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Abstract. Concurrency is beginning to be accepted as a core knowledge area in the undergraduate CS
curriculum—no longer isolated, for example, as a support mechanism in a module on operating systems or
reserved as an advanced discipline for later study. Formal verification of system properties is often considered a
difficult subject area, requiring significant mathematical knowledge and generally restricted to smaller systems
employing sequential logic only. This paper presents materials, methods and experiences of teaching concurrency
and verification as a unified subject, as early as possible in the curriculum, so that they become fundamental ele-
ments of our software engineering tool kit—to be used together every day as amatter of course. Concurrency and
verification should live in symbiosis. Verification is essential for concurrent systems as testing becomes especially
inadequate in the face of complex non-deterministic (and, therefore, hard to repeat) behaviours. Concurrency
should simplify the expression of most scales and forms of computer system by reflecting the concurrency of the
worlds in which they operate (and, therefore, have to model); simplified expression leads to simplified reasoning
and, hence, verification. Our approach lets these skills be developed without requiring students to be trained in
the underlying formal mathematics. Instead, we build on the work of those who have engineered that necessary
mathematics into the concurrency models we use (CSP, π -calculus), the model checker (FDR) that lets us explore
and verify those systems, and the programming languages/libraries (occam-π , Go, JCSP, ProcessJ) that let us
design and build efficient executable systems within these models. This paper introduces a workflowmethodology
for the development and verification of concurrent systems; it also presents and reflects on two open-ended case
studies, using this workflow, developed at the authors’ two universities. Concerns analysed include safety (don’t do
bad things), liveness (do good things) and low probability deadlock (that testing fails to discover). The necessary
technical background is given to make this paper self-contained and its work simple to reproduce and extend.
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1. Introduction

Concurrency and formal verification, if they are taught at all at undergraduate level, are taught as distinct subjects.
Both are viewed as difficult. The novelty in what we offer in this paper is a way to teach both together in such as
way that they reinforce each other and enable deeper understanding and application.

If these are taught early in the curriculum, they become second nature and provide a stronger foundation for
education in computer engineering. The need for concurrent systems has snowballed over the last decade (not
only in hardware but also in software) so that traditional sequential programming skills, mastered by the average
programmer, are no longer sufficient. The need for verification is even more important for concurrent systems
because of their additional complexity. We believe improving such skills will improve the way future complex
systems are developed, tested, and deployed.

The ideas reported in this paper were developed as a collaboration between two institutions: the University
of Kent at Canterbury in the United Kingdom (Welch) and the University of Nevada Las Vegas, in the United
States (Pedersen).

At Kent, concurrency has been a course module at the undergraduate level since 1986. Mostly, it has taken
place during the second year. For a brief time, we were allowed to teach a shorter version during the first year.
CSP and formal verification was taught as a separate optional module, again in year two. Teaching them in a
combined way, as discussed in this paper, commenced in 2010 in the second year. Students at this stage were
familiar only with object-oriented programming through Java and with only a modest mathematical foundation.
At UNLV concurrency and verification has been taught together as one part of a graduate course (for students
already holding a B.Sc. or equivalent in computer science), which has been offered three times.

1.1. Concurrency is essential

One of the wrong turns taken by Computer Science, both academic and industrial, over the past 60 years has been
the focus on serial forms of computing (be that ‘structured’, ‘object oriented’ or even, despite appearances, ‘func-
tional’). Concurrency, when taught or practiced, has been treated as an advanced topic—only to be approached
once we have become comfortable with sequential programming and, only then, as a last resort (e.g. to reduce
response latencies in a real-time application or to make efficient use of a parallel supercomputer). But we see
concurrency as a fundamental mechanism of the universe, existing in all structures and at all levels of granularity.
To be useful in this universe, any computer system has tomodel and reflect an appropriate level of abstraction.For
simplicity, therefore, the system needs to be concurrent [Rob12], [Wel13a]—so that this modelling is obvious and
correct. If you share this intuition, there are radical consequences for the ways we teach and practice computer
science. In particular, we should teach sound concurrency ideas and practices at the same time as introducing
sequential programming [ACM12].

Today, the commercial reality ofmulti-core processorsmeans that concurrency issues can no longer be ducked
if applications are going to be able to exploit more than an ever-diminishing fraction of their power. This is a
mean, but very forceful, reason to take this subject seriously.

This paper presents some of the ways in which we have been teaching concurrency at the undergraduate and
master’s level.We focuson themodelof concurrencyknownasProcessOrientedDesign [Wel00], [WP10], [Wel13a],
which is based on the formal process algebras of Hoare’s Communicating Sequential Processes (CSP) [Hoa85,
Ros97, Ros10] and Milner’s π -calculus [Mil99]. The materials and case studies in this paper are designed to
illustrate the most important concepts of this approach to concurrency. It is our experience, from almost 30 years
of developing this teaching, that students do not have difficulties in understanding and applying the ideas. On the
contrary, fluency seems fairly easy to acquire (because the mechanisms correspond well with our experience of
the way the world works and, so far as software engineering is concerned, enable compositional reasoning and no
conflict with everything we expect from sequential programming). The reason we are teaching these concepts is
because they are not generally taught and this seems wrong to us: they enable concurrency to become a standard
part of the software engineering tool kit without which modern scalable complex systems cannot safely be built.
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1.2. The need for verification

Multi-core architectures are now standard, with the number of cores per processor growing each year. Multi-
processor networks are inescapable for super-computing problems and most forms of embedded computer
platform. Programmers (and students) cannot avoid concurrent reasoning when dealing with these devices—
avoidance leads to many bad things. Verification of this concurrent reasoning is mostly set aside (as it has
generally been for sequential reasoning, we admit). A significant amount of professional development time and
money is spent instead on testing software. However, testing and debugging concurrent programs is even more
difficult than for sequential programs—common faults are intermittent and not reproducible on demand. If the
concurrency pattern is beyond the embarrassingly parallel (i.e., the processes need to engage with each other) and
we have made somemistakes in design or coding, testing may never see these faults and our system will eventually
fail in service. So, we need to verify.

Therefore, just as we need tools (e.g. programming languages and integrated development environments) to
produce executable systems, we need tools (e.g. model checkers) to produce verified systems. Language andmodel
checker pairs need to live to the same concurrency model. All these tools need to be integrated, and taught and
used together! We need theory and programming technology that turns this around and makes concurrency an
elementary part of the every day tool kit of every software engineer. This is what we teach.

1.3. Research led teaching: our experiences

Since 1986, concurrency has been a major module in the Computer Science undergraduate (and taught Masters)
curricula at the University of Kent. Initially prompted by the development of the INMOS transputer, our courses
have evolved to provide a secure foundation for the design, implementation and analysis of concurrent and paral-
lel systems across a wide field of application.We have, however, kept to our root principles of a concurrencymodel
based on the formal algebras of CSP and theπ -calculus. These ideas are not taught through the formalmathemat-
ics, but through structured diagrams, lots of programming, rigorous argument and fun with robotics (virtual and
real). The courses are elective, advertised to and attracting only those students who enjoy and want to program –
currently about half our cohort (approximately 100 students per year). We engage our students with our research
in this field—for example, complex systems modelling and emergent behaviour (CoSMoS [SWT+07], To-Boldly-
Go [WWSK12]), reactive embedded systems (RMoX [JBV03, Bar05]), programming language design (occam-
π [WB05a, BW04, WP10, WB05b, WB08, WPB+11, WPBR11, WB11b, RW10, Sam08, SRJ+10, BWMW10]),
concurrency libraries for mainstream languages (such as JCSP for Java [WBM+10,WBM+07,WB11a], C++CSP
forC++ [BW03, Bro10a] orCHP forHaskell [Bro08, Bro10b]), efficient run-time kernels formulti-core processors
(CCSP [RSB12]) and a portable interpreter to fit on small memory platforms (the Transterpreter [JJ04]).

Recently, we have explored teaching verification in a course at the University of Nevada, Las Vegas. Some of
the material presented in this paper is the result of a live exercise during lecture time. This examines a 3 process
system synchronising over 11 channels and a single barrier. The students are asked to describe the opening
behaviour of this system, at first reasoning informally using their intuitive understanding of the semantics of
process synchronisation. Their conclusions are verified using a formal model-checker. Deeper questions are
then raised about various safety (“do no wrong”) and liveness (“do right”) requirements1 that the system has to
satisfy throughout its operation. The interesting, and sometimes dark, arts of model-checking are introduced to
answer these questions—but in a way that requires no deep mathematical skills and is very close to programming
(in which they have skills). Another exercise at the University of Kent concerns a safety-critical system that
seems well-programmed and passes days2 of soak-testing. Yet a potential for deadlock is immediately exposed
by the model-checker. Finding the cause, fixing it and verifying the fix considerably enhances understanding,
demonstrates the importance of program verification and shows that the latter can and should be done as part
of normal programming activity. Presenting the (simple) technical background to these exercises and reporting
on their success is the main theme of this paper.

1 Safety and liveness are considered in the sense given by CSP—see the opening paragraphs of Sect. 5.5.4—not in the sense of dependable
systems.
2 It would actually pass years.
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1.4. Paper organization

In Sect. 2, we describe a methodology for developing verified applications using the concurrency model of
process oriented design. Section 3 briefly introduces process orientation and the concepts needed for the rest of
the paper. Section 4 shows a language binding for process-oriented systems, which allows us to write executable
code.3 Sections 5 and 6 present the two case studies that provide the foundation for this paper, and finally, Sect. 7
concludes and reflects on the lessons learned.A smaller case study (of a conundrum that surprisedBen-Ari [BA10])
is given in an Appendix. Where relevant, we will introduce each section or subsection with a box of the form:

Intentions: What did we want the students to learn?
Methodology: What part of the methodology from Sect. 2 does this support and how?
Questions: What we ask the students.

Not all three items are relevant to all sections; those which are irrelevant are left out.

1.5. On-line resources

All the (occam-π ) executable sources and the (CSP) formal models discussed in this paper are available on-
line at the supporting website [PW15]: http://SantaClausProblem.net/verification. These include full sources for
additional soak-testing for the second case study (Sect. 6) and the small study in the Appendix.

2. Concurrency and verification methodology

Figure 1 illustrates the workflow between the problem domain and seven areas of work in the development of
verified systems utilising concurrency and process-oriented design.

1. Problem domain. This is the task of developing a description of the problem in terms of its environment and
not in terms of computing.

2. Process oriented design. This is the modelling of the problem environment as a structured network of com-
municating processes, with each process responsible for managing the state and behaviour of the individual
entities in the system.

3. Assertion design. Assertion design is concerned with determining (a) constraints to which the system must
adhere and (b) positive behaviours that the systemmust supply. Assertions are often designed iteratively along
with the process-oriented design. They may need revision later if subsequent verification fails or unexpected
behaviour appears.

4. Executable Model. The executable model is the actual program source code.
5. Formal Model. This is a description of system behaviour in a formal process algebra. We use CSP, which can

express a rich set of behaviours (e.g. liveness and safety issues) and is supported by a powerful model checker
(FDR). The formal and executable models are two sides of the same coin. Both need to be done, but the order
does not matter. In fact, this is normally an iterative process.

6. System. The system is the execution of the code in a test or actual environment.
7. Verification. This is the task of verifying that the formal model satisfies the assertions, and is done though a

combination of formal model checking and deductive reasoning. If any part of the verification fails, this is
either because of an error in the formalmodel (i.e., the intended behaviour has not been captured), an incorrect
assertion about the intended behaviour has been made or the process-oriented design is incorrect—checked
usually in that order.

3 Sections 3 and 4 are minor revisions of sections 2 and 3 of an earlier work [WP10]: ”Santa Claus: Formal Analysis of a Process-Oriented
Solution”, in ACMTrans. Program. Lang. Syst., {32, 4, Article 14, (April 2010)} c©ACM, 2010. http://doi.acm.org/10.1145/1734206.1734211.
They are included here for the benefit of readers unfamiliar with these technologies.

http://SantaClausProblem.net/verification
http://doi.acm.org/10.1145/1734206.1734211
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Fig. 1. Concurrency and Verification Workflow

8. Unexpected Behaviour. If this happens, it means that assertions denying the behaviour were not made. Such
assertions must now be added and these will cause the verification to fail; the process-oriented design must
then be revisited and corrected alongside consequent changes in the formal and executable models.

This development methodology forms the basis for how we teach process-oriented design with formal verifi-
cation. This methodology is orthogonal to the typical software engineering development methodologies/models
and therefore does not conflict with them. This means that our methodology can be incorporated into larger
software development models when concurrency is considered.

In the first case study (Sect. 5) we show a simple use of this model that does not result in any unexpected
behaviour, but utilises the model checker to explore and verify assertions about the program/model that we are
implementing.

The second case study (Sect. 6) exposes students to a system where informal reasoning is persuasive of correct
behaviour and extensive soak testing discovers no problem. However, a formal check immediately uncovers a
possibility of deadlock (that would have catastrophic consequences in the live application). The students have
to deal with this deadlock, considering various redesigns and finding a solution that passes formal verification
(whilst maintaining all other assertions about required behaviour).

The Appendix gives a small example by Ben-Ari [BA10] showing behaviour not even he was expecting. His
paper expresses the system formally in Promela and uses the Spin model checker [Hol03] to verify that the
unexpected behaviour really can happen. We present a simple reworking of this example in CSP, following the
use of our methodology, to show easily this can be done.

3. Process orientation

Process oriented design is an example of component-connector engineering. The components are active processes
and the connectors are events (their alphabets) through which they synchronise and communicate. Key concepts
are processes, channels, barriers, networks, network hierarchies, choice, protocols and synchronisation patterns.
To be practical, a process-oriented programming language, or a library providing the necessary support for other
languages, is essential—otherwise, the gulf between the theory underpinning the design and its realisation in
code presents uncomfortable obstacles. Such tools must be easy to learn and use and have reasonably efficient
implementation. Fortunately, all these exist—we just have to rise to the challenge of trying them.
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3.1. Processes

A process is a self-contained self-executing unit that encapsulates private data and algorithms. This contrasts
with object oriented programming where object methods are executed by an external caller’s thread of control.
An object is passive (it does nothing unless a method is invoked) whereas a process is active and can take the
initiative. A process has sole control over its internal resources and no control (not even visibility) of the resources
of another process. Interaction with other processes happens indirectly through synchronising primitives, such as
channel communication and barrier synchronisation. Crucially, a process can refuse some, or all, of its external
events—thereby blocking demands from other processes until it is in a good state to accept them. An object
cannot refuse a method invocation, no matter its internal state; a synchronizedmethod may block for a while, but
it cannot ultimately refuse invocation.

3.2. Synchronising channels

The simplest form of process interaction is point-to-point synchronous unidirectional message passing along
a zero-buffered channel. A channel has a sending end and a receiving end, though it is possible to share these
between multiple senders or receivers. Zero-buffering means that a sender process must block if no receiver is
ready (and vice-versa). Various kinds of channel buffering (e.g. blocking or overwriting FIFOs) can be obtained
through splicing in appropriate buffer processes between the sender and receiver.

These communications differ from those in common message passing libraries for parallel computing. For
example, in MPI [Don94] any process knowing the process identifier of a receiving process (within one of its own
communicator groups) can send it a message. In CSP, there are named process types but individual processes
have no names (or identifiers). Individual processes are bound to a particular set of events (channels, barriers,
etc.) that do have names. Different instances of the same process type can, of course, be bound to different sets
of events. A process sends to a named channel and whatever process has the other end receives.

Network connectivity is explicit, dynamic and constrained to what the system needs. The difference is subtle
but is an important part of ensuring the compositionality of processes in CSP: the semantics of a process depends
only on the process and is not changed by the presence of other processes in the system.

Processes cannot observe or modify each others’ state, so need no locking mechanisms to maintain data
integrity. To observe or modify such state, a process must communicate a request to the owning process via
appropriate channels. That request may be ignored by the target process (blocking the requester) until such
time as it chooses (e.g. when the request can be correctly processed). This means that reasoning about process
behaviour can always be conducted locally—a process is in complete charge of its state.

The size of the state space of a process network is bound by the product of sizes of the state spaces of its
component processes (less those that cannot be reached through the constraints of process synchronisation).
Thus, the state space of a process network can grow large whilst the logic of its components remains simple. It is
this gearing—together with a compositional semantics—that delivers the power of process-oriented design.

In contrast, threads concurrently managing shared state through locking mechanisms (mutexes, semaphores
or monitors) have to be secure in the face of all possible interleavings through the shared objects. Reasoning is
non-local: the logic of an individual method, class or thread cannot be devised, or understood, on its own. This
is hard.

3.3. Synchronising barriers

Channels require two processes (the sender and receiver) to synchronise. A barrier is an event on which many
processes can be enrolled and on which all must synchronise together. If one process offers to synchronise on
a barrier, all must offer to synchronise for the event to happen—everyone must wait for everyone. A process
may have any number of barriers in its alphabet. Unlike a channel, a barrier synchronisation communicates no
data—only the fact that the synchronisation happened.
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Fig. 2. Process oriented design: components and connectors (from [Wel13a])

3.4. Networks

Anetwork is simply a parallel compositionof processes (whichmay themselves have internal networks), connected
through a set of synchronising events (channels, barriers etc.). A network usually hides the events connecting
internal components, leaving free those to be used for external connections. A network is, therefore, also a process.
Network topologies can be constructed dynamically and may evolve (both in shape and size) in response to their
environment.

3.5. Design by pictures and composition

Processes do not know—or need to know—with whom they are synchronising. Each process can be viewed
as a black box, whose ties to its environment is a set of events (channel-ends, barriers, etc.)—its alphabet in
CSP terminology. The behaviour of a process is described by the message structures allowed on its channels, the
patterns of synchronisationwithwhich it is prepared to engage on its channels andbarriers, and the computational
functions it performs. Networks of processes are simply built by ‘wiring’ them together using internal (hidden)
channels and barriers. A network is itself a process—so hierarchical structures naturally emerge.

This method of construction has an obvious visual representation, lending itself to design through (struc-
tured) pictures—see Fig. 2. This should have resonance with hardware engineers, whose systems are physically
concurrent. The discipline leads to a strong notion of components (the processes) and connectors (the synchro-
nisation events), supporting concurrency, hierarchical design and code reuse. The processes run themselves and
do not share memory. Innermost processes are sequential, require no locks, and synchronise using channels (i.e.,
external I/O operations) and barriers. The synchronisation semantics are simple and intuitive and all our skills
for sequential programming remain valid.

We make frequent use of such diagrams when designing and discussing process-oriented programs.
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3.6. Formal verification

Being able to reason formally about a program is valuable—crucially so if the application is safety or finance
critical. Special difficulties arise with concurrently executing processes since the state space potentially explodes.
If the concurrency formalism in which reasoning is conducted differs from the implementation primitives used,
the reasoning is unsafe. If translation between the implementation and formal modelling languages is hard,
maintaining coherence between the two will be a continuous overhead as the system evolves.

This gap between implementation and verification is reduced by using languages (or libraries) designed around
formal methods for which verification tools exist. Almost all concurrency mechanisms within occam-π have
a direct representation in CSP. FDR [GRABR16, GRABR14] is a model checker for CSP, allowing formal
verification of freedom from deadlock and livelock, process refinement and equivalence—at least, for systems
of finite (and sufficiently small) size. FDR has a long and successful history of use in the analysis of complex
safety-critical systems [SD04, Bar95, HC02, BKPS97, BPS99, Low96, MS07].

Translation between occam and CSP is defined, [GRS93, GRS94], and can be automated. A tool, [BR10],
exists to generate CSP automatically from occam-π , but this is not yet ready for general or classroom use. At
present, we do this translation by hand and this paper gives several examples. In general, state space introduced by
real programs (for example, a single 32-bit integer variable has potentially 4 giga-values) must be reduced to small
finite numbers if the model checks are ever to terminate in acceptable times. Automating this raises challenges
that are not the subject of this paper—see [WPB+11] for early ideas on this.

It should be noted that occam-π is not designed to be an execution engine for CSP—that is, translation
from arbitrary CSP systems to occam-π is not always easy or, even, possible. Rather, occam-π is designed as a
programming language with concurrency built in as a first-class mechanism, with a semantics directly expressed
by CSP. It enables concurrency to be used with the same confidence, ease and overheads as, say, sequential
procedures (or method invocation) and its formal basis enables verification.

4. A language binding for process oriented development

occam-π is an imperative statefull language built around the concurrency model of Hoare’s CSP. Compiler
enforced language rules prevent unsafe access to shared resources, so that no data race hazards can happen. Strict
aliasing control enables this and provides a simple semantics for assignment. It extends the classical occam2.1
language [SGS95] through the introduction of shared channel-ends (modelled by CSP interleaving), barriers
(corresponding to multi-way CSP events) and mobility (i.e., communication through channels) of those channel-
ends and barriers (with semantics derived from the π -calculus [Mil99]).

The occam-π codes in this paper were developed with the KRoC [WW96, BWMW10] compiler, run-time
system and library—an open-source project originated and hosted at theUniversity ofKent. At present, compiled
code is targeted only at IA32 platforms (taking full advantage of multi-cores). Memory overheads (up to 32 bytes
per process) and run-time costs (the low tens of nanoseconds per synchronisation) enable millions of processes to
be (multi-core) scheduled per processing node and perform useful work [RW07, RSB12]. An interpreted version
(the Transterpreter [JJ04]) is available for almost any target platform, requiring a very tiny memory footprint.
Two new compiler projects [Bar06, Sam07, SBR+10], targeting all platforms supported by a C compiler, are in
development.

4.1. Processes, sequential composition and parallel composition

A process in occam-π is either a primitive or a composition of processes. A process, at any level, may make local
declarations. A process may use its local declarations or anything declared globally (and not hidden)—normal
block structuring rules apply.

It is just as easy, syntactically, to compose processes for sequential execution as it is for parallel:

SEQ PAR
... process A ... process A
... process B ... process B
... process C ... process C
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In sequential execution, each component sub-process may not start until the previous one has terminated.
They may freely share and update global variables.

In parallel execution, all components run concurrently. The construct does not terminate until all its compo-
nents have terminated. The components may only share global variables for reading: if one sub-process changes
a global, the other sub-processes may not even look at it. These rules are statically checked and enforced by the
compiler. Any component may have its own local variables.

The syntactic scope of occam-π structures is defined by indentation. This means that, in all circumstances,
what-you-see-is-what-you-get. In languages where indentation has no syntactic significance and scope is defined,
for example, by curly brackets, this is not true.

4.2. Primitive processes

There are ten forms of primitive executable process. The first is an assignment: evaluate some expression (RHS)
and assign (:=) the result to a variable (LHS). Strong typing rules are enforced. Expression evaluation has no
side-effects (as in a functional language). This, together with the strict anti-aliasing enforcement (no changeable
entity can have different names in the same scope), means that the semantics of assignment is simple: the assigned
variable is set to the assigned value and nothing else changes.4

Five other primitive processes are: channel input and output (Sect. 4.3), barrier synchronisation (Sect. 4.4),
SKIP (which does nothing but terminate—sometimes needed for syntactic place holding), and STOP (which does
nothing—not even terminate – and gives a concrete manifestation of deadlock, useful for semantic reasoning
and model checking). Three more are obtaining time-stamps, setting timeouts and forking processes—but these
are not used in this paper.

Finally, process abstractions may be named and parametrised:

PROC <name> (<parameters>)
... process

:

Theparametersmaybe any type, includingdata (by referenceor value) and synchronisation elements (channel-
ends and barriers). The colon marks the end of the declaration. A named abstraction may be invoked by its name
and supplying correctly typed arguments—which is our final syntactic form of executable. Invoked in sequence
with other processes, they may be thought of as procedures. Invoked in parallelwith other processes, they become
components of a network whose topology is determined by the synchronisation items they share.

The semantics of parameter passing in occam-π are one of renaming and do not introduce new variables—as
such these process abstractions can be manipulated (e.g. refactoring program structure) without affecting the
semantics of the program. This is not so easy in many other imperative languages, where parameters do introduce
new variables.

4.3. Channels

Message passing happens through channel communication. Channels have a reading end and awriting end—they
are unidirectional. A channel is declared as follows:

CHAN <type-list> <name>:

where <type-list> is a semi-colon-separated list of types.
The reading end of a channel is denoted by <name>? and the writing end by <name>!. To write to a channel

named c, the syntax has the form:

c ! <expression-list>

where the types listed in the channel declaration and the individual expressions in the (semi-colon separated) list
must match.

4 This is not the case for most other imperative languages—such as C, Java, etc. where expressions may have side-effects and aliasing is
uncontrolled.
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Channels are zero-buffered, so a writing process will block until another process, running in parallel with it,
executes a read on the other end of the same channel—for example:

c ? <variable-list>

where the types listed in the channel declaration and the individual variables in the (semi-colon separated) list
must match.

A reading process will block until another process, running in parallel with it, executes a write on the other
end of the same channel. Only when (or if) both processes reach these respective synchronisation points does the
communication happen—whichever process gets there first must wait. After the communication, both processes
go their separate ways.

(Note: when needed, any form of buffered channel is easy to make using a buffer process, with very low
run-time overhead.)

4.4. Barriers

The last concept needed for this paper is the barrier. A barrier is multi-way synchronisation point. No process
can proceed past the barrier until every process enrolled on the barrier has reached it. The syntax for declaring
and enrolling processes on a barrier is as follows:

BARRIER <barrier-name>:

PAR ENROLL <barrier-name>
... all processes here are enrolled

Synchronising on a barrier is the last occam-π primitive we need:

SYNC <barrier-name>

4.5. Choice

occam-π provides a simple way of waiting for one of a set of events to be offered and, then, making a response.
Should more than one of these events become available, an arbitrary (i.e., non-deterministic) choice is made. An
ALTernative construct is a list of guarded processes:

ALT
<guard>

<process>
<guard>

<process>
... etc.

The list order does not matter. The guards are the waited-for events—currently, only input processes (on offer
when a message is pending), timeouts (on offer when expired) and SKIPs (always on offer) are allowed.

If control of the choice is needed should more than one event be on offer, a prioritised version (PRI ALT) is
available. This resolves the choice in favour of the first one listed, so that the ordering of the guarded processes
does matter in this case.

4.6. Conditions

Like most languages, occam-π provides a conditional structure for sequential control. An IF construct is a list
of conditional processes:

IF
<boolean-condition>

<process>
<boolean-condition>

<process>
... etc.
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The ordering is significant. The conditions are evaluated5 in sequence, stopping at the first one that is TRUE and
executing the (indented) process that immediately follows. If all conditions evaluate to FALSE, this is a run-time
error and the process STOPs.6

5. Case study: robot control system

Intentions:The initial aims of this first study are to ensure proper understanding of the synchronisation
mechanisms (channels and barriers), where verification checks that understanding. It then shows how
questions about safe behaviour and liveness properties can be asked and verified. In addition to this, it
shows how extra processes might need to be devised to enable verification of non-trivial application-
specific behaviours by the model checker.

A simple component, highly abstracted, from a robot control system is presented. The intention of this case
study is to check and reinforce correct understanding of process-oriented design (processes, channels, synchro-
nisation and non-determinism), informal analysis of behaviour, and formal verification of a range of semantic
questions through model checking and simple deductive reasoning. The study demonstrates five stages of the
methodology shown in Fig. 1: Process Oriented Design, Assertion Design, Executable Model, Formal Model
and Verification. Behaviour examined includes the initial orderings of signals to/from the device (how these are
constrained by synchronisations between subcomponents within the device), what happens when its internal
components starts looping, deadlock and livelock freedom, and operational safety (“do no bad”) and liveness
(“do good”). These behaviours, their design and analysis comprise the fundamental issues of the concurrency
model that we are teaching. The study has been designed to be simple enough to be presented and understood
by beginners, yet rich enough to provide non-trivial questions to be asked about these behaviours.

This case study has been developed from exercises originally presented and worked through live in a class at
The University of Nevada Las Vegas (UNLV) over the last three years, as part of a concurrency module taught
at the Masters level. Previously, they had studied in this course a range of approaches to concurrency, including
material from the undergraduate Concurrency Design and Practice [Wel13b] course (an elective module taken
by approximately half the cohort of second year CS undergraduate at the University of Kent since 2000).

By the time of this exercise, students were comfortable with using occam-π in several non-trivial projects
(thousands of interacting processes). So, the example system here would be considered fairly small. Nevertheless,
if the application were safety critical, it was appreciated that relying just on our intuition (based on understanding
the low-level concurrency semantics of occam-π ) was unsafe.

5.1. The device

Intentions: introduce the concurrent system on which a range of basic questions about behaviour will
be asked, together with the design of experiments that will reveal deeper semantic issues.
Methodology: process-oriented design (Fig. 1).

We start by visualizing an apparently simple device, and continue with a brief explanation of its function and
implementation.

5 Note that this causes no side-effects.
6 If no action is needed in such circumstances and execution should continue, a final TRUE condition must be appended to the list followed by
a SKIP. Requiring the programmer to flag such inaction seems irritating at first, but pays dividends. The flag explicitly declares that all relevant
conditions have been considered and this must be defended when the code is reviewed and/or analysed. Without such a flag, erroneously
overlooked conditions cause an immediate STOP, which is much to be preferred over continued execution with bad state.
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Fig. 3. Device with three sub-processes, 3 internal channels, one internal barrier, and 8 external channels

The diagram in Fig. 3 shows the internal structure of Device, a component of a real-time control system
for an autonomous robot driving 8 channels (4 input and 4 output). There are 3 sub-components: P0 (weapons
systems), P1 (vision processing), and P2 (motion stabiliser) running concurrently. They exchange information
using internal channels (ask, ans, ping) and coordinate some actions on an internal barrier (bar).

CSP semantics apply. Channel communication is unbuffered: the sender process must wait for the receiver
and vice-versa (Sect. 3.2). Barrier synchronisation means that any process engaging on the barrier must wait until
all processes (plugged into the barrier) engage—the last one unblocks them all (Sect. 3.3).

Wepresent two representationsdefining thebehaviourof Device: one inoccam-π (for compiling to a runnable
system) and one in CSP (for formal analysis). The representations are in one-to-one correspondence and our
students have had little trouble shifting between them. Some behavioural questions we wish to check are:
Deadlock: might the Device stop (e.g., P0 and P2 want to synchronise on bar, but P1 wants to communicate

on ping)?
Livelock: might the Device get busy and refuse all external signals (e.g., P0, P1, and P2 start engaging in an

infinite sequence of internal channel or barrier synchronisations on ask, ans, ping, and bar)?
Safety: might the Device ever engage in an incorrect (and dangerous) sequence of external signals?
Liveness: will the Device stay alive, offering all permitted signal sequences?

5.2. Executable model

Intentions: present and explain the abstract logic for the three components in the Device. This is
expressed through an implementation written in occam-π .
Methodology: executable model (Fig. 1).

For the safety and liveness analyses we want to make, data values and computations performed by this
particular device are not relevant. For simplicity, they are omitted in the following, with all message content
abstracted to zero. Here is the executable (occam-π ) code:

PROC P0 (CHAN INT a0?, b0?, c0!, ask?, ans!, BARRIER bar)
WHILE TRUE

INT x, y, z:
SEQ

ask ? x -- take question
a0 ? y
ans ! 0 -- return answer

-- (depends on x & y)
b0 ? z
SYNC bar -- wait for the others
c0 ! 0

:



The symbiosis of concurrency and verification: teaching and case studies 251

The code for P0 declares a process connected to its environment via 5 channels (3 for input, indicated by the
“?” suffix qualifying the formal parameter name, and 2 for output, indicated by the “!” suffix) and one barrier.
The body of the code shows its behaviour, which is an infinite loop performing the following actions in sequence:
wait for a question on the ask channel, wait for a signal on a0, deliver an answer on the ans channel, wait for a
signal on b0, synchronise on the barrier bar, and finally output a signal on c0. The codes for P1 and P2 follow
similar patterns.

PROC P1 (CHAN INT a1?, b1?, c1!, ask!, ans?, ping!, BARRIER bar)
WHILE TRUE

INT x, y, z:
SEQ

ask ! 0 -- ask question
ans ? x -- wait for answer
a1 ? y
b1 ? z
SYNC bar -- wait for the others
c1 ! 0
ping ! 0 -- update neighbour

:

PROC P2 (CHAN INT d0!, d1!, ping?, BARRIER bar)
WHILE TRUE

INT x:
SEQ

SYNC bar -- wait for the others
d0 ! 0
ping ? x -- receive update
SYNC bar -- wait for the others
d1 ! 0
ping ? x -- receive another update

:

The code implementing Device is a textual representation of the process network shown in Fig. 3.

PROC Device (CHAN INT a0?, b0?, c0!, a1?, b1?, c1!, d0!, d1!)
CHAN INT ask, ans, ping:
BARRIER bar:
PAR ENROLL bar

P0 (a0?, b0?, c0!, ask?, ans!, bar)
P1 (a1?, b1?, c1!, ask!, ans?, ping!, bar)
P2 (d0!, d1!, ping?, bar)

:

Note that three of the external channels from P0 (a0, b0, and c0) are connected directly to the same-named
external channels of Device. The remaining two external channels from P0 (ask and ans) and its external barrier
(bar) are connected to the same-named internal channels and barrier of Device. We have kept the names the
same for convenience; these names are user-chosen and could be different here.

5.3. Informal analysis of the initial behaviour of Device

Intentions:To ensure correct understanding of synchronisation primitives and informally reason about
the effects of these on program behaviour.
Methodology: Process-oriented design (Fig. 1)
Questions: What initial signalling sequences to/from the Device are possible?

Let us start by consideringwhat patterns of signal are possible from Device, that is, what are possible orderings
of signals on the external channels a0, b0, c0, a1, b1, c1, d0, d1? The internal signalling performed by Device is
not visible to its environment and is not, therefore, part of its behaviour (as far as components using Device are
concerned).
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Fig. 4. The 18 possible orderings of the first 7 external signals

By inspecting the code, intuitively, a0 is first. This comes from P0, which has just been asked a question by
P1 over the internal ask channel. P1 cannot signal on a1 until it has received an answer from P0 on the internal
ans channel. Furthermore, P2 cannot get past its first barrier bar, as that requires P0 and P1 to also be present
at the barrier.

Now, what is the second signal to happen? Since both b0 in P0 and a1 in P1 happen immediately following
the internal communication on the ans channel, either of them could happen as the second signal.

If b0 happened second, a1 would definitely be third (again, no process can pass the barrier bar until all the
processes reach that point). Obviously, b1 would then follow as the fourth signal, and all three processes would
be ready to synchronise on the barrier. In this circumstance, there can only be one event sequence (called a trace)
to this point, which is 〈a0, b0, a1, b1〉.

If a1 was the second signal, then either b0 or b1 will be third, and whichever was not third will be fourth. At
this point, all three processes P0, P1, and P2 have again reached the barrier. In this circumstance, two traces may
have occurred: 〈a0, a1, b0, b1〉 or 〈a0, a1, b1, b0〉

Thus, three possible traces exist at this point. The internal barrier synchronisation now occurs.
The fifth, sixth and seventh external signals are c0, c1 and d0 in any order (6 possibilities). That gives us a

total of 18 possible orderings of the first 7 signals. Figure 4 shows the 18 different signal orderings.
Are there any more first-7 signal sequences? What happens when the sub-processes start looping? Could P0

signal again on a0 before P2 gave its first signal on d0? To be sure of answers to these questions and more, we
need formal reasoning (as opposed to intuition and hand-execution). Fortunately, this is not hard.

Before leaving this section, we note that the diagram in Fig. 4 (with 18 initial traces) can be represented by
the following trace pattern expression—where ; is concatenation (reflecting sequential computation), and ||| is
interleaving (reflecting unsynchronised parallel computation):

〈a0〉; (〈b0〉 ||| 〈a1,b1〉); (〈c0〉 ||| 〈c1〉 ||| 〈d0〉)
The interleaving operator ||| generates all possible combinations of traces of its operands. For example:

〈a〉 ||| 〈b〉 ||| 〈c〉 generates the following set of 6 traces, each with length 3: {〈a,b,c〉, 〈a,c,b〉, 〈b,a,c〉,
〈b,c,a〉, 〈c,a,b〉, 〈c,b,a〉}. Both operators return trace sets (the result for ; contains just one element: the
concatenation of its trace operands). Both operators also operate on trace sets: the result is the union of the
operator applied to each pair of individual traces from its operand sets.

5.4. Formal model

Intentions:Learn the almost one-to-one correspondence between the executable and the formal model
as well as learn some basic syntax of CSPM.
Methodology: Executable and formal models (Fig. 1)
Questions: How do we reflect the occam-π in CSP?
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We can formally verify the intuition of Sect. 5.3, and answer the open questions, with a CSP representation
of the system. We write in CSPM, the machine readable form used by FDR [GRABR16]. CSP treats channel
communications and barriers in the sameway: they are all events (declared as channels in CSPM). For our example
system, we can abstract the channel communications even further by omitting the data sent (always zero) and the
direction of communication (which is irrelevant to this formal analysis). The presentation is further simplified
by not parametrising the process definitions,7 which therefore operate directly on globally defined channels and
barriers:

channel a0, b0, c0, a1, b1, c1, d0, d1 -- external channels
channel ask, ans, ping -- internal channels
channel bar -- internal barrier

P0 = ask -> a0 -> ans -> b0 -> bar -> c0 -> P0
P1 = ask -> ans -> a1 -> b1 -> bar -> c1 -> ping -> P1
P2 = bar -> d0 -> ping -> bar -> d1 -> ping -> P2

P0_P1 = (P0 [| {ask, ans, bar} |] P1) \ {ask, ans}

Device = (P0_P1 [| {ping, bar} |] P2) \ {ping, bar}

This model first declares the events (channels and barrier) on which Device engages: 8 channels are external
and 3, plus the barrier, are internal (conforming toFig. 3). Three purely sequential processes follow.The remaining
two processes put the first three together in parallel, hiding (using the operator “\\”, explained below) their internal
events.

A process is defined by naming it, followed by an “=”, followed by an expression defining its behaviour (which
may be recursive). The “->” operator takes an event for its left operand and a process for its right operand and
means: engage in the event (which requires synchronising with any processes running concurrently that have an
interest in the event) and, then, behave as the process. The “->” operator is right associative, which means that a
process like a -> (b -> P) can be written as a -> b -> P.

Process loops inoccam-π code become tail recursion inCSPM.The parallel operator inCSPM, [| sync-set |],
is binary. Hence, the Device network (which has three sub-processes) is built in stages: two processes at a time.
For an event in the sync-set of the parallel operator to occur, both process operands must engage. The hiding
operator, “\\”, hides events in its hide-set operand (on its right) within its process operand (on its left), making
those events invisible to the environment of that process. When combining two processes in parallel, we must hide
those events (channels and barriers) that are used exclusively by those two processes. Hidden events of a process
are distinct from same-named events used elsewhere, as though they were locally declared within the process (as
they are in occam-π —see the implementation of Device in Sect. 5.2).

Note that CSPM is a declarative (or functional) language, whereas occam-π is imperative. Students who
love to program have no problem learning new syntax, so long as they understand why a different syntax is
needed (occam-π is for building executables; CSPM is for reasoning about them; they have the same concurrency
semantics). Our students, at least, had no such problem. Informal rules for translating from occam-π to CSPM
may be found in the slides referenced in [WPB+11, WPBR11, WB11b]. Going in the other direction is much
harder since many mechanisms within CSP (such as external choice over multi-way event synchronisations) have
no direct counterpart in occam. Basic translation rules for CSP expressions that do have a direct counterpart in
occam are given in [Ste03].

5.5. Formal analysis

Intentions: Learn about the semantics of CSP (traces, failures, divergences), simple model checking
using FDR, the design of experiments for safety and liveness analysis (combining model checking
with deductive reasoning).
Methodology: Formal model, assertion design and verification (Fig. 1)
Questions: Can we formally confirm our intuition of the initial event sequences, verify deadlock and
livelock freedom, verify that particular bad behaviours cannot happen, verify that required (good)
behaviour does happen?

7 In Sects. 6.3 and 6.5.1, the processes need to be parametrised (and we say why).
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Fig. 5. Result of running FDR9

Having produced a formal model, which has one-to-one correspondence (both in structure and semantics)
with the executable model, we can now utilise a model checker to answer questions like the ones posed towards
the end of Sect. 5.3. Some questions can be answered immediately by the model checker without further thought
(Sect. 5.5.1). Other questions require the construction of further models that have relevant and desired properties
against which the original model may be compared (Sects. 5.5.2, 5.5.3 and 5.5.4).

Before continuing, we need to be more precise about what we mean by traces. A process may run forever,
but a trace is always a finite sequence of events in which its process has engaged to some stage in its life. Infinite
running processes will have an infinite set of (finite) traces. If t is a trace of a process, any prefix sub-trace of t
will also be a trace of the process.8 The empty trace, 〈 〉, is a trace of every process and represents the initial state
of a process, before any events have been engaged. Internal (i.e., hidden) events are not listed in the trace of a
process – for example, events ask, ans, ping and bar will not appear in a trace of Device.

Now, the first and weakest form of semantic refinement (relating one process to another) can be defined:

A process P trace-refines a process Q if and only if the traces of P are also traces of Q.

This also means that if there is some trace that Q cannot do, then P cannot do it either. If we consider Q as a
specification, then P is safe in the sense that P cannot exhibit behaviour (presumably ‘bad’) that is disallowed by
Q.

In CSPM, P trace-refines Q is written: Q [T= P. Trace refinement is one of a range of semantic relations analysed
by the FDRmodel-checker and we use it in Sect. 5.5.2. A second and stronger form, failure-refinement, is defined
and used in Sect. 5.5.4.

5.5.1. Immediate results (deadlock and livelock freedom)

With the CSP model of Device, we can start asking questions. Loading it into the FDR GUI, we straight away
discover it is free from deadlock and livelock (which CSP calls divergence), simply by clicking the buttons labelled
to perform these checks. The first three lines with green discs in Fig. 5 establish that Device is deterministic (its
behaviour can always be controlled by its environment) and free from deadlock and livelock. These checks are
carried out with respect to the failures semantics (explained later, in Sect. 5.5.4) of CSP.

8 The set of traces of a process is said to be prefix-closed.
9 Processes T0, T1, CheckDevice, and DeviceSpec are defined in Sects. 5.5.2, 5.5.3, and 5.5.4, where the trace refinements referring to them
in this figure are explained. The syntax of the refinement checks in assertions 4, 5, 7, and 8 of this figure seem back to front, but are explained
at the end of Sect. 5.5.5
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Fig. 6. FDR counter example

5.5.2. Initial event sequences

To confirm whether particular event sequences may initially be performed by Device, define processes that have
no choice in the matter. For example

T0 = a0 -> b0 -> a1 -> b1 -> d0 -> c0 -> c1 -> STOP
T1 = a0 -> b0 -> a1 -> d0 -> b1 -> c0 -> c1 -> STOP

It is clear that the set of traces T0 can perform is finite. We can easily list the whole set: { 〈 〉, 〈a0〉, 〈a0, b0〉,
. . . , 〈a0, b0, a1, b1, d0, c0, c1〉 } We can use the FDR model-checker to answer questions such as: are
all these traces of T0 also traces of Device? What about the traces of T1?

So, ask whether each of T0 and T1 trace-refines Device. FDR reports that T0 does indeed do this (see the
fourth line with a green disc in Fig. 5). This means, that any trace of T0 can also be performed by Device. Clearly
〈a0, b0, a1, b1, d0, c0, c1〉 is a trace of T0. Therefore, it is also a trace of Device, which formally confirms one
of the traces we discovered in our hand execution in Sect. 5.3. The remaining 17 initial traces could be verified in
a similar manner. However, this would not prove that there were not any others.

FDR also reports that T1 does not trace-refine Device (see the fifth line with a red disc in Fig. 5). This means
that at least one of its traces cannot be performed by Device. FDR provides a counter-example: the trace 〈a0,
b0, a1, d0〉 of T1 (see Fig. 6). Since counter examples provided by FDR are minimal, we can conclude that the
offending event is d0, which Device cannot perform as its fourth event in this case. This supports our intuition
of the first 18 possible traces of the first 7 events (Fig. 4), none of which have d0 as a possible fourth event.

5.5.3. Safety (don’t do bad things)

Let us ask a more difficult question—this time about the behaviour of the continuously running system. Suppose
the robot would do something very bad if its controller Device were ever to signal twice on a0 without a signal
on either d0 or d1 in between—an in-service failure. Might this happen?

Such questions can be answered simply by writing a process that monitors the signals from Device, looking
for the bad scenario and deadlocks the system if spotted. For a programmer, this is just another function to write
(though we need to know a bit more CSPM):

Check (n) =
if n >= 2 then

STOP
else

a0 -> Check (n+1) [] d0 -> Check (0) [] d1 -> Check (0) []
a1 -> Check (n) [] b0 -> Check (n) [] b1 -> Check (n) []
c0 -> Check (n) [] c1 -> Check (n)

In the above, the operator [] (external choice) means: wait for one or more of its operand processes to be able
to run, choose any one of them and run with it. The [] operator has lower precedence than the -> operator. It is
binary, right-associative (i.e., no parentheses are needed to bind more than two processes, as in the else clause
of the definition of check) and commutative (i.e., its operands can be given in any order).
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The parameter to Check records how many a0 signals have happened since the last d0 or d1. If this reaches
2, Check stops. Otherwise, if an a0 signal is taken, Check recurses with its parameter value increased by one. If
a d0 or a d1 signal is taken, it recurses with its parameter cleared to zero. If any other signal is taken, it recurses
with the parameter value unchanged.

A new process CheckDevice runs Device concurrently with Check (0), synchronising on all the external
events on which Device engages. We start Check at zero since, initially, there have been zero a0 signals since the
last d0 or d1:

CheckDevice = Device [| {a0, a1, b0, b1, c0, c1, d0, d1} |] Check (0)

If Check reaches its STOP process, Device cannot perform any of its external signals (since Check is refusing
all of them). We know that Device is deadlock and livelock free. Therefore, it will always be trying to engage
in external signalling. This leaves CheckDevice deadlocked (since Check and Device must synchronise on all
signals from Device).

FDR quickly confirms that CheckDevice is free from deadlock (see the fifth green ball in Fig. 5). Therefore,
Check can never reach its STOP. This formally verifies that the feared in-service problem cannot happen.

Any bad behaviour that can be described unambiguously can be programmed as a checker process in a similar
manner. The important rules are that the checker must engage with all the external signals of the suspect device,
and must stop engaging if the bad behaviour is detected. For any such process, the above reasoning applies for
verifying the absence of the bad behaviour.

Protocol checking monitors, such as Check, are sometimes used live (e.g., in device drivers) to ensure cor-
rectness at run-time. It is important to note that we are using Check purely for static analysis—it has no role at
run-time and, therefore, no impact on performance.

5.5.4. Liveness (do good things)

So far, our checks have concerned safety—namely that our systemwill not do incorrect things. This is not enough!
After all, the STOP process does not do incorrect things—it does nothing; it has just one trace, namely 〈 〉, a trace
owned by all processes; thus STOP trace-refines every process (but is not a terribly useful implementation of
anything). Trace-refinement is not enough.

More strongly,weneed to consider liveness—namely that our systemwilldo the right thing in all circumstances.
For this, we need to check that our system failure-refines a specification of all those right things.

A process state is what a process has become after executing one of its traces (and may be represented by that
trace). An event is external to a process if other processes may engage on it. A state is stable if there is no internal
(i.e., hidden) event on which it may engage. A stable resolution of a state is a stable state reached by zero or more
internal events only. A stable failure of a process is a state paired with a set of external events on which a stable
resolution of that state refuses to engage. For brevity, in the rest of this paper, we shall refer to a stable failure
simply as a failure.

A failure is not, therefore, a ‘bad’ property for a process to have: refusing to synchronise on some of the events
its environment may be offering is quite normal and, indeed, necessary (e.g., a full buffer should refuse further
input). Of course, this should not be overdone: refusing to synchronise on all events means deadlock.

We can now give the definition of a second, and stronger, form of refinement:

A process P failure-refines a process Q if and only if P trace-refines Q and the failures of P are
also failures of Q.

In CSPM this is written: Q [F= P. This refinement means that if a 〈state, event-set〉 pair is not a failure of Q,
it is not a failure of P either. Now, if Q is a specification, then P fulfils its liveness conditions: if the specification
(Q) says that in this state you will react to one of these events (i.e., there is no failure here), the implementation
(P) will react (i.e., there is no failure there either). Furthermore, that reaction will be safe because P can only do
traces of Q (i.e., the reaction is sanctioned). Failure-refinement makes a powerful statement!

Building on our intuition from Sect. 5.3, we consider the following trace pattern as a candidate for describing
all possible traces10 of Device, where * means repetition:

10 To get all the traces, the prefix-closure of the (infinite) set generated by the pattern should be taken.
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( 〈a0〉; (〈b0〉 ||| 〈a1,b1〉); (〈c0〉 ||| 〈c1〉 ||| 〈d0〉) ; 〈a0〉; (〈b0〉 ||| 〈a1,b1〉); (〈c0〉 ||| 〈c1〉 ||| 〈d1〉) )∗

The first line of this pattern was proposed at the end of our informal analysis (Sect. 5.3). We now conjecture,
in the full pattern above, that Device has no other initial traces and that it repeats this initial pattern indefinitely,
but with d1 alternating with d0 in successive cycles.

From the pattern, we can directly transcribe a process that explicitly generates the traces in the pattern (and
only those traces):

DeviceSpec = a0 -> (b0 -> SKIP ||| a1 -> b1 -> SKIP); (c0 -> SKIP ||| c1 -> SKIP ||| d0 -> SKIP);
a0 -> (b0 -> SKIP ||| a1 -> b1 -> SKIP); (c0 -> SKIP ||| c1 -> SKIP ||| d1 -> SKIP); DeviceSpec

SKIP (the process that does nothing except terminate) is used as a place holder above for the right hand
operand of “->” when no action is needed. The “;” means sequential composition of its operand processes (first
the left, then the right). The interleave operator, |||, is shorthand for the parallel operator with an empty sync-set .
It means the event sequences of its operand processes may interleave freely.

The behaviour of DeviceSpec is the sequential composition of five processes (one on each line above). The first
line performs a0 and then interleaves the event b0 anywhere in the sequence 〈a1, b1〉. The second line interleaves
c0, c1, and d0 in any order.

This generates the traces defined by the first line of the above pattern. Lines 3 and 4 do exactly the same as
lines 1 and 2, except that d0 is replaced with d1. Line 5 just recurses.

FDR immediately verifies that Device failure-refines DeviceSpec (line 7 in Fig. 5).11 This is all we need. All
traces performed by Device are allowed by DeviceSpec—so it is as safe as the latter. All failures reached by
Device are allowed by DeviceSpec—so it is as alive as the latter.

Thegood thing is that the latter—DeviceSpec—has transparentbehaviour: it explicitly offers events according
to, and only according to, the given trace pattern (so we can see what it can do) and it always remains alive to
offer those events (because it has no internal synchronisations, on which it might deadlock or livelock, and no
STOPs).

Whilst our intuition (Sect. 5.3) indicated that the first two lines of DeviceSpec reflected the initial behaviour
of Device, it was unclear whether the pattern repeated cleanly as its sub-processes started looping. Without this
verification, we might be tempted to add another barrier (bar) synchronisation at the end of each loop in P0
and P1 and half-loop in P2. This would impose stricter control on the looping within the three sub-processes—
ensuring that each loop or half-loop are lock-stepped together. The above failure-refinement, confirmed by FDR,
shows that the required pattern does indeed repeat cleanly and, so, this overhead is not necessary.

The reverse refinement is also confirmed (line 8 in Fig. 5). This means that Device and DeviceSpec have
exactly the same traces and failures.12 This is not really needed, but nice!

Devicewas not implemented in the more sequential manner as DeviceSpec (with localised parallel interleav-
ing) because of the three independent functions (weapons systems, vision processing, and motion stability) it had
to perform. The sequential logic of DeviceSpec would not cleanly separate the logic for these three functions.
Process-oriented design led to the three communicating sub-systems in the actual implementation, that sepa-
rately reflect these three functions. The above model-checking verifies that DeviceSpec gives us all the patterns
of synchronisation Device can and will perform, on demand from its environment.

Of course, it would be preferable if DeviceSpec had been a part of the original functional specification of
Device—but for pedagogical reasons we wanted to start with something concrete that could be explored.

5.5.5. Assertions in CSPM

To generate the display shown in Fig. 5 we need to write the list of assertions in the CSPM script. Each time
the script is loaded into FDR these script assertions are displayed. These assertions can be verified (green disc)
(or refuted – red disc) individually by clicking on them, or all together by choosing the “Run All” button. For
verifications described previously in this section, the assertions are:

assert Device :[ deterministic [F] ] -- Device is deterministic (in the failures model)
assert Device :[ deadlock free [F] ] -- Device is deadlock free (in the failures model)
assert Device :[ livelock free ] -- Device is livelock free (in the failures-divergences model)
assert Device [T= T0 -- T0 trace-refines Device

11 See Sect. 5.5.5.
12 This means they are equivalent in the failures semantics of CSP.
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assert Device [T= T1 -- T1 trace-refines Device (this fails)
assert CheckDevice :[ deadlock free [F] ] -- CheckDevice is deadlock free (in the failures model)
assert DeviceSpec [F= Device -- Device failure-refines DeviceSpec
assert Device [F= DeviceSpec -- DeviceSpec failure-refines Device

The syntax is a little strange, so comments have been added following each assertion.

6. Case study: mutually assured destruction

Intentions: This case study deals with a more realistic system than the one presented in Sect. 5 and
illustrates more deeply the methodology of concurrency and verification being presented. Only one
behavioural property is discussed: deadlock. The system is designed, the assertion that it is deadlock-
free made, and formal and executable models developed. Despite an apparently safe design, verifica-
tion discovers a potential for deadlock. The case study investigates and corrects this and verifies the
correction to be deadlock-free.

This example is developed from a (undergraduate, year 2) exam question recently set for the Concurrency
Design and Practice course [Wel13b] at theUniversity ofKent. The case study in Sect. 5 investigated the behaviour
of part of a robotics control system, verifying that it was safe with respect to certain user-specified criteria and
establishing precisely its responsiveness to all events in all states. This new study considers a different part of the
control system that has simpler behavioural requirements, but for which deadlock in its implementation becomes
an issue. This lets the students see how verification exposes the potential for deadlock in a first design (that is so
rare that it does not show up in extensive soak-testing) and leads to a revised design that is verified to be free
from deadlock.

This study exercises all parts of the concurrency and verification workflow shown in Fig. 1. A process-oriented
design is constructed followed by executable and formal models. Assertions about its behaviour are constructed
and verification performed. The assertion about deadlock freedom fails verification. Rather than immediately
returning to fix the design and the models, students can be asked to design a test harness to perform a soak
test; when this is run, deadlock is unlikely to appear in any reasonable time (perhaps years). However, with the
knowledge from the model checker of how the deadlock can occur, it is simple to design a test (by adding a
single delay in one process) that will trigger the deadlock immediately. This shows the students the necessity of
verification since, without it, a designer might convince herself that deadlock could not happen, and the system
becomes installed and fails in service after a few years with possibly catastrophic consequences (“unexpected
behaviour” in Fig. 1). Students are then asked to modify the process-oriented design and its executable and
formal models so that all assertions, including the one about deadlock, now pass verification.

6.1. The problem

Intentions: introduce and explain the process-oriented design for the case study.
Methodology: process-oriented design (Fig. 1).

The system in Fig. 7 requires behaviour that is common not only for control systems, but also for applications
in artificial intelligence, e-commerce, model-checking and elsewhere. Two processes are given a problem to solve;
we are satisfied with a solution to either one of them; whichever process solves its problem first kills the other
and makes a report; the one that is killed also reports that fact.

In the MADsystem (“Mutually Assured Destruction”) of Fig. 7, the problem solvers are monitor processes
responsible for dealing with external sensor data. Each monitor is connected to a channel delivering its sensor
data (which must be processed at all times), a command channel on which task parameters are sent (from time
to time) and a report channel on which to report its performance after each task. The monitors are always
commanded to do tasks in parallel.
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Fig. 7.Mutually Assured Destruction Sub-system

They are interconnected by twokill channels (labelled a and b), which the first process to finish uses to interrupt
the other’s work. When not engaged in a task, each monitor must continue to accept sensor input (which may be
safely ignored) as it awaits its next command. The system should run indefinitely.

For simplicity in this presentation, the monitor processes in MADsystem are instances of the same template
process, governed by a mode parameter that determines how sensor data is serviced when given a task.

In the left monitor of Fig. 7, the move parameter means that its task is to report back when the robot has
moved a given target distance (given by its command channel). It does this by counting clicks on its sensor
channel (the other end of which is connected to a sensor on one of its wheels).

In the right monitor, the search parameter means that its task is to report back when it detects a particular
target feature13 (given by its command channel) in an image delivered by its sensor channel (the other end of
which is connected to a camera).

The purpose of this whole (sub-)system is to move the robot a prescribed maximum distance, stopping it early
if some specified item of interest is discovered. This is achieved by two processes, one trying to achieve the set
distance of movement and one looking forMartians.Whichever succeeds terminates the other (Mutually Assured
Destruction).

6.2. Executable model

Intentions: present and explain the logic for the two components in MADsystem. This is expressed
through a concrete implementation written in occam-π . Later, this design will be proven incorrect,
though it looks very plausible at this stage and extensive testing will not reveal the error.
Methodology: executable model (Fig. 1).

We use a mechanism of occam-π to define the kinds of messages carried by the the report channels:

PROTOCOL REPORT
CASE

me -- monitor completed its task
she -- monitor was stopped in its task

:

Declaring a channel to carry this REPORT protocol (rather than, say, an INT) means that only tokens named
me and she can be sent and received. We define the messages for the kill channels similarly:

13 For a Mars rover vehicle, this could be a Martian of a particular colour.
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PROTOCOL KILL
CASE

kill
:

Only one message token, kill, is defined—this will be extended later (Sect. 6.5.2).

The monitor process takes a mode parameter (determining which task it has to perform) and connects to five
channels (see Fig. 7). For simplicity both the command and the sensor channels carry just integer values; these
could, of course, be any data type pertinent to the sensor. The following code shows its main loop, whose body
implements its idling state (i.e., waiting for a task command while consuming sensor data input):

PROC monitor (VAL INT mode, CHAN INT command?, CHAN INT sensor?, CHAN REPORT report!,
CHAN KILL killYou!, killMe?)

WHILE TRUE
PRI ALT

INT target:
command ? target

service (mode, target, sensor?, report!, killYou!, killMe?)
INT x:
sensor ? x

SKIP
:

Note that priority is given to commandmessages over sensormessages. This is to guard against a highly active
supplier of sensor data, so that a command to service the sensor data will always be taken the first time round
the loop it appears (regardless of whether sensor data is pending). Such priority considerations are, however,
irrelevant for deadlock analysis (which always has to allow for either choice to be made).

We show next a template for the service procedure. Details of local state and logic specific for the mode of
operation required are not shown—place-holders for them are indicated by lines starting with three dots (“...”).
Such details are not relevant for the synchronisation behaviour (and therefore deadlock potential) of monitor.

PROC service (VAL INT mode, target, CHAN INT sensor?, CHAN REPORT report!, CHAN KILL killYou!, killMe?)
... local state declarations and initialisation
INITIAL BOOL running IS TRUE:
WHILE running

PRI ALT
killMe ? kill

SEQ
report ! she
running := FALSE

INT x:
sensor ? x

SEQ
... update local state with x (depends on mode)
IF

... termination reached (depends on mode & target)
SEQ

killYou ! kill
report ! me
running := FALSE

TRUE
SKIP

:

Priority is given to the killMe channel over further processing of sensor data. This is for the same reason
as before: to guard against a highly active sensor always supplying data, so that a killMe signal is always taken
next if it comes. Again, we note that this prioritisation is irrelevant for deadlock analysis.
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Finally we build the whole sub-system for Fig. 7:

VAL INT move IS 0: -- mode values for
VAL INT search IS 1: -- monitor operations

PROC MADsystem (CHAN INT moveCommand?, searchCommand?, CHAN INT motorSensor?, cameraSensor?,
CHAN REPORT moveReport!, searchReport!)

CHAN KILL a, b:
PAR

monitor (move, moveCommand?, motorSensor?, moveReport!, b!, a?)
monitor (search, searchCommand?, cameraSensor?, searchReport!, a!, b?)

:

Theopposite ordering of the a and b channel-ends in the instances of monitor reflects their different directions
of use.

6.3. Formal model

Intentions: Learn more CSPM, in particular about abstracting away unimportant implementation
detail for the formal model.
Methodology: Executable and formal models (Fig. 1)
Questions: What details from the executable model are not needed in the formal model?

CSPM has its own mechanism for defining user-named tokens. The occam-π REPORT and KILL protocols
translate to:

datatype REPORT = me | she
datatype KILL = kill

In Sect. 5.4, the formal CSPmodels for the Device processes (Fig. 3) were not parametrised, referring directly
to globally defined connecting channels. This technique does not work for MADsystem (Fig. 7), since there are
two instances of the same process (monitor) connected to different sets of channels.

For this formal model, therefore, we abstract the connecting channels for monitor into parameters. This
forces its service procedure to be similarly parametrised. For consistency, the whole sub-system, MADsystem, is
parametrised. In general, parametrising processes has many engineering benefits (e.g., for re-usability).

The CSP model of monitor closely follows the occam-π code, with the loop replaced by tail recursion.
Because the particular details of the logic applied for analysing sensor data and deciding task completion are
not relevant to the patterns of synchronisation performed by monitor, they are not included in the model.
The monitor process, therefore, does not need a mode parameter. Further, only sensor and command events are
relevant (i.e., the channels deliver data-less signals) – so, there is no target information to pass to the service
procedure:

monitor (command, sensor, report, killYou, killMe) =
(command -> service (sensor, report, killYou, killMe) [] sensor -> SKIP);
monitor (command, sensor, report, killYou, killMe)

Note: CSPM is a strongly typed formalism, but much of the typing is implicit. Parameter types are not explicitly
declared and FDR deduces them either at compile-time (from the way the parameters are used) or during its
model-checking. From the above, FDR infers that command and sensor are data-less channels, but has no
information (yet) about its last three parameters.

One other note: CSP has no mechanism for prioritised choice. The PRI ALT from the occam-π monitor is
modelled just by the (non-prioritised) external choice operator, []. As explained in Sect. 6.2, priorities are not
relevant for deadlock analysis.

Here is the service procedure (now bereft of mode and target parameters):

service (sensor, report, killYou, killMe) =
killMe?kill -> report!she -> SKIP
[]
sensor -> (killYou!kill -> report!me -> SKIP |~| service (sensor, report, killYou, killMe))
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FDR infers that the report parametermust be a channel carrying the REPORT data type and that killYou and
killMe are channels carrying KILL. This inference transfers back to the same-named parameters of monitor.

This CSP service body follows the occam-π code, again modelling the loop with tail recursion. However,
the presented model has been simplified and optimised from a direct model of the loop termination condition
(which would require an extra parameter for the Boolean running value, an explicit test on it and its initialisation
to true)14

The internal (non-deterministic) choice operator, | ˜ |, used in the above service model has not been used
in any of the earlier models presented in this paper and needs explaining. Suppose P and Q are processes. Then,
P | ˜ | Q is a process that behaves either as P or as Q. The choice is made internally—it cannot be influenced by the
environment. If the environment offers only an event that Qwill accept but Pwill not accept and if P | ˜ | Q chooses
to behave as P, then the environment and P | ˜ | Q become deadlocked.

Internal choice is used in service to model the decision it makes, following receipt of sensor data, as to
whether its task is complete. In the occam-π template (Sect. 6.2), we do not know the sensor data, how it is
integrated with local state nor how the termination decision is made—and we do not care. All we care about is
that a decision is made either to keep going or to kill the other monitor (and, then, report back and exit the
service loop). This do-not-care is precisely modelled by | ˜ | in the formal service code (following its acceptance
of a sensor signal).

Finally, wemodel the MADsystem. Its internal channels are not parameters and have to be declared. In occam-
π , these are declared local to the PROC body. In CSPM, channels can only be declared globally. These internal
channels are, of course, the kill channels and will be supplied as the last two parameters to the two instances to
monitor. We have deduced earlier that these must carry KILL messages. In CSPM, these are declared:

channel a, b : KILL

The MADsystem may now be constructed, remembering to hide these channels (including all events possible
on them—that is, all possible messages):

MADsystem (moveCommand, searchCommand, motorSensor, cameraSensor, moveReport, searchReport) =
( monitor (moveCommand, motorSensor, moveReport, b, a) [| {| a, b |} |]

monitor (searchCommand, cameraSensor, searchReport, a, b)
) \ {| a, b |}

Recall that the set-expression, {| a,b |} means the set of all possible events on channels a and b. Since these are
KILL channels, only one message can (for now) be sent: kill. Hence, {| a,b |} is shorthand for the event set
{a.kill, b.kill} where a.kill is the event representing the communication of kill over channel a.

In MADsystem, {| a,b |} is both the synchronisation set defined in the parallel operator (binding the two
monitor processes together) and the set of events hidden from the environment within MADsystem—a common
CSP idiom (also used for Device in Sect. 5.4).

6.4. Formal analysis

Intentions:

• to show the necessity of formal verification: the deadlock freedom assertion fails, which means
there is a design error in the system.

• to learn how to use the model checker to find and understand an execution that leads to deadlock.
• to understand why testing did not reveal the deadlock.

Methodology: Formal model, assertion design and verification (Fig. 1)
Questions: Why did it deadlock and why did testing not show this?

14 This directly translated model can be found on the supporting website [PW15], together with verification that it is equivalent to the one
presented here.
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Fig. 8. Result of deadlock checking MADsystem – it’s not!

Fig. 9. Trace leading to a deadlock of MADsystem

We want to verify that MADsystem is deadlock free. To do this check, FDR requires a concrete instance of
MADsystem. Since MADsystem takes parameters, actual channels for all six parameters must be supplied. Hence,
we declare:

channel moveReport, searchReport : REPORT
channel motorSensor, cameraSensor
channel moveCommand, searchCommand

Now the assertion can be made:

assert MADsystem (moveCommand, searchCommand, motorSensor, cameraSensor, moveReport, searchReport)
:[ deadlock free [F]]

When this script is loaded into FDR, this assertion appears in the rightmost window (see Fig. 8). Clicking
“Run All” will verify all the assertions and produce a red disc , signifying that MADsystem is not deadlock free.

6.4.1. Tracking down the deadlock

Discovering that MADsystem has the potential for deadlock may be a shock. After all, the logic modelled by
the monitor processes seems plausible and soak-testing (Sect. 6.4.2) of the occam-π executable model never
triggered deadlock —so this shock is extremely valuable. Ignorance would eventually result in the loss of any
machine controlled by the system, along with considerable time and money (in the case of a Mars rover) or lives
(in the case of self-driving passenger cars).

In order to determine why the system deadlocked, simply clicking the “Debug” button brings up an FDR
debugging window shown in Fig. 9. This shows that a deadlock has happened after the system has performed
the trace:

〈 searchCommand, moveCommand, cameraSensor, motorSensor, τ , τ 〉
where τ represents a hidden internal event.15

By inspecting this trace (which is always a shortest that leads to a deadlock), we can track how the deadlock
arose. FDR not only shows the interleaving of the entire system (MADSystem), but also the individual processes.
Starting with the monitor process responsible for the motor control system (second line in Fig. 9), the list of
events starts with moveCommand (which is the command parameter in themove monitor process—FDR names the

15 Hidden events are not, formally, part of the trace. FDR provides this extra information in case it might assist our understanding of what
has happened.
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actual event, which here is the globally defined channel supplied as argument). This is followed by motorSensor
(which is the argument given to the sensor parameter in the service procedure called by that monitor).

The move monitor, has reached an unstable state,16 having just accepted data from its sensor within its
service procedure. So, the hidden event can only be the resolution of the non-deterministic internal choice
operator | ˜ | (making the decision whether to continue with service). This hidden event is the last observed
from themove monitor process. We can further deduce that this resolution was not in favour of the recursive call
back to service, since in that case a further sensor (i.e., external motorSensor) event could have been taken
and thus the system would not be in deadlock. Therefore, the resolution must have been in favour of offering the
killYou!kill event (which is a write to the internal b channel—see Fig. 7 and the definitions in Sect. 6.3).

Exactly the same reasoning over the following searchCommand, cameraSensor and further hidden τ (fourth
line in Fig. 9) shows that the search monitor also becomes blocked offering its killYou!kill event (which, in
this case, is a write to the internal a channel).

We see the twomonitorprocesses, havingboth satisfied their termination condition, trying tokill eachother by
sending on the channels a and b. Since neither process is offering to receive on those channels, no communication
event can happen and the result is deadlock.

Naturally, knowing how this particular deadlock happens is not the end of this story.We still need to determine
how to fix it both for this case and for every case—and to verify the fix. This is accomplished in Sect. 6.5.

6.4.2. Why did soak-testing not find the deadlock?

Correct operation of the MADsystem requires that both monitors are commanded to run their services together
and that reports must be received back from them before further commands can be sent. Our test-rig honours
this rule.

Define service-end data to be sensor datawhose acceptance by amonitorwould cause thatmonitor to complete
its service. Define kill-window as the time period fromwhen a monitor chooses to accept service-end data to when
it offers its killYou signal.

Consider the firstmonitor to receive service-end data. No killMe can be pending (because it is the first), so it
will enter its kill-window. If the other monitor receives service-end data during this kill-window, it will also enter
its kill-window and the result will be deadlock—eachmonitor service trying to send a kill to the other and neither
listening. Otherwise, the other monitor will still be in service at the end of the first monitor’s kill-window, see the
kill nowon offer from the firstmonitor and take it in preference to any sensor data thatmay be available (including
service-end data). In this case, both monitors will continue by making their separate reports and returning to
their idling states—there will be no deadlock.

So, the deadlock reported by FDR (Sect. 6.4.1) happens if service-end data is taken by a monitor during a
kill-window already started by the other. Whether we see this deadlock in our testing depends on the average
length of kill-windows, the average interval between arrival of sensor data, the average number of sensor inputs
taken to complete a service, the scheduling of processes on the hardware platform and how long we persist in the
test.

Our test-rig consists of MADsystem (Sect. 6.2) in parallel with two driver processes simulating the two sensors
(independently generating data for MADsystem at randomised intervals) and a controller process (generating com-
mands to, and receiving reports from, MADsystem and recording progress statistics). This was running under the
KRoC/CCSP [BWMW10]occam-π multicore scheduler [RSB12] on an Intel i7quad-core processor (2GHz)with
hyper-threading—i.e., there will be physically parallel execution. For this system, order of magnitude estimates
for the quantities listed in the previous paragraph are 100 nanoseconds (for the kill-window), 10 milliseconds
(for the average sensor data interval), 100 (for the average number of sensor inputs per service) and 1 day (for our
persistence)—the last three being under our control.

With these figures, service-end data arrives at each monitor (on average) once per second. For each trial (an
individual pair of services), deadlock requires service-end data arriving at the second monitor within the kill-
window of the first. The chance of hitting that window is 100 nanoseconds out of 1,000,000,000—i.e., 1 in 10
million. With each trial averaging one second, we would need to wait towards 8 million seconds (over 90 days) to

16 A state is stable if there is no internal (i.e., hidden) event on which it may engage—see Sect. 5.5.4.
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reach a 50% chance of seeing that deadlock triggered. This analysis assumes that each process is statically locked
to its own processor core (or virtual core)—i.e., that each process will run whenever it can run (because it does
not have to compete for execution resource).17

If processes have to compete with each other to be run, scheduling factors reduce this chance of deadlock. The
KRoC/CCSP kernel dynamically runs processes across all available cores, bundling and un-bundling them into
batches for limited periods of software scheduling within individual cores. If the twomonitor processes are in the
same batch when one of them enters a kill-window, the othermonitor will not be scheduled until that window ends
and the deadlock will not arise. Given only five processes in the test-rig, this will happen quite often, reducing
the chance of deadlock by an order of magnitude (and, possibly, more). Thus, for our hardware platform, these
order-of-magnitude estimates suggest around 2 years of continuous testing would be needed for a 50% chance of
discovering the deadlock. If this system were ever put into live service (say, in an aeroplane) on the basis of having
passed such a period of testing, we would not advise taking a flight.

We note that verification immediately alerted us to the potential for deadlock in this system and showed us
exactly how it could happen. There is no need, therefore, to test for its occurrence. This saves lots of time and
money and, in the case of a negative result from testing, eventual disasters.

Of course, once aware of this potential for deadlock, we can adjust the parameters of our test-rig to expose it.
The risk can be increased either by increasing the time for a kill-window or decreasing the time intervals between
the arrival of end-service data. Inserting a delay of one second into the kill-window logic triggers the deadlock
straight away. More interestingly, we fixed the driver data so that end-service data was generated every time and
decreased the average interval between its delivery to 100 microseconds. Deadlock is now observed, but its time
for occurrence varies considerably—from seconds to hours.We suspect there are other scheduling factors, further
reducing the probability of hitting the deadlock scenario in these extreme conditions. Or, maybe, they are always
present. Either way, this shows that the danger of relying on testing, with the target application parameters, is
probably greater than that indicated by the above analysis.

6.5. Revised model

Intentions: To revise the design and models so it is deadlock free and formally verify this property.
Methodology: Process-oriented design, executable model, formal model, verification (Fig. 1)
Questions: How can the particular deadlock discovered by the model checker be eliminated? Does
the solution introduce new deadlocks or effect otherwise correct behaviour? Are any other deadlocks
possible?

One solution to the particular circumstances of this deadlock is18 for the service procedure (within the
monitor process) to read from its killMe channel (which is the killYou channel in the other monitor) in
parallel with writing to its killYou channel (which is the killMe channel in the other monitor). Now, if both
monitors commit to kill each other, both kill signals will be taken and there will not be deadlock.

In most circumstances, however, only one of the monitor processes is trying to kill the other. If we make no
other change, the system will deadlock in that majority of cases—because the process being killed is not trying
to kill the killer and so the killer’s parallel read-write cannot complete. This is addressed by making the process
receiving the kill message reply with an acknowledgment. This means the kill channels need to be able to carry
two kinds of messages: a kill and an ack.

In all circumstances, now, interaction between the two monitor processes is always a pair of communications:
either a kill in both directions or a kill in one direction followed by an ack in the other. We claim that
programming the killer to write and read in parallel, and the killed to respond with an ack, prevents deadlock.

There is an added bonus with this arrangement. The killer process, by inspecting the message it receives from
the process it is trying to kill, knows what happened in that other process. If it gets an ack, it knows the other
process did not reach its termination condition and was stopped. If it gets a kill, it knows the other process did

17 For up to 32 processes, such a platform is the XMOS XCore XS1-G4 [XMO13, Wik13].
18 Another solution, initially attractive, is considered in Sect. 7.2.2.
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succeed in its task. A process that gets killed (and is not trying to kill its partner) knows that the task of the other
process has finished and, of course, that its own task has not. Therefore, each process, at the end of its service
procedure, knows about the success status of both processes.

6.5.1. Revised formal model

The following shows the changes that need to bemade to implement these revisions in the formal model. First, we
need to extend the data types defining the kinds of messages carried by the kill and report channels. The REPORT
has a new tag, both, for signalling that both processes reached their targets. The KILL has a new tag, ack, for
acknowledgements:

datatype REPORT = me | she | both
datatype KILL = kill | ack

Only the service procedure needs changing:

service (sensor, report, killYou, killMe) =
( killMe?kill -> killYou!ack -> report!she -> SKIP

[]
sensor ->

( ( killYou!kill -> SKIP
|||
( killMe?ack -> report!me -> SKIP -- my kill was acknowledged: I finished alone

[]
killMe?kill -> report!both -> SKIP -- she was killing me: we both finished

)
)
|~|
service (sensor, report, killYou, killMe)

)
)

In the above, the parallel write to killYou and read from killMe are implemented with the interleaving operator
||| since they have no synchronisations in common. Two possible messages may now arrive on killMe. Reading
and accepting either of them (and responding suitably) is implemented through an external choice [].

No changes are needed anywhere else (i.e., the monitor and MADsystem processes). Verifying this new model
with FDR gives a green ball to the assertion that previously failed (see Fig. 8), which assures us that the revised
model is deadlock free.

6.5.2. Revised executable model

We now just have to transcribe the CSP back to occam-π . The two protocols are extended with the new tokens:

PROTOCOL REPORT
CASE

me -- I finished
she -- she finished
both -- both of us finished

:

PROTOCOL KILL
CASE

kill
ack -- acknowledge kill

:

The revised service template becomes:

PROC service (VAL INT target, CHAN INT sensor?, CHAN REPORT report!, CHAN KILL killYou!, killMe?)
... local state declarations and initialisation
INITIAL BOOL running IS TRUE:
WHILE running
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PRI ALT
killMe ? kill

SEQ
killYou ! ack -- acknowledge kill
report ! she -- she finished
running := FALSE

INT x:
sensor ? x

SEQ
... update local state with x (depends on mode)
IF

... termination reached (depends on mode & target)
SEQ

PAR -- send and receive in parallel
killYou ! kill
killMe ? CASE

ack -- my kill was acknowledged: I finished alone
report ! me

kill -- she was killing me: we both finished
report ! both

running := FALSE
TRUE

SKIP
:

In Sect. 6.5.1, the read from killMe was modelled by an external choice that depended on the value received
on the channel. In occam-π , the value being received on a channel cannot be specified as part of the channel
input guard of an ALT—only the arrival of any input value can be a guard. Instead, occam-π provides a CASE
mechanism (similar to a switch statement in Java or C) for selecting between whatever values are received on
the channel.

7. Reflection

Intentions: from questions arising out of the two case studies, generate discussion concerning key
issues for concurrency and verification as well as the workflow methodology.

We believe concurrency is fundamental to most aspects of computer science. It can and should be taught
at the beginning at the same time as and a necessary and natural complement to sequential programming. The
compositional nature of CSP (whose underlying mathematics is burnt into the languages and tools supporting
process orientation) enables complex systems to be built, verified and maintained through the power of parallel
design, without the usual fears of concurrency. On top of this, the parallel usage rules of occam-π ,19 combined
with its strict controls on name aliasing, eliminates data race hazards from its systems. Our skills and intuition
about serial programming remain valid, preserved intact within the concurrency semantics.

The aim of our teaching is to show students how implementation and verification of systems can be done
concurrently and why it should be done concurrently. We have introduced a workflow methodology (Sect. 2 and
Fig. 1) that describes relationships between overall system design, executable and formalmodels of the design, the
development of assertions about the design, verification of those assertions, system testing and maintenance. The
workflowallowsmany routes through this network, someofwhichmaybedone inparallel. For example, assertions
about the behaviour of the system may be made before, during or after the construction of executable or formal
models. Those models may be constructed in either order but, as the case studies illustrate, the constructions may
proceed iteratively, synchronising at various stages of development as mistakes are found and corrected or new
capabilities added.

The verifications presented in Sects. 5.5, 6.4 and 6.5 require some care and creativity in asking the right
questions. However, this activity is very close to creative programming (e.g. Sect. 5.5.3) and can naturally be

19 Other languages (e.g. Go [Rob12]) and libraries (e.g. JCSP [WBM+07]) supporting process-oriented design and implementing CSP
mechanisms are, of course, available—though greater self-discipline is needed to abide by the rules.
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taught and absorbed at the same time—anyone with a talent for programming also has a talent for verifying their
programs. We claim that the demands on computer systems now, and certainly in the coming decades, require
that programming and verification be practiced together. This view is echoed by other projects—for example
Microsoft’s Dafny programming and verification language [RL10] (which focuses on sequential issues). The
essential simplicity and richness of CSP, engineered into languages like occam-π and future derivatives, make
consideration of concurrency issues also possible today. It is time to change the culture and make a start.

Wenote thatwearenotmaking claims forabsoluteverificationhere.Theverifications in this paper relateonly to
the logic and algorithms provided by the formal models. They do not, of course, guarantee accurate transcription
back into the programming language; nor that the compiler correctly compiles down to machine-code, the
scheduler correctly schedules the processes, the processor cores correctly implement the machine instructions
etc.. They also do not guarantee that we have asked all the right questions when doing our verification.

Testing, therefore, remains necessary. What verification achieves is the raising of software reliability through
the discovery and elimination of many design, formal modelling, and programming errors before testing starts.
Some of these errors will be so subtle, rare and irreproducible that they would never be found through testing,
only to show up in the field with catastrophic consequences (e.g. Sect. 6.4). Those that testing would have found
will save the time and costs of those tests. Other errors that testing reveals will reflect verification assertions that
had not been asked, but which can then be asked and against which the “fixes”can be checked. We do not intend
to let the best (i.e., absolute verification) be the enemy of the good.

Building a formal model of a real system for use with model checkers inevitably requires abstracting away
details. The example in the first study abstracted away from data values entirely. The example in the second
case study has processes with inner loops whose exits depend on received data values. However, for this case
the data values were able to be abstracted away (since they were not relevant to its problem with deadlock)
and the loop exits modeled by non-deterministic internal choice. Many systems will have data dependencies
that cannot be abstracted away—for example, the Ben-Ari study in the appendix. Some dependencies will be
critical since the computational algorithms produce values that steer processes into synchronisation patterns
that avoid deadlock (though this was not the case in our second case study). For such critical dependencies, if
those data values are abstracted away, the formal model will show potential for deadlock. In such false positive
cases, the abstraction has been taken too far and the formal model will need to capture the data values and
algorithms computing them that prevent the deadlock. However, those data values may still need to be abstracted
so that they range over rather small subsets and the engineer may need to learn the dark arts of model checking
compression [RGG+95, WB11b]; otherwise, the state complexity within the formal model will quickly be beyond
the capability of the model checker to analyse. Such skills are necessary and important to acquire for engineers
designing and building complex concurrent systems, but are beyond the scope of the aims of this paper.

7.1. On the robot control system

Questions:

• How does synchronisation control the ordering of events?
• How does synchronisation enable the safe communication of information?
• How can safety issues (e.g. that the system cannot perform a sequence of actions identified in the
specification as dangerous) be formally expressed and verified?

• How can liveness issues (e.g. that the system will respond to particular events with correct patterns
of behaviour) be formally expressed and verified?

The case study in Sect. 5 was developed from one first worked through in a single lesson of a class on
concurrency at the University of Nevada, Las Vegas in the spring of 2010. The class had previously studied
a range of concurrency approaches, including process-oriented design material from the University of Kent’s
“Concurrency Design and Practice” course.
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The students were comfortable with using process-oriented programming techniques in non-trivial projects,
so this example system would be considered fairly simple. Nevertheless, it was appreciated that relying just on
intuitive understanding is unsafe—especially if the application were safety critical.

During the exercise, students were given an overview (through examples) of the syntax of CSPM, with the
semantics of its operators defined by relating them to occam-π syntax and semantics. The functional nature of
CSPM, as opposed to the imperative nature of occam-π , was no particular obstacle.20 The students tried their
own test sequences of signals from Device and correctly obtained confirmation or rejection. Writing specific
checking processes for long-term dangers (like Check) was harder, but they warmed to this after more practice
with CSPM.

What-ifs could be explored, and answers verified, without running any code. For example: can the bad
behaviour described in Sect. 5.5.3 happen if the ping events were removed? (Yes). Do the a0 and a1 signals
strictly alternate? (Yes). Do the b0 and b1 signals strictly alternate? (No).

Writing suitable specifications and working on failures refinement was beyond the scope of this exercise.

7.2. On mutually assured destruction

Questions:

• Why is testing especially inadequate for concurrent systems?
• Are there alternative solutions to the deadlock problem in this case study? If so, how do they
compare with the one in Sect. 6.5?

• What benefits arise from synchronous communications as opposed to asynchronous ones–or vice
versa?

The study in Sect. 6 presents an alarming state of affairs that may be representative of numerous mission
and/or safety-critical systems in service today. A software controller, with seemingly logical design architecture
and with correct implementation of that design, passes lengthy test trials and is put into service. After several
years of faultless operation, it goes very wrong (deadlocking, in the studied case) and the machine in which it was
embedded crashes, resulting in expensive mission failure (e.g. of a Mars rover vehicle) or large loss of life (e.g. of
aeroplane passengers and crew).

The system is sufficiently small to be abstracted into a class exercise, homework or exam question. We show
how straightforward modelling in CSP immediately exposes the design error, through the failure of a standard
verification assertion for deadlock freedom. A correction to the error is proposed (that does not affect the
computational tasks being performed) and verified through the model-checker now confirming the assertion.
For the detection and correction of this bug, no testing was needed nor performed—only verification. The
ideas behind this correction now form the basis of a design pattern that we teach for the safe management of
server cross-communication. Discussions on a wide range of patterns for concurrent programming may be found
in [Sam10, DT13, Cha16].

7.2.1. Testing and verification

Analysis of the original design error shows its chance of occurring is at most 1 in 100 million for each pair of
monitor service cycles (averaging 1 s)—that is, around 2 years of continuous testing would be required to reach a
50% chance of triggering the deadlock. Curiosity testing of that design under extreme (i.e., unreal) operational
parameters now shows up the error—but we needed to know the error in order to ‘fix’ those parameters.

Confidence testing of the verified design, still needed because of the arguments about absolute verification
in the introduction to Sect. 7, shows no deadlock under the extreme conditions that failed the original design.
We have run it for 4G (over 4 thousand million) cycles (100 microseconds)—over 4 days – before deciding our
confidence was high enough to give our test machine a rest.

20 It is just programming!
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7.2.2. An alternative solution to the deadlock

One student asked a very intelligent question: what would happen if asynchronous communication underlay the
design? Surely, the original design would not deadlock in the discovered circumstances since the monitor service
procedures would not block when they issue their kill signals, even though neither is listening?

The communication primitives of CSP and occam-π are synchronous. We have argued that this provides
information that is very useful to the sending process: if its message has been sent, it knows its message has been
received. Is such benefit cancelled by the increased danger of deadlock from communications that may block?

For this case study, the answer is no. Certainly, immediate deadlock would be avoided by asynchronous
communications . . . but only at the expense of something that may well be worse: continued operation in corrupt
state. If both monitor service routines enter a kill-window, both will send their kills, report success and return to
their idle states. However, on their next service cycles, those kills will still be lurking in buffers and will now be
taken—incorrectly aborting those services. To prevent this, a fix could be to maintain service sequence numbers
and include them in the kill signals. Now, kills received with lower than the current sequence number could be
discarded.

However, if the buffers supporting asynchronous communication were finite, there is still deadlock potential
(thoughwith greatly reduced probability, whichmay not be a good thing). There is no problemmodelling buffered
communications in CSP and a quick model-check—see the supporting website [PW15]—discovers the problem:
a sequence of monitor services with both sides issuing kills, and neither taking them, will fill the buffers. Unless
there is a policy of discarding oldest data in communication buffers or somehow providing infinite capacity, there
will be deadlock. We know of no current concurrency model with the former policy and those that attempt to
provide the latter open many other dangers for embedded systems (e.g. from runaway processes that waste all the
memory with junk messages).

7.2.3. Cost of the verified fix and further wins

The verified protocol (Sect. 6.5) for terminating co-services securely, even in the presence of mutual kills, is
simple (once known), lightweight, needs only a very small amount of extra memory (compared with the incorrect
protocol) and has no need for sequence numbers. Further, because of the nature of synchronised communications,
each service knows exactly what happened in the other when it ends: either it finished and the other did not, or
it did not finish and the other did, or both finished. If more information were needed about the state of each
process, this could be piggy-backed on top of the kill and ack signals with no extra synchronisation at run-time
(or for model-checking) needed.

For some services, having this extra knowledge about co-services, may be crucial and it comes simply from
synchronous channels. Of course, the same information (and security against deadlock) could be obtained from
asynchronous channels, but only by copying the verified synchronous protocol. This introduces an explicit
acknowledgement of each kill signal, which discards the semantic purpose of its asynchronous nature. So, the
run-time overheads for management of the shared buffers supporting the asynchronous kills (not forgetting the
asynchronous acks) are a waste of time. Those overheads are considerable compared with those for synchronous
communications. Thus, it is not only simpler to reason using the latter, it also leads to faster running code.

7.3. Final thoughts

CSP and occam-π enable concurrency to be used to simplify complex system design. The occam-π run-time
system imposes memory overheads of no more than 32 bytes per process and run-time overheads for synchroni-
sation of the order of tens of nanoseconds on shared memory multicore systems. Small memory/power platforms
and large scale complex systemmodelling (millions of processes) are addressed. It teams well with CSP to provide
rich and flexible analysis. We have made proposals for verification abstractions and assertions to be introduced
into the occam-π language, linking its compiler with the FDR model checker, so that only one syntactic repre-
sentation is needed [WPB+11]. Examples of these verification abstractions for occam-π can be found in the CSP
script for the first case study on the supporting web page for this paper [PW15].

There are many lessons about concurrency design from the two case studies presented in this paper. A key
observation is that real verification of the behaviour of communicating processes is achieved, even though we have
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engaged in only simple reasoning ourselves. The status of positive judgments from FDR is formal proof that the
assertions are true (although purists may descend to complaints about the lack of formal proof of the correctness
of the FDR implementation, the C++ compiler with which it was compiled, the computer hardware on which it
was run, etc.). Those complaints apart, such verifications are a significant step forward in eliminating potentially
catastrophic errors in concurrent systems and generally raising confidence in them. Yet all we feel we have done
is program! This brings concurrency verification into the realm of students and everyday programming practice.
Further reading may be found in [WP10].

Finally, canwe teach students (thosewho love to program, anyway) concurrency so that they quickly develop a
correct and intuitive understanding of the primitivemechanisms (e.g. processes, communication, synchronisation,
networks) and higher level patterns (e.g. client-server, server cross-communication, phased barrier, I/O-PAR, . . . )?
Can they use those primitives and patterns with the same fluency as they use serial computing primitives, without
tripping over any dark hazards? Can they develop their own patterns when the standard ones do not apply? Can
they use formal methods to verify good behaviour (e.g. freedom from deadlock and livelock, safety, liveness),
without training in the underlying mathematics (process algebra, denotational semantics)? Can they do this as
normal everyday practice, without any sense of fear? Yes, both we and they can.

This paper presents the ideas of learning about concurrent programming and formal verification at the same
time. The case studies show that this mutually benefits both activities. However, this is only a foundation for
developing these ideas and skills further. Currently, when considering more complex systems, care must be taken
since there are areas of CSP that are not directly of efficiently implementable in occam (or any other language).
For example, external choice over multiway synchronisation events (barriers) is easy to specify in CSP but is
either unsupported in programming languages or, at best, inefficiently supported and with restrictions (such as
shared-memory multicore only). Care must therefore be taken to limit the use of some capabilities of CSP in
order to keep the iteration between executable and formal models simple.

We invite readers of this paper who use the ideas and materials in their teaching to contact us with a view to
gathering data on their students’ experiences on learning and applying these ideas and techniques, especially if
these experiences can be contrasted to other concurrency models.
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Appendix A. Ben-Ari’s twin process conundrum

In [BA10], Ben-Ari gives a seemingly simple program with 2 processes P and Q both updating a global variable
n. Each process reads n, increments it locally, and writes it back; this is repeated 10 times. The pseudo-code
presented in [BA10] is:

http://creativecommons.org/licenses/by/4.0/
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integer n = 0;

process P
integer regP = 0;
do 10 times

load n into regP
increment regP
store regP into n

end

process Q
integer regQ = 0;
do 10 times

load n into regQ
increment regQ
store regQ into n

end

Hewrites that for years, he taught students that the value of n at the end would be between 10 and 20, and was
surprised when a student claimed to have gotten the value 9. He continues to explain that any number between
2 and 20 is possible.

A.1. A CSP model of the twin processes

This statement is easily verified using CSP, even without implementing an executable model at all. Let us go
through a CSP model line by line:

channel load, store : {0..20}
channel kill

The first line declares a load and a store channel, bounding the values it may carry to between 0 and 20.
Model checkers cannot deal with potentially unbounded numbers! These channels are used to communicate data
between a process (Var, described below) representing the shared variable and the processes (P) incrementing it.
Next, a kill channel is declared, just so that the process holding the value of n can be neatly terminated.

inc (x) = if x >= 20 then 20 else x + 1

This declares an increment function that, at first, looks a little strange. As just mentioned, FDR would have
problems verifying assertions if integer values inspected during that verification are unbounded. We know that
the value of n is never bigger than 20, so implementing inc in this way allows FDR to place an upper limit of 20
on n. If the argument to inc, x , is less than 20, 1 is added to x and returned.

P = ; x:<0..9> @
load ? n -> store ! inc (n) -> SKIP

This declares the function that in [BA10] is referred to as P andQ . Note that ; x:<0..9> @ Tmeans repeat
process T 10 times, replacing free xs with successive integers from the given range in successive stages of the
sequence. In this case, process P just repeats its load-increment-store 10 times.

Var (n) =
store ? x -> Var (x)
[]
load ! n -> Var (n)
[]
kill -> SKIP -- terminate

The above process, Var, models the “global” variable holding n. It alternates between reading the store
channel, writing to the load channel or accepting the kill signal. If the process accepts the kill, it terminates.
Otherwise it simply recurses with the appropriate value of n: this is the value from the store channel if that was
read, or n (i.e., unchanged) is the load channel was written.

PP_check =
(P ||| P);
load ? n ->

if n == 2 then STOP
else kill -> SKIP
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Fig. 10. Result of checking termination of System—it does not!

PP check runs twoprocesses in sequence.First, two copies of the processP are executed in parallel, interleaving
freely over their use of the load and store channels. Second, a final load is performed to check if the result is
equal to 2. If it is, this process STOPs and, as we will see, this will prevent any system of which it is a part from
terminating. If it is not equal to 2, the process kills the Var process and terminates cleanly.

System =
PP_check
[| {| load, store, kill |} |]
Var (0)

The above sets up the entire system by running PP check concurrently with the Var process (which holds
the value of n, initialised to 0). Of course, they have to synchronise on their use of the load, store and kill
channels.

A.2. Analysis of the model

assert SKIP [FD= System \ Events

This asserts that System always terminates: technically it asserts that System, with all events hidden, is
a failures-divergence refinement of the process SKIP, which does nothing but terminate and cannot refuse to
terminate. Thus, if the assertion were true, System could also not refuse to terminate (i.e., it would terminate).21

But if 2 is a possible result for the value of the shared variable after the two P processes have finished, there
is an execution path through System where PP check will STOP, preventing System from terminating and the
assertion will fail.

Running this model with FDR, the assertion does indeed fail (see Fig. 10). Along with its report of failure of
the assertion, FDR offers a Debug option: clicking this button presents the trace of events FDR found that led
to the failure. This is shown in Table 1, which documents the event sequence leading to a final value of 2.

Similarly, if we wanted to know an interleaving that would cause n to end with the value 9, all we need to
do is replace the 2 (in PP check) with 9 and rerun FDR. The same can be done for all values between 2 and 20
inclusive. However, if the number checked for is 1, the assertion succeeds which means that 1 is not a possible end
result for the shared variable. These results verify Ben Ari’s statements reported near the start of this Appendix.

However, might there be some other reason preventing termination, other than PP check executing STOP
because of some particular final value for the shared variable? The answer is no. Consider:

PP_no_check = (P ||| P); kill -> SKIP

This just runs the two P processes and then kills the Var process without checking its final value. If we plug
this one into System (instead of PP check), then the assertion of termination succeeds. We may conclude that
failure to terminate is only because of the check made by PP check.

These examples illustrate the power of being able to explore “what ifs” without actually observing executions
that performed a bad execution. Many bad executions will not be exhibited by exhaustive testing as we have
illustrated, but in this example, the bad behaviour was found and explained by the model checker immediately.

21 The authors are grateful to Michael Goldsmith for this insight.
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Table 1. Trace leading to n=2

Time P Q n

0 load 0 0
1 load 0 0
2 store 1 1
3 load 1 1
4 store 2 2
5 load 2 2
6 store 3 3
7 load 3 3
8 store 4 4
9 load 4 4
10 store 5 5
11 load 5 5
12 store 6 6
13 load 6 6
14 store 7 7
15 load 7 7
16 store 8 8
17 load 8 8
18 store 9 9
19 store 1 1
20 load 1 1
21 load 1 1
22 store 2 2
23 load 2 2
24 store 3 3
25 load 3 3
26 store 4 4
27 load 4 4
28 store 5 5
29 load 5 5
30 store 6 6
31 load 6 6
32 store 7 7
33 load 7 7
34 store 8 8
35 load 8 8
36 store 9 9
37 load 9 9
38 store 10 10
39 store 2 2

A.3. Correcting the behaviour of the twin processes

The original Ben-Ari example was to show problems arising from uncontrolled access by concurrent processes
to shared data. Even he was surprised by the range of results that could happen!

We end this exercise by adding control through a classicalmutex and, on a positive note, verify that the system
then behaves correctly—always!

channel wait, signal

Mutex =
wait -> signal -> Mutex
[]
kill -> SKIP

This Mutex process monitors wait and signal events, strictly switching between allowing first one and then
the other. It also accepts a kill, allowing it to be shut down (in the same way as the Var process is shut down).

P’ = ; x:<0..9> @
wait ->
load ? n -> store ! inc (n) ->
signal -> SKIP
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The P’ process is the same as the previous P but with its load-increment-store operations sandwiched between
a wait and a signal. Running this concurrently with Mutex ensures that those operations cannot be interleaved
with those of any other instance of P’ that might be also be running. So, running P’ ensures that there will be
10 clean increments to the number held in Var. Running two copies means there will be 20 clean increments and
the final answer held will be 20. Verifying this only needs a small change to the checking process:

PP_check’ =
(P’ ||| P’);
load ? n ->

if n != 20 then STOP
else kill -> SKIP

This time, the check fails to terminate if the final result is anything but 20. Putting everything together:

SYSTEM’ =
PPcheck’
[| {| load, store, kill |} |]
Var (0)

we must not forget to add the mutex:

SAFE_SYSTEM =
SYSTEM’
[| {| wait, signal, kill |} |]
Mutex

Now, the assertion becomes:

assert SKIP [FD= SAFE_SYSTEM \ Events

FDR verifies this assertion is true. This means that 20 is the only result possible in Var from running the twin
processes, P’ ||| P’, and that the system, therefore, always behaves in the manner expected.

occam-π bindings for this corrected CSP model, and for the unsafe version from Sect. A.1 of this Appendix,
are provided at the supporting website for this paper [PW15]. These (compilable and) executable versions have
timing parameters that provoke the bad behaviour of the later but not, of course, the former.
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