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Abstract We contrast and compare three ways of predicting efficiency in a forced
contribution threshold public good game. The three alternatives are based on ordi-
nal potential, quantal response and impulse balance theory. We report an experiment
designed to test the respective predictions and find that impulse balance gives the best
predictions. A simple expression detailing when enforced contributions result in high
or low efficiency is provided.
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1 Introduction

A threshold public good is provided if and only if total contributions towards its
provision are sufficiently high. The classic example would be a capital project such
as a new community school (Andreoni 1998). The notion of threshold public good is,
however, far more general than this classic example. Consider, for example, a charity
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that requires sufficient funds to cover large fixed costs. Or, consider a political party
deciding whether to adopt a policy which is socially efficient but, for some reason,
unpopular with voters; the policy will be enacted if and only if enough party members
are willing to back the policy (Goeree and Holt 2005).

In a threshold public good game the provision of the public good is consistent
with Nash equilibrium. There are, however, typically multiple equilibria (Palfrey and
Rosenthal 1984; Alberti and Cartwright 2016). This leads to a coordination problem
that creates a natural uncertainty about total contributions. The literature has decom-
posed this uncertainty into a fear and greed motive for non contribution (Dawes et al.
1986; Rapoport 1987, see also Coombs 1973). The fear motive recognizes that a
person may decide not to contribute because he is pessimistic that sufficiently many
others will contribute.1 The greed motive recognizes that a person may decide not to
contribute in the hope that others will fund the public good.

Dawes et al. (1986) noted that the fear motive can be alleviated by providing a
refund (or money back guarantee) if contributions are short of the threshold (see also
Isaac et al. 1989). Similarly, the greed motive can be alleviated by forcing everyone
to contribute if sufficiently many people volunteer to contribute. In three independent
experimental studies Dawes et al. (1986) observed significantly higher efficiency in a
forced contribution game. On this basis they concluded that inefficiency was primarily
caused by the greed motive. Rapoport and Eshed-Levy (1989) challenged this conclu-
sion by showing that the fear motive can cause inefficiency (see also Rapoport 1987).
They still, however, observed highest efficiency in a forced contribution game.2

These experimental results suggest that enforcing contributions is an effective way
to obtain high efficiency. This is a potentially important finding in designing mech-
anisms for the provision of public goods. Existing evidence, however, is limited to
the two papers mentioned above. Our objective in this paper is to explore in detail,
both theoretically and experimentally, the conditions under which forced contributions
leads to high efficiency in binary threshold public good games.3

Our theoretical contribution consists of applying three, alternative approaches to
modelling behavior that are, respectively, based on ordinal potential (Monderer and
Shapley 1996), quantal response (McKelvey and Palfrey 1995), and impulse balance
(Selten 2004). We demonstrate that the three approaches give very different predic-
tions on the efficiency of enforcing contributions. We complement the theory with an
experimental study where the number of players and return to the public good are
systematically varied in order to test the respective predictions of the three theoretical
models. We find that impulse balance provides the best fit with the experimental data.
This allows us to derive a simple expression with which to predict when enforced
contributions result in high or low efficiency. Our predictions are consistent with the

1 This has also been called the assurance problem (Isaac et al. 1989; Bchir and Willinger 2013).
2 For a general overview of the experimental literature on threshold public goods see Croson and Marks
(2000), Schram et al. (2008), and Cadsby et al. (2008). For more on the role of refunds see Cartwright and
Stepanova (2015).
3 Our focus in this paper will be on binary threshold public good games where people decide either to
contribute or not towards the public good. The alternative, continuous threshold public good game, is that
people can choose how much to contribute on a continuum (e.g. Suleiman and Rapoport 1992).
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uniformly high efficiency observed in previous studies. We also find, however, that
enforced contributions are not a guarantee of high efficiency. The interpretation of this
finding will be discussed more in the conclusion.

Our analysis shows that a forced contribution game is of theoretical interest; for
instance, it’s tractability allows a direct test on the predictive power of three commonly
used theoretical models. A point we also want to emphasize, however, is that the
forced contribution game is of applied interest as well. To motivate this latter point
it is important to explain why forced contribution is not inconsistent with the notion
of voluntary provision of a public good. A forced contribution game encapsulates
the following basic properties: (1a) If enough people voluntarily contribute to the
public good then the public good is provided and (b) everybody gets the same payoff,
irrespective of whether they contributed or not.4 (2a) If not enough people voluntarily
contribute then the public good is not provided and (b) thosewho contributed areworse
off than those who did not contribute. Property (2a) means that it is endogenously
determined whether the public good is provided; hence, public good provision is
voluntary at the level of the group. Property (2b) means that the fear motive for not
contributing is present and so it is far from trivial whether the efficient outcome will
be obtained.

To illustrate further, we provide three examples of a forced contribution game.5

First, consider an organization or department being run by an incompetent manager.
To get rid of the manager will require a sufficiently large number of colleagues to
complain. Hence to complain can be interpreted as contributing towards the public
good. Suppose that if the manager is removed then everyone benefits and no one
(including those who complained) will receive any recrimination. Further, suppose
that if the manager is not removed then things carry on as before except that those
who complained will receive recriminations. One can readily check that this situation
satisfies all the properties required of a forced contribution game (as wemore formally
show in footnote 10). In particular, those who contribute only earn a lower payoff than
those who did not contribute if the manager is not removed.

As a second example, consider a firm attempting a takeover of a competitor. Various
rules on the conditions for takeover are possible (e.g. Kale and Noe 1997). Of interest
to us is the case where the takeover will proceed if and only if the proportion of
shareholders willing to sell reaches some threshold. Moreover, it must be the case
that no shares are sold if the threshold is not met while all shares are compulsorily
purchased if the threshold is met. This is an all-or-nothing, restricted-conditional offer
(Holmström andNalebuff 1992).6 Again, properties (1a) and (2a) are trivially satisfied

4 Property (1b) captures the notion of ‘forced’ contribution in that there is no gain from not volunteering
to contribute to a public good that is provided. In specific situations, see for instance the example in the
next paragraph, the term ‘forced’ need not be taken literally.
5 A further example, looking at a firm trying to acquire an apartment block for redevelopment, is considered
by Dawes et al. (1986).
6 To provide some background: Consider a simple, any-and-all takeover bidwhere a raider offers to buy any
shares sold but only takes over the company if sufficiently many shares (e.g. 50%) are sold. This structure
does not give rise to a threshold public good game, let alone a forced contribution game. There are two
basic reasons why a raider may not prefer an any-and-all bid. First, it can give incentives for shareholders
to not sell in the hope the takeover will increase the value of the firm (Grossman and Hart 1980). A freezout
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and so the focus is on property (2b). For a forced contribution game we require that
there are some legal, anticipatory, or other costs that mean a person would prefer not
to offer to sell if the takeover will not take place.

As a final example, consider a political party deciding whether to endorse a partic-
ular policy. Suppose the policy is unpopular with voters but ultimately beneficial for
the party. Also suppose that party will adopt the policy if and only if sufficiently many
members back it. If the policy is not adopted then one could reasonably expect that only
those members of the party who were seen to promote the policy will incur a cost with
voters. If, however, the policy is adopted and becomes party policy then it is likely that
all members of the party will incur a cost. This makes it a forced contribution game.

The preceding examples illustrate that the forced contribution game is of practical
relevance, even though we would not want to argue it is the most commonly observed
type of threshold public good game. The examples also illustrate that enforcing con-
tributions is a practical possibility in numerous situations. Our analysis will provide
insight onwhen this possibility isworth pursuing. In particular, enforcing contributions
is likely to be costly to implement and so it is crucial to know whether enforcement
will lead to high efficiency.7

As a final preliminary we highlight that an important contribution of the current
paper is to apply impulse balance theory in a novel context. Impulse balance theory,
which builds on learning direction theory, says that players will tend to change their
behavior in a way that is consistent with ex-post rationality (Selten and Stoeker 1986;
Selten 1998, 2004; Ockenfels and Selten 2005; Selten and Chmura 2008, see also
Cason and Friedman 1997, 1999). In Alberti et al. (2013) we apply impulse balance
to look at continuous threshold public good games. Here we focus on the binary forced
contribution game. As already previewed, we find that impulse balance successfully
predicts observed efficiency. This is clearly a positive finding in evaluating the merit
of impulse balance theory.8 It should be noted, however, that the predictive power of
impulse balance is dependent on its one degree of freedom, an issue we discuss more
below.

We proceed as follows: in Sect. 2 we describe the forced contribution game. In
Sect. 3 we provide some theoretical preliminaries, in Sect. 4 we describe three models

Footnote 6 continued
rule is one way to overcome this problem (Amihud et al. 2004) and essentially involves forcing those who
hold out to sell in the event of a takeover. A second issue is that the raider may end up buying shares and yet
fall short of the threshold for ownership. One way to potentially overcome this problem is for the firm to
only buy shares conditional on the takeover going ahead (e.g. Cadsby andMaynes 1998). An all-or-nothing
bid involves both a freezout rule and conditional buying of shares (Bagnoli and Lipman 1988, see also
Holmström and Nalebuff 1992).
7 Voting may be a simple solution to obtaining efficiency if forced contributions are possible. (We thank a
referee for pointing this out.) Voting, however, may not be practicable. For instance, in the takeover example
there may be no way to implement a binding vote. Moreover, as our first and third examples illustrate, if
there is an asymmetry whereby voting ‘yes for the public good’ is more costly than voting no we still have
a forced contribution game. This asymmetry may arise if abstention is treated as a no vote.
8 Impulse balance theory and quantal response are compared by Selten and Chmura (2008) (see also
Chmura et al. 2012), and Berninghaus et al. (2014). No strong difference in predictive power is found
between the two.
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to predict efficiency and in Sect. 5 we compare the three models predictions. In Sect. 6
we report our experimental results and in Sect. 7 we conclude.

2 Forced contribution game

In this section we describe the forced contribution threshold public good game. There
is a set of players N = {1, . . . , n}. Each player is endowed with E units of private
good. Simultaneously, and independently of each other, every player i ∈ N chooses
whether to contribute 0 or to contribute E towards the provision of a public good. Note
that this is a binary, all or nothing, decision. For any i ∈ N , let ai ∈ {0, 1} denote
the action of player i , where ai = 0 indicates his choice to contribute 0 and ai = 1
indicates his choice to contribute E . Action profile a = (a1, . . . , an) details the action
of each player. Let A denote the set of action profiles. Given action profile a ∈ A, let

c(a) =
n∑

i=1

ai

denote the number of players who contribute E .
There is an exogenously given threshold level 1 < t < n.9 The payoff of player i

given action profile a is

ui (a) =
{
V if c(a) ≥ t
E(1 − ai ) otherwise

,

where V > E is the value of the public good. So, if t or more players contribute E
then the public good is provided and every player gets a return of V . In interpretation,
every player is forced to contribute E irrespective of whether they chose to contribute
0 or E . If less than t players contribute E then the public good is not provided and
there is no refund for a player who chose to contribute E .10

9 If t = n then we have the weak link game. If t = 1 then we have a form of best shot game. For simplicity
we exclude these ‘special cases’ from the analysis.
10 To see how this description of the game relates to our earlier examples consider our first example of
an incompetent manager. To get rid of the manager will require t or more colleagues to complain. Hence
to complain can be interpreted as contributing towards the public good. If the manager is removed then
everyone benefits and no one (including those who complained) will receive any recrimination. Let X
denote payoffs in this case. If the manager is not removed then things carry on as before except that those
who complained will receive recriminations. Let Y denote current payoffs and R the cost of recrimination.
So,

ui (a) =
{
X if c(a) ≥ t
Y − ai R otherwise

.

To fit this into our framework, we can set E = R and V = X − Y + R. This gives,

ui (a) =
{
V + Y − R if c(a) ≥ t
E(1 − ai ) + Y − R otherwise

.

The linearity of payoffs means we can subtract the fixed term Y − R.
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For any player i ∈ N the strategy of player i is given by σi ∈ [0, 1] where σi is the
probability with which he chooses to contribute E (and 1 − σi is the probability with
which he chooses to contribute 0). Let σ = (σ1, . . . , σn) be a strategy profile. With a
slight abuse of notation we use ui (σi , σ−i ) to denote the expected payoff of player i
given strategy profile σ , where σ−i lists the strategies of every player except i .

3 Theoretical preliminaries

We say that a strategy profile σ = (σ1, . . . , σn) is symmetric if σi = σ j for all
i, j ∈ N . Given that choices are made simultaneously and independently it is natural
to impose a homogeneity assumption on beliefs (Rapoport 1987; Rapoport and Eshed-
Levy 1989).11 This justifies a focus on symmetric strategy profiles. Symmetric strategy
profiles σ 0 = (0, . . . , 0) and σ 1 = (1, . . . , 1) will prove particularly important in the
following. We shall refer to σ 0 as the zero contribution strategy profile and σ 1 as the
full contribution strategy profile.

Any symmetric strategy profile σ = (σ1, . . . , σn) can be summarized by real num-
ber p (σ ) ∈ [0, 1] where p (σ ) = σ1 = · · · = σn . In interpretation, p(σ ) is the
probability that each player independently chooses to contribute E . Where it shall
cause no confusion we simplify notation by writing p instead of p (σ ). Given sym-
metric strategy profile σ , the expected payoff of player i if he chooses, ceteris paribus,
to contribute E is

ui (1, σ−i ) = V Pr (t − 1 or more other players contribute E)

= V
n−1∑

y=t−1

(
n − 1

y

)
py (1 − p)n−1−y .

If he chooses to contribute 0 his expected payoff is

ui (0, σ−i ) = E + (V − E) Pr (t or more contribute E)

= E + (V − E)

n−1∑

y=t

(
n − 1

y

)
py (1 − p)n−1−y .

Note that player i’s expected payoff from strategy profile σ is

ui (σi , σ−i ) = p (σ ) ui (1, σ−i ) + (1 − p (σ )) ui (0, σ−i ) .

The following function will prove useful in the subsequent analysis,

�(p (σ )) = ui (1, σ−i ) − ui (0, σ−i )

= V

(
n − 1

t − 1

)
pt−1 (1 − p)n−t − E

t−1∑

y=0

(
n − 1

y

)
py (1 − p)n−1−y . (1)

11 See Offerman et al. (1996) for an alternative perspective.
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Fig. 1 The value of � (p) when
n = 5, t = 3, E = 6 and
V = 13

To illustrate, Fig. 1 plots �(p) for p ∈ [0, 1] when n = 5, t = 3, E = 6 and V = 13.
If�(p) < 0 then player i’s expected payoff is highest if he chooses to contribute 0. If
�(p) = 0 then player i is indifferent between choosing to contribute 0 and E . Finally,
if �(p) > 0 then player i’s expected payoff is highest if he chooses to contribute E .

3.1 Nash equilibrium

Previous theoretical analysis of binary threshold public good games has largely
focussed on Nash equilibria (see, in particular, Palfrey and Rosenthal 1984). The
set of Nash equilibria for the forced contribution game has not, however, been
explicitly studied and so we begin the analysis by considering this. Strategy pro-
file σ ∗ = (

σ ∗
1 , . . . , σ ∗

n

)
is a Nash equilibrium if and only if ui

(
σ ∗
i , σ ∗−i

) ≥ ui
(
s, σ ∗−i

)

for any s ∈ [0, 1] and all i ∈ N . In the following we focus on symmetric Nash
equilibria.12

The set of symmetric Nash equilibria is easily discernible from the function �(p).
To illustrate, consider again Fig. 1. In this example there are three Nash equilibria. The
zero contribution strategy profile σ 0 is a Nash equilibrium because �(0) < 0. The
‘mixed’ strategy profile σm where p (σm) = 0.43, and the full contribution strategy
profile σ 1 are also Nash equilibria because �(0.43) = �(1) = 0.

Our first result shows that Fig. 1 is representative of the general case (see also
Rapoport 1987).

Proposition 1 For any value of V > E and n > t > 1 there are three symmetric Nash
equilibria: (i) the zero contribution strategy profile σ 0, (ii) a mixed strategy profile σm

where p
(
σm
i

) ∈ (0, 1), (iii) the full contribution strategy profile σ 1.

12 There are many asymmetric Nash equilibria. For example, it is a Nash equilibrium for t players to
contribute E (with probability 1) and n− t players to contribute 0 (with probability 1). If players have some
form of pre-play communication such equilibria have been seen to arise in related games (Van de Kragt
et al. 1983). If, however, players choose simultaneously and independently it is difficult to see how players
could coordinate on such equilibria.
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Proof For p = 0 it is simple to show that �(p) = −E . This proves part (i) of the
proposition. For p = 1 it is simple to show that�(p) = 0. This proves part (iii) of the
proposition. In order to prove part (ii) consider separately the two terms in �(p) by
writing�(p) = Vα(p)−Eβ(p) . Term α(p) is the probability that exactly t−1 out of
n − 1 players contribute E and so it takes a bell shape. Formally, α(0) = 0, α(1) = 0
and

d

dp
α (p) =

(
n − 1

t − 1

)
pt−2 (1 − p)n−t−1 (t − 1 − p(n − 1))

implying d
dpα (p) ≷ 0 for p ≶ t−1

n−1 . Term β(p) is the probability t − 1 or less of
n − 1 players contribute E and so is a decreasing function of p. Formally, β(0) =
1, β(1) = 0 and

d

dp
β (p) = − (n − 1) (1 − p)n−2

−
t−1∑

y=1

(
n − 1

y

) (
py−1 (1 − p)n−2−y

)
(n − y − 1) < 0.

For p < 1 it is clear that α (p) < β (p). As p → 1 we know β (p) − α (p) → 0.
Given that V > E this means there exists some p ∈ (0, 1) such that �(p) > 0. This
proves part (ii) of the theorem. Note that we have also done enough to show that there
exists a unique value p∗ ∈ (0, 1) where �(p∗) = 0. ��

Proposition 1 shows that there are multiple symmetric Nash equilibria. In the fol-
lowing section we shall consider and contrast three possible approaches to predict
which, if any, of these equilibria are most likely to occur. Before doing that let us
briefly comment on the experimental evidence concerning �(p). Rapoport (1987)
and Rapoport and Eshed-Levy (1989) proposed the relatively weak hypothesis (their
monotonicity hypothesis) that a player is more likely to contribute the higher is�(p).
Rapoport and Eshed-Levy (1989) experimentally elicit subjects beliefs in order to test
this hypothesis and find only weak support for it. Offerman et al. (2001) obtain sim-
ilar results. The challenge, therefore, is to develop a model that can not only predict
outcomes but also capture the forces behind individual choice.

4 Main theoretical analysis

In this section we describe three alternative approaches to ‘predict’ behavior in a
forced contribution game. The three alternatives are based on ordinal potential, logit
equilibrium and impulse balance theory.

4.1 Ordinal potential

A potential game is one in which a single function, called the ordinal potential of
the game, can capture the change in payoff that any player obtains from a unilateral
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change in action (Monderer and Shapley 1996). Examples of potential games include
the minimum effort game, Cournot quantity competition and congestion games (e.g.
Rosenthal 1973). If a game is a potential game then the set of Nash equilibria can be
refined by finding the Nash equilibria that maximize potential (Monderer and Shapley
1996). We now demonstrate that this idea can be applied to the forced contribution
game.

Using the definition of Monderer and Shapley (1996), see their equation (2.1),
function W : A → R is an ordinal potential of the forced contribution game if for
every i ∈ N and a ∈ A

ui (ai , a−i ) > ui (1 − ai , a−i ) if and only if W (ai , a−i ) > W (1 − ai , a−i ) .

Our next result shows that the forced contribution game admits an ordinal potential
and is, therefore, a potential game. Moreover, the full contribution strategy profile
maximizes potential. In this sense the full contribution Nash equilibrium is ‘selected’.

Proposition 2 The forced contribution game is a potential game and the ordinal
potential is maximized at the full contribution strategy profile σ 1.

Proof The aggregate payoff, given action profile a = (a1, . . . , an), is

W (a) =
{
nV if c(a) ≥ t
E(n − c (a)) otherwise

.

If W is an ordinal potential then the potential is maximized for c(a) ≥ t . In order to
verify that W is an ordinal potential there are five cases to consider:

(i) If c (a) > t or c(a) = t and ai = 0 then c (1 − ai , a−i ) ≥ t implying
ui (ai , a−i ) = ui (1 − ai , a−i ) = V and W (ai , a−i ) = W (1 − ai , a−i ) = nV .

(ii) If c (a) = t and ai = 1 then c (1 − ai , a−i ) = t − 1 implying ui (ai , a−i ) =
V > ui (1 − ai , a−i ) = E and W (ai , a−i ) = nV > W (1 − ai , a−i ) =
E (n − t + 1).

(iii) If c (a) = t − 1 and ai = 0 then c (1 − ai , ai ) = t implying ui (ai , a−i ) = E <

ui (1 − ai , a−i ) = V and W (ai , a−i ) = E (n − t + 1) < W (1 − ai , a−i ) =
nV .

(iv) If c (a) ≤ t − 1 and ai = 1 then ui (ai , a−i ) = 0 < ui (1 − ai , a−i ) = E and
W (ai , a−i ) = E (n − c(a)) < W (1 − ai , a−i ) = E (n − c (a) + 1).

(v) If c (a) < t − 1 and ai = 0 then ui (ai , a−i ) = E > ui (1 − ai , a−i ) = 0 and
W (ai , a−i ) = E (n − c(a)) > W (1 − ai , a−i ) = E (n − c (a) − 1). ��

With a slight abuse of terminologywe shall interpret Proposition 2 as saying ordinal
potential predicts perfect efficiency in the forced contribution game. Interestingly,
this prediction is consistent with the prior experimental evidence (Dawes et al. 1986;
Rapoport and Eshed-Levy 1989). However, whileMonderer and Shapley (1996) show
that ordinal potential can be used to refine the set of Nash equilibria they also openly
admit that they have no explanation for why ordinal potential would be maximized.
So, to paraphrase Monderer and Shapley (p. 136), ‘it may be just a coincidence’ that
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ordinal potential is consistent with the prior evidence. The conjecture that ordinal
potential can predict behavior in the forced contribution game needs a more rigorous
empirical test.

4.2 Logit equilibrium

Quantal response provides a way to model behavior that allows for ‘noisy’ decision
making (McKelvey and Palfrey 1995). In particular, quantal response equilibrium
(QRE) is a generalization of Nash equilibrium that allows for mistakes or random per-
turbations to payoffs, while maintaining an assumption of rational expectations. QRE
has proved successful in explaining deviations from Nash equilibrium in a number of
settings including auctions and coordination games (Goeree et al. 2008). Offerman
et al. (1998) apply a quantal response model to a no refund threshold public good
game (see also Goeree and Holt 2005).13 Here we apply the approach to a forced con-
tribution game. Specifically, we consider the logit equilibrium (McKelvey and Palfrey
1995).

Symmetric contribution profile σ is a logit equilibrium if

p (σ ) = eγ ui (1,σ−i )

eγ ui (1,σ−i ) + eγ ui (0,σ−i )
= 1

1 + e−γ�(p(σ ))

for any player i ∈ N where γ ≥ 0 is a parameter. In interpretation, γ is inversely
related to the level of error, where error can be thought of as resulting from random
mistakes in calculating expected payoff.14 Figure 2 plots the logit equilibria for the
example n = 5, t = 3, E = 6 and V = 13 . We see that there is a unique equilibrium
for small γ (i.e. a high level of error) and three equilibria for large γ . If there is no
error (γ → ∞) the set of logit equilibria coincides with the set of Nash equilibria
(Tumennasan 2013). The higher the level of error (the smaller is γ ) the more the set
of logit equilibria diverges from the set of Nash equilibria.

One criticism of quantal response is that it can rationalize any behavior (Haile
et al. 2008, see also Goeree et al. 2005). This criticism does not always apply to
logit equilibrium but it is a concern in our case. In Fig. 2, for instance, we see that
just about any value of p is consistent with logit equilibrium. To obtain a testable
prediction we, therefore, need to either fix γ or restrict attention to a particular set of
logit equilibria. We shall focus on the latter option here (although in the data analysis
we also explore the former option). McKelvey and Palfrey (1995) demonstrate that a
graph of the logit equilibrium can be used to select a Nash equilibrium. Specifically,
the graph of logit equilibria contains a unique branch starting at 0.5 and converging to
a Nash equilibrium as γ → ∞.15 The resultant Nash equilibrium is called the limiting
logit equilibrium. If players are initially inexperienced (γ is near 0) and become more

13 They also consider a naive Bayesian quantal response model.
14 Conventionally λ is used rather than γ . We use γ to avoid confusion with a λ term used in impulse
balance theory.
15 More formally, they state that it holds for ‘almost all games’. The games that we consider in this paper
do have this property.
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Fig. 2 Logit equilibria when
n = 5, t = 3, E = 6 and
V = 13

Fig. 3 Logit equilibria when
n = 7, t = 5, E = 6 and
V = 13

experienced over time (γ increases) then one can argue play should move along this
branch of equilibria towards the limiting logit equilibria (McKelvey and Palfrey 1995).
Offerman et al. (1998) found that their experimental data did lay on the branch starting
at 0.5, although there was little evidence of learning with experience.

In the example of Fig. 2 the limiting logit equilibrium is the full contribution Nash
equilibrium σ 1. For different parameter values the limiting logit equilibrium can be
the zero contributionNash equilibrium σ 0. To illustrate, Fig. 3 plots the logit equilibria
when n = 7, t = 5, E = 6 and V = 13. The proceeding examples demonstrate that
the limiting logit equilibrium can be σ 0 or σ 1 depending on the parameters of the
game. We shall pick up on this point further in Sect. 5. For now we note that (for
fixed values of n, t and E) there exists a critical value Ṽ such that σ 0 is the limiting
logit equilibrium for V < Ṽ and σ 1 is the limiting logit equilibrium for V > Ṽ . We
highlight that this critical value is also relevant for interpreting the branch of logit
equilibria starting at 0.5. More specifically, if we restrict attention to this branch of
equilibria then, for any γ , the logit equilibrium value of p is less than 0.5 if V < Ṽ
and greater than 0.5 if V > Ṽ .
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4.3 Impulse balance theory

A key contribution of the current paper is to apply impulse balance theory. Impulse
balance theory provides a quantitative prediction on outcomes based on ex-post ratio-
nality (Ockenfels and Selten 2005; Selten and Chmura 2008; Chmura et al. 2012). It
posits that a player who could have gained by playing a different action will have an
impulse to change his action the next time he plays the game. The size of impulse is
proportional to the difference between the payoff he could have received and the one he
did. The player is said to have an upward or downward impulse depending onwhether a
‘higher’ or ‘lower’ action is ex-post rational. At a (weighted) impulse balance equilib-
rium the expected upward and (weighted) downward impulse are equalized. Impulse
balance theory has been applied in many contexts including first price auctions, the
newsvendor game andminimum effort game (Ockenfels and Selten 2005, 2014, 2015;
Goerg et al. 2016).

To apply impulse balance theory to a forced contribution gamewe need to determine
the direction and strength of impulse of each player for any action profile (Selten 1998).
In order to do this we distinguish the four experience conditions defined below. Take as
given an action profile (a1, . . . , an) and a player i ∈ N . Let ui = ui (ai , a−i ) denote
the realized payoff of player i and let gui = ui (1 − ai , a−i ) denote the payoff player
i would have got from choosing the alternative action.
Zero no: Player i faces the zero no experience condition if c(a) < t − 1 and ai = 0.
In this case ui = E and gui = 0. Given that gui < ui we say that player i has no
impulse. Equivalently, the strength of impulse is 0.
Wasted contribution: Player i faces the wasted contribution experience condition if
c(a) ≤ t − 1 and ai = 1. In this case ui = 0 while gui = E > 0. We say that player
i has a downward impulse of strength gui − ui = E .
Lost opportunity: Player i faces the lost opportunity experience condition if c(a) =
t − 1 and ai = 0. In this case ui = E while gui = V > E . We say that player i has
an upward impulse of strength gui − ui = V − E .
Spot on: Player i faces the spot on experience condition if c(a) ≥ t . In this case ui = V
and gui ≤ V so we say player i has no impulse.
The direction and size of impulse for each of the experience conditions are summarized
in Table 1.

We can now define expected upward and downward impulse. In doing this we retain
a focus on symmetric strategy profiles. The upward impulse of player i ∈ N comes

Table 1 The conditions on ai and c(a), the direction and size of impulse for each experience condition

Experience condition Properties of a Impulse

ai c(a) Direction Size

Zero no 0 < t − 1 − 0

Wasted contribution 1 ≤ t − 1 ↓ E

Lost Opportunity 0 t − 1 ↑ V − E

Spot on 0 or 1 ≥ t − 0
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Fig. 4 Upward and downward
impulse as a function of p when
n = 5, t = 3, E = 6 and
V = 13

from the lost opportunity experience condition. So, given a symmetric strategy profile
σ the expected upward impulse of player i is

I+(p (σ )) = (V − E) Pr(i chooses to contribute 0)Pr(t − 1 others contribute E)

= (V − E)

(
n − 1

t − 1

)
pt−1 (1 − p)n−t+1 .

We note at this point that

d I+(p)

dp
= (V − E)

(
n − 1

t − 1

)
(1 − p)n−t pt−2 (t − 1 − pn) (2)

implying that

d I+(p)

dp
≷ 0 as p ≶ t − 1

n
.

Thus, the upward impulse is an inverse U shaped function of p (on interval [0, 1]).
To illustrate, Fig. 4 plots I+(p) (and I−(p) to be defined shortly) for the example
n = 5, t = 3, E = 6 and V = 13.

The expected downward impulse of player i comes from the wasted contribution
experience condition. It is given by

I−(p (σ )) = E Pr(i contributes E)Pr(t − 2 or less others contribute E)

= E
t−2∑

y=0

(
n − 1

y

)
py+1 (1 − p)n−1−y .
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Note that

d I−(p)

dp
= E

t−2∑

y=0

(
n − 1

y

)
py (1 − p)n−2−y (y + 1 − np) (3)

and so the downward impulse is also an inverse U shaped function of p. Moreover,

d I−(p)

dp
< 0 if p >

t − 1

n

implying that the maximum downward impulse occurs for a lower value of p than the
maximum upward impulse. This is readily apparent in Fig. 4.

Symmetric strategy profile σ ∗ is a weighted impulse balance equilibrium if
I+(p (σ ∗)) = λI−(p (σ ∗)), where λ is an exogenously given weight on the down-
ward impulse. Note that a value of λ < 1 indicates that, in equilibrium, the downward
impulse must be larger than the upward impulse. In interpretation this would sug-
gest that players are less responsive in the wasted contribution condition than the lost
opportunity condition. This could reflect a desire to contribute or to provide the public
good which is not captured in monetary payoffs (Rapoport 1987). Under this inter-
pretation λ is a ‘psychological’ parameter to be estimated empirically from individual
behavior (Ockenfels and Selten 2005).

We shall say that an impulse balance equilibrium σ ∗ is stable if I+(p) > λI− (p)
for p ∈ (p (σ ∗) − ε, p (σ ∗)) and I+(p) < λI− (p) for p ∈ (p (σ ∗) , p (σ ∗) + ε) for
some ε > 0.16 Otherwisewe say the equilibrium is unstable. Intuitively, an equilibrium
is stable if a small deviation from the equilibrium does not result in impulses that
drive strategies further away from the equilibrium. In Fig. 4, where λ = 1, there
are two stable impulse balance equilibria: (i) the zero strategy profile σ 0, and (ii)
full contribution strategy profile σ 1. There is also (iii) an unstable mixed strategy
equilibrium σm where p (σm) = 0.25. Note that this mixed strategy impulse balance
equilibrium takes a different value of p to the mixed strategy Nash equilibrium.

We are now in a position to state our main theoretical result.

Proposition 3 (a) If V ≤ V (λ) where

V (λ) = E (n − (t − 1) (1 − λ))

n − t + 1

then there are two impulse balance equilibria: the zero strategy profile σ 0 is a
stable equilibrium, and the full contribution strategy profile σ 1 is an unstable
equilibrium.

(b) If V > V (λ) and t ≥ 3 there are three impulse balance equilibria: the zero
strategy profile σ 0 is a stable equilibrium, the full contribution strategy profile σ 1

is a stable equilibrium, and there is an unstable mixed strategy equilibrium σm

where p (σm) ∈ (0, 1).

16 If p∗ = 0 or p∗ = 1 the definition is amended as appropriate.
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(c) If V > V (λ) and t = 2 there are two impulse balance equilibria: the zero strategy
profile σ 0 is an unstable equilibrium, and the full contribution strategy profile σ 1

is a stable equilibrium.

Proof Let Cν
k = (

ν
k

)
and let

DI (p) = I+ (p) − λI− (p)

denote the difference between upward and downward impulse. We have

DI (p) = Cn−1
t−1 pt−1 (1 − p)n−t+1 (V − E) − λE

t−2∑

y=0

Cn−1
y py+1 (1 − p)n−1−y .

Symmetric strategy profile σ is an impulse balance equilibrium if and only if
DI (p (σ )) = 0. If p = 0 then DI (p) = 0 implying the zero strategy profile is
an impulse balance equilibrium. If p = 1 then DI (p) = 0 implying the full contri-
bution strategy profile is also an impulse balance equilibrium.

Suppose for now that t ≥ 3. Then

DI (p) = pt−1 (1 − p)n−t+1
[
Cn−1
t−1 (V − E) − λECn−1

t−2

]

−λE
t−3∑

y=0

Cn−1
y py+1 (1 − p)n−1−y

= pt−1 (1 − p)n−t+1 Cn−1
t−1

(
V − V

) − λE
t−3∑

y=0

Cn−1
y py+1 (1 − p)n−1−y

= p (1 − p)n−t+1

⎛

⎝pt−2Cn−1
t−1

(
V − V

) − λE
t−3∑

y=0

Cn−1
y py (1 − p)t−2−y

⎞

⎠ .

If V ≤ V then DI (p) < 0 for all p ∈ (0, 1). This implies that there is no mixed
strategy impulse balance equilibrium. It also implies that the zero strategy profile is
stable and the full contribution strategy profile is unstable.

If V > V we need look in more detail at

G (p) = pt−2Cn−1
t−1

(
V − V

) − λE
t−3∑

y=0

Cn−1
y py (1 − p)t−2−y .

It is simple to see that G(0) < 0 and G(1) > 0. Continuity of G(p) implies at
least one value p∗ ∈ (0, 1) such that G (p∗) = 0. At p∗ we obtain an impulse balance
equilibrium.Moreover, we obtain stable equilibria corresponding to p = 0 and p = 1.
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It remains to consider the case t = 2. Now

DI (p) = (n − 1) p (1 − p)n−1 (V − E) − λEp (1 − p)n−1

= p (1 − p)n−1 (n − 1)
(
V − V

)
.

As before, if V ≤ V then DI (p) < 0 for all p ∈ (0, 1). In this case there are two
equilibria, the zero strategy profile is stable and the full contribution strategy profile
is unstable. If V > V then DI (p) > 0 for all p ∈ (0, 1). In this case there are still
only two equilibria but the zero strategy profile is unstable and the full contribution
strategy profile is stable. ��

Proposition 3 shows that if V ≤ V (λ) then impulse balance theory gives a sharp
prediction—the zero strategy profile is the unique stable impulse balance equilibrium.
If V > V (λ) then, with the exception of the extreme case t = 2, we obtain a less sharp
prediction - both the zero and full contribution equilibria are stable. In this casewe shall
hypothesize that play converges to the Pareto optimal, full contribution, impulse bal-
ance equilibrium. Given this hypothesis, we shall informally say that impulse balance
theory predicts perfect efficiency if V > V (λ) and zero contributions if V ≤ V (λ) .

In justifying our hypothesis that play will converge on the Pareto optimal impulse
balance equilibrium we first emphasize that this hypothesis differs from saying play
will converge on the Pareto optimal Nash equilibrium. To appreciate this point note
that the full contribution strategy profile is the Pareto optimal Nash equilibrium for
any V > E . So, the Pareto optimal stable impulse balance equilibrium is the same
as the Pareto optimal Nash equilibrium if and only if V > V (λ). If V ≤ V (λ) the
Pareto optimal stable impulse balance equilibrium is the zero strategy profile while the
Pareto optimal Nash equilibrium is the full contribution strategy profile. Our approach,
therefore, makes a testable prediction.Moreover, our approach is not inconsistent with
the evidence that play in many games, such as the minimum effort game, does not
converge to the Pareto optimal Nash equilibrium. It remains an open question whether
play converges on Pareto optimal, stable impulse balance equilibria. For further insight
on this issuewe quote fromHarsanyi andSelten (1988, p. 356), ‘[O]ur theory in general
gives precedence to payoff dominance. ... [P]ayoff dominance is based on collective
rationality: it is based on the assumption that in the absence of special reasons to the
contrary, rational players will choose an equilibrium point yielding all of them higher
payoffs, rather than one yielding them lower payoffs’. Essentially, we are suggesting
that instability of the full contribution equilibrium counts as ‘special reasons to the
contrary’.

5 Comparing model predictions

Having introduced three alternative approaches of modelling behavior in the forced
contribution game we will now demonstrate that they can give very different predic-
tions. To do so we begin by analyzing the four games detailed in Table 2. This analysis
will serve to illustrate the stark differences between model predictions. Our focus is
on games with n = 5 or 7 players where we vary V keeping E = 6 and n − t = 2
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Table 2 Parameters in the four
games

Name n t V E

Few-small 5 3 7 6

Few-large 5 3 13 6

Many-small 7 5 7 6

Many-large 7 5 13 6

Table 3 Predicted efficiency with logit equilibrium

Game γ = 0.05 γ = 0.1 γ = 0.2 γ = 0.5 γ = 1 γ = 4 γ = ∞
Few-small 0.46 0.41 0.24 0.001 0 0 0

Few-large 0.52 0.54 0.61 0.79 0.90 0.98 1

Many-small 0.15 0.08 0.01 0 0 0 0

Many-large 0.17 0.10 0.01 0 0 0 0

fixed. When comparing models we shall focus on predicted efficiency measured by
the probability of the public good being provided.17

Ordinal potential (see Proposition 2) predicts perfect efficiency for all four games.
Consider next quantal response. For n = 5 and t = 3 one can show numerically
that the full contribution strategy profile is the limiting logit equilibrium if and only
if V > Ṽ where Ṽ ≈ 11. Otherwise, the zero strategy profile is the limiting logit
equilibrium. For n = 7 and t = 5 the analogous cut-off point is Ṽ ≈ 22.8. Only in
the few-large game, therefore, efficiency is predicted to be high. This prediction does
not change significantly if we consider (non-limiting) logit equilibria (on the branch
of equilibria starting at 0.5). To illustrate, Table 3 details predicted efficiency for a
range of values of γ . There is clearly a stark contrast between the predictions obtained
using ordinal potential and quantal response. Note that Offerman et al. (1998) obtained
fitted estimates of γ between 0.001 and 0.34 in threshold public good games (while
McKelvey and Palfrey (1995) obtain estimates of γ consistently above 0.2 and as a
high as 3).

Consider next impulse balance and the case n = 5 and t = 3. From Proposition 3
we know that the full contribution strategy profile σ 1 is a stable impulse balance
equilibrium if and only if

λ <
3

2

(
V

E
− 1

)
.

So, if V = 7 (recalling E = 6) the equilibrium σ 1 is stable if and only if λ < 0.25. If
V = 13 the equilibrium σ 1 is stable if and only if λ < 7

4 . When n = 7 and t = 5 we
obtain analogous condition

17 The logit equilibrium and impulse balance equilibrium give a value for p, the probability of a player
choosing to contribute E . From this one can obtain the probability of the public good being provided.
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Table 4 Predicted efficiency with impulse balance

Game λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

Few-small 1 0 0 0 0

Few-large 1 1 1 1 1

Many-small 0 0 0 0 0

Many-large 1 1 1 1 0

λ <
3

4

(
V

E
− 1

)
.

So, if V = 7 the equilibrium σ 1 is stable if and only if λ < 1
8 and if V = 13 it is

stable if and only if λ < 7
8 .

Prior estimates of λ are in the range of 0.3 to 1 (Ockenfels and Selten 2005, Alberti
et al. 2013). Recall, that we predict play will converge to the full contribution equi-
librium if and only if it is stable. Table 4 summarizes predicted efficiency for five
different values of λ. Efficiency is predicted to be high in the few-large game and low
in the many-small game. In the few-small and many-large game predictions depend
on λ. Comparing Tables 3 and 4 we see that predicted efficiency with impulse balance
lies somewhere in-between the extremes obtained with ordinal potential and quantal
response.

Having looked at the four games above as illustrative examples let us now turn to
the general setting. We have already shown (Proposition 2) that ordinal potential gives
the ‘optimistic’ prediction of perfect efficiency. We have also shown (Proposition 3)
that impulse balance gives a less optimistic prediction of zero efficiency if V <

V (λ). While a general prediction for quantal response is not possible, one can show
numerically that it gives the least optimistic prediction. In particular, the critical value
above which σ 1 is the limiting logit equilibrium is greater than the critical value above
which σ 1 is a stable impulse balance equilibrium, Ṽ > V (λ) for λ ≤ 1. This is clear
in the examples, and illustrated more generally in Fig. 5.

Figure 5 plots the critical values V (λ) /E and Ṽ /E above which the full contribu-
tion equilibrium σ 1 is a stable impulse balance equilibrium (for λ = 0.2 and 1) and a
limiting logit equilibrium. We consider 6 possible values of n and all relevant values
of t . As one would expect, the higher is the threshold t the higher has to be the return
on the public good V in order to predict full efficiency. The main thing we wish to
highlight is that Ṽ > V (1) across the entire range of n and t . In other words, there
are always values of V where the full contribution strategy profile is a stable impulse
balance equilibrium but not the limiting logit equilibrium. This gap between Ṽ and
V (1) widens the higher is t .

Recall, see the introduction, that forced contributions have been suggested as a
means to promote efficiency in public good games. This conjecture is consistent with
the predictions of ordinal potential but not of impulse balance or quantal response. It is
natural, therefore, to want to test which model is more powerful at predicting observed
efficiency, and to explore whether efficiency can be low despite forced contributions.
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Fig. 5 The critical value Ṽ /E for the limiting logit equilibrium (LLE) and of V (1) /E and V (0.2) /E for
the impulse balance equilibrium IBE(λ = 1) and IBE(λ = 0.2) for different combinations of n and t

Table 5 Parameters, critical values of V and observed efficiency for games considered in the literature

n t E V V (0.2) V (1) Ṽ Observed
efficiency

Dawes et al. experiment 1 7 3 5 10 5.4 7.0 7.3 1.00

Dawes et al. experiment 2 7 5 5 10 6.4 11.7 19.0 0.93

Rapoport and Eshed-Levy 5 3 2 5 2.3 3.3 3.7 0.72

That motivates the experiments that we shall discuss shortly. Before doing that we
briefly comment on experimental results from the previous literature.

Table 5 summarizes the forced contribution experiments reported by Dawes et al.
(1986) and Rapoport and Eshed-Levy (1989).18 For the game in experiment 1 of
Dawes et al. (1986) and that of Rapoport and Eshed-Levy (1989) all three approaches
we have considered predict high efficiency and this is what was observed. Experiment
2 of Dawes et al. (1986) is more interesting in that the zero contribution profile is the

18 Dawes et al. (1986) report the results of 3 experiments. We have combined their experiments 2 and 3
because they are identical for our purposes.
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Table 6 Treatments and the
number of observations per
treatment

Treatment Subjects Groups

Few-small 45 9

Few-large 40 8

Many-small 35 5

Many-large 35 5

155 27

limiting logit equilibriumwhile the full contribution profile is a stable impulse balance
equilibrium for low values of λ (but not for values of λ near 1). The observed high
efficiency appears inconsistent with the former prediction. It is difficult, however, to
infer much from this one experiment. We shall now introduce our experiments, which
provide a more detailed test of the three models.

6 Experiment design and results

Our experiment was designed to test the predictive power of the three theoretical
approaches discussed above. In order to do this we used a between subject design in
which the four games introduced in Table 2 were compared. This gives four treatments
corresponding to the four games.

Subjects were randomly assigned to a group and interacted anonymously via com-
puter. We used z-Tree (Fischbacher 2007). The instructions given to subjects were
game specific, in detailing n, t and V , and so subjects could not have known that these
differed across groups. In order to observe dynamic effects subjects played the game
for 30 periods in fixed groups. The instructions given to subjects are available in the
appendix. As detailed in Table 6, we observed a total of 27 groups and 155 subjects.
A typical session lasted 30–40 min and the average payoff was £9.

6.1 Observed efficiency

Table 7 summarizes average efficiency (measured by the proportion of periods out of
30 the public good was provided) in the four treatments. In interpreting these numbers
we highlight that in the last 10 periods, every group provided the public good either
(i) 8, 9 or 10 times or (ii) 0 or 1 time. We observed, therefore, a very clear distinction
between groups that, we shall say, converged on efficiency and those that converged on
inefficiency. (Group specific data is provided in Table 10 in the appendix). This means
that observed efficiency in periods 21–30 is essentially measuring the proportion of
groups that converged on efficiency.

In the few-large treatment efficiency was very high, with 7 of the 8 groups converg-
ing on efficiency. This result is consistent with the predictions derived from all three
theoretical approaches. In the many-small treatment efficiency was very low, with all
of the 5 groups converging on inefficiency. Efficiency was significantly lower than
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Table 7 Average efficiency in the four treatments

Treatment Observed efficiency

Overall Periods 1–10 Periods 11–20 Periods 21–30

Few-small 0.71 0.68 0.71 0.73

Few-large 0.90 0.89 0.93 0.88

Many-small 0.04 0.12 0.00 0.00

Many-large 0.69 0.84 0.66 0.58

Efficiency is measured as the proportion of periods the public good is provided

in all other treatments (p ≤ 0.02, proportions test).19 This matches the predictions
derived from impulse balance and quantal response but not that of ordinal potential.
Let us remark at this point that the very low efficiency we observed in the many-
small treatment is clear evidence that enforcing contributions does not guarantee high
efficiency.

In the few-small and many-large treatments efficiency was not as high as that in
the few-large treatment but the differences are statistically insignificant (p > 0.15,
proportions test). A total of 7 out of 9 and 3 out of 5 groups, respectively, converged on
efficiency. The success rate in themany-large treatment did decline over the 30 periods
(p = 0.02, LR test). Even if we focus on periods 11 to 30, however, the differences
between the many-large, few-small and few-large treatments are insignificant (p >

0.1, proportions test). The relatively high level of efficiency in the few-small and
many-large treatments matches our predictions derived from ordinal potential and
impulse balance (provided the weight on the downward impulse is within the bound,
0.125 < λ < 0.25) but not that from quantal response.

The proceeding discussion suggests that the approachmost consistentwith observed
efficiency across all four games is impulse balance. Ordinal potential does not capture
the low efficiency in the many-small treatment and quantal response does not capture
the high efficiency in the few-small and many-small treatments. This interpretation,
however, is focussed primarily on limiting logit equilibria. Moreover, the predictive
power of impulse balance is dependent on λ being relatively small. We shall now look
at each of these issues in turn in the following two sections.

6.2 Goodness of fit

Both impulse balance and quantal response have one degree of freedom, the weight on
downward impulse λ and the inverse error rate γ , respectively. Our claim that impulse
balance is the only approach (of the three we consider) that is consistent with observed
efficiency was based on 0.125 < λ < 0.25 and γ = ∞. In this section we consider
alternative values of γ in order to give a fair comparison across models. Before we
get to the analysis let us make one remark.

19 All of the statistical tests in this section treat the group as the unit of observation. We, thus, have 27
observations in total (see Table 6).
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Table 8 Estimates of γ and corresponding log likelihood

Treatment All 1–10 11–20 21–30

γ ∗ Log L γ ∗ Log L γ ∗ Log L γ ∗ Log L

Few-small 0 −936 0 −312 0 −312 0 −312

Few-large 2.55 −523 2.11 −229 3.06 −166 2.64 −173

Many-small 0.31 −412 0.19 −192 0.41 −95 0.42 −93

Many-large 1.44 −660 1.12 −210 1.63 −222 ∞ −239

Aggregate 0.097 −3141 0.065 −1065 0.112 −1034 0.130 −1019

Recall that every group converged to either efficiency or inefficiency in terms of
aggregate success at providing the public good. This is not the same as saying groups
converged on the full contribution or zero contribution strategy profile. In some groups
that were highly efficient (providing the public good 10 times in the last 10 periods) we
see an average probability of contributing around 70–80%. Similarly, in some groups
that were highly inefficient (never providing the public good in the last 10 periods)
we see an average probability of contributing around 20–30%. (See Table 10 in the
appendix for the full data.) The only stable impulse balance equilibria are the zero
contribution and full contribution strategy profiles and so impulse balance suggests
convergence on one of these equilibria. This, as we have said, was not the case in all
groups. Quantal response, by contrast, is a story of noisy decision making and so can
more easily accommodate non-convergence to the zero or full contribution strategy
profiles.

Estimates of γ can be obtained for each treatment by finding the value of γ that fits
the observed probability with which subjects contributed to the public good (Offerman
et al. 1998). In estimating γ we do not restrict attention to the branch of equilibria
starting at 0.5.20 Table 8 provides the estimates of the γ s we obtain and the corre-
sponding log likelihood. In the few-small treatment logit equilibria performs no better
than a random model (in which each subject chooses to contribute E with probability
0.5). In the other three treatments logit equilibria does outperform a random model
(p < 0.001, LR test). Clearly, however, the estimates of γ differ across treatments.
While one can make the argument that γ (and λ) may vary across different experi-
mental studies because of framing or subject effects it is harder to make this argument
within a particular study. We, therefore, also solve for the value of γ that maximizes
the likelihood of observed contributions across all four treatments. This is given by
the aggregate estimate in Table 8. Interestingly, we do see evidence of γ increasing
through the 30 periods (p < 0.001, LR test).

We now compare the predictive power of the three theoretical approaches. Follow-
ing the method of Erev et al. (2010) we derive the mean squared deviation of observed
from predicted values. We focus on predictions of group efficiency (proportion of
times the public good is provided) and individual contributions (proportion of times

20 For the few-large and many-small the best fit does lie on the branch of equilibria starting at 0.5. For the
many-large it does not. In the few small treatment the best fit is the random model, p = 0.5.

123



Efficiency in a forced contribution threshold public good game

Table 9 Mean squared deviation of model prediction from observed efficiency and probability of choosing
to contributing E

Model Efficiency Contributions Overall

Random choice (p = 0.5) 0.113 0.070 0.092

Ordinal potential 0.278 0.268 0.273

Impulse balance (λ < 0.25) 0.048 0.085 0.066

Limiting logit and impulse balance (λ = 1) 0.248 0.204 0.226

Logit equilibrium (γ = 0.1) 0.142 0.062 0.102

a player chooses to contribute E). Table 9 presents the results (and Table 11 in an
appendix provides the relevant observations and predictions). In terms of predicting
group efficiency we see that impulse balance performs best, followed by the random
model and then logit equilibrium. This is consistent with the analysis of the preced-
ing section (Sect. 6.1). In terms of predicting individual contributions we see that
logit equilibrium is best, followed by the random model and impulse balance. This
is consistent with the preceding discussion on quantal responses ability to capture
noisy decision making. In terms of overall performance we see that impulse balance
is best, followed by the random model and logit equilibrium. Impulse balance does
well because it can predict both efficiency and contributions relatively well.

6.3 Impulse and behavior

It remains to questionwhy theweight on the downward impulse appears to be relatively
low, λ < 0.25. To get some insight on this issue we shall look at how subjects
changed contribution from one period to the next. Recall that impulse balance theory
assumes players will change contribution based on ex-post rationality. We want to
check whether subjects behaved consistent with this assumption. A relatively low
weight on the downward impulse would imply that subjects are less responsive to a
downward impulse than an upward impulse. Figure 6 details the proportion of players
who changed contribution aggregating across all four treatments. We distinguish three
cases. Recall that c(a) denotes the number of players who contributed E .

(i) If c(a) < t − 1 then any player who contributed E has a downward impulse
(because they face the wasted contribution experience condition) and any player
who contributed 0 has no impulse (zero no). Consistent with this we see, in Fig. 6,
a strong tendency for those who contributed E to reduce their contribution and a
weak tendency for those who contributed 0 to increase their contribution.

(ii) If c(a) = t − 1 then any player who contributed E has a downward impulse
(wasted contribution) and any player who contributed 0 has an upward impulse
(lost opportunity). Consistent with this we see a strong tendency for both those
who contributed E and those who contributed 0 to change their contribution.
Importantly, thosewho contributed 0 aremore likely to increase contribution than
those who contributed E are to decrease contribution. This is consistent with a
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Fig. 6 The proportion of subjects who changed contribution from one period to the next distinguishing by
initial contribution and the number of players who contributed E . The number of observations is given in
square brackets. Also, ZN denotes zero no, LO lost opportunity, SO spot on andWC wasted contribution

low weight on the downward impulse and pushes the group towards successful
provision of the public good in the next period.

(iii) If c(a) ≥ t then no player has an impulse (spot on). What we observe is a rela-
tively strong tendency for those who contributed 0 to increase their contribution,
particularly when c(a) = t . This could be interpreted as a reaction to the ‘near-
miss’ of the lost opportunity experience condition (Kahneman and Miller 1986;
De Cremer and van Dijk 2011). The effect is to push the group towards sustained
provision of the public good.

In all the three cases discussed above we observe that subjects change contribution
consistent with ex-post rationality. Of particular note is that for c(a) ≥ t − 1 we see
a stronger tendency to increase than decrease contributions. This explains why we
find that the weight on the downward impulse is relatively low. Not only, therefore,
does impulse balance theory predict aggregate success rates it is also consistent with
individual behavior.

7 Conclusion

In this paper we contrast three approaches to predicting efficiency in a forced contribu-
tion threshold public good game. The three approaches are based on ordinal potential,
quantal response and impulse balance theory. We also report an experiment to test the
respective predictions. We found that impulse balance theory provides the best overall
predictions. The predictive power of impulse balance is, however, highly dependent
on its one degree of freedom, the weight on the downward impulse, λ. Our estimate
of 0.125 < λ < 0.25 is lower than those (λ = 0.32 and 0.37) obtained by Ockenfels
and Selten (2005) or those (λ = 0.5 and 1) obtained by Alberti et al. (2013). We take
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Fig. 7 The value of V/E above which high efficiency is predicted, where α = t/n

the view that λ can differ depending on the game, and the framing of the game, and so
different estimates of λ are not unexpected. Application of impulse balance theory is,
though, almost entirely reliant on knowing the appropriate value of λ and so it should
be a priority for future work to build a better understanding of the determinants of λ.

To put our results in context we highlight that impulse balance theory allows us
to derive a simple expression with which we can predict when forced contributions
result in high or low efficiency. This prediction depends on the number of players
n, threshold t , relative return to the public good V/E and weight on the downward
impulse λ. If we set λ = 0.25 then we get a prediction of high or low efficiency as

V

E
≷

n − 3
4 (t − 1)

n − (t − 1)
.

Thus, a ceteris paribus increase in the number of players lowers the critical value of
the return to the public good. In other words, an increase in the number of players is
predicted to enhance efficiency. Conversely, a ceteris paribus increase in the threshold
is predicted to lower efficiency.

Consider next what happens if we fix the ratio between t and n at t = αn. Figure 7
plots the critical value of the return to the public good as a function of α. One can also
derive that high efficiency is predicted if

V

E
≥ 1 − 3

4α

1 − α
.

High efficiency is predicted, therefore, provided t is not ‘too large’ a proportion of
n. For example, if the relative return to the public good is 2 then we need α ≤ 0.8.
This prediction is consistent with the high efficiency observed in previous forced
contribution experiments (Dawes et al. 1986; Rapoport and Eshed-Levy 1989). It also
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shows, however, that enforcing contributions does not always lead to high efficiency.
This is clearly demonstrated in our many-small treatment where α = 5/7 ≈ 0.71,
V/E = 7/6 ≈ 1.17 and efficiency is near zero.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

See Tables 10 and 11

Table 10 Observed efficiency and contributions by group

Group Treatment Observed efficiency Contributions

All 1–10 11–20 21–30 All 1–10 11–20 21–30

1 Few-small 100 100 100 100 86 96 82 82

2 Few-small 100 100 100 100 85 94 80 80

3 Few-small 100 100 100 100 71 68 70 76

4 Few-small 97 100 100 90 73 74 76 68

5 Few-small 83 50 100 100 63 48 64 76

6 Few-small 80 90 70 80 63 70 56 62

7 Few-small 77 70 70 90 59 56 62 58

8 Few-small 0 0 0 0 4 12 0 0

9 Few-small 0 0 0 0 2 6 0 0

10 Few-large 100 100 100 100 100 100 100 100

11 Few-large 100 100 100 100 99 98 100 100

12 Few-large 100 100 100 100 98 94 100 100

13 Few-large 100 100 100 100 100 100 100 100

14 Few-large 100 100 100 100 98 94 100 100

15 Few-large 90 100 80 90 60 66 56 58

16 Few-large 87 60 100 100 71 58 76 80

17 Few-large 40 50 60 10 47 52 52 38

18 Many-small 13 40 0 0 22 51 9 6

19 Many-small 7 20 0 0 10 29 1 1

20 Many-small 0 0 0 0 6 11 6 0

21 Many-small 0 0 0 0 28 30 23 30

22 Many-small 0 0 0 0 1 3 0 0

23 Many-large 100 100 100 100 96 93 100 94

24 Many-large 100 100 100 100 84 86 83 84

25 Many-large 97 100 100 90 84 86 84 81

26 Many-large 33 70 30 0 51 69 59 27

27 Many-large 17 50 0 0 24 57 10 4
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Table 11 Observed efficiency and contributions compared to predicted values under different theoretical
approaches, ordinal potential (OP), impulse balance theory (IB) with 0.125 < λ < 0.25, limiting logit
equilibria (LLE) and logit equilibria with γ = 0.1 (Logit fit)

Measure Treatments Observed Random OP IB LLE Logit fit

Efficiency Few-small 0.71 0.5 1 1 0 0.41

Few-large 0.90 0.5 1 1 1 0.54

Many-small 0.04 0.23 1 0 0 0.08

Many-large 0.69 0.23 1 1 0 0.1

Contributions Few-small 0.56 0.5 1 1 0 0.45

Few-large 0.84 0.5 1 1 1 0.52

Many-small 0.13 0.5 1 0 0 0.38

Many-large 0.67 0.5 1 1 0 0.40

Instructions for subjects

In this experiment you will be asked to make a series of decisions. Depending on the
choices that youmakeyouwill accumulate ‘tokens’ thatwill subsequently be converted
into money. Each token will be converted into £0.02. You will be individually paid in
cash at the end of the experiment.

At the start of the experiment you will be randomly assigned to a group of 5 people.
You will remain with the same group throughout the experiment.

The experiment will last 30 rounds.
At the beginning of each round you will be allocated 6 tokens. You must decide

whether to contribute these six tokens towards a group project. This is a yes or no
decision, i.e. you either contribute all 6 tokens towards the group project or contribute
none.

Everybody in the group faces the same choice as you do. And all group members
will be asked to make their choice at the same time. Everybody, therefore, makes their
choice without knowing what others in the group have chosen to do.

Your payoff will be determined by your choice whether or not to contribute towards
the group project and the choices of others in the group as explained on the next page.
If the group project goes ahead successfully

If three or more group members contribute towards the group project then it goes
ahead successfully. As a consequence, everyone in the group who initially opted
(earlier in the round) not to contribute towards the project will now be required to
contribute. And, everyone in the group will receive a return from the group project
worth 7 tokens. Thus, everyone in the group will get a payoff of 7 tokens irrespective
of whether they initially opted to contribute or not.

If three of more contribute towards the group project:
Your payoff = 7 tokens

If the group project does not go ahead successfully
If less than three group members contribute towards the group project then it does

not go ahead successfully. Those who opted to contribute towards the project will get

123



E. Cartwright, A. Stepanova

a payoff of 0 tokens. Those who opted not to contribute towards the project will get a
payoff of 6 tokens.

If less than three contribute towards the group project:

“Your payoff” =
{
0 tokens if you chose to contribute E
6 tokens if you chose not to contribute

.

At the end of the round you will be told the number of people that initially opted to
contribute towards the group project, whether or not the project went ahead success-
fully, and your payoff for the round.
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