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Abstract

estimation, P-glycoprotein

The ability to define the regions of chemical space where a predictive model can be safely used is a necessary condi-
tion to assure the reliability of new predictions. This implies that reliability must be determined across chemical space
in the attempt to localize “safe”and “unsafe” regions for prediction. As a result we devised an applicability domain
technique that addresses the data locally instead of handling it as a whole—the reliability-density neighbourhood
(RDN). The main novelty aspect of this method is that it characterizes each single training instance according to the
density of its neighbourhood in the training set, as well as its individual bias and precision. By scanning through the
chemical space (by iteratively increasing the applicability domain area), it was observed that new test compounds are
successively included into the applicability domain region in such a manner that strongly correlates to their predictive
performance. This allows the mapping of local reliability across different locations in the training set space, and thus
allows identifying regions where the model has low reliability. This method also showed matching profiles between
two external sets, which is an indication that it performs robustly with new data. Another novel aspect in this tech-
nique is that it is paired with a specific feature selection algorithm. As a result, the impact of the feature set used was
studied from which the top 20 features selected by ReliefF yielded the best results, as opposed to using the model’s
features or the entire feature set as commonly done. As the third novel aspect, in this work we propose a new scoring
function to help evaluate the quality of an applicability domain profile (i.e, the curve of accuracy vs the applicabil-

ity domain measure in question). Overall, the RDN showed to be a promising method that can correctly sort new
instances according to predictive performance. As a result, this technique can be received by an end-user as proof of
concept for the performance of a QSAR model in new data, thus promoting the user’s trust on the QSAR output.

Keywords: QSAR, Applicability domain, P-gp, Prediction reliability, k-Nearest neighbour, dk-NN, Kernel density

Background

Any chemistry-response relationship model needs to
demonstrate not only good accuracy but also reliability of
external predictions. To address the latter, it is necessary
to establish chemical space boundaries where the model
has reliable and defined performance. These boundaries
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are commonly known as the applicability domain (AD),
and define the extent to which a quantitative structure—
activity relationship (QSAR) model (reliably) tolerates
new compounds [1, 2]. As pointed out by Eriksson [1],
end users of the model will only trust the model’s predic-
tions if they have evidence that the chemical space used
for training matches the one of newly tested compounds.

There are several reviews and comparative studies on
AD methods available in the literature [3—8], which focus
on either distinguishing inliers from outliers, or high
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accuracy compounds from low accuracy compounds.
Contrarily to the modelling task where a response vari-
able can be used to assess the predictive ability of the
model, there is no response variable for the ¢rue inclusion
in the AD given its subjective nature. As a consequence,
the characterization of a model’s AD is exploratory by
nature. So, a main question must be answered whenever
any characterization of this sort is put in place: Will this
applicability domain be useful in identifying reliable pre-
dictions in new queries?

So far, there is no clear focus in the community for
assessing whether an AD established with training data is
able to successfully point out if a new prediction may be
accepted or not. QSAR modellers often implement any
given AD method and merely determine the portion of
external data (and its accuracy) falling within the estab-
lished boundaries, without any assessment of the ability
of the AD boundary to differentiate between “accept-
able” and “unacceptable” new predictions. Therefore, it is
impossible for the user to validate and trust an arbitrary
threshold. Applying a threshold and showing that inside
that threshold, data have higher accuracy as carried out
in some previous work [8, 9] provides useful information,
but ignores the possibility of localized inner “holes” in
the chemical space where the model is unreliable.

As mentioned before, when defining the AD there is no
way of objectively determining the accuracy of forecasts
on inclusion/exclusion criteria of new queries within the
AD. However, one is able to estimate the utility of a cer-
tain AD in a real world scenario by applying it to naive
data.

A useful AD should relate similarly to the predictive
reliability in the training set and in an external dataset.
To illustrate this notion, let us consider an AD that shows
a constant degradation of accuracy with increasing dis-
tance to the AD core (here the term “core” can be inter-
preted as the sum of one or more centroids in the AD,
where predictive confidence is maximum). Even though
this apparently depicts data reliably across the structure
landscape, when applied to an external dataset, the rela-
tionship between accuracy and distance-to-model values
output by the AD technique gets inverted, which renders
this AD useless given its unpredictability when handling
new data. This scenario is demonstrated in the “Results”
section, using a kernel density estimation (KDE) AD
method. Ideally, a valid AD would be sufficiently robust
and not affected by changes in dataset, thus allowing the
maintenance of the general AD premise by which a mod-
el’s performance degrades as the queried instances get
farther away from the training chemical space.

The majority of currently available AD methods usu-
ally focus on a single property of the data, for example
similarity, descriptor range, density or response-range
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(or ensemble-range). A list of methods across catego-
ries can be found in the literature [10]. However several
works support the need to combine different properties
(such as response, density and similarity) to achieve a
reliable characterization of a model’s AD [10-12]. Fur-
thermore, most methods address data globally (e.g., loca-
tion with respect to global feature span or density across
global feature set), even though it is well established that
the modelled data can exhibit very different proper-
ties in a local level versus the global level. This has been
explored recently by Sahigara et al. [12] in an attempt to
distinguish predictions according to their reliability. This
work shows a novel approach where local AD is tailored
according to the data density at specific locations across
the model space. This allows a detailed characterization
of the local nature of the modelled data. However, in this
approach, locations in the chemical space are charac-
terized only according to local data density, whereas we
hypothesize that a model’s AD is a function of, not only
the local data density, but also of the local reliability, i.e.,
the net effect of local precision and bias.

In this work we propose a new AD method which
combines two other previously published methods—the
STD method [13] and the k-nearest neighbours density
(dk-NN) approach [12]. We have named this technique
reliability-density neighbourhood (RDN). This AD tech-
nique maps external predictions with regard to distance
to the model space while taking into account the reliabil-
ity of nearby training instances, thus accounting for the
variable nature of different data localities both in terms
of multi-dimensional localization (as multiple dimen-
sions are input into the distance calculation) and predic-
tive reliability. Here, we suggest a reliability measure that
is the net result of two distinct effects, bias and precision.
Figure 1 shows a schematic depiction of the RDN AD,
where density and reliability are mapped across chemical

Fig. 1 Applicability domain across two projected variables. Darker
regions correspond to highly dense and reliable regions
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space showing densely populated and more reliable areas
in darker blue, transitioning into white regions of sparse
and/or unreliable data. The other novel aspect intro-
duced with this method is the optimization of the set of
molecular descriptors used as input to compute neigh-
bour distances. This is another important feature to take
into consideration since the AD is only as explanatory as
the ability of its molecular features to chemically distin-
guish mispredictions from correctly predicted instances.
It is important to highlight that the prediction task is
independent of the AD implementation and outcome.

Hence, in this work we introduce three novel aspects
to the topic of AD characterization: (1) exploiting the
role of feature selection in building a high-quality AD,
(2) introducing a new AD technique which takes into
account the individual characteristics of each location
across the training space, namely data density, bias and
precision, and (3) introducing a new scoring scheme to
evaluate the robustness and qualitative value of AD tech-
niques. As a result, we propose the importance of eval-
uating AD robustness for the first time. An R package
with the implementation of RDN is available at https://
github.com/machLearnNA/RDN, allowing an easy and
straightforward installation and use, directly from the R
environment.

The algorithm

To better support the utility of this new technique we will
describe the density k-NN (dk-NN) approach proposed
by Sahigara et al. [12], which was the basis from which
we developed the herein proposed method; we will sub-
sequently build on this explanation to transition into the
RDN algorithm. The novel parameters and their contri-
bution to the overall mechanism of this new technique
will be discussed.

The dk-NN AD proposed by Sahigara et al. [12], uses
the k-NN principle associated with the concept of adap-
tive kernel techniques in KDE to detect local neighbour-
hoods within the data. This approach capitalizes on the
notion that any given dataset can have a very different
behaviour at the local level when compared to the global
behaviour. In this method, the average Euclidean distance
(using standardized descriptors) between each training
compound and its k nearest neighbours is computed,
which is used to calculate a reference value (RefVal) set at
Q3 + 1.5 x IQR (also known as the Tukey’s outlier fence
[14]), where Q3 is the 3rd quartile and IQR is the inter-
quartile range calculated as the difference between the
3rd and the 1st quartiles of the list of average distances.
The neighbourhood width threshold for each individual
training compound (D;) is then calculated as the average
distance to all its training neighbours with distance val-
ues closer or equal to the RefVal. By establishing different
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local thresholds, this addresses the variation of data den-
sity across the dataset.

As we realised the dk-NN AD is limited only by the
degree of emptiness of the different regions occupied
by the data (i.e., a sparse region will render its occupi-
ers a smaller distance threshold, under a given estab-
lished k value, as these instances will have no neighbours
within the average overall distance to the k-th nearest
neighbour), it would be logical to tailor each different
neighbourhood (i.e., coverage width around each train-
ing instance) according to their reliability. To measure
reliability we used both bias and precision as explained
below.

Following the theoretical principle that an ensemble
(set) of models, M, will have a high degree of accordance
and consequently a smaller standard deviation (STD)
for more reliable predictions, one would expect that
regions where a clear, smooth structure—activity relation-
ship is found would generate more robust predictions
that are less susceptible to changes in the learning task
(i.e., changing the data partition within the ensemble).
Alternatively, regions with a less stable landscape will
rely greatly on the data partition used, thus generating
larger differences between different models [15]. How-
ever, as STD values only measure the level of precision,
the rate of agreement between the set of predictions and
the real responses needs to be used to overcome cases of
systematic bias towards an incorrect classification. More
precisely, a systematic bias occurs when the majority of
predictions are close to each other, but all are wrong, as
represented by the black instances in Fig. 2. These predic-
tions would be captured by the algorithm as high reliabil-
ity predictions if only an STD correction was used. As a
consequence, the combination of bias and precision is an
appropriate correction factor for reliability, W..
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Fig. 2 Relationship between agreement and ensemble standard
deviation in the P-gp IV dataset. In this case STD translates into
accordance among a set of predictions (i.e., precision), whereas
Agreement refers to the level of bias in that set of predictions
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Taking this notion into account, we have built upon the
dk-NN algorithm to create the RDN AD method herein
proposed by introducing a weighting term defined in
Eq. 1, which measures the reliability associated to each
training instance.

M — 2 Y: N /Y\

=1 Vim — )i ‘ L

W; = 1—\/2’” 1[\2‘_'”1 L) « g D
STD agreement

where the first term (1-STD) measures precision and the
second term (agreement) measures bias. In this equa-
tion, the weighting factor y;,, is the predicted response
for compound i, output by model m, among M models in
the ensemble; y; is the average prediction output by the
ensemble model; Y; is the experimental response; and 2
is the prediction output by the QSAR model. As STD and
agreement take values from 0 to 1, W; will also take this
range of values.

For each training instance i, W; will be multiplied to the
respective threshold distance D;, calculated as previously
explained. As STD is the deviation among an ensemble of
predictions, 1 — STD is the precision rate. A high 1 — STD
value, which translates into a high precision, will con-
tribute to a large W), and consequently to a small reduc-
tion of D;. As for the agreement term, increasing values
translate into a decreasing level of bias. As such, a large
agreement will entail a small penalization to D, To illus-
trate the use of W, the space (neighbourhood) covered by
a given training point will be penalized proportionally to
its degree of unreliability, i.e., for STD = 70% and agree-
ment = 35%, a reliability of 10.5% is obtained, which leads
to a 89.5% reduction of coverage attributed to its training
instance. In a contrasting scenario, for a high reliability
of 98% (STD = 1%; agreement = 99%), this will lead to a
2% reduction of the neighbourhood span (threshold). The
effect of correcting neighbourhood distances for their reli-
ability is demonstrated in Fig. 3. The complete flow of the
described RDN algorithm is summarized in Scheme 1.

The success of addressing local bias and precision, as
well as local distance to training has been demonstrated
by Sheridan [11]; however they have sorted the data into
several bins, which renders comparative analysis and the
implementation of the AD rather difficult. A continuous
performance characterization should allow the localiza-
tion of gaps in the data/model’s chemical space in a more
user-friendly way.

As the obtained individual thresholds associated with
each training instance depend on the Euclidean distance
between compounds, which in turn depends on the
descriptors used, we propose pairing this AD technique
with a prior feature selection routine. We have chosen
ReliefF, originally proposed by Kononenko et al. [16], as
this algorithm searches for a feature set that maximizes
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Corrected distance

Uncorrected distance

Fig. 3 Scheme of the reliability correction of the distance D;
attributed to training compound i. The sphere’s radius, Di, will be
decreased proportionally to the reliability of compound i. For exam-
ple, if (1 — STD) x agreement is 80%, D; will be reduced by 20% of its
initial value, which means that the 2 of the initial 3 external instances
that were covered by compound j will end up outside the neighbour-
hood coverage area supplied by this training compound

the separation of classes in the response variable within
local neighbourhoods [17]. ReliefF has been shown to
detect relevant features even in very crowded (feature-
wise) datasets, whilst being resilient to noise [18, 19]. The
appropriateness of this algorithm for this end can be jus-
tified by the fact that this feature selection method has
3 paramount properties with respect to AD definition:
(a) it evaluates descriptors solely on their individual abil-
ity to separate classes; (b) it takes into account the local
neighbourhoods when evaluating each feature; (c) iden-
tifies useless/irrelevant features that would only contrib-
ute with noise [20]. Regarding the first properties, while
ReliefF allows the selection of highly correlated features,
its performance is unaffected by the existence of corre-
lation itself [21] which, contrarily to QSAR modelling,

Measure average Euclidean
distance from compound i and

its ki NN ! !
Compute reference value
RefVal=Q3 + 1.5 x IQR
from list of average distances

U

For each compound i, count
neighbours within RefVal and

average their distances
agreement (A) for each

@ training compound i
Correct distance Di with STD
i <,‘:D
MaxDist; = Di x STD x A

Query external compounds
for inclusion in any MaxDist;

Train ensemble model
with training set

U

Compute STD and

Scheme 1 Pseudo-algorithm of reliability-density neighbourhood
(RDN) applicability domain technique
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is expectedly a desirable feature for a successful AD as
highly correlated features turn out to be complementary
in chemical space coverage.

Considering that a QSAR model is focused on distin-
guishing between two different responses, and its AD is
focused on discriminating between correct and incorrect
predictions, it is expected that the molecular descriptors
that are best suited for the former will not necessarily
be the most appropriate for the latter, as previously sug-
gested [11]. In fact, Sheridan et al. [22] have shown that
descriptors used to define the model’s boundary do not
have to coincide with the descriptors used to build that
same model. Furthermore, note that an AD technique
which does not rely on the features used by the QSAR
model allows comparable implementation in both the
so-called transparent methods (e.g., decision trees) and
“black box” methods (e.g., artificial neural networks). As
a result, the herein proposed AD method is paired with
the ReliefF routine for feature selection.

Methods

Building of the QSAR model

In order to evaluate the performance of the currently pro-
posed AD a dataset of P-glycoprotein (P-gp) substrates
and non-substrates, compiled from data in the Metrabase
database (accessed on October 2014, www.metrabase.
ch.cam.ac.uk/), was used. Every compound with at least
one reference supporting it as a substrate was considered
as such.

A decision tree was trained using 60% of data (train-
ing [TR] set), optimized using 20% of the data (internal
validation [IV] set), and tested on the remaining 20%
(test [TE] set) by random allocation of compounds into
these sets. Training was done using J48 in Weka 3.6, and
optimization was done with respect to the feature selec-
tion method which was considered optimal according
to highest IV performance. Five feature selection rou-
tines were applied to 334 descriptors calculated from
ACD/labs logD suite v12.5 and MOE 2013. Briefly, two
types of feature selection approaches were used: filter
and wrapper methods. Filter methods rank each feature
according to a given objective function (e.g., correlation
to response variable, inter-feature correlation, etc.), while
wrapper methods evaluate and select features which lead
to the best predictive performance by associating a filter
method with a machine learning algorithm (represented
by a hyphen connecting both algorithms) [18]. The filter
methods used were greedy search (GS), genetic algorithm
(GA) search and ReliefF; and the wrapper methods used
were J48-GA and random forest (RF)-GA. (for experi-
mental details refer to the literature [23]). From those,
the J48-GA wrapper method was selected for model
(decision tree) building as it generated the feature set
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associated with the highest IV performance. The trained
decision tree was used to produce class predictions in
the form of probabilities, which were later used to evalu-
ate AD performance. Note that the feature selection task
undertaken within the model building process (described
under this subsection) must not be mistaken for the fea-
ture selection role in establishing AD characterization.
These two are separate and independent tasks.

Feature selection in AD characterization

To establish an optimal feature set utilized in the RDN
algorithm, more specifically in the calculation of the
Euclidean distance between the compounds in the P-gp
dataset, different thresholds of feature ranking using
ReliefF were applied, namely the top 20, 50, 100 and 200
features as well as the entire feature set of 334 molecu-
lar descriptors. This led to five feature sets that were
tested in the original dk-NN algorithm. For comparison,
the J48-GA features used to train the QSAR model were
also used, as it is a common practice to use the model’s
features to describe the AD. RDN was not used to assess
the effect of the descriptor sets as this would introduce
additional noise to the system (due to different variables
in play) and could confound the comparison between
feature sets. As dk-NN takes solely into account the
Euclidean distances between compounds, this allows a
more straightforward observation of the effect of the fea-
ture set. Furthermore, a selection of the best feature set
candidate(s) in RDN would increase the risk for param-
eter overfitting.

To diminish the impact of local solutions that are
known to happen, for example with GA [24, 25], five
feature selection routines were initiated from differ-
ent points of the dataset and both ReliefF feature ranks
and J48-GA feature frequencies were averaged so that
each feature had an average rank/frequency value. Both
methods were carried using Weka 3.6. ReliefF settings
were numNeighbours = 10 (following empirical default
[17,20]) and sigma = 2 [17]. For J48-GA feature selection
GeneticSearch was the search method with parameters:
crossoverProb = 0.8, maxGeneration = 100, mutation-
Prob = 0.01, and Population size = 100, as usually imple-
mented [24, 26].

From this stage the two best candidates were selected
for further testing with RDN.

Consensus standard deviation (STD) applicability domain

Even though the STD measure was embedded in the
RDN algorithm as part of the correction factor, this is a
standalone AD method that has obtained excellent per-
formance in sorting predictions according to their reli-
ability. As a result, we used STD as our gold standard
method against which RDN was compared [6, 7, 13,
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27]. Note however that we will also report the results of
dk-NN and KDE methods for comparison reason (meth-
ods explained further below).

For the implementation of the STD method, a tenfold
bootstrap routine was performed in which, at each fold,
80% of the training data was randomly sampled (with
replacement) to train a J48 model. This resulted in 10
decision trees which were used solely to produce reli-
ability estimates in the form of overall deviation among
the ten sets of prediction, while class predictions were
performed separately by a single tenfold cross validated
model. The STD value was calculated for each compound
according to Eq. 2 [28]

— M2
Z(ym y) )

N -1

STD =

where y,, is the class prediction from model m and y is
the average of all predictions output by N models, rela-
tively to any given compound.

Contrarily to the QSAR model whose output is ulti-
mately qualitative (an instance is assigned to the class of
highest probability), we use the actual value of the prob-
ability towards the quantification of reliability. Conse-
quently node calibration by Laplace smoothing (for a
detailed outlining see [29]) has been used during the
training of the ensemble model. Laplace estimate com-
pensates for the node size, thus preventing overly opti-
mistic probabilities at very small nodes.

Reliability-density neighbourhood applicability domain

The RDN AD was implemented as described in “The
algorithm” section, being run iteratively at increasing k
values, ranging from 1 to 65 nearest neighbours (NN),
which corresponds to approximately 100% coverage of
the data (as obtained empirically). This allows to scan
the chemical space from denser areas to sparser areas.
Our preliminary results showed that using the distance
step size to the first NN directly was not ideal as the AD
RefVal led to a too wide an AD (with more than 50% of
data falling within the nearest 2—3 neighbours region).
This is because this region is more densely populated
thus being highly sensitive to even small increases in the
distance threshold (see Fig. 4). Therefore, it is necessary
to make sure that the initial neighbourhood thresholds
increase slowly. Then, as the AD boundaries get larger,
it is affordable to have larger distance increases at each
step. To this end, the RDN algorithm was run at a third of
the determined neighbourhood distance from k = 1-30,
then half of the neighbourhood distance was used for
k = 31-40, and finally for k values >40 the distance was
used directly as computed. However, this is an arbi-
trary setting that can be tailored according to the user’s

Page 6 of 20

needs, and different distance step sizes can be used to
obtain different levels of detail in the plots of accuracy
vs percentage of data in the AD. As exemplified in Fig. 4,
implementing an initial smaller step size in the increase
of the distance thresholds (right-hand side) allows a
slower inclusion of data into the AD, which consequently
improves sensitivity at the inner core of the model.

As originally implemented in the dk-NN algorithm, a
query must fall within the neighbourhood threshold of
at least one training instance in order to be considered
inside the AD. This prompted the assessment of the
impact that the number of required training neighbours
has on the overall performance of the AD. To do so, the
algorithm was tested with different minimum required
k values which offer coverage to new instances, ranging
between 2 and 30.

For the calculation of the RDN AD profile, W, (Eq. 1)
is calculated for each training instance to correct their
neighbourhood radius distance according to their level
of precision and bias. For the P-gp model, STD was cal-
culated from the deviation between a tenfold bagged
decision tree ensemble, as shown in Eq. 2. Regarding the
values of agreement, these were calculated by determin-
ing the frequency of predictions in the ensemble which
were correct (i.e., matching the observed class).

Comparison with dk-NN and KDE AD methods
For comparison, STD and dk-NN methods have been
implemented as they both are integrated in the RDN
algorithm. The implementation of both was done as
described earlier. Additionally, kernel density estima-
tion (KDE) has been used for its specific features which
address data from a different perspective. Similarly to
k-NN, KDE addresses data density, however the for-
mer focuses on local neighborhoods whereas the latter
addresses overall data density across descriptor space.
Since RDN accounts for both density and predictive reli-
ability, it is worth evaluating both density in chemical
space (both locally and globally) and response distribu-
tion separately. KDE was computed using KernelDensity
within the sklearn python module, in which a Gaussian
kernel was used and the bandwidth was selected from an
online platform (http://176.32.89.45/~hideaki/res/kernel.
html) of bandwidth optimization created by Shimazaki
and Shinomoto [30]. The implementation of KDE fol-
lowed the procedure outlined elsewhere [3]. The density
distribution model was established from the first princi-
pal component obtained from the training set, and the IV
and TE sets were matched against it to test the hypoth-
esis of density being correlated with predictive accuracy
(i-e., accuracy decreases with decreasing density).
Furthermore, as the P-gp model was built using a deci-
sion tree learner it is worth monitoring misprediction
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Fig. 4 Schematic representation of the difference between the RDN algorithm without (left) and with (right) distance step adaptation. The grey
point represents a training instance, and the black points depict external instances scattered across a 2D projection of the 20 molecular feature
matrix. Smaller increases in radius around the training instance in grey increase sensitivity in measured accuracy across the AD landscape

occurrence with respect to chemical span in the deci-
sion tree’s branches. This analysis aimed at identify-
ing any trends within the decision tree chemical space
subpartitions.

Quantitative comparison between AD methods

In order to establish which AD method yields the best
performance, we propose a scoring function that aims
for a quantitative, objective comparison between meth-
ods. This scoring function evaluates two features: (1)
robustness, by measuring the similarity between the AD
profiles of two external datasets, and (2) proximity to a
smooth descending AD profile (accuracy vs the AD-pro-
duced measure of prediction confidence).

This scoring function is meant for the scoring of con-
tinuous ADs, not being suited for in—out binary type
approaches. As any AD method is only reliable if it is
robust when submitted to different subsets of the same
dataset, this AD scoring function will quantify the ability
of an AD to produce the same outcome in two different
external datasets Y and Z. In an ideal scenario, where the
AD of a model is mapped in a robust manner across the
training data, Y and Z would yield two perfectly match-
ing curves of accuracy vs distance-to-model (DTM). This
indicates that the model’s reliability readout (i.e., trend
between predictive performance and the AD measure)
is not being affected by the specific dataset being evalu-
ated, but instead the AD is robust enough to describe the
predictive reliability across the data. Additionally, in the
curves for both datasets Y and Z, the accuracy inside the
AD boundaries should decrease steadily as a function of
DTM, as it is theoretically expected that a model’s per-
formance will degrade as the distance to training space

increases. Equation 3 quantifies both aspects and pro-
duces a final score.

P
ADscore = Z WP; x |yi —zi| + WP (3)

added,[1;P] =5

In this AD scoring function, (y; — z;) quantifies the
accuracy difference at each AD distance, i, and WP,
stands for weighted slope mismatch penalty at distance
i, which measures the mismatch between curves direc-
tion at each distance interval. This will cover the entire
curve of measured ACC versus AD measure across all
points, P. We have used a weighted measure for the slope
mismatch explained below. More specifically, as each dis-
tance point is associated with a given amount of newly
added instances (N, 44.4) into the AD, the slope mismatch
penalty is weighted according to how many instances
have been added at a given distance interval (Eq. 4).

Nadded,i {y + Z}

WP; = SMPy;;_1) x
l (1] Ntotal{y+z}

“

As the AD is expanded (DTM is being increased), the
directions of the two curves are monitored using a term
that penalizes slope mismatch between the curves, the
slope mismatch penalty (SMP). We have set a qualitative
penalty scheme that differentiates the various types of
mismatch, described as follows (see Fig. 5).

The slope, m, of any segment in an AD curve (between
distances i and i — I) canbe m = 0, m > 0 or m < 0. Con-
sidering the requirement that accuracy should decrease
with respect to distance-to-model, it is reasonable to con-
sider m < 0 as the desirable case, m = 0 as less desirable
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Fig. 5 Representation of the different possible slope mismatch
penalties, organized from the most desirable (ideal) scenario in a to
the least desirable scenario in f

and m > O as the least desirable case. As such, a multipli-
cative penalty of 1 (i.e., no penalty) has been attributed
to a negative slope and it doubles consecutively for a null
slope and a positive slope (i.e., 2 and 4, respectively). This
set of penalties was optimized to allow a correct scor-
ing of a positive control (a visibly highly similar pair of
curves) and negative control (a visibly highly dissimilar
pair of curves), i.e., a lower positive control score. To
compare two corresponding pair-wise segments each
segment on both curves is attributed a penalty accord-
ing to its individual slope. The resulting product of the
individual penalties of those two equivalent segments
between i and i — I of the curve corresponds to SMP,.
The various possible scenarios are exemplified in Fig. 5,
where they are organized from the most desirable to the
least desirable (from A to F, respectively).

Weighting of SMP by the amount of data points that
are added to the applicability domain with each step of
increased distance-to-model allows accounting for dif-
ferent local densities, which is necessary considering
that a shift in the slope direction is more significant if
it is caused by the addition of, for example, 50 new data
points than by 2. As the scoring function is comparing
each pair of corresponding points in both Y and Z curves,
the total of instances under such pair of points are added
together and divided by the total instances of both, to
allow comparison between AD techniques that produce a
different amount of distance-to-model points.

In addition, the absolute difference of accuracy
(ly; — z]) under the same distance-to-model value
(X-axis) is also included in the AD scoring function. This
corresponds to the underlying concept of the Fréchet
distance commonly used to measure curve similarity
[31]. However, this is not a decisive aspect since a shift in
absolute accuracy values will not have any impact in the
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decision of accepting or rejecting any given prediction, as
long as the AD curves match in shape (i.e., the highest
accuracy occurs at the same region for both curves). As
a result, this is included with the sole purpose of allow-
ing to differentiate between two pairs of curves where, in
each pair, both curves have exactly the same shape within
the pair, but one pair shows larger deviation of absolute
accuracy values. To prevent this parameter from having
a large impact on the total score (which would be inap-
propriate), it was added as coefficient of WP, as depicted
in Eq. 3.

Lastly, as different AD techniques cover a different
amount of data with their first iteration, which can be
regarded as the AD’s core, it is desirable to differentiate
between AD techniques according to their resolution at
the model’s core. It is more useful to cover 5% of the total
data with the first iteration than 50% of the data, as the
user has no information regarding the accuracy versus
distance relationship across that portion of the data. As a
result, the final sum across all distances i is divided by the
fraction of covered data from the first iteration to the last
(Faqded); @s this value approaches 1, the resolution at the
model’s core increases, and the final sum is increasingly
less inflated.

Testing on benchmark datasets

To exclude the possibility of an exceptional perfor-
mance under the P-gp dataset, two benchmark clas-
sification datasets were tested: the Ames mutagenicity
dataset (“Ames levenberg” model entry, referred to as
“Ames” from now on) and the CYP450 inhibition dataset
(“CYP450 modulation e-state” model entry, referred to as
“CYP450” from now on). To avoid any additional bias, the
datasets were previously modelled [28] and the predic-
tions were used as provided at the OChem QSAR mod-
elling repository (https://ochem.eu/home/show.do). To
allow testing the robustness of the AD profile, the valida-
tion datasets retrieved from OChem were split into two.
Therefore, in this work, AD was evaluated in