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A Note on the Posterior Inference for the Yule-Simon
Distribution

Fabrizio Leisen® Luca Rossini® Cristiano Villa®*

& University of Kent, UK b Ca’ Foscari University of Venice, Italy

Abstract

The Yule-Simon distribution has been out of the radar of the Bayesian community,
so far. In this note, we propose an explicit Gibbs sampling scheme when a Gamma
prior is chosen for the shape parameter. The performance of the algorithm is illustrated
with simulation studies, including count data regression, and a real data application
to text analysis. We compare our proposal to the frequentist counterparts showing
better performance of our algorithm when a small sample size is considered.

Keywords: Yule-Simon Distribution, Data Augmentation, Count Data Regression,
Text Analysis.

1 Introduction

The purpose of this work is to show that a Gamma prior on the shape parameter
of the Yule-Simon distribution yields to a straightforward Gibbs sampling scheme,
allowing for an efficient and effective approach to Bayesian inference. The Yule-Simon
distribution (Yule, 1925; [Simon, 1955) is mainly employed when the center of interest
is some sort of frequency in the data. For example, Gallardo et al.| (2016)) highlight that
the heavy-tailed property of the Yule-Simon distribution allows for extreme values even
for small sample sizes. In particular, they claim that the above property is suitable
to model short survival times which, due to the nature of the problem, happen with
relatively high frequency. To the best of our knowledge, the sole Bayesian proposal to
deal with the Yule-Simon distribution has been discussed in |[Leisen, Rossini, and Villa
(2016)), where the problem is tackled from an objective point of view.

The algorithm we propose is based on a stochastic representation of the Yule-
Simon distribution as a mixture of Geometric distributions. This naturally suggests a
data augmentation scheme which can be employed to address Bayesian inference. In
particular, the choice of a Gamma prior leads to explicit full conditional distributions.
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To illustrate the performance of the above algorithm, we discuss examples of
common applications of the Yule-Simon distribution; namely, count data regression
and text analysis. In both cases we compare our inferential results to the respective
classical counterparts.

The structure of the paper is as follows. In Section [2] we present the data
augmentation scheme and the consequent algorithm. The proposed method is then
illustrated by means of simulations in Section [3] where we consider both a single i.i.d.
sample and a count data regression. Section [4] is reserved to the application of the
proposed algorithm to word frequency text analysis. The last Section [5| is dedicated
to final remarks.

2 Bayesian Inference

The Yule-Simon distribution has the following probability function:
f(kip)=pB(k,p+1), k=12,... and p >0, (1)

where B(+, ) is the beta function and p is the shape parameter. |Yule| (1925) proposed
the distribution derived in ([1)) in the field of biology; in particular, to represent
the distribution of species among genera in some higher taxon of biotic organisms.
Later on, Simon| (1955) noticed that the above distribution can be observed in other
phenomena, which appear to have no connection among each others. These include,
the distribution of word frequencies in texts, the distribution of authors by number of
scientific articles published, the distribution of cities by population and the distribution
of incomes by size.

The probability distribution defined in can be seen as a mixture of Geometric
distributions. Precisely, let W be an exponentially distributed random variable with
parameter p, and let K be a Geometric distribution with probability of success equal
to e~ Therefore, it is easy to see that the Yule-Simon distribution can be recovered
as the marginal of the random vector (K, W), i.e.

F(k; ) = /0 T e (1 e e g, (2)

The above description of the Yule-Simon distribution is crucial to define a data
augmentation scheme in a Bayesian setting.
Suppose to consider the following Bayesian model:

ki, ... knlp~ f(k;p)

3
p ~ Gamma(a,b), )

where f(k; p) is the Yule-Simon distribution defined in ({I}). The likelihood function of
the above model, conditionally to the parameter p, is the following:

n 00
Lk, p) = H/o e Wi(1 — e WiYkiTl pe= Wiy,
i=1

2



fwi)kifl

e vi(l—e pe PVidw

::]:

~/(0,oo 1

/ L(k,w, p)dw (4)
(0,00)™

-
I

where k = (ki,...,k,) is a vector of observations, w = (wy,...,wy) is a vector of
auxiliary variables, and

L(k,W,p) — Hefwi(l _ e*'wi)kiflpefp’wi‘ (5)
i=1

In order to perform the Bayesian analysis of the model introduced in , we consider
the following augmented version of the posterior distribution:

m(p; wlk) o< Lk, w, p)m(p),

where 7(p) o< p®~Le~ is the Gamma prior. To sample from the posterior distribution
we adopt a Gibbs sampling scheme and compute the full conditional distribution. It
is straightforward to note that

plwilw_s, k, p) oc e PPieTWi(1 — e~ Wikl

The change in variable t; = e~ i, leads to a full-conditional distribution which is
distributed as a Beta(p + 1, k;). On the other hand, the full-conditional distribution
for p is

p(plk, w) o p@T" e Pz ) Gamma <a +n,b+ i w¢> .
i=1
To sum up, the updating rule of the Gibbs sampler is as follows:
e Sample t;|p, k; ~ Beta(p + 1,k;), fori =1,...,n;
e Compute w; = —logt;, fori =1,...,n;
e Sample plw,k ~ Gamma (a 4+ n,b+ Y 1 w;).

We show that the performance of the above algorithm on both simulated data (Section

and real data (Section [4]).

3 Simulation Study

In this section we analyse the performance of the proposed algorithm by considering
a single i.i.d. sample generated from a Yule-Simon distribution (Section , and
on a regression model for count data where the shape parameter of the Yule-Simon
distribution is modelled in a similar fashion to the one in the classical Poisson regression

(Section [3.2)).



3.1 Single i.i.d. sample

This section is devoted to test the performance of the data augmentation algorithm on
simulated data. To do this, we sample from a Yule-Simon distribution with two values
of the parameter, p = 0.80 and p = 5.00. For each value of the parameter, we have
simulated samples of different sizes, respectively n = 30, n = 100 and n = 500. Note
that the choice of a relatively small sample size has the purpose to leverage on the
Bayesian property of giving sensible results even when the information coming from
the data is limited.

For the simulations, we have chosen a Gamma prior with shape parameter a = 0.25
and rate parameter b = 0.05. The choice was made with the intent of having a large
variance in the prior, reflecting a fairly large prior uncertainty. The Gibbs sampler is
run for 50, 000 iterations, with a burn-in period of 10, 000 iterations. This is repeated
20 times per sample to capture the variability in the procedure. Table [1| displays the
summary statistics of the posteriors, that is, the mean, the median and mean square
errors from these two indexes. Both in terms of central value and mean square error
the simulation results are excellent, proving the soundness of the algorithm and, more
in general, of the whole proposed approach.

p n  Mean Median MSE Mean MSE Median Fixed-Point Alg

0.80 30 0.80 0.78 0.00002 0.00041 0.79
0.80 100 0.80 0.80 0.00160 0.00190 0.78
0.80 500 0.80 0.80 0.00002 0.00001 0.80
5.00 30  5.00 4.56 0.00046 0.19000 4.42
5.00 100 4.82 4.70 0.03600 0.10000 4.66
5.00 500 4.90 4.87 0.00990 0.01670 4.85
Table 1: Summary statistics of the posterior distributions for the parameter p of the

simulated data from a Yule-Simon distribution with different values of p = {0.80,5.00}
and sample sizes n = {30, 100, 500}.

As an example, in Figure [I] we show the posterior results for one simulation of
the sample of size n = 30 from the Yule-Simon with p = 5, and one simulation from
the same distribution with n = 100. We see that the chains exhibit a good mixing
and that the means converge to the true values rather quickly. In detail, we have the
posterior mean equal to 4.98 for n = 30 and equal to 4.81 for n = 100, and the 95%
credible intervals are, respectively, (2.22,10.17) and (3.10,7.30). As one would expect,
the credible interval for the smaller sample size is larger than the one obtained with
n = 100. This is reflected in the histogram in Figure [1] as well.

Although not shown here, we have performed the simulation study on other values
of the parameter, ranging from 0.1 to 10, obtaining results in line with the above ones.
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Figure 1: Posterior sample (top), posterior histogram (middle) and progressive mean
(bottom) for the simulation study of a Yule-Simon distribution with p = 5 and sample

size n = 30 (left) and n = 100 (right).



3.2 Count data regression

In a count data regression model we are interested in the relations between the
probability of a dependent variable k; and the vector of independent variables x;.
The model is based on the following three assumptions:

1. the observation k; follows the Yule-Simon distribution with parameter p;, i.e.
f(kispi) = piB(ki,pi + 1), ki=1,2,..., p;>0;
2. the parameters of interest are modelled in the following way:

pi =exp(x,8), i=1,...,n,

where 3 is a (ng x 1) vector of parameters and x; = (1,22, . .., Zin,) is a (1 X np)
vector of regressors including a constant;

3. the observation pairs (k;,z;),i = 1,...,n are independently distributed.

For sake of illustration we focus on the case with one regressor only, although the
arguments can easily be extended to include multiple regressors. Therefore, we
have 8" = (Bo,f1), x; = (1,x;2) and p; = exp{Bo + fizi2}. Assuming a standard
bivariate normal prior for 3, we obtain the following augmented version of the posterior
distribution:

(B, wxjk) ox [He‘“”(l - eﬂ"i)’fﬂ] exp {Zx;ﬁ} [H e—e"é%z'] 08,
i=1

i=1 =1

Therefore, the full conditional distribution for the parameter of interest 3 is given by:

m(Blw.x,y) o [H exp {—exéﬂwi}] exp {—;ﬁ'ﬁ + me}. (6)
i=1 =1

As the expression in @ is not an explicit known distribution, Monte Carlo methods
have to be used. In particular, we adopt a Metropolis within Gibbs to obtain samples
from the posterior distribution. We use a random walk proposal and the Gibbs sampler
for the count data regression is as follows:

e Sample ti‘ﬂg,ﬂl,xi, k; ~ Beta (exp {60 + 61-%‘2} + 1, /{:7;>, fori=1,...,n;
e Compute w; = —logt;, fori =1,...,n;
e Sample 3w, k,x from the random walk Metropolis-Hastings algorithm.

We test the proposed data augmentation algorithm on two simulated data sets:
for the first data set we have (5, 81) = (1.5,—1.0), and for the second one we have
(Bo, f1) = (—0.5,5.0). In both cases, the regressor values are sampled from a uniform
(0,1). We ran 50,000 iterations with a burn-in period of 10,000 iterations, and this
has been repeated 20 times per sample. For comparison purposes, we use the R
function (VGLM) developed by [Yee| (2008, 2016|) in the package VGAM. The function

6



allows us to estimate the vector generalized linear model (see Yee (2014, 2015)), when
we consider a Yule-Simon distribution. Table [2| shows the posteriors mean, median,
mean square errors and credible intervals for the two different scenarios. Overall, the
results obtained by applying our algorithm are very close to the true parameter values.
As noted in Section the Bayesian approach outperforms the frequentist for small
sample sized.

In both cases and for all the different sample sizes, the results are interesting for

our approach and in particular, as seen in the previous simulated example, for small
sample size the results are better from a Bayesian perspective with respect to the
frequentist approach.

Table 2:

n Jc; Mean Median MSE Mean 95% C.I. VGLM

30 Bo=-05 05 05 0.0012  (0.7-02) -0.2
£ =5.0 5.0 5.0 0.0014 (4.7,5.2) 7.7

30 [y=1.5 1.6 1.6 0.0035 (1.3,1.8) 3.0
Bi=-10 -1.0  -10 0.0025  (-1.2-0.7)  -0.9

100 By=-0.5 -0.6 -0.6 0.0069 (-0.8,-0.4) -0.7
Bi=50 49 49 0.0071  (47,52) 48

100 fBo=15 14 14 00103 (1.2,1.6) 14
61 =-1.0 -1.0 -1.0 0.0021 (-1.3,-0.8) -1.2

500 By =-0.5 -0.5 -0.5 0.0000 (-0.7,-0.3) -0.5
£ =5.0 5.0 5.0 0.0029 (4.7,5.2) 5.1

500 Bo=15 15 15 00002 (1.317) 15
Bi=-10 -1.0  -10 0.0004  (-1.2-08)  -0.9

Summary statistics of the posterior distributions for the parameter (5o, )

of the Yule-Simon regression with (8, 31) = {(—0.5,5.0); (1.5,—1.0)} and sample sizes
n = {30, 100,500} and VGLM estimators.

To better illustrate the performance we have simulated 300 observations for a case

with By = 3.5 and 1 = —2.2. Figure [2| shows the posterior samples and the posterior
histograms obtained with a Gibbs sampler run for 50,000 iterations with a burn-in
period of 10,000. We see that for both parameters of the regression the chain has
a good mixing, and the posterior means for 5y and (i are, respectively, 3.40 and
—2.195. The 95% credible intervals are, respectively, (3.2,3.6) and (—2.4, —2.2) which
comfortably contain the true values of the parameters.

As above highlighted, the procedure can be applied to multiple regressors, Figure

shows the posterior samples and posterior histograms for a scenario with gy = 1.5,

pr =

—1.0 and By = 0.4. For a sample of n = 300, and with the same setting of the

Gibbs sampler used in the previous illustration, we see a good mixing of the chains
as well as good inferential results. In particular, the three means for Sy, 81 and S
are, respectively, 1.5, -0.9 and 0.4, with respective 95% credible intervals (1.3,1.7),
(—1.2,-0.7) and (0.1, 0.6).
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Figure 2: Posterior sample (top) and posterior histogram (bottom) for the simulation study
of a count data regression with 5y = 3.5 (left) and §; = —2.2 (right) and sample size
n = 300.

4 Real Data Applications: Text Analysis

In this section, to apply the proposed algorithm to a real-data scenario, we analyse the
Yule-Simon distribution to model the word frequency in five novels: Ulysses by James
Joyce, Don Quizote by Miguel de Cervantes, Moby Dick by Herman Melville, War and
Peace by Leo Tolstoi and Les Miserables by Victor Hugo. All texts are the English
version present in the website of the Gutenberg Project (http://www.gutenberg.org).
We have selected the above novels as they have been analysed in |Garcia Garcial (2011)),
and we can compare our results with the author’s.

The key information for each data set is n, the number of distinct words in the text
(see Table [3)), and k, the frequency at which each of the words appears in the text.

The inferential procedure consists in the Gibbs sampling algorithm introduced in
Section[2] For each text, we run three chains, from different starting points, for 10,000
iterations and a burn-in period of 1,000 iterations. The convergence of the sampler
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Figure 3: Posterior sample (left) and posterior histogram (right) for the simulation study of

a count data regression with fy = 1.5 (top), f1 = —1.0 (middle) and S = 0.4 (bottom) and
sample size n = 300.



has been assessed by graphical means (e.g. progressive means, Gelman and Rubin’s
plot) and numerical means, such as the Gelman and Rubin’s convergence diagnostic
and the Geweke’s convergence diagnostic. The summary of a posterior for each text
are shown in Table 3] where we have reported the posterior mean and median, and the
95% credible interval. Figure [4] shows the posterior chain and the posterior histogram
for two of the analysed texts: the Ulysses and the Don Quixote.

1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

(a)

3000

(b)

3000

2500 |

Figure 4: Posterior sample and posterior histogram for the frequency of words analysis for
the Ulysses (left) and the Don Quixote (right).

To support our conclusions, we compare our estimation results with the ones
obtained by applying the fixed-point algorithm proposed by |Garcia Garcial (2011).
We have implemented the above algorithm on the data available to us, and the right
column of Table [3| reports the maximum likelihood estimates for each text. First,
we note that our fixed-point estimates are very similar to the results in
, with the exception of the Don Quixote where we have used a different version of
the text. Second, and most important, the mean of our posterior is virtually identical
to the estimate in |Garcia Garcia (2011)).
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Novel n Mean Median 95% C.I.  Fixed-Point Alg

Ulysses 29,841 1.09 1.09 (1.08,1.11) 1.09
Don Quixote 15,180 0.68 0.68  (0.67,0.70) 0.68
Moby Dick 17,221  0.88 0.88 (0.86,0.89) 0.88
War and Peace 18,239 0.63 0.63  (0.62,0.64) 0.63
Les Miserables 23,248  0.69 0.69 (0.68,0.70) 0.69

Table 3: Summary statistics of the posterior distributions for the parameter p for frequency
of words compared with the fixed point algorithm.

5 Discussions

Besides filling a gap in the Bayesian literature, the data augmentation algorithm
introduced in this note, performs an efficient and fast estimation of the shape
parameter of the Yule-Simon distribution.

The simulation study in Section [3] which discussed both a single i.i.d. sample and a
count data regression sample, shows a clear out-performance of the Bayesian approach
against the appropriate frequentist procedures. This is particularly true for relatively
small sample sizes, rendering the Bayesian inference for the Yule-Simon distribution
attractive to practitioners.

The real data example illustrated in Section 4| shows the soundness of the approach
when true observations are considered. Furthermore, the obtained results are cross-
validated by the equivalence of the results in |Garcia Garcial (2011) obtained through
a frequentist procedure.
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