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Josef Dibĺık, Czech Republic
Xiaohua Ding, China
Adam Doliwa, Poland
Elmetwally Elabbasy, Egypt
Hassan A. El-Morshedy, Egypt
Jacques Ferland, Canada
Daniele Fournier-Prunaret, France
Ciprian G. Gal, USA
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Evolutionary computation (EC) is considered to be a natural
and artificial system with discrete dynamics. Over the last
few decades, there has been a remarkable growth in the
field of EC, encompassing large interest and efforts from
researchers. EC has been successfully applied to various real-
world problems for optimization purposes. The aim of this
special issue is to publish original and high-quality articles
related to discrete dynamics in EC and its applications.

This special issue was opened in November of 2015 and
closed in February of 2016. There were a total of 29 submis-
sions. All of them were peer-reviewed according to the high
standards of this journal and only 5 of themwere accepted for
publication, which gave important developments in discrete
dynamics in EC and its applications. Among the accepted
papers, one is for the discrete dynamics in EC and the others
are for twomajor applications of EC, operations research and
network problems.The guest editors of this special issue hope
that the presented results could outline new ideas for further
studies.

In EC, selection or mating is one of the most important
operations. In the paper entitled “A New Adaptive Hun-
garian Mating Scheme in Genetic Algorithms,” C. Jung et
al. suggested an adaptive mating scheme from Hungarian
mating schemes, which consist of maximizing the sum of
mating distances, minimizing the sum, and random match-
ing. They presented an adaptive algorithm to elect one
of these Hungarian mating schemes. Each mated pair of

individuals voted for the next generationmating scheme.The
distance between parents and the distance between parent
and offspring were considered during voting. Two well-
known combinatorial optimization problems, the traveling
salesman problem and the graph bisection problem, which
are NP-hard, were considered to show the effectiveness of
their adaptive method.

In the paper entitled “A Hybrid IP/GA Approach to the
Parallel Production Lines Scheduling Problem,” H. Ren and
S. Sun studied a scheduling problem of parallel production
lines. Considering the time window and some technical
constraints, they formulated a mixed integer programming
model for the problem. They also deduced some valid
inequalities and presented a hybrid mixed integer pro-
gramming/constraint programming decomposition strategy.
Based on them, the authors proposed a hybrid genetic
algorithm for efficiently solving the problem.

In the paper entitled “Solving a Closed-Loop Location-
Inventory-Routing Problem with Mixed Quality Defects
Returns in E-Commerce byHybridAntColonyOptimization
Algorithm,” S. Deng et al. presented a closed-loop location-
inventory-routing problem model considering both quality
defect returns and nondefect ones in e-commerce supply
chain system, to minimize the total cost produced in both
forward and reverse logistics networks. They proposed a
hybrid ant colony optimization algorithm for efficiently
solving this model that is NP-hard.
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Since various factors affect the fluctuation of network
traffic, accurate prediction of network traffic is considered as
a challenging task of the time series prediction process. In the
paper entitled “A Network Traffic Prediction Model Based
on Quantum-Behaved Particle Swarm Optimization Algo-
rithm and Fuzzy Wavelet Neural Network,” K. Zhang et al.
proposed a novel prediction method of network traffic based
on quantum-behaved particle swarm optimization (QPSO)
algorithm and fuzzy wavelet neural network (FWNN). The
authors introduced QPSO and presented the structure and
operation algorithms of FWNN. The parameters of FWNN
were optimized by aQPSO algorithm.This optimizedQPSO-
FWNN was applied to the prediction of network traffic
successfully when compared to different prediction models
such as BP neural network, RBF neural network, fuzzy neural
network, and FWNN-GA neural network.

The exponential growth in data traffic due to the mod-
ernization of smart devices has resulted in the need for a
high-capacity wireless network in the future. To successfully
deploy 5G networks, we should be able to handle the growth
in the data traffic. The increasing amount of traffic volume
puts excessive stress on the important factors of the resource
allocation methods such as scalability and throughput. In
the paper entitled “A Genetic Algorithm with Location
Intelligence Method for Energy Optimization in 5GWireless
Networks,” R. Sachan et al. defined network planning as
an optimization problem with the decision variables such
as transmission power and transmitter location in 5G net-
works, leading to interesting implementation using some
heuristic approaches such as differential evolution and real-
coded genetic algorithm (RCGA). The authors modified
an RCGA-based method to find the optimal configuration
of transmitters by not only offering optimal coverage of
underutilized transmitters, but also optimizing the amounts
of power consumption.

In sum, the five papers present some of the latest and
most promising research results on EC and its applications.
This special issue demonstrates the theoretical and practical
importance of further studies on EC.The guest editors of this
special issue hope that these papers may enrich and provide
a guide to the readers to treat EC or further developments in
the applications of EC.
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This paper presents a closed-loop location-inventory-routing problemmodel considering both quality defect returns and nondefect
returns in e-commerce supply chain system. The objective is to minimize the total cost produced in both forward and reverse
logistics networks. We propose a combined optimization algorithm named hybrid ant colony optimization algorithm (HACO) to
address this model that is an NP-hard problem. Our experimental results show that the proposed HACO is considerably efficient
and effective in solving this model.

1. Introduction

According to eMarketer, worldwide business-to-consumer
(B2C) e-commerce sales reached $1.471 trillion in 2014,
increasing by nearly 20%over 2013 [1]. Customers have grown
accustomed to return unwanted products back to the store for
any reasons. It is reported that the proportion of customer
returns online range from 18% to 74% of original orders
under e-commerce environment [2, 3]; thus enterprises take
variousmeasures to prevent the appearance of quality defects.
However, quality defect is inevitable. So, it is necessary for us
to take into account both quality defect returns and nondefect
returns; we call it mixed quality defect returns (MQDR),
when considering the closed-loop supply chain as a support
system in e-commerce environment.

As a classic discrete dynamics problem, the customer
service level is determined by three important decisions:
facility location decision, inventory decision, and trans-
portation decision [4]. Obviously, facility location, inventory
control, and transportation optimization are highly related.
For example, delivery in small lots and high frequency leads
to reducing the in-inventory cost but increases the additional
transportation cost. In addition, facility location decision

needs to consider inventory decision and distribution deci-
sion. Perl and Sirisoponsilp [5] discuss the interdependence
between the three key elements. Ballou and Masters [6]
provide a schematic representation of the interrelationships
among facility location, inventory control, and transportation
optimization.

In the literature, many papers studied the integration
and coordination of any two of the above three decisions:
location-inventory problem (LIP), location-routing problem
(LRP), and inventory-routing problem (IRP). For reviews on
LIP, readers can refer to Erlebacher and Meller [7], Daskin
et al. [8, 9], and Liao et al. [10]. For LRP, please refer to
Balakrishnan et al. [11], Min et al. [12], and Nagy and Salhi
[13]. Refer to Chan et al. [14], Kleywegt et al. [15], and
Adelman [16] for IRP.

There are few researches about the integration optimiza-
tion of location-inventory-routing problem (LIRP). Some
researchers attempt to carry out research on LIRP [17].
Liu and Lee [18] firstly studied this interesting problem;
they proposed a two-phase heuristic method to solve the
multidepot location-routing problem (MDLRP) considering
inventory optimization. In order to avoid the local optimal
solution, Liu and Lin [19] designed a global optimizing
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heuristic method to find the solutions for LIRP. Shen and Qi
[20] presented an algorithm based on Lagrangian relaxation
to minimize the inventory and routing costs in strategic
location models. They focused on the layout phase and used
continuous approximation to get the approximate optimal
routing cost, but the vehicle routing was not optimized in
their models. Javid and Azad [21] presented a novel LIRP
model and proposed heuristic method containing two stages:
constructive stage and improvement stage. Ahmadi-Javid
and Seddighi [22] presented a mixed-integer programming
model and a three-phase heuristic to solve the LIRP with
multisource distribution logistics network. Guerrero et al.
[23] researched the LIRP with deterministic demand and
provided the hybrid algorithm to solve the problem. Zhang
et al. [24] proposed a hybrid metaheuristic solution to LIRP
considering multiple depots and geographically dispersed
customers. Nekooghadirli et al. [25] presented a novel biob-
jective model of LIRP model considering a multiperiod and
multiproduct system. Based on Lagrangian relaxation and a
column generation technique, Guerrero et al. [26] developed
a relax-and-price heuristic to solve ILRP; they proposed
two dependent constraint sets with an exponential nature:
Lagrangian relaxation and a column generation technique.

However, little research has been conducted on the LIRP
considering returns. Li et al. [27] presented the HGSAA
algorithm to solve a LIRPmodel considering returns under e-
supply chain environment. To bemore consistent with reality,
Liu et al. [28] introduced a stochastic demand into LIRP
considering returns in e-commerce and proposed a PPGASA
algorithm as the solving approach.

The above two researches mainly focus on the returns
without quality defect but did not consider theMQDR. In this
paper, we propose a model of closed-loop LIRP with MQDR.
To the best of our knowledge, it is the first time to introduce
the MQDR into LIRP in e-commerce. An effective hybrid
algorithm named hybrid ant colony optimization (HACO) is
provided to solve this model. Results of numerical instances
indicate that HACO outperforms ant colony optimization
(ACO) on optimal solution, iterations, and computing sta-
bility.

The remainder of this paper is organized as follows.
Section 2 presents the mathematical model of LIRP with
MQDR. Section 3 proposes the solution approach named
HACO. Section 4 analyses the parameters of HACO and
shows the results of different experiments. Section 5 gives the
conclusion and future research directions.

2. Model Formulation

As we all know, customers’ return in e-commerce is higher
than traditional commerce. Because of personal dissatisfac-
tion, or a mistaken purchase of the wrong product, some
of the returns are without quality defects. These returns can
reenter into the market after a simple repackaging process
without being recovered [29]. While the other returns result
from quality defects, which need to be sent back to the plant
and be recovered.

In order to meet the needs of MQDR, the merchandise
center (MC) is necessary to deliver normal merchandises

1

2

3

5

6

7

8

9

10

11

12

13

14

15

16

MC

DP

Plant

4
17

Figure 1: Closed-loop supply chain for a single product.

to the demand points (DPs) of downstream and collect
the returned merchandises. MC integrates the functions of
distribution center and recycling center and provides quality
inspection and repackaging services.Meanwhile the returned
merchandises are collected to MCs. Returned merchandises
without quality defects become resalable normal items after
repackaging treatment at MCs. The plant will recover the
returns with quality defects and bring them to the market
again.

The operation mode of the system is shown in Figure 1.
The closed-loop supply chain in this paper consists of one
plant, multiple MCs, multiple DPs, and a single type of
product with continuous inventory policy under the e-com-
merce environment.

The goal of this study is to decide the quantity and
location ofMCs and arrange the vehicle routes and determine
the ordering times on each route. Tominimize the total cost of
logistics operations, this problem involves the following three
decisions: (1) location decisions: obtain the optimal number
of MCs and their locations; (2) inventory management:
determine the ordering times on each route; (3) routing
optimization: arrange the vehicles to delivery merchandises
and collect returns.

To benefit from the risk of MQDR, we take assumptions
(1)–(8) from Li et al. [27] into consideration: since the single-
product system is researched in this paper, assumption (1)
is necessary; in the capacitated vehicle routing problem,
assumption (2) should be satisfied [30]; assumption (3) elim-
inates the indeterminacy from the different type of vehicle;
assumption (4) means that each DP is well served by the
only vehicle route [31]; assumption (5) ensures that each route
will return to the same MC after traversing; assumption (6)
follows the early published papers considering uncapacitated
MCs [32]; assumption (7) takes MCs as the distribution
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center and recycling center; assumption (8) is a simplification
of the reality [33].

The returned merchandises without quality defect are
processed and repackaged at MCs, while others will be
shipped back to the plant for reprocessing after a predeter-
mined quantity at the MCs. Assume that the demand at each
retailer is known and let R be the set of candidate MCs. Let S
be the set of DPs and let 𝑀 be the number of DPs. Let V be
set of vehicles from the MCs to DPs. Let U = R ∪ S. Let the
following notation denote the decisions of the firm:

𝑁
𝑟V: ordering times of MC

𝑟
on routing V.

𝑋
V
𝑖𝑗𝑟
: =1, if node 𝑗 is served by MC

𝑟
on routing V from

node 𝑖, or 0 otherwise.
𝑌
V
𝑖𝑟
: =1, if node 𝑖 is assigned to MC

𝑟
on routing V, or 0

otherwise.
𝑍
𝑟
: =1, if MC

𝑟
is selected as an MC location, or 0

otherwise.
𝑈
𝑗𝑘
: auxiliary variable avoiding the subtour con-

straints in route 𝑘.
According to the aforementioned assumptions, the inven-

tory levels depend on both demand and the quantity of
MQDR. So, during each replenishment cycle, the holding cost
of MCs is 𝜆ℎ∑V∈V∑𝑟∈R∑𝑖∈S((𝑑𝑖 + 𝑞

𝑖
+ 𝑤
𝑖
)/2𝑁
𝑟V)𝑌

V
𝑖𝑟
, where

ℎ is annual inventory holding per unit merchandises, 𝑑
𝑖
is

mean (daily) demand for DP
𝑖
, and 𝑞

𝑖
and 𝑤

𝑖
are quantity of

merchandises without and with quality defect returned by
DP
𝑖
per day.
In order to exactly describe the logistic distribution costs.

Let 𝑐
𝑟
be the transportation costs per unit product from

plan to MC
𝑟
. Let 𝑙 be the delivering cost per unit distance.

Let 𝑠
𝑖𝑗
be the distance from node 𝑖 to node 𝑗. And let

𝜆 be the working days per year. The total transportation
costs from plant to DPs through MCs can be expressed,
respectively, as 𝜆∑V∈V∑𝑟∈R∑𝑖∈S 𝑐𝑟(𝑑𝑖 − 𝑞

𝑖
+ 𝑤
𝑖
)𝑌

V
𝑖𝑟

and
𝜆𝑙∑V∈V∑𝑟∈R∑𝑖∈S∑𝑗∈U 𝑠𝑖𝑗𝑑𝑖𝑋

V
𝑖𝑗𝑟
.

So the cost of forward distribution is

∑

𝑟∈R
𝑓
𝑟
𝑍
𝑟
+ ∑

V∈V
∑

𝑟∈R
𝑏
𝑟
𝑁
𝑟V + ∑

V∈V
∑

𝑟∈R
𝑒
𝑟
𝑁
𝑟V

+ 𝜆ℎ∑

V∈V
∑

𝑟∈R
∑

𝑖∈S

(𝑑
𝑖
+ 𝑞
𝑖
+ 𝑤
𝑖
)

2𝑁
𝑟V

𝑌
V
𝑖𝑟

+ 𝜆∑

V∈V
∑

𝑟∈R
∑

𝑖∈S
𝑐
𝑟
(𝑑
𝑖
− 𝑞
𝑖
+ 𝑤
𝑖
) 𝑌

V
𝑖𝑟

+ 𝜆𝑙∑

V∈V
∑

𝑟∈R
∑

𝑖∈S
∑

𝑗∈U
𝑠
𝑖𝑗
𝑑
𝑖
𝑋

V
𝑖𝑗𝑟
,

(1)

where 𝑒
𝑟
denote the fixed cost of dispatching vehicles per

time at MC
𝑟
, 𝑓
𝑟
denote the fixed (annual) administrative and

construction cost ofMC
𝑟
, and 𝑏

𝑟
denote the ordering cost per

unit product from plant to MC
𝑟
.

We let 𝑘 to be the returning cost per unit of merchandise
from DPs to MCs, so the total reverse transportation costs
from DPs back to MCs are

𝜆𝑘 ∑

V∈V
∑

𝑟∈R
∑

𝑖∈S
(𝑞
𝑖
+ 𝑤
𝑖
) 𝑌

V
𝑖𝑟
. (2)

The cost of deal with mixed quality defects is

𝜆∑

V∈V
∑

𝑟∈R
∑

𝑖∈S
𝑝
𝑟
𝑞
𝑖
𝑌
V
𝑖𝑟
+ 𝜆∑

V∈V
∑

𝑟∈R
∑

𝑖∈S
𝑎
𝑟
(𝑞
𝑖
+ 𝑤
𝑖
) 𝑌

V
𝑖𝑟
. (3)

We adopt 𝑎
𝑟
as the inspecting cost per unit for the

returned product and 𝑝
𝑟
as the repackaging cost of unit

returned merchandise without quality problem at MCs.
In summary, the model is formulated as follows:

min𝑍 = ∑

𝑟∈R
𝑓
𝑟
𝑍
𝑟
+ ∑

V∈V
∑

𝑟∈R
𝑏
𝑟
𝑁
𝑟V + ∑

V∈V
∑

𝑟∈R
𝑒
𝑟
𝑁
𝑟V

+ 𝜆ℎ∑

V∈V
∑

𝑟∈R
∑

𝑖∈S

(𝑑
𝑖
+ 𝑞
𝑖
+ 𝑤
𝑖
)

2𝑁
𝑟V

𝑌
V
𝑖𝑟

+ 𝜆∑

V∈V
∑

𝑟∈R
∑

𝑖∈S
𝑐
𝑟
(𝑑
𝑖
− 𝑞
𝑖
+ 𝑤
𝑖
) 𝑌

V
𝑖𝑟

+ 𝜆𝑙∑

V∈V
∑

𝑟∈R
∑

𝑖∈S
∑

𝑗∈U
𝑠
𝑖𝑗
𝑑
𝑖
𝑋

V
𝑖𝑗𝑟

+ 𝜆∑

V∈V
∑

𝑟∈R
∑

𝑖∈S
𝑝
𝑟
𝑞
𝑖
𝑌
V
𝑖𝑟

+ 𝜆𝑘∑

V∈V
∑

𝑟∈R
∑

𝑖∈S
(𝑞
𝑖
+ 𝑤
𝑖
) 𝑌

V
𝑖𝑟

+ 𝜆∑

V∈V
∑

𝑟∈R
∑

𝑖∈S
𝑎
𝑟
(𝑞
𝑖
+ 𝑤
𝑖
) 𝑠𝑌

V
𝑖𝑟
.

(4)

It is easy to find that the objective function (4) is convex
in 𝑁
𝑟V. We can simplify the objective function by solving

𝑁
𝑟V. Consequently, the optimization solution of 𝑁

𝑟V can be
obtained by taking the derivative of the function with respect
to𝑁
𝑟V; the result is as follows:

𝑁
∗

𝑟V = √
∑
𝑖∈S 𝜆ℎ (𝑑𝑖 + 𝑞

𝑖
+ 𝑤
𝑖
) 𝑌

V
𝑖𝑟

2 (𝑒
𝑟
+ 𝑓
𝑟
)

. (5)

The optimization problem (4) given a known𝑁∗
𝑟V can now

be written as

min𝑍 = √2𝜆ℎ ∑

𝑟∈R
∑

V∈V
∑

𝑖∈S
(𝑓
𝑟
+ 𝑒
𝑟
) (𝑑
𝑖
+ 𝑞
𝑖
+ 𝑤
𝑖
) 𝑌

V
𝑖𝑟

+ 𝜆 ∑

V∈V
∑

𝑟∈R
∑

𝑖∈S
𝑐
𝑟
(𝑑
𝑖
− 𝑞
𝑖
+ 𝑤
𝑖
) 𝑌

V
𝑖𝑟

+ 𝜆𝑙 ∑

V∈V
∑

𝑟∈R
∑

𝑖∈U
∑

𝑗∈U
𝑠
𝑖𝑗
𝑑
𝑖
𝑋

V
𝑖𝑗𝑟

+ 𝜆𝑘 ∑

V∈V
∑

𝑟∈R
∑

𝑖∈S
(𝑞
𝑖
+ 𝑤
𝑖
) 𝑌

V
𝑖𝑟

+ 𝜆 ∑

V∈V
∑

𝑟∈R
∑

𝑖∈S
𝑝
𝑟
𝑞
𝑖
𝑌
V
𝑖𝑟

+ 𝜆 ∑

V∈V
∑

𝑟∈R
∑

𝑖∈S
𝑎
𝑟
(𝑞
𝑖
+ 𝑤
𝑖
) 𝑌

V
𝑖𝑟
+ ∑

𝑟∈R
𝑓
𝑟
𝑍
𝑟

(6)
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s.t. ∑

𝑟∈R
𝑍
𝑟
≥ 1, 𝑟 ∈ R (7)

∑

V∈V
∑

𝑖∈S
𝑌
V
𝑖𝑟
≤ 𝑍
𝑟
, 𝑟 ∈ R (8)

∑

𝑖∈S
𝑑
𝑖
𝑌
V
𝑖𝑟
≤ 𝑔, 𝑟 ∈ R, V ∈ V (9)

∑

V∈V
∑

𝑟∈R
𝑌
V
𝑖𝑟
= 1, 𝑖 ∈ S (10)

∑

V∈V
∑

𝑟∈R
∑

𝑖∈U
𝑋

V
𝑖𝑗𝑟

= 1, 𝑗 ∈ S (11)

∑

𝑖∈U
𝑋

V
𝑖𝑘𝑟

− ∑

𝑗∈U
𝑋

V
𝑘𝑗𝑟

= 0, 𝑘 ∈ S, 𝑟 ∈ R, V ∈ V (12)

𝑈
𝑙𝑘
− 𝑈
𝑗𝑘
+𝑀𝑥

𝑙𝑗𝑘
≤ 𝑀 − 1, 𝑙, 𝑗 ∈ S, 𝑘 ∈ R (13)

− 𝑌
V
𝑖𝑗
+ ∑

𝑘∈U
(𝑋

V
𝑖𝑘𝑟

+ 𝑋
V
𝑘𝑗𝑟
) ≤ 1,

𝑖 ∈ S, 𝑗, 𝑟 ∈ R, V ∈ V
(14)

𝑍
𝑟
= {0, 1} , 𝑟 ∈ R (15)

𝑌
V
𝑖𝑟
= {0, 1} , 𝑖 ∈ S, 𝑟 ∈ R, V ∈ V (16)

𝑋
V
𝑖𝑗𝑟

= {0, 1} , 𝑖 ∈ U, 𝑗 ∈ S, 𝑟 ∈ R, V ∈ V. (17)

The objective function (6) is to minimize the total cost;
(7) ensure the selected MC is not empty; (8) ensure each DP
is traversed by a unique vehicle which belongs to a certain
MC; (9) ensure the amount of each delivery from MC on
each route must be within vehicle capacity; (10) ensure that
each route has only one vehicle; (11) ensure each DP must be
followed by exactly one note; (12) ensure everyDPnode of the
system will be serviced before it gives services to the others;
(13) ensure the subtour is eliminated. Equation (14) ensures
that each DP is assigned to an MC when there exists a route
that starts from the MC passing through the DP. Equations
(15)–(17) ensure the nonnegativity and integrality of decision
variables.

3. Solution Approach

Like the VRP, the closed-loop LIRP is also an NP-hard
problem, since it includes the VRP and is more complex than
VRP. Generally speaking, there does not exist a complete,
efficient, and accurate analytic algorithm to address NP-hard
problems; ant colony optimization (ACO) has been proved
very successful and widely applied to solve the static and
dynamic problems as an EC algorithm [34]. However, ACO
does not distinguish ant behavior results. The pheromone
concentration will distribute in every direction for the iter-
ation. Therefore, this leads to low searching efficiency. The
algorithm may get caught in local optimization if we do not
take preventive measures. On the other hand, ABC provides
an effective institution to find the global optimal solution
from the trapping of local optimal solution [35]. So, in this

study, we present a hybrid ant colony optimization algorithm
based on the combination ofACOandABC to solve the above
LIRP model.

3.1. Initialize Solution. Since the natural number is an
efficient coding method for these problems, the sequence
of solutions is composed of candidate MCs (1, 2, . . . , 𝑅)
and DPs, which are indicated by (𝑅 + 1, . . . , 𝑅 + 𝑆).
The candidate solution of our proposed model will be
described well by those natural number sequences. As an
example, Figure 1 fully interpreted the perceptions of our
method, which refers to the individual feasible solution:
{1 8 13 5 3 9 14 15 10 11 6 4 7 16 17 12}.

In the HACO, the moving strategy of the ant in node 𝑖
is depending on the pseudorandom proportional rule. The
rule indicates that the ant has both exploiting and exploration
ability, which means the ant is guided by the pheromone
trails as well as the heuristic information. In this case, the
ant has a higher degree of exploring unknown knowledge.
The connected function of the pheromone values 𝜏

𝑖𝑗
and the

heuristic values 𝜂
𝑖𝑗
is shown as

𝑃
𝑘

𝑖𝑗
=

{{{

{{{

{

[𝜏
𝑖𝑗
]
𝛼

[𝜂
𝑖𝑗
]
𝛽

∑
𝑘∈allow(𝑘) [𝜏𝑖𝑘]

𝛼

[𝜂
𝑖𝑘
]
𝛽

𝑗 ∈ allow (𝑘)

0 otherwise,

(18)

where 𝜏
𝑖𝑗
is the density of pheromone remaining on the

edge (𝑖, 𝑗), 𝜂
𝑖𝑗

is the inverse value of distance between
node 𝑖 and node 𝑗, 𝛼 and 𝛽 are user-defined parameters
for corresponding pheromone concentration and heuristic
information, and allow(𝑘) is the remaining nodes to be visited
by ant 𝑘.

3.2. The ABC Phase. In order to improve the performance
of global searching of our algorithm, the paper applied the
scout bee searching phase into the ACO. Scout bees are free
bees used for finding a new better solution from the neighbor
known solution. As soon as a scout bee finds a new solution,
she turns into an employed bee. If there is no improvement in
the quality of solution, the bee will abandon that source and
continue to search for another new solution.

The searching function of scout bees is as

𝑥̂
𝑗

𝑖
= 𝑥max − rand [0, 1] ∗ (𝑥max − 𝑥

𝑗

𝑖
) . (19)

To meet the requirements for coding sequence type,
we described two operations to complete scouts searching
process, namely, random array reverse (RAR) and random
swap (RS).

Step 1. Set the initial number of scout bee 𝑛 and probability
𝑝
0
.

Step 2. Generate two positions randomly named 𝑎 and 𝑏, for
each 𝑎 < 𝑏.

Step 3. Get a random probability 0 < 𝑝 < 1; if 𝑝 > 𝑝
0
turn to

Step 4; otherwise, turn to Step 5.
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Procedure: ABC
Input: the initial sequence, the number of scout bee 𝑛 and 𝑝

0

Output: the better sequence
Begin
Take 𝑛 and 𝑝

0

while 𝑖 < 𝑛

𝑝 = rand[0, 1]
take 𝑎 < 𝑏

if 𝑝 > 𝑝
0

Reverse the array between position 𝑎 and 𝑏
else

Swap the position of 𝑎 and 𝑏
Output: the better sequence
End

Pseudocode 1: Pseudocode of an ABC framework.

Step 4. Reverse the array between positions 𝑎 and 𝑏 as a new
solution.

Step 5. Swap the position of 𝑎 and 𝑏 as a new solution.

Step 6. Calculate the cost of new solution.

Step 7. Keep the best solution to the next iteration and return
to Step 2.

The pseudocodes of ABC are shown in Pseudocode 1.

3.3. Global Pheromone Trail Update. The global pheromone
updating rule is triggered at the end of iteration to reward
tours that are in line with the objective of impedance mini-
mization.This strategy is applied to reinforce the pheromone
density on the sets of edges belonging to the inspect tour and
to increase the likelihood that this tour will also be selected
by other ant agents. The rule of global pheromone updating
is given by

𝜏
𝑖𝑗
= (1 − 𝜌) 𝜏

𝑖𝑗
+ 𝜌Δ𝜏

𝑏𝑠

𝑖𝑗
𝑖, 𝑗 ∈ 𝑇

𝑏𝑠

, (20)

where

Δ𝜏
𝑏𝑠

𝑖𝑗
=

{

{

{

𝐿

𝐿
𝑏𝑠

𝑖, 𝑗 ∈ global best tour

0 otherwise.
(21)

𝐿 is a constant initial pheromone.𝐿
𝑏𝑠
is the cost of the best

of all the tours produced by all 𝑚 agents from the beginning
of the iteration. 𝜌 ∈ (0, 1] is the pheromone evaporation
coefficient. To improve the pheromone trail quality, a part of
the worst result is removed.

3.4. Local Pheromone Trail Update. In addition to the global
pheromone trail updating rule, the selected ants will update
the local pheromone trail in the process of passing an
arc(𝑖, 𝑗). It is opposite to the normal pheromone trail updating
rule that increases the pheromone density while ants cross
over arcs. The purpose of using the local pheromone trail

update rule is to prevent stagnation behavior because the arc
becomes less desirable for the following ants.The rule of local
pheromone updating is as follows:

𝜏
𝑖𝑗
= (1 − 𝜉) 𝜏

𝑖𝑗
+ 𝜉𝜏
0
, (22)

where 𝜏
0
is a constant at the beginning of pheromone trails

and 𝜉 is a user-defined coefficient that lowers the pheromone
density of arcs traversed by the intelligent ants.

3.5. Algorithm Flow

Step 1. Get the formulas for solving𝑁
𝑟V.

Step 2. Set the initial parameters for the model: set of
candidate MCs R, set of DPs S, set of vehicles V, inspecting
cost 𝑎
𝑟
, ordering cost 𝑏

𝑟
, transportation costs 𝑐

𝑟
, daily demand

𝑑
𝑖
, dispatching vehicles cost 𝑒

𝑟
, fixed (annual) administrative

and construction cost 𝑓
𝑟
, vehicle capacity 𝑔, holding cost ℎ,

and returning cost 𝑘.

Step 3. Parameter setting for HACO is as follows: ants num-
ber 𝑚, evolution terminate iteration𝑀, pheromone concen-
tration impact factor 𝛼, heuristic information pheromones
impact factor 𝛽, evaporation rate of the pheromone 𝜌,
constant initial pheromone 𝐿, andmutation probability array
reverse 𝑝

0
.

Step 4. Using unit matrix 𝜏
𝑖𝑗
, calculate the probability

𝑃
𝑘

𝑖𝑗
=

{{{

{{{

{

[𝜏
𝑖𝑗
]
𝛼

[𝜂
𝑖𝑗
]
𝛽

∑
𝑘∈allow(𝑘) [𝜏𝑖𝑘]

𝛼

[𝜂
𝑖𝑘
]
𝛽

𝑗 ∈ allow (𝑘)

0 otherwise.

(23)

Step 5. Ant solutions generationmodule: each ant will gener-
ate a feasible solution after traversing the DPs.

Step 6. Best ant solution module: after calculating each ant’s
solution, select the best solution which is known as the
iteration best to compare with the global best. Keep the next
best solution as the next global best.
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Procedure: HACO for LIRP
Input: coordinates of nodes, demands and returns of DPs, MC parameters, vehicle capacity, HACO parameters
Output: the best solution (include routes, MCs locations, order times and order size)
Begin
Take max 𝑡
while max 𝑡 < 𝑀

for 1 to𝑚
Foraging Behavior of Ants
𝜏
𝑖𝑗
= (1 − 𝜉)𝜏

𝑖𝑗
+ 𝜉𝜏
0

Calculate individual total cost Tcost(𝑚)
end

Tcost best = min(Tcost(𝑚))
for 1 to𝑚/2 Neighbor range
Scout bee searching the neighbor range
𝑎 = round(rand)
𝑏 = round(rand)
make 𝑎 < 𝑏

if 𝑝 < 0.5

vech = [vech(1 : 𝑎 − 1) vech(𝑏 : − 1 : 𝑎) vech((𝑏 + 1) : end)];
else
exchange(𝑎, 𝑏)

end
if Tcost(𝑚/2) < Tcost best
Tcost best = Tcost(𝑚/2)
end

end
for 1 to𝑚

if Tcost(𝑚) > Tcost ave
for 1 to 𝑛

𝜏
𝑖𝑗
= (1 − 𝜌)𝜏

𝑖𝑗
+ 𝜌Δ𝜏

bs
𝑖𝑗

end
end

end
end
Output: the best solution
End

Pseudocode 2: Pseudocode of the proposed HACO.

Step 7. Scout bee module: random selection probability 0 <

𝑝 < 1; if 𝑝 > 𝑝
0
, turn to random array reverse operation.

Otherwise, turn to random swap operation.

Step 8. Pheromone updatingmodule: update the information
pheromones as follows:

𝜏
𝑖𝑗
= (1 − 𝜌) 𝜏

𝑖𝑗
+ 𝜌Δ𝜏

𝑏𝑠

𝑖𝑗
𝑖, 𝑗 ∈ 𝑇

𝑏𝑠

,

𝜏
𝑖𝑗
= (1 − 𝜉) 𝜏

𝑖𝑗
+ 𝜉𝜏
0
.

(24)

Step 9. Termination module: if the parent optimal solution
and offspring optimal solution are equal during continuous
𝑀 generations, stop the algorithm. Otherwise, return to Step
3 after𝑀 increments.

Step 10. Output.

The pseudocodes of HACO are shown in Pseudocode 2.

4. Computational Experiments and
Results Analysis

In this section, numerical simulations are given to illustrate
the performance of HACO compared with the traditional
ACO. Both algorithms in this paper are compiled by Matlab
R2014a and run on a computer with 8GB main memory and
3.6GHZ CPU. All instances come from the LRP database in
University of Aveiro [36].

4.1. Parameters Discussion. Parameter values selection is
crucial to the efficiency of algorithms. An example named
Gaskell 67-22× 5 from the database, which contains the nodes
coordinate and the DPs demand, is used to determine the
optimal parameter. Gaskell 67 is the instance’s name and 22 ×
5 means 5 candidate MCs for 22DPs. The inventory holding
cost ℎ = 2, the vehicle capacity 𝑔 = 500, transportation
costs 𝑐

𝑟
= 2, returning cost 𝑘 = 2, working days 𝜆 = 300,

and the delivering cost per unit distance 𝑙 = 0.7. The other
parameters of the instance are as follows: 𝑎

𝑟
∼ 𝑈(16, 20);
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Table 1: Results with different𝑚 (cost: million CNY; iterations: times).

𝑚
Cost Iterations

Mean Std. dev. C.V. Mean Std. dev. C.V.

30 ACO 32.4 0.96 0.0295 168.6 30.64 0.1817
HACO 33.46 1.12 0.0336 125.72 29.02 0.2308

40 ACO 32.13 0.96 0.03 173.48 32.95 0.1899
HACO 33.37 0.93 0.0277 117.82 15.4 0.1307

50 ACO 32.22 0.74 0.0229 157.19 40.58 0.2581
HACO 32.96 0.96 0.0292 119.26 17.47 0.1465

60 ACO 32.21 0.67 0.0208 158.12 39.39 0.2491
HACO 32.72 0.86 0.0263 121.86 17.37 0.1425

70 ACO 31.96 0.71 0.0223 162.88 32.48 0.1994
HACO 32.77 1.13 0.0344 121.06 23.7 0.1958

𝛼 = 1, 𝛽 = 5, 𝜌 = 0.1, 𝐿 = 150, and 𝑝
0
= 0.5.

Table 2: Results with different 𝛼 (cost: million CNY; iterations: times).

𝛼
Cost Iterations

Mean Std. dev. C.V. Mean Std. dev. C.V.

0.25 ACO 31.92 0.54 0.0168 189.3 73.28 0.3871
HACO 31.63 0.79 0.025 189.38 69.64 0.3677

0.5 ACO 31.85 0.78 0.0246 181.86 57.34 0.3153
HACO 31.52 0.91 0.029 182.24 63.94 0.3509

1 ACO 32.22 0.74 0.0229 157.19 40.58 0.2581
HACO 33.06 1.04 0.0315 123.28 14.02 0.1137

1.25 ACO 32.13 0.79 0.0247 154.24 30.12 0.1953
HACO 33.11 1.09 0.0331 115.78 11.61 0.1002

1.5 ACO 32.14 0.9 0.0279 154.96 25.68 0.1658
HACO 32.97 1.11 0.0335 116.2 10.23 0.0881

𝑚 = 50, 𝛽 = 5, 𝜌 = 0.1, 𝐿 = 150, and 𝑝
0
= 0.5.

Table 3: Results with different 𝛽 (cost: million CNY; iterations: times).

𝛽
Cost Iterations

Mean Std. dev. C.V. Mean Std. dev. C.V.

3 ACO 31.91 0.91 0.0286 192.78 42.08 0.2183
HACO 33.06 1.19 0.0359 148.8 54.84 0.3686

4 ACO 32.19 0.8 0.0249 170.2 41.89 0.2461
HACO 33.05 1.14 0.0344 126 42.17 0.3347

5 ACO 32.22 0.74 0.0229 157.19 40.58 0.2581
HACO 32.96 0.96 0.0292 119.26 17.47 0.1465

6 ACO 32.1 0.77 0.0241 159.38 31.99 0.2007
HACO 33.12 1.19 0.0358 119.86 22.4 0.1869

7 ACO 32.42 0.84 0.0258 154.69 23.92 0.1546
HACO 33.25 1.07 0.0322 111.68 8.62 0.0772

𝛼 = 1,𝑚 = 50, 𝜌 = 0.1, 𝐿 = 150, and 𝑝
0
= 0.5.

𝑏
𝑟
∼ 𝑈(16, 20); 𝑐

𝑟
∼ 𝑈(6, 10); 𝑒

𝑟
∼ 𝑈(21, 25); 𝑞

𝑖
∼ 𝑈(12, 25);

and 𝑤
𝑖
∼ 𝑈(2, 5).

The parameters of algorithm are initialized as follows:
ant’s number𝑚 = 50, evolution terminate iteration𝑀 = 100,
pheromone concentration impact factor 𝛼 = 1, heuristic
information pheromones impact factor 𝛽 = 5, evaporation
rate of the pheromone 𝜌 = 0.1, constant 𝐿 = 150, mutation
probability array reverse 𝑝

0
= 0.5.

We run the program 50 times on the same computer. The
performance of ACO and HACO varies with the different
values of the parameters, which are shown in Tables 1–6.
In these tables, the symbol C.V. means the coefficient of
variation.

Tables 1–6 represent the parameters’ effect on the objec-
tive function values. The data was normalized through two
dimensions, that is, cost and iterations, and three indicators,



8 Discrete Dynamics in Nature and Society

Table 4: Results with different 𝜌 (cost: million CNY; iterations: number).

𝜌
Cost Iterations

Mean Std. dev. C.V. Mean Std. dev. C.V.

0.1 ACO 32.22 0.74 0.0229 157.19 40.58 0.2581
HACO 32.12 0.93 0.0289 138.4 21.02 0.1518

0.2 ACO 32.38 0.87 0.0269 133.27 20.57 0.1543
HACO 32.7 0.97 0.0296 124.12 13.01 0.1048

0.3 ACO 32.65 0.94 0.0289 132.8 31.09 0.2341
HACO 32.75 1.45 0.0443 122.1 13.09 0.1072

0.4 ACO 33.03 0.94 0.0284 131.86 28.76 0.2181
HACO 33.31 1.1 0.033 122.98 20.2 0.1643

0.5 ACO 33.41 0.87 0.0261 157.27 67.72 0.4306
HACO 33.55 1.08 0.0323 116.24 15.44 0.1328

𝛼 = 1,𝑚 = 50, 𝛽 = 5, 𝐿 = 150, and 𝑝
0
= 0.5.

Table 5: Results with different L (cost: million CNY; iterations: times).

𝐿
Cost Iterations

Mean Std. dev. C.V. Mean Std. dev. C.V.

50 ACO 31.99 0.72 0.0224 159.72 33.39 0.21
HACO 33.07 1.22 0.0369 123.7 25.96 0.2098

100 ACO 31.9 0.67 0.0209 159.8 30.73 0.19
HACO 32.88 1.09 0.033 121.63 18.91 0.1555

150 ACO 32.22 0.74 0.0229 157.19 40.58 0.2581
HACO 33.02 1.05 0.0319 121.14 23.2 0.1915

200 ACO 32.11 0.8 0.0251 167.66 38.61 0.23
HACO 32.9 1.12 0.0339 120.8 22.05 0.1825

250 ACO 32.08 0.87 0.0271 164.08 34.16 0.21
HACO 33.1 1.09 0.033 121.87 28.95 0.2376

𝛼 = 1,𝑚 = 50, 𝛽 = 5, 𝜌 = 0.1, and 𝑝
0
= 0.5.

Table 6: Results with different 𝑝
0
(cost: million CNY; iterations: times).

𝑝
0

Cost Iterations
Mean Std. dev. C.V. Mean Std. dev. C.V.

0.3 33.07 1.22 0.0369 123.70 25.96 0.2098
0.4 32.88 1.09 0.0330 121.63 18.91 0.1555
0.5 33.02 1.05 0.0319 121.14 23.20 0.1915
0.6 32.90 1.12 0.0339 120.80 22.05 0.1825
0.7 33.10 1.09 0.0330 121.87 28.95 0.2376
𝛼 = 1,𝑚 = 50, 𝛽 = 5, 𝜌 = 0.1, and 𝐿 = 150.

that is, mean, standard deviation, and coefficient of variation.
Actually, in order to find the minimal cost, we usually take
the parameter values, where the cost is lower andmore stable.
From the discussion, we found that HACO reaches the best
performance when𝑚 = 60, 𝛼 = 0.5, 𝛽 = 5, 𝜌 = 0.1, 𝐿 = 100,
and 𝑝

0
= 0.4, while ACO reaches the best performance when

𝑚 = 70, 𝛼 = 0.5, 𝛽 = 3, 𝜌 = 0.1, and 𝐿 = 100.

4.2. Computational Experiment. To get a reliable conclusion,
we run another 50 times on the same computer with the
best parameter values in Gaskell 67-22 × 5. One of the best

solutions of objective function in the 50 experiments of
HACO is 30.2 million CNY. Table 7 shows the solution. MCs
were established at MC1, MC2, and MC5 with five vehicles
distribution routes. Figure 2 shows topological structure of
the closed-loop supply chain.

Figure 3 shows their trend of optimal objective function
values alongwith iterations.Thefluctuation curves of optimal
objective function value are varied by different algorithm,
which are shown in Figures 4(a) and 4(b).

As shown in Figure 3, the cost and iterations of HACO are
lower thanACO; and in Figure 4, the range andmean value of
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Table 7: The solution of Gaskell 67-22 × 5.

MC Routing
number Routing Order

times

MC1 V1 1 → 12 → 13 → 9 → 10 → 26 → 1 17
V2 1 → 16 → 15 → 18 → 14 → 1 18

MC2 V3 2 → 23 → 24 → 27 → 25 → 17 → 2 37

MC5 V4 5 → 22 → 20 → 21 → 8 → 19 → 5 24
V5 5 → 7 → 6 → 11 → 5 18
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Figure 2: Topological structure of the network.

the minimum cost of HACO are also lower than ACO, which
both imply that HACO is more efficient than ACO in solving
the LIRP.

4.3. Extended Experiments. In this section, a series of
instances are given to show that HACO is more efficient and
stable than classical software and ACO. In order to ensure the
demands of DPs are not more than the vehicle capacity, we
need to enumerate some instances. In this paper, the daily
demands are set as 1/10 of corresponding demands of the
database.

As we know, Lingo is a representative classical optimiza-
tion software tool. Thus we used Lingo 11.0 to solve the
problem by using a small-sized instance named Peal 183-12
× 2 and two medium-sized instance named Gaskell 67-22 × 5
and Gaskell 67-36 × 5; the results are shown in Table 8.

Each instance was run 50 times by HACO and ACO with
their optimized parameters values, respectively; the results
are shown in Tables 9 and 10.

4.4. Result Analysis. According to Table 8, we found that
(1) for the small-sized instance, HACO can obtain better
result than Lingo within less time and (2) for medium-sized
instances, Lingo cannot get the global optimization within 1
hour, while HACO can solve the problem in a short time.

Observe, from Tables 9 and 10, that HACO is more
efficient than ACO for the following reasons. (1) The cost

ACO
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Figure 3: Trends of objective function value.
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Figure 4:The fluctuation curve of optimal objective function value.

of HACO is significantly lower than ACO (𝑝 < 0.05); (2)
the difference of the number of iteration between HACO and
ACO is not significant (𝑝 > 0.05); (3) HACO is more stable
than ACO as the coefficient of variation (C.V.) is lower. To
sumup, our algorithm reduces the cost with the samenumber
of iterations compared with ACO.

By improving pheromone updates and bee colony search-
ing, we improve the solution quality of the algorithm and
make it useful as a guide for the ant searching process.
Observed from the results of numerical simulations, HACO
can get better result with a fewer number of iterations. Hence,
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Table 8: Comparisons between HACO and Lingo.

Instance name Perl 183-12 × 2 Gaskell 67-22 × 5 Gaskell 67-36 × 5

CPU time Cost CPU time Cost CPU time Cost
Lingo 523 s 715392 >1 hour \ >1 hour \

HACO 24.5 s 709152 44 s 32691202 99 s 31550446

Table 9: Optimal objective function values of two algorithms (CNY).

Instance name Algorithm Mean Std. dev. C.V. 𝑡 value Significance test
𝑝 value (sig. 1-tailed)

Perl 183-12 × 2
ACO 711347.1 6979.11 0.0098 1.6838 0.048
HACO 709237.9 5454.48 0.0077

Gaskell 67-22 × 5
ACO 31929818.3 627210.66 0.0196 1.7118 0.045
HACO 31718084.1 609606.04 0.0192

Gaskell 67-36 × 5
ACO 3288921.3 43585.25 0.0133 1.6602 0.050
HACO 3275052 39868.81 0.0122

Perl 183-55 × 15
ACO 285145.3 3779.15 0.0133 1.8391 0.034
HACO 283831.6 3351.00 0.0118

Christofides 69-75 × 10
ACO 419695.8 4948.15 0.0118 2.5020 0.007
HACO 417298.6 4627.32 0.0111

Perl 183-85 × 7
ACO 486011.0 4503.39 0.0093 1.8080 0.037
HACO 484424.1 4270.44 0.0088

Christofides 69-100 × 10
ACO 458235.6 6387.00 0.0139 1.6796 0.048
HACO 456441.6 5317.70 0.0117

Table 10: Iterations of two algorithms (times).

Instance name Algorithm Mean Std. dev. C.V. 𝑡 value Significance test
𝑝 value (sig. 1-tailed)

Perl 183-12 × 2
ACO 193.32 78.70 0.4071 0.6323 0.264
HACO 183.90 70.04 0.3808

Gaskell 67-22 × 5
ACO 191.34 86.36 0.4513 0.7831 0.218
HACO 180.70 43.32 0.2397

Gaskell 67-36 × 5
ACO 254.44 76.84 0.3020 0.2012 0.421
HACO 251.84 49.42 0.1962

Perl 183-55 × 15
ACO 241.74 77.29 0.3197 0.1000 0.460
HACO 240.46 47.33 0.1968

Christofides 69-75 × 10
ACO 245.24 79.10 0.3226 1.2340 0.110
HACO 229.92 62.30 0.2710

Perl 183-85 × 7
ACO 247.18 94.89 0.3839 0.4355 0.332
HACO 240.80 65.75 0.2730

Christofides 69-100 × 10
ACO 248.06 97.18 0.3918 0.2627 0.397
HACO 244.08 65.48 0.2681

comparing with ACO, HACO is adopted as a better approach
in solving this LIRP with MQDR.

5. Conclusion and Future Research

With the development of e-commerce, customers’ return
keeps a high rate with MQDR, which can be reentered into
markets after being repackaged or recovered. In this research,

we built a closed-loop LIRP model considering both quality
defect returns and nondefect returns; we call it MQDR in
this paper.We perform an extensive computational study and
observe the following interesting results.

(1) Considering MQDR are computationally beneficial
for the formulation presented, theMQDR and closed-
loop pattern with returns are features of the proposed
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problem in e-commerce, which is never considered in
previous work.

(2) Since the evolutionary computation algorithm has
been proved successfully in tackling NP-hard prob-
lem, a hybrid algorithm is proposed by combining
ACO algorithm andABC algorithm to solve the LIRP.
HACO integrated the scout bee searching phase into
the ACO to improve the global searching ability.

(3) The performance of HACO is evaluated by using the
instances in the LRP database, and HACO outper-
forms ACO on convergence, optimal solution, and
computing stability. This numerical study shows the
efficiency and effectiveness of the solution method.

However, developing other elements for the LIRP will
lead to further research directions. And analyzing the model
under the dynamic demand of customs and a time-varying
demand can be a valuable subject. The design of experiments
and verification by discrete dynamics simulation should be
established. Fruit fly optimization algorithm (FOA) as one of
the best EC algorithms has attracted the attention of various
researchers [37]. It is important to apply these models and
algorithms to the operation and management of enterprises
to improve the decision-making efficiency of e-commerce
logistics system.
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The exponential growth in data traffic due to themodernization of smart devices has resulted in the need for a high-capacity wireless
network in the future. To successfully deploy 5Gnetwork, itmust be capable of handling the growth in the data traffic.The increasing
amount of traffic volume puts excessive stress on the important factors of the resource allocation methods such as scalability and
throughput. In this paper, we define a network planning as an optimization problemwith the decision variables such as transmission
power and transmitter (BS) location in 5G networks. The decision variables lent themselves to interesting implementation using
several heuristic approaches, such as differential evolution (DE) algorithm and Real-coded Genetic Algorithm (RGA). The key
contribution of this paper is that we modified RGA-based method to find the optimal configuration of BSs not only by just offering
an optimal coverage of underutilized BSs but also by optimizing the amounts of power consumption. A comparison is also carried
out to evaluate the performance of the conventional approach of DE and standard RGA with our modified RGA approach. The
experimental results showed that our modified RGA can find the optimal configuration of 5G/LTE network planning problems,
which is better performed than DE and standard RGA.

1. Introduction

The green domain is a new stage which aims to protect
Earth and contribute to reducing the global warming by effi-
ciently optimizing the energy consumption. Thus, the need
for energy efficient wireless networks has drawn significant
attention and focuses on the need to cut operating expenses
and power usage of the telecommunications infrastructure,
where radio networks represent about 80% of energy con-
sumption. Furthermore, it is widely known that base stations
(BSs) consume a significant amount of the energy (above
50%) in a cellular network [1, 2], which requires optimization
of the transmission power and location of a BS regarding
green aspects as shown in Figure 1.

The current 3G and 4G communication technologies
were introduced to fulfill the massive demand for enhancing
the speed of data traffic. Although the current communica-
tions technology has progressed impressively, it is still facing
the increasing demands due to the development of smart
devices. For this reason, various intensive studies towards 5G

networks are being developed beyond the current 4G/IMT-
Advanced standards and are moving towards the next phase
of mobile communication. The most important requirement
for the development of 5G network is the enhanced data
traffic; that is, it has to support robustly an exponentially
increasing number of devices [3]. Moreover, Long-Term Evo-
lution (LTE) which is expected to be used with 5G networks
has to deal with the reduced cell size of a BS [4], which leads to
an increase in the number of BSs and raises a concern about
increasing energy consumption of BSs.

Fortunately, 5G networks would benefit from the position
information and fittingly guide the wireless network designs
and optimization. There are many ways to find precise
location information in wireless networks along with related
distances, velocities, angles, delays, and predictable user
behavior [5] in 5G networks. The information obtained from
location-aware technology can be used to address numerous
issues by implementing sharing and coexistence approaches
to the challenges in 5G networks based on the user’s position.
By getting more accurate information of the users, power
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Figure 1: The energy consumption ratio in cellular networks.

efficiency can be improved by placing the sufficient base
stations in a reasonable position based on the user’s behavior.
Overload and delay can also be reduced by using location-
aware information.

In this paper, Real-coded Genetic Algorithm (RGA) was
modified to allocate the base stations efficiently in a dense
urban area regarding green aspects based on the user’s opti-
mal position. In other words, we modified RGA to solve our
BSs allocation problem efficiently.We foundout that standard
RGA cannot converge to an optimal solution because its
offspring is created by shuffling all chromosomes of its
parents. By introducingBSCrossover Rate (BCR) toRGAand
slight modification of mutation, our modified RGA can per-
form better than not only standard RGA but also differential
evolution (DE) algorithm. Thus, the key contribution of this
paper is that we modified RGA-based method to find the
optimal configuration of BSs not only by just offering an opti-
mal coverage of underutilized BSs but also by optimizing the
amounts of power consumption.

In this study, we introduced a literature survey in Sec-
tion 2which dealt with optimizing the energy consumption in
cellular networks. A systemmodel which provided a descrip-
tion of the general framework for network planning in the
context of 5G networks was explained in Section 3. The idea
of implementing a modified RGA for optimizing the energy
consumption of BSs was presented in Section 4. The experi-
mental results obtained from our proposed method with the
conclusion to this paper were illustrated in Sections 5 and 6,
respectively.

2. Related Work

To date, many researchers have rigorously studied network
design problems such as planning and optimizing perfor-
mance in cellular networks with a considerable amount of

published work, specifically on Universal Mobile Telecom-
munications System (UMTS) networks, LTE networks, and
5G networks. These studies aimed to estimate the optimal
configuration for the locations of BSs, power requirement of
each transmitter, antenna heights, relaying, and load balanc-
ing [6–8]. For instance, a variation of simulated annealing
algorithm was proposed to find the optimal design for least
cost and full coverage planning in Single FrequencyNetworks
(SFNs) [9]. In this paper, it was stated that the worst solution
found by the stochastic optimization algorithm based on
numerical formulation ismore efficient than the best solution
found by the conventional coverage planning algorithm.

In [10], the authors stated that avoiding the maximum
throughput regarding the minimizing energy consumption
for designing an initial cell is efficient. When a coverage
area is to be planned, network designers should estimate the
calculations for neighbor interference, which is known as in-
band Inter-Cell Interference (ICI). These methods are useful
to avoid ICI while minimizing cell edge throughput.

In the network planning problem for WiMAX, the
authors of [11] have determined a location-awareness issue by
using the Evolutionary Algorithms (EAs) such as Artificial
Bee Colony (ABC) and genetic algorithm (GA) to meet the
traffic and coverage requirements for the targeted base sta-
tions efficiently. For minimizing the interference among cells
and reducing energy consumption, the authors have divided
a genetic algorithm into APS-GA (Genetic Algorithm with
Adaptive Population Size) and FPS-GA (Genetic Algorithm
with Fixed Population Size) to resolve the same problem for
comparing these two algorithms efficiently. After the compar-
ison of APS-GA and FPS-GA with ABC algorithms, it was
observed that theABC algorithm requiredminimumcompu-
tational efforts, that is, less population and fewer evaluations,
compared to the APS-GA and FPS-GA, while the balanced
load could not efficiently satisfy the connected users.

In [12], the authors proposed an algorithm for joint uplink
and downlink radio planning in aUMTSwith the objective of
minimizing the total energy consumption. The authors suc-
cessively executed and subdivided the problem into two seg-
ments. Firstly, the authors tried to find the optimal positions
of a fixed number of UMTS BSs in the given area of interest
for targeting the optimization problem for best locations of
BSs. The study aimed to minimize the total downlink power
expense and at the same time the uplink outage that depends
on the power abilities of Mobile Stations (MSs) under differ-
ent restraints which sustain an acceptable Quality of Service
(QoS) and satisfy the energy budget. In a second phase, they
proposed an algorithm to select the minimal set of BSs with
fixed locations based on the site awareness prospects.

In the perspective of energy consumption, some recent
researchers [13, 14] have also discussed amethod of achieving
optimum power savings by switching off traffic underloaded
BSs (eNBs) in LTE technologies. In the article [13], the vast
amount of energy conservation is estimated by disabling
unnecessary cells due to low traffic. As outlined by different
studies thatmostly tackle the sleepmode atmobile user’s side,
there is trade-off between outage of users and energy saving
[14].
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In [15], the authors have proposed a scheme on resource
allocation for next-generation 5G networks. They calculated
Signal to Interference Noise Ratio (SINR) based on the
estimated path loss for each BSs and MSs pair. The power
received from each user was compared with the given thresh-
old value for the coverage area of macrocell and microcell
as these cells come in the new features of the heterogeneous
cell for themodern communication of LTE and LTE-Advance
or beyond. In the conclusion, the authors had just proposed
a scheme based on the radio planning for giving a good
coverage to the users, but they did not care about optimizing
the power consumption. Our paper has considered not only
a good coverage but also power consumption by using the
application of the EAs.There is scope for improving and opti-
mizing network planning concerning the green aspects by
using the new features available in 5G networks.

3. System Model

The system model assumes that we consider occupying the
area of [𝑊×𝐻]Km2 for 5G/LTE networks, where BSs can be
installed in that given area with a set of candidate sites 𝐻 =

{ℎ
1
, ℎ
2
, ℎ
3
, . . . , ℎ

𝑀
}, which is given in this scenario. In order to

place the BSs we need an installing cost which is associated
with each of the candidate sites 𝐶 = {𝑐

1
, 𝑐
2
, 𝑐
3
, . . . , 𝑐

𝑀
}. The

number of BSs in our simulation is denoted by𝐾 and a set of
BSs is denoted by 𝐵 = {𝑏

1
, 𝑏
2
, 𝑏
3
, . . . , 𝑏

𝐾
}.

As for the power of a transmitter, it is given that a BS
has the transmission power in the range of 0.1 to 10Watt. In
reality, the value of antenna gain depends on themanufacture
but, in our paper, it is assumed to be 18 dBi, and frequency
is used as 1800MHz [3, 16]. We employ the Cost-231 HATA
urban propagation model as this model is also known as a
radio propagation model, but it extends the urban HATA
model to cover a more enlarged range of frequencies [17, 18].
The coverage probability in the area around the location ℎ

𝑖

with a threshold is less than the SINR.The SINR is calculated
by using (1), where𝑀

𝑔
is theMHAgain,𝑃

𝑡
is the transmission

power, and 𝐼 and 𝑁 refer to the interference and noise,
respectively. Consider

SINR =
𝑀
𝑔
⋅ 𝑃
𝑡

𝐼 + 𝑁
. (1)

After calculating the value of SINR, the path loss (PL) is
determined by

PL [dB] = 𝑃
𝑡
+ 𝐺
𝑡
− 𝐿
𝑏
− SINR, (2)

where 𝐺
𝑡
is the transmitter’s antenna gain and 𝐿

𝑏
is the body

loss in dB. Also, the coverage area of a BS is formulated by

CA
𝑏𝑖
=
3√3(

𝑅
2

2
) , (3)

where 𝑅 is the cell radius. The coverage probability in that
area around the location ℎ

𝑖
with threshold 𝑇 is

𝑃
𝑐
(ℎ
𝑖
) = 𝑃 (SINR (ℎ

𝑖
) > 𝑇) . (4)

Table 1: Decision variables.

𝑄
𝑖

Available transmit power of a base station 𝑏
𝑖
[0.1 to 10.0]Watt

𝑋
𝑖

Location of a base station 𝑏
𝑖
in 𝑥-axis

𝑌
𝑖

Location of a base station 𝑏
𝑖
in 𝑦-axis

4. The Proposed Algorithm

The application of EAs such as GA, DE, and RGA is a
stochastic exploration technique for solving both constrained
and unconstrained optimization problems, which are based
on the natural selection. This procedure drives the biological
evolution, in such a manner that a population of individual
solutions is deceptively modified. At each phase, EA prob-
abilistically selects promising individuals from the current
population to be parents and then uses them to produce their
offspring for the next-generation employing crossover and
mutation mechanisms. As such, the application of EA pro-
vides satisfactory solutions to NP-hard optimization prob-
lems. Additionally, EA is also used to solve many practical
problems such as finding an optimal position for a BS [9, 19]
in a given area of interest.

Although EAs can solve NP-hard and several practical
problems efficiently, designing the structure of EAs properly
to a problem is required to achieve optimal performance.The
problem that we tried to solve is as follows. Users are located
in several dense areas, called urban areas, and we try to give
service to as many users as possible by using least number of
BSs and least transmit power by locating BSs to optimal posi-
tions. To solve this problem, we applied RGA because all the
decision variables (transmit power and location) are continu-
ous values. However, standardRGA could not find an optimal
solution because the crossover of standard RGA shuffles all of
the chromosomes, which makes a huge difference between
parents and offspring. Besides, the mutation operator of
standard RGA uses high standard deviation values, which
also makes a huge difference. To solve this problem to make
RGA perform better to solve network planning problem, we
modified RGA by introducing BS Crossover Rate (BCR) to
shuffle less and using small standard deviation values. These
modificationsmake RGAoutperformnot only standard RGA
but also DE approach in simulation results.

4.1. Encoding. The design of chromosomes is the essential
aspect of EAs. The chromosome of EA is a set of decision
variables that represents candidate solutions to an objective
problem.As usual, a set of chromosomes is a possible solution
to the target problem. We have to consider the design of
chromosomes carefully for gaining a better representation of
a solution to an objective problem while applying stochastic
methods. The population consists of a set of individuals that
contains the structure of chromosomes.

In this paper, the decision variables of our problem are
given in the available transmit power (𝑄

𝑖
) and location of

a BS (𝑋
𝑖
, 𝑌
𝑖
). In our chromosome representation, we used

only continuous values. The proposed algorithm uses these
decision variables for chromosomes as described in Table 1.
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Figure 2: The structure of chromosomes.

In our encoding, the population consists of 𝑃 individuals
and each individual is composed by 𝐾 BSs and one BS has
three decision variables. In other words, a set of 𝐾 BSs
falls within one individual, and a set of 𝑃 individuals falls
within one population. Figure 2 shows how the structure of a
population and individuals is organized in our encoding.The
values that are out of the ranges given in this scenario for the
BSs will be penalized by the given condition in an evaluation
operator. By applying thismechanism, themodified RGA can
find an optimal configuration.

4.2. Genetic Operations. In general, the operators of EAs con-
sist of selection, crossover, and mutation. We apply roulette
wheel selection for selecting potentially valuable solutions
for recombination. According to the number of times, the
roulette wheel is twisted equally to base on the size of the
population and divides from the natural way. Each time the
wheel stops it gives the fitter individual the greatest chance
of being selected for the next generation and succeeding the
mating pool. It can produce faster convergence speed, which
has more potential to find fast optimal solutions.

The basic idea behind crossover is to increase genetic
diversity. In this mechanism, it exchanges parent individuals’
chromosomes and produces their offspring to make better
individuals than both of their parents if they take the best
characteristics from each of the parents. In our work, we
applied box crossover. The upper bound and lower bound
of two-dimensional bounded areas evaluate the range of the
possible offspring. Box crossover is also a proper feature of
RGA to maintain their population diversity efficiently. What
we have modified in the standard RGA is that we introduce

BCR by applying modified crossover in our proposed modi-
fied RGAmeans MRGA. As mentioned earlier, we found out
that standard RGA cannot converge to an optimal solution
because its offspring is created by shuffling all chromosomes
of its parents. In ourmodifiedRGA,we are not shuffling every
chromosome of an individual to the next generation by using
BCR. Therefore, BCR prevents shuffle of all of the chromo-
somes, which makes a small difference between parents and
offspring. The modified crossover is performed as Algo-
rithm 1. In the Algorithm, the tilde indicates offspring.

Mutation is the part of a genetic operator which is also
used to increase genetic diversity from one generation of a
population to the next generation. It is meant to break fre-
quently few chromosomes of a population to overcome a local
optimum.We have applied slightly modified mutation in our
modified RGA. The modified mutation is performed as
Algorithm 2.

𝐷 value contains a difference between standard RGA’s
mutation and our modified RGA. In standard RGA, 𝐷 value
is fixed to use 10, while the modified RGA uses 100. Similar
to BCR, this modification makes a small difference between
parents and offspring, not a huge difference.

After crossover and mutation, our modified RGA con-
ducts replacement operator. In replacement operator, if off-
spring has better fitness than a randomly selected individual
from the population, then offspring replaces the individual.
Otherwise, offspring discarded.The overall procedures of the
proposed RGA are described in Algorithm 3.

4.3. Fitness Evaluation. Afitness function is used to help get a
solution from the evaluation of chromosomes for the survival
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(1) Begin
(2) 𝑟

1
is a random individual from selected individuals

(3) 𝑟
2
is a random individual from selected individuals

(4) 𝑟
1,𝑚

is a selected base station based on roulette wheel from 𝑟
1

(5) 𝑟
2, 𝑛

is a selected base station based on roulette wheel from 𝑟
2

(6) For 𝑖 = 0 to 𝑖 = 𝑃

(7) For 𝑗 = 0 to 𝑖 = 𝐾

(8) If a random number from [0, 1] is less than BSR Then
(9) 𝑄

𝑖,𝑗
= a random real number in [min(𝑄

𝑟1,𝑚
, 𝑄
𝑟2,𝑛

), max(𝑄
𝑟1,𝑚

, 𝑄
𝑟2,𝑛

)]
(10) 𝑋

𝑖,𝑗
= a random real number in [min(𝑋

𝑟1,𝑚
, 𝑋
𝑟2,𝑛

), max(𝑋
𝑟1,𝑚

, 𝑋
𝑟2,𝑛

)]
(11) 𝑌

𝑖,𝑗
= a random real number in [min(𝑌

𝑟1,𝑚
, 𝑌
𝑟2,𝑛

), max(𝑌
𝑟1,𝑚

, 𝑌
𝑟2,𝑛

)]
(12) Else
(13) 𝑄

𝑖, 𝑗
= 𝑄
𝑟1,𝑚

(14) 𝑋
𝑖,𝑗

= 𝑋
𝑟1 ,𝑚

(15) 𝑌
𝑖,𝑗

= 𝑌
𝑟1 ,𝑚

(16) End If
(17) End For
(18) End For
(19) End

Algorithm 1: The modified crossover.

(1) Begin
(2) For 𝑖 = 0 to 𝑖 = 𝑃

(3) For 𝑗 = 0 to 𝑖 = 𝐾

(4) If a random number from [0, 1] is less than𝑀
𝑟
Then

(5) 𝑄i, j = 𝑄i, j + 𝑁(0, (𝑄max − 𝑄min)/𝐷)

(6) End If
(7) If a random number from [0, 1] is less than𝑀

𝑟
Then

(8) 𝑋i, j = 𝑋i, j + 𝑁(0, (𝑋max − 𝑋min)/𝐷)

(9) End If
(10) If a random number from [0, 1] is less than𝑀

𝑟
Then

(11) 𝑌i, j = 𝑌i, j + 𝑁(0, (𝑌max − 𝑌min)/𝐷)

(12) End If
(13) End For
(14) End For
(15) End

Algorithm 2: The modified mutation.

(1) Begin
(2) Initialize Users
(3) Initialize Population
(4) Evaluate Population
(5) While Termination criteria does not metThen
(6) SelectedIndividuals = RouletteWheel(Population)
(7) Offspring = ModifiedBoxCrossover(SelectedIndividuals) (Algorithm 1)
(8) Offspring = ModifiedMutation(Offspring) (Algorithm 2)
(9) Replacement(Population, Offspring)
(10) EndWhile
(11) End

Algorithm 3: Pseudocode of modified RGA.
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Table 2: Simulation parameters.

Carrier frequency 15GHz
Frame structure FDD
Population size 100
Maximum number of iterations 50
Maximum number of generations 200
Transmission power (𝑃

𝑡
) [0.1 to 10]Watt

Receiver antenna gain 18 dBi
MHA gain (𝑀

𝑔
) 2 dB

Cable loss (𝐶
𝑙
) 2 dB

Noise figure (N) 2 dB
Body loss (𝐿

𝑏
) 2 dB

Area Urban
Maximum number of BSs 100
Longitude (upper-left X) −100
Latitude (upper-left Y) 100
Longitude (lower-right X) 100
Latitude (lower-right Y) −100
Number of users 10000
Propagation model Cost-231 HATAModel

of next generation. The objective function in our approach
can be formulated for getting the fitness (𝐹) of the optimal
network configuration as follows:

𝐹 = [
𝑈𝐸
2

𝑇
𝑃
× ActiveBSs2

] , (5)

where 𝑈𝐸 is the number of connected users to the BSs, 𝑇
𝑃
is

the total transmit power, and ActiveBSs is the number of BSs
that connected to at least one user.

As for the termination criteria, we defined the maximum
number of generations𝑇

𝑔
. After executing simulation𝑇

𝑔
gen-

erations, the proposed algorithm terminates the procedure
and returns the best-so-far solution.

5. Experimental Results

In this section, the performance evaluation of the modi-
fied RGA is presented. At first, the modified algorithm is
evaluated concerning the best-optimized power level and its
location for 5G BSs with standard RGA and DE. In this
scenario, we obtained the experimental results regarding the
number of active base stations and transmission power with
the connected users and compared with conventional DE.
Finally, we also conducted the best, average, andworst fitness,
transmission power, the number of active base stations, and
their connected users of the modified RGA.

Table 2 lists the simulation parameters which we have
considered in this paper. In the table, there are some constant
variables such as bandwidth, carrier frequency, frame struc-
ture, receiver antenna gain, MHA gain, cable loss, noise fig-
ure, and body loss and decision variables such as population
size (𝑃), maximum number of iterations, and transmission
power (𝑄). In our experiments, the environment area is
assumed to be representing (𝑋, 𝑌) as (−100.00, 100.00) and

Figure 3: Simulation environment.

(100.00, −100.00) in meter, where base stations and users are
allocated in given area of interest. The users are allocated as
an exact point by using their accuracy range in the given area
as this is the new feature of 5G networks. Figure 3 shows
a proposed simulation environment where we can see the
following: rectangle boxes are representing cities with an area
entirely covered with users mostly called urban area. The
circle shapes are serving a coverage area by optimumbase sta-
tions that were being proposed by the EA with the extended
version of RGA.

We have performed the experiments and reported values
to estimate the best configuration for 5GBSs.Our experimen-
tal results gathered over 50 independent runs. The compared
algorithms are described as follows:

(i) The modified RGA, with BSR = 0.1 and𝑀
𝑟
= 0.2.

(ii) StandardDE(rand/1/bin) with SF = 0.5 andCR = 0.9.
(iii) Standard RGA with𝑀

𝑟
= 0.2.

First of all, Figure 4 shows the convergence graphs of the
modified RGA, DE, and RGA. As we can see, the modified
RGA’s performance is better than DE and RGA towards
the upcoming generation. By comparing the algorithms (the
modified RGA, DE, and RGA), we notice that RGA is getting
slightly the same and worse fitness value towards a genera-
tion. This is because of shuffling happening again and again
by using box crossover, where the modified RGA and DE are
better than RGA as they are not changing their chromosomes
every time in crossover operator.

Figure 5 shows that DE and RGA can keep less activated
BSs and serve similar users at the same time in comparison
with the modified RGA. This result leads to less fitness value
as it depends on the objective function. The randomness of
the EAs provides more of a chance for the network operator
to find better BS combinations. However, this advantage
comes at the expense of higher computational complexity that
depends on the standard crossover and mutation of DE and
RGA.That is why the modified RGA increases the number of
the base stations more with less power consumption than DE
and RGA to achieve better fitness.
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Figure 5: Comparison of the number of active BSs.

In Figure 6, the most numbers of connected users are
similar in themodified RGA,DE, and RGA, where we can see
that coverage area is covered well for giving an excellent ser-
vice to the connected users by using these three techniques.
There is no much difference in performing to providing
a good coverage in our simulation environment mentioned
in Figure 3 by applying the modified RGA, DE, and RGA
regarding the connected users.

Figure 7 plots the performance of transmission power
consumption in between the modified RGA, DE, and RGA
towards the upcoming generation, where we can see that
DE and modified RGA are performing quite similarly after
reaching around 60th generation due to replacing their chro-
mosomes less thanRGA. By doing less shuffling, themodified
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Figure 6: Comparison of the number of connected users.

Generation
0 30 60 90 120 150 180 210

MRGA
DE

RGA

Tr
an

sm
it 

po
w

er
1200

1100

1000

900

800

700

600

500

Figure 7: Comparison of the total transmit power.

RGA andDE have performed well in terms of the power con-
sumption. As a result, our goal of themitigation of the energy
consumption is reached by adjusting the BSs transmission
power according to getting the optimal locations of BSs and
covering the coverage area for satisfaction by the quality of
service. In other words, our modified algorithm has less total
power consumption in comparison to DE and RGA but still
it can serve more users than DE and RGA, which makes the
huge difference in their fitness.

At last, we have also gathered all the best, average, and
worst results of our modified RGA approach. The results are
plotted as fitness value in (a), transmission power in (b), a
number of active base stations in (c), and the number of
connected users in (d), respectively, in Figure 8.
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Figure 8: The best, average, and worst convergence graphs of the modified RGA.

Tables 3 and 4 show that our modified RGA is statistically
significantly better than DE and RGA. As we can see in both
of the tables, the 𝑡-value gives 2.01303𝐸 − 22 for DE and
the modified RGA and 5.4306𝐸 − 33 for RGA and MRGA.
Hence, it is proven that the modified RGA has statistically
better performance than DE and RGA.

6. Conclusion

In this paper, we have offered the modified RGA method for
allocating the optimal positions of the future 5Gbase stations.
The modified RGA has achieved sufficiently better perfor-
mance in terms of transmit power saving and total connected
users for 5G networks with providing optimal coverage. We

Table 3:The t-value of 49 degrees of freedom is significant at a QOS
level of significance by two-tailed t-test for MRGA and DE.

The modified RGA DE t-value
Average 277.270614 145.654808
St. dev. 56.7086340687 15.8800909196 2.01303E−22

established to evaluate the location intelligence of the BSs to
be in concession with green communications. The modified
RGA has successfully found the considerable better configu-
ration by comparingwith conventional DE andRGA to locate
proper location and adjusting the range of the power level
additional to coverage constraints. In our ongoing and future
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Table 4:The t-value of 49 degrees of freedom is significant at a QOS
level of significance by two-tailed t-test for MRGA and RGA.

The modified RGA RGA t-value
Average 277.270614 39.76453
St. dev. 56.7086340687 2.399219965 5.4306E−33

work, we will study optimal BSs and their cost regarding fre-
quency level using an advanced EA. We will also investigate
the chronological evolution of the energy in the standard of
satisfactory QoS.
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A special parallel production lines scheduling problem is studied in this paper. Considering the time window and technical
constraints, a mixed integer linear programming (MILP) model is formulated for the problem. A few valid inequalities are deduced
and a hybrid mixed integer linear programming/constraint programming (MILP/CP) decomposition strategy is introduced. Based
on them, a hybrid integer programming/genetic algorithm (IP/GA) approach is proposed to solve the problem. At last, the
numerical experiments demonstrate that the proposed solution approach is effective and efficient.

1. Introduction

Electric wire and cables are usually continuously produced
and can be in coil packaging (or circle packing) [1]. In the
large cable manufacturing enterprise, there is usually more
than one continuous cable production line and cables can be
produced on most of the lines. For the same cable product,
the different lines always take different production cost and
different production time. It raises a parallel scheduling prob-
lem over these production lines. The objective is to minimize
the total production cost. The due time of each cable product
and technological requirements of each cable production line
need to be satisfied. The problem can be viewed as a parallel
machine scheduling problemwith complicated constraints of
continuous cable production lines. It includes two kinds of
scheduling decisions: a job allocation decision over multiple
machines (cable production lines) and a job sequencing
decision on each machine (cable production line).

The parallel machine scheduling problem is a common
combinatorial optimization problem and there have been a
lot of related researches published. In the 1970s, a series of
researches have ever focused on problem complexity analysis,
as shown in Table 1, where the symbol description system
in Graham et al. [2] was adopted and the identical parallel
machine problems with various objectives in literature [3–6]

were proven to be NP-hard while the heterogeneous parallel
machine scheduling problem with total complete times was
provided an algorithm with 𝑂(𝑛 log 𝑛) complexity. Later,
Dessouky et al. [7] also proved that heterogeneous parallel
machine problems, including 𝑄/𝑟

𝑖
, 𝑝
𝑖
= 1/𝐶max, 𝑄/𝑝

𝑖
=

1/∑𝜛
𝑖
𝑐
𝑖
,𝑄/𝑝
𝑖
= 1/𝐿max, and𝑄/𝑝

𝑖
= 1/∑𝑇

𝑖
, have𝑂(𝑛 log 𝑛)

complexity. Various kinds of algorithms have been developed
to solve the parallel machine scheduling problems of NP-
hardness, including the intelligent optimization algorithms,
such as Tabu Search [8–10], Simulated Annealing [11], and
genetic algorithm [12, 13] and optimization algorithms, such
as Branch and Bound [14–17], Dynamic Programming [18–
20], and Column Generation [21–23].

It is worth noting that a hybrid mixed integer linear pro-
gramming/constraint programming (MILP/CP) approach
has been proposed to solve a class of parallel machine
scheduling problems (Harjunkoski et al. [24], Jain andGross-
mann [25], Hooker [26], and Maravelias and Grossmann
[27]) which are similar to the problem studied in this paper.
The approach divides the parallel scheduling problem into a
job allocation master problem and a series of single machine
scheduling subproblems. It applies the mixed integer linear
programming (MILP) to solve the former master problem
and constraint programming (CP) to the latter subprob-
lems. Typically, the process needs to be iterated because
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Table 1: The complexity research of various parallel machine
problems in the 1970s.

Literature Year Problem variants Complexity
Karp [3] 1972 𝑃2//𝐶max NP-hard
Bruno et al. [4] 1974 𝑃2//∑𝜛

𝑖
𝑐
𝑖

NP-hard
Lenstra [5] 1977 𝐼/𝑟

𝑖
/∑ 𝑐
𝑖

NP-hard
Garey and Johnson [6] 1978 𝑃//𝐶max NP-complete
Horowitz and Sahni [29] 1976 𝑄//∑ 𝑐

𝑖
𝑂(𝑛 log 𝑛)

the CP always encounters an infeasibility in solving the
singlemachine scheduling subproblem.ThehybridMILP/CP
approach can obtain an optimal solution after a number of
iterations. Its limitation is the computational inefficiency. It
can deal with only small-scale problems in an acceptable CPU
time, although some improvements have been developed
[27, 28] to reduce the number of iterations.

The hybrid MILP/CP approach can also be applied
to the parallel cable production line scheduling problem
after revising its CP model according to the particular
scheduling requirement of the cable production line. The
hybrid MILP/CP approach, though dealing with only some
small-scale problems, motivates us to combine the integer
programming (IP) and genetic algorithm (GA) together to
develop the hybrid IP/GA approach to the parallel cable
production lines scheduling problem. In the hybrid IP/GA
approach, the traditional exact optimizationmethod (IP) and
the intelligent optimization method (GA) can complement
each other to strengthen the solving process, similar to what
the MILP and CP perform in the hybrid MILP/CP approach.
This is our main contribution in the paper.

The outline of this paper is as follows. Section 2 describes
constraints of the problem and provides its integer program-
mingmodel. In Section 3, a few valid inequalities are deduced
and a hybrid MILP/CP model is presented. In Section 4, a
hybrid IP/GA approach is proposed to resolve the problem.
Section 5 tests the proposed solution approach. Section 6
concludes the paper.

2. Problem Description and
Mathematical Model

2.1. The Problem Description. In the cable manufacturing
enterprise of our own interest, cables are produced coil by
coil through the equipped production lines and thus a cable
coil, hereinafter referred to as the “cable,” will be viewed as a
job to be scheduled. The cable requires different processing
time and cost on different production lines because the
lines are configured with different product preferences. The
processing time, including the setup time, is assumed to be
independent of processing sequence and thus the setup time
will be ignored (or included in the processing time) in this
problem. The scheduling objective is to minimize the total
processing cost.

There are always some cables requiringmore cable rubber
and the production line needs to provide more heated rubber
for these cables, which will form a technical constraint for

the scheduling problem. To facilitate the problemdescription,
the cables that need more rubber will be classified into
“type B” and others into “type A.” The cables of type B
cannot be processed consecutively in a production line and
several cables of type A are needed between processing two
successive cables of type B; otherwise the cable rubber quality
could be impaired.

Another constraint comes from the time window of each
cable. Since the cable cores are handed off from the upstream
process, each coil has a release time in the cable production
line. In addition, most cables have the contracted delivery
time.These two times constitute the time window constraint.

A cable production scheduling problem instance is illus-
trated in Figure 1. It needs to schedule seven cables (or jobs,
labeled as 𝐽1, 𝐽2, . . . , 𝐽7 in Figure 1) over two production lines
(labeled as 𝐿1 and 𝐿2). Cables 𝐽1 and 𝐽2 belong to type B
and others belong to type A. As shown in the top part of
Figure 1, each cable has its own time window [𝑟

𝑖
, 𝑑
𝑖
] and two

different processing times, 𝑝1
1
and 𝑝

2

1
, corresponding to the

two production lines, respectively. A schedule arrangement
is shown in the bottom part of Figure 1. For the time window
constraint and technical requirement (forbidding cables 𝐽1
and 𝐽2 to be processed continuously on line 𝐿1 or 𝐿2), no
production line processes cable 𝐽2 and thus the schedule is
infeasible.

2.2. The Mixed Integer Linear Programming Model. To define
and formulate the problem explicitly, the following notations
need to be introduced to represent all coils, production lines,
coil type parameters, and so on:

𝑁: set of cables and 𝑁 = {0, 1, 2, . . . , 𝑛}, where 0 is a
dummy cable.
𝑀: set of cable production lines,𝑀 = {1, 2, . . . , 𝑚}.
𝐵: set of cables belonging to type B.
𝐴: set of cables belonging to type A,𝐴∩𝐵 = 0,𝐴∪𝐵 =

𝑁.
𝑄: number of necessary cables of type A between
successive cables of type B in a production line.
𝑟
𝑖
: release time of cable 𝑖, 𝑖 ∈ 𝑁.

𝑑
𝑖
: due time of cable 𝑖, 𝑖 ∈ 𝑁.

𝑐
𝑖𝑗
: production cost of cable 𝑖 on line 𝑗.

𝑝
𝑖𝑗
: production time of cable 𝑖 produced on line 𝑗.

𝑍: a sufficiently large constant.

To represent cable assignment decisions over the produc-
tion lines and scheduling decisions on each line, we introduce
the following decision variables:

𝑦
𝑖𝑗
= {
0, if cable 𝑖 is produced on line 𝑗;
1, otherwise.

𝑥
𝑖𝑖
󸀠
𝑗
= {
0, if cable 𝑖󸀠 is produced immediately after 𝑖 on line 𝑗;
1, otherwise.

𝑆
𝑖
: start time of producing cable 𝑖, 𝑖 ∈ 𝑁.

𝐶
𝑖
: complete time of cable 𝑖, 𝑖 ∈ 𝑁.
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Figure 1: An illustration of the cable parallel production lines scheduling problem.

The following auxiliary variables are also introduced
to represent the number of consecutive cables of type A
on a production line, which is necessary to represent the
technological requirement of production lines:

𝑎
𝑖
: number of consecutive cables of typeAbefore cable

𝑖, 𝑖 ∈ 𝐴.
Based on the above notations, the parallel cable pro-

duction lines scheduling problem can be formulated as the
following mixed integer linear programming model:

Min ∑

𝑖∈𝑁\{0}

∑

𝑗∈𝑀

𝑐
𝑖𝑗
𝑦
𝑖𝑗 (1)

s.t. ∑

𝑗∈𝑀

𝑦
𝑖𝑗
= 1, 𝑖 ∈ 𝑁 \ {0} (2)

∑

𝑖∈𝑁,𝑖 ̸=𝑖
󸀠

𝑥
𝑖𝑖
󸀠
𝑗
= 𝑦
𝑖
󸀠
𝑗
, 𝑖
󸀠
∈ 𝑁 \ {0} , 𝑗 ∈ 𝑀 (3)

∑

𝑖
󸀠
∈𝑁,𝑖
󸀠
̸=𝑖

𝑥
𝑖𝑖
󸀠
𝑗
= 𝑦
𝑖𝑗
, 𝑖 ∈ 𝑁 \ {0} , 𝑗 ∈ 𝑀 (4)

∑

𝑖
󸀠
∈𝑁\{0}

𝑥
0𝑖
󸀠
𝑗
≤ 1, 𝑗 ∈ 𝑀 (5)

𝑎
𝑖
󸀠 ≤ 𝑍(1 − ∑

𝑗∈𝑀

∑

𝑖∈𝐵

𝑥
𝑖𝑖
󸀠
𝑗
) , 𝑖

󸀠
∈ 𝐴 (6)

𝑎
𝑖
󸀠 ≤ 𝑎
𝑖
+ 1 + 𝑍(1 − ∑

𝑗∈𝑀

𝑥
𝑖𝑖
󸀠
𝑗
) , 𝑖, 𝑖

󸀠
∈ 𝐴 (7)

∑

𝑗∈𝑀

𝑥
𝑖𝑖
󸀠
𝑗
≤ 0, 𝑖, 𝑖

󸀠
∈ 𝐵 (8)

𝑎
𝑖
≥ 𝑄 − 1 − 𝑍(1 − ∑

𝑗∈𝑀

𝑥
𝑖𝑖
󸀠
𝑗
) ,

𝑖 ∈ 𝐴, 𝑖
󸀠
∈ 𝐵

(9)

𝑆
𝑖
≥ 𝑟
𝑖
, 𝑖 ∈ 𝑁 \ {0} (10)

𝐶
𝑖
≤ 𝑑
𝑖
, 𝑖 ∈ 𝑁 \ {0} (11)

𝑆
𝑖
󸀠 − 𝐶
𝑖
≥ 𝑍(∑

𝑗∈𝑀

𝑥
𝑖𝑖
󸀠
𝑗
− 1) , 𝑖, 𝑖

󸀠
∈ 𝑁 \ {0} (12)

𝐶
𝑖
− 𝑆
𝑖
≥ ∑

𝑗∈𝑀

𝑝
𝑖𝑗
𝑦
𝑖𝑗
, 𝑖 ∈ 𝑁 \ {0} (13)

𝑥
𝑖𝑖
󸀠
𝑗
, 𝑦
𝑖𝑗
∈ {0, 1} , 𝑖, 𝑖

󸀠
∈ 𝑁, 𝑗 ∈ 𝑀 (14)

𝑆
𝑖
, 𝐶
𝑖
≥ 0, 𝑖 ∈ 𝑁 (15)

𝑎
𝑖
∈ {0, 1, 2, . . . , 𝑛} , 𝑖 ∈ 𝐴. (16)

The objective function (1) of the model is to minimize
the total production cost of the adopted cable production
tasks assignments. Constraints (2)–(5) state the logic relations
among the decision variables. Constraint (2) ensures that a
production line is assigned to each cable. Constraints (3) and
(4) ensure that each cable has one preceding cable and one
succeeding cable, respectively. Constraint (5) states that each
line has at most one starting cable, which implies that there
are at most𝑚 available lines.

Constraints (6)–(9) aim to the technical requirement that
there are enough cables of type A between any two successive
cables of type B on the same line. Among them, constraint
(6) states that 𝑎

𝑖
󸀠 ≤ 0 if its preceding cable belongs to type B.
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Figure 2: Cable assignments excluded by the valid inequalities.

Constraint (7) calculates the number of consecutive cables of
type A. Constraint (8) prevents the consecutive cables of type
Bwhile constraint (9) guarantees no less than𝑄 cables of type
A between any two cables on the same line.

Constraints (10) and (11) are the timewindow constraints.
Constraint (12) ensures the cable production sequence on the
same line and constraint (13) provides enough production
time for each assignment. Constraints (14)–(16) provide value
ranges for the variables.

3. Valid Inequalities, a Hybrid MILP/CP
Solution Method, and Lower Bound for
the Problem

3.1. Valid Inequalities. In this section, a few valid inequalities
will be introduced. To the problem definition, MILP model
(1)–(16) is already appropriate and all the valid inequalities
are redundant, but they can reduce the computing time if
we attempt to directly solve the model through optimization
software. It ismore important that the valid inequalities can re-
flect the problem features andwork for the heuristic approach.

Production Capacity Inequality. Consider the following:

∑

𝑖∈𝑁

𝑦
𝑖𝑗
𝑝
𝑖𝑗
≤ Max {𝑑

𝑖
| 𝑖 ∈ 𝑁} −Min {𝑟

𝑖
| 𝑖 ∈ 𝑁} ,

𝑗 ∈ 𝑀.

(17)

Inequality (17) prevents total production times of assign-
ments to any line more than its capacity in the scheduling
horizon. For the case in Figure 1, cables 𝐽1, 𝐽2, 𝐽4, and 𝐽5

cannot be assigned to line 𝐿1 concurrently because inequality
𝑝
11

+ 𝑝
21

+ 𝑝
41

+ 𝑝
51

> Max {𝑑
𝑖
| 𝑖 ∈ 𝑁} −Min {𝑟

𝑖
| 𝑖 ∈ 𝑁} =

𝑑
2
− 𝑟
1
stands, which conflicts with inequality (17), as shown

in Figure 2(a).
There is still a tighter inequality which takes into consid-

eration the production tasks balancing in time.

Production Time Equilibrium Inequality. Consider the follow-
ing:

∑

𝑖∈Ψ(𝑟
𝑖
󸀠 ,𝑑
𝑖
󸀠󸀠 )

𝑦
𝑖𝑗
𝑝
𝑖𝑗
≤ 𝑑
𝑖
󸀠󸀠 − 𝑟
𝑖
󸀠 ,

𝑖, 𝑖
󸀠
∈ 𝑁, 𝑑

𝑖
󸀠󸀠 > 𝑟
𝑖
󸀠 , 𝑗 ∈ 𝑀,

(18)

where Ψ(𝑟
𝑖
󸀠 , 𝑑
𝑖
󸀠󸀠) = {𝑖 | 𝑟

𝑖
≥ 𝑟
𝑖
󸀠 and 𝑑

𝑖
≤ 𝑑
𝑖
󸀠󸀠 , 𝑖 ∈ 𝑁}

includes all cables that need to be produced in time window
[𝑟
𝑖
󸀠 , 𝑑
𝑖
󸀠󸀠].

Inequality (17) can be viewed as a special case of
inequality (18) and inequality (18) is a tighter inequality.
For the case illustrated in Figure 1, Ψ(𝑟

1
, 𝑑
6
) = {1, 3, 6}

and cable combination 𝐽1, 𝐽3, and 𝐽6 can be excluded from
𝐿1 through inequality (18), although the cable combination
meets inequality (17), as shown in Figure 2(b).

It is worth noting that inequality (18) is not adequate
to ensure the production equilibrium absolutely in time
because the real production duration is less than the given
time window and permitted to slide in the time windows.
Therefore, the assignment scheme satisfying inequality (18)
can still be infeasible for one or more productions even if
ignoring the technical requirements (see [24, 28] for more
details). In addition, inequality (18) can be significantly
tightened again as in Ren and Liu [28].

Limit of Cable Rate of Type B in a Production Line. In effect, the
technical constraint (9) limits the ratio of the cable numbers
of type B and type A in a production line:

∑

𝑖∈𝐴

𝑦
𝑖𝑗
≥ (𝑄 − 1)∑

𝑖∈𝐵

𝑦
𝑖𝑗
, 𝑗 ∈ 𝑀. (19)

Inequality (19) provides a filtering mechanism for the
cable assignment over the production lines. For the assign-
ment in Figure 2(a), cable combination 𝐽1, 𝐽2, and 𝐽4 can
be filtered out from any line when 𝑄 ≥ 2, because at least
two cables of type A are necessary between cables 𝐽1 and
𝐽2.

3.2. Hybrid MILP/CP Approach and Lower Bound for the
Problem. In the hybrid MILP/CP approach [24, 25], the
parallel cable production lines scheduling problem should
be decomposed into a relaxed master problem, focusing on
the cable assignment decision, and a single production line
scheduling subproblem. The relaxed master problem can be
formulated into an IP model by formulae (1), (2), and (18).
The subproblem for a single production line is formulated by
the following CP model:

All-different (𝑊) ; (20)

if (𝑊
𝑘
∈ 𝐵) (𝑏

𝑊
𝑘+1

+ 𝑏
𝑊
𝑘+2

+ ⋅ ⋅ ⋅ + 𝑏
𝑊
𝑘+𝑄

= 𝑄) ∨ (𝐿 < (𝑘 + 𝑄)) (21)

The required production time and time window constraints. (22)
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Figure 3: Illustration of the hybrid MILP/CP approach.

In the above CP model, 𝑊
𝑘
denotes the 𝑖th cable on the

considered production line and 𝐿 is the number of cables
assigned to the line. Formula (20) means that the 𝐿 cables
are all different from each other. Formula (21) is the technical
constraint in the line which requires at least 𝑄 cables of type
A immediately after a cable of type B.

As illustrated in Figure 3, the hybrid MILP/CP approach
begins with solving the relaxed master problem through
solving the corresponding IP model optimally. Here, the IP
model is solved by ILOG Cplex, a commercial optimization
software package. Based on the optimal solution to the
master problem, the cable set for each production line can be
determined temporarily. The CP model (20)–(22), solved by
ILOG Scheduler (an ILOG CP Optimizer), can deal with the
𝑚 single line scheduling subproblems. If the 𝑚 subproblems
are all feasible and m single line schedules are obtained, the
computing process terminates and the optimal solution is
obtained. Otherwise, a “cut,” a kind of constraint to eliminate
the current infeasible cable assignments (as formulated by
inequality (23)), will be constructed and appended to the
master problem model which will trigger a new repeat. The
iterated process will repeat until all the 𝑚 feasible single line
schedules are obtained.

The “cut” in the iterating process can be formulated as

∑

𝑖∈Ω

𝑦
𝑖𝑗
∗ ≤ ‖Ω‖ − 1, (23)

where 𝑗∗ is the production line encountering infeasibility and
Ω is a set of cables that contribute to the infeasibility.

The hybrid approach, with improvement in Ren and Liu
[28], can solve only small-scale problems, even if ignoring
the special technical constraints. For the problem instances
of larger size in this paper, it can provide a lower bound
and the lower bound can be increased with the more cuts
in iterations. But the iterating process can become very time
consuming and the lower bound always keeps fixed in many
iterations for large problem sizes. Another significance of the
hybrid approach is to give an initial cable assignment scheme.
Although it is typically infeasible, our heuristic solution can
view it as a starting point of the search process.

4. Hybrid IP/GA Approach to the Problem

Genetic algorithm (GA) is ametaheuristic based on evolution
population and explores multiple solutions concurrently and
thus performs well at global search which is complementary
for the optimality (with infeasibility) and solution directivity
of the integer programming (IP) method. More GA details
can be found in Goldberg [30], Grefenstette [31], and Oliveto
and Witt [32]. There are some published studies of genetic
algorithm applications in kinds of scheduling problems [33–
37]. Through evolution, they find high-quality solutions
within reasonable computing time.

Generally, a desirable GA can converge quickly at the
same time avoiding premature convergence to low-quality
solutions. In practice, it needs a good balance between
computational time and the solution quality [32]. To improve
the GA searching process, an optimization approach, the
integer programming (IP) method based on the IPmodel (1),
(2), and (18), is introduced to the iterating steps. It can not
only improve the GA searching process but also provide a
better lower bound to evaluate the final solution quality.

4.1. Framework of the Hybrid IP/GA. The hybrid IP/GA
approach is illustrated in Figure 4. It is characterized by
the interaction between IP and GA in the iterating process.
The optimization method with IP model provides cable
assignment schemes to the GA and the GA feeds back to
the IP model some “cuts.” These “cuts” can cut off some
cable assignment schemes and tighten the IP model in turn.
The tighter model can possibly produce better solution (cable
assignment scheme) and better lower bound.

4.1.1. Generating Cable Assignment Schemes through IP. As
mentioned in Section 3.2, it can provide a cable assignment
scheme to solve IP model (1), (2), and (18) through the
optimization software (such as ILOG Cplex). To satisfy the
technical constraint, inequality (19) can also be inserted into
the IP model. The cable assignment scheme can be extended
to a solution through applying the earliest due date (EDD)
rule to each production line.The solution, which violates one
or more of the time window constraints in most cases but is
“optimal” for the objective function, can be taken as a seed
to generate the initial chromosomes for GA.The infeasibility
can be accepted for chromosome but causes a great penalty
in the fitness function.

In the evolution process of GA, the IP model can be
attached with a series of “cuts,” inequalities as formula (23),
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Figure 4: The algorithm framework of the hybrid IP/GA approach.

and generate more diverse cable assignment schemes. The
cable assignment schemes can also be extended to solutions
and provide diverse chromosomes to the GA. In our hybrid
algorithm, the IP model solver is called for a certain number
of generations.

4.1.2. Generating Cuts for IP in the GA Generations. Some of
the chromosomes and their infeasibility information in the
GA generations need to be retained and form “cuts” to be
appended to the IP model. To generate new cable assignment
schemes, the cut set of IP model needs to be updated each
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Figure 5: The “cut” for an infeasible cable assignment.

time the IP solver is called; otherwise, it will generate the same
scheme as the last.

An infeasibility and the “cut” are illustrated in Figure 5. It
is infeasible to assign cables 𝐽1 and 𝐽2 to line𝐿1, irrespective
of the processing sequence, due to the nonpreemption and
time window constraint, although it satisfies inequality (18).
Based on formula (23), a “cut,” formulated as inequality 𝑦

11
+

𝑦
21

≤ 1, can be appended into the IP model of the master
problem to eliminate the infeasible cable assignment.

It is worth noting that the infeasibility needs to be
verified through CP model in Section 3.2 because our single
machine scheduling process is not an exact algorithm and
cannot guarantee a feasible schedule for each feasible cable
combination on a single production line although it does in
most cases. If the infeasibility is denied by the CP solver,
that is, a feasible schedule is outputted, the cable combination
assigned to the line should be accepted and the related
solution should be a feasible solution. In the numeric tests,
the presumptive case has never happened. On the other hand,
some feasible cable assignments can also be used to form
“cuts” to make the initial cable assignments more diverse.

Because the CP solver can waste more computing time
and too many cuts can decrease the solving speed of the IP
model, the infeasible cable combinations (or cuts) need to be
selected carefully. In the hybrid approach, only cuts from the
assignment schemes with currently optimal objectives can be
selected to the CP model.

Typically, IPmodel (i.e., the relaxedmaster problem)with
more cuts has more chance to improve the lower bound for
the problem.

4.2. Genetic Coding for the Problem. To facilitate the
crossover and mutter operators, the vector-group coding
method [38] is adopted. In the coding method, a chromo-
some is constructed using a sequence of two-dimensional
vectors as follows:

Ch = [𝑔1 𝑔
2

⋅ ⋅ ⋅ 𝑔
𝑛] = [

ℎ
1

ℎ
2

⋅ ⋅ ⋅ ℎ
𝑛

𝑘
1

𝑘
2

⋅ ⋅ ⋅ 𝑘
𝑛

] , (24)

where 𝑔
𝑖
= [
ℎ
𝑖

𝑘
𝑖

] represents the 𝑖th genein chromosome Ch,
ℎ
𝑖
∈ 𝑁 is a cable, 𝑘

𝑖
∈ 𝑀 is production line to process

cable ℎ
𝑖
, and {ℎ

1
, ℎ
2
, . . . , ℎ

𝑘
} = 𝑁 \ {0}. The cables assigned

to the same line will be processed in gene order of the
chromosome.

The start time of each cable production is equal to the
maximum of the complete time of the previous cable and its
own release time.

4.3. Fitness Function and Selection Operator. Since the objec-
tive function needs to be minimized and some chromosome
can be infeasible, we define a new referred function by

𝑓
󸀠
(𝑠) = 𝑓 (𝑠) + 𝑁

𝑠
𝑃, (25)

where 𝑓(𝑠) is the objective function value of chromosome 𝑠,
𝑁
𝑠
is the number of cables that violate their respective time

windows or technical constraint (9), and 𝑃 is a predefined
constant larger than the expected value of 𝑓(𝑠).

We use a common selection operator: roulette-wheel
selection. A dynamic linear fitness function [30] 𝑈

𝑡
(𝑠) =

1.1max {𝑓󸀠(𝑠) | 𝑠 ∈ 𝑃(𝑡)} − 𝑓
󸀠
(𝑠), where 𝑡 is the generation

number of the current population 𝑃(𝑡).

4.4. Crossover Operator. Based on the vector-group
coded chromosomes, we adopt one-point and two-point
extended order crossovers. Let two chromosomes, Ch =

[𝑔1 𝑔
2

⋅ ⋅ ⋅ 𝑔
𝑛] and Ch󸀠 = [𝑔

󸀠

1
𝑔
󸀠

2
⋅ ⋅ ⋅ 𝑔
󸀠

𝑛
], serve as the

present chromosomes. The following describes how to cross
over to produce new chromosome.

In the one-point extended order crossover, a ran-
dom integer 𝜆 with 1 ≤ 𝜆 < 𝑚 is first gener-
ated to decide the crossover position. New chromosome
Ch󸀠󸀠 = [𝑔

1
𝑔
2

⋅ ⋅ ⋅ 𝑔
𝜆

𝑔
󸀠

𝜆+1
⋅ ⋅ ⋅ 𝑔
󸀠

𝑛
] if {𝑔

1
, 𝑔
2
, . . . , 𝑔

𝜆
} and

{𝑔
󸀠

𝜆+1
, . . . , 𝑔

󸀠

𝑛
} do not include a common cable; otherwise,

discard genes with common cable in Ch󸀠 and insert the genes
corresponding to the lost cables in Ch󸀠, since the number of
common cablesmust be equal to the number of lost ones. It can
generate different chromosome to reverse the Ch and Ch󸀠.

In the two-point extended order crossover, two random
integers 𝜆

1
and 𝜆

2
with 1 ≤ 𝜆

1
< 𝜆
2

< 𝑚 are first gen-
erated to decide the crossover positions. New chromosome
Ch󸀠󸀠 = [𝑔

󸀠

1
𝑔
󸀠

2
⋅ ⋅ ⋅ 𝑔
𝜆
1

𝑔
𝜆
1
+1

𝑔
𝜆
2

⋅ ⋅ ⋅ 𝑔
󸀠

𝜆
2
+1

⋅ ⋅ ⋅ 𝑔
󸀠

𝑛
] if no

replicate cable is involved in the crossover. The treatment for
the replicate cable is the same as that in the one-point crossover.

4.5.MutationOperator. The bit-mutation and swap-mutation
are adopted. In view of the signification of line assignment
decisions for cables, the bit-mutationmutates only the second
row of the chromosome genes, replacing it with a random
number from {1, 2, . . . , 𝑚}. It changes the production line to
process the cable.

The swap-mutation swaps randomly selected gene values
in a chromosome. It can change only the production sequence
of one or two production lines. The technical and time
window constraints can be involved in the mutation.

4.6. Local Search. To improve the evolution process, a simple
local search, based on the swap and insert neighborhoods,
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is applied to all chromosomes in the population for all
generations while a local search, based on a variable-depth
cycle exchange neighborhood (see Luo and Tang [39] for
more details), is applied to chromosomes when the best
solution found so far has not changed for 10 generations.

The swap neighborhood is obtained through exchanging
the assigned production lines of each pair of genes in
the given chromosome. The production orders should be
exchanged if the pair of genes is corresponding to the same
line. The processing sequence should be changed locally
according to the technical constraint (formula (9)) and EDD
rule which can improve the solution, if the production lines
are exchanged. Similar to the swap neighborhood, the insert
neighborhood involves inserting a cable to another line or a
different position in the same line. The technical constraint
has a higher priority than the EDD ruler when they conflict.

5. Computational Experiments

To test the performance of the formulated mathematical
model and the proposed heuristic approach with improve-
ment strategies, we complemented all the involved programs
under the development environment of VC++ 2010 and
solved the IP model and CP with ILog Cplex and ILog
Scheduler, respectively. The experiments were all performed
on a computer with Win 7 operating system, 2.8Ghz Intel 2
Core CPU, and 4GB RAM.

5.1. Configuration of the Hybrid IP/GAApproach. GAparam-
eters for all problems were set to be the same: population size
= 100, crossover probability = 1, mutation probability = 0.1,
and the algorithm stops when gap between the lower bound
and the best solution found so far has not been improved
for 60 generations, the gap is lower than 0.5%, or the total
number of generations reaches 600 (which comes from the
computing time limit). The IP master problem was triggered
when the best solution found so far has not been improved
for 30 generations.

5.2. Test Problem Instances. We tested 12 problem instances in
the numerical experiments from a practical cable production
enterprise, which had five production lines but only four of
them were available in these instances. The production cost
and times were both estimated based on the empirical data.
The number of necessary cables of type A between successive
cables of type B in a production line was three and thus𝑄 = 3

in all test problems and the proportion of type B was less than
20% in practice.

To test the developed hybrid IP/GA approach thoroughly,
a series of problem instances of six different sizes were
generated through imitating the practical data. Each problem
size has 12 instances. The processing costs (𝑐

𝑖𝑗
for cable 𝑖

and production line 𝑗) were random integers from uniform
distribution of 𝑈[20, 100], which magnified the practical
figures about 10 times formore comparability.The processing
times were from 𝑈[30, 60]. The release times (𝑟

𝑖
) were from

𝑈[0, 𝑇max] and due times 𝑑
𝑖
= 𝑟
𝑖
+ 𝛿𝑝
𝑖
, where 𝑇max should be

large enough to ensure the feasibility, 𝑝
𝑖
= Max {𝑝

𝑖𝑗
| 𝑗 ∈ 𝑀}

Table 2: Experimental result for the small sized problems.

Problem 𝑛 × 𝑚
Objective value CPU time (seconds)

MILP/CP IP/GA MILP/CP IP/GA
1 12 × 2 56 56 3.41 <1
2 12 × 2 58 58 0.86 <1
3 16 × 2 61 61 1.14 1.13
4 16 × 2 79 79 14.87 1.21
5 15 × 3 81 81 3.48 1.79
6 15 × 3 67 67∗ 143.34 2.76
7 18 × 3 94 94 23.55 4.84
8 18 × 3 87 87 6.56 4.16
9 16 × 4 67 67 31.42 2.89
10 16 × 4 53 53 39.38 4.54
11 20 × 4 102 102∗ 207.51 5.30
12 20 × 4 113 113 71.35 6.13
∗The optimal solution is obtained but gap is not equal to 0.

is the maximal processing time of the cable 𝑖, and 𝛿 is a
magnification factor randomly from 𝑈[1.5, 3.5].

5.3. Computational Results. The small sized problems were
first solved to optimality using the hybrid MILP/CP algo-
rithm and then solved by the proposed hybrid IP/GA. The
small sized problem instances were cut out from the 12
practical instances. 𝑛×𝑚 represented the problem size, where
𝑛 and 𝑚 denote the number of cables and production lines,
respectively. Table 2 shows the experimental results with the
different problem sizes. For the 12 problems of small size, the
hybrid IP/GA also obtained almost all the optimal solutions
but did not verify the optimality for two of them.

The experimental results for the 12 practical problems are
listed in Table 3. Each problem has four production lines and
the problem size is represented by the number of cables. In the
table, Gap = (Objective value−Lower bound)/Lower bound
is used to evaluate the solution quality. The average relative
gap was 2.78% and the average CPU-s was 83.

For the six sets of randomly generated problem instances,
Table 4 lists the average solution gap and CPU-seconds. The
average relative gap was 2.51% and the average computing
time was 121 CPU-seconds. In addition, the number of
iterations reaches up to the limit (600 generations) for most
of the instances.

To further test the performance of the hybrid IP/GA
approach, we also solved the problems with a GA by Vallada
and Ruiz [40], which was proposed to solve unrelated
parallel machine scheduling problem sharing similarities
with our problem. Figure 6 shows the comparison results
of the average relative objective value (ARD) of the group
of practical problem instances and six sets of randomly
generated instances. From the results, the efficiency of our
algorithm in solving our problem has been verified. In
addition, our proposed hybrid IP/GA approach can provide
a better lower bound for the problem.

5.4. Computational Analysis. From the computational
results, all the problem instances can be resolved in
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Table 3: Experimental results for the practical problems.

Problem Size Objective value Gap (%) CPU time (seconds)
IP/GA LB

1 41 172 170 1.32 34
2 46 229 226 1.37 58
3 51 231 222 3.87 117
4 51 244 240 1.52 13
5 55 283 275 2.95 47
6 59 375 367 1.93 143
7 64 396 388 1.98 13
8 67 424 409 3.74 16
9 72 446 421 5.97 231
10 78 487 475 2.47 39
11 86 400 394 1.49 208
12 88 503 480 4.71 71
Average 2.78 83

Table 4:The average experiment results for the generated 6 problem
sizes.

Group number Size Gap (%) CPU time (seconds)
1 40 × 3 1.32 34
2 80 × 3 3.87 118
3 120 × 3 2.61 156
4 50 × 4 1.57 29
5 100 × 4 2.17 126
6 150 × 4 3.54 265
Average 2.51 121

acceptable computing times (no more than 5min) by these
algorithms. In those experiments, the IP model can provide
the cable assignment schemes to the GA as well as the lower
bound to evaluate the solution quality. Moreover, we have
the following observations:

(1) In Table 2, the proposed hybrid IP/GA approach
performs much better than the hybrid MILP/CP
approach in solution efficiency particularly to the
instances with larger sizes. For the solution quality,
they reached the same objective function value for all
the instances but the former failed to reduce the gap
to 0, meaning that the solution optimality cannot be
validated by its own lower bound.

(2) InTables 3 and 4, the computation times increasewith
the problem size but the solution quality is relatively
stable. It implies that the solution quality is seldom
affected by the problem size but depends mainly on
the permitted number of iterations, since most of
iterations reach up to the limit.

(3) The IP model contributes to improving the solution
as well as providing the lower bound. The cable
assignment schemes obtained through resolving the
IP model, aiming at the optimal objective, can lead
the GA to search around the optimum point.

Practical 1 2 3 4 5 6

GA
IP/GA
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Figure 6: The ARD comparison of the IP/GA from an existing GA.

6. Conclusion

In this paper, a special parallel production lines scheduling
problem was studied. A mixed integer programming model
considering time window and technical constraints was first
formulated. A few valid inequalities were deduced and a
hybridMILP/CP approach was introduced. Based on them, a
hybrid IP/GA algorithm was proposed to solve the problem.
The numerical experiments were carried out which demon-
strated that the proposed solution approach was effective and
efficient.

This study highlighted the advantage of combining the
traditional exact optimization (IP) with intelligent optimiza-
tion (GA) method. Other intelligent optimization methods
can also be able to hybridize to the IP (or MILP) method. It
is more interesting and challenging to hybridize the IP (or
MILP) to more elements of the GA (or other heuristics) and
deepen the hybridization for the purpose of improving the
solution approach.
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In genetic algorithms, selection or mating scheme is one of the important operations. In this paper, we suggest an adaptive mating
scheme using previously suggested Hungarian mating schemes. Hungarian mating schemes consist of maximizing the sum of
mating distances, minimizing the sum, and random matching. We propose an algorithm to elect one of these Hungarian mating
schemes. Every mated pair of solutions has to vote for the next generation mating scheme. The distance between parents and
the distance between parent and offspring are considered when they vote. Well-known combinatorial optimization problems, the
traveling salesperson problem, and the graph bisection problem are used for the test bed of our method. Our adaptive strategy
showed better results than not only pure and previous hybrid schemes but also existing distance-based mating schemes.

1. Introduction

Mating schemeor selection is one of the important operations
in genetic algorithm (GA).Most operations inGAs are closely
related to the performance. These operations interact with
each other. A small change of a key operation may cause
a dramatic change in result. Ochoa et al. [1] presented that
assortative mating is a good choice when the mutation rate is
high, while disassortative mating is a good choice when the
mutation rate is low.

In mating or selection stage, the methods of mating are
classified into three groups. The first one gives preference to
similar solutions [2, 3]. This method focuses on exploitation.
It assumes that similar solutions have higher chance to
make better solutions because they use discovered good
schemata.

The second one is dissimilar mating.Thismethod focuses
on exploration, and it tries to evade a premature convergence

and a fast diversity consumption of similar mating. It is
realized mostly by a restriction. Ramezani and Lotfi [4]
restricted mating between family solutions such as parent
and offspring. They solved function optimization problems
and obtained good results. Fernandes et al. [5] reported that
dissimilarmating outperforms a simple GA or similarmating
in vector quantization problem.

The last group tries to find a better mating scheme by
combining two ormoremating schemes. Ishibuchi et al. [6, 7]
considered the number of mating candidates.They used their
parameters to control similarity of a mated solution. They
proposed a method of changing its controlling parameter at
a middle of running. They also presented that the changing
parameter made better results (nearer to Pareto-optimal
solutions) than fixed parameters.

Galán et al. [8] proposed a mating scheme where each
individual has itsmating preference value to balance exploita-
tion and exploration. A low value of mating preference
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makes a match between solutions close to each other, while
a high mating preference makes a match between solutions
far from each other. The preference is inherited or mutated
like a normal gene. They tested their scheme in various
environments of function optimization. They showed that
their scheme outperformed randommating or a scheme with
a fixed preference value.

In this paper, we propose a new adaptive Hungarian
mating scheme. Our hybrid scheme adaptively selects a pure
scheme for the next generation with voting. The traveling
salesperson problem (TSP) and the graph bisection problem
are the test problems of our adaptive scheme. We summarize
our contributions as follows. (i) We propose a new adaptive
mating scheme, (ii) we provide a reasonable explanation for
our scheme, (iii) we show that our adaptive hybrid scheme
is more effective than any pure Hungarian scheme and a
previous simple hybrid scheme for the two test problems, and
(iv) finally we show that our scheme changes its action as the
size of problem space changes.

In comparison with the preliminary version of this paper
[9], we provide the following extended information: (i)
empirical observations and theoretical proof of the recom-
mended parameter settings, (ii) detailed results to show
the search behaviors of our algorithm, (iii) comparison of
solution qualities with existing distance-based mating meth-
ods, and (iv) analysis on computation time of the proposed
method and existing ones.

The remainder of this paper is divided into five parts.
Previously suggested Hungarian mating schemes and their
hybrid strategy are presented in Section 2. Motivation of
this study is described in Section 3. Section 4 explains
our adaptive hybrid mating scheme. In Section 5, we give
experimental results and analyze the results. In Section 6, we
draw conclusions.

2. Background

2.1. Hungarian Method. Assume a weighted complete bipar-
tite graph with bipartition (𝑋, 𝑌): 𝑋 = 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛/2
, 𝑌 =

𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛/2
, and each edge (𝑥

𝑖
, 𝑦
𝑗
) ∈ 𝑋 × 𝑌 has its

weight 𝑤
𝑖𝑗
. For optimal matching, we consider a problem of

finding amaximum (orminimum)weight bijectivematching
as follows:

max
𝜎∈∑
𝑛/2

(

𝑛/2

∑
𝑖=1

𝑤
𝑖𝜎(𝑖)
) or min

𝜎∈∑
𝑛/2

(

𝑛/2

∑
𝑖=1

𝑤
𝑖𝜎(𝑖)
) , (1)

where 𝜎 is a permutation of size 𝑛/2.
Optimum matching can be computed by the Hungarian

method [14]. It can be computed in𝑂(𝑛3) time [15]. Avis [16]
has suggested an approximation algorithm of𝑂(𝑛2) time.The
Hungarian method has been utilized in various studies [17–
20].

2.2. HungarianMating Scheme. Recently, we suggested Hun-
garian mating schemes [10]. We divided population into the
same number of female andmale individuals.TheHungarian
method is applied to mating. In each problem, a suited

distance metric is adopted. It will be described in the next
subsection.

Figure 1 describes the mating schemes. Distribution of
an example population is illustrated in Figure 1(a). Thirty
individuals are shown: fifteen plus symbols (+) are female
solutions, and fifteen filled circles (∙) are male ones. The
Euclidean distance is adopted as the distance metric. Fig-
ure 1(b) shows a result of random mating scheme which
is called “RAND.” The result of minimizing the sum of
distances is displayed in Figure 1(c). The result is obtained
from the following formula with the Hungarian method:

min
𝜎∈∑
𝑛/2

𝑛/2

∑
𝑖=1

𝑑 (𝑚
𝑖
, 𝑓
𝜎(𝑖)
) , (2)

where 𝑚
𝑖
’s are male solutions, 𝑓

𝜎(𝑖)
’s are their mated female

ones, and 𝑑 is the Euclidean distance function.The scheme in
Figure 1(c) will be called “NEAR” in this study. Figure 1(d)
shows the result of maximizing the sum of distances. The
result is obtained from the following formula with the
Hungarian method:

max
𝜎∈∑
𝑛/2

𝑛/2

∑
𝑖=1

𝑑 (𝑚
𝑖
, 𝑓
𝜎(𝑖)
) . (3)

This scheme is called “FAR.”
NEAR method extremely concentrates on exploitation,

while FAR method extremely focuses on exploration. In
bijective mating, NEAR method minimizes the sum of
distances. It is an extreme strategy to decrease diversity and
use inherent parts of solutions. Similarly, FAR method is an
extreme method to preserve diversity.

2.3. Test Problems and Distance Metric. Our test problems
are TSP and the graph bisection problem. In TSP, a complete
undirected graph𝐺 is given. Each edge in𝐺has a nonnegative
weight. The objective of the problem is to find a minimum
tour that passes through all the vertices (i.e., Hamiltonian
cycle) of 𝐺.

Assume an undirected graph 𝐺 = (𝑉, 𝐸): 𝑉 is a vertex
set and 𝐸 is an edge set. 𝐾-way partitioning is defined
as partitioning the vertex set 𝑉 into 𝐾 disjoint subsets
𝐶
1
, 𝐶
2
, . . . , 𝐶

𝐾
. A𝐾-way partition is said to be balanced if the

difference of cardinalities between the largest and the smallest
subsets is zero or one.The cut size of a partition is the number
of edges with endpoints in different subsets of the partition.
The 𝐾-way partitioning problem is the problem of finding
a 𝐾-way balanced partition with minimum cut size. In this
paper, we set𝐾 to be equal to two and call this problem “graph
bisection.”

The distance metric is the same as that used in our pre-
vious study [10]. In TSP, for the phenotype distance metric,
the quotient swap distance [20] was used. The quotient swap
distance is defined as the smallest one among swap distances.
The swap distance between𝑋 and𝑌 is the minimum number
of swaps to make𝑋 be equal to 𝑌. In other words, between𝑋
and every shifted 𝑌 the minimum value of the swap distance
is the quotient swap distance between𝑋 and 𝑌.
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Figure 1: Hungarian mating schemes [10].

In graph bisection, for the phenotype distance metric,
the quotient Hamming distance [20] was used. Similar to
the quotient swap distance, the quotient Hamming distance
is defined as the smallest one among Hamming distances.
The Hamming distance between two strings is defined by
the number of different positions at which the corresponding
symbols are different. In other words, the quotient Hamming
distances between 𝑋 and 𝑌 are the smaller value of the
Hamming distance between𝑋 and𝑌 and that between𝑋 and
𝑌.

3. Motivation

We reported that the best Hungarian mating scheme varies
according to problems and their sizes [10]. We proposed
a simple hybrid scheme of changing the mating scheme
from NEAR to RAND at the 𝑚th generation in TSP, where
𝑚 is the number of cities. The hybrid scheme for graph

bisection changes mating scheme from RAND to FAR at
the 100th generation. Parameters 𝑚 and 100 are based on
some empirical observation. But the hybrid scheme also has
a weakness. The switching time before running of GAs was
predetermined. So it is hard to apply the method to new
problems or instances.

Galán et al. [8] reported that a self-adaptive mating
scheme can be better than traditional random mating and
their best-first mating and best-last mating. In the best-first
mating, each solution pairs up with its nearest one in the
order from the best solution to the worst one. In contrast, in
the best-last mating, each solution pairs up with its farthest
one in the order from the best solution to the worst one. The
best-first mating resembles NEAR method as the best-last
mating resembles FAR method. NEAR and FAR are extreme
cases of mating. The ideal mating scheme may exist in some
middle point of NEAR and FAR as Galán et al. [8] showed in
function optimization.
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Suggesting a new adaptive hybrid scheme of the Hungar-
ian mating schemes is our main goal. A good scheme may
(i) work irrespective of problems or instances, (ii) select its
action as environment changes, and (iii) show better results
than consistently applied pure scheme. A new scheme with
these features will be proposed.

In this paper, we show the influence of the proposed
mating scheme, not aiming to beat the state-of-the-art results
of TSP and graph bisection. Local optimization may play an
important role in making practical solutions. We do not use
any local optimization. Instead, we concentrate on balance
between exploration and exploitation with a new mating
scheme.

4. Proposed Method

4.1. Voting Rules. We assume the same number of male and
female solutions as Goh et al. did in [21]. In each generation,
our method selects FAR, RAND, or NEAR for the next
generation. Our method does not simulate three schemes
as they are. Instead, the appropriate scheme is adaptively
adopted. For that, a mating scheme for the next generation
is selected with majority voting. Every matched pair has to
vote. Our crossover operator generates two offspring, and
their gender is randomly assigned. The voting is carried
out after mutation. So our voting algorithm compares two
parents and two offspring after mutation. The rules of voting
are described by Algorithm 1. If one of the parents is the
same as its son or daughter, this pair votes for FAR scheme.
Otherwise, a ratio of distance between parents over the sum
of the mother-daughter distance and the father-son distance
is considered. In the case where the ratio is less than 𝛼, this
pair votes for FAR scheme. If the ratio is equal to or greater
than 𝛼 and less than 𝛽, this pair votes for RAND scheme.
The remaining case is where the ratio is equal to or greater
than 𝛽. In this case, this pair votes for NEAR scheme. In
the next generation, the scheme which gets the most votes is
adopted.

4.2. Parameter Setting. We set 𝛼 to be 0.5 and 𝛽 to be 1.
Figure 2 describes the median of the ratio values according
to generation for an instance of each test problem. 𝑥-
axis represents generation and 𝑦-axis represents the ratio
values.

We call the median of the ratio values after crossover
(before mutation) (thin line) BM. The median of the ratio
values after mutation (thick points) is called AM. After
crossover (before mutation), most of BM values are close
to 1. BM does not change much, while the diversity of
population decreases. On the other hand, AM drops slowly
as the diversity decreases.

A mutation operator moves an individual to nearby
space. The distribution of moving distance by a mutation is
independent of the distance between parents. The expected
value of BM is one when we use a geometric crossover [22].
It will be proven in the next subsection. AM values over
1 appear frequently when the distance between parents is
long enough. It means that we have sufficient diversity to

// input: two parents and two offspring
// output: FAR, NEAR, or RAND
// 𝑑(𝑥, 𝑦): distance function between 𝑥 and 𝑦
Function vote(𝑝

1
, 𝑝
2
, 𝑜
1
, 𝑜
2
)

{

If 𝑑(𝑝
1
, 𝑝
2
) = 0, 𝑑(𝑝

1
, 𝑜
1
) = 0, or 𝑑(𝑜

2
, 𝑝
2
) = 0 then

return FAR;
end if
ratio← 𝑑(𝑝

1
, 𝑝
2
)/(𝑑(𝑝

1
, 𝑜
1
) + 𝑑(𝑜

2
, 𝑝
2
));

if ratio < 𝛼 then
return FAR;

end if
if 𝛼 ≤ ratio < 𝛽 then
return RAND;

end if
if ratio ≥ 𝛽 then
return NEAR;

end if
}

Algorithm 1: Voting rules.

consume. So a family votes for NEAR. Besides, the lower
bound of BM is 0.5 when we use a geometric crossover. It
will also be proven in the next subsection. AM values below
0.5 appear due to mutation effect. They are observed when
the distance between parents is very close to 0. So a family
votes for FAR. In other words, an influence of the mutation
is estimated by the distance between parents. High influence
of the mutation or a low AM value means that the matched
parents are too close to each other to produce new solutions,
while low influence of themutation or a highAMvaluemeans
that the parents are far from each other so we can match
nearer solutions.

4.3. Theoretical Support. A binary crossover operator is
geometric if all offspring are in a convex segment between
parents. That is, 𝑑(𝑝

1
, 𝑝
2
) = 𝑑(𝑝

1
, 𝑜) + 𝑑(𝑜, 𝑝

2
), where

𝑑(𝑝
1
, 𝑝
2
) is a distance between 𝑝

1
and 𝑝

2
, 𝑝
𝑖
’s are parents,

and 𝑜 is an offspring obtained from a geometric crossover.
Let 𝐷 be the distance between both parents. We assume that
𝐷 = 𝑑(𝑝

1
, 𝑝
2
) ̸= 0, crossover is geometric [22], 𝑝

1
̸= 𝑝
2
,

𝑝
1
̸= 𝑜
1
, and 𝑝

2
̸= 𝑜
2
. We remind the reader that our ratio

value is defined as

𝑑 (𝑝
1
, 𝑝
2
)

𝑑 (𝑝
1
, 𝑜
1
) + 𝑑 (𝑜

2
, 𝑝
2
)
, (4)

where 𝑜
1
and 𝑜

2
are offspring obtained from a geometric

crossover between 𝑝
1
and 𝑝

2
.

Proposition 1. Under these assumptions, the expected value of
one’s ratio is 1. That is,

𝐸[
𝑑 (𝑝
1
, 𝑝
2
)

𝑑 (𝑝
1
, 𝑜
1
) + 𝑑 (𝑜

2
, 𝑝
2
)
] = 1. (5)
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Figure 2: Median of ratio values according to generation.

Proof. It is enough to show that

𝐸 [𝑑 (𝑝
1
, 𝑜
1
) + 𝑑 (𝑜

2
, 𝑝
2
)] = 𝐷,

𝐸 [𝑑 (𝑝
1
, 𝑜
1
) + 𝑑 (𝑜

2
, 𝑝
2
)]

= 𝐸 [𝑑 (𝑝
1
, 𝑜
1
)] + 𝐸 [𝑑 (𝑜

2
, 𝑝
2
)]

(∵ 𝐸 [⋅] is linear)

= 𝐸 [𝑑 (𝑝
1
, 𝑜
1
)] + 𝐸 [𝑑 (𝑝

1
, 𝑝
2
) − 𝑑 (𝑝

1
, 𝑜
2
)]

(∵ Crossover is geometric)

= 𝐸 [𝑑 (𝑝
1
, 𝑜
1
)] + 𝐸 [𝐷 − 𝑑 (𝑝

1
, 𝑜
2
)]

= 𝐸 [𝑑 (𝑝
1
, 𝑜
1
)] + 𝐷 − 𝐸 [𝑑 (𝑝

1
, 𝑜
2
)]

(∵ 𝐸 [⋅] is linear)

= 𝐷 (∵ 𝐸 [𝑑 (𝑝
1
, 𝑜
1
)] = 𝐸 [𝑑 (𝑝

1
, 𝑜
2
)]) .

(6)

Proposition 2. Under the same assumptions, the lower bound
of one’s ratio value is 0.5. That is,

𝑑 (𝑝
1
, 𝑝
2
)

𝑑 (𝑝
1
, 𝑜
1
) + 𝑑 (𝑜

2
, 𝑝
2
)
≥
1

2
. (7)

Proof. By the assumption of geometric crossover,

𝑑 (𝑝
1
, 𝑝
2
) ≥ 𝑑 (𝑝

1
, 𝑜
1
) ,

𝑑 (𝑝
1
, 𝑝
2
) ≥ 𝑑 (𝑜

2
, 𝑝
2
) .

(8)

By summing the above inequalities, 2𝑑(𝑝
1
, 𝑝
2
) ≥ 𝑑(𝑝

1
, 𝑜
1
) +

𝑑(𝑜
2
, 𝑝
2
). Hence, we obtain

𝑑 (𝑝
1
, 𝑝
2
)

𝑑 (𝑝
1
, 𝑜
1
) + 𝑑 (𝑜

2
, 𝑝
2
)
≥
1

2
. (9)

5. Experiments

5.1. Tested GA. We use a generational GA for test. Each
solution is bijectivelymatchedwith opposite gender. A couple
of individuals produce one female solution and one male
solution. The genders are randomly assigned. We used 50
female and male individuals. We applied elitism [23] as a
replacement strategy in both genders. Fifty best solutions
remained for the next generation among previous 50 parents
and new 50 offspring. Table 1 gives the other genetic operator
settings.

5.2. Traveling Salesman Problem. From TSPLIB [24], four
Euclidean instances are selected: berlin52, kroA100, bier127,
and pr152. In each instance, the number of cities is repre-
sented in the right part of the name.

Figure 3 displays the fitness of the best individual accord-
ing to generation.The average of the best fitness values (Avg)
and the standard deviation (Std) per 200 generations are
shown in Table 2.Method “single best” denotes the best single
result among RAND, NEAR, and FAR in each generation.
Method “simple hybrid” is the strategy that changes mating
scheme once to a proper one. It was introduced in our
previous work [10]. The results of all figures and tables are
the average values over 1,000 runs.
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Table 1: Genetic parameter settings.

TSP Graph bisection problem
Representation Order-based encoding Assignment of one gene for each vertex (zero or one)
Recombination Partially matched crossover [11] One-point crossover
Mutation Double-bridge kick move [12] (50%) Random swap of some pairs of genes (50%)
Repair — Random repair until partition is feasible
Stopping criterion 1,000 generations 500 generations

Table 2: Results of TSP.

Problem
instance Method Gen 200 Gen 400 Gen 600 Gen 800 Final (= 1000)

Avg (Std) Avg (Std) Avg (Std) Avg (Std) Avg (Std)

berlin52
Single best 1.11e4 (5.59e2) 9.71e3 (4.23e2) 9.34e3 (3.26e2) 9.71e3 (2.85e2) 9.07e3 (3.08e2)

Simple hybrid 1.08e4 (4.34e2) 9.72e3 (3.75e2) 9.39e3 (3.48e2) 9.22e3 (3.37e2) 9.10e3 (3.18e2)
New method 1.07e4 (4.68e2) 9.63e3 (3.69e2) 9.30e4 (3.45e2) 9.13e3 (3.23e2) 9.02e3 (3.09e2)

kroA100
Single best 6.87e4 (4.10e3) 4.84e4 (2.50e3) 4.13e4 (1.71e3) 3.85e4 (1.80e3) 3.65e4 (9.03e2)

Simple hybrid 6.62e4 (3.20e3) 4.76e4 (2.22e3) 4.10e4 (1.74e3) 3.78e4 (1.58e3) 3.60e4 (1.41e3)
New method 6.78e4 (4.09e3) 4.79e4 (2.40e3) 4.04e4 (1.76e3) 3.71e4 (1.56e3) 3.51e4 (1.48e3)

bier127
Single best 3.36e5 (9.09e3) 2.52e5 (9.44e3) 2.18e5 (7.03e3) 2.00e5 (6.76e3) 1.90e5 (2.25e3)

Simple hybrid 3.27e5 (1.09e4) 2.49e5 (9.06e3) 2.16e5 (7.22e3) 1.99e5 (6.70e3) 1.89e5 (6.53e3)
New method 3.38e5 (1.38e4) 2.52e5 (9.79e3) 2.57e5 (7.83e3) 1.97e5 (6.80e3) 1.87e5 (6.20e3)

pr152
Single best 5.07e5 (1.66e4) 3.28e5 (3.90e4) 2.47e5 (1.36e4) 2.05e5 (1.13e4) 1.81e5 (8.36e3)

Simple hybrid 4.78e5 (1.75e4) 3.14e5 (1.59e4) 2.40e5 (1.32e4) 2.01e5 (1.12e4) 1.79e5 (9.39e3)
New method 5.09e5 (2.65e4) 3.30e5 (2.21e4) 2.45e5 (1.60e4) 2.01e5 (1.23e4) 1.76e5 (1.00e4)

CPU: Intel Xeon E5530 2.40GHz. Average from 1,000 runs.
Avg: average (the smaller, the better); Std: standard deviation.

Table 3: Statistical test of TSP.

Problem instance Compared method 𝑡-test 𝑝 value

berlin52 Single best + 1.33e − 03
Simple hybrid + 5.71e − 09

kroA100 Single best + 1.0e − 103
Simple hybrid + 4.01e − 42

bier127 Single best + 2.41e − 42
Simple hybrid + 9.72e − 18

pr152 Single best + 4.46e − 26
Simple hybrid + 2.01e − 10

𝑝 value: the smaller, the more significant.
+: significantly better under level 1.00e − 02.

In early stages of each run, the simple hybrid method
showed the best fitness. But at the end of each run, our
method outperformed the others for all instances.

Table 3 shows the statistical test result of significance for
Table 2.We usedWelch’s 𝑡-test [25]. 𝑡-value of𝐴−𝐵 in Table 3
is computed as follows:

𝑡 =
𝑋
𝐴
− 𝑋
𝐵

√𝑆2
𝐴
/𝑛
𝐴
+ 𝑆2
𝐵
/𝑛
𝐵

, (10)

where 𝑋
𝐴
is the average of 𝐴, 𝑆

𝐴
is the standard deviation of

𝐴, and 𝑛
𝐴
is the test number of𝐴. The more significant result

causes the lower 𝑝 value. In most cases, 𝑝 values are very
close to zero. A plus mark (+) denotes that our scheme has
passed 𝑡-test under significance level, 0.01. For all instances,
our scheme is significantly better than the others.

Figure 4 shows the average voting rate of three schemes.
The graph shows the average over 1,000 runs. In the early
stage, RAND and NEAR get higher chance to be elected.
NEAR is rarely selected in the early stage. As the diversity
decreases, supporters of FAR increase. At the end of each
run, almost all families vote for FAR. When we compare four
instances in Figure 4, we can conclude that our method is
adaptive. Consuming a diversity in a small space is faster than
that in a large space. So our algorithm changes the mating
scheme from RAND (or rarely NEAR) to FAR. The speed of
changing scheme for instance pr152 was slower than that for
instance berlin52.

5.3. Graph Bisection Problem. We used four popular
instances with 1,000 vertices [26]. The difference of the
instances is edge density. The right part of each name (such
as 05) represents the average vertex degree.

Figure 5 illustrates the fitness of the best individual
over all generations. The results of all figures and tables
are written with the average values over 1,000 runs as in
TSP. The average of the best fitness values (Avg) and the
standard deviation (Std) per 100 generations are listed in
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Figure 3: Fitness of mating schemes in TSP (the smaller, the better).

Table 4. Method “single best” and method “simple hybrid”
are the same as in TSP. In almost all generations of all
the instances, our method outperformed the others. Table 5
shows 𝑡-test for the results in Table 4. It is conducted
in the same way as that used in TSP. In all instances
except one our scheme was significantly superior to the
others.

Figure 6 shows the average voting rate of three schemes.
While TSP showed different speed of changing schemes
according to each instance, the figures of four graph bisection
instances are almost the same as each other. Previously we
reported thatNEAR showed very poor results in this problem
[10]. With our new method, NEAR is naturally abandoned
because FAR increases very fast.

5.4. Comparison with Existing Methods. We compared our
method with existing distance-basedmating ones.We imple-
mented variants of Ishibuchi and Shibata’s [13] and Galán et
al.’s [8] methods with two same-sized genders. Ishibuchi and
Shibata’s method [13] selects one parent that is the farthest
individual from the average among the results of repeated
tournament selections of 𝛼 times. Their method selects the
other parent that is the nearest individual from the first parent
among the results of repeated tournament selections of 𝛽
times. We set 𝛼 and 𝛽 to be 9 as in [13]. The transformed
variant selects the first parent from the female solutions
and selects the second parent from the male solutions. It is
repeated until all solutions are one-to-one matched. Galán et
al.’s method [8] selects one parent that is the best. As the other
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Figure 4: Voting rates of schemes in TSP.

parent, their method selects the (𝛾 − 1)th nearest individual,
where 𝛾 is the mating preference of the first parent. The
mating preference is inherited in crossover, and it increases by
1 with probability 0.25 or decreases by 1 with probability 0.25,
inmutation.The same as the variant of Ishibuchi and Shibata’s
method [13], we made this method select the first parent
from the female solutions and the second parent from the
male solutions. It is repeated until all solutions are one-to-one
matched. All the conditions and settings excludingmating are
the same as those in the experiments of the previous sections.

Table 6 compares the solution qualities of these two exist-
ing methods and ours. For all instances of two test problems,
our method significantly outperformed the others. Table 7

compares the computation timeswith respect tomating. Each
value in Table 7 except mating proportion is measured in
seconds. Our method took more time than Galán’s method.
But our method was faster than Ishibuchi’s. Galán’s method
repeats finding the (𝛾 − 1)th nearest individual, whereas our
method maximizes (or minimizes) the sum of distances. For
graph bisection problem, computation times of instances of
our method are similar to each other because the instances
have the same number of nodes. In TSP, as the solution space
grows, the proportion of mating time decreases, because the
mating time of our method is mainly bounded by population
size. As distance scale grows, mating time increases. It can
be resolved by approximating the scale of distance values.
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Figure 5: Fitness of mating schemes in graph bisection (the smaller, the better).

Our mating method did not overburden the entire GA, and
also we expect reducing time burden through some improved
implementation.

6. Concluding Remarks

We analyzed the proposed adaptive hybrid mating scheme
for TSP and graph bisection. FAR scheme is biased on
exploitation, while NEAR scheme is biased on exploitation.
Our mating scheme assesses the distance of the matched par-
ents with their offspring. With this assessment, our adaptive
scheme tries to find a balanced point between exploration

and exploitation in each generation. We also compared the
proposed method with two existing distance-based methods.
The proposed method showed better performance than the
two existing methods.

We set the threshold parameters as 0.5 and 1.0 with some
observation and the values are theoretically justified. But we
expect that the method of dynamically adjusting these values
may produce better results. Real-coded problems may have
different features from combinatorial optimization.With our
scheme, more various problems such as function optimiza-
tion can be tested. There are still opportunities for further
enhancements and we will study the presented method
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Table 4: Results of graph bisection.

Problem
instance Method Gen 100 Gen 200 Gen 300 Gen 400 Final (= 500)

Avg (Std) Avg (Std) Avg (Std) Avg (Std) Avg (Std)

G1000.2.5
Single best 4.48e2 (1.10e1) 3.71e2 (9.72e0) 3.19e2 (1.17e1) 2.83e2 (1.02e1) 2.57e2 (9.27e0)

Simple hybrid 4.50e2 (1.17e1) 3.66e2 (9.36e0) 3.14e2 (9.03e0) 2.80e2 (8.82e0) 2.55e2 (1.02e1)
New method 4.44e2 (1.16e1) 3.62e2 (9.55e0) 3.11e2 (9.18e0) 2.78e2 (8.77e0) 2.54e2 (8.68e0)

G1000.20
Single best 4.58e3 (3.11e1) 4.30e3 (2.78e1) 4.15e3 (2.70e1) 4.04e3 (3.16e1) 3.96e3 (3.00e1)

Simple hybrid 4.53e3 (3.11e1) 4.29e3 (2.83e1) 4.13e3 (2.78e1) 4.03e3 (2.72e1) 3.96e3 (2.71e1)
New method 4.51e3 (3.43e1) 4.28e3 (2.90e1) 4.13e3 (2.72e1) 4.02e3 (2.64e1) 3.95e3 (2.61e1)

U1000.05
Single best 8.71e2 (2.14e1) 6.96e2 (3.11e1) 5.58e2 (2.77e1) 4.56e2 (2.55e1) 3.80e2 (2.41e1)

Simple hybrid 8.75e2 (2.20e1) 6.86e2 (2.25e1) 5.52e2 (2.26e1) 4.51e2 (2.26e1) 3.76e2 (2.28e1)
New method 8.64e2 (2.26e1) 6.76e2 (2.24e1) 5.44e2 (2.23e1) 4.45e2 (2.24e1) 3.71e2 (2.20e1)

U1000.40
Single best 7.53e3 (1.32e2) 6.44e3 (1.77e2) 5.55e3 (2.06e2) 4.79e3 (2.39e2) 4.16e3 (2.64e2)

Simple hybrid 7.55e3 (1.32e1) 6.46e3 (1.77e2) 5.57e3 (2.14e2) 4.81e3 (2.48e2) 4.18e3 (2.74e2)
New method 7.48e3 (1.34e2) 6.40e3 (1.27e2) 5.50e3 (2.03e2) 4.76e3 (2.35e2) 4.14e3 (2.65e2)

CPU: Intel Xeon E5530 2.40GHz. Average from 1,000 runs.
Avg: average (the smaller, the better); Std: standard deviation.

Table 5: Statistical test of graph bisection.

Problem instance Compared method 𝑡-test 𝑝 value

G1000.2.5 Single best + 5.66e − 10
Simple hybrid + 2.44e − 03

G1000.20 Single best + 2.69e − 08
Simple hybrid + 5.30e − 03

U1000.05 Single best + 2.42e − 16
Simple hybrid + 1.32e − 07

U1000.40 Single best ∼ 6.23e − 02
Simple hybrid + 2.62e − 04

𝑝 value: the smaller, the more significant.
+: significantly better under level 1.00e − 02.
∼: not significantly different under level 1.00e − 02.

Table 6: Comparison of results on two test problems.

Problem instance Our method Galán et al. [8] Ishibuchi and Shibata [13]
Avg Std Avg Std 𝑡-test 𝑝 value Avg Std 𝑡-test 𝑝 value

berlin52 9.02e3 3.09e2 9.27e3 3.32e2 + 1.6e − 59 9.24e3 3.38e2 + 4.4e − 45
kroA100 3.51e4 1.48e3 3.81e4 1.60e3 + 3.5e − 228 3.77e4 1.41e3 + 9.2e − 213
bier127 1.87e5 6.20e3 1.96e5 6.78e3 + 1.2e − 158 1.97e5 6.46e3 + 4.4e − 188
pr152 1.76e5 1.00e4 1.96e5 1.12e4 + 1.6e − 227 2.00e5 1.07e4 + 3.5e − 290
G1000.2.5 2.54e2 8.68e0 3.01e2 3.13e1 + 5.2e − 248 3.04e2 1.15e1 + 0∗

G1000.20 3.95e3 2.61e1 4.09e3 9.47e1 + 1.0e − 245 4.09e3 3.21e1 + 0∗

U1000.05 3.71e2 2.20e1 4.96e2 8.40e1 + 9.7e − 246 5.18e2 2.64e1 + 0∗

U1000.40 4.14e3 2.65e2 4.99e3 5.94e2 + 5.9e − 220 5.31e3 2.23e2 + 0∗

CPU: Intel Xeon E5530 2.40GHz. Average from 1,000 runs.
Avg: average (the smaller, the better); Std: standard deviation.
𝑝 value: the smaller, the more significant.
+: significantly better under level 1.00e − 02.
∗: it means that this value is less than 1.0e − 300.
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Figure 6: Voting rates of schemes in graph bisection.

with various environments such as various crossover, muta-
tion rates, replacement, and local optimization for future
work.
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Table 7: Results of computation time.

Problem instance
Our method Galán et al. [8] Ishibuchi and Shibata [13]

Mating Total Proportion of
mating (%) Mating Total Proportion of

mating (%) Mating Total Proportion of
mating (%)

berlin52 7.68 81.49 9.4 0.63 70.31 0.9 68.31 140.07 48.5
kroA100 14.60 283.97 5.1 0.68 252.33 0.3 244.85 505.28 48.4
bier127 20.04 451.89 4.4 0.62 405.57 0.2 388.40 796.24 48.7
pr152 25.24 634.28 3.9 0.65 570.15 0.1 546.99 1119.84 48.8
G1000.2.5 8.26 54.81 15.0 0.60 45.94 1.3 9.06 55.74 16.2
G1000.20 7.76 61.91 12.5 0.56 52.74 1.1 9.10 63.39 14.3
U1000.05 8.98 56.45 15.9 0.57 47.02 1.2 8.86 55.22 16.0
U1000.40 8.15 66.63 12.2 0.50 57.95 1.0 9.02 68.41 13.1
Average CPU seconds from 1,000 runs on Intel Xeon E5530 2.40GHz.
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Due to the fact that the fluctuation of network traffic is affected by various factors, accurate prediction of network traffic is regarded
as a challenging task of the time series prediction process. For this purpose, a novel prediction method of network traffic based on
QPSO algorithm and fuzzywavelet neural network is proposed in this paper. Firstly, quantum-behaved particle swarmoptimization
(QPSO) was introduced. Then, the structure and operation algorithms of WFNN are presented. The parameters of fuzzy wavelet
neural network were optimized by QPSO algorithm. Finally, the QPSO-FWNN could be used in prediction of network traffic
simulation successfully and evaluate the performance of different prediction models such as BP neural network, RBF neural
network, fuzzy neural network, and FWNN-GA neural network. Simulation results show that QPSO-FWNN has a better precision
and stability in calculation. At the same time, the QPSO-FWNN also has better generalization ability, and it has a broad prospect
on application.

1. Introduction

With the rapid development of computer network technol-
ogy, network applications have infiltrated every corner of
human society and play an important role in various indus-
tries and situations. Since the network topology structure is
gradually complicated, the problem of network’s emergen-
cies and congestion are more and more serious. Through
monitoring and accuracy prediction of network traffic, it can
prevent network congestion and can effectively improve the
utilization rate of the network [1].

In general, the network traffic data is a kind of time series
data and the problem of network traffic prediction is to fore-
cast future network traffic rate variations as precisely as possi-
ble based on the measured history.The traditional prediction
model, such as Markov model [2], ARMA (Autoregressive
Moving Average) model [3], ARIMA (Autoregressive Inte-
gratedMoving Average) model [4], and FARIMA (Fractional
Autoregressive Integrated Moving Average) [5] model, has
been proposed. As the network traffic is affected by many
factors, the network traffic time series show quite obvious

multiscale, long-range dependence, and nonline characteris-
tic.Themethods mentioned above have the weakness of low-
level efficiency [6].

An artificial neural network (ANN) is an analysis par-
adigm that is roughly modeled after the massively parallel
structure of the brain. Artificial neural networks can be
thought of as “black box” devices that accept inputs and
produce outputs and are able to give better performance in
dealing with the nonlinear relationships between the output
and the input theoretically [7]. Although artificial neural
networks have been successfully used for modeling complex
nonlinear systems and predicting signals for a wide range of
engineering applications, artificial neural networks (ANNs)
have limited ability to characterize local features, such as
discontinuities in curvature, jumps in value or other edges
[8]. These local features, which are located in time and/or
frequency, typically embody important process-critical infor-
mation such as aberrant process modes or faults.

The fuzzy neural networks (FNN) are the hybrid systems
which combine both advantages of the fuzzy systems and
artificial neural networks. The FNN possesses the merits of
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the low-level learning and computational power of neural
networks, and the high-level human knowledge represen-
tation and thinking of fuzzy theory [9]. A fuzzy wavelet
neural network (FWNN) is a new network structure that
combines wavelet theory with fuzzy logic and NNs. The
synthesis of a fuzzy wavelet neural inference system includes
the determination of the optimal definitions of the premise
and the consequent part of fuzzy IF-THEN rules [10]. How-
ever, many fuzzy neural network models, including FWNN,
have common problems derived from their fundamental
algorithm [11]. For example, the design process for FNN and
FWNN combined tapped delays with the backpropagation
(BP) algorithm to solve the dynamic mapping problems [12].
Unfortunately, the BP training algorithm has some inherent
defects [13, 14], such as low learning speed, existence of local
minima, and difficulty in choosing the proper size of network
to suit a given problem.Thus the systems which employ basic
fuzzy inference theorymake the degree of each rule extremely
small and oftenmake it underflowwhen the dimension of the
task is large. In such a situation, the learning and inference
cannot be carried out correctly.

As a variant of PSO, quantum-behaved particle swarm
optimization (QPSO) is a novel optimization algorithm
inspired by the fundamental theory of particle swarm and
features of quantummechanics such as the use of Schrödinger
equation and potential field distribution [15]. As a global
optimization algorithm, the QPSO can seek many local
minima and thus increase the likelihood of finding the global
minimum. This advantage of the QPSO can be applied to
neural networks to optimize the topology and/or weight
parameters [16].

In order to predict the network traffic more accurately,
a prediction model of network traffic based on QPSO algo-
rithm and fuzzy wavelet neural network is proposed in this
paper. The network traffic data is trained by QPSO and
fuzzy wavelet neural network and weights are progressively
updated until the convergence criterion is satisfied. The
objective function to be minimized by the QPSO algorithm
is the predicted error function.

The rest of this paper is arranged as follows. Section 2
gives a brief introduction to classical PSO algorithm and
quantum-behaved particle swarm optimization (QPSO)
algorithm. In Section 3, the fuzzy wavelet neural network
is introduced and the fuzzy wavelet neural network based
on QPSO (QPSO-FWNN) algorithm is presented in detail.
In Section 4, simulation results are presented. Performance
metrics of the several prediction methods are analyzed and
compared in Section 5. Finally, some conclusions are given in
Section 6.

2. Quantum-Behaved Particle
Swarm Optimization

2.1. Classical Particle Swarm Optimization. Particle swarm
optimization (PSO) is an evolutionary computation tech-
nique that is proposed by Kennedy and Eberhart in 1995
[17]. Similarly to other genetic algorithms (GA), PSO is
initialized with a population of random solutions. However,
it is unlike GA, PSO does not have operators, such as

crossover andmutation. In the PSO algorithm, each potential
solution, called “particles,” moves around in a multidimen-
sional search space with a velocity constantly updated by the
particle’s own experience and the experience of the particle’s
neighbors or the experience of the whole swarm [18].

In the PSO, each particle keeps track of its coordinates in
the search space which are associated with the best solution
it has achieved so far and this value is called 𝑝𝑏𝑒𝑠𝑡. Another
best value that is tracked by the global version of the particle
swarm optimizer is the overall best value, and its location,
obtained so far by any particle in the population [19]. This
location is called 𝑔𝑏𝑒𝑠𝑡.

The process for implementing the global version of PSO
is given by the following steps.

Step 1. Initialize a population (array) of particles with ran-
dom positions and velocities in the D-dimensional problem
space. For a D-dimensional problem with 𝑁 number of
particles, the position vector 𝑋𝑡

𝑖
and velocity vector 𝑉𝑡

𝑖
are

represented as
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(1)

where 𝑖 = 1, 2, . . . , 𝑁.

Step 2. For each particle, evaluate the desired optimization
fitness function in𝐷 variables.

Step 3. Compare each particle’s fitness evaluation with the
particle’s pbest. If the current value is better than pbest,
then set the pbest value equal to the current value and the
pbest location equal to the current location inD-dimensional
space.

Step 4. Compare the fitness evaluation with the population’s
overall previous best. If the current value is better than 𝑔𝑏𝑒𝑠𝑡,
then reset𝑔𝑏𝑒𝑠𝑡 to the current particle’s array index and value.

Step 5. Update the velocity and position of the particle
according to (2) and (3), respectively. One has
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where 𝑐
1
and 𝑐
2
are two positive constants, known as the cog-

nitive and social coefficients, which control the relative
proportion of cognition and social interaction, respectively,
and the values of 𝑐

1
and 𝑐
2
were decreased with each iteration

[20]. 𝑟
1
and 𝑟
2
are two random values in the range [0, 1]. 𝑉𝑡

𝑖,𝑑
,

𝑋
𝑡

𝑖,𝑑
, and 𝑝𝑏𝑒𝑠𝑡𝑡

𝑖,𝑑
are the velocity, position, and the personal

best of 𝑖th particle in 𝑑th dimension for the 𝑡th iteration,
respectively. The 𝑔𝑏𝑒𝑠𝑡𝑡

𝑑
is the 𝑑th dimension of best particle

in the swarm for the 𝑡th iteration.
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Step 6. Loop to Step 2 until a stop criterion is met, usually a
sufficiently good fitness or a maximum number of iteration
generations.

2.2. Quantum-Behaved Particle Swarm Optimization. Moti-
vated by concepts in quantummechanics and particle swarm
optimization, Sun et al. proposed a new version of PSO,
quantum-behaved particle swarm optimization (QPSO) [21].
In the QPSO, the state of a particle is depicted by a wave
function 𝜓(𝑥, 𝑡), instead of position and velocity. The prob-
ability density function of the particle’s position is |𝜓(𝑋, 𝑡)|2
in position𝑋

𝑖
[22].

Assume that, at iteration 𝑡, particle 𝑖 moves in 𝐷-
dimensional space with a 𝛿 potential well centered at 𝑝𝑏𝑒𝑠𝑡𝑡

𝑖,𝑗

on the 𝑑th dimension. The wave function at iteration 𝑡 + 1 is
given by the following equation:

𝜓 (𝑋
𝑡+1

𝑖,𝑑
) =

1

√𝐿
𝑡

𝑖𝑗

exp(−
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑡

𝑖,𝑑
− 𝑝𝑏𝑒𝑠𝑡

𝑡

𝑖,𝑑

󵄨󵄨󵄨󵄨󵄨

𝐿𝑡
𝑖𝑗

) , (4)

where 𝐿𝑡
𝑖,𝑑
is the standard deviation of the double exponential

distribution, varying with iteration number 𝑡. Hence the
probability density function 𝑄 is defined as

𝑄(𝑋
𝑡+1

𝑖,𝑑
) =

󵄨󵄨󵄨󵄨󵄨
𝜓 (𝑋
𝑡+1

𝑖,𝑑
)
󵄨󵄨󵄨󵄨󵄨

2

=
1

𝐿𝑡
𝑖,𝑑

exp(−
2
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑡+1

𝑖,𝑑
− 𝑝𝑏𝑒𝑠𝑡

𝑡

𝑖,𝑑

󵄨󵄨󵄨󵄨󵄨

𝐿𝑡
𝑖,𝑑

)

(5)

and the probability distribution function 𝐹 is given by the
following equation:

𝐹 (𝑋
𝑡+1

𝑖,𝑑
) = 1 − exp(−

2
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑡+1

𝑖,𝑑
− 𝑝𝑏𝑒𝑠𝑡

𝑡

𝑖,𝑑

󵄨󵄨󵄨󵄨󵄨

𝐿𝑡
𝑖,𝑑

) . (6)

By using Monte-Carlo method, the 𝑗th component of
position𝑋

𝑖
at iteration 𝑡+1 can obtain by the following equa-

tion:

𝑋
𝑡+1

𝑖,𝑑
= 𝑝𝑏𝑒𝑠𝑡

𝑡

𝑖,𝑑
±
1

2
𝐿
𝑡

𝑖,𝑑
ln( 1

𝑢𝑡+1
𝑖,𝑑

) , (7)

where 𝑢𝑡+1
𝑖,𝑑

is a uniform random number in the interval [0, 1].
The value of 𝐿𝑡+1

𝑖,𝑑
is calculated as

𝐿
𝑡

𝑖,𝑑
= 2𝛼

󵄨󵄨󵄨󵄨󵄨
𝐶
𝑡

𝑑
− 𝑋
𝑡

𝑖,𝑑

󵄨󵄨󵄨󵄨󵄨
, (8)

where parameter 𝛼 is known as the contraction-expansion
(CE) coefficient, which can be tuned to control the con-
vergence speed of the algorithms [23]. 𝐶𝑡 is the mean best
position (𝑚𝑏𝑒𝑠𝑡) and is defined as

𝐶
𝑡
= (𝐶
𝑡

1
, 𝐶
𝑡

2
, . . . , 𝐶

𝑡

𝐷
)

= (
1

𝑀

𝑀

∑

𝑖=1

𝑝𝑏𝑒𝑠𝑡
𝑡

𝑖,1
,
1

𝑀

𝑀

∑

𝑖=1

𝑝𝑏𝑒𝑠𝑡
𝑡

𝑖,2
, . . . ,

1

𝑀

𝑀

∑

𝑖=1

𝑝𝑏𝑒𝑠𝑡
𝑡

𝑖,𝐷
) ,

(9)

where𝑀 is the size of the population. Hence the position of
the particle is updated according to the following equation:

𝑋
𝑡+1

𝑖,𝑑
= 𝑝𝑏𝑒𝑠𝑡

𝑡

𝑖,𝑑
± 𝛼

󵄨󵄨󵄨󵄨󵄨
𝐶
𝑡

𝑑
− 𝑋
𝑡

𝑖,𝑑

󵄨󵄨󵄨󵄨󵄨
ln( 1

𝑢𝑡+1
𝑖,𝑑

) . (10)

From (4) and (10), the new position of the particle is
calculated as

𝑋
𝑡+1

𝑖,𝑑

=

{{{{{{

{{{{{{

{

𝑝𝑏𝑒𝑠𝑡
𝑡

𝑖,𝑑
+ 𝛼

󵄨󵄨󵄨󵄨󵄨
𝐶
𝑡

𝑑
− 𝑋
𝑡

𝑖,𝑑

󵄨󵄨󵄨󵄨󵄨
ln( 1

𝑢𝑡+1
𝑖,𝑑

) 𝑘 ∈ (0.5, 1] ,

𝑝𝑏𝑒𝑠𝑡
𝑡

𝑖,𝑑
− 𝛼

󵄨󵄨󵄨󵄨󵄨
𝐶
𝑡

𝑑
− 𝑋
𝑡

𝑖,𝑑

󵄨󵄨󵄨󵄨󵄨
ln( 1

𝑢𝑡+1
𝑖,𝑑

) 𝑘 ∈ (0, 0.5] ,

(11)

where 𝑘 is a random number in the range [0, 1]. 𝛼 is linearly
decreasing factor from 1.0 to 0.3 with iteration as

𝛼
𝑡
= 𝛼max −

𝛼max − 𝛼min
𝑡max

⋅ 𝑡, (12)

where 𝑡max is the maximum number iteration used in algo-
rithm.

3. Fuzzy Wavelet Neural Network
Based on QPSO

3.1.TheWavelet Base Function. In 𝐿2(𝑅), a wavelet dictionary
is constructed by dilating and translating from a wavelet base
function 𝜓(𝑡) of zero average [24]:

∫

+∞

−∞

𝜓 (𝑡) 𝑑𝑡 = 0 (13)

which is dilated with a scale parameter 𝑎 and translated by 𝑏

𝜓
𝑎,𝑏
(𝑡) =

1

√𝑎
𝜓(

𝑡 − 𝑏

𝑎
) 𝑎 > 0. (14)

3.2. Fuzzy Wavelet Neural Network. The basic architecture
of fuzzy wavelet neural network could be described as a set
of Takagi-Sugeno models. Assume that there are 𝑟 rules in
the rule base and the Takagi-Sugeno fuzzy if-then rules are
usually in the following form:

𝑅
𝑖: IF 𝑥

1
is 𝐹𝑖
1
, . . . , 𝑥

𝑟
is 𝐹𝑖
𝑟
,

THEN 𝑦
𝑖
= 𝛼
𝑖

0
+ 𝛼
𝑖

1
𝑥
1
+ ⋅ ⋅ ⋅ + 𝛼

𝑖

𝑟
𝑥
𝑟
,

(15)

where 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑟
are input of T-S rule, 𝐹𝑖

𝑗
is the 𝑖th

linguistic variable value of the 𝑗th input, which is a fuzzy set
characterized by wavelet function. 𝛼𝑖

𝑗
is constant coefficients

which are usually referred to as consequent parameters
determined during the training process.

Figure 1 shows the architecture of the proposed FWNN
modeling. The FWNN is a 4-layer feedforward network and
detailed descriptions and equations for each layer are given
here.



4 Discrete Dynamics in Nature and Society

x1

xn

Π

Π

Π

Π

Π

Π

Π

Π

Σ

Σ

y1

ym

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

u(·)

u(·)

u(·)

u(·)

Figure 1: The architecture of FWNN.

Layer 1 (input variables layer). This layer is the input signals
of the FWNN and each node of this layer, respectively,
represents an input linguistic variable. The node output and
the node input are related by

𝐼
(1)

𝑖
= 𝑥
𝑖

𝑂
(1)

𝑖
= 𝐼
(1)

𝑖
𝑖 = 1, 2, . . . , 𝑛,

(16)

where 𝐼(1)
𝑖

and 𝑂(1)
𝑖

are, respectively, the input and output of
𝑖th node in Layer 1.

Layer 2 (membership functions layer). In this layer, nodes
represent fuzzy sets in the antecedents of fuzzy rules. The
outputs of this layer are the values of the membership
functions. The membership function is wavelet function and
is often taken as

𝑢
𝑗

𝑖
= 𝜑(

𝑥
𝑖
− 𝑏
𝑗

𝑖

𝑎
𝑗

𝑖

)

= cos(
𝑥
𝑖
− 𝑏
𝑗

𝑖

2𝑎
𝑗

𝑖

) exp(−1
2
(
𝑥
𝑖
− 𝑏
𝑗

𝑖

𝑎
𝑗

𝑖

)

2

) ,

(17)

where 𝑢
𝑗

𝑖
is the 𝑗th membership function of 𝑥

𝑖
and 𝑗 =

1, 2, . . . , 𝑝. 𝑎𝑗
𝑖
, 𝑏
𝑗

𝑖
are the dilation and translation parameter

of wavelet function.
In this layer, the relation between the output and input is

represented as

𝐼
(2)

𝑖𝑗
= 𝑂
(1)

𝑖
,

𝑂
(2)

𝑖𝑗
= 𝑢
𝑖𝑗
(𝐼
(2)

𝑖𝑗
)

= cos(
𝑂
(1)

𝑖
− 𝑏
𝑗

𝑖

2𝑎
𝑗

𝑖

) exp(−1
2
(
𝑂
(1)

𝑖
− 𝑏
𝑗

𝑖

𝑎
𝑗

𝑖

)

2

) ,

(18)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑝.

Layer 3 (rule layer). In this layer, the number of rules is equal
to the number of nodes. The output can be calculated as
follows according to the AND (min) operation [12]:

𝑂
(3)

𝑖𝑗
= 𝐼
(3)

𝑖𝑗
= min (𝑂(2)

1𝑗
, 𝑂
(2)

2𝑗
, . . . , 𝑂

(2)

𝑛𝑗
) . (19)

Layer 4 (output layer). This layer consists of output nodes.
The output are given by

𝐼
(4)

𝑘
=

𝑚

∑

𝑖=1

𝑝

∑

𝑗=1

𝑂
(3)

𝑖𝑗
𝜔
(3)

𝑖𝑗
, (20)

𝑦
𝑘
= 𝑂
(4)

𝑘
=

𝐼
(4)

𝑘

∑
𝑚

𝑖=1
∑
𝑝

𝑗=1
𝑂
(3)

𝑖𝑗

. (21)

To train the parameters of FWNN, backpropagation
(BP) training algorithm is extensively used as a powerful
trainingmethodwhich can be applied to the forward network
architecture [25]. For this purpose, mean square error (MSE)
is selected as performance index which is given by

𝐽 =
1

2
(𝐷 − 𝑌)

𝑇
(𝐷 − 𝑌) , (22)

where 𝐷 and 𝑌 are current and desired output values of
network, correspondingly.

The all adjustable parameters of FWNN can be calculated
by the following formulas:

𝜔
(3)

𝑖𝑗
(𝑡 + 1) = 𝜔

(3)

𝑖𝑗
(𝑡) − 𝜂 ⋅

𝜕𝐽

𝜕𝜔
(3)

𝑖𝑗
(𝑡)

+ 𝛼 ⋅ Δ𝜔
(3)

𝑖𝑗
(𝑡) ,

𝑏
(2)

𝑖𝑗
(𝑡 + 1) = 𝑏

(2)

𝑖𝑗
(𝑡) − 𝜂 ⋅

𝜕𝐽

𝜕𝑏
(2)

𝑖𝑗
(𝑡)

+ 𝛼 ⋅ Δ𝑏
(2)

𝑖𝑗
(𝑡) ,

𝑎
(2)

𝑖𝑗
(𝑡 + 1) = 𝑎

(2)

𝑖𝑗
(𝑡) − 𝜂 ⋅

𝜕𝐽

𝜕𝑎
(2)

𝑖𝑗
(𝑡)

+ 𝛼 ⋅ Δ𝑎
(2)

𝑖𝑗
(𝑡) ,

(23)

where 𝑡 represents the backward step number and 𝜂 and 𝛼

are the learning and the momentum constants, differing in
the ranges 0.01 to 0.1 and 0.1 to 0.9, respectively.

3.3. Fuzzy Wavelet Neural Network Trained by QPSO Algo-
rithm. Computational intelligence has gained popularity in
training of neural networks because of their ability to find
a global solution in a multidimensional search space. The
QPSO algorithm is a global algorithm, which has a strong
ability to find global optimistic results and QPSO algorithm
has proven to have advantages than the classical PSO due
its less control parameters [26]. Therefore, by combining the
QPSO with the fuzzy wavelet neural network, a new algo-
rithm referred to as QPSO-FWNN algorithm is formulated
in this paper.

WhenQPSOalgorithm is used to train the FWNNmodel,
a decision vector represents a particular group of network
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parameters including the connection weight, the dilation and
translation parameter. It is further denoted as

𝑋
𝑖
= (𝑎
1,1
, . . . , 𝑎

1,𝑝
, . . . , 𝑎

𝑛,𝑝
, 𝑏
1,1
, . . . , 𝑏

1,𝑝
, . . . , 𝑏

𝑛,𝑝
, 𝜔
1,1
, . . . ,

𝜔
1,𝑝
, . . . , 𝜔

𝑚,𝑝
) ,

(24)

where 𝑎
𝑖𝑗
and 𝑏
𝑖𝑗
are the dilation and translation parameter of

wavelet function in Layer 2. 𝜔
𝑙,𝑘

are the connection weight
in (20). Since a component of the position corresponds
to a network parameter, FWNN is structured according
the particle’s position vector. Training the corresponding
network by inputting the training samples, we can obtain an
error value computed by (22). In a word, the mean square
error is adopted as the objective function to be minimized
in FWNN based on QPSO.

The specific procedure for the QPSO-FWNN algorithm
can be summarized as follows.

Step 1. Define the structure of the FWNN according to the
input and output sample.

Step 2. Treat the position vector of each particle as a group of
network parameter by (24).

Step 3. Initialize the population by randomly generating the
position vector𝑋

𝑖
of each particle and set 𝑝𝑏𝑒𝑠𝑡

𝑖
= 𝑋
𝑖
.

Step 4. Evaluate 𝑚 and 𝛼 of QPSO algorithm using (9) and
(12), respectively.

Step 5. Conclude the objective function of each particle by
(22).

Step 6 (update 𝑝𝑏𝑒𝑠𝑡). Each particle’s current fitness value is
compared with previous best value 𝑝𝑏𝑒𝑠𝑡. If the current value
is better than the 𝑝𝑏𝑒𝑠𝑡 value, then set the 𝑝𝑏𝑒𝑠𝑡 value to the
current value.

Step 7 (update 𝑔𝑏𝑒𝑠𝑡). Determine the swarm best 𝑔𝑏𝑒𝑠𝑡 as
minimum of all the particles 𝑝𝑏𝑒𝑠𝑡.

Step 8. Judge the stopping criteria, if the maximal iterative
times aremet, stop the iteration, and the positions of particles
are the optimal solution.Otherwise, the procedure is repeated
from Step 4.

4. Simulation Results

Experimental data set consists of 10 hours observationswhich
comes from monitoring the traffic between clients in our
campus network and servers. The minimal time interval in
network traffic time series is 10 seconds. Figure 2 shows the
normalization of network traffic time series.

In this paper, the design of a discrete filter predictor
consists in finding the relation between the future data 𝑥(𝑛)
and the past observations 𝑥(𝑛 − 1), 𝑥(𝑛 − 2), . . . , 𝑥(𝑛 − 𝑀),
where 𝑀 is the number of considered input elements. The
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Figure 2: The normalization of network traffic time series.

predictor relationship can be described by the following
convolution sum [27]:

𝑥̂ (𝑛) =

𝑀

∑

𝑘=1

ℎ
𝑜
(𝑘) 𝑥 (𝑛 − 𝑘) , (25)

where ℎ
𝑜
(𝑘) (𝑘 = 1, 2, . . . ,𝑀) is the filter coefficient vector.

𝑥(𝑛 − 𝑘) is an 𝑘-step backward sample. 𝑥̂(𝑛) is the desired
output.

In order to test the performance of the prediction model,
the front 1000 is the training data, and the latter 2100 is
the prediction data. The number of time series windows
was set as 3, which meant that the forth of measurement
data would be predicted from the past three of measurement
data. In the established prediction model base on QPSO-
FWNN algorithm, the number of membership functions is
five, the number of input variables layer nodes is three, and
the number of output layer nodes is one. The population size
of QPSO algorithm is 120 particles and𝐷-dimensional search
space of particle is 45. 𝑡max is 30. 𝛼max is 1 and 𝛼min is 0.5. The
CE coefficient decreases linearly from 1.0 to 0.3 during the
search process according to (12) and After 50 times iterations,
the cost function 𝐽 of QPSO-FWNN neural network was
2.1887. The connection weight between input variables layer
and output layer is given by

𝑎 =
[
[
[

[

1.018 −0.196 −0.582 0.419 0.743

−1.299 −0.885 0.676 −0.170 0.134

1.082 0.206 0.557 −0.408 0.453

]
]
]

]

,

𝑏 =
[
[
[

[

0.495 1.510 1.893 0.869 2.665

1.171 −0.627 2.369 2.304 0.786

−0.082 1.297 2.043 1.300 1.850

]
]
]

]

,
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𝜔 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−0.927

0.408

0.053

2.128

2.195

1.652

1.875

1.436

−1.537

2.416

1.595

1.146

2.072

0.965

1.884

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(26)

where 𝑎 is the dilation parameter of the wavelet function.
𝑏 is the translation parameter of wavelet function. 𝜔 is
the connection weight of the output layer. Figure 3 shows
the membership functions of input variable 𝑥(𝑡), 𝑥(𝑡 − 1),
and𝑥(𝑡 − 2) in FWNN units. Figure 4 shows the QPSO-
FWNN convergence curves. These prediction results show
that the QPSO-FWNN model is an effective, high-accuracy
prediction model of network traffic in Figure 5.

5. Performance Metrics

In order to evaluate the prediction model more comprehen-
sively, the following performancemetrics are used to estimate
the prediction accuracy.

(1) MSE (mean square error) is a scale-dependent metric
which quantifies the difference between the predicted values
and the actual values of the quantity being predicted by
computing the average sum of squared errors [28]:

MSE =
1

𝑁

𝑁

∑

𝑖=1

(𝑦
𝑖
− 𝑦̂
𝑖
)
2

, (27)

where 𝑦
𝑖
is the actual value, 𝑦̂

𝑖
is the predicted value, and 𝑁

is the total number of predictions.
(2) NMSE (Normalized Mean Square Error) is defined as

NMSE =
1

𝜎2

1

𝑁

𝑁

∑

𝑖=1

(𝑦
𝑖
− 𝑦̂
𝑖
)
2

, (28)

where 𝜎2 denotes the variance of the actual values during the
prediction interval and is given as follows:

𝜎
2
=

1

𝑁

𝑁

∑

𝑖=1

(𝑦
𝑖
− 𝑦)
2

, (29)

where 𝑦 is the mean value and is given by

𝑦 =
1

𝑁

𝑁

∑

𝑖=1

𝑦
𝑖
. (30)

It can be seen that, if NMSE = 0, the prediction performance
is perfect, and if NMSE = 1, the prediction is a trivial predic-
tor which statistically predicts the mean of the actual value. If
NMSE > 1, it means that the prediction performance is worse
than that of trivial predictor [29].

(3) MAPE (Mean Absolute Percentage Error) can calcu-
late the prediction error as a percentage of the actual value.
MAPE is defined as

MAPE =
1

𝑁

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦̂𝑖
󵄨󵄨󵄨󵄨

𝑦
𝑖

× 100%. (31)

(4) Coefficient correlation is the covariance of the two
variables divided by the product of their individual standard
deviations. It is a normalized measurement of how the two
variables are linearly related.The coefficient of correlation (𝑟)
is given as follows:

𝑟 =
COV (𝑌, 𝑌̂)

𝜎
𝑌
𝜎
𝑌̂

, (32)

where 𝜎
𝑌
and 𝜎
𝑌̂
indicate the standard deviation of the actual

and the predicted values are given by (33)

𝜎
𝑌
= √

1

𝑁

𝑁

∑

𝑖=1

(𝑦
𝑖
− 𝑦)
2

. (33)

COV(𝑋, 𝑌) is the covariance between𝑋 and 𝑌. It is obtained
as follows:

COV =
1

𝑁

𝑁

∑

𝑖=1

(𝑥
𝑖
− 𝑥) (𝑦

𝑖
− 𝑦) . (34)

Values for the correlation coefficient range are [−1, 1]. If 𝑟 = 1,
there is a perfect positive correlation between the actual and
the predicted values, whereas 𝑟 = −1 indicates a perfect
negative correlation. If 𝑟 = 0, we have a complete lack of
correlation among the datasets.

(5) Coefficient of efficiency (CE) is defined as

CE = 1 −
∑
𝑁

𝑖=1
(𝑦
𝑖
− 𝑦̂
𝑖
)
2

∑
𝑁

𝑖=1
(𝑦
𝑖
− 𝑦)
2
, (35)

where the domain of the efficiency coefficient is (−∞, 1].
If CE = 1, there is a perfect fit between the observed
and the predicted data. When the prediction corresponds to
estimating the mean of the actual values, CE = 0. If CE ∈

(−∞, 0], it indicates that the average of the actual values is
a better predictor than the analyzed prediction method. The
closer CE is to 1, the more accurate the prediction is.

In order to test the QPSO-FWNN method’s validity and
accuracy, we carried out the experiment which is compared
with the other methods. The prediction model based on BP
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Figure 3: The membership functions of input variable 𝑥(𝑡), 𝑥(𝑡 − 1), and𝑥(𝑡 − 2) in FWNN units.
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Figure 4: The QPSO-FWNN convergence curves.

Table 1: Performance comparison of the six prediction methods.

Method MSE NMSE MAPE 𝑟 CE
QPSO-FWNN 3.02 × 10

−4 0.0348 0.0181 0.9833 0.9667
BP 6.30 × 10

−3 0.3022 0.0986 0.8602 0.3091
RBF 4.20 × 10

−3 0.2182 0.0786 0.9115 0.5424
FNN 2.69 × 10

−1 1.0999 0.2041 −0.1692 −28.6128
FWNN-GA 1.01 × 10

−3 0.1475 0.0434 0.9560 0.8884
ARIMA 4.50 × 10

−3 0.5974 0.7326 0.7326 0.5011

neural network is 3 layers, in which the number of input
layer nodes is 3, the number of hidden layer nodes is 7,
the number of output layer nodes is 1, and the number of
iterations is 1000. In the prediction model based on RBF
neural network, the radial based distribute function “spread”
is 1.5. The prediction model based on FNN neural network is
4 layers and the number of membership functions is five.The
number of iterations is 1000. The architecture of prediction
model based on fuzzy wavelet neural network and genetic
algorithm (FWNN-GA) is the same with the QPSO-FWNN
method.The population size of GA is 100.The crossover type

is one-point crossover, and crossover rate is 0.6.Mutation rate
is 0.01 and the number of iterations is 500 [30].The prediction
model based on ARIMA model is built. The estimation of
the model parameters is done using Maximum Likelihood
Estimation and the best model is chosen as ARIMA (5, 1, 3)

[31]. Figures 6, 7, 8, 9, and 10 show that prediction results
with BP, RBF, FNN, and FWNN-GA neural network and
ARIMA model, respectively. The performance comparison
of the four prediction methods is shown in Table 1. From
Table 1, one can look further into the prediction performance
among the four predictionmodels. By comparing the value of
MSE, NMSE, MAPE, coefficient correlation, and CE, QPSO-
FWNN demonstrates better prediction accuracy than the
other three methods. Therefore, the experimental results in
this section show that the predictionmethod based onQPSO-
FWNN is much more effective than BP, RBF, FNN, FWNN-
GA, and ARIMA. It can be seen that the prediction method
based onQPSO-FWNN is a bettermethod to predict the time
series of network traffic.

In order to test the prediction stability of each mode, the
five predictionmethods were predicted 10 times, respectively.
Figures 11, 12, and 13 show that prediction results with QPSO-
FWNN models are much more stable than BP, FNN, and
FWNN-GA.

6. Conclusion

Predicting the direction of movements of network traffic is
important as they enable us to detect potential network traffic
jam spots. Since the network traffic is affected by many
factors, the data of network traffic have the volatility and
self-similarity features and the network traffic prediction
becomes a challenge task. In this paper, the QPSO-FWNN
method has been presented to predict the network traffic.The
QPSO-FWNN combines the QPSO, which has the merit of
powerful global exploration capability, with FWNN which
can extract the mapping relations between the input and
output data. The parameters of FWNN neural network are
obtained by quantum-behaved particle swarm optimization
(QPSO) and the time series of network traffic data was
modeled by QPSO-FWNN. Finally, experiments showed that
QPSO-FWNN model has faster and better performance in
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Figure 6: Prediction results with BP neural network.
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Figure 7: Prediction results with RBF neural network.
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Figure 8: Prediction results with FNN neural network.
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Figure 9: Prediction results with FWNN-GA method.
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Figure 10: Prediction results with ARIMA method.
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prediction of nonlinear and nonstationary time series than
many pure neural networks.
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