1 −→ Y1 ×α∗Y0 α∗X0 and X2 −→ Y2 ×β∗Y0 β∗X0

are fibrations in F (1) and F (2), respectively. In particular, X• is fibrant if Xi is
fibrant in F (i) and

X1 −→ α∗X0 and X2 −→ β∗X0

are fibrations in F (1) and F (2), respectively

Proof. The existence of the required model structure follows from Theorem 4.2.
The description of the fibrations follows from [16, Theorem 3.1]. �
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Proposition 4.15. Let F : Iop → CAT be a pullback diagram of model categories
such that each F (i) is combinatorial and right proper for every i in I. Then there
is a model structure Pull(C) on the category of sections of F , called the homotopy
pullback model structure, with the following properties:

(i) A morphism φ• is a fibration in Pull(F ) if φ• is a fibration in Sect(Iop, F ).
(ii) A section X• is cofibrant in Pull(F ) if Xi is cofibrant in F (i) for every i in

I and the morphisms α∗X1 → X0 and β∗X2 → X0 are weak equivalences
in F (0).

(iii) A morphism φ• between cofibrant sections is a weak equivalence if and only
if φi is a weak equivalence in F (i) for every i in I.

Proof. The existence of the model structure Pull(F ) follows from Theorem 4.3
applied to the left Quillen presheaf F . The characterisation of the weak equivalences
between cofibrant objects follows since Pull(F ) is a right Bousfield localisation of
Sect(Iop, F ). �

4.5. Bousfield arithmetic squares of homological localisations. Let C be a
left proper spectral combinatorial model category and, let J and K be a parti-
tion of the set of primes numbers. By ZJ we denote the J-local integers, and by
MG the Moore spectrum of the group G. Consider the model structures LMZJ

C,
LMZK

C and LMQC, as described in Section 2.3.2. Since for every set of primes P ,
every MZP -equivalence is an MQ-equivalence, the identities LMZJ

C→ LMQC and
LMZK

C→ LMQC are left Quillen functors.
Thus we have a pullback diagram of model categories L•C : Iop → CAT, where

I = 1← 0→ 2 and L0C = LMQC, L1C = LMZJ
C and L2C = LMZK

C.
If C is a left proper stable combinatorial model category, then by Proposi-

tion 4.14, the model structure Sect(Iop, L•C) exists, and it is also a stable model
structure because each of the involved model categories is stable.

Moreover, if in addition the model structures LMZJ
C, LMZK

C and LMQC are
right proper, then by Proposition 4.15 the model structure Pull(L•C), which we
denote by Bou(C) also exists. The model structure Bou(C) is also stable, since
it is a right Bousfield localisation with respect to a set of stable objects; see [3,
Proposition 5.6].

Lemma 4.16. The adjunction const : C� Bou(C) : lim is a Quillen pair.

Proof. The proof is the same as the one for Lemma 4.7. �

Now let Sp be a suitable model structure for the category of spectra, e.g., sym-
metric spectra. Note that for any spectrum E, the model structure LE Sp is right
proper [3, Proposition 4.7], hence the model structure Bou(Sp) exists.

Theorem 4.17. The Quillen pair const : Sp� Bou(Sp): lim is a Quillen equiva-
lence.

Proof. By [20, Proposition 1.3.13] it suffices to check that the derived unit and
counit are weak equivalences.

Let X be a fibrant and cofibrant spectrum. We need to show that

X −→ lim(const(X)fib)

is a weak equivalence in Sp, where (−)fib denotes the fibrant replacement in
Bou(Sp). The constant diagram const(X) is cofibrant in Bou(Sp) since const is
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a left Quillen functor. Let

LMZJ
X −→ LMQX ←− LMZK

X

be a fibrant replacement of const(X) in Bou(Sp). We have that LMZK
X, LMZJ

X
and LMQX are fibrant in LMZK

Sp, LMZJ
Sp and LMQ Sp, respectively, and the

two maps are fibrations in Sp and weak equivalences in LMQ Sp. Now, by [9,
Proposition 2.10], the map

X −→ lim(LMZK
X −→ LMQX ←− LMZJ

X)

is a weak equivalence.
Now, let X• be any fibrant and cofibrant object in Bou(Sp). We have to see that

the map

const(limX•) −→ X•

is a weak equivalence in Bou(Sp). This is equivalent to saying that the map
limX• → X1 is a weak equivalence in LMZJ

Sp, limX• → X2 is a weak equiv-
alence in LMZK

Sp and limX• → X12 is a weak equivalence in LMQ Sp.
Note that if A → B is a map such that is a weak equivalence in LMQ Sp, A is

fibrant in LMZK
Sp and B is fibrant in LMQ Sp, then A→ B is a weak equivalence

in LMZJ
Sp. To see this, let A→ LMZJ

A be a fibrant replacement of A in LMZJ
Sp.

Since B is fibrant LMQ Sp, it is in LMZJ
Sp. Thus, there is a lifting

A //

��

B

LMZJ
A.

;;

The left arrow is a weak equivalence in LMZJ
Sp and hence a weak equivalence in

LMQ Sp. Therefore the dotted arrow is a weak equivalence in LMQ Sp between fi-
brant objects in LMQ Sp. (Observe that LMZJ

A is fibrant in LMZJ
Sp and LMZK

Sp,
and hence in LMQ Sp). Thus, it is a weak equivalence in Sp. This completes the
proof of the claim since weak equivalences in Sp are weak equivalences in LMZJ

Sp.
Since X• is fibrant and cofibrant, we have that in the pullback diagram

limX•
f2 //

f1

��

X2

��

X1
// X12

X1, X2 and X12 are fibrant in LMZJ
Sp, LMZK

Sp and LMQ Sp, respectively, and the
right and bottom arrows weak equivalences in LMQ Sp and fibrations in LMZK

Sp
and LMZJ

Sp, respectively. By the previous observation and right properness of
the model structures involved, the map f1 : limX• → X1 is a weak equivalence
in LMZJ

, and f2 : limX• → X2 is a weak equivalence in LMZK
Sp, respectively.

Thus, the map limX• → X12 is also a weak equivalence in MQ, which means that
const(limX•) −→ X• is a vertexwise weak equivalence, and thus a weak equivalence
in Bou(Sp) as claimed. �
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Remark 4.18. There is a higher chromatic version of the objectwise statement.
There is a homotopy fibre square

LnX

��

// LK(n)X

��

Ln−1X // Ln−1LK(n)X,

see [12, Section 3.9]. However, we cannot apply the methods of this section to get
a result analogously to Theorem 4.17. This is due to the fact that LK(n)Ln−1 Sp
is trivial as a model category. (By [25, Theorem 2.1], a spectrum is E(n− 1)-local
if and only if it is K(i)-local for 1 ≤ i ≤ n − 1. But the K(n)-localisation of a
K(m)-local spectrum is trivial for n 6= m.) Consider the homotopy limit model
structure on

Ln−1 Sp −→ Ln−1LK(n) Sp←− LK(n) Sp .

A fibrant and cofibrant diagram

X1
f1−→ X0

f2←− X2

would have to satisfy that X1 is E(n − 1)-local and f1 is a Ln−1LK(n) localisa-
tion. By the universal property of localisations, this means that f1 factors over
Ln−1LK(n)X1 −→ X0. However, as X1 is E(n − 1)-local and thus K(n)-acyclic,
this map (and thus f1) is trivial. Thus we cannot reconstruct a pullback square
like the above from this model structure.

4.6. Homotopy fibers of localised model categories. We will use the homo-
topy pullback model structure to describe the homotopy fibre of Bousfield locali-
sations. We can then use this to describe the layers of a Postnikov tower, among
other examples.

Let C be a left proper pointed combinatorial model category and let S be a set of
morphisms in C. The identity C→ LSC is a left Quillen functor and thus we have
a pullback diagram of model categories LS

•C : Iop → CAT, where I = 1 ← 0 → 2,
and LS

0C = LSC, LS
1C = ∗ and LS

2C = C. (Here ∗ denotes the category with one
object and one identity morphism with the trivial model structure.)

A section of LS
•C is a diagram ∗ → Y ← X in C where ∗ denotes the zero object.

There is an adjunction

const : C
//
Sect(Iop, LS

•C) : ev2,oo

where const(X) = (∗ → X
1← X) and ev2(∗ → Y ← X) = X. We will denote

Pull(LS
•) by Fib(LS

•) and we will call it the homotopy fiber of the Quillen pair
C� LSC.

Definition 4.19. Let C be a proper pointed combinatorial model category and let
K be a set of objects and S be a set of morphisms in C. We say that the colocalised
model structure CKC and the localised model structure LSC are compatible when
for every object X in C, X is K-colocal if and only if X is cofibrant in C and the
map ∗ → X is an S-local equivalence;

The stable case is discussed in detail in [4, Section 10] where such model struc-
tures are called “orthogonal”, see also Section 4.6.3.



BOUSFIELD LOCALISATIONS ALONG QUILLEN BIFUNCTORS AND APPLICATIONS 31

Remark 4.20. Note that if CKC and LSC are compatible, then it follows from the
definitions ∗ → Y ← X is cofibrant in Fib(LS

•C), if and only both X and Y are
K-colocal and cofibrant in C. If ∗ → Y ← X is moreover fibrant in Fib(LS

•C),
then Y is weakly contractible since Y is S-local and ∗ → Y is an S-equivalence and
X → Y is a fibration in C.

Theorem 4.21. Let C be a proper pointed combinatorial model category and let
K be a set of objects and S be a set of morphisms in C. If CKC and LSC are
compatible, then the adjunction

const : CKC
//
Fib(LS

•C) : ev2,oo

is a Quillen equivalence.

Proof. We will first show that the adjunction is a Quillen pair. For this, it is enough
to check that the left adjoint preserves trivial cofibrations and sends cofibrations
between cofibrant objects to cofibrations.

Let f be a trivial cofibration in CKC. Then f is a trivial cofibration in C

and therefore const(f) is a trivial cofibration in Sect(Iop, LS
•C) and thus a trivial

cofibration in Fib(LS
•C).

Now let f : X → Y be a cofibration between cofibrant objects in CKC. Then f
is a cofibration between cofibrant objects in C and hence const(f) is also a cofibra-
tion between cofibrant objects in Sect(Iop, LS

•C). But const(X) and const(Y ) are
cofibrant in Fib(LS

•C), since CKC and LSC are compatible and therefore the maps
∗ → X and ∗ → Y are S-local equivalences. Hence const(f) is a cofibration in
Fib(LS

•C).
To prove that it is a Quillen equivalence, it suffices to show that the derived

unit and counit are weak equivalences; see [20, Proposition 1.3.13]. Let X be a
cofibrant object in CKC. Then we can construct a fibrant replacement for const(X)
in Fib(LS

•C) as follows

∗ // X��

��

X��

��

∗ // LSX X ′,oooo

where the map X → LSX is a trivial cofibration in LSC and X → X ′ → LSX is a
factorisation in C of the previous map as a trivial cofibration followed by a fibration.
Indeed, the map between the two sections is a trivial cofibration in Fib(LS

•C) since
it is a levelwise trivial cofibration, and ∗ → LSX ← X ′ is fibrant in Fib(LS

•C) since
LSX is fibrant in LSC, X ′ is fibrant in C and X ′ → LSX is a fibration in C.

Therefore the map X → ev2(const(X)) → ev2(R(const(X))), where R denotes
fibrant replacement in Fib(LS

•C), is precisely the map X → X ′, which is a weak
equivalence in CKC since it was already a weak equivalence in C.

Finally, let ∗ → Y ← X be a fibrant and cofibrant section in Fib(LS
•C). We need

check that the composite

const(Q(ev2(∗ → Y ← X))) −→ const(ev2(∗ → Y ← X)) −→ (∗ → Y ← X)
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is a weak equivalence in Fib(LS
•C). But ev2(∗ → Y ← X) = X is already cofibrant

in CKC, by Remark 4.20. Therefore, we need to show that the map of sections

∗ // X

��

X

∗ // Y Xoo

is a weak equivalence in Fib(LS
•C). Since both sections are cofibrant, it is enough

to see that the map in the middle is a weak equivalence in LSC, which follows again
from Remark 4.20. �

4.6.1. Postnikov sections and connective covers of simplicial sets. We can use this
setup to describe the “layers” of Postnikov towers. Let sSet∗ denote the category
of pointed simplicial sets. Consider the model structure Pk sSet∗ = LS sSet∗ for
k-types, as in Section 3, where S = {Sk+1 → Dk+2}. If K = {Sk+1}, then Pk sSet∗
and Ck sSet∗ := CSk+1 sSet∗ are compatible, since for every X there is a fiber
sequence

CkX −→ X −→ PkX,

where CkX is the kth connective cover of X. By Theorem 4.21 the model categories
Ck sSet∗ and Fib(LS

• sSet∗) are Quillen equivalent.
Note that in the general case the localisations LSC and CKC for

S = {G⊗ Sk+1 −→ G⊗Dk+2 | G ∈ G}

and K = {G ⊗ Sk+1 | G ∈ G} are not necessarily compatible, so this construction
cannot be performed with general C. However, examples of C where compatibility
holds include chain complexes Chb(R) and stable localisations; see Section 4.6.3.

We can also consider Fib(LS
•Pk+1 sSet∗). Since for every X we have a fibration

K(πk+1X, k + 1) −→ Pk+1X −→ PkX,

the model structures CkPk+1 sSet∗ and PkPk+1 sSet∗ = Pk sSet∗ are compatible.
Hence Theorem 4.21 implies that CkPk+1 sSet∗ and Fib(LS

•Pk+1 sSet∗) are Quillen
equivalent. This means that we can view CkPk+1 sSet∗ as the kth layer of the
Postnikov tower model structure. Note that Ho(CkPk+1 sSet∗) is equivalent to the
category of abelian groups.

4.6.2. Nullifications and cellularisations of spectra. Let Sp be a suitable model
structure for the category of spectra, for instance, symmetric spectra and let S

be a set of maps. If S = {E → ∗} then LS Sp = PE Sp is called the E-nullification
of Sp and CE Sp is called E-cellularisation of Sp. As follows from [17, Theorem 3.6]
we have the following compatibility between localised and colocalised model struc-
tures:

(i) If the induced map Ho(Sp)(Σ−1E,CEX) → Ho(Sp)(Σ−1E,X) is injective
for every X, then CE Sp and PE Sp are compatible.

(ii) If the induced map Ho(Sp)(E,X)→ Ho(Sp)(E,PΣEX) is the zero map for
every X, then CE Sp and PΣE Sp are compatible.
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4.6.3. Stable localisations and colocalisations. Let C be a proper spectral combina-
torial model category. Let S be a stable set of morphisms in C and let K = cof(S)
be the set of cofibers of the elements of S. Since C is spectral, we have a Quillen
bifunctor ⊗ : C×Sp→ C, and cof(S⊗GSp) = cof(S)⊗GSp = K⊗GSp. Hence, by [3,
Proposition 10.3] it follows that LS⊗GSp

C and CK⊗GSp
C are compatible. Therefore,

Theorem 4.21 implies that the model categories CK⊗GSp
C and Fib(L

S⊗GSp
• C) are

Quillen equivalent.

5. Convergence of towers

In this section we are going to take a closer look at what it means for a tower in
Post(C) to converge. Recall that we have a Quillen adjunction

const : C −−→←− Post(C) : lim .

The following terminology appears in [5, Definition 5.35].

Definition 5.1. The model category C is hypercomplete if the composite

Ho(C)
Lconst−−−−→ Ho(Post(C))

holim−−−→ Ho(C)

is isomorphic to the identity, that is, for every cofibrant X in C, the natura map

X −→ holim(constX)

is a weak equivalence.

We have seen in Section 4.2 that this is true for C = sSet. We have also seen
in Theorem 4.13 that, under a finiteness assumption, the chromatic tower of spec-
tra Chrom(Sp) is hypercomplete in this sense. We can also consider the case of
C = LS sSet∗ as in Section 3.3. In general, this model category will not be hy-
percomplete. Let X be fibrant in LS sSet∗, that is, fibrant as a simplicial set
and S-local. If we take the fibrant replacement of the constant tower const(Y) in
Post(LS sSet∗), we obtain a tower

(const(Y ))fib = (· · · −→ Yn −→ Yn−1 −→ · · · −→ Y0)

such that all the Yi are S-local, Yi is Pi-local for all i and Yn → Yn−1 is a weak
equivalence in Pn−1LS sSet∗. However, this is not a fibrant replacement of const(Y)
in Post(sSet∗), unless LS commutes with all the localisations Pn. In this case, a
Postnikov tower in LS sSet∗ is also a Postnikov tower in sSet∗, and hypercomplete-
ness holds. This would be the case for LS = LMR for R a subring of the rational
numbers Q, but it cannot be expected in general.

Let us recapture the classical case to get a more general insight into hypercom-
pleteness. For X in sSet we know that X → limn PnX is a weak equivalence. This
equivalent to saying that for all i,

πi(X) −→ πi(lim
n
PnX)

is an isomorphism of groups. But we have also seen that

πi(lim
n
PnX) = lim

n
πi(PnX)

as well as

πi(PnX) = (πi(X)) 〈n〉 =

{
πi(X) if i ≤ n,

0 if i > n.
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Putting this together we get that indeed, πi(limn PnX) ∼= πi(X) for all i. This is a
special case of the following. Let C be a proper combinatorial model category with
a set of generators G. Then for a cofibrant X, the map X → limn PnX is a weak
equivalence in C if and only if

mapC(G,X) −→ mapC(G,holimn PnX) = lim
n

mapC(G,PnX)

is a weak equivalence in sSet for all G ∈ G.
So from this we can see that if we had mapC(G,PnX) ∼= Pn mapC(G,X) for all

G in G, then we would get the desired weak equivalence because again

πi mapC(G,PnX) = πi(Pn mapC(G,X)) = πi(mapC(G,X)) 〈n〉 .

We could also reformulate this statement by not using the full set of generators G,
since we are only making use of the fact that they detect weak equivalences.

Proposition 5.2. Let hG be a set in C that detects weak equivalences. If

mapC(G,PnX) ∼= Pn mapC(G,X)

for every G in hG, then C is hypercomplete. �

We can follow this through with our non-simplicial example, bounded chain com-
plexes of Z-modules Chb(Z). Let Hom(M,N) denote the mapping chain complex
for M , N in Chb(Z), that is,

Hom(M,N)k =
∏
i

HomZ(Mi, Ni+k)

with differential (df)(x) = d(f(x)) + (−1)k+1f(d(x)); see for example [20, Chap-
ter 4.2]. We note that

πi(mapChb(Z)(M,N)) = Hi(Hom(M,N))

because

πi(mapChb(Z)(M,N)) = [Si,mapChb(Z)(M,N)]sSet = [M ⊗L Si, N ]Chb(Z)

= [M [i], N ]Chb(Z) = [M ⊗ Z[i], N ]Chb(Z) = [Z[i],Hom(M,N)]Chb(Z)

= Hi(Hom(M,N)).

So Chb(Z) is hypercomplete if Hom(G,PnN) is quasi-isomorphic to Pn Hom(G,N)
for all G in hG. For bounded below chain complexes, a set that detects weak
equivalences can be taken to be

hG = {Si = Z[i] | i ≥ 0}.

Note that in general it is not true that Hom(M,PnN) ' Pn Hom(M,N). We have
the following diagram of short exact sequences.

ExtZ(Hi(M), Hi+1(N)) //

��

Hi(Hom(M,N)) //

��

HomZ(Hi(M), Hi(N))

��

ExtZ(Hi(M), Hi+1(PnN)) // Hi(Hom(M,PnN)) // HomZ(Hi(M), Hi(PnN)).

Using the 5-lemma we can read off that Hi(Hom(M,PnN)) = 0 for i > n as
desired and that

Hi(Hom(M,PnN)) = Hi(Hom(M,N))
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for i ≤ n− 1, but unless ExtZ(Hn(M), Hn+1(N)) = 0 we do not get that

Hn(Hom(M,PnN)) = Hn(Hom(M,N)).

However, as we only require the case M = Si, we have that

Hom(Si, N) = N [n],

where N [n] is the n-fold suspension of N . Thus,

Hom(G,PnN) = Pn Hom(G,N)

for all G in hG, so Chb(Z) is hypercomplete as expected.

References
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