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Abstract

We calculate the endomorphism dga of Franke’s exotic algebraic model
for the K-local stable homotopy category at odd primes. We unravel its
original abstract structure to give explicit generators, differentials and
products.

Introduction

The stable homotopy category Ho(S) is a large and complex category. Thus it
becomes natural to break it up. First we break it into its p-local parts Ho(S(p)),
and then these are broken into smaller, atomic pieces. These pieces are de-
scribed by the chromatic localisations Ho(LnS), n ∈ N. (Note that the prime
p is traditionally absent from notation.) We can think of the stable homotopy
category as a city with a tower block with infinitely many floors for each prime,
the first n floors being described by Ho(LnS) and the nth floor of each tower
block being described by Ho(LK(n)S) where K(n) is the nth Morava K-theory.
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Visualising Ho(S) in relation to Ho(LK(n)S):

The “ground floor”, Ho(LK(0)S), is given by rational homotopy theory; this
is the same for all primes. The first and ground floor, Ho(L1S), are governed by
p-local topological K-theory, which is related to vector bundles. The next level,
Ho(L2S), is related to elliptic curves, but is already much more complicated to
describe, while the higher levels are valuable for their structural contribution to
the bigger picture rather than any individual computational merits.

1



Schwede showed in [21] that the triangulated structure of Ho(S) determines
the entire higher homotopy information of spectra, that is, it determines the
underlying model category up to suitable equivalence. In other words, the stable
homotopy category is rigid. This is particularly interesting because examples
of rigidity are usually hard to find. A natural question to follow is whether the
atomic building blocks Ho(LnS) are also rigid. Franke showed in [11] that for
n = 1 and p ≥ 5 this is false and Ho(LnS) are not rigid by constructing an
algebraic counterexample. Note that the Franke’s result in [11] is formulated
for n2 + n < 2p − 2. This version contains a gap which is pointed out in [15],
and partially filled in [16].

The second author showed in [18] that in contrast, in the case of n = 1 and
p = 2, the K-local stable homotopy category Ho(L1S) is rigid. To this day it is
rather mysterious why counterexamples exist for p ≥ 5 but not for p = 2, and
what the situation is like outside of the range covered by Franke and Roitzheim.
For p = 3 there is an equivalence but it seems from [16] that is unknown whether
the equivalence is triangulated.

Franke’s model is algebraic, which means that it is model enriched over the
model category of chain complexes. Therefore it makes sense to direct the study
of exotic models to algebraic models. For example, is Franke’s model the only
algebraic model for Ho(L1S)? Or are all exotic models for Ho(L1S) algebraic?

By Morita theory, algebraic model categories which have a single compact
generator are determined by an endomorphism dga with homology and Massey
products. To get a grip on those uniqueness questions we have to understand
the endomorphism dgas: if there was a unique endomorphism dga, then there
would also be a unique algebraic model. This has partially been answered in
[20] but it does not seem feasible to approach this by hand due to the rapidly
increasing complexity of the computations.

Thus, in order to work towards a greater understanding of algebraic models,
their uniqueness, and ultimately the stable homotopy category, we are going to
look at the endomorphism dga of Franke’s exotic models. This construction used
many abstract ingredients such as injective resolutions of E(1)∗E(1)-comodules,
Adams operations, quasi-periodicity and v1-self maps. The goal of this paper
is to carefully unravel these abstractions in order to arrive at the Zp-module
structure of the dga in question. We hope that going through and turning the
abstract machinery into concrete numbers will contribute to the greater picture
by allowing for direct calculations in the future.

This paper is organised as follows. In Section 1 we recall some background on
endomorphism dgas and the context that we are using them in. In Section 2 we
give a summary of the construction and properties of Franke’s exotic model for
Ho(L1S). In Section 3 we perform first steps to simplify the endomorphism dga
of a compact generator of Franke’s model, showing that some pieces are trivial.
In Section 4 we show how the endomorphism dga can be expressed explicitly
in terms of sequences with coefficients in Zp, using work of [7]. In Sections 5
and 6 we use the sequence representation to do an explicit calculation of the
homology of the endomorphism dga, verifying that it gives the expected result.
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We conclude in Section 7 by verifying that the product and Massey products
also give the expected result.

The authors thank the organizers of the WIT II conference, the Banff In-
ternational Research Station for hosting us, and the AWM for providing travel
support. The first author is grateful to the Universidad de la República - CSIC
for its support and for travel funds. The second author would like to thank
the University of Kent Faculty of Sciences Research Fund as well as SMSAS for
travel funds, and would furthermore like to thank Andrew Baker, David Barnes
and Sarah Whitehouse for interesting discussions.

1 Algebraic Models

The basic goal is to study the K-local stable homotopy category at an odd
prime p. We assume that the reader is familiar with basic notions regarding
stable model categories and Bousfield localisation, see e.g. [4]. For background
on K-theory and related topics, see [6]. Recall that K-theory splits into

K =

p−2∨
i=0

Σ2iE(1)

where E(1) is the Adams summand with E(1)∗ = Z(p)[v1, v
−1
1 ], |v1| = 2p − 2.

Thus, LK(p)
= LE(1), which is commonly denoted by L1.

To study the K(p)-local stable homotopy category Ho(L1S), we will study
the existence of algebraic model categories: a stable Ch(Z)-model category C in
the sense of [8, Appendix A], such that there is an equivalence of triangulated
categories

Φ : Ho(L1S) −→ Ho(C).
If C is an arbitrary stable model category, it can be very hard to understand

it, or to compare L1S with C. The following result [22, Theorem 3.1.1] gives a
more concrete way to approach C. Recall that an object X ∈ Ho(C) is compact if
the functor Ho(C)(X,−) commutes with arbitrary coproducts. X is a generator
if the full subcategory of Ho(C) containing X which is closed under coproducts
and exact triangles is again Ho(C) itself. Then we have the following result.

Theorem 1. [Schwede-Shipley] Let C be a simplicial proper, stable model cate-
gory with a compact generator X. Then there exists a chain of simplicial Quillen
equivalences between C and module spectra over the endomorphism ring spectrum
of X,

C ' mod- End(X).

Note that the assumption that C is simplicial is not a significant restriction,
see e.g. [9].

The category Ho(L1S) possesses the sphere L1S
0 as a compact generator.

Thus if Φ : Ho(L1S) −→ Ho(C) is a triangulated equivalence as above, we
can use (a fibrant and cofibrant replacement of) X = Φ(L1S

0) as a compact
generator for Ho(C).
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From Theorem 1, we know that the endomorphism ring spectrum End(X)
satisfies

π∗(End(X)) ∼= Ho(C)(X,X)∗.

Combining this with our triangulated equivalence, we have

π∗(End(X)) ∼= Ho(C)(X,X)∗ ∼= π∗(L1S
0).

Now if we additionally assume that C is an algebraic category, [10, Proposi-
tion 6.3] gives us the following about the endormorphism spectrum:

Theorem 2. Let C be an algebraic model category with a fibrant and cofibrant
compact generator X. Then the endomorphism ring spectrum End(X) is weakly
equivalent to the generalised Eilenberg-Mac Lane spectrum of the endomorphism
dga C(X,X).

Moreover, for X ∼= Φ(L1S
0), the endomorphism dga C(X,X) satisfies ([20,

Lemma 2.1]):

• H∗(C(X,X)) = Ho(C)(X,X)∗ = π∗(L1S
0).

• Under the above, the Massey products of H∗(C(X,X)) coincide with the
Toda brackets of π∗(L1S

0).

Thus we see that in order to understand algebraic models C for L1S it is
vital to understand the endomorphism dga of a compact generator. In the next
section, we will describe a specific algebraic model C that will be the focus of
this paper, and also take a closer look at its compact generator.

2 Franke’s model and its compact generator

In this section we are going to give a brief description of the particular algebraic
model for Ho(L1S) that we will be looking at in detail in the subsequent sections.
This was developed by Franke [11]; further details are available in [19] (and [16]
for the triangulated structure). In what follows, we will use notation consistent
with [19].

To begin, we consider the category B, an abelian category which is equiv-
alent to E(1)∗E(1)-comodules that are concentrated in degrees 0 mod 2p − 2.
(Note that in [6], Bousfield denotes this category by B(p)∗.) We can think
of E(1)∗E(1)-comodules as modules over E(1)∗ with an action of the Adams
operations. Furthermore, the category B is equipped with self-equivalences

T j(p−1) : B −→ B (j ∈ Z)

each of which is the identity on the underlying E(1)∗-modules but changes the
Adams operation Ψk by a factor of kj(p−1).
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Now we consider twisted chain complexes C2p−2(B) on B. An object of
C2p−2(B) is a cochain complex C∗ with Ci ∈ B together with an isomorphism

αC : T (p−1)(C∗) −→ C∗[2p− 2] = C∗+2p−2.

Morphisms in this category are cochain maps f : C∗ −→ D∗ which are compat-
ible with those isomorphisms, i.e. for which there is a commutative diagram

T (p−1)(C∗)
αC //

T (p−1)(f)

��

C∗[2p− 2]

f [2p−2]

��
T (p−1)(D∗)

αD // D∗[2p− 2].

We can define a model structure on C2p−2(B) as follows.

Proposition 3 (Franke). There is a model structure on C2p−2(B) such that

• weak equivalences are the quasi-isomorphisms

• cofibrations are the monomorphisms

• fibrations are the degreewise split epimorphisms with strictly injective ker-
nel.

Here, an object C∗ is said to be strictly injective if it is levelwise injective and
for each acyclic complex D∗, the mapping chain complex HomC2p−2(B)(D

∗, C∗)∗

is again acyclic.
Note that the above model structure is a variant of the standard injective

model structure on chain complexes. There is no projective-type model struc-
ture on C2p−2(B), as B has enough injectives but not enough projectives.

Now letD2p−2(B) be the homotopy category of a model category of C2p−2(B).
This is the exotic algebraic model we are interested in:

Theorem 4 (Franke). For p ≥ 5 there is an equivalence of triangulated cate-
gories

R : D2p−2(B) −→ Ho(L1S)

which satisfies
2p−3⊕
i=0

Hi(C)[−i] ∼= E(1)∗(R(C)).

Concerning the equivalence R : D2p−2(B) −→ Ho(L1S), the notation R
stands for reconstruction functor. Usually one would expect an equivalence
between two categories such as the above to have the category of topological
origin as its source and the algebraic category as its target. But in this unusual
case, the equivalence reconstructs a topological object from an algebraic one.
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This reconstruction can be described as follows. To build a spectrum X from
a chain complex C∗, one first considers the boundaries Bi of C∗(1 ≤ i ≤ 2p−2)
and the quotients Gi of C∗ by its boundaries. Then, one assigns spectra Xβi

and Xγi to the Bi and Gi respectively, so that

Gi(X) = E(1)∗(Xγi)[−i] and Bi(X) = E(1)∗(Xβi)[−i].

These spectra are now arranged in a crown-shaped diagram

Xβ1
... Xβi−1

Xβi Xβ2p−2

Xγ1

OO 22

Xγi−1

OOaa

Xγi

OObb

...

``

Xγ2p−2
.

OO

Then the reconstruction spectrum X = R(C∗) is defined to be the homo-
topy colimit of the above diagram. Proving that this defines an equivalence of
categories as stated in Theorem 4 is a lengthy progress involving various Adams
spectral sequences and diagram chases. Once it is completed, however, it is not
too hard to read off the following:

Lemma 5. The cochain complex A∗ := R−1(L1S
0) is Ai = T k(p−1)(E(1)∗) in

degrees i = k(2p− 2), k ∈ Z and 0 in all other degrees.

3 The endomorphism dga

Recall from Section 1 that in order to understand an algebraic model, we want
to study the endomorphism dga of a compact generator. We know that the
cochain complex of Lemma 5

A∗ = · · · −→ 0 −→ T−(p−1)E(1)∗ −→ 0 −→ · · ·
· · · −→ 0 −→ E(1)∗ −→ 0 −→ · · ·
· · · −→ 0 −→ T (p−1)E(1)∗ −→ 0 −→ · · ·

is a compact generator for D2p−2(B). Hence, to understand Franke’s model we
need to study the endomorphism dga C∗ of A∗, i.e.

C∗ := HomC2p−2(B)(A
∗, A∗).

Note that our endomorphism dga is cohomologically graded. By construction,

Ht−s(C∗) = Exts,tB (E(1)∗, E(1)∗)

which is the E2-term of the E(1)∗-based Adams spectral sequence for π∗(L1S
0).

Examining the degrees shows that this spectral collapses, giving an isomorphism
Hn(C∗) = πn(L1S

0).
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We intend to unravel what C∗ looks like as Z(p)-module and obtain a concrete
description of this chain complex. We begin by considering the general form
of any mapping chain complex HomC2p−2(B)(X

∗, Y ∗) for arbitrary X∗, Y ∗ ∈
C2p−2(B). This satisfies

H∗(HomC2p−2(B))(X
∗, Y ∗) = D2p−2(B)(X∗, Y ∗).

When X∗ and Y ∗ are concentrated in one degree up to periodicity, i.e.

X∗ =
∏
k∈Z

T k(p−1)X[−k(2p− 2)] and Y ∗ =
∏
k∈Z

T k(p−1)Y [−k(2p− 2)]

for some X,Y ∈ B, we have

Hn−i(HomC2p−2(B)(X
∗, Y ∗)) =

∏
i

Exti,nB (X,Y ).

We examine what such a morphism in C2p−2(B) looks like when X∗ is cofibrant
and Y ∗ is fibrant. We will see that all morphisms f∗ : X∗ −→ Y ∗+s are not
only determined by the first f0, ..., f2p−3 ∈ B but also solely by the low-degree
terms of X∗ and Y ∗.

Firstly, by definition of the category C2p−2(B) in Section 2, a morphism
satisfies

f∗+2p−2 ∼= T p−1(f∗).

This means that for example a map f∗ : X∗ −→ Y ∗ of degree 0 is defined by
morphisms f i : Xi → Y i in B for 0 ≤ i ≤ 2p − 3, and similarly, a map f∗ of
degree n ∈ Z is determined by f i : Xi −→ Y i+n for 0 ≤ i ≤ 2p− 3.

However, we also claim that a morphism of degree n = (2p − 2)r + s, 0 ≤
s ≤ 2p − 3 is in fact already defined by a morphism of degree s in B between
the lower degrees of X∗ and Y ∗, i.e. the low-degree morphisms define the entire
mapping chain complex.

To see this, consider a morphism of degree 2p− 2, determined by

f0 : X0 −→ Y 2p−2 ∼= T p−1(Y 0)

f1 : X1 −→ Y 2p−1 ∼= T p−1(Y 1)

...
...

f2p−3 : X2p−3 −→ Y 4p−5 ∼= T p−1(Y 2p−3).

Consider the map f0 in B. Recall that objects in B are themselves graded, and
denote this internal degree by a subscript. Therefore, by definition of T p−1,

f0 = f0
∗ : X0

∗ −→ Y 2p−2
∗

∼= T p−1(Y 0)∗ ∼= Y 0
2p−2.

Any morphism in B
F∗ : M∗ −→ N∗
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is given by a Z(p)-module map satisfying F ◦ Ψk = Ψk ◦ F for the Adams

operation Ψk, k ∈ Z(p). Thus, a morphism

F : M∗ −→ T p−1(N)∗ = N∗+2p−2

is a Z(p)-module map
F : M∗ −→ N∗+2p−2

satisfying F (Ψkx) = kpF (X). Now we also have [6, Section 4.2],

Ψk(v1 · y) = kp−1v1 ·Ψk(y) = kpv1y,

which means that F factors as

M∗
G−→ N∗

·v1−→ N∗+2p−2

where G is a map in B of degree 0, and multiplication by v1 is an isomorphism.

Returning to our map of chain complexes

f0 : X0 −→ Y 2p−2,

we see that f0 can be factored as f0 = v1 · g0, where g0 : X0 −→ Y 0 is a
morphism in B. Similarly, any map

f∗ : X∗ −→ Y ∗ ∈ C2p−2(B)

of degree n = (2p− 2)r+ s, 0 ≤ s ≤ 2p− 3 is determined by a map of degree s.
Thus,

HomC2p−2(B)(X
∗, Y ∗)∗ =

∏
n∈Z

HomB(X∗, Y ∗+n) =
∏

0≤i,s≤2p−3

HomB(Xi, Y i+s).

Note that we have not yet considered the internal grading. The object

HomB(Xi, Y i+s)

is a graded E(1)∗-module, with the grading coming from the internal grading in
B on Xi = Xi

∗ and Y i+s = Y i+s∗ . We say that an element in HomB(Xi, Y i+s)
has degree t if it raises the internal degree by t. As we will consider each degree
separately, we use HomB(Xi

∗, Y
i+s
∗+t ) to denote those morphisms in B that raise

degree by t. So in our notation, this is only a Z(p)-module and not an E(1)∗-

module. In particular, HomB(Xi
∗, Y

i+s
∗+t ) is not a graded object.

Taking this internal degree into account, we define HomC2p−2(B)(X
∗, Y ∗)∗ to

be the chain complex defined in degree n by

HomC2p−2(B)(X
∗, Y ∗)n =

∏
n=t−s,

0≤i,s≤2p−3

HomB(Xi
∗−t, Y

i+s
∗ ),
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i.e. as shown earlier, the mapping chain complex is defined only by low-degree
terms of the chain complexes as well as low-degree morphisms. (Recall that we
are assuming that X∗ is cofibrant and Y ∗ is fibrant. If this is not the case,
cofibrant and fibrant replacements need to be applied.) The nth differential is
given by

dA ◦ f + (−1)n+1f ◦ dB .
The grading is consistent with the equivalence given in Lemma 5

πt−s(L1S
0) = Exts,tB (E(1)∗, E(1)∗) = Ht−s Hom(A∗, A∗)

where A∗ is the compact generator. Explicitly A∗ is the cochain complex which
is Ai = T k(p−1)(E(1)∗) in degrees i = k(2p−2), k ∈ Z and 0 in all other degrees.

In order to apply the above discussion to our endomorphism complex, we
need to find a fibrant and cofibrant replacement for A∗. The model structure
of Proposition 3 implies that any object in C2p−2(B) is cofibrant, so in fact we
only need a fibrant replacement.

To produce a fibrant replacement, we will use an injective resolution

0 −→ E(1)∗ −→ I0 −→ I1 −→ I2 −→ 0 (1)

of E(1)∗ as an E(1)∗E(1)-comodule. Since A∗ is E(1)∗ repeated periodically
using the self-equivalence T (p−1), we will obtain an injective resolution of A∗

by taking the injective resolution above and repeating it periodically, again
applying the self-equivalence T (p−1). Since p is odd and the injective dimension
of B is 2 (as is the injective dimension of E(1)∗E(1)-comod) [6, Section 7], the
pieces from the injective resolution do not overlap in the cochain complex.

For the injective resolution in (1), we will use the standard resolution by
Adams-Baird-Ravenel [5]

0 −→ E(1)∗ −→ E(1)∗E(1)
(Ψr−1)∗−−−−−→ E(1)∗E(1)

q−−→ E(1)∗ ⊗Q −→ 0 (2)

where r is a unit of the cyclic group (Z/p2)×, Ψr is the rth Adams operation and
q is induced by the map E(1) −→ HQ that is a rational homotopy isomorphism
in degree 0 and trivial otherwise.

Note that this resolution I does not consist of injective comodules but of rel-
ative injective comodules, see [12, Definition 3.1.1], i.e. the functor HomB(−, I)
sends split short exact sequences of E(1)∗-modules to short exact sequences. By
definition,

Ext∗B(E(1)∗, E(1)∗) = H∗(HomB(E(1)∗, J))

where J is an injective resolution of E(1)∗. As J is injective, one also has

HomB(E(1)∗, J) ' HomB(J, J).

By [12, Lemma 3.1.4] the above is quasi-isomorphic to HomB(E(1)∗, I) with
I our relative injective resolution. Now consider the split exact sequence of
complexes E(1)∗-modules

0 −→ E(1)∗ −→ I −→ K −→ 0
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where K is the cokernel of the first map. The sequence is split because the
first map is the unit E(1)∗ −→ E(1)∗E(1) in degree 0, where a split is given
by the counit. This K is bounded above and below as well as acyclic, so it is
contractible. Thus, by [12, Lemma 3.3.3], every map K −→ I is chain homotopic
to the zero map, so HomB(K, I) ' 0 and consequently

HomB(E(1)∗, I) ' HomB(I, I) ' HomB(J, J),

which is what we are using.

Thus we create a relative injective replacement equivalent to the fibrant
replacement

(Afib)∗ =

· · · 0 −→ T−(p−1)I0 −→ T−(p−1)I1 −→ T−(p−1)I2 −→ 0 −→ · · ·
· · · 0 −→ I0 −→ I1 −→ I2 −→ 0 −→ · · ·
· · · 0 −→ T (p−1)I0 −→ T (p−1)I1 −→ T (p−1)I2 −→ 0 −→ · · ·

In other words,

(Afib) = RI =
∏
k∈Z

T k(p−1)I[−k(2p− 2)]

with
I = (...0→ I0 → I1 → I2 → 0...) ∈ Ch(B)

and [n] denoting the nth suspension.
Returning to the definition of the endomorphism complex C∗, we have that

C∗ := HomC2p−2(B)((A
fib)∗, (Afib)∗)

is entirely determined by the terms of the form

HomB(Ij , Ik), where i, j ∈ {0, 1, 2}.

So we have to calculate nine potential terms:

Cn := HomC2p−2(B)((A
fib)∗, (Afib)∗)n =

∏
n=t−s,i

HomB((Ii)∗−t, (I
i+s)∗)

= HomB((I0)∗−n, (I
0)∗) ×HomB((I0)∗−(n−1), (I

1)∗) ×HomB((I0)∗−(n−2), (I
2)∗)

×HomB((I1)∗−(n+1), (I
0)∗) ×HomB((I1)∗−n, (I

1)∗) ×HomB((I1)∗−(n−1), (I
2)∗)

×HomB((I2)∗−(n+2), (I
0)∗) ×HomB((I2)∗−(n+1), (I

1)∗) ×HomB((I2)∗−n, (I
2)∗)

and specify the differentials between those terms.

Since the terms appearing in the sequence (2) are either of the form E(1)∗E(1)
or E(1)∗ ⊗ Q, the nine terms above can be grouped into four types of the fol-
lowing form:
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(I) HomB(E(1)∗−tE(1), E(1)∗E(1))

(II) HomB(E(1)∗−tE(1), E(1)∗ ⊗Q)

(III) HomB(E(1)∗−t ⊗Q, E(1)∗E(1))

(IV) HomB(E(1)∗−t ⊗Q, E(1)∗ ⊗Q)

All of the above are trivial unless t is a multiple of 2p − 2. By [17, Appendix
A1] we have the following natural isomorphism

HomE(1)∗(M,N) ∼= HomB(M,E(1)∗E(1)⊗E(1)∗ N) (3)

for M ∈ B and N an E(1)∗-module. Applying this to the terms above yields
the following.

Type (I) The isomorphism (3) gives

HomB(E(1)∗−tE(1), E(1)∗E(1)) ∼= HomE(1)∗(E(1)∗−tE(1), E(1)∗)

∼= HomZ(p)
(E(1)0E(1),Z(p)(v

k
1 )) for t = (2p− 2)k

Type (II) Here, we have to distinguish between t = 0 and t 6= 0. Let us
begin with t = 0. By [1], E(1)∗E(1) consists of Laurent polynomials living in
Q[u, u−1, w, w−1] with |u| = |w| = 2p − 2 satisfying certain conditions. (We
can think of u and w as “two copies of v1” in terms of the E(1)∗-action.)
Furthermore,

E(1)∗E(1)⊗Q ∼= Q[u, u−1, w, w−1].

Now let f ∈ HomB(E(1)∗E(1), E∗ ⊗ Q). By definition, f is an E(1)∗-module
homomorphism, and also the following diagram has to commute.

E(1)∗E(1)
f //

∆

��

E(1)∗ ⊗Q = Q[v1, v
−1
1 ]

ψ

��
E(1)∗E(1)⊗E(1)∗ E(1)∗E(1)

1⊗f // E(1)∗E(1)⊗E(1)∗ E(1)∗ ⊗Q = E(1)∗E(1)⊗Q.

For the coactions, we have

∆uiwj = uiw2j and ψ(vi1) = ui,

i.e. w is group-like, see e.g. [2] or [14].
Since f is an E∗-module homomorphism, we have

f(uiwj) = vi+j1 f(1).
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Putting this information together we see that the diagram can only commute if
j = 0 or f is the zero map. So, f has to be zero on w, i.e. is only supported
on Laurent polynomials in u. Thus, f can be considered as an E(1)∗-module
homomorphism from E(1)∗ ∼= Z(p)[u, u

−1] to E(1)∗ ⊗Q. Thus, we have

HomB(E(1)∗E(1), E(1)∗ ⊗Q) ∼= HomE(1)∗(E(1)∗, E(1)∗ ⊗Q) ∼= Q.

Note that the last isomorphism holds as we are only considering degree-preserving
morphisms. Furthermore, note that the 1 in the last Q corresponds to the mor-
phism that sends w to 0 and u to 1, which is exactly q from the Adams-Baird-
Ravenel resolution (1).

Let us now look at the case t 6= 0:
Analogously to the previous argument,

HomB(E(1)∗E,E(1)∗+t ⊗Q) ∼= HomE(1)∗(E(1)∗, E(1)∗+t ⊗Q) ∼= Q.

As a module over Q, this is generated by the function sending w to 0 and u to
vs−1

1 for t = s(2p− 2).

Type (III) Every E(1)∗-module is in particular a Z(p)-module, and so every
element of (III) is in particular a Z(p)-module homomorphism from Q to Z(p).
Thus, all terms of the form (III) are zero.

Type (IV) A morphism

f ∈ HomB(E(1)∗ ⊗Q, E(1)∗ ⊗Q)

is entirely determined by f(1) ∈ E(1)0⊗Q = Q, so for the degree t = 0 we have

HomB(E(1)∗ ⊗Q, E(1)∗ ⊗Q) = Q.

For t 6= 0, a term of Type (IV) is trivial. If t is not a multiple of (2p − 2),
this is already clear for degree reasons. For t = s(2p − 2), s 6= 0 we have the
following. A morphism

f : E(1)∗ ⊗Q −→ E(1)∗+t ⊗Q

in B is an E(1)∗-module homomorphism which is compatible with Adams op-
erations. The E(1)∗-module homomorphisms are given by

HomE(1)∗(E(1)∗ ⊗Q, E(1)∗+t ⊗Q) = Q,

which is generated over Q by the map that sends 1 to vs1. The Adams operations
are given by Ψk(vi1) = ki(p−1)vs1, in particular Ψk(v2

1) = k2(p−1)v2
1 .

We also know that E(1)∗+t is also isomorphic in B to T s(p−1)E(1)∗, therefore

HomB(E(1)∗ ⊗Q, E(1)∗+t ⊗Q) ∼= HomB(E(1)∗ ⊗Q, T s(p−1)E(1)∗).

12



Therefore, by definition of T ,

Ψk(v2
1) = ks(p−1)Ψk

old(v
2
1) = ks(p−1)(k(2p−2)v2

1) = k(s+2)(p−1)v2
1 .

However, this can only be equal to the previously calculated k2(p−1)v2
1 if s = 0,

which proves that for t 6= 0,

HomB(E(1)∗ ⊗Q, E(1)∗+t ⊗Q) = 0.

Now that we have identified the forms of the terms I–IV in the endomorphism
complex, let us consider the differentials. A differential from Cn to Cn+1 is of
the form d ◦ f + (−1)n+1f ◦ d. We illustrate its individual parts in the diagram
below, where a solid arrow represents a possible nontrivial d ◦ f and a dashed
arrow represents a possible nontrivial f ◦ d. In addition, each term has been
labeled with its type (I-IV).

(I) HomB((I0)∗−n, (I
0)∗) HomB((I0)∗−(n+1), (I

0)∗) (I)

(I) HomB((I0)∗−(n−1), (I
1)∗) HomB((I0)∗−n, (I

1)∗) (I)

(II) HomB((I0)∗−(n−2), (I
2)∗)→ 0 HomB((I0)∗−(n−1), (I

2)∗) (II)

(I) HomB((I1)∗−(n+1), (I
0)∗) HomB((I1)∗−(n+2), (I

0)∗) (I)

(I) HomB((I1)∗−n, (I
1)∗) HomB((I1)∗−(n+1), (I

1)∗) (I)

(II) HomB((I1)∗−(n−1), (I
2)∗) HomB((I1)∗−n, (I

2)∗) (II)

(III) HomB((I2)∗−(n+2), (I
0)∗) = 0 HomB((I2)∗−(n+3), (I

0)∗) = 0 (III)

(III) HomB((I2)∗−(n+1), (I
1)∗) = 0 HomB((I2)∗−(n+2), (I

1)∗) = 0 (III)

(IV) HomB((I2)∗−n, (I
2)∗) HomB((I2)∗−(n+1), (I

2)∗) (IV)

For any other values of n, the dga will be zero. Combining this information
with the interpretations of Terms (I)-(IV), we see that the non-zero terms of
the endomorphism dga look like:

13



C(2p−2)k−1 C(2p−2)k C(2p−2)k+1 C(2p−2)k+2

HomB(E(1)∗−nE(1), E(1)∗E(1))

HomB(E(1)∗−nE(1), E(1)∗E(1)) HomB(E(1)∗−nE(1), E(1)∗E(1))

HomB(E(1)∗−nE(1), E(1)∗E(1)) HomB(E(1)∗−nE(1), E(1)∗ ⊗Q)

HomB(E(1)∗−nE(1), E(1)∗ ⊗Q)

HomB(E(1)∗−n ⊗Q, E(1)∗ ⊗Q)

Ψ∗Ψ∗

Ψ∗ q∗Ψ∗

q∗ Ψ∗

q∗

Here, Ψ∗, Ψ∗, q
∗ and q∗ refer to (pre)composing with Ψ = (Ψr − 1) and q

from the Adams-Ravenel-Baird resolution (2).

Remark 6. When p = 3, degree reasons do not rule out a differential

C(2p−2)k+2 → C(2p−2)k+3.

However, the actual definition of the differential in terms of Ψ and q means that
no nontrivial such differential exists.

4 Reinterpretation as Sequences

We now turn to creating an explicit description of the sequence described in the
previous section. As noted above, terms of Type (III) are trivial, terms of Type
(II) give a single copy of Q. We here consider the other, not so simple terms of
Type (I).

As mentioned above, by [17, Appendix A1],

HomB(E(1)∗−nE(1), E(1)∗E(1)) ∼= HomE(1)∗(E(1)∗E(1), E(1)∗+n). (4)

14



Since E(1)∗E(1) is free as an E(1)∗-module [1, Theorem 2.1],

HomE(1)∗(E(1)∗E(1), E(1)∗+n) ' HomZ(p)
(E(1)0E(1),Z(p)[v

k
1 ]), n = (2p−2)k.

This dual has been considered in [7], where it is shown that

HomZ(p)
(E(1)0E(1),Z(p)[v

k
1 ]) ∼= E(1)0E(1).

Furthermore, by [7, Theorem 6.2] this can be uniquely expressed as a formal
series

E(1)0E(1) ∼= {
∑
n≥0

amΘm(Ψr) | am ∈ Z(p)}

see also [23, Proposition 18]. Here, Θm is an explicit polynomial in the Adams
operation Ψr (where r a generator of (Z/p2)×) defined as follows: [7, Definition
6.1]:

Θ0(Ψr) = 1,

Θ1(Ψr) = (Ψr − 1),

Θ2(Ψr) = (Ψr − 1)(Ψr − r),
Θ3(Ψr) = (Ψr − 1)(Ψr − r)(Ψr − r−1),

Θ4(Ψr) = (Ψr − 1)(Ψr − r)(Ψr − r−1)(Ψr − r2),

Θ5(Ψr) = (Ψr − 1)(Ψr − r)(Ψr − r−1)(Ψr − r2)(Ψr − r−2)

etc.

This means that we can view the elements of HomB(E(1)∗−nE(1), E(1)∗E(1))
as sequences of coefficients in p-local integers,

HomB(E(1)∗−nE(1), E(1)∗E(1)) ∼= {(am)m∈N |am ∈ Z(p)} = ZN
(p).

For simplicity of notation, will denote a sequence (am)m∈N by 〈am〉.

4.1 The formulas on sequences

To get the differential, we need to translate the following maps over to the
sequence representation:

Ψ∗ : ZN
(p) −→ ZN

(p)

Ψ∗ : ZN
(p) −→ ZN

(p)

and furthermore,

Ψ∗ : Q −→ Q
q∗ : ZN

(p) −→ Q
q∗ : Q −→ Q.

15



The map Ψ∗: We start by considering the map Ψ∗ = (Ψr − 1)∗ given by
composition with the map Ψr − 1. Chasing through our equivalences, we have

HomE(1)∗E(1)(E(1)∗E(1), E(1)∗E(1))t
(Ψr−1)∗ //

'
��

HomE(1)∗E(1)(E(1)∗E(1), E(1)∗E(1))t

'
��

HomE(1)∗(E(1)∗E(1), E(1)∗)t
(Ψr−1)∗ //

'
��

HomE(1)∗(E(1)∗E(1), E(1)∗)t

'
��

HomZ(p)
(E(1)0E(1),Z(p)[v

k
1 ]) //

'
��

HomZ(p)
(E(1)0E(1),Z(p)[v

k
1 ])

'
��

E(1)0E(1)

'

��

// E(1)0E(1)

'

��
{
∑
m≥0

amΘm(Ψr) | am ∈ Z(p)} // {
∑
m≥0

amΘm(Ψr) | am ∈ Z(p)}

To calculate (Ψr − 1)∗ we can work on the vk1 level. Note that when k = 0,
Ψr acts as the identity, and so (Ψr − 1)∗ = 0. For k 6= 0, we know that up to a
p-local unit,

(Ψr − 1)∗(v
k
1 ) = (rk(p−1) − 1)vk1

= pν(k)+1vk1

Therefore we can see that (Ψr − 1)∗ is given by multiplication by pν(k)+1.

The map Ψ∗ on Z(p)-sequences: Chasing through the effect of (Ψr − 1)∗ is
slightly more involved. Starting with the k = 0 case, we see that since the
vertical isomorphisms in the last step are ring isomorphisms, the overall effect
on the sequences is multiplication by Θ1(Ψr). In all that follows, we will write
Θi in place of Θi(Ψ

r). Then we can calculate:

Θ0Θ1 = Θ1

ΘmΘ1 = (Ψr − 1)(Ψr − r)(Ψr − r−1) · · · (Ψr − rs̃(m))(Ψr − 1)

Θm+1 = (Ψr − 1)(Ψr − r)(Ψr − r−1) · · · (Ψr − rs̃(m))(Ψr − rs̃(m+1))

where

s̃(m) =

{
m
2 m even
1−m

2 m odd

16



So then

ΘmΘ1 −Θm+1 = (Ψr − 1)(Ψr − r)(Ψr − r−1) · · · (Ψr − rs̃(m))(rs̃(m+1) − 1)

ΘmΘ1 = [rs̃(m+1) − 1]Θm + Θm+1

Therefore∑
m≥0

amΘmΘ1 = a0Θ1 +
∑
m≥1

am[rs(m) − 1]Θm + Θm+1 =
∑
m≥1

(am(rs(m) − 1) + am−1)Θm

where s(m) = s̃(m+ 1). Thus when k = 0, our formula becomes

Ψ∗〈am〉 = < 0
a1(rs(1) − 1) + a0

a2(rs(2) − 1) + a1

...
am(rs(m) − 1) + am−1

... >
When k 6= 0, then we have n 6= 0 and thus, must determine how the map

Ψr − 1 behaves on E(1)∗−nE(1) instead of just E(1)∗E(1). Do to this, we
observe what happens on the level of the generators vi1. We first note that

(Ψr − 1)vi1 = (ri(p−1) − 1)vi1.

As mentioned above, precomposing with such a map corresponds to mul-
tiplication by Θ1. Thus, upon shifting to E(1)∗−nE(1) via multiplication by
vk1 , we see that multiplication by Θ1 would correspond to Ψr − 1 produc-
ing (ri(p−1) − 1)vi+k1 in E(1)∗−nE(1). However, to truly shift to working in
E(1)∗−nE(1) we observe that

(Ψr − 1)vi+k1 = (r(i+k)(p−1) − 1)vi+k1 .

Due to this difference, precomposition with Ψr − 1 on E(1)∗−nE(1) when
translated to sums of Θm’s must include an additional Θ0 term. Up to a p-local
unit, for any i,

r(i+k)(p−1) − ri(p−1) = pν(k)+1.

Hence, when k 6= 0, Ψ∗ acts by multiplication by Θ1+pν(k)+1Θ0. By performing
a similar computation to the one above for

∑
m≥0 amΘmΘ1, we obtain

∑
m≥0

amΘm(Θ1 + pν(k)+1Θ0) = pν(k)+1a0 +
∑
m≥1

am[rs(m) − 1 + pν(k)+1]Θm

and thus, when k 6= 0 our formula becomes
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Ψ∗〈am〉 = < pν(k)+1a0

a1(rs(1) − 1 + pν(k)+1) + a0

...
am(rs(m) − 1 + pν(k)+1) + am−1

... >
The map Ψ∗ on the rational terms:

Let us consider Ψ∗ : Q −→ Q, i.e. the map induced by Ψ on terms of Type
(II). We recall that we have an isomorphism

HomB(E(1)∗E(1), E(1)∗ ⊗Q) ∼= Q

and that the 1 ∈ Q on the right hand side corresponds to the map q itself. But
q ◦ Ψ = 0 as they are part of the resolution (1), thus the map Ψ∗ above is the
zero map.

For t = s(2p− 2), the copy of the rationals

HomB(E(1)∗E(1), E(1)∗+t ⊗Q) ∼= Q

is generated by the function that sends w ∈ E(1)∗E(1) to 0 and u ∈ E(1)∗E(1)
to vs1. As

(Ψr − 1)vs1 = (r(s)(p−1) − 1)vs1,

precomposition with Ψ is multiplication by r(s−1)(p−1) − 1, which up to p-local
unit is a nontrivial power of p. (This is also consistent with the case t = 0,
where this map is trivial.)

The map q∗: The map

q∗ : HomB(E(1)∗−nE(1), E(1)∗E(1)) −→ HomB(E(1)∗−nE(1), E(1)∗ ⊗Q)

is the map obtained by composing with the map

q : E(1)∗E(1) −→ E(1)∗ ⊗Q

from the Adams-Baird-Ravenel resolution. The map q is induced by the map
E(1) → HQ which, on homotopy, is a rational isomorphism in degree 0 and
trivial in all other degrees. So q∗ is induced by the inclusion Z(p) ↪→ Q and
becomes q∗(〈am〉) = a0. For n 6= 0, q∗ is trivial.

The map q∗: Lastly we consider the map

q∗ : HomB(E(1)∗ ⊗Q, E(1)∗ ⊗Q) −→ HomB(E(1)∗E(1), E(1)∗ ⊗Q).

We saw that both these terms are isomorphic to one copy of Q via the isomor-
phism f 7→ f(1). So, q∗ sends 1 ∈ Q to the element in Q corresponding to the
composite

E(1)∗E(1)
q−→ E(1)∗ ⊗Q 1−→ E(1)∗ ⊗Q

which is again q. Thus, q∗ : Q −→ Q is simply the identity map.
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5 The calcuation for n = 0

In this section and the next, we are going to use our explicit representations to
calculate the homology of the endomorphism dga C. Note that by our earlier
remarks, we know that this should come out to H∗(C) = π−∗(L1S

0) (the change
in sign arises as the dga is cohomologically graded).

As explained at the end of Section 3, in degrees around 0 our dga looks like

C−1 d−1
// C0 d0 // C1 d1 // C2

ZN
(p)

Ψ∗

  
ZN

(p)

Ψ∗
==

Ψ∗ !!

ZN
(p)

q∗

  
ZN

(p)

Ψ∗
>>

q∗
!!

Q

Q

Ψ∗
>>

Q
q∗

<<

Condensing it down we have

0 // ZN
(p)

d−1
// ZN

(p) ⊕ ZN
(p) ⊕Q d0 // ZN

(p) ⊕Q d1 // Q // 0

-1 0 1 2

Now we need to see what each of these maps is on sequences. Using our
formulas from Section 4.1 we get

d−1(〈am〉) = (Ψ∗〈am〉,Ψ∗〈am〉, 0) =

< 0
a1(rs(1) − 1) + a0

...
am(rs(m) − 1) + am−1

... >,< 0
0
...
0
... >, 0


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d0(〈am〉, 〈bm〉, x) = (Ψ∗〈am〉 −Ψ∗〈bm〉, q∗〈bm〉 − q∗(x))

=

< 0
−b1(rs(1) − 1)− b0

...
−bm(rs(m) − 1)− bm−1

... >, b0 − x


d1(〈am〉, y) = q∗〈am〉+ Ψ∗(y) = a0

Lemma 7. The sequences of maps d−1, d0 and d−1 give a cochain complex.

Proof. It is easy to see that (d0 ◦ d−1)(am) = d0(Ψ∗(am), 0, 0) = 0 and

(d1 ◦ d0)(〈am〉, 〈bm〉, x) = d1

< 0
−b1(rs(1) − 1)− b0
−b2(rs(2) − 1)− b1

...
−bm(rs(m) − 1)− bm−1

... >, b0 − x


= 0

Theorem 8. Near n = 0:

Hn(C) =


0 if n = −1,

Z(p) if n = 0

0 if n = 1,

Q/Z(p) if n = 2

Proof. n = −1: Suppose that 〈am〉 ∈ ker(d−1). Then we know that

am(rs(m) − 1) + am−1 = 0 for all m ∈ N.

We will show that am = 0 for all m ∈ N. For any given m, choose ` > m such
that p(p − 1)|s(`). Then rs(`) = 1, and so we know that a`−1 = 0. Then since
for all j ∈ N

aj(r
s(j) − 1) = −aj−1,

we see that if aj = 0 then aj−1 = 0 also. So by induction, am = 0 also. So d−1

is injective and H−1(C) = 0.
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n = 0: Suppose that (〈am〉, 〈bm〉, x) ∈ ker d0. Then we know that< 0
−b1(rs(1) − 1)− b0

...
−bm(rs(m) − 1)− bm−1

...
... >, b0 − x

 = 0

Therefore b0 = x and bm = 0,∀m ∈ N by the same argument used for n = −1.
Then (〈am〉, 〈bm〉, x) = (〈am〉, 0)

We claim that

Im d−1 = {d−1〈cm〉 : 〈cm〉 ∈ ZN
(p)}

= {(Ψ∗〈cm〉, 〈0〉, 0) : 〈cm〉 ∈ ZN
(p)}

= {(〈am〉, 〈0〉, 0) : 〈am〉 ∈ ZN
(p), a0 = 0}.

(5)

It is clear that any element in the image must have a0 = 0. Conversely, given
〈am〉 with a0 = 0, we can produce 〈cm〉 such that d−1(〈cm〉) = (〈am〉, 〈0〉, 0).
We produce cm as follows: for any m, we choose the smallest ` > m such that
(p− 1)p|s(`). Then we need to choose c`−1 satisfying c`−1 = a`. Then we work
our way down, observing that if we have chosen cj , we can then find cj−1 to
satisfy

cj(r
s(j) − 1) + cj−1 = aj−1.

Inductively we can get a value for cm.
So we can find 〈cm〉 such that cm = am(rs(m) − 1) + am−1 and hence

d−1(〈cm〉) = (〈am〉, 〈0〉, 0). Thus we see that ker d0/ Im d−1 = Z(p) as repre-
sented by the value of a0 in (〈am〉, 〈0〉, 0).

n = 1: Note that ker d1 = (〈am〉, y) such that a0 = 0. We can see in our claim
above, given in equations (5), that there exists 〈bm〉 = 〈−cm〉 ∈ ZN

(p) such that

〈am〉 = Ψ∗(〈cm〉) = −Ψ∗(〈bm〉).

Then
d0(〈0〉, 〈bm〉, b0 − y) = (〈am〉, y).

As ker d1 = Im d0 we get H1(C) = 0.

n = 2: Finally, we know that ker d2 = Q. Clearly Im d1 = Z(p) . So

H2(C) = Q/Z(p).
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6 The Homology Calculation for n 6= 0

Looking back on our description of the endomorphism dga at the end of Section
3, we see that in terms of our sequence representations, we have

C(2p−2)k−1 // C(2p−2)k // C(2p−2)k+1 // C(2p−2)k+2

ZN
(p)

Ψ∗

%%
ZN

(p)

Ψ∗
99

Ψ∗
%%

ZN
(p)

q∗=0

&&ZN
(p)

Ψ∗
99

q∗=0

&&

Q

Q

Ψ∗

∼=

77

0

q∗

77

Condensing down our earlier diagram, we are looking at

0 // ZN
(p)

d(2p−2)k−1
// ZN

(p) ⊕ ZN
(p)

d(2p−2)k
// ZN

(p) ⊕Q d(2p−2)k+1
// Q // 0

(2p-2)k-1 (2p-2)k (2p-2)k+1 (2p-2)k+2

(6)
where

d(2p−2)k−1(〈am〉) = (Ψ∗〈am〉,Ψ∗〈am〉)

=

< pν(k)+1a0

a1(rs(1) − 1 + pν(k)+1) + a0

...
am(rs(m) − 1 + pν(k)+1) + am−1

... >,< pν(k)+1a0

pν(k)+1a1

...
pν(k)+1am

... >

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d(2p−2)k(〈am〉, 〈bm〉) = (Ψ∗〈am〉 −Ψ∗〈bm〉, 0)

=

< pν(k)+1a0 − pν(k)+1b0
pν(k)+1a1 − b1(rs(1) − 1 + pν(k)+1)− b0

...
pν(k)+1am − bm(rs(m) − 1 + pν(k)+1)− bm−1

... >, 0


and
d(2p−2)k+1(〈am〉, b) = pν(k)+1b).

We start by verifying the following:

Lemma 9. The sequence of modules and maps described in (6) is a cochain
complex.

Proof. We show that d(2p−2)k(d(2p−2)k−1〈am〉) = 0 for any sequence 〈am〉, where
am ∈ Z(p):

Ψ∗(Ψ
∗〈am〉) = Ψ∗

< pν(k)+1a0

a1(rs(1) − 1 + pν(k)+1) + a0

...
am(rs(m) − 1 + pν(k)+1) + am−1

... >


= < p2ν(k)+1a0

pν(k)+1a1(rs(1) − 1 + pν(k)+1) + pν(k)+1a0

...
pν(k)+1am(rs(m) − 1 + pν(k)+1) + pν(k)+1am−1

... >
= Ψ∗

< pν(k)+1a0

pν(k)+1a1

...
pν(k)+1am

... >
 = Ψ∗(Ψ∗〈am〉).

Then

d(2p−2)k(d(2p−2)k−1〈am〉) = Ψ∗(Ψ
∗〈am〉)−Ψ∗(Ψ∗〈am〉) = 0.

Also,

d(2p−2)k+1 ◦ d(2p−2)k(〈am〉, 〈bm〉) = d(2p−2)k+1(pν(k)+1a0 − pν(k)+1b0, 0) = 0
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as required.

It had been immediately clear that the isomorphism Ψ∗ = pν(k)+1 : Q −→ Q
does not contribute anything to the chain complex, so we will omit it from here
onwards.

Before verifying that the cohomology is as expected, we examine the kernel
of d(2p−2)k more closely.

Lemma 10. For all (〈am〉, 〈bm〉) ∈ ker d(2p−2)k, pν(k)+1|bm for all m ∈ N.

Proof. If (〈am〉, 〈bm〉) is in the kernel, we know that

pν(k)+1a0 = pν(k)+1b0

and
pν(k)+1am = (rs(m) − 1 + pν(k)+1)bm + bm−1 for all m ≥ 1.

Since r ∈ (Z/p2)×, we know rs(m) − 1 = 0 whenever s(m) is a multiple of
p(p − 1). Now fix m ∈ N and we will show that pν(k)+1|bm. Let ` ∈ N, ` > m
such that rs(`) − 1 = 0. Then

pν(k)+1a` = pν(k)+1b` + b`−1

and thus, pν(k)+1|b`−1. Then since

pν(k)+1aq = (rs(q) − 1 + pν(k)+1)bq + bq−1

it is clear that if pν(k)+1|bq then also pν(k)+1|bq−1 for any q ≥ 1. Thus since
pν(k)+1|b` and ` > m, pν(k)+1|bm by induction.

Theorem 11. When k 6= 0,

Hn(C) =

{
Z/pν(k)+1 if n = (2p− 2)k + 1

0 else

Proof. From the complex, it is immediate that Ht(C) = 0 for all t that are not
congruent to −1, 0 or 1 modulo 2p− 2.

n = (2p − 2)k − 1: Suppose 〈am〉 is in ker d(2p−2)k−1. Then pν(k)+1am = 0
for all m ≥ 0, and so am = 0 for all m ≥ 0. Thus ker d(2p−2)k−1 = 0 and so
H(2p−2)k−1(C) = 0.

n = (2p− 2)k: Let (〈am〉, 〈bm〉) ∈ ker d(2p−2)k. This means

pν(k)+1a0 = pν(k)+1b0, so a0 = b0,

and
pν(k)+1am = (rs(m) − 1 + pν(k)+1)bm + bm−1 for all m ≥ 1.
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By Lemma 10 we know pν(k)+1|bm for all m, and so we may write

bm = pν(k)+1cm for some cm ∈ Z(p).

Thus, a0 = b0 = pν(k)+1c0, and for m ≥ 1 we may write

am = (rs(m) − 1 + pν(k)+1)cm + cm−1.

Thus we see that all elements of the kernel are of the form

d(2p−2)k−1(〈cm〉) =

< pν(k)+1c0
(rs(m) − 1 + pν(k)+1)c1 + c0

...
(rs(m) − 1 + pν(k)+1)cm + cm−1

... >,< pν(k)+1c0
pν(k)+1c1

...
pν(k)+1cm

... >


Thus ker d(2p−2)k = Im d(2p−2)k−1 and H(2p−2)k(C) = 0.

n = (2p− 2)k + 1: For any (〈am〉, 〈bm〉 ∈ ZN
(p) ⊕ ZN

(p) we have

d(2p−2)k(〈am〉, 〈bm〉) = < pν(k)+1(a0 − b0)
pν(k)+1a1 − (rs(1) − 1 + pν(k)+1)b1 − b0

...
pν(k)+1am − (rs(m) − 1 + pν(k)+1)bm − bm−1

... >.
So if 〈cm〉 ∈ ZN

(p) is in Im d(2p−2)k, then c0 is clearly divisible by pν(k)+1. We

will show that the converse is also true: if pν(k)+1|c0, then there exist sequences
〈am〉, 〈bm〉 ∈ ZN

(p) such that

d(2p−2)k(〈am〉, 〈bm〉) = 〈cm〉.

Given any b0, we may always select a0 so that pν(k)+1(a0 − b0) = c0. We
will show that we can find am, bm, and bm−1 so that

pν(k)+1am − (rs(m) − 1 + pν(k)+1)bm − bm−1 = cm

compatibly for all m ≥ 1. As in the proof of Lemma 10, for any fixed m ∈ N,
we may choose the smallest value ` > m such that rs(`) − 1 = 0. Then if we
take a` = b` and b`−1 = −c` we have

pν(k)+1a` − (rs(`) − 1 + pν(k)+1)b` − b`−1 = c`.

Now suppose we have defined aq, bq, and bq−1 so that

pν(k)+1aq − (rs(q) − 1 + pν(k)+1)bq − bq−1 = cq.
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If we then let aq−1 = bq−1 and bq−2 = (rs(q−1) − 1)bq−1 − cq−1 we will obtain

pν(k)+1aq−1 − (rs(q−1) − 1 + pν(k)+1)bq−1 − bq−2 = cq−1.

Again, inducting downwards from ` shows that we can find values for am, bm
for any m such that d(2p−2)k(〈am〉, 〈bm〉) = 〈cm〉.

7 Products and Massey Products

In this section we discuss the multiplicative structure of C, showing that it
induces an injective multiplication H−(2p−2)k+1(C)⊗H(2p−2)k+1(C)→ H2(C)
and that C has the appropriate Massey products.

7.1 Products

In this section we will prove the following:

Proposition 12. The multiplication C−(2p−2)k+1 ⊗ C(2p−2)k+1 → C2 induces
multiplication H−(2p−2)k+1(C)⊗H(2p−2)k+1(C)→ H2(C) given by

Z/pν(k)+1 ⊗ Z/pν(k)+1 // Q/Z(p)

a⊗ b � // a
pν(k)+1

b
pν(k)+1

This will immediately give the following:

Corollary 13. The multiplication H−(2p−2)k+1(C)⊗H(2p−2)k+1(C)→ H2(C)
is injective.

In order to prove Proposition 12, we examine the multiplication on C∗. The
multiplication C−(2p−2)k+1 ⊗ C(2p−2)k+1 → C2 is of the form

HomB(E(1)∗−nE(1), E(1)∗E(1))⊗HomB(E(1)∗+nE(1), E(1)∗E(1))

��
HomB(E(1)∗E(1), E(1)∗ ⊗Q)

given by the composition of morphisms in B.
To obtain the product in HomB(E(1)∗E(1), E(1)∗⊗Q), we compose with q.
We translate this into a product on our sequence representations.

Lemma 14. For sequences 〈am〉 and 〈bm〉 representing
∑
m≥0 amΘm and

∑
n≥0 bnΘn

in E(1)tE(1) and E(1)sE(1) respectively, where t = (2p−2)k and s = (2p−2)`,

∑
m≥0

amΘm ·
∑
n≥0

bnΘn =
∑

m+n=i

ambnΘmΘnp
N(i+k,m)−N(i,m)+N(i+`,n)−N(i,n)

where N(i, k) are integers that depend on i and k.
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Proof. Recall that when n = (2p−2)k we obtain the sequences using the equiv-
alence

HomB(E(1)∗−nE(1), E(1)∗E(1)) ∼= E(1)nE(1) = E(1)0E(1) · vk1

So we consider

E(1)tE(1)⊗ E(1)sE(1) // E(1)s+tE(1)

E(1)0E(1) · vk1 ⊗ E(1)0E(1) · v`1 // E(1)0E(1) · vk+`
1

for the product of elements from Ct and Cs where t = (2p − 2)k and s =
(2p − 2)`. Since E(1)0E(1) = {

∑
m≥0 amΘm} where Θm = Θm(Ψr − 1), we

need to understand how
∑
m≥0 amΘm acts on vi1.

If t = 0 then∑
m≥0

amΘm · vi1 =
∑
m≥0

am(ri(p−1) − 1)(ri(p−1) − r) · · · (ri(p−1) − rs(m))vi1

=
∑
m≥0

amp
N(i,m)vi1

where N(i,m) is some integer depending on i and m. If t = (2p−2)k for k 6= 0,∑
m≥0

amΘm · vi1 = (
∑
m≥0

amΘm · vi+k1 )v−k1

=
∑
m≥0

am(ri(p−1) − 1)(ri(p−1) − r) · · · (ri(p−1) − rs(m))vi1

=
∑
m≥0

amp
N(i+k,m)vi1

Applying this to the sum yields the product described in the lemma.

Corollary 15. The index zero term in the sequence 〈am〉 · 〈bn〉 is a0b0.

Proof. From the definition we see that N(i, 0) = 0 for any i, since v0
1 = 1. Since

the only way for ΘmΘn = Θ0 is to have m = n = 0, this proves the claim.

Proof of Propositon 12. We saw in the homology computation of Theorems 8
and 11 that the homology in H(2p−2)k+1(C) and H2(C) is represented by the
value of the index zero term in the sequences. Thus, to compute a product

H−(2p−2)k+1(C)⊗H(2p−2)k+1(C)→ H2(C)

we need only consider the multiplication

C−(2p−2)k+1 ⊗ C(2p−2)k+1 → C2
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on the index zero terms of sequences. By Corollary 15, if 〈an〉 · 〈bn〉 = 〈cn〉 then
c0 = a0b0. Therefore if we pick any

a ∈ H−(2p−2)k+1(C) = Z/pν(k)+1 and b ∈ H(2p−2)k+1(C) = Z/pν(k)+1,

we know multiplying them will yield the product in the quotient in H2(C) =
Q/Z(p). Explicitly, we first consider a and b as a

pν(k)+1 ∈ Q/Z(p) and b
pν(k)+1 ∈

Q/Z(p) respectively, in Q/Z(p) and then multiply these representatives together.

7.2 Massey Products

Here we calculate the Massey products.

Proposition 16. Suppose that γk denotes an element of the cohomology

H(2p−2)k+1(C) ∼= Z/pν(k)+1

such that pγk = 0. Then the γk’s satisfy the following Massey product relation:

〈γi, p, γj〉 = γi+j

and the indeterminancy of this product is zero.

Proof. We will compute the product directly using the definition of Massey
product. The cohomology class γk must be a multiple of pν(k), and we can
represent it by the cycle

a = < pν(k)+1a0

0
0
... >

where a0 is some value such that ν(a0) = 0. Choosing the analogous represen-
tative for γj gives the following cycles, a, b, and c, representing γi, p, and γj
respectively:

a = < pν(k)+1a0

0
0
... > b = p c = < pν(k)+1c0

0
0
... >

where ν(a0) = ν(c0) = 0.

Now we choose

u = < a0

0
0
... > and v = < −c00

0
... >
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where |u| = (2p− 2)i and |v| = (2p− 2)j. We can compute

d(2p−2)i(u) = < pν(i)+1a0

0
0
... > = pa = (−1)1+|a|a · b

and

d(2p−2)j(v) = < −pν(j)+1c0
0
0
... > = −pc = (−1)1+|b|b · c.

Therefore the Massey product 〈γi, p, γj〉 can be computed as [(−1)1+|u|u ·
c+ (−1)1+|a|a · v]. This gives us

−< a0

0
0
... > ·< pν(k)+1c0

0
0
... >+< pν(k)+1a0

0
0
... > ·< −c00

0
... >

which yields

< −2a0c0(pν(i) + pν(j))
0
0
... >

by our description of the multiplication in Section 7.1.
Now we can rewrite pν(i) + pν(j) as

pν(i) + pν(j) = pmin(ν(i),ν(j))(1 + pmax(ν(i),ν(j))−min(ν(i),ν(j))).

If i 6= j then ν(i+ j) = min(ν(i), ν(j)) so pν(i)+ν(j) = pν(i+j)m where ν(m) = 0.
If i = j then ν(i+j) = ν(2i) = ν(2)+ν(i) = ν(i). Thus, in this case pν(i)+ν(j) =
2pν(i) = 2pν(i+j).

Thus,

(−1)1+|u|u · c+ (−1)1+|a|a · v = < −2a0c0m(pν(i+j))
0
0
... >

where m is some value such that ν(m) = 0. Thus we also have ν(2a0c0m) = 0
so this is an element of H(2p−2)(i+j)+1(C) of order p which represents γi+j .

Finally, we note that the indeterminancy of the product is

γiH
(2p−2)j(C)⊕ γjH(2p−2)i(C)

which is zero because the cohomology in each of those degrees is zero.
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