
Incorporating Neighborhood Reduction for the

Solution of the Planar p-Median Problem

Zvi Drezner

Steven G. Mihaylo College of Business and Economics

California State University-Fullerton

Fullerton, CA 92834.

e-mail: zdrezner@fullerton.edu

Said Salhi

Centre for Logistics & Heuristic Optimization

Kent Business School

University of Kent, Canterbury CT2 7PE, United Kingdom.

e-mail: S.Salhi@kent.ac.uk

Abstract

Two efficient neighborhood reduction schemes are proposed for the solution of the p-Median problem
on the plane. Their integration into a local search significantly reduces the run time with an insignificant
deterioration in the quality of the solution. For completeness this fast local search is also embedded
into one of the most powerful metaheuristic algorithms recently developed for this continuous location
problem. Excellent results for instances with up to 1060 demand points with various values of p are
reported. Eight new best known solutions for ten instances of a large problem with 3,038 demand points
and up to 500 facilities are also found.

Keywords- planar p-median, local search, neighborhood reduction, metaheuristics

1 Introduction

The location allocation problem in the plane, sometimes called the continuous p-median or the multi-source

Weber problem is to find p locations for facilities in the plane to provide service to a set N of n demand

points each with an associated weight wi > 0. Each demand point gets its service from the closest facility to

it. The objective is to minimize the total sum of weighted minimum distances to the facilities. Let di(Xj)

be the Euclidean distance between demand point i and facility j located at Xj = (xj , yj). The vector of

unknown locations is X = {X1, . . . , Xp}, and thus, the objective function to be minimized is:

F (X) =
∑

i∈N

wi min
1≤j≤p

{di(Xj)} (1)

Drezner [12] and Chen et al. [8] developed optimal solution procedures for the location of 2 facilities

whereas Schöbel and Scholz [29] optimally solved problems with 3 facilities. Krau [21] used column generation

to optimally solve problems with n = 50 and 287 demand points and any number of facilities.

1



The continuous (also known as planar) p-median problem with the objective function (1) is known to

be NP-hard [22], and as a result, many heuristics have been developed for its solution. Classical heuristics

include the famous alternating procedure by Cooper [10, 11], the projection method of Bongartz et al. [2],

and gradient-based methods such as Chen [9], Murtagh and Niwattisyawong [25]. The leading heuristics

to date for solving this problem are based on variable neighborhood search (e.g. see [7, 14]). For larger

scale problem instances, decomposition strategies are successfully applied [5, 30]. Further gains may be

obtained by using new local searches (e.g., [13]) or variable neighborhood descent within a general variable

neighborhood search [23]. The best results to date were obtained by [14]. For recent reviews of solution

approaches to the continuous p-median problem the reader is referred to [4, 6, 13, 14].

The contribution of the paper is the design and analysis of efficient neighborhood reduction schemes as

part of an already powerful local search for solving the planar p-median problem. We shall demonstrate

the impact of such reduction schemes on several data sets while identifying several new best results for this

important and well researched continuous location problem.

The paper is organized as follows. The next section describes the design of the two neighborhood reduction

schemes which are embeded within a well known local search for the continuous p-median. This is followed

by a section on computational results that comprises sensitivity analysis, intensive experiments showing the

effect of these reduction tests when embedded into a recently developed powerful metaheuristic. The final

section summarizes our findings.

2 Applying a neighborhood reduction scheme to the IMP algo-

rithm

We first briefly describe the IMP algorithm that will incorporate the reduction tests that we propose. For

more details on this algorithm and other powerful metaheuristics for the p-median problem on the plane, see

[13, 14].

The IMP algorithm- Suppose that starting locations of the p facilities are given. The optimal location

for a facility 1 ≤ k ≤ p while holding the other p − 1 facilities rooted in their locations can be found

as follows. The shortest distance between demand point i and the facilities is the minimum between the

unknown distance to facility k and the minimum distance to all other fixed facilities which is fixed and does

not depend on the location of facility k. Define the minimum distance of i ∈ N to the fixed facilities as

Di = min
j 6=k

{di(Xj)} . (2)

The idea is to find the best location for facility k, Xk, while holding all other facilities fixed by minimizing

G(X):

G(X) =
∑

i∈N

wi min {di(X), Di} . (3)

where Di are constants defined by (2).

2



Problem (3) is the limited distance location problem (LD) that can be formulated for any number of

facilities. In this study, we applied the single facility version of the problem which was introduced in [15].

This problem can be optimally solved by global optimization techniques such as “Big Square Small Square”

(BSSS) proposed by Hansen et al. [20] and improved by Plastria [26]. Other global optimization algorithms

are “Big Triangle Small Triangle” (BTST) by Drezner and Suzuki [16] for planar problems, “Big Cube Small

Cube” (BCSC) of Schöbel and Scholz [29] for location problems in higher dimensions, and “Big Segment

Small Segment” by Berman et al. [1] for locating a facility anywhere on the network. The complete solution

procedure for the IMP algorithm is given in [13] where instances with up to 100,000 demand points are

optimally solved by BSSS in less than 3 seconds of computing time.

It was empirically shown that the IMP algorithm provides much better results than the Cooper-style

alternate algorithm ALT or its improved version IALT [3, 10, 11]. In brief, in both ALT and IALT the value

of Di can be considered to be ∞ which further lowers the quality of the solution.

The LD problem is formulated by using all n demand points. Our proposed neighborhood reduction

scheme attempts to reduce the number of demand points in the LD formulation thus reducing the required

computing time. There are two cases concerning the selection of demand points to be included in the LD

formulation for relocating the open facility k. Let S be the set of all the demand points presently served by

facility k.

Case 1: When the optimal location of facility k is changed, but remains in the convex hull of S, demand points

near the periphery of S may become closer to a fixed facility and thus will not be served by facility k,

while points not in S may become closer to facility k and thus will be served by it.

Case 2: When the removed facility does not serve much demand (i.e., its removal does not affect the value

of the objective function by much), it is likely that the optimal location is in a different region that

may be far from S. This is because when locating facility k at the optimal location, the value of the

objective function may decrease more than the increase following its removal.

The aim is to produce a rule that distinguishes between these two cases. For instance when Case

1 happens, the number of demand points used in the LD algorithm would be reduced significantly by

eliminating those demand points that are not likely to be included in the LD solution, i.e., di(X
∗) > Di

for the optimal location X∗ of (3). To achieve this, we propose reduction schemes for Case 1, also known

as neighboring reduction rules. The idea is to minimize the risk of excluding good quality solutions while

eliminating those inferior alternatives that are not worth considering. To achieve this goal, we need to

examine these two cases concerning the optimal location X∗ of the LD problem.

2.1 Case 1: X∗ is in the convex hull of S.

In this case, most of the demand points in S will be serviced by facility k relocated to X∗. The set of

demand points included in the LD problem should include (i) the set S, even though some points in S may

not be part of the LD solution, and (ii) some additional demand points which are not in S but close to the

3



periphery of the set S as these may become closer to X∗ than to their original nearest fixed facilities. The

following two neighborhood reduction rules are proposed for identifying such demand points.

Rule 1: The Convex Hull (CH) Rule

Let the largest distance from Xk to all demand points in S be dmax.

dmax = max
i∈S

{di(Xk)} (4)

Consider a demand point i not in S. Its shortest distance to a fixed facility is Di, and its distance to facility

k is di(Xk) > Di. Demand point i will not be closest to X∗ if its nearest point in the convex hull of S is

farther than Di. The shortest distance to the convex hull is estimated as the shortest distance to its vertices.

By the triangle inequality, the distance to X∗ is at least di(Xk) − dmax. All demand points that satisfy

di(Xk) − dmax > Di can be eliminated from the set of demand points and hence the LD problem can be

based on the set

S = {i ∈ N | di(Xk) ≤ Di + dmax} . (5)

This definition of S can be generalized by introducing a parameter θ ≥ 0:

S(θ) = {i ∈ N | di(Xk) ≤ Di + θdmax} . (6)

Note that S(0) = S, S(1) = S, and for a large θ, S(θ) = N . In general, for θ1 ≤ θ2, S(θ1) ⊆ S(θ2). For

instance, in ALT [10, 11] or IALT [3], the set S(θ) = S (i.e., θ = 0).

Rule 2: The Near Boundary (NB) Rule

Consider the ratio r = di(Xk)
Di

for demand point i. When r < 1 demand point i is in S. When r = 1

demand point i is equidistant to facility k and another facility and can be served by both. When r > 1

demand point i is not in S. However, when r is close to 1 demand point i is close to the bisector separating

facility k from another “close” facility. These points are also known in the multi-depot vehicle routing

literature as the borderline customers as these can be assigned to either their nearest or their second or third

nearest depot (Golden et al. [18] and Salhi and Sari [28]). In our case, if facility k is relocated in the general

direction of demand point i, this customer may be serviced by facility k rather than its present server. We

would like to extend the set S to include points that are close to the boundary of S. A parameter ρ > 1 is

chosen and the set S(ρ) is defined as

S(ρ) = {i ∈ N | di(Xk) ≤ ρDi} . (7)

Note that if ρ = 1, S(1) reduces to S(0) = S. Also, Equation (7) is similar to (6) and the two expressions

become identical when ρ = 1 + θ dmax

Di

. However, this entails using different ρ’s for different demand points.

2.2 Case 2: X∗ is in another region of the solution space.

In this case all n demand points should be included in the LD formulation and no run time is saved. Actually,

if the solution is in the convex hull of S, the optimal solution will also be found when all n demand points are

4



included. Therefore, including all points in N will not affect the optimal solution but a potential reduction

in run time could be lost.

2.3 A Rule for Distinguishing Between the Two Cases

A rule has to be crafted so that the correct situation (whether X∗ is in the convex hull or not) is identified

in the vast majority of cases. We view the process as two consecutive steps. First, facility k is removed and

then a facility at X∗ is added to the p− 1 fixed facilities. The increase in the value of the objective function

when facility k is removed, ∆F , is:

∆F =
∑

i∈S

wi [Di − di(Xk)] (8)

The change in the value of the objective function is ∆F minus the reduction in the value of the objective

function when a facility at X∗ is added. If ∆F is small, there is a good chance that X∗ is in a different

region of the plane. On the other hand, if ∆F is relatively large, X∗ is likely to be close to Xk. The value of

the objective function is unchanged when X∗ is at Xk. If this location is not a local optimum, a small move

in its location should improve the value of the objective function. There must be a relatively large reduction

in the value of the objective function at some X∗ in a different region to obtain a better solution.

Let F be the value of the objective function. The expected contribution of a facility to F is F
p
. We

introduce a correction factor α (α ≥ 0) and set the threshold of αF
p
to determine whether to apply case 1

or case 2 when solving the LD problem. This implementation is summarized in the following algorithm.

The Fast LD Algorithm

The parameters α ≥ 0 and θ ≥ 0 (or ρ = 1 + θ ≥ 1) are given.

1. Calculate ∆F by (8), evaluate the value of the objective function F by (1) and set S = N .

2. If ∆F ≥ αF
p
, then

(a) By the CH rule evaluate S = S(θ) using (6).

(b) By the NB rule evaluate S = S(ρ) using (7).

3. Solve LD including all demand points in S.

When α is large, all demand points will be included in the LD problem, and there will be no time saving.

When α is too small, the quality of the LD solution may not be satisfactory as some combinations may not

be considered for re-assignment and hence limits the search. In the next section, we identify empirically a

value of α that will save computational time while maintaining or having a small deterioration in the quality

of the solutions.

In summary, the IMP procedure which applies the fast LD procedure given above for solving the LD

problem is referred to as the fast IMP (FIMP for short). Also note that the initial square when applying

IMP for the BSSS algorithm is the smallest square enclosing all demand points, but when the set S is applied

in FIMP, the smallest square enclosing S can be used as the initial square.

5



3 Computational Experiments

The programs were coded in Fortran using double precision arithmetic and compiled by an Intel 11.1 Fortran

Compiler with no parallel processing. They were run on a desktop with the Intel 870/i7 2.93GHz CPU Quad

processor and 8GB RAM using only one thread.

We tested the above ideas on three problems with n = 654, 1060 and 3038 from the TSP library (Reinelt

[27]). The first two problems were tested in [7] and the last one in [5, 30]. Note that two smaller problems

with n = 50 from [17] and n = 287 from [2], for which we know the optimal solutions [21], were also tested

in previous papers. However, the starting solutions of 100 random generations are found to be optimal in

all experiments and hence there is no need to test these two smaller problems.

3.1 A Sensitivity analysis

We investigated the sensitivity of the fast LD procedure on the two parameters α and θ (ρ = 1 + θ using

(7)). When α or θ increase, the quality of the solution improves but run times increase as well. Selecting

the appropriate values is a balancing act between these two considerations.

We selected the n = 654 and n = 1060 instances for p = 20, 40, 60, 80, 100 and n = 3038 instances for

p = 100, 200, 300, 400, 500. Two thousand starting solutions were generated for each instance totalling 10,000

cases. These solutions were obtained by a constructive heuristic named as START in [13]. This is similar to

the drop method which considers initially all potential sites as open and gradually decreases the number of

facilities umtil p is reached except that in START from one iteration to the other two well defined facilities

with their assigned customers are combined and replaced by a single facility. In this study, a facility is

randomly selected for each case and the original LD solution to (3) is found generating a total of 10,000

optimal solutions to LD problems. We then repeated the process (with the same starting solutions and the

selected facility k) for various values of α and θ as listed in Table 1 for a total of 36 experiments. The

obtained solutions and their corresponding total run times are then recorded for each pair of these values.

In Table 1 we summarize the average results over all values of p. Here we report the number of times, out of

10,000, that the optimal solution is obtained, the average percentage of the solution above the optimum, and

the total run times. The average percentage is surprisingly low even for α = 0.5 and θ = 0.5 (i.e., ρ = 1.5),

which are the smallest values which we tested. For instance, in Table 1, for α = 0.5 and ρ = 1.5, deviations

of 0.0810%, 0.0234% and 0.0061% are reported for n = 654, n = 1060 and n = 3038, respectively.

From the results reported in Table 1 we selected either α = 0.5 which is faster or α = 1 which provides

better results, and opted for ρ = 4 for all subsequent experiments.

3.2 Hybridization of FIMP with a powerful metaheuristic

In this section, we aim to highlight the impact of FIMP when embedded as part of a metaheuristic. As

an example we use one of the most powerful metaheuristic recently developed in [13, 14] known as the

COMB heuristic which is readily available to us but any other metaheuristic could also be used for this

6



Table 1: Sensitivity Analysis on the Values of α and θ(ρ = 1 + θ) in FIMP using average results over all

values of p

θ using (6) ρ = 1 + θ using (7) θ using (6) ρ = 1 + θ using (7)
α θ (1) (2) (3) (1) (2) (3) α θ (1) (2) (3) (1) (2) (3)

n = 654 n = 1, 060
0.5 0.5 0.0870 8,481 3.47 0.0810 8,508 3.35 0.5 0.5 0.0235 9,037 5.26 0.0234 9,032 5.12
0.5 1.0 0.0845 8,496 3.65 0.0724 8,582 3.46 0.5 1.0 0.0231 9,083 6.10 0.0225 9,093 5.44
0.5 1.5 0.0822 8,519 3.91 0.0675 8,645 3.55 0.5 1.5 0.0229 9,090 7.25 0.0216 9,126 5.82
0.5 2.0 0.0800 8,531 4.16 0.0610 8,755 3.62 0.5 2.0 0.0225 9,100 8.69 0.0205 9,140 6.40
0.5 2.5 0.0789 8,545 4.55 0.0516 8,829 3.63 0.5 2.5 0.0219 9,111 10.15 0.0192 9,158 7.03
0.5 3.0 0.0775 8,561 4.72 0.0445 8,922 3.68 0.5 3.0 0.0211 9,132 11.89 0.0182 9,178 7.73

1.0 0.5 0.0316 9,223 8.77 0.0296 9,236 8.65 1.0 0.5 0.0020 9,905 25.53 0.0020 9,899 25.19
1.0 1.0 0.0313 9,229 8.90 0.0261 9,281 8.69 1.0 1.0 0.0020 9,915 26.07 0.0020 9,915 25.43
1.0 1.5 0.0304 9,242 9.26 0.0247 9,311 8.78 1.0 1.5 0.0019 9,915 26.92 0.0019 9,915 25.68
1.0 2.0 0.0297 9,246 9.30 0.0219 9,399 8.85 1.0 2.0 0.0019 9,917 27.93 0.0018 9,915 26.03
1.0 2.5 0.0296 9,249 9.67 0.0178 9,433 8.83 1.0 2.5 0.0018 9,919 29.10 0.0017 9,915 26.45
1.0 3.0 0.0292 9,250 9.87 0.0142 9,487 8.86 1.0 3.0 0.0018 9,921 30.50 0.0016 9,916 26.98
1.5 0.5 0.0017 9,950 19.02 0.0017 9,950 18.87 1.5 0.5 0.0001 9,991 49.07 0.0001 9,990 48.61
1.5 1.0 0.0017 9,952 19.16 0.0017 9,952 18.91 1.5 1.0 0.0001 9,994 49.46 0.0001 9,994 48.70
1.5 1.5 0.0017 9,952 19.35 0.0015 9,957 18.95 1.5 1.5 0.0001 9,994 49.66 0.0001 9,994 48.74
1.5 2.0 0.0017 9,952 19.39 0.0014 9,960 18.97 1.5 2.0 0.0001 9,994 50.11 0.0001 9,994 48.95
1.5 2.5 0.0017 9,952 19.72 0.0013 9,963 18.98 1.5 2.5 0.0001 9,994 50.63 0.0001 9,994 49.09
1.5 3.0 0.0017 9,952 19.96 0.0010 9,967 18.95 1.5 3.0 0.0001 9,994 51.25 0.0001 9,994 49.23

2.0 0.5 0.0002 9,990 25.90 0.0002 9,990 25.68 2.0 0.5 0 10,000 60.05 0 10,000 59.51
2.0 1.0 0.0002 9,990 26.12 0.0002 9,990 25.62 n = 3, 038
2.0 1.5 0.0002 9,990 26.51 0.0002 9,990 25.72 0.5 0.5 0.0061 8,534 46.80 0.0061 8,523 46.75
2.0 2.0 0.0002 9,990 26.30 0.0002 9,991 25.75 0.5 1.0 0.0061 8,551 47.27 0.0061 8,548 46.95
2.0 2.5 0.0002 9,990 26.33 0.0002 9,991 25.70 0.5 1.5 0.0061 8,553 48.01 0.0060 8,553 47.28
2.0 3.0 0.0002 9,990 26.69 0.0001 9,993 25.73 0.5 2.0 0.0060 8,556 49.00 0.0060 8,559 47.60
2.5 0.5 0 10,000 33.10 0 10,000 32.70 0.5 2.5 0.0060 8,561 50.14 0.0058 8,563 48.08

0.5 3.0 0.0059 8,563 51.50 0.0057 8,566 48.63
1.0 0.5 0.0002 9,888 321.53 0.0002 9,884 320.89
1.0 1.0 0.0002 9,892 321.80 0.0002 9,892 320.85
1.0 1.5 0.0002 9,892 322.19 0.0002 9,892 320.66
1.0 2.0 0.0002 9,892 322.78 0.0002 9,893 321.20
1.0 2.5 0.0002 9,892 323.80 0.0002 9,893 321.43
1.0 3.0 0.0002 9,892 324.31 0.0002 9,894 321.75
1.5 0.5 0 10,000 556.30 0 10,000 554.83

(1) Percent above optimum. (2) # of times optimum obtained. (3) Time (sec.) for all 10,000 runs.

purpose. COMB is a hybrid of a Genetic Algorithm (GA) which is supplemented by an effective variable

neighbourhood search (VNS) as a post-optimizer. The GA is proposed by Drezner et al. [14]. The idea

behind the merging process of the GA is to draw an imaginary line at a random angle through the center of

the cluster of the facilities and to choose the locations of the facilities on one side of the line from one parent

and those on the other side of the line from the second parent. The expectation is that if the configuration

of each parent on its side of the line is a good one, the merge will produce a superior offspring. The VNS

is a distribution based variable neighborhood search (DVNS) algorithm proposed in [14]. This is a variation

on the basic VNS algorithm [19, 24]. Traditional VNS algorithms set a parameter kmax and shake the best

found solution sequentially in neighborhoods k = 1, . . . , kmax. In DVNS [14], the process generates a random

level of shaking k according to a density function φ(x), for x ∈ (0, 1), that is highest near some k
kmax

and

7



Table 2: Solution Results by COMB for n = 654 Instances

Best IMP VAR1 VAR2 VAR3
p Known (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)
20 63,389.0238 10 0 2.39 10 0 0.85 10 0 0.89 10 0 0.83
25 52,209.5106 10 0 3.12 10 0 1.00 10 0 1.03 10 0 0.90
30 44,705.1920 10 0 3.89 10 0 1.31 10 0 1.25 10 0 1.13
35 39,257.2685 10 0 5.21 10 0 1.60 10 0 1.53 10 0 1.53
40 35,704.4076 10 0 6.55 10 0 1.98 10 0 1.88 10 0 1.83
45 32,306.9721 10 0 7.93 10 0 2.36 10 0 2.22 10 0 2.14
50 29,338.0106 10 0 9.15 10 0 2.75 10 0 2.63 10 0 2.32
55 26,699.1208 10 0 10.65 10 0 3.00 10 0 2.86 10 0 2.61
60 24,504.3952 10 0 11.96 10 0 3.25 10 0 3.13 10 0 2.90
65 22,733.2923 10 0 13.66 10 0 3.81 10 0 3.68 10 0 3.42
70 21,465.4361 10 0 16.77 10 0 4.20 10 0 4.04 10 0 3.79
75 20,269.9644 10 0 19.00 10 0 4.92 10 0 4.72 10 0 4.47
80 19,193.8610 10 0 20.50 10 0 5.24 10 0 5.04 10 0 4.85
85 18,313.8703 10 0 22.42 10 0 6.10 10 0 5.90 10 0 5.85
90 17,514.4227 10 0 24.25 10 0 7.29 10 0 7.42 10 0 6.56
95 16,770.1973 9 0.0003 27.56 6 0.0013 8.10 7 0.0010 9.12 6 0.0013 7.55
100 16,083.5345 10 0 30.30 10 0 8.48 10 0 8.17 10 0 7.80

Average: 9.9 0.00002 13.84 9.8 0.00008 3.90 9.8 0.00006 3.85 9.8 0.00008 3.56
(1) Number of times in 10 runs that BK found. (2) Percentage of average above BK. (3) Time (min.) per run.

lower near 0 and 1. The next k is derived by multiplying kmax by this random value.

In the computational experiments we compare the original COMB that uses IMP with the new imple-

mentation of COMB that is based on the following three variants of FIMP.

(i) The basic variant (VAR1):

• Generate 100 starting solutions using α = 1,

• Apply the GA using 100p generations without improvement (in [14], np
5 generations were used

instead),

• In DVNS:

– Use kmax = 20

– Set α = 0.5 and use the NB rule with ρ = 4.

– Terminate when 100min{p, 20} iterations are used without improvement.

(ii) VAR2: as VAR1 except that α = 0.5 is used in the generation phase.

(iii) VAR3: as VAR1 except that kmax = 10 is used in DVNS.

It was observed that the improving perturbations in FIMP very rarely used neighborhoods with k > 10.

This is why we created and tested VAR3. This way more potentially improving neighborhoods are tested.

In Tables 2 and 3 the instances with n = 656 and n = 1060 are compared for COMB contrasting using

IMP and FIMP. Note that when IMP was applied the number of iterations in DVNS was only 50min{p, 20}.

8



Table 3: Solution Results by COMB for n = 1060 Instances

Best IMP VAR1 VAR2 VAR3
p Known (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)
5 1,851,877.3 10 0 0.71 10 0 0.85 10 0 0.88 10 0 0.86
10 1,249,564.8 10 0 1.93 10 0 1.83 10 0 1.83 10 0 1.80
15 980,131.7 10 0 4.31 10 0 3.25 10 0 3.21 10 0 3.01
20 828,685.7 10 0 6.96 10 0 4.30 10 0 3.77 10 0 3.61
25 721,988.2 10 0 9.12 10 0 4.42 10 0 3.94 10 0 3.76
30 638,212.3 10 0 10.15 10 0 4.29 10 0 3.91 10 0 3.77
35 577,496.7 10 0 11.78 10 0 4.48 10 0 4.11 10 0 4.17
40 529,660.1 10 0 13.94 10 0 4.83 10 0 4.31 10 0 4.55
45 489,483.8 10 0 16.68 10 0 5.72 10 0 5.03 10 0 5.27
50 453,109.6 10 0 18.79 10 0 5.96 10 0 5.67 10 0 5.40
55 422,638.7 10 0 20.88 10 0 6.36 10 0 6.39 10 0 5.73
60 397,674.5 10 0 23.53 10 0 6.94 10 0 7.19 10 0 6.37
65 376,630.3 10 0 26.88 10 0 7.85 10 0 8.17 10 0 7.22
70 357,335.1 10 0 29.53 10 0 8.33 10 0 8.43 10 0 7.74
75 340,123.5 10 0 33.67 10 0 9.03 10 0 8.47 10 0 8.31
80 325,971.3 10 0 35.82 10 0 10.17 10 0 8.69 10 0 9.29
85 313,446.6 10 0 40.16 10 0 12.21 10 0 11.19 10 0 10.86
90 302,479.1 10 0 44.32 10 0 14.16 10 0 13.06 10 0 13.64
95 292,282.6 10 0 48.47 10 0 16.97 10 0 12.97 10 0 15.29
100 282,536.5 10 0 52.29 10 0 18.74 10 0 13.83 9 0.002 15.73
105 273,463.3 10 0 60.74 10 0 20.14 10 0 16.86 10 0 18.26
110 264,959.6 10 0 65.89 10 0 19.85 10 0 18.95 9 0.000 18.84
115 256,735.7 9 0.001 75.99 10 0 24.10 10 0 19.65 10 0 22.77
120 249,050.5 8 0.001 83.93 10 0 24.41 10 0 23.44 10 0 22.45
125 241,880.4 10 0 93.77 9 0.002 32.83 9 0.002 24.84 10 0 26.60
130 235,203.4 10 0 86.45 10 0 30.07 10 0 27.21 10 0 26.38
135 228,999.2 5 0.001 106.24 9 0.001 32.74 7 0.001 31.38 8 0.001 31.29
140 223,062.0 9 0.001 112.42 10 0 36.23 8 0.004 36.51 8 0.003 33.14
145 217,462.8 8 0.000 121.49 10 0 41.03 9 0.000 40.93 10 0 39.07
150 212,230.5 9 0.000 164.00 10 0 49.78 10 0 40.88 10 0 43.80

Average: 9.6 0.0002 47.36 9.9 0.0001 15.40 9.8 0.0003 13.86 9.8 0.0002 13.97
(1) Number of times in 10 runs that BK found. (2) Percentage of average above BK. (3) Time (min.) per run.

Run times for these instances by FIMP were cut to about one third of those by IMP with a negligible

deterioration in solution quality.

Run times for BVNS or DVNS with IMP were very long for the n = 3, 038 instances: about 36 days for

one run of solving all 10 instances which will require about a year of computer time for completing 10 runs

for either BVNS and DVNS. Running COMB will probably require even longer run times. Therefore, only

the three variants of COMB using FIMP were tested on the n = 3, 038 instances. The experiments with the

n = 3, 038 instances still required relatively long run times and thus each instance was run three times on

the fast computer and seven more times on other computers. Run times are reported as the average of the

three runs on the fast computer for each instance.

In Tables 4 and 5 we report the results for the n = 3038 instances. Run times are quite reasonable.

Running all ten instances once by either variant required about 8-9 days. The best known solutions to date

are reported by Taillard [30] for p ≥ 100 (results for p = 50 are not reported in [30]) and by Brimberg

et al. [5] for p = 50. New best known (NBK) results were obtained for eight of the ten instances (p = 50

9



Table 4: Results for the n = 3, 038 Instances

New Best VAR1 VAR2 VAR3
p Known (NBK) (1) (2) (3) (1) (2) (3) (1) (2) (3)
50 505,875.76 10 0 0.46 10 0 0.38 10 0 0.42
100 351,171.14 8 0.005 1.13 9 0.002 0.96 5 0.009 1.11
150 279,724.73 6 0.006 2.35 4 0.010 2.37 4 0.007 2.62
200 236,209.47 3 0.002 4.78 0 0.006 3.53 2 0.003 4.36
250 206,454.72 2 0.006 8.43 0 0.013 6.65 2 0.008 7.87
300 184,802.33 0 0.006 14.27 1 0.009 10.62 0 0.006 13.76
350 168,254.30 1 0.006 21.17 0 0.011 18.20 0 0.007 19.14
400 154,554.55 1 0.018 34.26 0 0.016 38.13 1 0.018 32.75
450 143,272.78 0 0.016 50.03 1 0.017 51.42 0 0.013 49.80
500 133,555.40 0 0.020 69.86 0 0.017 87.14 1 0.016 65.65

Average: 3.1 0.0084 20.68 2.5 0.0101 21.94 2.5 0.0087 19.75
(1) Number of times out of 10 runs that NBK found.
(2) Percentage of average above NBK. (3) Time (hours) per run

Table 5: % of Best Result Above NBK (n = 3, 038 Instances)

p [5] [30] VAR1 VAR2 VAR3
200 0.275 0.036 0 0.000 0
250 0.423 0.035 0 0.001 0
300 0.421 0.017 0.002 0 0.001
350 0.463 0.042 0 0.006 0.000
400 0.539 0.067 0 0.004 0
450 0.406 0.040 0.004 0 0.003
500 0.361 0.027 0.008 0.006 0
Max 0.539 0.067 0.008 0.006 0.003

and all 200 ≤ p ≤ 500 instances). The same best known results were obtained for the other two instances

(p = 100, 150).

It seems that VAR2 is slightly inferior to the other two variants. VAR3 performed best for large values

of p but did not perform as well as the other two variants for small values of p

Statistical Analysis

We compared the results for p = 450 and 500 by VAR1 and VAR3. Since the first two phases of COMB

are the same for these two variants, we performed a comparison test to see whether or not kmax = 10 is

better than kmax = 20 for these instances. We ran a paired t-test on these 20 observations for each variant.

It was found that VAR3 (kmax = 10) provided better results than VAR1 (kmax = 20) with a p-value of 0.014.

We also estimated run times for n = 3038 instances by multiple regression. We assumed the relationship

t(p) = αpβ+γp. Since there are three variants we assume that each one has a different value of α but the

same values of β and γ. This yields a regression model similar to the idea of dummy variables in forecasting.

Let t(p, i) be the run time for instance p and VARi for i = 1, 2, 3. For VAR1 the coefficient is α but for

VAR2 and VAR3 the coefficients are αθ2 and αθ3, respectively. By taking the logarithm of the equation we

10



get log(t(p, i)) = logα + u2 log θ2 + u3 log θ3 + β log p + γp log p where for VAR1 u2 = u3 = 0, for VAR2

u2 = 1 and u3 = 0 and for VAR3 u2 = 0 and u3 = 1. The data consists of 30 rows each with a dependent

variable log(t(p, i)) and four independent variables log p, p log p, u2 and u3. The significance of the regression

is 10−30 and the first three variables are α = 0.003742, β = 1.163, γ = 0.000889 each with a p-value of about

10−14. The two dummy variables were factor of 0.906 for VAR2 (p-value=0.04) and 0.96 for VAR3 which is

not significant. It is interesting to note that run times for VAR2 seem to grow faster for large values of p.

Even though the average run time for VAR2 is greater than that of VAR1, the regression indicates that run

times are about 90% of those for VAR1.

4 Conclusions

Two simple but effective neighborhood reduction rules are developed and embedded within a well known

local search to solve the planar Euclidean p-median problem. Massive reduction of CPU time, in some cases

90% saving, was obtained at an expense of a negligible loss in solution quality. This fast local search is then

embedded into a powerful metaheuristic algorithm for illustration purposes. Computational experiments

on a set of well researched test problems provided excellent results including new best results. This study

empirically demonstrates the need for considering neighborhood reduction schemes as an integral part of

heuristic search design for global optimisation in general.

References

[1] Berman, O., Drezner, Z., and Krass, D. (2011). Big segment small segment global optimization algorithm
on networks. Networks, 58:1–11.

[2] Bongartz, I., Calamai, P. H., and Conn, A. R. (1994). A projection method for ℓp norm location-allocation
problems. Mathematical Programming, 66:238–312.

[3] Brimberg, J. and Drezner, Z. (2013). A new heuristic for solving the p-median problem in the plane.
Computers & Operations Research, 40:427–437.

[4] Brimberg, J., Drezner, Z., Mladenović, N., and Salhi, S. (2014). A new local search for continuous
location problems. European Journal of Operational Research, 232:256–265.

[5] Brimberg, J., Hansen, P., and Mladenović, N. (2006). Decomposition strategies for large-scale continuous
location–allocation problems. IMA Journal of Management Mathematics, 17:307–316.

[6] Brimberg, J., Hansen, P., Mladenović, N., and Salhi, S. (2008). A survey of solution methods for the
continuous location-allocation problem. International Journal of Operations Research, 5:1–12.

[7] Brimberg, J., Hansen, P., Mladenović, N., and Taillard, E. (2000). Improvements and comparison of
heuristics for solving the uncapacitated multisource Weber problem. Operations Research, 48:444–460.

[8] Chen, P. C., Hansen, P., Jaumard, B., and Tuy, H. (1998). A fast algorithm for the greedy interchange
for large-scale clustering and median location problems by D.-C. programming. Operations Research,
46:548–562.

[9] Chen, R. (1983). Solution of minisum and minimax location-allocation problems with euclidean distances.
Naval Research Logistics Quarterly, 30:449–459.

11



[10] Cooper, L. (1963). Location-allocation problems. Operations Research, 11:331–343.

[11] Cooper, L. (1964). Heuristic methods for location-allocation problems. SIAM Review, 6:37–53.

[12] Drezner, Z. (1984). The planar two-center and two-median problems. Transportation Science, 18:351–
361.

[13] Drezner, Z., Brimberg, J., Salhi, S., and Mladenović, N. (2014). New local searches for solving the
multi-source Weber problem. Annals of Operations Research (in review).

[14] Drezner, Z., Brimberg, J., Salhi, S., and Mladenović, N. (2014). New heuristic algorithms for solving
the planar p-median problem. Computers and Operations Research. in press.

[15] Drezner, Z., Mehrez, A., and Wesolowsky, G. O. (1991). The facility location problem with limited
distances. Transportation Science, 25:183–187.

[16] Drezner, Z. and Suzuki, A. (2004). The big triangle small triangle method for the solution of non-convex
facility location problems. Operations Research, 52:128–135.

[17] Eilon, S., Watson-Gandy, C. D. T., and Christofides, N. (1971). Distribution Management. Hafner,
New York.

[18] Golden, B. L., Magnanti, T. L., and Nguyen, H. Q. (1977). Implementing vehicle routing algorithms.
Networks, 7:113–148.

[19] Hansen, P. and Mladenović, N. (1997). Variable neighborhood search for the p-median. Location Science,
5:207–226.

[20] Hansen, P., Peeters, D., and Thisse, J.-F. (1981). On the location of an obnoxious facility. Sistemi
Urbani, 3:299–317.

[21] Krau, S. (1997). Extensions du problème de Weber. PhD thesis, École Polytechnique de Montréal.

[22] Megiddo, N. and Supowit, K. J. (1984). On the complexity of some common geometric location problems.
SIAM Journal on Computing, 13:182–196.

[23] Mladenović, N., Dražić, M., Kovačevic-Vujčić, V., and Čangalović, M. (2008). General variable neighbor-
hood search for the continuous optimization. European Journal of Operational Research, 191(3):753–770.

[24] Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers & Operations Re-
search, 24:1097–1100.

[25] Murtagh, B. A. and Niwattisyawong, S. R. (1982). An efficient method for the multi-depot location-
allocation problem. Journal of the Operational Research Society, 33:629–634.

[26] Plastria, F. (1992). GBSSS, the generalized big square small square method for planar single facility
location. European Journal of Operational Research, 62:163–174.

[27] Reinelt, G. (1991). TSLIB a traveling salesman library. ORSA Journal on Computing, 3:376–384.

[28] Salhi, S. and Sari, M. (1997). A multi-level composite heuristic for the multi-depot vehicle fleet mix
problem. European Journal of Operational Research, 103:95–112.

[29] Schöbel, A. and Scholz, D. (2010). The big cube small cube solution method for multidimensional
facility location problems. Computers and Operations Research, 37:115–122.

[30] Taillard, É. (2003). Heuristic methods for large centroid clustering problems. Journal of Heuristics,
9:51–73.

12


