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ABSTRACT

We discuss null knotted solutions to Maxwell’s equations, their creation through Bateman’s construction, and
their relation to the Hopf-fibration. These solutions have well-known, conserved properties, related to their
winding numbers. For example: energy; momentum; angular momentum; and helicity. The current research has
focused on Lipkin’s zilches, a set of little-known, conserved quantities within electromagnetic theory that has been
explored mathematically, but over which there is still considerable debate regarding physical interpretation. The
aim of this work is to contribute to the discussion of these knotted solutions of Maxwell’s equations by examining
the relation between the knots, the zilches, and their symmetries through Noether’s theorem. We show that the
zilches demonstrate either linear or more complicated relations to the p-q winding numbers of torus knots, and
can be written in terms of the total energy of the electromagnetic field. As part of this work, a systematic
multipole expansion of the vector potential of the knotted solutions is being carried out.
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1. INTRODUCTION

In 1989 Rañada discovered a particularly interesting analogy between the knotted solution to Maxwell’s equations1,2

and the Hopf-fibration. However, Rañada’s method did not preserve the topology of the field lines with time.
In 2008 Irvine et al. reformulated this solution3,4 using Bateman’s construction5. This method involves setting
up a complex vector field where the real parts are the electric field and the imaginary parts are the magnetic
field - whose topology is preserved with time (See section 2.1). Kedia et al. extended this solution6 to give the
whole family of torus knots and links by taking co-prime powers of the complex input functions (See section
2.2). We begin by explaining the methods used by Irvine et al. and Kedia et al. Then the current research will
be discussed, where we look at the analytic form of Lipkin’s zilches for the knotted electromagnetic fields.

2. NULL KNOTTED SOLUTIONS TO MAXWELL’S EQUATIONS

2.1 Initial Field Construction

To create our fields we follow Bateman’s construction5, as demonstrated clearly by Hoyos et al.7 and Irvine et
al.3 We use rational units throughout with wave vectors set equal to unity in the free field Maxwell equations.
To ensure the equations have a high degree of symmetry, the fields are redefined as follows,

E → E,

B → 1

c
B.

The symmetrised free field Maxwell equations become,

∇ ·E = 0, (1)

∇ ·B = 0, (2)

∇×E = −1

c

∂B

∂t
, (3)

∇×B =
1

c

∂E

∂t
, (4)
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where the symbols take on their usual meaning. In Bateman’s construction the Riemann-Silberstein vector8,
R, in dimensions (3 + 1), is created where the electric field and magnetic field are the real and imaginary parts
respectively,

R = E + iB. (5)

This newly constructed vector field is then expressed in terms of two complex functions, α and β, with the
ansatz:

R = ∇α×∇β. (6)

Maxwell’s equations are satisfied, provided R also takes the form,

R =
i

c

(
∂α

∂t
∇β − ∂β

∂t
∇α
)
. (7)

Up to this point, the complex vector field, R, has been constructed in terms of the unknown functions α and β.
Bateman’s construction also requires that the field should have null-norm,

R2 = 0. (8)

Physically, this forces the electric and magnetic fields to have the same magnitudes and to be orthogonal.

2.2 The Hopf-Fibration, Knots, and the Electromagnetic Field

In the literature an analogy between the knotted solutions of Maxwell’s equations and the Hopf-fibration has
been noted and explored2,3,4,6,7. The mathematical construction9,10 of the Hopf-fibration is via the method of
stereographic projection from the four dimensional spherical space, S3, into three dimensional Euclidean space,
R3. The equations for the Hopf-fibration are7,

α =
A− 1 + iz

A+ it
, (9)

β =
(x− iy)

A+ it
, (10)

where,

A =
1

2
(x2 + y2 + z2 − t2 + 1),

where, x, y, z are the three spacial coordinates, and t is that of time. To create the null Hopf-knotted electro-
magnetic field, these equations need to be substituted into those for the newly constructed complex vector field
given by equation (7). The resulting field is,

R =
4

(A+ 2it)3

 (t− x− z + i(y − 1)(t+ x− z − i(y + 1)),
−i(t− y − z − i(x+ 1))(t+ y − z + i(x− 1)),

2(x− iy)(t− z − i)

 . (11)

Both fields, E and B, have every level of the Hopf-fibration projected into them separately, whilst being orthog-
onal to each other. Each field line forms a closed loop (Villarceau circle), that traverses the surface of a torus
and links with every field line through the centre of the torus - that forms one level of the Hopf-fibration. The
remaining levels are nested inside each other like Russian dolls filling all of space - with only two levels appearing
slightly different - the projections through the north pole (the infinitely large torus) and south pole (the infinitely
thin torus) of S3. Figure 1 demonstrates a few levels of the Hopf-fibration that will be projected into each field.

Kedia et al. extended this work6 to create a whole family of torus knot solutions, where the electric and magnetic
fields wrap around each other according to the co-prime, p − q winding numbers. The p − q winding numbers
refer to the direction of rotation around a torus: p is the toroidal direction (around the large circumference); q
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,

Figure 1. Five levels of S3 from the Hopf-fibration projected into R3 including the points at the north pole (red line)
and south pole (thin, inner green ring)11. This is the form the electric and magnetic field lines take separately, whilst
remaining orthogonal.

is the poloidal direction (around the small circumference). These winding numbers were incorporated into the
construction of the complex vector field as powers of α and β,

R = ∇αp ×∇βq. (12)

and these powers also yield solutions of Maxwell’s equations. Field line plots of the knotted and linked electro-
magnetic vector fields become more convoluted the more complicated the knotting becomes. For some vector
fields, it is possible to have an orthogonal set of vector fields that are constructed of gradients of underlying
scalar fields6,7. These underlying scalar fields become useful in the visualisation of our knotted solutions as they
illuminate the cores of the tori twisting around each other, and clarify the different knottings (See figure 2). The
equations for the scalar fields are given by,

φ = φB + iφe = αpβq, (13)

whilst holding the condition,
E · ∇φE = 0; B · ∇φB = 0. (14)

3. PROPERTIES OF KNOTTED ELECTROMAGNETIC FIELDS

3.1 Zilches of Electromagnetic Fields

In 1964 Lipkin discovered a new set of electromagnetic conserved quantities which he named zilches12. There are
ten unique zilches which are understood mathematically, but their physical nature is still debated. Some have
argued that the zilches are a measure of chirality of light fields, and have been using them to make successful
predictions in experiments13,14. Others have suggested that the zilches could just be one of an infinite set of
recurring conserved quantities that can be produced by taking curls of properties of fields15,16. This research
aims to illuminate their true physical nature by exploring the zilches in the context of knotted electromagnetic
fields and their relationship to the total energy of the field, and the p − q winding numbers of the knots. The
method used to understand the zilches is via a combination of algebraic and numerical computing, where each
zilch is calculated using the components of the electric and magnetic fields from our overall field - equation(12).
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Figure 2. (Left hand column) The field lines for the electric and magnetic field are demonstrated here, becoming more
twisted with the increasing p− q winding numbers; (Right hand column) The underlying scalar field plots illuminate the
knotting cores of our vector fields and allow for a better interpretation of each solution
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The zilches take on the following mathematical form15,

Z000 = 1
2 [E · (∇×E) + B · (∇×B)] ,

Z0i0 = 1
2 [E × (∇×B)−B × (∇×E)]i ,

Zij0 = 1
2 (δij [E · (∇×E) + B · (∇×B)]− Ei(∇×E)j − Ej(∇×E)i −Bi(∇×B)j −Bj(∇×B)i) .

(15)
These elements and their fluxes form a third order tensor with symmetry properties described in detail by
Lipkin12. Through Maxwell’s equations, the zilches can also be expressed in terms of the time derivatives of the
fields. The analytic expressions obtained for Z000 show that it can be related to the total energy of the field for
each knot respectively and a relation can be derived in terms of the p− q winding numbers.

Z000 =
1

2
(3p+ 2q)Epq (16)

where Epq is the total energy of the electromagnetic field. First indications are that similar, but more complicated,
expressions can be found for the other zilches and this work is in progress. These expressions reflect symmetries
and our aim is to confirm these expressions and then to attempt to relate them to Noether’s theorem17.

3.2 Multipolar Expansion of the Knotted Electromagnetic Fields.

To further our understanding of the zilches, we are also performing a multipole expansion of the electric and mag-
netic fields and their corresponding potentials and may possibly extend this to the zilches themselves. Initially,
we followed the multipole expansion approach utilised by Irvine3,4. Irvine found that the (p, q) = (1, 1) field was
a composed entirely of the l = 1,m = ±1 dipolar terms. The equations deployed in this analysis assumed an
exp(−iωt) dependence of the electric field18 which these knotted solutions do not have. However, Irvine argued
that his analysis is valid at time t = 0. We have performed a more general analysis19 and have confirmed Irvine’s
result for the (p, q) = (1, 1) field. For higher values of (p, q) = (2, 1) we have found that this is not a single
multipole field, but has a number of multipolar components. We are currently investigating higher values of p
and q to determine how the multipolar coefficients depend on the winding numbers p and q and whether this
approach can yield further information about the interpretation of the zilches.
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