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There exists, in general, no unique definition of the size (volume, area, etc., depending on dimension) of 
a soliton. Here we demonstrate that the geometric volume (area etc.) of a soliton is singled out in the 
sense that it exactly coincides with the thermodynamical or continuum-mechanical volume. In addition, 
this volume may be defined uniquely for rather arbitrary solitons in arbitrary dimensions.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Solitons are finite-energy solutions of nonlinear field equations 
with properties which make them similar to particles in several as-
pects [1,2]. They are ubiquitous in condensed matter systems (see, 
e.g., [3–10]) and, in addition, find some applications in cosmology 
[11–14] and nuclear and elementary particle physics [15–21]. For 
concreteness and simplicity, we shall restrict the following discus-
sion to relativistic field theories with a Poincare-invariant action in 
d space plus one time dimension, although our considerations may 
probably be adapted without difficulties to non-relativistic field 
theories. Relativistic theories with solitons support both static soli-
ton solutions and their boosted versions. Besides its energy, further 
basic characteristics of a static soliton are its position and its size. 
While the energy of a soliton resulting from an action principle in 
a Poincare-invariant theory is always unique and well-defined, it 
is not so obvious how to find well-motivated definitions of its po-
sition and size. In particular, in the present contribution we want 
to investigate the possibility of a unique definition of the size of a 
soliton.

Once an adequate definition for the position �x0 of a soliton has 
been found, owing to translational invariance there will exist soli-
tons with arbitrary positions and otherwise unchanged properties. 
For a given position, most of the energy density E of the soliton 
will be concentrated in a finite region about this position, whereas 
for large distances the energy density may either decay sufficiently 
fast (e.g., exponentially or algebraically) or even be exactly equal 
to zero. What, then, might be possible definitions of the soliton 
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size? If the energy density is spherically symmetric and takes its 
maximum value at the position of the soliton, then one possible 
definition of its radius R might be the distance |�x − �x0| from the 
soliton position �x0 where the energy density has diminished by a 
certain factor. The size of the soliton would then be the generalized 
volume Vd (area, volume, etc.) of the d-dimensional ball Dd with 
radius R in d-dimensional space, e.g., V 3 = (4π/3)R3 in d = 3. If, 
in addition to the energy density, there exists a further density ρ
interpretable as a particle density or charge density, then further 
possible radius definitions are the corresponding root-mean-square 
(RMS) radii and generalizations thereof, i.e.,

Rα ≡
(

1

Ad−1

∫
ddx|�x − �x0|αρ(�x)

) 1
α

(1.1)

(where Ad is the generalized area of the d-dimensional unit 
sphere, e.g., A0 = 2, A1 = 2π , A2 = 4π , etc.). Here, α = 2 cor-
responds to the RMS radius. In particular, this definition may be 
used for field theories possessing so-called topological solitons [2], 
i.e., soliton solutions which obey some non-trivial boundary condi-
tions. They are usually characterized by a (typically integer-valued) 
topological degree

Q =
∫

ddxρq(�x) (1.2)

where the topological charge density ρq (a function of the fields 
�φ of the theory and their first derivatives) may be expressed as a 
total derivative such that Q only depends on the boundary condi-
tions imposed on �φ and is invariant under local variations of the 
fields. ρq may obviously be used to define (generalized) RMS radii. 
All these definitions of the soliton size, however, depend on an 
identification of its position, among other peculiarities.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. A two-dimensional example

Let us consider a simple example in one space dimension. 
The standard Lagrangian density for a real scalar field φ is (our 
Minkowski metric convention is g00 = +1)

L = 1

2
∂μφ∂μφ − m2U (φ) (2.1)

where U is a non-negative potential. Further, we assume natural 
units and a dimensionless scalar field, such that both ∂μ and m
have the dimension of mass. The energy momentum tensor is of 
the perfect fluid type and reads

Tμν = ∂μφ∂νφ − gμνL = uμuν(E +P) − gμνP (2.2)

where (assuming ∂μφ∂μφ < 0)

uμ = (−∂λφ∂λφ
)− 1

2 εμν∂νφ (2.3)

is the “two-velocity” (the two-dimensional version of the four-
velocity), and

E = −1

2
∂μφ∂μφ + m2U (2.4)

P = −1

2
∂μφ∂μφ − m2U (2.5)

are the proper energy density and the (local) pressure density, re-
spectively. We remark that, for non-static configurations, E �= T00, 
P �= T11 because E and P are Lorentz scalars. In the static case, 
we have (φ′ ≡ ∂xφ, φ̇ ≡ ∂tφ)

T00 = E = 1

2
φ′ 2 + m2U (2.6)

T11 = P = 1

2
φ′ 2 − m2U . (2.7)

Further, the Euler–Lagrange equation reads

∂μ∂μφ + m2U ,φ = 0 (2.8)

which in the static case may be integrated once to

P ≡ 1

2
φ′ 2 − m2U = P = const (2.9)

where the pressure P is the constant on-shell value of the pres-
sure density P . The same conclusion P = P = const follows, in 
fact, directly from energy–momentum conservation for static fields, 
∂xT11 = ∂xP = 0.

2.1. Kinks

Finite energy configurations can only exist if the potential U (φ)

has at least one vacuum, i.e., a field value φ = φ1 such that 
U (φ1) = 0. If the potential has two vacua φ1, φ2, then there ex-
ist so-called kink solutions φk(x), i.e., static solutions interpolating 
between the two vacua, e.g., limx→−∞ φk = φ1, limx→+∞ φk = φ2. 
Configurations with these boundary conditions may be distin-
guished from configurations of the vacuum sector (approaching the 
same limit in both directions) by the (rather trivial) topological 
charge density

ρq = φ′

φ2 − φ1
(2.10)

and the corresponding charge
Q =
∞∫

−∞
dxρq =

φ+∫
φ−

dφ

φ2 − φ1
= φ+ − φ−

φ2 − φ1
(2.11)

where φ± ≡ limx→±∞ φ(x) and both φ+ and φ− must take any 
of the vacuum values φ1 and φ2. So Q may take the values 0
(vacuum sector), 1 (kink sector) and −1 (antikink sector). Config-
urations from different sectors cannot be transformed into each 
other by local (finite energy) deformations. The energy of a kink 
(antikink) configuration is bounded from below by a similar topo-
logical bound (i.e., a bound only depending on the theory – the 
potential – and the boundary conditions)

E = 1

2

∞∫
−∞

dx
(
φ′ 2 + 2m2U

)

= 1

2

∫
dx(φ′ ∓ m

√
2U )2 ± m

∫
dx

√
2Uφ′ (2.12)

i.e.,

E ≥
∣∣∣∣m

∫
dx

√
2Uφ′

∣∣∣∣ = m

∣∣∣∣∣∣∣
φ+∫

φ−

dφ
√

2U

∣∣∣∣∣∣∣
= m|(W (φ+) − W (φ−)| (2.13)

where the “superpotential” W (φ) is defined via W ,φ = √
2U and 

may be calculated easily for particular potentials U . The energy 
bound is saturated for solutions of the first-order (Bogomolny) 
equations

φ′ = ±m
√

2U . (2.14)

These two equations are easily recognized as the two roots of the 
zero pressure equation, i.e., of the once-integrated static field equa-
tion (2.9) for zero pressure P = 0 (this relation between the zero 
pressure condition and BPS equations has been pointed out al-
ready, e.g., in [22]). Solutions of these equations are called kinks 
(plus sign) and antikinks (minus sign), respectively. They provide 
global energy minima in their respective topological sectors.

All above results remain valid for potentials with more than 
two vacua provided that φ1 and φ2 refer to two adjacent vacua 
(the total number of inequivalent topological sectors, of course, in-
creases in this case).

2.2. The φ4 kink

As one simple, well-known example, let us consider the so-
called φ4 potential

Uφ4 = 1

2
(1 − φ2)2 (2.15)

with two vacua at φ1 = −1, φ2 = 1, and leading to the kink energy 
E = m 

∫ 1
−1 dφ(1 − φ2) = (4/3)m. The Bogomolny equation for the 

kink is φ′ = m(1 − φ2) or

dx = m−1 dφ

1 − φ2
(2.16)

with the solution

x − x0 = m−1artanh φ ⇒ φk = tanh m(x − x0) (2.17)

where x0 is an integration constant. The topological charge density 
and energy density of the kink are
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ρq = 1

2
φ′

k = m

2
cosh−2 m(x − x0) (2.18)

E = φ′
k

2 = m2 cosh−4 m(x − x0). (2.19)

In this simple model, it is quite obvious that the point x = x0
should be identified with the kink position. First of all, both ρq and 
E have their maxima at x = x0. Further, the point x = x0 in physical 
space corresponds to the point φ = 0 in field space which is sin-
gled out, as well. The potential (2.15) is reflection symmetric about 
φ = 0, and φ = 0 is the point halfway between the two vacua. 
In addition, the potential has a local maximum at φ = 0 (which 
explains why the energy density maximum is located there). Ac-
cepting the value x0 as the kink position, we may then calculate, 
e.g., its RMS radius via

R2
2 = 1

2

∫
dx(x − x0)

2ρq = 1

4

1∫
−1

dφ m−2artanh2 φ = π2

24m2
,

(2.20)

leading to the kink RMS size (length) L = 2R2 = π√
6m

.

We want to emphasize, however, that this result for the “size” 
of the kink is based on several assumptions, each of which is to a 
certain degree arbitrary. Indeed, we could use one of the general-
ized RMS radii Rα instead of the standard RMS radius. We could 
also use the normalized energy density instead of the topologi-
cal density in the definition of Rα . Another source of arbitrariness 
is related to the necessity to identify the position of the soliton. 
In the case at hand, all reasonable definitions agree in that the 
position x0 of the kink should be where the kink field takes the 
midpoint value φk(x0) = (1/2)(φ2 + φ1) = 0. This is related to the 
particularly simple form of the potential. For more complicated po-
tentials without reflection symmetry, there exist several possible 
definitions for the kink position which will lead to different re-
sults, in general. The most obvious ones are: a) the position of the 
midpoint φk(x0) = (1/2)(φ2 +φ1); b) the position of the maximum 
of E or ρq (the two coincide for the scalar field models considered 
here); c) the position x0 where one-half of the kink energy is to 
the left and one-half to the right; d) the position where one-half 
of the topological charge is to the left and one-half to the right.

In higher dimensions, there may be some further complications 
in the identification of the soliton position. In our one-dimensional 
example, we could identify the soliton position with the pre-image 
of the “anti-vacuum” (the midpoint (1/2)(φ2 + φ1)), because the 
number of dimensions of field space and physical space coincide. 
But this is not always the case. If, e.g., the dimension of physical 
space is higher, then even if an anti-vacuum may be defined in 
field space, its pre-image in physical space will be a (one-, two- or 
higher-dimensional) submanifold of physical space Rd rather than 
a point. In these cases, finding a sensible definition of the position 
�x0 of a soliton is even more difficult and unavoidably plagued by a 
certain amount of arbitrariness.

These considerations make one wonder whether there exists a 
more unequivocal definition of the size of a soliton. We shall see 
that this is indeed the case, although the resulting size (general-
ized volume) has some counterintuitive properties.

2.3. Kink size and non-zero pressure

Let us consider a general non-negative potential with two ad-
jacent vacua φ1 and φ2 (and φ2 > φ1, without loss of generality). 
The two roots of the constant pressure equation (2.9) read

φ′ = ±√
2
√

m2U + P (2.21)

where we only consider the plus sign (kink) in the following. Sep-
aration of variables leads to
dx = 1√
2

dφ√
m2U + P

, (2.22)

and this expression allows, in fact, for an immediate definition of 
the kink length, namely the distance which is covered by x while 
φ runs from φ1 to φ2, i.e.,

L = L(P ) = 1√
2

φ2∫
φ1

dφ√
m2U + P

. (2.23)

Geometrically, this is the size of the region in physical space where 
the kink φk(x, P ) deviates from its vacuum values. Obviously, a 
kink position or other peculiarities of the solution are not required.

Now, let us study the case P = 0 in some more detail. Close 
to the vacuum φ1, i.e., for φ = φ1 + δφ1, the potential will behave 
like U ∼ c1(δφ1)

γ1 (we assume an algebraic approach to the vac-
uum). This vacuum approach will lead to a finite contribution to 
the length integral (2.23) for γ1 < 2, i.e., for a less than quadratic 
approach to the vacuum. Exactly the same argument applies for 
the other vacuum φ2. So a kink at zero pressure has finite length 
only provided that the corresponding potential approaches both 
vacua less than quadratically. Kinks with this property are known 
as compactons [23–31], because the field reaches its vacuum value 
at a finite distance, i.e., deviates from the vacuum only on a com-
pact domain. Well-known models like the φ4 model with its stan-
dard quadratic approach, on the other hand, lead to an exponential 
soliton tail and, therefore, to an infinite kink length according to 
formula (2.23). As these kinks with exponential tails still have most 
of their energy and charge concentrated within a finite distance, 
this result of an infinite length may appear somewhat counterin-
tuitive.

To better understand the implications of this length definition, 
let us further study the general case P ≥ 0. First of all, the same 
line of reasoning like above shows that, for nonzero pressure, the 
kink length (2.23) is always finite. Next, the energy of a kink with 
pressure P may be calculated easily,

E = E(P ) =
∫

dx(2m2U + P ) = 1√
2

φ2∫
φ1

dφ
2m2U + P√

m2U + P
. (2.24)

Now we rename L(P ) as V (P ) (the one-dimensional or generalized 
“volume”) to be closer to the standard notation of fluid dynamics. 
Then it is easy to demonstrate that E , V and P obey the standard 
relation [32]

P = − dE

dV
(2.25)

known from fluid dynamics and (zero temperature) thermodynam-
ics. Indeed,

dV

dP
= −1

2

φ2∫
φ1

dφ√
2
(m2U + P )−

3
2 (2.26)

and

dE

dP
= P

2

φ2∫
φ1

dφ√
2
(m2U + P )−

3
2 (2.27)

such that

dE = (dE/dP ) = −P . (2.28)

dV (dV /dP )
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The geometric “volume” (length) introduced in Eq. (2.23) is, there-
fore, completely equivalent to the thermodynamical or fluid dy-
namical volume, and the field theory model may be interpreted in 
thermodynamical and fluid-mechanical terms.

It follows from Eq. (2.21) that for nonzero pressure the first 
derivative of the kink is nonzero at the boundaries, φ′

k(x1, P ) =
φ′

k(x2, P ) = √
2P (where φk(x1, P ) = φ1, φk(x2, P ) = φ2). If we 

want to connect to the vacuum outside the kink (to maintain fi-
nite total energy) the first derivative of φk(x, P ) must, therefore, 
jump at x = x1, x2. That is to say, the kink is a continuous function 
with a discontinuous first derivative. This has to be expected from 
a physics point of view. The kink φk(x, P ) is a solution under pres-
sure, and it must be kept stable by applying the same amount of 
external pressure at its boundaries. The actuation of external pres-
sure at a kink boundary (x2, say) can be avoided if the potential 
has a third vacuum at φ3 > φ2. Then the upper boundary of the 
first kink, x2 is, at the same time, the lower boundary of a second 
kink interpolating between φ2 and φ3, with the same pressure, and 
the two boundary pressures at x2 balance each other. For a poten-
tial with n +1 vacua we can, thus, construct a chain of n kinks with 
pressure P > 0, and external pressure must be applied only at the 
pre-images of the lowest and the highest vacuum. For potentials 
with infinitely many vacua we may have infinite kink chains with-
out the necessity of external pressure. Such infinite kink chains 
might be good models for one-dimensional fluids. We shall study 
one particular example in the next section.

2.4. The sine-Gordon kink chain

The well-known sine-Gordon model with potential

USG = 1 − cosφ = 2 sin2 φ

2
(2.29)

provides a simple example of a potential with infinitely many 
vacua which, in addition, is periodic (invariant under the shift 
φ → φ + 2πn). The constant pressure equation (2.9) in this case 
reads

φ′ 2 = 4m2
(

sin2 φ

2
+ P̃

)
, P̃ ≡ P

2m2
(2.30)

or, after the field transformation ψ = sin(φ/2),

ψ ′ 2 = m2(1 − ψ2)(ψ2 + P̃ ). (2.31)

This may be brought into the standard form of the differential 
equation(

dψ

dy

)2

= (1 − ψ)2(k2ψ2 + 1 − k2) (2.32)

for the Jacobi elliptic function cn(k, y) by the change of variable

y = m

kP
x , kP ≡ 1√

1 + P̃
. (2.33)

The kink solution therefore reads φk(x, P ) = 2 arcsin(cn(kP , y − y0))

or

φk(x, P ) = 2 arcsin

[
cn

(
kP ,

m(x − x0)

kp

)]
(2.34)

where x0 is an integration constant. cn(k, y) is a periodic function 
with period length 4Kk where

Kk ≡
π
2∫

dθ√
1 − k2 sin2 θ

(2.35)
0

is the complete elliptic integral of the first kind, so one direct way 
to find the kink length is to use that it must be equal to one-half 
of the period length, i.e., 2Kk in the y variable, which means in 
terms of the x variable

L = 2
kP

m
KkP . (2.36)

The same result follows from our general length formula (2.23). 
Indeed,

L = 1

2m

2π∫
0

dφ√
sin2(φ/2) + P̃

= 2

m

π
2∫

0

dχ√
sin2 χ + P̃

(2.37)

where we replaced 
∫ 2π

0 dφ by 2 
∫ π

0 dφ and introduced χ = (φ/2). 
Using the definition of kP in terms of P̃ and extracting a factor kP
from the integrand, we further get (introducing θ = (π/2) − χ )

L = 2
kP

m

π
2∫

0

dχ√
1 − k2

P cos2 χ
= 2

kP

m

π
2∫

0

dθ√
1 − k2

P sin2 θ

(2.38)

which is the desired result. In the same fashion, we may calculate 
the energy of a kink from Eq. (2.24) with the final result

E = 4m

kP

(
2EkP − (1 − k2

P )KkP

)
(2.39)

where

Ek ≡
π
2∫

0

dθ

√
1 − k2 sin2 θ (2.40)

is the complete elliptic integral of the second kind.
We want to emphasize that the periodic sine-Gordon kink chain 

solution is a known result [33] (our presentation follows closely 
[34]). The conceptual difference is that the kink chain in [33]
was found by imposing periodic boundary conditions on the kink, 
while we imposed a nonzero pressure, instead. Periodic boundary 
conditions only make sense for periodic potentials (like the sine-
Gordon potential), whereas the constant pressure equation (2.9)
is well-defined for arbitrary potentials and, in the case of poten-
tials with infinitely many vacua, leads to (in general, non-periodic) 
infinite kink chains. A simple example might be given by a non-
periodic deformation of the sine-Gordon potential like, e.g.,

U = 2 sin2
(

φ

2

a2 + φ2

b2 + φ2

)
(2.41)

where a and b are nonzero real constants.

3. General case

In the preceding section, we defined the geometric “volume” 
(length) of kinks and found that this geometric volume is, at the 
same time, the usual fluid-mechanical or thermodynamical vol-
ume. In this section, we want to investigate whether this result can 
be generalized to field theories supporting solitons in higher di-
mensions. One first important difference is that, in general, higher-
dimensional field theories will not be of the perfect fluid type. We 
shall restrict to field theories with Lagrangian densities which are 
no more than quadratic in first time derivatives (such that a stan-
dard hamiltonian exists) and which have no term linear in time 
derivatives, i.e., no Chern–Simons like terms (this last restriction is 
only introduced to simplify the discussion and probably can be re-
laxed without problem). Then the energy–momentum tensor for 
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static configurations has the non-zero components T00 = E and 
Tij , while T0i = 0. For a perfect fluid, the space–space part of the 
energy–momentum tensor for static fields reads Tij = δi jP , where 
P is the pressure density. In this case, energy–momentum con-
servation still implies that the pressure density for static soliton 
solutions must be constant, P = P = const. There exist field theo-
ries leading to perfect fluids [32], but they are the exception rather 
than the rule. For general field theories we, therefore, need a def-
inition for an average pressure before we can try to find a related 
thermodynamical volume. We shall use the standard definition

P = d−1 tr T ≡ d−1
∑

i

T ii (3.1)

for the average pressure density, and for the average pressure

P = V −1
∫

ddxP. (3.2)

Here, V is the geometrical volume of the soliton, i.e, the volume 
of the region of Rd where E is different from zero. The statement 
now is that, under some additional assumptions on the underlying 
field theory, the geometrical volume is, at the same time, also the 
thermodynamical (fluid-mechanical) volume. First we need some 
notation. The fields φa , a = 1, . . . , m of the field theory take values 
in a certain target space manifold M, and static field configura-
tions φa(�x) belong to the space of maps {�} where

� : Rd → M : �x → φa(�x). (3.3)

We assume, of course, that the field theory in question leads to 
static soliton solutions, at all. Further, we assume that the field 
theory has at most a discrete set of vacuum configurations φa

n,vac, 
n = 1, 2, . . . , one of which the field must approach in the limit of 
infinite |�x| for finite energy configurations (in the case of one space 
dimension, the field may approach two different values in the two 
directions x → ±∞, because these two directions cannot be con-
tinuously rotated into each other). This may occur because the en-
ergy density contains a potential with a discrete set of vacua. If the 
vacuum of the potential is not unique (e.g., a Higgs-type potential), 
or if there is no potential, it may still hold that for finite energy 
configurations the field must approach the same field configuration 
lim|�x|→∞ φa(�x) = φa

inf in all directions. If the field theory has some 
internal symmetries, then these internal symmetries might trans-
form φa

inf nontrivially. In this case, we require that the condition of 
finite energy imposes that the symmetry must be broken sponta-
neously, i.e., one of the elements of the symmetry orbit space of 
φa

inf must be chosen as the physical vacuum φa
vac . The assumption 

of a discrete set of vacua φa
n,vac, or of a unique vacuum configu-

ration φa
vac after spontaneous symmetry breaking, is a nontrivial 

assumption. It is imposed in order to guarantee that vacuum re-
gions in Rd (i.e., regions where the field takes one of its vacuum 
values) are, at the same time, regions of zero energy density, ex-
cept for regions of measure zero (lower-dimensional submanifolds, 
e.g., boundaries). If we allowed for vacuum manifolds with more 
than zero dimensions, then gradients along these vacuum mani-
folds could produce a nonzero energy density. Our assumption still 
covers a lot of models, mainly based on scalar fields, like the real 
scalar field models in 1 + 1 dimensions of the last section, non-
linear sigma models, Skyrme-type models in arbitrary dimensions 
[15,35–38], or the Faddeev–Hopf model of knot solitons [39,40]. 
After a slight modification of our considerations, it probably also 
covers many non-relativistic soliton models, although the explicit 
formulation in this letter is for relativistic (Poincare-invariant) field 
theories.

On the other hand, the above assumption does not cover cases 
like the vortices of the Abelian Higgs model or the t’Hooft–
Polyakov monopole. In these cases, non-trivial gradients along the 
vacuum manifold exist but are exactly compensated by gauge 
fields. We do not exclude the possibility that the arguments given 
below may be generalized to models where the above assumption 
does not hold, such that cases like monopoles and vortices may be 
covered. This generalization, however, is beyond the scope of the 
present letter.1

Next, we define the following generalized step function on tar-
get space

�(φa) =
{

1 for φa /∈ V
0 for φa ∈ V , V = {φa

n,vac} (3.4)

where V is the (zero-dimensional) vacuum manifold. Further, we 
define the locus function of a static field configuration φa(�x) as the 
pullback �∗(�(φa)) of �(φa) under φa(�x), and the locus set of the 
static field φa(�x),

� = {�x ∈R
d | �∗(�(φa)) ≡ �(φa(�x)) = 1}, (3.5)

i.e., the set � ⊂ R
d where the static field configuration is located 

(deviates from the vacuum). Now we introduce the extended static 
energy functional

Ee(V , P ) =
∫

ddx E[φa] + P

(∫
ddx�(φa(�x)) − V

)
, (3.6)

where E is the energy density and P is a Lagrange multi-
plier imposing the condition that all possible solutions of the 
variational problem (3.6) must have geometric volume V , i.e., ∫

ddx �(φa(�x)) = ∫
�

ddx = V . Obviously, P obeys the thermody-
namical relation(

∂ E

∂V

)
= −P , (3.7)

by construction. We still have to show that the Lagrange multi-
plier P is, indeed, the average pressure as defined above. To prove 
it, we will adapt some methods developed in [41] to our case. Con-
cretely, we act with a scaling transformation xi → eλxi ∼ (1 + λ)xi

on the fields φa(�x) in the extended energy functional above. Then, 
we use the fact that both functionals above may be generalized 
to metric-dependent “general-relativistic” functionals which are in-
variant under general coordinate transformations and, in particular, 
under linear coordinate transformations x → �x, i.e.,

E[φa(x)] ≡
∫

ddxE[φa(x)] ⇒

E[gij, φ
a(x)] ≡

∫
ddx

√−gE[gij, φ
a(x)] (3.8)

and∫
ddx�(φa(x)) ⇒

∫
ddx

√−g�(φa(x)) (3.9)

where gij is a general metric in Rd and g = det gij . Coordinate 
invariance just means

E[gij, φ
a(x)] = E[(�∗g)i j, φ

a(�x)] (3.10)

1 In the case of vortices, it is possible to choose a singular gauge such that the 
scalar field of the vortex has a direction independent limit at infinity, and the vac-
uum manifold is effectively reduced to a point, similarly to the case of spontaneous 
symmetry breaking. To include this case into our considerations, however, still re-
quires an adequate treatment of the singularity and an appropriate inclusion of the 
gauge field in our generalized step function (3.4). We thank the referee for pointing 
out this possibility.
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and the same for the second functional. Functionals which al-
low for this coordinate-invariant “general-relativistic” generaliza-
tion are called “geometrically natural” in [41]. But this invariance 
implies that

E[gij, φ
a(�x)] = E[((�−1)∗g)i j, φ

a(x)], (3.11)

so transformations on xi may be transferred to transformations on 
gij , which will simplify our task. Concretely, for the scaling trans-
formation we have �i

j = (1 + λ)δi
j and ((�−1)∗)i

j = (1 − λ)δi
j

and, therefore, up to order λ

((�−1)∗g)i j = (1 − 2λ)gij ⇒ δgij = −2λgij = +2λδi j

(3.12)

(remember we use the “mostly minus” metric convention gij =
−δi j). Now we need to know how the energy functional changes 
under a variation of the metric. For our metric conventions, the 
d + 1 dimensional matter action S is related to the energy–
momentum tensor via

δS

δg(d+1)
μν (xρ)

= −1

2

√
−g(d+1)T μν(xρ). (3.13)

But for the class of theories we consider, for static fields it holds 
that E = −L, which implies

δE

δgij(�x) = +1

2

√−gT ij(�x). (3.14)

For the variation of the energy functional we then find

δE =
∫

ddx δgij(�x) δE

δgij(�x)
∣∣∣∣

gi j=−δi j

=
∫

ddx 2λδi j
1

2
T ij = λ

∫
ddx

∑
i

T ii . (3.15)

For the second functional we just need the obvious result δ
√−g =

−λd
√−g . Hence, for the extended energy functional (3.6) we get, 

off-shell and in first order in λ,

δEe = λ

(∫ ∑
i

T iid
dx − d P

∫
ddx�(φa(�x))

)
. (3.16)

But on-shell, i.e., for a particular soliton solution, this must be zero 
because any solution of the (extended) Euler–Lagrange equations is 
a stationary point and, therefore,

P = d−1
∫
�

∑
i T iiddx∫

�
ddx

= V −1
∫
�

ddxP (3.17)

which is what we wanted to prove.
We remark that, unless the field theory is equivalent to a per-

fect fluid, different soliton solutions will, in general, lead to differ-
ent (average) pressures P , even for the same volume V . Different 
solutions for the same volume are guaranteed to lead to the same 
pressure only if they are related by symmetry transformations (al-
though it may happen accidentally that some solutions not related 
by symmetry still have the same pressure). We further remark that 
it follows from (3.17) that, for nonzero pressure P , the volume 
V is always finite (here we assume that P has no singularities). 
For zero pressure, there are several possibilities. The first is that 
the volume is infinite (solitons with infinite tails). Turning on a 
nonzero pressure makes the volume jump from an infinite to a 
finite value. This implies that in this case the compressibility at 
zero pressure is infinite. The second possibility is that the pres-
sure density P is identically zero (which certainly is the case for 
perfect fluids). The volume may then be either finite (compactons) 
or infinite (solitons with infinite tails). The third possibility seems 
to be that the pressure density, while not being identically zero, 
averages to zero. We are not aware of a specific example where 
this happens, and we do not know whether this possibility really 
exists (or whether, even for theories which are not perfect fluids, 
zero pressure plus finite volume imply zero pressure density). Fi-
nally, we remark that, for the particular case of the Skyrme model, 
similar considerations have already been briefly introduced in [42], 
although without an explicit proof. Here, we added the proof and 
gave a more detailed discussion, and we generalized to a larger 
class of field theories in arbitrary dimensions.

4. Discussion

The volume definition proposed and developed in the present 
letter was mainly motivated by its mathematical properties (the 
equivalence of geometrical and thermodynamical volume), so the 
physical meaning and interpretation of this volume may depend 
both on the particular solitonic field theory under consideration 
and on the physical system it is supposed to describe. As a first 
example, let us consider a field theory supporting solitons with 
compact support (compactons). In this case, together with the el-
ementary compacton (the solution with minimal energy), there 
exists n-compacton solutions consisting of n non-overlapping el-
ementary compactons surrounded by empty space (vacuum). The 
energy and geometric volume of a n-compacton solution are, then, 
n times the energy (geometric volume) of the elementary com-
pacton. In this system, it is plausible to interpret the compactons 
as particles, such that the geometric volume equals the total vol-
ume of all particles of a given solution. Further, the n-compacton 
solution may be enclosed in a finite box without any cost in energy 
provided the box is sufficiently large to enclose all compactons. 
This n-compacton solution in a finite box, therefore, resembles a 
classical gas of n particles at zero temperature, and the box volume 
may be identified with the gas volume (a specific example of such 
a field theory was discussed, e.g., in [32]). For nonzero pressure, 
on the other hand, the individual compactons are compressed and 
move towards each other, empty space is expelled, and the result-
ing system is then either a fluid or a solid (a crystal), depending 
on the amount of symmetry of the underlying static energy func-
tional. The geometric volume should be identified with the volume 
of the fluid or the solid in this case.

Next, we want to consider a field theory giving rise to topolog-
ical solitons with (e.g. exponential) tails, with infinite geometrical 
volume, and where field configurations may be classified by an 
(integer-valued) topological degree interpretable as particle num-
ber. Furhter, we assume that solutions with particle number n > 1
may be interpreted as collections of loosely bound n = 1 solitons, 
where small regions of rather large energy density (the soliton po-
sitions) are surrounded by large regions of very small but nonzero 
energy density with field values close to (but different from) the 
vacuum. Specific examples of field theories with these character-
istics are the “loosely bound” Skyrme model [43] and its lower-
dimensional baby version (“aloof baby skyrmions”) [44]. Due to 
the small binding, it is still reasonable to interpret this system as 
a system of weakly interacting particles at zero temperature. Con-
cretely, as solutions with a given particle number (baryon number) 
come in discrete sets (one global minimum, and several almost de-
generate local minima) with a fixed particle configuration for each 
solution, they are best interpreted as soft (weakly bound) crys-
tals or lattices. It is, then, no longer plausible to identify the (in 
this case, infinite) geometric soliton volume with the total par-
ticle volume. Indeed, the zone of small field values between the 
local energy density maxima is better interpreted as an interaction 
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zone mediating the forces between the individual elementary soli-
tons (particles). A more physical interpretation may, then, be like 
follows. Individual particle sizes (volumes) are defined as the vol-
umes of small balls about the local energy density maxima (the 
positions of the elementary solitons). Here, e.g., the generalized 
RMS radii mentioned in the introduction may be used to calcu-
late these particle volumes. These definitions are not unique, so 
the specific definition chosen should be adapted to the model un-
der study and to the physical system it is supposed to describe. 
The geometric (and, at the same time, thermodynamical) volume, 
on the other hand, should be identified with the volume of the 
whole system, i.e., with the volume of the soft lattice (crystal) of 
interacting particles, which covers both the particles and the in-
teraction zone. This interpretation receives further support if one 
considers what happens when a small but nonzero pressure is in-
troduced. The geometric volume is then finite, resulting in a lattice 
of weakly interacting particles in a finite box at nonzero pressure.

It should be emphasized that the physical interpretations of the 
geometrical volume in the two examples above are related to a 
particle-like interpretation of their solitonic solutions. Concretely, 
we not only interpreted the elementary solitons as (elementary) 
particles, but also the higher solitons as collections of (bound or 
unbound) particles. This latter interpretation, however, is not al-
ways plausible. In general, a soliton describes both a “particle” and 
its interactions, and a clear separation may not be possible. That 
is to say, some field theories have higher soliton solutions where 
elementary soliton substructures cannot be identified, because ei-
ther the interactions are so strong that the elementary solitons 
cluster into new substructures, or the elementary solitons get com-
pletely dissolved, and the higher soliton should just be interpreted 
as a collective, coherent excitation of the underlying basic scalar 
fields, without a clear relation to smaller solitonic constituents or 
to a particle picture. The physical interpretation of the geometric 
volume will be different in these cases, whereas its mathematical 
characteristics remain, of course, unchanged.

5. Conclusions

We demonstrated that, for a large class of nonlinear field theo-
ries supporting soliton solutions, there exists an unique definition 
of the corresponding soliton volume which is equal to the geo-
metrical volume and, at the same time, to the thermodynamical 
(fluid-dynamical) volume. In a first instant, this may appear mainly 
as a peculiar observation, but we think that our considerations, in 
addition to providing this volume definition, demonstrate a close 
relationship between nonlinear field theories with solitons, on the 
one hand, and concepts of fluid dynamics and thermodynamics, on 
the other hand, and that this relationship will be productive both 
for a deeper analysis of nonlinear field theories and for the recent 
attempts to find field theoretic formulations of fluid dynamics and 
hydrodynamics [45]. Indeed, depending on the structure of their 
static soliton solutions, some nonlinear field theories may lead to 
rather nontrivial and interesting zero temperature thermodynam-
ics. If there exists only one solution – up to symmetries – then this 
solution will lead to a unique equation of state (EoS) V (P ). On the 
other hand, if there exists a discrete set of different solutions (up 
to symmetries) in a given topological sector (i.e. deformable into 
each other), such that one solution is a true minimum whereas the 
other ones are local minima, then this may give rise to phase tran-
sitions. That is to say, the different solutions will generically lead 
to different EoS V i(P ) and to different energy relations Ei(P ), and 
it might happen that at a certain value P = P0 of the pressure one 
of the local energy minima at P = 0 turn into the new global min-
imum, such that a first-order phase transition occurs. In particular, 
for theories where a particle interpretation of higher soliton solu-
tions is possible (as discussed in the previous section), and where 
the space–time symmetries are just the Poincare symmetries, the 
discrete set of different solutions might, e.g., correspond to dif-
ferent crystal structures, and the phase transitions to transitions 
between them.

If there exist whole families of solutions, degenerate in energy 
at zero pressure and distinguished by some continuous parameters 
(beyond the ones parameterizing the symmetries) then, a priori, 
there seem to exist two possibilities. Either all solutions within this 
parameter family lead to the same energy and the same EoS also 
at nonzero pressure, or different solutions produce different ener-
gies and/or different EoS. If this second possibility is realized, then 
the solution parameters entering the energy expression and/or the 
EoS should play the role of further thermodynamical variables. For 
topological solitons which support a topological charge, the cor-
responding chemical potential may also be easily introduced, see 
[42] in the case of skyrmions.

Finally, we also provided a rather detailed discussion of the ex-
emplary case of kinks in 1 + 1 dimensions, including a generalized 
method for the construction of infinite kink chains, which might 
be of some independent interest.
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