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A stochastic Galerkin approximation scheme is proposed for an optimal control problem
governed by a parabolic PDE with random perturbation in its coefficients. The objec-
tive functional is to minimize the expectation of a cost functional, and the deterministic
control is of the obstacle constrained type. We obtain the necessary and sufficient opti-
mality conditions and establish a scheme to approximate the optimality system through
the discretization with respect to both the spatial space and the probability space by
Galerkin method and with respect to time by the backward Euler scheme. A priori error
estimates are derived for the state, the co-state and the control variables. Numerical
examples are presented to illustrate our theoretical results.
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1. Introduction

Deterministic optimal control problems constrained by PDEs have been well devel-
oped and investigated for several decades. There have been extensive studies on
this aspect. Some of progress in this area has been summarized in Adams [1975],
Barbu [1984], Glowinski and Lions [1996], Grisvard [1986], Tiba [1995], and Fursikov
[2000], and the references cited therein. Finite element approximation of optimal
control problems plays a very important role in numerical methods for these prob-
lems. The authors also had some works on this field [Liu and Tiba (2001); Sun
et al. (2013); Li et al. (2015); Liu (2008); Liu and Yan (2001); Liu and Yan (2008);
Liu et al. (2010); Sun (2010)]. Nevertheless, because of the existence of uncertainty,
such as uncertain parameters, arises in many complex real-world problems of phys-
ical and engineering applications, the variability of soil permeability in subsurface
aquifers, heterogeneity of materials with microstructure, wall roughness in a fluid
dynamics study, etc., it is natural to consider optimal control problems governed
by random PDEs. Based on the works about the numerical methods for PDEs and
random PDEs [Babuska and Chatzipantelidis (2002); Xiu and Karniadakis (2002);
Babuska et al. (2003); Babuska et al. (2004); Chen et al. (2011); Cohen et al. (2010);
Deb et al. (2001); Nobile and Tempone (2009); Todor and Schwab (2007); Wiener
(1938)], recently, there exist some works about optimal control problem governed
by PDEs with random perturbation in its coefficients [Gunzburger et al. (2011);
Shen et al. (2015)].

The work [Gunzburger et al. (2011)] dealt with the optimal control problems
for stochastic partial differential equations with Neumann boundary conditions, the
existence of an optimal solution and of a Lagrange multiplier were also demonstrated
for the deterministic control. The optimal control problems governed by partial dif-
ferential equations with uncertainties and with uncertain controls are addressed
in Rosseel and Wells [2012], and a one-shot method is combined with stochastic
finite element discretizations to get the optimal solutions. In Hou et al. [2011] and
Lee and Lee [2013], stochastic optimal control problems constrained by stochastic
elliptic PDEs with deterministic distributed control function are introduced. The
authors prove the existence of the optimal solution, establish the validity of the
Lagrange multiplier rule and obtain stochastic optimality system. Then, they use
the Wiener-It6 (WT) chaos or the Karhunen-Loéve (KL) expansion as a main tool
to convert stochastic optimality system to deterministic optimality system. Finally,
a priori error estimates for Galerkin approximation of the optimality system in both
physical space and stochastic space are provided. In Sun et al. [2015], an optimal
control problem with the deterministic control is of the obstacle constrained type
governed by an elliptic PDE with random perturbation in its coefficients is intro-
duced. The authors obtain the necessary and sufficient optimality conditions by
applying the well-known Lions’ Lemma and a prior: error estimate for the state, the
co-state and the control variables. A stochastic finite element approximation scheme
and a priori error estimate for the state, the co-state and the control variables are

1650028-2



Int. J. Comput. Methods Downloaded from www.worldscientific.com
by SHANDONG UNIVERSITY on 03/14/16. For persona use only.

A Priori Error Estimate for Random Parabolic Optimal Control

developed for an optimal control problem governed by an elliptic integro-differential
equation with random coefficients in Shen et al. [2015]. However, to our best knowl-
edge, there has been a lack of a prior error estimates for stochastic finite element
approximation of any optimal control problem governed by random parabolic PDE,
which is immensely important and yet far more complicated to be analyzed than
an random elliptic control problem.

In this paper, we establish a scheme to approximate the optimality system
through the discretization with respect to both the spatial space and the proba-
bility space by Galerkin method and with respect to time by the backward Euler
scheme. We give a priori error estimate for the state, the co-state and the control
variables for an optimal control problem governed by a parabolic PDE with ran-
dom perturbation in its coefficients. The plan of the paper is as follows: In Sec. 2,
we introduce some function spaces and the stochastic optimal control problem. In
Sec. 3, we represent the stochastic parabolic PDE in term of the (KL) expansion
and obtain the finite-dimensional optimal control problem. We use the well-known
Lions” Lemma to the reduced optimal problem and obtain the necessary and suf-
ficient optimality conditions. After constructing finite element spaces and theirs
approximation properties with respect to both the spatial space and the probabil-
ity space, we use the backward Euler method to discretize time and get the fully
discrete approximation scheme in Sec. 4. Section 5 considers a priori error esti-
mates for the state, the co-state and the control variables. Numerical examples are
presented to illustrate our theoretical results in Sec. 6.

2. Notations and Model Control Problem
2.1. Function spaces and notations

Let D be a convex bounded polygonal spatial domain in R4 (1 < d < 3) with
boundary 9D and B(D) be the Borel o-algebra generated by the open subset of D.
Let (£2,F,P) be a complete probability space, here € is a set of outcomes, F
is a o-algebra of events and P : F — [0,1] is a probability measure. Let Y be
an R¥-valued random variable in (Q, F, P), and for ¢ € [1,00), let (L%(2))" be
the set comprising those random variables Y with Zf\il Jo 1Yi(w)]?dP(w) < oco. If
Y € LL(Q) we denote its expected value by

BY] = [ Y)ap@) = [ vdur ),

where gy is the distribution measure for Y, defined for the Borel sets b € B(RY),
by py (b)) = P(Y~1(b)). If py is absolutely continuous with respect to the Lebesgue
measure, then there exists a density function p : R — [0, 4+00), such that

E[Y] = /RN yp(y)dy.

Analogously, whenever Y € (L%(9))Y, the positive semi-definite covariance matrix
of Y, Cov[Y] € RV*¥ is defined by Cov[Y](4, j) = Cov(Y;,Y;) = E[(Y;—E(Y;))(Y; —
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E(Y;))], for 4,5 = 1,2,..., N. Similarly, for a stochastic function ¥ = Y (z,w
with 2 € D and w € €, we denote its covariance function by Cov[Y](z,z’) =
Cov(Y (x,-),Y (2',-)) for z,2’ € D.

Throughout this paper, we use standard notations for Sobolev spaces on D as
in Adams [1975]. For examples, L?(D) and H'(D) are Hilbert spaces with norms
|- l22(py and || - || 1 (py, respectively; Hi (D) is the subspace of H'(D) whose func-
tion value is zero on 9D. With these standard Sobolev spaces, we adopt the defini-
tion of stochastic Sobolev spaces [Babuska et al. (2004); Hou et al. (2011); Lee
and Lee (2013)]. For nonnegative integers s and 1 < p,q,r < +o00, the space
LP(Q; W#1(D)) contains all the stochastic functions v : D x Q@ — R, that are
measurable with respect to the product o-algebra B(D)® F and equipped with the
averaged norms

1ol Lo@ewea(pyy = Ell0Iyeap])'”
p/a\ /P

E Z/D\@av\qdm ,

laf<s

and
0] Loo (W= (DY) = esss;lzp lvllwe.a(p)-

The space L"(0,7T; LP(Q; W*4(D))) contains all the stochastic functions v : [0, 7] x
D xQ — R, which are measurable with respect to the product o-algebra B([0,T]) ®
B(D) ® F and equipped with the norms

1/r

T
vl Lr0,7; L0 ;W a(D))) = (/o |”||Ep(Q;Ws,q(D))dt>

p/a\ "/P tr

T
E / 0%v|%dx dt
/O > [ 1o

lal<s

For a nonnegative integer s and 1 < p,q < +o0, let LP(0,T; W*#4(D)) contain all
functions v : [0,7] x D — R, which are measurable with respect to the o-algebra
B([0,T]) ® B(D) and equipped with the norms

T
0]l Lo o, 7w=0 (D)) = (/0 ||U|€vs,q(D>dt>
p/q 1/p

T
/ Z / |0%v|?dx dt ,
0 D

lal<s

1/p
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and

0]l Loo 0,7;w (D)) = ess sup [|[v]lye.a(py.
[0,7]

When ¢=2, we can similarly define other spaces L, (Q; H*(D)), L"(0,T; L%(€;
H*(D))) and LP(0,T; H*(D)).

2.2. Stochastic optimal control problem

We will consider the following control problem governed by random parabolic equa-
tions with constrained control:

T T
min7(0) = ming [ By —vallao)it+ 5 [l )
subject to
Oy(t,x,w) — V- [a(z,w)Vy(t,z,w)] =u(t,z), (t,z,w)€[0,T]x D xQ,
y(t,z,w) =0, (t,z,w) €[0,T] x 9D x Q,
y(0,z,w) =0, (x,w) € D x Q.

(2)

The operator V means derivatives with respect to the spatial variable x € D only.
Where J is a cost functional, y : [0,7] x D x Q — R is the state variable, y4 :
[0,T] x D — R is a given target solution, a : D x  — R is a random function with
continuous and bounded covariance function, w : [0,7] x D — R is a deterministic
control, a and u are assumed measurable with respect to the o-algebras (B(D)® F)
and B([0,T])®B(D), respectively. a is a positive constant measuring the importance
between two terms in J. The convex admissible set K is given by

K = {u e L*0,T; L*(D)) : u(t,z) > 0,V (t,z) € [0,T] x D}, (3)
or

= u 2 L2 N U xr)ax .
K—{ € L2(0,T; I2(D)) /D (t,2)d zo,we[o,T]} )

Although the objective functional 7 in (1) contains stochastic function y subject
to (2), its outcome is deterministic by using the expectation E. Besides, in order to
guarantee the existence and uniqueness for the solution of (2), we assume that the
diffusion coefficient a is bounded and uniformly coercive, i.e., there exist positive
constants amin and amax such that

Amin < a(z,w) < amax, a.e. (x,w) € D x Q. (5)

Then, with the two assumptions (3) and (5), the existence and uniqueness of a
solution y for (2) can be proved [Nobile and Tempone (2009)]. Further, to ensure
regularity of the solution y with respect to = we assume also that a is globally
Lipschitz in D x Q.
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In the following, we will take the state space Y = L2(0,T;L?(Q; H}(D)))
and the control space U = L%*(0,T;L?*(D)), let Z = L?(0,T;L*(Q;Hi(D))) N
H'(0,T; L*(%; L2(D))). Let

Aly,v] = E/ aVy-Voudr, Yy, veY, (6)
D
[u,v]zE/ uvdr, Yu€eU, veY, (7)
D
and
Oy, v] = E/ Owyvdz, NYyeZ, vey. (8)
D

Then, a weak formulation for the state equation (2) reads: find y € Z, such that

[0y, v] + Ay, v] = [u,v], YveY, te(0,T], ©

y(0,z,w) =0, V(z,w) € D x Q.
Therefore, the optimal control problem (1)—(2) can be restated as:

. o1 T]E 9 g+ @ T 9 J
min 7 () = min 5 [ E(ly— walep)at + 5 [ bt (0)

subject to

[Ory, v] + Aly,v] = [u,v], VveY, te(0,T], ()

y(0,z,w) =0, V(z,w) € D x Q.

By the theory of optimal control problem [Lions (1971)], the existence of an
optimal solution for (10)—(11) can be proved.

2.3. Stochastic optimality system
Let

Ty w) = lim L) = I

s—0t S

(12)

denote the directional derivative of functional J at w € K along the direction w €
K. According to the Lions’ theorem Lions (1971), there exists a unique minimizer
u € K, which satisfies the following variational inequality

J'(u)(w—u) >0, VweEK. (13)

Theorem 2.1. It follows from Lions [1971] and Fursikov [2000] that the optimal
control problem (10) and (11) has a unique solution (y,u) € Z x K. Furthermore,
a pair (y,w) is the solution of (10)—(11) if and only if there is a co-state variable

1650028-6
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p € Z, such that the triplet (y,p,u) satisfies the following optimality system:
[Ory,v] + Aly,v] = [u,v], VveY, te(0,T],
—[0w,d] + Alg.pl = [y —ya.ql, VqeY, t€(0,T],

T (14)
/ [p+ au,w—u]dt >0, YVweK,
0
Ylt=o = 0; ple=r = 0.
Proof. Let J(u) = g(y(u)) + j(u), where y(u) is the solution of (2) and
e 2 ; a [T
9(y(w)) = 5 ; E(ly = yallzz(py)dt,  j(u) =5 ; [ul[z2(pydt.
Then, the optimal condition (13) is
7 (w)(w—u)+ gly(u)) (w—u) >0, YweK.
We have
. .1 .
) ) = T (it st~ w) — )
1(a [T
— 1 - hd _ 2 _ 2
Jim (2 /0 D(\u+ s(w—u)|” — |u] )dxdt)
T
:/ [au, w — u]dt, (15)
0

9(y(w)(w—u) = lim l(g(y(u +s(w —u))) = g(y(u)))

s—0t S

s—0t S

T
lim 11@(% L[ <|y<u+s<w—u>>—yd|2—y(u)—yd2>dxdt>

T
= / [y (u)(w — u),y — ya]dt. (16)
0
Now, we compute y'(u)(w — u). From the state equation (11), we have

T T T
1 </0 [(Dry(u + sw) —aty(u)),v]dt—i—/o A[y(u+sw)—y(u),v]dt> :/0 [w, v]dt.

S

Letting s — 0, we have

T T T
/O [ (w)(w))e, ] + / Ay (w)(w)), o] = / o, w]dt. (17)
Define the co-state p satisfying

—[0w,ql + Alg,p) = [y —va,ql, VqeY, te(0,T],
P |i=r= 0.

1650028-7
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Letting v = p in Eq. (17), we have

T T T
/ [ — u, pldt — / [y () (w — w), ypldt +/ Aly' () (w — ), pldt
0 0 0 (19)

T
=A[y—wwﬁmw—th

then,

T T
waW@w%O=A[y—mwﬁmw—umﬁ=é[w—wﬂﬁ- (20)

Therefore, the optimality condition is
T
J'(u)(w—u):/ [p+au,w—uldt >0, YweK. (21)
0

It is known that the inequality (21) is just the necessary and sufficient optimality
condition. |

3. Finite-Dimensional Representation of Model Control Problem
3.1. KL expansion of stochastic fields

Consider a stochastic function a(z,w) with continuous covariance function
Covla]: D x D — R. Let {(An,bn)}52, denote the sequence of eigenpairs
associated with the compact self-adjoint operator that maps g € L?(D)
[ Covla](z,-)g(z)dz € C°(D). Its nonnegative eigenvalues satisfy Ay > Ag > -+ >
0and Y75\, = [ p Var[a](z)dz. The corresponding eigenfunctions are orthonor-
mal, i.e., [}, bi(2)bj(x)dx = ;5. The truncated KL expansion [Ghanem and Spanos
(1991)] of the random function « is

N
ay(z,w) = Ela](z) + YV Aubu(z)én (W),
n=1

where the real random variables, {£,}22,, are mutually uncorrelated, have mean
zero and unit variance, and are uniquely determined by &, (w) = \/%\7 Jpla(z,w) —
E[a](z))by (z)dx. Then, by Mercer’s theorem, we have

sup, < pE[(a — an)?](x) = sup,cp(Var[a] — Varfay])(z) — 0, as N — oo.

Assumption 3.1 (finite-dimensional noise). In what follows, we assume that
the random functions a(z,w) depend only on an N-dimensional random vector &,
such as, the case when we use a joint N term KL expansion to approximate the
given coefficients a(x,w) = a(z,{(w)), where £ = {(w) = (§&1(w), ..., v (w)) with
independent components &;(w),i =1,..., N € N. Let I'; = () C R be a bounded
interval for i = 1,..., N and p; : I'; — [0, 1] be the probability density functions of
the random variables &;(w),w € . Then we can use the joint probability density
function p(§) = Hfil pi(&) for random vector £ with the support I' = Hf\il I C
RY. On T, we have the probability measure p(£)d¢.

1650028-8
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After making Assumption 3.1, by Doob—Dynkin’s lemma, we know that y, the
solution corresponding to the random PDE (2), can be described by just a finite
number of random variables, i.e., y(t,z,w) = y(t,z,& (w), ..., En(w)). The number
N has to be large enough so that the approximation error is sufficiently small. Then,
we can replace the probability space (£, F, P) with (", B(T'), p(§)d€) involving only
the image set I' € RY. We can also define the space L"(0, T’; LE(T; W#4(D))), which
contains all the functions v : [0,7] x D x I' — R, that are measurable with respect
to the product o-algebra B([0,T]) ® B(D) ® B(T") and equipped with the norms

T r/p 1/r
(/ (/ |v||€vs,q(p)p<s>d§) dt)
p/q r/p

/0 / / |0%v|?dx p(&)d¢ dt

|| <s

HU”Lr(o,T;Lfg(F;WW(D)))

1/r

Similarly, we can define the space L (T'; W*4(D)), containing all functions v : D x
I' — R, that are measurable with respect to the product o-algebra B(D) ® B(T")
and equipped with the norms

H’U”Lg(F;WW(D))

p/q 1/p

-(/ |v||€vs,q(mp<£>d5)1/p= [ X [ o) serie

|| <s

3.2. Finite-dimensional representation of control problem

With the above assumption, we can reformulate the stochastic optimal control prob-
lem (1)—(2) as a deterministic PDE-constrained optimization problem as follows:

T
win ) =mind [ [ viioyo@ica+ 5 [ e @
0

u€K uek 2
subject to
Oy(t,x,§) = V- [a(z, ) Vy(t, z,8)] = u(t,x), (t,x,§) €[0,T]x D xT,
y(t,x, &) =0, (t,z,€) €[0,T] x D x I,  (23)
y(071‘7£):07 (x,f)EDXF

Here, it is natural to assume the aforementioned assumption (5) changed to be
Amin < a(x,€) < amax, a.e. D xT, (24)

and to ask the convergence of the truncated deterministic problem (23) to the
original stochastic problem (2).

1650028-9
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We will take the deterministic state space Y, = L*(0,T; L2(T; Hy(D))) and
Z,=L*(0,T; L(T; Hy(D)))NH' (0,T; L2(T; L*(D))). Corresponding to Eqs. (2.5)~
(2.7), we have:

A[y,v]p:/F/DaVy~Vvdxp(§)d§, Yy, vey,, (25)
fu, o], = /F /D wdep(€)dé, VueU, vey, (26)

and
[Ory, v] // Owyvdap(§)ds, VYye Z, vey,. (27)

Then, we can also reformulate the optimal control problem (22)—(23) by:

ueK ueK 2

T
min 7 (u) = min = / [y =walitecoo@dsar+ 5 [ ullapar @9
0

subject to

{[@y,v]p + Ay, v], = [u,v],, Yvey, te(0,T], (20)

y(07‘ru£):07 V(x,f)GDXF

With assumption (24), the existence of solutions to (28)—(29) can be proved [Lions
(1971)].

Similarly to derive of (14), the optimal control problem (28)—(29) has a unique
solution (y,u) € Z, x K. Furthermore, a pair (y, ) is the solution of (28)-(29) if
and only if there is a co-state variable p € Z,, such that the triplet (y, p, u) satisfies
the following optimality system:

[Ory,v], + Aly,v], = [u,v],, YveZ, te(0,T],
—[0p,dlp + Alg,plp = v —va, ),y Ya€ Z,, t(0,T],

T
/ [p+au,w—u],dt >0, YweK,
0

Ylt=0o = 0;  pli=r = 0.

It is known that the inequality in (30) is just the necessary and sufficient optimality
condition.

The explicit solution of the variational inequality in (30) depends heavily on the
choice of the joint probability density p. In the simple case, if the joint probability
density p is uniform on I', we have the following explicit solution

f[o T]xDpr}

1 1
u = max {0, 5 (p)} or u " (p) + max {0 1

« f 0,T]x DxT
for the case (3) or (4), respectively.

1650028-10
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4. Stochastic Galerkin Method
4.1. Finite element spaces on D and T

First of all, we consider finite element spaces defined on spatial domain D C R<.
Let {75}n>0 be a family of regular triangulation of D such that D = (J o7, 7. Let
hs = max,e7, hr, where h, denotes the diameter of the element 7. Consider two
finite element spaces V,, C H3(D) and W), C L?(D), consisting of piecewise linear
continuous functions on {7} } and piecewise constant functions on {7}, }, respectively.
We assume that V3, and W), _ satisfy the following approximation properties [Ciarlet

(2002)]:
(i) for all ¢ € H?(D) N H}(D), there exists
4)}1161%} 16 = n. a2 (D) < Chs||9llm2(D), (31)

(ii) for all ¢ € Hi (D), there exists

. 16— ¢n. 20y < Chs |8l 1 () (32)

where C' > 0 is a constant independent of ¢ and hs.

Next, we consider a finite-dimensional space defined on I' € R [Babuska et al.
(2004)]. Let T' be partitioned into a finite number of disjoint boxes BN C R¥ that
is, for a finite index set I, we have

r=|JB"= UH (al, b)),

i€l el j=1

where BN N BN = @ for k # 1 € I and (a,b}) C T;. A maximum grid size
parameter 0 < h, < 1 is denoted by

h, = max{|b] —al|/2:1<j < N andi e I}.

Let S, C L?(T) be the finite element space of piecewise polynomials with degree at
most p; on each direction &;, thus if ¢y, € Sh,, then ¢y, |y € span{r[legjj inj €
N and n; < p;}. Letting the multi-index P = (p1,...,pn), we have (see [Ciarlet
(2002)]) the following property: for all ¢ € CPT1(T),

| pﬁliﬁ“m(r)

TIES) I (33)

inf |[Y =Y, |2y < mz

Vh,. €Sh,. =

where v = mini<,;<n{p; + 1}.

4.2. Tensor product finite element spaces on D X T’

Combining spaces Vj,_, Wj,, and S, together, we now define tensor product finite
element space on D x I'. Let Y, = V. x Sh, .
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We define the H}(D)-projection operator Ry, : H(D) — Vj,, by

(Bn,®,én.)m2(py = (6,00 )u2(py, Von, € Va,, Vo€ Hy (D), (34)
the L?(D)-projection operator IIj,_ : L2(D) — Wj,_ by
(Ih, b, 01, )12(p) = (6, 0. )r2(Dy, YV On, € Wh,, V¢ € L*(D). (35)
Similarly, let the L?(I')-projection operator I, : L*(T') — Sj, by
(Ip, 0, ¥n, ) p2ry = (V%0 )12y, V¥, € Sh,, Vo € L*(I). (36)
It follows from (31) that for all ¢ € H*(D) N H} (D)
¢ — Rl () < Chsl|9ll 2Dy, (37)
and from (32) that for all ¢ € H*(D)
¢ — 1T, bl 2Dy < Chsl|9ll 1y (38)
Similarly, by (33) we obtain that for all 1y € CPT1(T)
P+
146 = Tl aqry < B Z'ap—f”l),” (39)

j=1
Using the inequalities (37) and (39), we have the following approximation prop-
erty [Babuska et al. (2004)]: for all 7 € CPTY(T; H2(D) N HY (D))

N jog

inf |7 —Tnlle2imipy) < € hsll¥ll L2 m2(py) +’WZ
Yn€Yn Jj=1

yHLz(I‘;Hé(D))
(pj +1)!

)

(40)

where positive constant C is independent of hg, h,, N and P.

In order to obtain the separate error estimates in D and I', we define a projection
operator P, which maps onto the tensor product space Wy, x Sp,.. It is defined as
follows

Pup =T, M, = 1y, I, Vo € L*(T; L*(D)). (41)
Furthermore, we use the following decomposition
¢ = Pop = (¢ =) + I, (I =1, )p, Yo € L*(T;L*(D)). (42)

To derive the error estimates, we need assumption and lemmas on the regularity as
follows:

Assumption 4.1. Let y, p, u satisfy the following regularity condition
y.p € L2(0,T; CP¥1(Ts HX(D) N HY(D))) 0 HY(0, T3 CF+(T; L2(D)))
and

u e L*(0,T; H'(D)).
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4.3. Galerkin approrimation scheme

We will use Yy, = L2(0,T;Vj,, x Sp,) N HY0,T; Wy, x Sp,) for the state variable
y and co-state variable p, U, = L?(0,T; W) for the control variable u and let
Ky = L*(0,T; Wy, N K) be the finite element space of the admissible set. Then,
the semi-discrete finite element approximation scheme for optimal control problem
(28)-(29) is:

min jh(uh)
up €Kp,

. 1 T 2 « T 2
=g F(Hyh—yd\|L2(D))P(€)d§dt+5 ; [unllz2(pydt | (43)

subject to

[atyhavh]p + A[yhvvh]p - [uhvvh}pv V’Uh € th te (OvT]v
yn(z,0,€) =0.
Similarly, it is known Lions (1971) that the control problem (43)—(44) has a unique

pair solution (yp,un) € Yy, x Kj, if and only if there is a co-state variable pj, € Y,
such that (yn, pn, un) € Y, x Yy x K, satisfies the following system

(44)

[atyhvvh]p + A[yhv’vh]p = [uhv’vh]pv v’l)h S th te (OvT]7
—[0ephs qnlp + Algn, Prlp = [Wn — Yas qulp, Vg € Yi, t € (0,77, (45)
fOT[ph + aup, wp — uh]pdt >0, VYwye€ Ky CUy.

We have the following formulations for the discrete directional derivative of func-
tional J:

T

T (un)(wr) = / ([pn, wnlp + aun, wp]p)dt,  Vwn € Ky CUp,  (46)
0

T (up)(wp, —up) >0, Yw, € Ky C Up. (47)

Let 0 = tg < t1 < tg < -+ < tpy = T be a partition of interval [0,T], I =
(tk—1,tr), Aty = ti — tp—1 is the step, let At = max;<p<iprAty. We consider a
particular case of the space Sp, with no partition of I, i.e., only the polynomial
degree is increased. Here, we use the tensor finite element space Sp,, = ®2[:1 Zbr,
where the one-dimensional global polynomial subspaces Z¢» = {v: T, - R:v €
span(1l,yn,...,yE")},n = 1,..., N. Let {pi(z)} be the basis of the space V},_, and
{¥;(€)} be the basis of the space Sy,. Let V¥ = Y}, |;—, and K} = Kp|i—,. Then
the full discretization of the control problem (43)—(44) is to find (yF, uf) € V¥ x KF,
such that

M
) 1
min, Jn(un) = 5 > Atillyh — yallEa(rira(py) + alluil72(p) (48)
Up, h k=1
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satisfy
k k—1
)
%7% +A[y}’fi,1}h]p
P 49
=[uf,vpl,, Yo, €YE k=1,2,..., M, (49)
yn =0,
where

k= vikei(x);(8),
ij

P =D pigepi(@)15(6), (50)
ij

u’,j = Z Uik i ().
i

If (yF,uf) € V¥ x K} is the unique solution of the optimal control system (48)-

(49), then if and only if there is a co-state variable pﬁ_l € Y}f_l, such that (yr,

it ) € YFE < VP x K satisfies the following system:

'yk_ykq
Th Zh ol 4+ AF, o], = [, o), Yon €YF k=1,2,..., M,

k
p —D _
h h +A[Qh7pﬁ 1]p (51)

. dp
=W —vya,qnl,, Yan eV, k=M,M—1,...,1,

pEt + auf,wy, —uf], >0, Yw, € KF, k=1,2,..., M.
5. A Priori Error Estimate

In order to derive a priori error estimate, similarly to the continuous case, we need
an auxiliary problem:

M
Thw)w —u) = 3" Aty (o~ () w — ¥,
k=1

+afu® v —u*],) >0, YweKcCU, (52)
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where (y¥(u), pk(u)) € V;F x Y} is the solution of the system:

k k—1
u
[w + Al ), onl,
172
P
= [uF,vp),, Vo €YE k=1,2,..., M,
yh(u) =0,
k—1 i (53)
—pi(u
[p—h WP 4+ Alan,
ty
P
:[yili(u)_ydvqh]pv vqheyhkv k:MvM_]-v"’u]-v
pM(u) = 0.
For y € Y}, we can define the norm about discretization time ¢,
M P
H|yH|LP([O,T];Lg(F;Hé(D))) = (Z Atk“y(tkaxag)|i%(F7Hé(D))> ;
k=1
for 1 <p<oo,if p=o0,let
H|yH|L°°([o,T];L3(F;H3(D))) = maXlSkSM”y(th$7§)||L3(F;H(}(D))7
similarly, we can define |||ull| »(o,7);22(py) for u € LP([0,T]; L*(D)).
Lemma 5.1. Under the definition of (52), we have the following estimate:
Tn(w)(w —u) = Ty (u)(w = u) = af|w =l Z20, 712Dy - (54)
Proof. From (52), we have
Tn(w)(w —u) = Jy (u)(w — u)
—ZAtk — i M), wh — M, + afwh —uF Wb —uF]). (55)

Noting that (53), we have

M
> Aty (w) = piH(w), wb —ut,
k=1

M
(AtRAlyf (w) — yf (), pf = (w) — pf = (u)],

k=1
[(wh(w) = i () = (g~ (w) =y~ (), Pk~ (w) = pi~ ' (w)],)

_|_
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M
Z AtkA yh - y}]:(u)a y}li(w) - ylli(u)}ﬁ)
k=1

+ [ph (w) = Pl (u), yh (w) — yi ()],

— [PE T (w) = i (w), yp (w) — yrH(w)],) > 0.
(56)
Oa

Lemma 5.2. Let (y¥,pf) and (y¥(u),pk(u)) be the resolution of (51) and (53),
respectively, then

lyn = yn (W)l o< (o,1: L2 (s (D)) < Clllw = wnlll 2o, 1y;22(D)), (57)

llpn — ph(“)me([o,T];L?(F;Hg(D))) < Olfju — “h|||L2([0,T];L2(D))~ (58)

Proof. Let v¥ = y¥ — y¥(u) and §* = p} — pf(u). By (51) and (53), we can get

|2 (0= ] ADF o, = B~ o (59)
2O | AL = Bkl (60)

In Eq. (59), denoting diy* = = (v* —~*7') and letting vy, = diy*, we have

Atgldiy®, dev*], + AV AR, = AR AR, + Atg[up — u, diy®],. (61)

Then, by
Atildiy", dy*], + Ay, 4", < %(Ah’“w’“]p+A[v’“*1,v’“’1]p
+ Atgluf —uF,uf — uF], + Atgld®, dnt],),
(62)
we can get
A[’Yka'Yk}p = A['Yk_lv'Yk_l]p + Atk[“ﬁ —u”, u'ﬁ - “k]p- (63)

Then, for 1 < k < M, we have

Al 7¥ 1, < AR, A0, + ZAt [uf, = w32 (py < M= wnllF2qory 2oy (64)

Combining the last inequality with Poincare inequality, we can get (57).
In Eq. (60), letting pj, = d6", we can get the inequality (58) by the same proof
of the inequality (57). O
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Lemma 5.3. Let (y,p,u) be the solution of the optimal control problem (30) and
(Yn, pn,up) be the solution of the discretized problem (51). Let Assumption 4.1 be
fulfilled. Then the following estimate holds:

v —wnlllL2(0.7:L2(D))
< Clllp = pr(W)lll 220,722 (T;L2(D)))
+ Chs{lllulll 20,m;2 (1 (D)) + Pl 220,702 (0312 (D)) }

|||ap7 P|||L2(L2(F;L2(D)))
+ CAH([10p/0t| 20,723 002 (0)y) + ChY Z ’

= (pj +1)! ’
(65)
where v = mini<;<n{p; + 1}.
Proof. From (47), (52) and (54), we know
Cllfu— Uh|||2L?(o,T;L2(D))
< Ji(u)(u = un) = Ty (un) (u = un)
M
:ZAtk[au + i (w), uF —uf], ZAtk lauf +pi~t uf —uf],
k=1
M M
= Aok +pFub —upl, + > Atglauf + pf Tt uf — Ty ub],
k=1 k=1

+ ZAtk[auﬁ +pf T T ub — Wb, ZAtk[pﬁ_l(u) — Pk =l

M
SZAtk[auﬁﬁ-pﬁfl,Hhsuk—u —|—ZAtk (u) — ¥, u —uf],,
k=1
(66)
M
ZAtk[pﬁ_l,HhSuk —uF], = ZAtk[pk_l,Hhsuk -k,
= k=1

+ Z At [t — pE = (w), Wb — 10, 0],

+3 Atlpp T (w) = pf Tt uF — T, ub,. (67)
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Note that
M
Z Aty ol 10, u® —uF], =0 (68)
k=1
and
M M
D AP T b — UM, = Y AR = P(ph ), T u =W, (69)
k=1 k=1

combing (58), (66)—(69) with triangle inequality and Cauchy—Schwartz inequality,
we have

Cllu— Uh|||2L2(o,T;L2(D))

M M
< C(e) Z Aty ||u? =T, u¥ (|72 py + C(e) Z Atyllp" ™t = Pup" 72020y
k=1 k=1

M
+C(e) Z Aty |t = pyH (w) 1Z2(r.22(0))
k=1

M
+C(e) Z Atyllp*~t = Pk”zLZ(F;Lz(D))
k=1
M M
+ Ce Z Atk”PZﬂ(W - Pffl ||2L?(F;L2(D)) + Ce Z Atkllu’“ - UZ”zL?(D)'
k=1 k=1
If € is small enough, from (37)-(40), we can get (65). |

Lemma 5.4. Let (y,p,u) be the solution of the optimal control problem (30) and
(yn(uw),pn(u)) be the solution of the auxiliary problem (53). Then, the following
estimates hold:

Iy — yh(u)|||Loc(0,T;L2(F;H1(D))) < C(hs + Ab), (70)
and
[P _ph(u)H|L°°(O,T;L2(F;H1(D))) < C(hs + Ab). (71)
Proof. Let
1 B oyk gk — gkt
~k _ .k .k =k _ _* =k _ k-1 k_ 0y Yty
TV ) A = R T = e T TRy (72)
<k K ok = <k—1 L —k—1 _—k o1 _8pk_1 B pk_l _pk
0 =p" = puw),dd = (0 5, = L
From (30) and (53), for Vv, gn € Y, we can get
[dtﬁka 'Uh]p + A[7k7 ’Uh]p = —[gk’ Uh]p, (73)
= <k—1 <k—1 _ B
(@8l + Alans 3 o= B anl, — [ anl (74)
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For the equality (73), letting v;, = d;7*, we have
||dt7k||2Lg(r;L2(D)) + ARF*, d7,
= [d7", di(y" — Riy")o + A" di(y® — Ruy™)],

- [gka dt(Rhsyk - y}li(u))}m (75)
Then, for 1 <7 < M, we can get

ZAtkHdw 122 rs 20y + A[_’” 7

k=1
1 - _
< SAR ANy + D AtldeT" di(y" — By,
k=1
+ ZAtkA'Y L (y* — Ri,y") ZAtk s di (R, y" = yp(w)],. (76)

k=1

Using Cauchy—Schwartz inequality and (37), we have

D AT de(y* — Ruy®)],
k=1

I _ oy — Ruy) |?
< 1 ZAtkHdt'VkH%%(I‘;Lz(D)) +C HT
k=1

L2(0,T;L*(T;L2(D)))
1 < _
<7 Z AtkHdeHQLg(r;Lz(p)) + Ch Nl 3 0,722 (0 (D) (77)
k=1
and

> ABARY duly" = Bay*)l,
k=1

IN

y — Ry ||
ot

1 e
12 At AR, + C

k=1 L2(0,T;L%(T;HY (D))

1« e
1 Z AtkA[7k7 “Yk}p + Ch?HyH%Il(O,T;L"’(F;H"’(D)))' (78)

Noting that Ry, y* —yf(u) = (Ra,y" —*) + (¥* — yj(«)), we have

IN

ZAtk ,di(Rp, y* _yh( Do

2 2

%y
ot?

1 _
<1 > Atkl|dt7k||2Lg(r;L2(D)) +C(At)?
k=1 L2(0,T;L2(T;L2(D)))

+ ORI 3n 0,7:02(r. 01 (DY) - (79)
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Combining inequality (76)-(79) with (24), we have

> AtkHdﬁkH%g(r;Lz(D)) + AR A,
k=1
%y |?

< AR, + CAY? | 53

L2(0,T;L2(I;L2(D)))

+ Ch§(||y||%ll(o,T;L2(F;Hl(D))) + HyH%ﬂ(O,T;LZ(F;HZ(D))))

+C Y AGARFE . (80)
k=1
We can get (70) by the Gronwall Lemma.
For Eq. (74), letting ¢, = Etgk_l, we have

k1 ko1 ko1
[[d¢d ||%g(r;L2(D)) +Aldio™ 00 ],

— k-1 = - —k—1
=[did ,de(p" " = Rup" )], + Alde (0" — Rup" 1), 0

lp
+ 7 de(Ra, "t = pl 7 @)y = [T de(Ri p = o ()], (81)

Then, for 1 <r < M — 1, we have

M
— k-1 1 —r —=r
Z Atk”dt6 ||%3(I‘;L2(D)) + EA[(S ,6 }p

k=r+1
M — k-1 —
< Y ARdS A" - Rt
k=r+1
M - k-1
+ Y A A = Ryt )8,
k=r+1
M p—
+ Y A (R g = W),
k=r+1
M p—
= > AR p T =0 W)l (82)
k=r+1
We can get (71) by the same proof of (70). Lemma 5.4 is completed. O

Combining the results of Lemmas 5.2, 5.3 with 5.4, we have the following error
estimate with respect to y — yn, p — pp, and u — uy,.

Theorem 5.5. Let (y,p,u) be the solution of the optimal control problem (30)
and (Yn, ph, un) be the solution of the discretized problem (51), respectively. Assume
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that the conditions of Lemmas 5.1-5.4 are valid. Then, the following error estimate
holds:

Z v = vnlll Lo (0,72(r; 0 (D)) + |2 = wnlll L20,7522(D))
v=yY,p

N
<C | he+At+1)Y

Jj=1

i1
||3§;+ p||L2(F;L2(D))

OES =

where v = mini<;<n{p; + 1}.

6. Numerical Experiments

In this section, numerical examples are presented to demonstrate our proposed
Galekin formulation in Sec. 4 for stochastic control problem.

For simplicity in calculation, we take T' = 1, take space domain D = [—1,1]
and each stochastic domain I'; are [—\/5, \/§] after finite-dimensional representing
of stochastic fields. We assume each probability density function on I'; is uniform,
e, pi(&) = ﬁ,i =1,...,N. Thus, the joint probability density function p(§) of
random variable £ = (1,82, ...,&N) is W In the following numerical example,
we will do the same KL expansion as Lee and Lee [2013] for random coefficient
a(z,w), i.e.,

N
an(z,w) = Ea(z,w) + Z VA (2)&n (W),
n=1
where (A, $n)1<n<n are eigenpairs of

/ el m2lg, (@) dry = N (w2).
D

In the following two examples, we consider the model problem:

min J (u) = min 1/1/ﬁ sl wall dsdt+9/llul2 dt
uweK wek \ 2 )y Sz (23BN Y~ YallL2(p) 2 J, L2(D)

(84)
subject to
yet, @, €) = V- [pa(, ) Vy(t,z, &) = u(t,z), = €[-1,1], €€ [-V3,V3V,
y(t, £1,£) =0, tel0,1], €€ [-v3,V3"Y,
y(0,2,8) =0, ve[-1,1], £€[-V3, V37,
(85)

where oo = 1, u = 0.01, the target solution yq = 10(sin(7x) + sin(27x)) sin(wt), the
objective is to minimize the expectation of a cost functional, and the deterministic
control is of the constrained type. For convenience, we take a uniform partition to
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time ¢t and take At = 1/64. We can get from Figs. 1-4 and Tables 1-4 that the
values of E(fol llyn — val|?dt) and Jp,(up,) are decreasing and tending to stable as the

value of space step h getting smaller.

Example 1. The deterministic control is constrained by the condition u(t,z) >
0, (t,z) € [0,1] x [-1,1].
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3 T 3 T T T
—+—h=1/4 —+— h=1/4
—S—h=1/8 —6—h=1/8
o5 || ——n=1116 1 ,5l|—n=16 |
) —*—h=1/32 ) —*—h=1/32
2t 1 ol ]
15r 1 15 1
1 ] 1 ]
0.5 - 4 0.5 4
0 .
-1 -0.5 0 0.5 - -0.5 0 0.5
X X

Fig. 1. N =2,E(a) =29, P = (1, 1)(left), P = (2,2)(right), t = 0.25.

Uy YUy
25 T T T 25 T T T
[E———y) [E———y)
——h=1s8 —o—h=1/8
——h=1/16 ——h=1/16
2F| —*%—h=1/32 - 2+ —*—h=1/32 -
150 1 150 1
1+ 4 1+ 4
051 1 05 1
2 Z05 0 05 2 205 0 05
X X
Fig. 2. N = 2,E(a) =29, P = (1, 1)(left), P = (2, 2)(right), ¢t = 0.5.
Table 1. N = 2, P = (1,1), E(a) = 29.
N P E(fy llyn —val®) Jo lunl® Tn(un) h
2 (1 97.228177636662 1.31271080762079 49.2704442221414 1/4
2 (1 97.0604801571598  1.3817192589109 49.2210997080353 1/8
2 (1 97.0132898802689  1.40167803466767  49.2074839574683 1/16
2 (1 97.0004594542209  1.4073987415786 49.2039290978997  1/32
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Table 2. N =2, P = (2,2), E(a) = 29.

=

P

E(S) lyn — yall?)

1
Jo llunll®

In(un)

NN NN

A~ s
OOS
NN NN
AN

97.2281773402582
97.0604798453838
97.0132895649192
96.9724591357245

1.31271094248455
1.38171939856792
1.40167817538437
1.40742354166477

49.2704441413714
49.2210996219759
49.2074838701518
49.1899413386946

1/4
1/8
1/16
1/32

2. The deterministic control is
fol u(t,x)dx > 0,Yt € [0,1].

constrained by the condition

Int. J. Comput. Methods Downloaded from www.worldscientific.com
by SHANDONG UNIVERSITY on 03/14/16. For persona use only.

Fig. 4. N = 2,E(a) = 29, P = (1,1)(left), P = (2, 2)(right), ¢t = 0.5.
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Table 3. N =2, P = (1,1),E(a) = 29.
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N E(fy llyn — val®) Jo llun? In(un) h
2 (1 1 94.0152215170601 2.93418115943041 48.4747013382452 1/4
2 (1,1 93.6219166191258 3.12368575649849  48.4054244495752 1/8
2 (1,1)  93.5143904232277  3.17564276220522  48.3450165927164 1/16
2 (1,1)  93.4869404750315 3.18893256783526  48.3379365214334 1/32
Table 4. N =2, P = (2,2),E(a) = 29.
1 2 1 2
N P E(fy llyn — vall*) Jo llunll Tn(un) h

2.93418142605112
3.12368547322781
3.17564247526523
3.18893228002457

) 94.015220933088

2 48.4747011795695 1/4
2)  93.6199366284173

2

2

48.3718110508225 1/8
48.3440108754038  1/16
48.3369268213724  1/32

) 93.5123792755425
) 93.4849213627202

NN NN
A~~~
NN NN
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